

T h e I n t e r n e t P r o t o c o l J o u r n a l

2

Web Caching

by Geoff Huston, Telstra

eb browsing dominates today’s Internet. More than two-
thirds of the traffic on the Internet today is generated by the
Web. In looking at how to improve the quality of service de-

livered by the Internet, a very productive way to start is examining the
performance of Web transactions. It is here that Web caching can play a
valuable role in improving service quality for a large range of Internet
users.

There are two types of Web caches—a

browser cache

 and a

proxy
cache

. A browser cache is part of all popular Web browsers. The
browser keeps a local copy of all recently displayed pages, and when the
user returns to one of these pages, the local copy is reused. By contrast, a
proxy cache is a shared network device that can undertake Web transac-
tions on behalf of a client, and, like the browser, the proxy cache stores
the content. Subsequent requests for this content, by this or any other
client of the cache, will trigger the cache to deliver the locally stored
copy of the content, avoiding a repeat of the download from the origi-
nal content source. In this article we look at proxy caches in further
detail, particularly at the aspects of deployment of proxy caches in Inter-
net Service Provider (ISP) networks.

What Is Proxy Web Caching?

When a browser wishes to retrieve a URL, it takes the host name com-
ponent and translates that name to an IP address. A HTTP session is
opened against that address, and the client requests the URL from the
server.

When using a proxy cache, not much is altered in the transaction. The
client opens a HTTP session with the proxy cache, and directs the URL
request to the proxy cache instead (Figure 1).

Figure 1: A Proxy Web
Transaction

W

TCP: CONNECT www.stuff.isp
HTTP: GET page.html

Client
A

Cache

www.stuff.isp

Content
Server

ATCP: CONNECT cache-server.isp
 HTTP: GET www.stuff.isp/page.html

Client
A

Cache processes request for
www.stuff.isp/page.html

T h e I n t e r n e t P r o t o c o l J o u r n a l

3

If the cache contains the referenced URL it is checked for freshness by
comparing with the “Expires:” date field of the content, if it exists, or by
some locally defined freshness factor. Stale objects are revalidated with
the server, and if the server revalidates the content, the object is re-
marked as fresh. Fresh objects are delivered to the client as a

cache hit

.

If the cache does not have a local copy of the URL, or the object is stale,
this is a

cache miss

. In this case the cache acts as an agent for the client,
opens its own session to the server named in the URL, and attempts a
direct transfer to the cache.

The Pros and Cons of End-to-End Web Access

The original design principle of the Internet architecture is that of the
end-to-end model

[2, 3]

. Within this model the network is a passive instru-
ment that undertakes a best effort to forward packets to the specified
destination. Each packet generated by a host is assumed to be for-
warded to the addressed destination, and any response to the datagram
is assumed to come from that destination address.

The World Wide Web transaction protocol, the

Hypertext Transfer Pro-
tocol

 (HTTP)

[4, 5]

, is constructed upon this model, where a client’s Web
fetch causes a TCP session to be opened with the specified target host.
The ensuing HTTP conversation identifies the requested data on the des-
tination host, and this data is then passed back to the client. This
delivery model is best expressed as a

just-in-time delivery model,

 where
the data is passed to the client on demand.

This delivery model has many significant advantages. The content server
can modify the content, and all subsequent client requests are provided
with the updated information, so that updates are immediately reflected
in the delivered data. The content server is also able to track all content
requests, allowing the content provider to track which particular con-
tent is being requested, the identity of each requestor, and how often
each content item is referenced. The content provider can also differenti-
ate between various clients, and, using some form of security model, the
content provider can authenticate the client and deliver privileged infor-
mation to certain clients. In this model the content provider can also
differentiate between clients, delivering certain information to some cli-
ents, and

different

 information to other clients of the content server.

Many web systems have been constructed based on the capability of this
end-to-end delivery model. Continuously updating Web pages that use
either

server push

 or

client pull

 to regularly update the content on the
client’s display are used to display stock market prices, weather maps, or
network management screens. Client identification can be used to cre-
ate combined public and virtual private information servers, where a
class of identified users can be directed to internal content environ-
ments, while other clients are passed to a default public content
environment. Such systems form the basis of extranet environments, and
can also be used to form part of a virtual private network.

Web Caching:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

4

Where information has a defined locality, this tool is very useful. Secu-
rity and authentication is also used to provide services where the
transaction requires some level of privacy. Electronic trading systems,
credit card transactions, and related financial systems on the Web make
use of such client authentication capabilities. The individual transaction
can be encrypted using socket-level encryption,

[13]

 or the entire TCP ses-
sion can be encrypted using an IP session-level encryption tool such as IP
Security (IPSec).

For all these benefits available in an end-to-end model of Web content
delivery, there are some balancing drawbacks. A server providing very
popular content is placed under considerable stress, both in the number
of simultaneous client connections active at any time and in the total
volume of data being delivered from the server in the surrounding net-
work. This load is expressed both as a server system load, and as load
on the surrounding network. Improving the performance of such sys-
tems may entail improving the server throughout, increasing the number
of servers through the use of server farms and a traffic manager, and im-
proving the capacity of the local network to deliver the increased
volume. However, all these measures may not address all the problems
in maintaining quality of the content delivery. Modem-based client sys-
tems, and low-bandwidth wireless-based client systems are constrained
by a combination of the restricted bandwidth of this last hop and the as-
sociated imposed end-to-end delay in conversing with the server.
Improving the capacity of the server may not necessarily reduce the
number of simultaneously active client connections. Reducing the delay
between the client and the point of delivery of the content will improve
the performance of content delivery.

