

T h e I n t e r n e t P r o t o c o l J o u r n a l

2

TCP Performance

by Geoff Huston, Telstra

he

Transmission Control Protocol

 (TCP) and the

User Data-
gram Protocol

 (UDP) are both IP transport-layer protocols. UDP
is a lightweight protocol that allows applications to make direct

use of the unreliable datagram service provided by the underlying IP ser-
vice. UDP is commonly used to support applications that use simple
query/response transactions, or applications that support real-time com-
munications. TCP provides a reliable data-transfer service, and is used
for both bulk data transfer and interactive data applications. TCP is the
major transport protocol in use in most IP networks, and supports the
transfer of over 90 percent of all traffic across the public Internet today.
Given this major role for TCP, the performance of this protocol forms a
significant part of the total picture of service performance for IP net-
works. In this article we examine TCP in further detail, looking at what
makes a TCP session perform reliably and well. This article draws on
material published in the

Internet Performance Survival Guide

[1]

.

Overview of TCP

TCP is the embodiment of reliable end-to-end transmission functional-
ity in the overall Internet architecture. All the functionality required to
take a simple base of IP datagram delivery and build upon this a control
model that implements reliability, sequencing, flow control, and data
streaming is embedded within TCP

[2]

.

TCP provides a communication channel between processes on each host
system. The channel is reliable, full-duplex, and streaming. To achieve
this functionality, the TCP drivers break up the session data stream into
discrete segments, and attach a TCP header to each segment. An IP
header is attached to this TCP packet, and the composite packet is then
passed to the network for delivery. This TCP header has numerous fields
that are used to support the intended TCP functionality. TCP has the
following functional characteristics:

•

Unicast protocol:

 TCP is based on a unicast network model, and
supports data exchange between precisely two parties. It does not
support broadcast or multicast network models.

•

Connection state:

 Rather than impose a state within the network to
support the connection, TCP uses synchronized state between the
two endpoints. This synchronized state is set up as part of an initial
connection process, so TCP can be regarded as a connection-ori-
ented protocol. Much of the protocol design is intended to ensure
that each local state transition is communicated to, and acknowl-
edged by, the remote party.

•

Reliable:

 Reliability implies that the stream of octets passed to the
TCP driver at one end of the connection will be transmitted across
the network so that the stream is presented to the remote process as
the same sequence of octets, in the same order as that generated by
the sender.

T

T h e I n t e r n e t P r o t o c o l J o u r n a l

3

This implies that the protocol detects when segments of the data
stream have been discarded by the network, reordered, duplicated, or
corrupted. Where necessary, the sender will retransmit damaged seg-
ments so as to allow the receiver to reconstruct the original data
stream. This implies that a TCP sender must maintain a local copy of
all transmitted data until it receives an indication that the receiver
has completed an accurate transfer of the data.

•

Full duplex:

 TCP is a full-duplex protocol; it allows both parties to
send and receive data within the context of the single TCP con–
nection.

•

Streaming:

 Although TCP uses a packet structure for network trans-
mission, TCP is a true streaming protocol, and application-level
network operations are not transparent. Some protocols explicitly
encapsulate each application transaction; for every

write,

 there must
be a matching

read.

 In this manner, the application-derived segmen-
tation of the data stream into a logical record structure is preserved
across the network. TCP does not preserve such an implicit structure
imposed on the data stream, so that there is no pairing between

write

and

read

 operations within the network protocol. For example, a
TCP application may

write

 three data blocks in sequence into the
network connection, which may be collected by the remote reader in
a single

read

 operation. The size of the data blocks (segments) used
in a TCP session is negotiated at the start of the session. The sender
attempts to use the largest segment size it can for the data transfer,
within the constraints of the maximum segment size of the receiver,
the maximum segment size of the configured sender, and the maxi-
mum supportable non-fragmented packet size of the network path
(path

Maximum Transmission Unit

 [MTU]). The path MTU is
refreshed periodically to adjust to any changes that may occur within
the network while the TCP connection is active.

•

Rate adaptation:

 TCP is also a rate-adaptive protocol, in that the rate
of data transfer is intended to adapt to the prevailing load condi-
tions within the network and adapt to the processing capacity of the
receiver. There is no predetermined TCP data-transfer rate; if the net-
work and the receiver both have additional available capacity, a TCP
sender will attempt to inject more data into the network to take up
this available space. Conversely, if there is congestion, a TCP sender
will reduce its sending rate to allow the network to recover. This
adaptation function attempts to achieve the highest possible data-
transfer rate without triggering consistent data loss.

