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Abstract

The Border Gateway Protocol (BGP) determines how Internet traffic is routed throughout the entire world; ma-
licious behavior by one or more BGP speakers could create serious security issues. Since the protocol depends on a
speaker honestly reporting path information sent by previous speakers and involves a large number of independent
speakers, the Secure BGP (S-BGP) approach uses public-key cryptography to ensure that a malicious speaker cannot
fabricate this information. However, such public-key cryptography is expensive: S-BGP requires a digital signature
operation on each announcement sent to each peer, and a linear (in the length of the path) number of verifications on
each receipt. We use simulation of a 110 AS system derived from the Internet to evaluate the impact that the pro-
cessing costs of cryptography have on BGP convergence time. We find that under heavy load the convergence time
using ordinary S-BGP is nearly twice as large as under BGP. We examine the impact of highly aggressive caching
and pre-computation optimizations for S-BGP, and find that convergence time is much closer to BGP. However, these
optimizations may be unrealistic, and are certainly expensive of memory. We consequently use the structure of BGP
processing to design optimizations that reduce cryptographic overhead by amortizing the cost of private-key signa-
tures over many messages. We call this method Signature-Amortization (S-A). We find that S-A provides as good
or better convergence times as the highly optimized S-BGP, but without the cost and complications of caching and
pre-computation. It is possible therefore to minimize the impact route validation has on convergence, by being careful
with signatures, rather than consumptive of memory.

1 Introduction

The Internet is comprised of a large number of Autonomous Systems (AS) that establish global connectivity by coop-
eratively sharing traffic. Traffic originating in one AS may end up being carried by the internal networks of several
different ASes enroute to its destination. The routing of traffic across ASes is established by cooperative execution of a
distributed protocol called the Border Gateway Protocol (BGP) [28] . Gateway routers that connect ASes (called BGP
speakers), execute the protocol. This paper concerns BGP, and optimizations to known solutions for adding security
to its route announcement mechanism.

Lack of security is a serious concern that has been recognized for some time, e.g. [23, 24]. The root cause of the
problem is that BGP speakers trust the messages they receive, and trust other purported BGP speakers to be reliably
executing the BGP protocol according to specifications. A comprehensive analysis of the security vulnerabilities in
BGP is developed by Murphy in [19], and we echo key points of that analysis. The nature of the BGP protocol
is that the messages a speaker sends are extensions of messages that the speaker earlier received. A compromised
speaker can insert false information into the messages it sends; as that information is accepted and propagated, network
performance may suffer:
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� Data may be delayed in its delivery, or even prohibited from being delivered.

� Views of network connectivity may be incorrect.

� Data may be falsely routed through a portion of the network designed to eavesdrop, or even modify the data.

� Feed by false information, the BGP protocol itself may begin to misbehave in such a way that stable routes to
networks are not constructed.

Murphy points out that that BGP has three fundamental vulnerabilities. The first is that it fails to ensure the integrity,
freshness, and source authenticity of messages between speakers, the second is that it fails to validate the authority of a
speaker to even participate in the BGP protocol, and the third is that it fails to ensure the authenticity of the information
conveyed in BGP messages. The first issue can be addressed by hardening peer-to-peer communication with IPsec [4].
The second and third issues are addressed by a protocol known as S-BGP [11].

S-BGP provides a comprehensive treatment of prefix ownership and route authentication, including identification of
needed PKI infrastructure, and techniques for embedding S-BGP extensions within the existing BGP specification in
order to support incremental deployment. The security it offers is limited to route authentication—a rogue cannot
fabricate routing information and inject it into the network. It does not protect against insider attacks on a router’s
route selection policy, its filtering policies, or the timing of the dispersion of the route announcements it does make.
Still, the main concerns about deploying S-BGP today are not so much what it doesn’t do as they are the difficulty
of implementing and maintaining the PKI infrastructure needed to support it. Nevertheless, the vulnerability of the
routing infrastructure is a timely concern, and solutions are likely to involve digital signatures of route announcements.
Against this backdrop, our contribution is to show that the cryptographic processing costs of route authentication can
adversely affect BGP behavior and to develop a low-impact solution to that problem.

Prior analysis of S-BGP identified its resource requirements [11]. Our contribution is to study how its additional
computational load affects convergence—the speed at which BGP finds and distributes good routes. Using a detailed
simulation model, we find that for highly connected routers under high load—e.g. a rebooting Tier 1 speaker—use
of S-BGP significantly lengthens convergence time. Longer convergence reflects increased instability, and can cause
degraded network performance. Consequently we examine S-BGP’s cryptography costs and identify steps where
performance improvements might be effective. We describe a new optimization that reduces the number of expensive
cryptographic operations; using simulation we observe that with our technique BGP’s convergence is close to that
when no cryptography is used at all. We also consider aggressive route caching optimizations suggested in and
inspired by the S-BGP literature, and find that convergence is no better than using our technique (without caching).
Thus we have identified a new way of securing BGP path announcements, without significantly affecting convergence
time, and without demanding significantly more router memory for caching validated and/or signed routes.

The remainder of the paper is organized as follows. Section 2 gives a brief overview of the BGP protocol, then
Section 3 describes S-BGP, and existing proposal for securing BGP route announcements. Section 4 reports on
benchmarking of cryptographic overhead, and Section 5 uses simulation to look at how this overhead affects BGP
convergence time. We describe how to amortize route announcement signature overheads in Section 6. We summarize
our conclusions in Section 7.