In addition, the network itself may not be efficiently utilized. Web traffic
does have considerable levels of duplication, where a set of clients re-
quest copies of the same content, and the network carries duplicates of
the data to each client. For a network provider, where transmission ca-
pacity is a business cost, importing the content just once, and then
passing local copies of this content to each client, is one method of im-
proving the carriage efficiency of the network.

In terms of the ability to improve the service performance of delivery of
content to a global network of clients, and in terms of the ability to im-
prove the carriage efficiency of the network, caching of content makes
some sense to the content provider, to the ISP, and to the end client.

The Pros and Cons of Web Proxy Caching

The same benefits of improved performance and reduced outbound
traffic loads can be realized for World Wide Web traffic through the de-
ployment of Web caches. Web caches are basically no different from any
other form of caching. The client request is passed through a

cache
agent,

 which makes the request to the original source as a proxy for the
client. The response of the server is retained in a local cache, and a copy

T h e I n t e r n e t P r o t o c o l J o u r n a l

5

is passed to the client. If the same request is passed to the cache agent
soon after the original request was serviced, the response can be gener-
ated from the cache without further reference to the original source. The
operation of a Web cache is shown in Figure 2.

Figure 2: A Web Cache

Measurements of ISP traffic profiles indicate that some 70 percent of a
typical ISP’s traffic is Web-based traffic. An analysis of Web requests in-
dicates that the typical level of similarity of requests (for the same object
as one previously requested) can be as high as 50 percent of all Web-
based traffic.

There are two hit-rate measures, a

page hit rate

 and a

byte hit rate.

 A
page hit rate measures the proportion of individual HTTP requests that
can be served from the cache, irrespective of the size of the page. A byte
hit rate measures the ratio of the number of bytes delivered from the
cache in hits against the number of bytes in misses. Experience to date
has indicated that page hit rates of somewhere between 40 to 55 per-
cent are achievable for a well-configured cache. In such circumstances
the associated byte hit rate is between 20 and 35 percent. The major
contributor to the hit rate is in image files.

For many ISPs, particularly those operating outside of North America,
transmission costs dominate the cost profile of the ISP’s operation. If the
cache performed at even 60 percent of a theoretical maximum caching
performance, the ISP could reduce its external traffic volume require-
ments by some 13 percent. When the costs of caching are compared to
the costs of transmission, this difference can be a significant one in the
cost base of the ISP’s operation.

For example, if the average cost of transmission is $150 per gigabyte,
and the ISP has a typical carriage profile of purchasing 1000 gigabytes
per month from an upstream ISP with a 70-percent Web traffic profile,
then a cache operating at a 25-percent byte hit rate can save the ISP a re-
current expenditure of $26,250 per month. If the cache costs $100,000

TCP: CONNECT cache-server.isp
 HTTP: GET www.stuff.isp/page.html

Cache miss causes proxy fetch
 TCP: CONNECT www.stuff.isp
 HTTP: GET page.htmlClient A

Cache

Cache

www.stuff.isp

Content
Server

A

TCP: CONNECT cache-server.isp
 HTTP: GET www.stuff.isp/page.html

Client A

A

Cache hit

Web Caching:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

6

as a capital expenditure and $2000 per month in operational costs to
support the service, then a business case analysis would see the cache ac-
tivity return some $18,000 per month to the business, net of annualized
capital and operational expenditures.

The other benefit is to the client, where the reduced network delay be-
tween the client and the local cache results in an increase in speed of
Web page delivery for cached content.

The average size of a Web transaction is some 16 data packets within
the TCP flow. Within a TCP slow-start flow-control process, the first cy-
cle will transmit one packet and wait for an ACK. The reception of the
ACK will trigger transmission of two more packets in the second round-
trip cycle, and then the sender will await two ACKs. Reception of these
two ACKs will trigger a further four packets in the third cycle and eight
in the next cycle, and the remaining single packet in the fifth cycle.
Therefore, allowing for optimal behaviour of the TCP slow-start algo-
rithm, this average Web transaction takes some five round-trip times. If
a user is located some distance away from the Web page, and the round-
trip time to the source is 300 ms, the propagation delay of the page load
will be 1.5 seconds. In comparison, if the round-trip time to the local
Web cache is 2 ms, then the propagation delay of the page load will be
10 ms. These latency figures assume an uncongested network in both
cases. In this case, as long as the Web cache search can complete within
1 second, the cache will appear to be far faster to the user.

A slightly different analysis is possible when comparing the perfor-
mance of a cache configured at the headend of a cable-IP system versus
the performance of direct access. The difference in latency in this case is
due to both the closer positioning of the cache to the user and the
greatly increased effective bandwidth from the cache to the user. A
cache download can operate at speeds of megabits per second, as com-
pared to kilobits or tens of kilobits per second when using dialup
modem or ISDN services. For a 100K image download, the dial user
may experience a 60-second delay, and the same delivery from a local
cache via cable-IP may take less than half a second.

