An Examination of the Internet’s BGP Table Behaviour in 2001

Geoff Huston
Telstra
2001 - The Prediction

Worst Case
Continued Exponential Growth
150,000 entries by January 2002

Best Case
Elimination of all extraneous routing entries
75,000 entries by January 2002
2001 - What Happened
2001 - Route Views’ View

Wide variation between largest and smallest AS (27%)
BGP in 2001

- Growth in Internet table size contained at roughly 105,000 entries through the year

Is this a stable state?
For how long?
Will exponential growth resume?
If so, at what rate?
2001 – Main Cluster Behaviour
Has the Internet Stopped Growing in 2001?

- A number of other metrics do not show the same pattern as the number of BGP table entries:
 - Total routed address space
 - Number of AS’s
 - Number of “root” prefixes in the BGP table
Internet Size: Routed Address Space

Steady growth in routed address space at an annual rate of 8%
Number of AS’s

- AS’s grew by 25% over the year
- Note span of visible AS’s (11,200 – 12,500)
 - Not every AS is visible to all other AS’s
What Happened...

- The Internet continued to grow in 2001
- The routing space appeared to be better managed in 2001
 - Less routing “noise”
 - Better adherence to hierarchical aggregation in the routed address space
Per-Prefix views

- Some 60% of the routing table are /24 or smaller
- “Better” management of the routing space would see the relative numbers of small-sized prefixes declining
- And we have observed this in 2001.....
Relative percentage of /24 prefixes in the Routing Table

- /24 prefixes have declined by 3 – 4 % over 2001
/24 Prefixes

- Largely steady at 60,000 entries for the year
/20 Prefixes

- Grew from 4200 entries to 6100 entries (45% growth)
- Even growth throughout the year
Changes in the Routing Table

- No major table growth from small prefixes (/24 and smaller)
- Table growth occurred using RIR allocation prefix sizes (/18 through /20)
- Growth in /18 - /20 prefix numbers even through the year
A “Root” Table Entry

- Is not part of an enclosing aggregate
- May contain any number of more specific entries
 - irrespective of AS Path of the specific
- Is the minimal spanning set of entries using a strict view of address / routing hierarchies
- Provides a view of the “best case” of the hierarchical model
Number of BGP “Roots” in 2001
More Specifics (non-Roots) as a percentage of the table size
Whats Happening

- More specific entries in the routing table are declining in relative terms
- Possibly due to:
 - Increasing amount of prefix-length route filtering
 - Increasing peer pressure to conform to RIR-allocated prefixes
 - Better understanding in the operator community of how to manage the routing space
Interconnectivity Density

- Compare number of AS’s to average AS path length
- A uniform density model would predict an increasing AS Path length ("Radius") with increasing AS’s
- Increasing density predicts a constant or declining average AS Path Length
Average AS Path Length
Interconnectivity Density

- Average number of per-AS interconnections was steady across 2001
 - Although the route views data is noisy due to the issues of
 - Dependence of the data on the number of BGP peer sessions
 - External exported view masks some level of local peer interconnection
 - Heavy tail distribution within the data
Average number of AS Neighbours
Stability of the BGP Table

- Measure rate of announcements + withdrawals + path updates
- Compare relative update rate per prefix length to the relative number of prefixes of that length
 - >1 implies higher than average update rate (less stable)
 - <1 implies lower than average update rate (more stable)
Stability Rates - /24 and /19

/19 Update rate

/24 Update rate
Stability Rates

- Smaller prefixes tend to contribute greater relative update load levels than larger prefixes.
- Decreasing relative number of small prefixes is improving BGP stability levels (slightly).
BGP Update Rate
BGP Update Rate

- Proportion of BGP table entries updated each hour is decreasing over time
- The BGP table is becoming more stable
 - Protocol implementation maturity
 - Widespread deployment of flap damping
 - Greater levels of circuit reliability (?)
What Happened

- “Base” growth rate of root prefixes was **15%** in 2001
- Growth rate of AS’s was **25%** in 2001
- Growth rate of routed address space was **8%** in 2001

- By comparison, annual growth rate of the BGP table for the previous 2 years was **55%**
The Good News

- BGP Table growth has been slowed down considerably
- This is largely the result of more care in routing announcements, coupled with more widespread prefix length route filters.
The Not So Good News

- Insufficient data to determine if this is a short term growth correction that will be followed by a resumption of exponential growth
 - Multi-homing, TE, mobility all contribute to a requirement for non-aggregatable atomic entries to be non-locally routed.
A Useful Agenda (1)

- Stress the value in widespread adoption of operational best practices in BGP
 - Route aggregation
 - Prefix length filtering
 - Advertisements that align with RIR allocation units
 - Flap damping
 - Soft refresh
A Useful Agenda (2)

- Understand what metrics of the IDR space are important to track
 - Network Size and Topology
 - The relationship between connectivity policy and topology
 - The relationship between address deployment and connectivity
 - Dynamic properties of the routing system

Slide 33
A Useful Agenda (3)

- Define the desirable properties of an inter-domain routing system
- Clearly understand the difference between policy mediated best path computation and the dynamic resource management requirements associated with traffic engineering and QoS
 - and be prepared to admit that doing 1 out of 3 is still better than doing 0 out of 3!
A Useful Agenda (4)

- Examine potential alternative approaches to Inter-Domain Routing systems that may offer superior scaling properties and greater flexibility in scope