2 BGP

We first quickly review critical aspects of the BGP protocol.

An AS manages subnetworks, each one described by an IP prefix—a fixed pattern of the � highest order bits shared
by all devices in the subnetwork. This � may vary from prefix to prefix. Packet forwarding is based on prefixes:
given a packet’s IP address, a router searches its forwarding tables for the longest prefix that contains it, and forwards
through the port the table associates with that prefix. Routers that connect ASes use BGP to construct and maintain
their forwarding tables; these routers are called BGP speakers. A BGP speaker communicates with a set of other BGP
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speakers, known as its peers. A speaker sends an Update in order to announce a new preferred route to a prefix � .
The route is described as a sequence of AS ids. For instance, AS ��� uses �������	�
�������������� to announce the route it
prefers to reach a prefix owned by �	� .

One way Update messages occur is when an AS announces prefixes it originates (i.e, owns) to its peers. This typically
occurs when the speaker reboots. Another way Update messages get generated is related to the change of connection
state between two peers. Peers maintain logical sessions with each other; message traffic across a session (including
KeepAlive messages mandated by the protocol) informs the endpoints of their partner’s liveness. Sessions do go down,
for a variety of reasons. When a session is established (or re-established) the endpoints share their entire routing tables
with each other, in the form of a large number of Update messages. Processing of an Update for prefix � may itself
generate a number of new Updates. This happens if the AS path reported is the basis for a more attractive path; the
recipient selects the new path, appends its AS identity to it, and announces the extended path to one or more of its
peers.

Update messages between peers are rate-limited with a parameter known as the Minimum Route Advertisement
Interval (MRAI). The MRAI is minimum amount of time which must elapse between successive bursts of messages
from one peer to another.

At configuration time a speaker is encoded with a policy that governs how it selects preferred routes. Shortest-number-
of-hops is a commonly adopted policy. A speaker also uses a configuration-time policy to select the subset of its peers
to receive an Update. That policy reflects business relationships between the ASes the peers represent.

When a speaker announces a route to prefix � it implicitly withdraws its preference for the last route it announced to
the same prefix. The recipient, having seen the old route and the new, understands that the sender no longer supports
the older route. An Update message may also simply declare the route to a prefix to be withdrawn, without specifying
an alternative preferred route. A route withdrawal can cause its recipient to generate an Update message; this occurs
if the withdrawn route was the basis for the recipient’s preferred route to the named prefix. A speaker saves the last
announcement from every peer, for every prefix; receiving a route withdrawal it may find at hand another path to the
affected prefix, and will announce the best of these.

A detailed description of BGP and its operation can be found in [28].

As we have seen, a route (or withdrawal) announced by one speaker for prefix � can initiate a wave of announcements
(or withdrawals) by other speakers about � . The hope and expectation is that the wave eventually dies out. The length
of time required for the wave to die out entirely is call the convergence time.

Studies of BGP have considered questions of stability (whether convergence is ever reached) [13, 22, 5], the policies
that govern route selection [7, 14, 27], and convergence [12, 8, 29, 14, 6, 15, 20]. Convergence is of interest because the
quality of connections to a prefix are degraded during the transient period when those connections are changing. For
this reason various optimizations have been considered to control and accelerate convergence. Our study considers
how adding cryptographic operations to BGP affects convergence time, and identifies techniques to minimize that
effect.

3 S-BGP

Considered in its full generality, the problem of securing BGP from both inside and outside attack is daunting. As a
consequence of autonomy, no speaker should necessarily trust the word of any other speaker. As a consequence of
distribution, no speaker can possess a complete, current view of the system. As a consequence of size, the system as a
whole can exhibit behavior not predictable when analyzed on a small scale.

The main security issue is directly identified. Each speaker constructs its forwarding table via hearsay: in general, the
only knowledge � � has of a particular path � � ��� � ��� � ���� � � to a prefix � is the fact that � � claims to originate � , and
that along the way, each ��� forwards to ����� � the commitment of ����� � �� � � to participate in this path. Consequently,
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nothing prevents a malicious speaker � from simply fabricating a claim to originate a prefix, or from fabricating a
route to a prefix and announcing that to its peers. If the fabrication is sufficiently attractive, this misinformation will
propagate throughout the network, as a subpath in other paths.

The natural approach to stopping such forgery is to use digital signatures. A digitally signed message typically
contains the message � and the private-key encipherment ���������
	�	 of a cryptographic hash �����
	 of � . If a party �
receives a tuple ��� �����������	�	 allegedly from party � who allegedly possesses a certain key pair, then � can extract � ,
reconstruct ������	 , and use the public key to verify that ���������
	�	 matches �����
	 . If ������	 matches the signature, then
� can conclude that the party with the matching private key sent the message.

To conclude that this party was � , however, � needs to know that � really possess that public key. Typical PKI
achieves this via a certificate, an electronic document that binds identity information with a key pair. Party � receiving
the tuple ��� �����������
	�	 from party � validates the message using a certificate that gives � ’s identity and � ’s public
key. If � trusts this certificate, then verification of the signature on � tells � that � sent this message and that the
message was not tampered with.

� must also validate the certificate, itself a digital message. Typical PKI achieves this by having another authority
vouchsafe for the certificate, through another digital signature of course, applied to � ’s certificate; typically, this chain
of verification is carried higher and higher up a trust ladder up to the root of a trust tree. Fortunately most of this
verification need only be done once, prior to or concurrent with the receipt of � ’s first message from � . Once � ’s
certificate is authenticated it need not be re-authenticated until it is revoked, or expires. This has obvious performance
advantages when � communicates frequently with � .