The trade-off with caching is that of balancing the the cost of carriage
capacity, both in terms of monetary cost of the carriage and the perfor-
mance cost of the transaction time of the application, against the cost of
the use of caching. For non-North American ISPs, in which there is typi-
cally a large cache hit rate against North American server locations, the
benefits of widespread use of caching are quite substantial. For cable-IP
operators, the benefits of local cache operation lie in the ability to ex-
ploit the benefits of the very-high-speed final hop from the headend to
the end user. For other ISPs, the benefits of caching may be less dra-
matic, but nevertheless, there are tangible positive outcomes of caching
in terms of performance and cost that can be exploited.

T h e I n t e r n e t P r o t o c o l J o u r n a l

7

As with direct-access models, this approach also has drawbacks. We
have already noted the various ways in which the end-to-end model of
Web content delivery has been exploited to provide time-based content,
client-based content, and secure delivery of content. Caches insert them-
selves within the end-to-end semantics of the original transaction model,
and intercept the transaction by presenting a proxy of the original end-
point. The content delivered from the cache is the content based on the
time the cache undertook its request to the server, and the content deliv-
ered from the server is based on the server’s view of the identity of the
cache, rather than the identity of the end client.

With cached content in operation, the cached-content server no longer
has an accurate picture of the number of times an item of content is
viewed, and by whom. The server cannot authenticate the client, nor can
the server deliver any information that is based on the supposed identity
of the client. Equally, the client has potential problems, because the cli-
ent may not be aware that the content has been delivered by the proxy
cache. The content may not properly reflect the client’s identity, and the
information may be based on the security trust model of the server to the
cache, rather than the server to the end client, and again the client may
not be aware of such a change in security domains. If the content is time-
dependent, the content will reflect the time at which the cache retrieved
the content, rather than the time the client made the request.

All of this tends to suggest that caching is not a universally applicable
tool. Part of the challenge in deploying cache servers is to understand the
models of cache deployment and Web content delivery, and ensure that
the cache does not intrude in ways that distort the integrity of content
delivered to the end user.

Web Cache Hits Versus Web Server Hits

One of the biggest tensions is the balance between the cache operator’s
desire to maximize the hit rate of the cache system and the desire of
many Web page publishers to maintain an accurate count on the num-
ber of hits of the page and from where those hits occur. In most cases, it
is the requests that are of interest here, rather than the control of deliv-
ery of the content. The Web publisher is not necessarily interested in
absorbing the hits for Web content. Indeed, many Web publishers see
value in distributing the load of content delivery of fixed-content mate-
rial further out toward the client base, rather than the Web publisher
bearing the cost of the distribution load from the local site.

Static pages, composed of plain text and images, are readily cached. As a
consequence, the original page publisher may not obtain an accurate
count of the number of times the page was displayed by users if the Web
server’s log was analysed. Some Web page designers place information
in the Web page directives; this information directs the Web cache server
not to reuse a cached page. The most common way of doing this is to
set the “Expires:” Web page information header to the current date and

Web Caching:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

8

time, so the next time the page is referenced, a new fetch will be under-
taken. One of the more common hacks to cache servers to attempt to
improve the hit rate is to allow this directive to be ignored.

This server hit-count problem has plagued cache deployment for many
years now. Although there are real requirements in the areas of authenti-
cation and security, time-based content, and client-based content that
mandate certain types of content being flagged as non-cacheable, much
of the data that is marked as non-cacheable has been marked in this way
simply for the server to capture the identity of the client. Such “cache-
busting” practices are unnecessarily wasteful of network resources, and
can overload the content server. There is an Internet Proposed Standard
extension to HTTP

[6]

 intended to provide a “Meter” header, where a
cache can communicate demographic information relating to client
“hits” back to the original content server. The extension also proposes
usage limiting, where a server can provide content with a limit on the
number of times the information can be used by the proxy cache before
revalidating the content with the server.

Web-Caching Models

There are many models of how to invoke a proxy cache.

Explicit Caching

Some proxy cache systems are deployed as a user-invoked option, in
which the user nominates a cache server to the browser as a proxy agent,
and the browser then directs all Web requests to the proxy cache. At any
stage, the user can instruct the browser to turn off the use of the proxy
cache, and request the browser to undertake the transaction directly with
the client. Modern browsers when configured with a proxy cache may
also use the approach of attempting direct access when a request via a
proxy cache results in a fetch error. In the proxy cache mode of opera-
tion, the destination address of the underlying transport session is then
the address of the cache server, while the HTTP content of the transac-
tion remains unaltered. Such caches can be deployed within a client’s
local network, with the intent of minimizing the amount of traffic passed
to the external provider ISP. Additionally, The ISP can operate such a
voluntary cache for use by its clients. If the ISP operates in this mode, the
benefits to the user in using the cache need to be clearly stated and under-
stood by both the client and the ISP, and the client must be made aware
of the location of the cache in configuring his or her local browser.

Forced Explicit Caching

Some ISPs, notably in the dialup service provider sector, operate in a
highly cost-competitive market. In such a market service performance
and service price are critical business factors, and the provider may
choose to operate its network in a forced-cache mode. Here, all Web
traffific on TCP port 80 (the port used by the HTTP Web transport pro-
tocol) is blocked from direct outbound access, and the ISP’s clients are
forced to configure their browsers to use the provider’s cache for exter-
nal Web access. This technique is commonly termed

forced caching

.

