
Standards

TCP in a
Wireless World

M obile wireless is one of the more chal-
lenging environments for the Internet
protocols, and for TCP in particular. One

approach to supporting the wireless environment
is the so-called “walled garden.” Here the transport
protocol used within the mobile wireless environ-
ment is not TCP, but is instead a transport protocol
that has been specifically adapted to mobile wire-
less. In this model, Internet applications interact
with an application gateway to reach the wireless
world, and the application gateway uses a wireless
transport protocol and potentially a modified ver-
sion of the application data to interact with the
wireless device. The most common implementation
of this approach is to extend a Web client into the
mobile wireless device, using some form of proxy
server at the boundary of the wireless network and
the Internet. This is the approach adopted by the
Wireless Access Protocol (WAP) Forum.

An alternative is to allow mobile wireless devices
to function as any other Internet-connected device.
This approach requires some form of end-to-end
direct IP continuity and an associated end-to-end
TCP functionality, where the TCP path straddles
both wired and wireless segments. Ensuring the
efficient operation of TCP in this environment
becomes integral to the development of the envi-
ronment itself: The problem is no longer one of
adjusting TCP to match the requirements of the
wireless environment, but one of providing seam-
less interworking between the wired and wireless
worlds, as shown in Figure 1.

Managing Bit-Level Corruption
TCP was designed for wire-based carriage and the
protocol design makes numerous assumptions that
are typical of such an environment.1,2 For example,
it assumes that packet loss is the result of network
congestion, that round-trip times (RTT) have some
level of stability, that bandwidth is constant, and that

session durations will justify the initial TCP hand-
shake overhead. The wireless environment chal-
lenges these assumptions and others underlying TCP
design. Wireless has significant bit-error rates (BER),
often bursting to very high rates. Wireless links that
use forward error-correcting (FEC) codes often have
high latency. If the link-level protocol uses a stop
and resend mechanism that automatically retrans-
mits corrupted data, this wireless segment latency
will also have high variability. Wireless links may
also use adaptive coding techniques that adjust to
the prevailing signal-to-noise ratio, in which case
the bandwidth of the link will vary. If the wireless
device is a handheld mobile device, it may be mem-
ory constrained. And finally, wireless environments
typically support short-duration sessions.

The major factor for mobile wireless is the BER,
where frame loss of up to 1 percent is not uncom-
mon, and errors occur in bursts, rather than even-
ly spaced in the packet stream. These error condi-
tions force the TCP sender initially to attempt fast
retransmit of the missing segments; when this does
not correct the condition, the sender will experi-
ence an ACK time-out, causing the sender to col-
lapse its sending window and recommence in TCP’s
slow-start mode from the point of packet loss. The
heart of this problem is TCP’s assumption that
packet loss is a symptom of network congestion
rather than packet corruption. It is possible to
determine the effects of this loss rate on TCP per-
formance,3 and the outcome of such performance
models is that TCP is very sensitive to packet loss
levels, and sustainable performance rapidly drops
when packet drops exceed 1 percent.

Layer 2 ARQ
Data-link-level solutions to the high BER are avail-
able to designers, and FEC codes and automatic
retransmission systems (ARQ) can be used on the
wireless link. FEC introduces a relatively constant

82 MARCH • APRIL 2001 http://computer.org/internet/ 1089-7801/01/$10.00 ©2001 IEEE IEEE INTERNET COMPUTING

Geoff Huston • Telstra • gih@telstra.net

coding delay and a bandwidth over-
head into the path, but cannot correct
all forms of bit-error corruption. ARQ
uses a “stop and resend” control mech-
anism similar to TCP itself; this can
cause TCP to integrate extended laten-
cies into its RTT estimate, making it
assume a far higher latency on the path
than is the case, or, more likely, it may
trigger a retransmission at the same
time the ARQ is already retransmitting
the same data.

If Layer 2 ARQ is not the best possi-
ble answer to addressing packet loss in
mobile wireless systems, then what can
be done at the TCP level? There are
some basic ways to alleviate the worst
aspects of packet corruption on TCP
performance. For example, there is a
Fast Retransmit and Fast Recovery
mechanism that allows a single packet
loss to be repaired fairly quickly. Selec-
tive acknowledgments, or SACKs, allow
a sender to repair multiple segment
losses per window within a single RTT,
and can be useful where large windows
are operated over long delay paths.