A number of digital certificates exist in S-BGP. One is issued by the authority responsible for allocating IP address
space. This is used to authenticate that an AS (named in the certificate) has the authority to announce that it originates
a prefix (also named in the certificate). Another is issued by the authority responsible for allocating AS numbers,
binding organization names with AS numbers; yet another is issued to bind a public key to an AS number, and still
another authenticates a given speaker to represent a given AS number, binding a public key to that authorization. The
public keys associated with this last type of certificate are the ones most frequently used in the course of operations.
Without going into detail, for the purposes of optimizing route authentication we will assume—as in previous S-BGP
analyses—that all the keys necessary to support S-BGP can be distributed as needed (and infrequently) to the speakers
that need them.

Now consider how announced routes are authenticated. Each speaker has its own key pair, and is able to obtain the
public key of any other speaker. Without security, a speaker � � in � � would forward to a speaker � ��� � in � ��� � an empty
claim that a prefix � in �	� is reached through a � ��� ��� path. Instead, speaker � � performs a hash on the sequence
� � � � ��� � ���������� � � , signs that hash value using its private key, and appends that signature to a list of such signatures
generated by previous speakers on the AS path. Speaker � � sends the AS sequence and the signature sequence in one
message to � ��� � . This message (and the outer signature) means that � � has a nice path to � via a ����� � � � � path, and
is offering to extend this ��� � � � path to ����� � . The signature will be used to validate that �
� is the author of this
message. The next inner signature attests that � ��� � offered to extend the ����� � � � � path to ��� ; and so on.

Conversely, when � ��� � receives this message, it can use � � ’s public key to verify that � � really appended itself to an AS
path supposedly from � ��� � , and that � � authorizes � ��� � to use the extended AS path. Speaker � ��� � can only accept the
path supposedly from � ��� � by using � ��� � ’s public key to verify that it did indeed append itself to a path supposedly
from � ��� � . Speaker � ��� � must then verify � ��� � ’s signature, and so on.1 If all the signatures verify, then � � � � can
conclude that the path was was not forged, that at least one point in time it was constructed legitimately under BGP
rules.

Murphy [19, 18] considers additional issues and countermeasures for network-level integrity and replay attacks, such
as using IPSec, and the MD5 option on the TCP level [10]. The cascade of digital signatures in route announcements,
coupled with authentication of the binding between AS and prefix, is the centerpiece of S-BGP, and is the object of
our attention.

1In S-BGP there is appended a short index to a certificate, assumed to be known to the recipient, that binds speaker, AS and speaker’s public
key. This certificate is used to identify the speaker’s AS and validate that it is authorized to sign for that AS.
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4 Cryptographic Overhead

If we want to protect against a malicious router forging paths, but we don’t want to change the basic method that
BGP routers use to distribute and accumulate path information, then it would seem that the cascaded signatures used
by S-BGP is unavoidable. Each router in a claimed path must attest to its participation with a digital signature. The
question then arises of how much this security costs in terms of performance.

RSA is the near-universal standard for public-key cryptography (although, for many years, the U.S. Government did
not recognize it). In RSA, the key pair consists of a pair of exponents and a large (typically 1024-bit) modulus. In a
private-key operation, we raise the input to the power of the private exponent, and reduce it via the modulus; in the
public-key operation, we use the public exponent.

The RSA key generation process lets us choose a value for one of the exponents; since the time of an RSA operation
is roughly proportional to the position of the leading one in the exponent, we typically choose the public2 exponent to
be very small (such as 17). Together, these properties enable signature verification in RSA to be much quicker than
signature generation.

Since RSA was patented, and since RSA could be used for encryption as well as signatures, the U.S. Government
promulgated an alternative public-key scheme, DSA, which could be used for signatures only. DSA does not share the
property that verifications are extremely quick.

In both schemes, the signatures themselves are integers between zero and a modulus value, and the security depends
on the presumed intractibility of certain operations on large integers (such as this modulus). Consequently, the length
of modulus can affect security.

The choice of modulus length has practical size impacts. First, the length of a signature will be the length of a certain
number of integers between 0 and the modulus. Second, the maximum length of the message operand is also the length
of the modulus. Since messages in general will be much longer, signature schemes in practice use cryptographic hash
functions. A cryptographic hash function � transforms an arbitrary length message to a fixed-length hash value, with
the property that it is believed infeasible for an adversary to calculate another message that transforms to that same
value. For signatures with hashing, one first hashes the message, and then uses public-key cryptography on the hash
value. Currently, the standard hash function is SHA-1, which generates hash values 20 bytes long.

Currently, 1024-bits is considered the shortest reasonable modulus for RSA, giving 128 bytes as the signature length.
1024 bits is also considered the shortest reasonable value for the � parameter in DSA, which results in a modulus of
160 bits and a signature size of 40 bytes.

We benchmarked these operations by using the OpenSSL [1] library (version 0.9.6.d), on a 1Ghz PC running Red-
Hat 7.2 Linux. We then normalized these figures for a CPU speed of 200Mhz, as the estimates we made for normal
BGP Update processing were taken from a router with that clock rate. The actual CPU speed in our study is largely
immaterial; we are interested in the relationship between numbers, not the numbers themselves. Furthermore, the
assumed communication latencies between speakers is not large enough to contribute greatly to simulation timing.

