

Geoff Huston Telstra March 2001

The Changing Structure of the Internet

- The Packet View
- Cable Trends
- Network Metrics
- Trends in Internet Structure

Call Model Settlements

- Every inter-provider circuit is used to support bilateral dynamic virtual circuits (calls)
- Each circuit is bilaterally funded
- Every call has an originator and a terminator
 - The originator pays the originating provider
 - The originating provider pays the terminating provider

Call Model Settlements

 Settlement balance based on call origination to termination imbalance using a common call accounting rate

The Packet-Transit Model

- Bilateral inter-provider carriage circuit is used to support bi-directional packet flow
- Each carriage circuit is fully funded by one provider or bilaterally funded
 - The circuit-based packet financial relationship is based on a larger set of structural criteria
- Packets passing across the circuit are either funded by the packet originator or packet terminator, or neither.

The Packet-Transit Model

- Every packet passing through a network has only two potential sources of funding: the sender and the recipient
- Every packet in the Internet today is bilaterally partial path funded:
 - Sender-pays, then
 - Hand-over, then
 - Receiver pays

The Packet Transit Model

- The inter-provider relationships are not packet-dependant – they are statically negotiated and hold for <u>all</u> traffic passing across an inter-provider interface
 - Sender-pays infers
 - Customer -> Provider relationship
 - Handover infers
 - Provider <-> Provider SKA peering
 - Receiver-pays infers
 - Provider -> Customer relationship

The Packet Transit Model

Transit packet funding

Packet-Based Interconnection

- Three major issues are relevant in an interconnection negotiation for packet handover:
 - The relative relationship between the two providers
 - Customer / Provider or Peer / Peer
 - The relative network location of the handover
 - Interconnection financial arrangement
- The resolution of the third issue is generally a function of the outcome of the first two issues

Internet Interconnection Outcomes

 The most stable outcome is a static bilateral agreement creating a provider / customer relationship, or SKA peer relationship between the two providers

The Changing Structure of the Internet

- The Packet View
- Cable Trends
- Network Metrics
- Trends in Internet Structure

Technology Trends for Cable Systems

Technology Trends

- Undersea Cable Systems
 - Technology refinements, plus open competitive markets have created dramatic construction activity levels in recent years
 - This has changed the market from scarcity demand pull to considerable overhang in supply
 - This over-supply is creating price changes in the market.....

Asia-Pacific CABLES SUMMARY

			Initial			Upgraded		
			Wavelengths	Wavelengths	Gbps per	Gbps per	Total	Fully Upgraded
Cable System	RFS	Fiber Pair	per Fiber Pair	per Fiber Pair	Wavelength	Wavelength	Capacity	Total Capacity
APCN	February-97	1	2	4	5	5	10	20
FLAG Europe-Asia	November-97	2	2		2.5	2.5	10	10
Guam-Philippines	March-99	2	1	4	2.5	2.5	5	20
SEA-ME-WE-3	September-99	2	4	8	2.5	2.5	20	40
Pacific Crossing - 1	December-99	4	2	16	2.5	10	20	640
China-US CN	January-00	4	8		2.5	2.5	80	80
Japan-US CN	February-00	4	8	64	2.5	2.5	80	640
Southern Cross	October-00	3	8	16	2.5	2.5	60	160
EAC	December-00	4	2	64	10	10	80	2560
North Asian Cable	June-01	4	8	64	10	10	320	2560
Australia - Japan	July-01	2	4	32	10	10	80	640
SAT-3/WASC/SAFE	October-01	2	8	16	2.5	2.5	40	80
							805	7450

Asia-Pacific CABLES SUMMARY

Cable Supply Models

- Up to 1998: Retail T1/E1, T3
- 1999 Wholesale T3/STM-1 available everywhere
 - IRU or Capital Lease + O&M
- 2000: Wholesale STM-4c available
- 2001: Wavelength (2.5G/10G) offering

Cable Price Movements

Capacity between Tokyo and the West Coast

Year	Data Rate	Monthly Lease		IRU / Capital Lease		Unit Price	
1997	E1	\$	54,000		n.a.	\$	27,000
1998	DS3	\$	540,000		n.a.	\$	12,000
1999	DS3	\$	320,000		n.a.	\$	7,111
2000	OC3	\$	200,000	\$	8,000,000	\$	1,290

The Tug of War of the Cost of Cable

For suppliers: The first system to connect bandwidth-starved points may capture sales at a much higher price than when the rest of the bandwidth barons (private or consortium) join in.

For Buyers: The opposite strategy holds true: If you don't like bandwidth prices now, wait a bit. They will likely change soon enough.

The Changing Structure of the Internet

- The Packet View
- Cable Trends
- Network Metrics
- Trends in Internet Structure

Methodology:

- Routing information is an abstract picture of the inter-provider topology of the network
- Take regular 'snapshots' of the Internet's global routing table
- Changes in the topology and structure of the inter-provider Internet are reflected by trends in aspects of the routing system

Number of routing entries is growing exponentially

Number of AS's (Distinct Networks) is growing exponentially

- There are an increasing number of distinct ISP providers within the global routing tables
- Each ISP appears to have a distinct set of interconnection policies

Reachability by AS hops is getting smaller

February 2001

AS Reachability by AS hops is also getting smaller

-

Internet Metrics

More Specific advertisements are growing exponentially

- Distribution of originating address sizes per AS
- Address advertisements are getting smaller

The Changing Structure of the Internet

- The Packet View
- Cable Trends
- Network Metrics
- Trends in Internet Structure

The Hierarchical View

- Segmentation of Internet Providers into a number of 'tiers'
- Each ISP purchases service from a single provider at the next higher tier
- Each ISP sells service to multiple customers at the next lower tier

The Hierarchical View

Hierarchical Evolution – Tiers and Multi-homing

- May use 2 or more upstream providers (multi-homing)
- May use SKA peering within a tier

Hierarchical Evolution – Tiers and Multi-Homing

Non-Hierarchical Evolution

- May peer across tier levels
- May use 'paid peering'
- May use a settlement metric

Non-Hierarchical Evolution: Today's Internet

Internet 'Shape'

- The network is becoming less 'stringy' and more densely interconnected
 - i.e. Transit depth is getting smaller

Internet 'Shape"

- The network is becoming less strictly hierarchical
- Regional 'globbing' is evident
- Multi-point interconnection is widely used

Interconnection Trends

Multiple upstream contracts are commonplace

- An open competitive market for upstream transit is evident
- Upstream transit services are becoming a commodity service

Substitutability exists through peering

- Widespread interconnection is a substitute for a large proportion of upstream services
- Deregulation, increasing communications requirements, decreasing unit cost of communications, interconnection marketplaces all make interconnection cheaper
- transit service costs are being forced down to match substitution costs

The Larger Picture

- Communications costs are coming down
 - as a result of technology, deregulation and market response to the changing supply / demand ratios
- The network is now more densely interconnected
 - less relative reliance on a small collection of Tier 1 transit service providers and related financial arrangements
- Substitutability exists for hierarchical paid upstream transit services
 - Through use of peering points, multiple upstream services, wider network reach

The Larger Picture

 IP packet transmission is becoming a commodity market with IP transit and circuit services becoming directly comparable

 The evolving Internet content market is rapidly becoming the most critical issue in terms of value transfer