However, these mechanisms are
probably inadequate to allow TCP to
function efficiently over all forms of
wireless systems. Particularly in the
case of mobile wireless systems, packet
corruption is sufficiently common that
it will probably have to be addressed
directly for TCP to work efficiently.

Forward ACK with Rate Halving
One approach is to decouple TCP con-
gestion control mechanisms from data
recovery actions. The intent is to allow
new data to be sent during recovery to
sustain TCP ACK clocking. This approach
is termed forward acknowledgments
with rate halving, or FACK,4 where one
packet is sent for every two ACKs
received while TCP is recovering from
lost packets. This algorithm effectively
reduces the sending rate by one-half
within one RTT interval, but does not
freeze the sender to wait the draining of
one-half the congestion window’s data
from the network before proceeding to
send further data. This allows the sender
to continue to pass new data into the

network during recovery, while prevent-
ing the sender from bursting a large vol-
ume of retransmission into the network.

FACK is particularly effective for
long-delay networks, where the fast-
recovery algorithm causes the sender to
cease sending for up to one RTT inter-
val, thereby losing the accuracy of the
implicit ACK clock for the session.
FACK lets the sender continue sending
packets into the network during this
period, in an effort to maintain an
accurate view of the ACK clock. FACK
also provides a capability to set the
number of SACK blocks that specify a
missing segment before resending the
segment, giving the sender greater con-
trol over sensitivity to packet reorder-
ing. This approach requires the sender’s
TCP to use the FACK algorithm for
recovery and, for optimal performance,
the receiver’s TCP to use SACK options.

Link-Level Signaling
Corrupted TCP segments are often
detected at the data-link level and dis-
carded by the link-level drivers. This
discard cannot be used to reliably gen-
erate an error message to the packet
sender, given that the packet’s IP head-
er may itself be corrupted; for the same
reason, the discard signal cannot be reli-
ably passed to the receiver. However,
even though the information is unreli-
able, this signaling from the link level
to the transport level is useful because,
at the transport level, it lets the sender
know that the packet loss was not due
to network congestion and that there is
no need to take corrective action in
terms of TCP congestion behavior.

One approach to provide this signal-
ing calls for the link-level device to
forward a “corruption experienced”
Internet control message protocol
(ICMP) packet when discarding a cor-
rupted packet.4 The ICMP packet is sent
forward to the receiver, who then has
the task of converting this message and
the associated lost-packet information
into a signal to the sender that the
duplicate ACKs are the result of cor-
ruption, not network congestion. This
signal from the receiver to the sender
can be embedded in a TCP header
option. The sending TCP session will
maintain a “corruption experienced”
state for two RTT intervals, retransmit-
ting the lost packets without halving
the congestion window size.

If corruption occurred in the packet
header, the sender’s address may not be
reliable. The ICMP approach addresses
this problem by having the router keep
a cache of recent packet destinations.
Then when a failed IP header checksum
indicates that the IP header information
is unreliable, the router will forward the
ICMP message to all destinations in the
cache. The potential weakness in this
approach is that network congestion
may occur at the same time as packet
corruption, in which case the sender
will not react to the congestion and will
continue to send into the congestion
point for two more RTT intervals.

This approach is not without deploy-
ment concerns. The wireless routers and
the receiver’s link-level drivers must be
modified to generate the ICMP corrup-
tion experienced messages. The receiv-
er’s IP stack must be modified to take

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2001 83

Standards

Figure 1. Linking the wired and wireless worlds.

Wireless realm
Fixed network realm

signals from the IP ICMP processor and
from the link-level driver and then con-
vert them to TCP corruption loss signals
within the TCP header of the duplicate
ACKs. Finally, the TCP processor at the
sender must be modified to undertake cor-
ruption-experienced packet-loss recovery.
Nevertheless, explicit corruption signaling
is a very promising approach to the per-
formance issues with TCP over wireless.

Managing Payloads
High BERs are not the only problem
facing TCP over wireless systems.
Mobile wireless systems are typically
small handsets or personal digital
assistants, and the application transac-
tions are often modified to reduce the
amount of data transferred, given the
limited amount of data that can be dis-
played on the device.

In this case, the ratio between pay-
load and IP and TCP headers becomes
an issue, and header compression must
be considered. Header compression
techniques typically strip out those
header fields that do not vary on a
packet-by-packet basis, or that vary by
amounts that can be derived from
other parts of the header; the delta val-
ues of those fields that are varying are
then transmitted.5,6

Although such compression schemes
can be highly efficient in operation,
they also require the receiver to have
successfully received and decom-
pressed a packet before decompressing
the next packet in the TCP stream. In
the face of high BERs, these schemes
introduce additional latencies into the
data transfer, and multiple packet drops
are difficult to detect and signal via
SACK in this case.