T h e I n t e r n e t P r o t o c o l J o u r n a l

9

Transparent Caching

The use of a cache for all Web traffic also can be undertaken by the ISP,
without the explicit configuration of the identity of the proxy cache into
the user’s browser. Irrespective of precisely how this setup is engineered,
and there are numerous ways of engineering it, this technique is termed

transparent caching.

 With transparent caching the user, and the user’s
browser, may not be explicitly aware that caching is being undertaken
when processing the user’s requests. Here the network has to intercept
HTTP packets destined to remote Web servers, and present these pack-
ets to the proxy cache. Once the page is located, either as a cache hit or
a cache miss, the cache must then respond to the original requestor by
assuming the identity of the original destination (Figure 3).

Figure 3: Transparent
Caching

It should be noted that no mechanism to date of explicit or transparent
caching is completely transparent to both the Web client and the Web
server. Where the Web server uses an end-to-end security access model
the transparent cache may fail, because the cache will present its ad-
dress as the source of the request, rather than that of a client. This
scenario may result in a page-denied error to the cache request, whereas
the client could have completed the transaction directly with the server.
In those situations where the use of the cache is mandated, either
through filters and a forcing function, or through transparent network
redirection, there is no user-visible workaround to the error, and the
level of user frustration with the entire cache service rises dramatically.

Under some circumstances it may be possible to work around transpar-
ent cache fetch errors. One approach is for a cache fetch error to trigger
the cache subsystem to establish an HTTP session with the content
server using the source address of the client, and then pass the original
HTTP GET request to the server. The server’s response is then passed to
the client using a TCP bridge. (A TCP bridge is where the connecting de-
vice is required to translate the sequence numbers of the TCP headers
between the two TCP sessions). Having the cache subsystem intercept
the server’s packets addressed to the client does require careful coordina-
tion with the cache router, and TCP bridging is also quite complex in its

TCP: CONNECT www.stuff.isp
HTTP: GET page.html

TCP: CONNECT www.stuff.isp
HTTP: GET page.html

Redirect TCP Port 80
to Cache Port

Cache Response assumes the
identity of the content source

Client

Cache

www.stuff.isp

Content
Server

A

A

A

Web Caching:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

1 0

operation, so such solutions tend to be somewhat unstable under load
stress. An alternative approach is for the cache to pass a TCP RST back
to the client, and instruct the cache router to insert a temporary entry in
its redirection filter so that any subsequent TCP port 80 connection
from the client to the server’s address is not redirected to the cache.

If the sole benefit to the client is improved speed of response, then the
ISP must understand that the performance of the Web cache systems
must be continually tuned to be highly responsive to Web requests un-
der all load conditions experienced by the ISP. Performance of cache hits
must be maintained at a level consistently faster than the alternative of
direct client access to the original client site. Performance of cache misses
must be at a level that is not visibly slower than that of direct access to
the original site. If the user’s perception of performance of the cache
drops, the benefit to the user also drops. In the case of user-selected
caching, the users will turn off the cache option in their browser and re-
turn to a mode of direct access.

The business model of a cache is that the capital and operational costs
associated with localizing traffic to the cache result in cost reductions to
the ISP, when compared to the operation of a noncached network.
These cost reductions can be passed on to all users through operation of
the entire service at a lower price point or selectively passed on to those
clients who make use of the cache through some form of cache-use tar-
iff. The generic model of applying the cost reduction to the ISP’s service
tariff is certainly an advantage in a price-competitive marketplace. How-
ever, unless the performance of the cache is consistently very high, and
the transparency of the cache is close to perfect, each individual user
may attempt to use direct-access methods.

The alternate business model is to pass on the marginal cost savings to
those clients who make use of the cache, and at a level that corresponds
to the client’s use of the cache and its effectiveness in operating at a high
cache hit rate. If, for example, the ISP uses a charging model that in-
cludes a tariff component based on the amount of data delivered to the
client during the accounting period, this tariff component could be ad-
justed by the amount of use the client made of the cache system and the
relative operating efficiency of the cache in generating cache hits.

As an example, if traffic is tariffed at $100 per gigabyte as delivered to
the customer, a discounted value can be derived for traffic delivered
from the Web cache. If the average cache byte hit rate is 30 percent, then
after factoring in the costs of capital equipment and operational sup-
port, the traffic from the cache could be tariffed at $80 per gigabyte.
Here, the benefit of using the Web cache is passed directly to those cli-
ents who make use of the cache, who both enjoy lower tariffs in direct
proportion to their use of the cache and derive superior performance
through using the cache. The accounting for this marketing model is cer-
tainly a more involved process, involving additional accounting systems
and processing to undertake an accurate per-client view of cache usage.

T h e I n t e r n e t P r o t o c o l J o u r n a l

1 1

It is becoming increasingly evident that a robust business model associ-
ated with a model of discretionary use of a Web cache is that of access
to a lower unit price of traffic. In this way, the user sees the incentive of
immediate financial benefit in choosing to use the cache system. When
the provider deploys transparent or forced caching, translating the
benefits of caching into an overall reduced tariff structure for all clients
is a more robust business model.