It is in theory possible to break up the DSA signature operation into two steps, one of which may be done before
the message to be signed is known. The requirements for pre-computation include (naturally) that the pre-computed
values be saved in a cryptographically secure fashion to eliminate the threat of attack. Perhaps because of this, we
were not able to find a public domain crypto package that supports3 pre-computation. Nevertheless, if a problem
domain is important enough it is reasonable to assume that the effort will be made to take advantage of this feature.
Correspondingly we decomposed and bench-marked the OpenSSL implementation of DSA to measure signature times
under the assumption that pre-computation is employed. Cost of signing virtually disappears. Table 1 and Table 2 show
these results.

2If we instead chose a small value for the private key, then it would be easy for the adversary to guess it.
3Crypto++ has an exponentiation trick it calls “pre-computation,” but this is not the same thing.
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Operation Type RSA sign RSA verify DSA sign (no p-c) DSA sign (p-c) DSA verify
Time (1Ghz) ( ��� ) 10.0 0.5 5.1 0.003 6.2

Time (200Mhz) ( �
� ) 50.0 2.5 25.5 0.015 31.0

Table 1: Benchmarks for RSA and DSA algorithms. All the operations are based on 1024-bit key.

Data Size (bytes) 1-56 57-64 65-120 121-128
SHA-1 Time, 1Ghz ( ��� ) 1.57 2.74 2.58 3.76

SHA-1 Time, 200Mhz ( ��� ) 7.87 13.71 12.90 18.82

Table 2: Benchmarks for SHA-1 operations. The time needed for hashing is proportional to the length of the data size,
stepping up linearly in accordance with the SHA-1 construction.

S-BGP uses DSA, because of its shorter key length, and the potential to exploit pre-computation in the signature step
[11]. The flip-side though is that verifications take an order of magnitude longer in DSA than in RSA, and a path suffix
is verified potentially many times, while it is it signed but once. We will shortly revisit this tradeoff.

The use of cryptography adds an overhead of CPU cycles for each Update message, both for verification and for
signing. Prior work recognized this as a potential problem, and proposed some methods for improvement. Murphy [18]
suggested limiting the number of signatures need to be verified; instead of verifying each signature in the path, only
work on up to � signatures. This limits the cost of verifying paths, but sacrifices security. Other solutions involve
caching routes; we discuss those in more length in the following section.

5 Simulations

In order for us to evaluate the impact that Update processing under S-BGP might have on convergence, we use
simulation. The complexity of interactions in BGP make it difficult to analytically predict the effect of cryptographic
overhead on convergence, the fact that convergence is a global property means that to measure it in the wild one has
to deploy S-BGP on a large scale. Simulation is the obvious—and only—tool for this kind of “what-if” problem. Our
experiments use the SSFNet [3] simulator, which has been used in a number of other BGP studies [15, 6, 20, 31, 17].
This simulator has a large number of options for configuring BGP behavior, and we use the defaults, such as

� the policy for sending Updates is to send everything to all peers,

� the policy for selecting a path is shortest-number-of-hops,

� no router is a reflector,

� no route aggregation is performed,

� default timer values are used. The most important of these for convergence studies is MRAI.

Our experiments were conducted on one topology, representing 110 ASes. The process we used to create the topology
is more detailed than it is interesting, the essential thing it strives to preserve is distribution of connectivity in the
interior of the Internet. We start with a large AS topology built from Internet measurements, heuristically merge nodes
to reduce the graph, then reduce the graph further by randomly removing edges and retaining the largest connected
component, and then merging low degree nodes some more. While admittedly heuristic, the graphs we obtain share
the power-law-like distribution of connectivity seen in the real Internet. The graph we use for this study has 110
nodes, the most highly connected node connects to 24 others, the median node connectivity is 6, the lowest node
connectivity is 2. In our experiments every node represents an AS. We make the simplifying assumption that each
AS originates 2 prefixes and that each AS is represented by just one BGP speaker. Nevertheless, this graph will suit
our purposes well enough. Our objective is to determine whether (and under what conditions) route verification might
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impact BGP convergence, and this topology should give insight into that question. Another objective is to see to what
extent optimizations we design reduce cryptographic overhead, and this topology should tell us that too. It is large
enough to represent ASes at the core, to reflect the impact of their high load and high degree of connectivity, and to
generate the density of alternative routes that can stress BGP.

Our simulation model applies execution delays to Update processing at three different stages. First, every Update
received by a router has a nominal service time sampled uniformly between 32.5 ms and 97.5 ms. This range comes
from measurements taken on a local BGP router, with a 200MHz CPU clock. Route filtering and route selection are
functions whose execution costs are included in this delay. Another execution delay for verification follows, if and
only if the route is chosen as the basis for an announcement. Thus all of our experiments verify only those routes which
must be verified. Following this delay, if an announcement is to be made, a set of Update messages for the router’s
peers are generated and placed in an output buffer. The cost of generating digital signatures for these is incurred at this
point. The messages are sent after they are signed, and when the MRAI timer permits.

We designed a set of experiments to examine convergence under S-BGP as a function of BGP load intensity. In one
scenario we measure the time required for routes to a newly announced prefix to completely propagate through the
network. The originating router announces its two prefixes to its peers, at a time when no router has an entry in its
forwarding for either prefix. The announcement wave that follows establishes, at every router, routes to these prefixes.
In a second scenario we model a router rebooting after a crash, and measure the time needed for all routes to all
prefixes to converge. The volume of workload is much higher, because a rebooting router will get table dumps—an
announcement for each prefix, from each of its peers. It will announce its own preferences for prefixes as it processes
all of these Updates. In addition, the rebooting router announces its own two prefixes, which thus entails all of the
work involved in the first scenario as well.