Managing Link Outages
A more subtle aspect of mobile wireless
is temporary link outages. For example,
a mobile user may enter an area of no
signal coverage for a period of time and
attempt to resume the data stream when
signal is obtained again. In the same
way that there is no accepted way for a
link-level driver to inform TCP of pack-
et loss due to corruption, there is no way

it can inform TCP of a link-level outage.
In the face of such outages, TCP will
assume network-level congestion and,
in the absence of duplicate ACKs, will
trigger retransmission timers. TCP will
then attempt to restart the session in
slow-start mode, commencing with the
first dropped packet. Each attempt to
send the packet will cause TCP to extend
its retransmission timer using an expo-
nential backoff, so that successive
probes are less and less frequent.
Because the link level cannot inform the
sender on the resumption of the link,
TCP may wait some considerable time
before responding to link restoration.

To enable the link level to inform
TCP that the connection has been
resumed, the link level could retain a
packet from each TCP stream that
attempted to use the link. When the
link becomes operational, the link-level
driver would immediately transmit
these packets on the link. The receiver
could then generate a response that
would trigger the sender into transmis-
sion within an RTT interval. Only a sin-
gle packet per active TCP stream is nec-
essary to trigger this response, so that
the link level does not need to hold an
extensive buffer of undeliverable pack-
ets during a link outage. Of course, if
the routing level repaired the link out-
age in the meantime, the delivery of an
out-of-order TCP packet would nor-
mally be discarded by the sender.

Conclusion
Is TCP suitable for the mobile wireless
environment? It seems possible with
some changes in its operation, specifi-
cally relating to the signaling of link-
level states into the TCP session and the
use of advanced congestion control and
corruption signaling within the TCP ses-
sion. Although it is difficult to imagine
changing every deployed TCP stack
within the Internet to achieve this added
functionality, there does exist a middle
ground between the “walled garden”
approach and open IP. In this middle
ground, the wireless systems would
have access to “middleware,” such as
Web proxies and mail agents. These

proxies would use a set of TCP options
when communicating with mobile wire-
less clients that would make the appli-
cation operate as efficiently as possible,
while still permitting the mobile device
transparent access to the Internet for
other transactions.

Acknowledgments
This column is based on part of a longer article

titled “The Future of TCP,” published in The Inter-

net Protocol Journal, vol. 3, no. 3, Sept. 2000; the

complete article is available online at

http://www.cisco.com/warp/public/759/ipj_3-3/

ipj_3-3_futureTCP.html.

References

1. J. Postel, “Transmission Control Protocol,”

IETF RFC 793, Sept. 1981; available online at

http://www.ietf.org/rfc/rfc793.txt.

2. G. Huston, “TCP Performance,” Internet Pro-

tocol Journal, vol. 3, no. 2, Cisco Systems,

June 2000; available online at http://www.

cisco.com/warp/public/759/ipj_3-2_tcp.html.

3. P. Karn et al., “Advice for Internet Subnet

Designers,” work in progress, July 2000.

4. M. Allman, ed., “Ongoing TCP Research

Related to Satellites,” RFC 2760, Feb. 2000;

available online at http://www.ietf.org/

rfc/rfc2760.

5. V. Jacobson, “Compressing TCP/IP Headers

for Low-Speed Serial Links,” IETF RFC 1144,

Feb. 1990; available online at http://

www.ietf.org/rfc/rfc1144.txt.

6. S. Casner and V. Jacobson, “Compressing

IP/UDP/RTP Headers for Low-Speed Serial

Links,” IETF RFC 2508, Feb. 1999; available

online at http://www.ietf.org/rfc/rfc2508.txt.

Geoff Huston is Chief Scientist in the Internet

area for Telstra. He is also a member of the

Internet Architecture Board and secretary of

the Internet Society Board of Trustees. He is

author of The ISP Survival Guide and Inter-

net Performance Survival Guide: QoS Strate-

gies for Multiservice Networks, and coauthor

with Paul Ferguson of Quality of Service:

Delivering QoS on the Internet and in Cor-

porate Networks, all published by John

Wiley and Sons.

Readers may contact him via email at

gih@telstra.net.

84 MARCH • APRIL 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Column