Web-Cache Systems

Cache systems can take a variety of forms. The original Web server
from CERN, the original location of the development of Web software,
allowed a mode of proxy behaviour. This cache server model was devel-
oped significantly in the Harvest Project, a research project at the
University of Colorado. As an evolutionary path, the

Harvest

 cache
server is being further developed within the scope of the development of
the

Squid

 cache server software and the associated

Internet Caching
Protocol

 (ICP).

Currently numerous freely available proxy cache systems are available,
such as Squid, and many systems are available commercially, such as the
Cisco Systems

Cache Engine.

 Some of these systems are software pack-
ages that operate on a conventional operating system platform, while
some use a customized platform kernel, which is optimized for the de-
mands of a cache-delivery environment.

Many of the characteristics of Web caching systems are relevant to the
performance of the caching environment. The first is the

size

 of the
cache server. The relationship between the size of the cache and its hit
rate is not a linear relationship. For typical patterns of Web use gener-
ated from a relatively large user population, a cache of 1 gigabyte or so
will yield reasonable hit rates. Further increase of the cache size will
yield incremental improvements in the cache hit rate, where the incre-
mental rate is best described by a negative exponential relationship.
Thus, caching systems with 10 gigabytes of storage do not produce per-
formance characteristics markedly different from larger 100-gigabyte
caching systems. No objective best size of cache system can be deter-
mined, because local environments differ, but every environment
exhibits the law of diminishing returns, in which the addition of further
cache capacity yields no tangible difference in the cache effectiveness.
Large caches take some time, in the order of days or even weeks, to
build up a sufficiently large repository of cached data to produce an im-
proved cache hit rate. Generally, 10- to 100-gigabyte cache systems
provide extremely effective cache performance, as long as the cache is al-
lowed to stabilize for some weeks following startup. Memory demands
in a cache also need to be carefully configured. The URL index of the
storage system is stored in memory in most cache architectures in order
to perform fast cache lookups, so that the more disk storage configured,
the larger the memory requirements.

Web Caching:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

1 2

The next parameter is the

number of simultaneous cache requests

 that
the cache server can manage efficiently. Note that this metric is different
from the number of requests per second that the cache server can man-
age. The number of simultaneous sessions that the cache server can
support is related to the amount of resources allocated to the cache re-
quest and the total resource capacity of the box.

The environment of deployment is very relevant to the performance of
the cache environment. The related metric to the number of simulta-
neous requests that can be managed is the average time to process a
request. Combining these two metrics provides the number of requests
per second that the cache system can process. The same unit will have a
different performance metric of requests per second when deployed in
different parts of the Internet. If the cache system is deployed with a sat-
ellite-based feed, then the average time to process a cache miss is
considerably longer because of the higher latency of the satellite path.
This scenario leaves the process of managing the original request open
for a longer period, blocking other requests from using this process slot.
If the same unit is deployed in a location where cache misses take frac-
tions of a second to process, the process slot can be quickly reused. Each
active client connection also consumes memory, and the client connec-
tion will remain open for as long as it takes to complete the Web
transaction, either for a hit or a miss. The greater the mean round-trip
delay for a miss, the greater the number of concurrent active sessions
held in the cache. Similarly, the greater the number of low-speed mo-
dem or wireless-based clients, the greater the number of concurrent
active sessions in the cache. Whether the client operates in transparent
mode or in explicit proxy caching mode is also an important consider-
ation. Browser clients use an explicit proxy cache with a persistent
connection, while if the cache is a transparent cache, the cache will see
clients bring up and drop HTTP connections each time the base URL
changes. This session reestablishment, together with the additional Do-
main Name System (DNS) resolution load imposed on the client, can
add up to half a second to the transparent cache response time as com-
pared to the explicit cache response.

Web Cache Deployment Models

In this section we first examine scaling issues for explicitly referenced
cache configurations, and then look at the changes to the model intro-
duced through transparent caching.

The simplest deployment model of an explicit cache is that of deploy-
ment of a single cache system as a browser-selectable resource. This
system can be deployed within an ISP’s server environment with a TCP
port-80 interface opened for client access. Such a deployment model is
shown in Figure 4.

T h e I n t e r n e t P r o t o c o l J o u r n a l

1 3

Figure 4: A Selectable
Web Cache

Single Web proxy cache systems can be placed under some significant
load, and an overloaded and poorly performing cache is perhaps worse
than no cache at all. However, scaling this deployment model can prove
challenging. Where an ISP operates multiple access points, or points of
presence (POPs), one scaling solution is to deploy a server at each POP
and use the same IP address for each server. This solution allows the ISP
to provide a consistent configuration to all clients and to augment ca-
pacity at any location seamlessly. If the cache itself is responsible for
advertising the common IP address into the routing system, the caches
can also act in a mutual backup role. Failure of a single server will shut
down the local route advertisement. Traffic directed to this address will
then be carried by the routing system to the next closest proxy cache.
There may be some level of TCP session resets for sessions that were ac-
tive on the failed unit, but in all other respects the switchover is seamless
to the client base, and the recovery of an operational state among a set
of such servers can be left to the routing system. This deployment model
is indicated in Figure 5. Such servers can be configured as a set of local
satellite systems to a larger caching core, using an

Internet Cache Proto-
col

 (ICP) configuration to set up a caching hierarchy.