In both scenarios we initiate the experiment at three different routers : the one with highest connection (24), one with
median connection (6), and one with smallest connection (2). We ran each of the six resulting experiments twenty
times, and compute the mean values of a variety of measures. The ratio of standard deviation to mean is less than 5%
throughout, and so for our purposes it suffices to report the means.

For each experiment we report the number of route announcments, the number of Update messages (a count that
includes withdrawals), the number of times a signature was verified, the number of times a signature was generated,
the sum over all routers of the CPU time allocated to nominal Update processing, the sum over all routers of the
CPU time spent in cryptographic related activities, and the convergence time. For S-BGP we considered DSA with
pre-computation support for signatures (pDSA), and ordinary DSA.

Protocol #Anns. #Updates #verif. #sigs. base CPU (s) crypto CPU (s) Convergence (s)
24-Peer Route Announces

BGP 578.8 649.6 42.5 74.0
S-BGP (pDSA) 584.8 651.7 942.4 560.8 42.2 29.2 74.3
S-BGP (DSA) 582.7 649.7 947.2 558.7 42.5 43.6 74.3

6-Peer Router Router Announces
BGP 633.5 731.4 47.7 81.5

S-BGP (pDSA) 599.6 685.9 1321.4 593.6 44.4 40.9 81.5
S-BGP (DSA) 610.3 703.2 1383.0 604.3 45.6 58.2 81.0

2-Peer Router Announces
BGP 653.7 763.0 49.5 87.9

S-BGP(pDSA) 644.0 745.8 1660.8 642.0 48.4 51.5 86.8
S-BGP (DSA) 647.6 750.0 1654.4 645.6 48.7 67.7 87.9

Table 3: Single prefix insertion experiment

Cryptography does not not affect convergence in these experiments, as seen in Table 3, despite the fact that cryptogra-
phy increases the cost of processing an Update by 50% - 140%, depending on cryptography used, and connectivity of
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the announcing router. In this case route propagation is limited by the MRAI timers, rather than the Update processing
time.

Connectivity reflects how close a node is to the center of the graph. Convergence time increases as connectivity
decreases because the AS paths involved are longer. DSA cryptography costs increase with decreasing connectivity
for the same reason.

Things are more interesting when we consider convergence under the high load induced by a rebooting router, shown
in Table 4. Here we also include experiments that assume RSA is used.

Protocol #Anns. #Update #verif. #sigs. base CPU (s) crypto CPU (s) Convergence (s)

24-Peer Router Reboots
BGP 28559.3 33220.5 2157.3 472.4

S-BGP (pDSA) 29324.0 34044.9 52626.8 29420.0 2212.3 1632.4 629.9
S-BGP (DSA) 29711.9 34438.8 52870.0 29807.9 2238.2 2399.6 799.3
S-BGP (RSA) 29061.5 33766.6 52194.6 29157.5 2194.0 2707.2 793.4

6-Peer Router Reboots
BGP 4182.4 4760.8 309.4 150.9

S-BGP (pDSA) 4214.0 4802.7 7263.0 4238.0 311.9 225.3 232.6
S-BGP (DSA) 4251.3 4843.3 7309.8 4275.3 314.7 335.7 261.3
S-BGP (RSA) 4249.7 4855.4 7423.0 4273.7 315.6 232.2 199.5

2-Peer Router Reboots
BGP 1950.3 2266.5 147.1 110.2

S-BGP(pDSA) 1955.9 2280.5 1494.9 512.7 148.1 59.7 112.6
S-BGP (DSA) 1983.9 2308.5 5389.8 1991.9 150.1 167.1 115.3
S-BGP(RSA) 1964.9 2277.4 5208.4 1972.9 147.8 111.6 115.0

Table 4: Simulated behavior of rebooting convergence experiment. pDSA is uses aggressive pre-computation for
signatures, DSA does not. We also simulated S-BGP with RSA, for comparison.

One worry might be that in this scenario convergence time is nothing more than the time the rebooting router needs to
process the table dumps it gets from its peers. There are 218 prefixes that originate in other ASes, and each peer reports
its path to each. This means that the highly connected router receives ���������	��
������� Updates; with an average of
65 ms. nominal processing per update, it takes 340 seconds (of the 472 second convergence time) to work through the
table dumps; in the medium connected case it takes 85 of 150 seconds, in the least connected case it takes 28 of 100
seconds. Table dump processing is an important component of convergence time, but is not the only component.