ICP is a lightweight message format for communicating between Web
caches

[7]

. The message format is a simple two- packet exchange, where a
Web cache passes a URL query to another cache. The response is either
a hit or a miss, indicating the presence of the URL object on the remote
cache. On top of this protocol can be constructed cache hierarchies, to
allow multiple neighboring caches to pool their resources effectively.

ISP Network

Client

Cache

172.16.0.1

Configure:
Cache Server

172.16.0.1

Web Caching:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

1 4

Figure 5: Replicated
Web Caches

The proposed mode of configuration of caches is into a tree-structured
hierarchy

[8]

. In such a hierarchy every participating cache is organized
with a connection of neighboring peers and an ICP parent. When a
cache request cannot be serviced from the local cache, the cache first
uses a set of local configuration rules to determine if the server is local. If
so, the cache queries the server directly for the content. If the server is re-
mote, the cache issues a set of simultaneous ICP queries to all its cache
peers. If any peer responds with an ICP hit, the cache then requests the
peer to provide the referenced content. If all peers respond negatively to
the ICP query, or a two-second timeout elapses, the cache then requests
the URL from its designated parent. The parent may use a peer referral,
or the parent may refer the query to its parent, or perform a cache re-
trieval on behalf of the original request. The intent of this mode of
operation is to use a lightweight query response protocol to allow a lo-
cal collection of caches to pool their cached data. ICP has also been used
with additional policy constraints, although the protocol itself is not ca-
pable of describing or carrying overly complex retrieval policies. Other
intercache protocols are available, including the

Hyper Text Caching
Protocol

 (HTCP) and the

Cache Array Routing Protocol

 (CARP),
which offer functionality in terms of intercache cooperation similar to
that of ICP

[9]

.

Another scaling measure is to alter the single server to multiple servers,
using a TCP-based, load-sharing mechanism in the switching system to
ensure that the servers are evenly loaded. This setup is shown in Figure
6. Such a simple load-sharing system may even the load on each server,
but it will cause each server to act independently of its sibling servers. It
is essential in such an environment to use ICP to coordinate the servers
so that they will refer to each other before initiating a new fetch from
the content server.

ISP Network
Client

Cache Server
172.16.0.1

Client

Cache Server
172.16.0.1

Client

Cache Server
172.16.0.1

Core Cache System

172.16.0.1

Cache

172.16.0.1

Cache

ICP Requests

172.16.0.1

Cache

T h e I n t e r n e t P r o t o c o l J o u r n a l

1 5

Figure 6: Load-
Balancing Web Caches

In such a configuration each cache will contain content also held in
neighboring caches. Although this scenario may allow some form of
server load balancing, particularly when the servers continually commu-
nicate their current load conditions to the load-balancing switch, there is
still some inefficiency in the cache farm operation through the potential
replication of content on each of the component caches. One direction
of scaling the cache servers is to take a collection of cache servers and al-
low each cache server to specialize in the content it holds. However, the
outer TCP destination address does not help the server determine which
URL is being requested. In an explicit cache configuration, the browser
is directing the TCP session to the externally advertised TCP address of
the server farm. The URL information is embedded within the HTTP
payload. Some developments have been made in this area, where, with a
combination of TCP spoofing and TCP session bridging, a server switch
can select the appropriate cache for each HTTP-referenced URL, and
then logically connect the client’s TCP session to a TCP session to the se-
lected cache to deliver the URL to the client.

Transparent caching presents some further deployment challenges. The
functional requirement is to pass all Web requests through a proxy
cache server without the explicit knowledge of the client. Two generic
techniques exist to achieve this goal:

•

Inline caches:

 The first of these approaches is to pass all traffic
through a two-port cache server. All non-HTTP traffic is simply
passed straight through the device without alteration. HTTP traffic is
intercepted and passed to a cache module. The major concern with
this approach is the introduction of a single point of failure with an
active network element. Any failure of the cache may well prevent all
further traffic from entering or leaving the served subnetwork.

172.16.0.1 port 80

10.0.0.1 port 80

TCP Switch Configuration

Server Address 172.16.0.1 Port 80
Client 10.0.0.1
Client 10.0.0.2
Client 10.0.0.3
Client 10.0.0.4
Client Load Report UDP Port 400

10.0.0.410.0.0.310.0.0.210.0.0.1

Web Caching:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

1 6

•

Redirection caches:

 A technique that does not place the cache as a
critical point of potential failure is to use policy redirection within the
router, redirecting all port-80 traffic to the attached cache. Normally
such a policy redirect would infer that the cache is located one hop
away from the router, so that such a redirection is normally a local
solution. Redirection to a tunnelled interface does allow some greater
flexibility in this setup, and the one cache farm could, in such an
approach, service a collection of redirecting routers. The failure
mode of this form of operation remains a concern, because the redi-
rection mechanism in the router would not normally be aware of the
operational status of the cache.

Transparent caches need to ensure that the full URL is inserted into the
HTTP level request. When the browser assumes that the request is di-
rected to the content server, the GET request may specify a URL relative
to the server. In such cases, the transparent server will need to perform a
DNS lookup of the destination IP address of the TCP session in order to
reconstruct the complete URL.