To understand this table it is helpful to consider a simple model of the cost of processing a received Update message :

���������
route preferred ��� �����! !" �$#&% �! �' 	

where
�

is a fixed cost, � is length of the AS path,  " is the cost of verifying a signature,
�����

route preferred � is
the probability that the Update reports an AS path that the recipient prefers,

# %
is the number of peers receiving

the resulting Update, and  ' is the cost of signing that Update. For pDSA  ' is cheap but  " is expensive; for
RSA the roles are reversed. DSA’s value for  ' is much more significant than pDSA’s. Thus for pDSA the term�(�)�

route preferred �������! !" is the critical added cost, while for RSA it is
�(�)�

route preferred �*� #+% �! !' .
We see that in the highly connected router experiments, RSA’s crypto costs are much larger, and convergence time is
much longer than ordinary BGP. The same is true for ordinary DSA. In the medium connected case, far fewer peers
are sent Updates when a new route is advertised. This significantly reduces the average cost of processing an Update
using RSA. The impact of pDSA and DSA on convergence is still notable. However, convergence is hardly affected
by cryptography in the low connectivity case.
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Our data suggests that under high load, cryptographic operations can degrade BGP convergence. This observation
is consistent with the experiments by Premore and Griffin [6] who observed that convergence time tends to increase
as the cost of processing an Update increases. Our model of increased costs is somewhat more complex than theirs,
but the result seems to hold at high load. Crypto’s extra computational load affects convergence when the network
can least afford degradation—under high load, such as has been induced during worm attacks or route flapping. This
concern is echoed in [11], where a number of options for caching are suggested :

� Cache validated routes on received Update messages, to avoid the cost of re-validation;

� Cache signed Updates sent to peers, to avoid the cost of re-signing a previously announced route;

� Save these caches in non-volatile memory, to avoid the overwhelming cost of verifying announcements at reboot.

To this list we add the idea of caching individual AS Path suffixes (as opposed to just route announcements), which
would allow efficient verification of a route announcement that has not been seen before, but for which a route with a
common suffix has.

The degree to which such caching is practical, or effective (in the case of caches too small to remember every route or
suffix) depends a great deal on available memory, and traffic patterns. To get some feeling for the demands on such
a system, we analyzed a BGP announcement feed from a RIPE [2] monitor (peer rrc00) for the the entire month of
March 2002. We observed � ������� ������� unique suffixes, and � �)�)��� ����� � unique routes. S-BGP already exerts a heavy
memory footprint, as it needs to store extracts of certificates; we would like to avoid exacerbating additional memory
demands. Nevertheless, for the purposes of finding an upper bound on network performance we ran the rebooting
experiments under the assumption that all of the caching mentioned above is in effect. These results are shown in
Table 5. We report again the ordinary BGP behavior, for reference. We use the prefix ’c’ to remind us that caching is
assumed.

Protocol #Anns. #Update #verif. #sigs. base CPU (s) crypto CPU (s) Convergence (s)

24-Peer Router Reboots
BGP 28559.3 33220.5 2157.3 472.4

S-BGP (cpDSA) 29063.1 33754.7 3997.5 9537.4 2193.7 127.3 496.1
S-BGP (cDSA) 28900.8 33560.0 3383.6 9063.5 2180.6 339.2 648.7
S-BGP (cRSA) 29069.9 33750.8 3098.1 8961.9 2191.5 459.5 782.6

6-Peer Router Reboots
BGP 4182.4 4760.8 309.4 150.9

S-BGP (cpDSA) 4230.5 4825.9 1846.5 1551.9 313.3 57.7 180.6
S-BGP (cDSA) 4210.5 4791.3 932.6 1535.5 311.4 68.5 187.0
S-BGP (cRSA) 4229.8 4828.3 1844.9 1572.2 313.8 83.8 201.1

Table 5: Rebooting convergence experiment. cpDSA uses aggressive pre-computation for signatures, cDSA does not.
Aggressive caching is assumed for all methods.

Under these idyllic conditions, the volume of cryptographic overhead is dramatically reduced over that of Table 4,
where caching is not assumed. The very interesting fact though is that this massive reduction had a comparatively
smaller impact on convergence time. The increase in convergence using cDSA or RSA is still large. However, it
stands to reason that if a router can remember every route, then if we run the simulation long enough every route will
have been seen and no further cryptography need be done, so there is a limit to what we can infer from this experiment.
A real study of caching performance is beyond the scope of this paper.

Despite the limitations of simulation, we believe one can conclude from our experiments that if routes (and suffixes) are
not cached, then under high load and significant connectivity, the cryptographic overhead of securing route announce-
ments can adversely affect BGP convergence. Whether optimizations such as caching and DSA pre-computation can
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avert that threat is an open question whose answer may not be known until actual deployment. In the following section
we propose an optimization that offers the hope of achieving nearly the convergence of ordinary BGP, but without the
overhead and uncertainty of caching.

6 Signature Amortization

Questions related to reducing the cost of cryptography in the routing context have been raised before, e.g. [30, 9]. Such
methods typically work to reduce the cost by reducing the dependence on public-key methods, i.e. develop different
ways of authentication. As useful as line of approach like these may be, there are real difficulties in applying those
methods in BGP. The approach we explore is to do expensive private-key operations less often, amortizing that cost
over multiple messages. We call this Signature-Amortization (S-A).

As we have seen, the most significant drawback of DSA is its high validation cost. If we eschew caching, then
we cannot escape validating every path suffix when we validate an AS path. From this point of view RSA is more
attractive, because its validation cost is (by our measurements) 12.5 times faster. Where RSA fails us in this context is
the high cost of signing every Update.

Recall the reason for the signature explosion : when a speaker makes an announcement, it makes it to multiple peers
(potentially). In BGP the messages to peers are identical; in S-BGP they are not. Security requires that the recipient
be named and be part of the message that is signed. Thus, at first glance, every message must be signed individually.