Although the DNS lookup does have some performance implications to
transparent caches, the major issue for transparent caches is to devise a
fail-safe mechanism, so that if the cache server fails for any reason, the
caching redirection is disabled. One solution is to use a redirection func-
tion within the router in conjunction with a keepalive-based Web cache
management protocol. This scenario is the basis of the

Web Cache Co-
ordination Protocol

 (WCCP)

[10]

. WCCP also adds the ability to load
share across multiple cache servers through content distribution. Trans-
parent caching assists in this task because the destination address in the
IP packets can be used as the basis of the cache selector. The keepalive
exchange between the router and the cache server system allows the
router to cease redirecting Web traffic upon failure of the servers.

Alternative solutions rely on the cache itself participating in a local rout-
ing environment. The redirecting router uses policy-based redirection to
forward all port-80 traffic to an address announced by the cache system
at a high routing priority. The same address is also announced by the
default path router at a low routing priority. Failure of the cache system
will result in a withdrawal of the high-priority route, and while the redi-
rection will remain in place on the router, the redirection will be in the
direction of the default route.

Another challenge is to process cache misses at a speed comparable with
normal noncached Web retrieval. A process of pulling the document
into the cache and then serving the document to the original requestor
does not meet that objective. The transparent cache has to feed the doc-
ument to the requestor while simultaneously creating a stored copy for
subsequent cache serving.

T h e I n t e r n e t P r o t o c o l J o u r n a l

1 7

However, the largest challenge to the transparent cache is that it can
serve only documents that are not dependent on the identity of the re-
questor being preserved. Web servers that use an end-to-end model of
access, based on source address identification, or Web servers that at-
tempt to present different documents to the client based on the client’s
source address, do not fit within the transparent caching model. There is
much interest in solutions that allow a transparent cache to effectively
shut down in the case of a Web retrieval error, and allow the original re-
questor the ability to conduct a HTTP conversation directly with the
server in such situations. Although there is interest in a network-only so-
lution, it appears at this stage that some level of assistance from the
browser may be required. One model of operation is that a transparent
cache records the network-level flow identification of a failed Web re-
trieval, and passes a retry signal back to the requesting browser, and
also passes this flow identifier back to the redirector as a temporary filter
entry. When the requestor retries the query, as per the signal from the
cache, the redirecting router will refrain from redirecting the flow to the
cache, and allow an end-to-end session to operate.

Accounting for Web Cache Use

These deployment systems allow for user-optional cache configuration.
If the ISP wants to account for the use of the cache, then the cache server
or the switch that feeds the cache server must play an active role in ac-
counting collection.

If every network address is uniquely advertised to the ISP by a particu-
lar client, then the task of accounting for cache use can be performed
using the logged records of the cache system itself. Because every IP ad-
dress can be uniquely mapped to an ISP client, it is possible to also
associate the volume of bytes delivered by the cache to the identified
client.

Unfortunately, two factors make this supposition of address uniqueness
somewhat weak. First, dialup address assignment implies that the associ-
ation of an IP address to a client is held only within dialup accounting
records in the first instance, and the binding is valid only between the
times referenced in the start and stop records. This scenario can be
configured into an accounting model by simultaneously processing the
dial accounting records when attempting to associate a particular IP ad-
dress at a particular time to a client.

The second factor is slightly more challenging. For an ISP that offers
permanent access transit services, the potential exists that any particular
IP address may not be uniquely routed. Normally, such multiple access
environments are part of a Border Gateway Protocol (BGP)-based inter-
action with multiple clients. Knowing the IP address of the query agent
is not enough. Ascertaining the next-hop Autonomous System (AS)
number as well as the IP address is now necessary to determine the cli-
ent using the cache.

Web Caching:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

1 8

The implication is that the accounting records now need to be gener-
ated on the router that is also the entry point to the cache. In addition,
the router must participate in the interior BGP (iBGP) core mesh to
maintain current AS path-selection choices. Given the considerable over-
heads that such an engineering design entails, an alternative approach is
to restrict the cache accounting role to account for those cases where the
cache client is readily identified. A common measure is that the lower
tariff is available only to customers who are “singly homed” with the
ISP. Not only is this a strong market incentive for customer loyalty, it
also allows simple engineering solutions for cache accounting, because
the lookup from the IP address in the cache log to a customer account is
then relatively straightforward. Such measures allow a cache-use tariff to
be very competitively positioned in the market.

As well as accounting issues, another component for the consideration
of optional use of Web caches is that of the necessity of restricting the
use of the cache to clients of the ISP. The motive for so doing is to en-
sure that the cache is available only to clients of the service and not to
clients of peer ISPs. It may not be an issue worth the effort of solving,
and the first questions ISPs should ask is, “To what extent does this hap-
pen, and what impact does it have on the operation of the Web cache
systems?” In most cases, the accounting of cache usage may reveal that
this issue is one of negligible proportions, and any effort expended in de-
vising an engineering solution would far outweigh the loss to the ISP
through such use of the service.

If the measurement of such usage is considered sufficient to warrant en-
gineering solutions, then the mechanisms available to the ISP are to
ensure that the Web cache access is filtered at the edges of the ISP net-
work and to ensure that access is possible only by ISP clients, or that the
address of the cache is not exported in the routing system to peer ISPs or
upstream ISPs.

Further Deployment Challenges

It is highly likely that further development will occur with cache servers
in the near future. Large-scale backbone IP networks that use OC-3c
(155 Mbps) or OC-12c (622 Mbps) transport cores may carry tens of
thousands of requests per second. Designing transparent caches that fit
within a transport core at such a scale does present dramatic scaling is-
sues in terms of cache system performance. This factor continues to
elude many of today’s products available on the market. The generic ar-
chitecture today is to use a cache network that attempts to place the
cache systems closer to the access edge of the network, where the Web
request volumes are within the scale of today’s cache systems.

T h e I n t e r n e t P r o t o c o l J o u r n a l

1 9

Transparency of the cache remains an issue, and it is perhaps an area of
further refinement within the specification of the underlying HTTP Web
server protocol, as well as further refinement of the operation of Web
browsers and transparent cache systems. A potential implementation
within Web browsers may allow the user to state the acceptability of us-
ing a cache to complete a request, and allow noncache Web page
retrieval attempts on cache failure, in the same way that the provider
can use page expiration directives to direct a cache not to store the pre-
sented data.

References and Further Reading
[1] Huston, G. ISP Survival Guide, ISBN 0-471-31499-4, John Wiley &

Sons, November 1998.
A more comprehensive view of the technology, business, and strategy
behind the Internet service sector.

[2] Clark, D.D. “The Design Philosophy of the DARPA Internet
Protocols,” Proceedings of SIGCOMM 88, ACM Computer
Communications Review (CCR), Volume 18, Number 4, August 1988,
pp. 106–114 (reprinted in ACM CCR Volume 25, Number 1, January
1995, pp. 102–111).
The original paper describing the end-to-end design philosophy used
within the Internet protocols.

[3] Carpenter, B., Ed. “Architectural Principles of the Internet,” RFC 1958,
Informational RFC, June 1996.
A summary of the design principles underlying the current Internet
architecture.

[4] Berners-Lee, T., et al. “Hypertext Transfer Protocol—HTTP/1.0,” RFC
1945, Informational RFC, May 1996.
The specification of Version 1.0 of the HTTP protocol.

[5] Fielding, R., et al. “Hypertext Transfer Protocol—HTTP/1.1,” RFC
2616, Draft Standard RFC, June 1999.
The specification of Version 1.1 of the HTTP protocol.

[6] Mogul, J., and Leach, P. “Simple Hit-Metering and Usage-Limiting for
HTTP,” RFC 2227, Proposed Standard RFC, October 1997.
A proposed extension to HTTP to allow a content server to receive hit
reports from a proxy cache.

[7] Wessels, D., and Claffey, K. “Internet Cache Protocol (ICP), Version 2,”
RFC 2186, Informational RFC, September 1997.
A description of the ICP protocol.

[8] Wessels, D., and Claffey, K. “Application of Internet Cache Protocol
(ICP), Version 2,” RFC 2187, Informational RFC, September 1997.
A description of the structure of cache hierarchies, and their ICP-based
interaction.

Web Caching: continued

T h e I n t e r n e t P r o t o c o l J o u r n a l
2 0

[9] Melve, I. “Inter Cache Communications Protocols,” Internet Draft,
Work in progress, draft-melve-intercache-comproto-00.txt,
November 1998.
An overview of intercache communications protocols currently avail-
able, and a collection of references that describe these protocols in
further detail.

[10] Cieslak, M., and Foster, D. “Web Cache Coordination Protocol V1.0,”
Internet Draft, Work in progress, draft-ietf-wrec-web-pro-
00.txt, June 1999.
A description of Version 1 of the WCCP protocol to support the opera-
tion of transparent caches. The protocol defines the interaction between
a router and a neighboring cache system.

[11] “Squid Internet Object Cache”—Resource Web page.
http://squid.nlanr.net
A very useful page of resources and references related to the Squid
implementation of Web caching.

[12] “Distribution of Stored Information on the Web,” Online Tutorial,
Ross, K., Institut Eurecom, October 1998. Available at:
http://www.eurecom.fr/~ross/CacheTutorial/
DistTutorial.html
A good overview of proxy caching technologies, and also a good
analysis of their efficiency of operation.

[13] Stallings, W. “SSL: Foundation for Web Security,” The Internet Proto-
col Journal, Volume 1, Number 1, June 1998.

[This article is based in part on material in The ISP Survival Guide, by
Geoff Huston, ISBN 0-471-31499-4, published by Wiley in 1998[1].
Used with permission].

GEOFF HUSTON holds a B.Sc and a M.Sc from the Australian National University.
Closely involved with the development of the Internet for the past decade, particularly
within Australia, he was responsible for the initial build of the Internet within the Aus-
tralian academic and research sector. Huston is currently the Chief Technologist in the
Internet area for Telstra. He is also an active member of the IETF, and is the chair of the
Internet Society Board of Trustees. He is author of The ISP Survival Guide, ISBN 0-471-
31499-4, and coauthor of Quality of Service: Delivering QoS on the Internet and in
Corporate Networks, ISBN 0-471-24358-2, a collaboration with Paul Ferguson. Both
books are published by John Wiley & Sons, E-mail: gih@telstra.net