6.1 Amortization Across Peers

Let’s take a second glance and ask ourselves whether there isn’t a way to achieve the same security. There is a
disarmingly simple solution. Suppose that a speaker logically enumerates its peers with indexes ranging from 0 to the
maximum number of peers,

#
. In practice

#���� � . A speaker can thus use a bit-vector,
#

bits long, to describe any
subset of its peers. The idea then is to have a speaker create a bit-vector that describes the full set of peers filtered to
receive an Update, put the bit-vector in the message rather than the recipient’s identity, and sign the message. This one
message can be sent to all the peers, and only one new signature is involved. If a speaker knows its logical position in
a peer’s enumeration, it can validate that an Update was intended for it by simply checking whether its bit is set. We
call this optimization Signature-Amortization (S-A).

The only issue left is determining how a speaker learns its logical identity in each of its peer’s enumerations, and how
it can prove this identity to its relying parties. A direct solution involves PKI certificates. Recall that in the S-BGP
framework a speaker acquires the certificate of each peer, principally to obtain its public key. Certificate formats are
general enough that we can require that a speaker’s certificate name each of the speaker’s peers (e.g., in an extension).
We simply require that this naming include the enumeration.

For a speaker � � to prove that it was a recipient of an update from � ��� � , it would need to show that � � is the � th peer
of � ��� � , where the � th bit in the vector (signed with the update) was set. But if this ��� �� � 	 pair is in � ��� � ’s certificate,
then attestation of this information is already available to any party that can verify the signature.

This solution does require generation of new certificates when peers change, but that is a relatively infrequent event.
As described it does have the vulnerability that one of � � ’s peers can determine from certificates and bit vectors who
other of � � ’s peers may be. This vulnerability, and a dependence on certificates could be addressed by other methods
that involve direct communication between peers.

Amortization of the same message to multiple peers will have the biggest impact—obviously— at a highly connected
router. Most routers do not have the connectivity found in Tier 1 ASes, and so we ask whether it is possible to find
another way of amortizing a private-key signing. The solution is to aggregate the signature on all messages in all
buffers, while the router awaits the firing of a MRAI timer.
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6.2 Amortization Across Output Buffers

We can adapt the hash tree techniques of [16, 21] to this problem. Operationally what we do is to tag Update messages
that are going into an output buffer as being “unsigned”. These messages will contain bit-vectors, reflecting a cross-
peer aggregation that we continue to exploit. We delay actual signature until the message is free to be transmitted—
either immediately, or (if it must wait for its MRAI timer to fire) when any one of the MRAI timers fires. At that
point we “sign” all of the messages in all of the buffers that are tagged as “unsigned”, and change the tag in each. The
messages that are released by the MRAI timer are sent (possibly leaving some signed messages in other buffers, but
they will not be signed again). The advantage to the hash-tree method is that we can sign all of these messages using
just one expensive private-key operation. The advantage to using bit-vectors is that the hash-tree need be built using
only one representative of the group of Updates resulting from the same announcement.

More generally, given a set � of messages, our goal is to produce a signature for each one, that has the same properties
as traditional signatures: e.g., � ����	 is a detachable blob matching � , that could only have been produced when �
intended to sign � , and that can be verified using � , �����
	 , and knowledge of � ’s public key (and, in particular, not
requiring some other set of previous signatures). However, we want to minimize the number of private key operations
necessary to go from � to

��� � �������
	���� ���	� � .
Let � be a sufficiently strong cryptographic hash function; let 
 denote concatenation; let � ��� denote a simple encod-
ing of “left” and “right”, and let pk sign and pk verify be some standard public-key signature scheme. Suppose �
consisted of � different messages, �� and ��� ; then we could apply the private key to obtain

� 
 pk sign �����������  	�
 ����� � 	�	�	
We could then use

� 
 ����� � 	�
�� as the signature on �  ; verification consists of hashing the message, concatenating
����� � 	 on the right, hashing the result, and verifying that

�
is the public key signature. In general, for a set of � �

messages, we could sign them by building a binary tree of depth � and doing a private-key operation on the root;
the “signature” of any given message consists of the private-key signature of the root, along with the path from that
message to the root, specified via � pairs of hashes and � ��� values.

More formally, for a set � �
��������	� of messages, we define a hash tree of this set to be a (directed) binary tree with�
leaves. We label each leaf with an ����� � 	 ; if an interior node has children labeled

#  and
# � , then we label that

node with ��� #  
 # � 	 .
Let Root ��� � �������� � 	 be the label on the root of such a tree.

If � labels the root of the tree and
#

is the label on some node, we define the Route � # ��� 	 —the route of
#

to � —as
follows: If

# 
�� , then Route � # ��� 	�
�� (trivially—we’re already there).

Otherwise,
#

must be an interior node. Let
# ' be its sibling and

# %
be its parent. We then define the remaining cases:

Route � # ��� 	 

� � # ' ��� 	 � Route � # % ��� 	 if

#
is the left child

� # ' � � 	 � Route � # % ��� 	 if
#

is the right child

The intuition here is that � # '
��� 	 describes a step in the path: “concatenate
# ' to the right of the current hash value,

hash that pair, and keep going.”

With these definitions, we can define the signature for a message � � with a bit vector � , using a tuple of values. The
first value is

pk sign � Root ��� �
��������	� 	�	 �
a digital signature on the root of the hash tree. The remaining values are the bit vector � and the list

Route ������� � 	 � Root ��� � �������� � 	�	 �
which describes the route from ����� � 	 at a tree leaf to the root, including the hash values needed at every level of the
tree to reconstruct Root ��� � �������� � 	 . Validation of this signature is tantamount to doing exactly that—use the path
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information to reconstruct Root ��� � �������� � 	 , and verify that that is what the speaker for ��� signed. Observe that of
all the messages in the buffers that result from the same announcement, each receives the same signature, and only
one instance of that common message is used to build the hash-tree.

6.3 Performance

We have identified two ways of amortizing the cost of a private-key signature for BGP announcement processing. If
we couple this technique with RSA, we obtain the benefits of fast verification, with the advantage of reduced signing
cost. Table 6 shows this, where for reference we include the behaviour of ordinary BGP and of the highly optimized
cpDSA approach. S-A-P reflects the behavior when the signature is amortized only over the peers, S-A-B reflects the
behavior when the signature is amortized over buffers.

Protocol #Anns. #Update #verif. #sigs. base CPU (s) crypto CPU (s) Convergence (s)

24-Peer Router Reboots
BGP 28559.3 33220.5 2157.3 472.4

S-BGP (cpDSA) 29063.1 33754.7 3997.5 9537.4 2193.7 127.3 496.1
S-A-P (RSA) 28731.9 33392.4 51584.4 5840.3 2170.9 420.9 497.2
S-A-B (RSA) 28595.1 33252.8 51385.6 4342.8 2160.6 345.8 493.2

6-Peer Router Reboots
BGP 4182.4 4760.8 309.4 150.9

S-BGP (cpDSA) 4230.5 4825.9 1846.5 1551.9 313.3 57.7 180.6
S-A-P (RSA) 4269.0 4857.9 7356.8 981.3 315.8 67.4 164.4
S-A-B (RSA) 4243.3 4833.3 7283.0 905.7 313.9 63.5 162.7

Table 6: Rebooting convergence experiment. Signature-Amortization (S-A-P) method signs common messages result-
ing from the same Update message only once. S-A-B method uses a hash-tree on messages in buffers awaiting release
by MRAI timers.

Now we see that the impact that RSA has on convergence is small. In the case of the highly connected router, this
small device reduces the fraction of overall processing time dedicated to crypto from 55% to 16%, with a reduction of
convergence time from 168% of BGP’s to just 105% of it. It is interesting to observe that amortizing over buffers and
peers is not appreciatively better than amortizing over peers alone. It turns out that in these experiments the average
size of the hash tree is pretty small—less than 2.5 in both cases, while the average size of a peer set is 7.3 in the highly
connected case, and 5.8 in the medium connected case. It is not difficult to imagine situations where the hash-trees
will be larger though. The value of the MRAI timer is pretty standard, and does not seem to be changing in practice
while routers get faster. So, for example, if a router had a 1GHz CPU rather than the 200MHz CPU we assume, the
potential exists for buffers to have 5 times more messages in them when MRAI timers fire, because the CPU can move
them there that much faster.

Of course, the most significant aspect of these results is that signature aggregation appears to deliver the same—or
better—convergence as does the highly optimized S-BGP, but without pre-computation, and without caching.

The additional memory demands of S-A include an 88-byte increment per AS in a path for using RSA rather than
DSA, and � ������� � more bytes per AS for a hash-tree of height

�
. Based on a 4096 byte limit on Update size, there

is still ample room for our more complex signatures. Our calculations (based on the analysis in [11]) is that if the
average hash-tree is built on as many as 32 messages, 21 ASes can still fit in on Update message. Should the 4096
byte barrier be immutable, one could alter the hash-tree amortization to trigger as soon as the number of unsigned
messages reached a threshold value. For aggregation across peers, the added cost of the bit-vector is inconsequential,
and in any case can replace explicit identification of the recipient.



13

7 Conclusions

The Border Gateway Protocol is the glue of the Internet, but it is vulnerable to attack. Public key cryptography can help
protect it, but is computationally expensive and may impact network performance. We ask whether the route validation
technique in S-BGP can affect BGP convergence. Using a detailed simulation model, we find that the answer is “yes”,
when the BGP processing load is high in a router that has many peers.

Minimizing performance impact of standard S-BGP requires caching and pre-computation, which create implemen-
tation difficulties. Pre-computation requires maintenance of a protected cache of pre-computed values. Furthermore,
one needs the cache the most, when the ability to replenish it is least—when a router has a heavy load of Updates.
We considered very aggressive caching strategies for S-BGP, and assumed that once a route was seen, it was remem-
bered forever. Under these assumptions we see that S-BGP convergence is close to that ordinary BGP. However, the
effectiveness any real caching strategy depends heavily on the pattern of traffic, on the replacement policy, and on the
amount of memory available for the cache. Our simulations suggest that S-BGP, as proposed, has to find effective
solutions to the caching and pre-computation problems.

We approach the problem differently. We notice that RSA has a much lower validation cost than DSA, but that its
signing cost is overwhelming. We develop methods for amortizing that expensive private-key signature over many
updates. Our simulations show that by basing the cryptography on RSA and amortizing the signature cost, BGP con-
vergence is as good or better than the highly optimized S-BGP solution—but without the complications, uncertainties,
and risks of that solution. It is possible therefore to minimize the impact route validation has on convergence, simply
by being careful with signatures.

Another approach to reducing cryptographic costs might be to sprinkle trusted witnesses throughout the net. These
witnesses could verify the cascaded signatures on a path, then replace this cascade with a single signed assertion, and
possibly apply even more amortization there. In 1994, [25] suggested using secure coprocessor hardware to implement
such witnesses for a different type of multiparty hearsay; since 1997, strong programmable secure coprocessor plat-
forms have been available as COTS products [26]. We also plan to explore the performance impacts of this approach.
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