The TCP Protocol Header

The TCP header structure, shown in Figure 1, uses a pair of 16-bit
source and destination

Port

 addresses. The next field is a 32-bit

se-
quence number,

 which identifies the sequence number of the first data
octet in this packet. The sequence number does not start at an initial
value of 1 for each new TCP connection; the selection of an initial value
is critical, because the initial value is intended to prevent delayed data

TCP Performance:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

4

from an old connection from being incorrectly interpreted as being valid
within a current connection. The sequence number is necessary to en-
sure that arriving packets can be ordered in the sender’s original order.
This field is also used within the flow-control structure to allow the asso-
ciation of a data packet with its corresponding acknowledgement,
allowing a sender to estimate the current round-trip time across the
network.

Figure 1: The TCP/IP
Datagram

The

acknowledgment sequence number

 is used to inform the remote
end of the data that has been successfully received. The acknowledg-
ment sequence number is actually one greater than that of the last octet
correctly received at the local end of the connection. The

data offset

 field
indicates the number of four-octet words within the TCP header. Six
single

bit flags

 are used to indicate various conditions. URG is used to
indicate whether the

urgent

pointer

 is valid. ACK is used to indicate
whether the

acknowledgment

 field is valid. PSH is set when the sender
wants the remote application to

push

 this data to the remote applica-
tion. RST is used to

reset

 the connection. SYN (for

synchronize)

 is used
within the connection startup phase, and FIN (for

finish

) is used to close
the connection in an orderly fashion. The

window

 field is a 16-bit count
of available buffer space. It is added to the acknowledgment sequence
number to indicate the highest sequence number the receiver can accept.
The TCP

checksum

 is applied to a synthesized header that includes the
source and destination addresses from the outer IP datagram. The final
field in the TCP header is the

urgent pointer,

 which, when added to the
sequence number, indicates the sequence number of the final octet of ur-
gent data if the urgent flag is set.

Version IHL Type of Service Total Length

Identification Flags Fragment Offset

Time to Live Protocol = 6 Header Checksum

Source Address

Destination Address

Options Padding

Source Port Destination Port

Sequence Number

Acknowledgment Number

Data
Offset Window

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Urgent PointerChecksum

TCP Options Padding

TCP Data

IP
 H

ea
de

r
TC

P

T h e I n t e r n e t P r o t o c o l J o u r n a l

5

Many options can be carried in a TCP header. Those relevant to TCP
performance include:

•

Maximum-receive-segment-size option:

 This option is used when the
connection is being opened. It is intended to inform the remote end of
the maximum segment size, measured in octets, that the sender is will-
ing to receive on the TCP connection. This option is used only in the
initial SYN packet (the initial packet exchange that opens a TCP con-
nection). It sets both the maximum receive segment size and the
maximum size of the advertised TCP window, passed to the remote
end of the connection. In a robust implementation of TCP, this option
should be used with path MTU discovery to establish a segment size
that can be passed across the connection without fragmentation, an
essential attribute of a high-performance data flow.

•

Window-scale option:

 This option is intended to address the issue of
the maximum window size in the face of paths that exhibit a high-
delay bandwidth product. This option allows the window size adver-
tisement to be right-shifted by the amount specified (in binary
arithmetic, a right-shift corresponds to a multiplication by 2). With-
out this option, the maximum window size that can be advertised is
65,535 bytes (the maximum value obtainable in a 16-bit field). The
limit of TCP transfer speed is effectively one window size in transit
between the sender and the receiver. For high-speed, long-delay net-
works, this performance limitation is a significant factor, because it
limits the transfer rate to at most 65,535 bytes per round-trip inter-
val, regardless of available network capacity. Use of the window-
scale option allows the TCP sender to effectively adapt to high-band-
width, high-delay network paths, by allowing more data to be held
in flight. The maximum window size with this option is 2

30

 bytes.
This option is negotiated at the start of the TCP connection, and can
be sent in a packet only with the SYN flag. Note that while an MTU
discovery process allows optimal setting of the maximum-receive-
segment-size option, no corresponding bandwidth delay product dis-
covery allows the reliable automated setting of the window-scale
option

[3]

.

•

SACK-permitted option and SACK option:

 This option alters the
acknowledgment behavior of TCP. SACK is an acronym for

selec-
tive acknowledgment.

 The SACK-permitted option is offered to the
remote end during TCP setup as an option to an opening SYN
packet. The SACK option permits selective acknowledgment of per-
mitted data. The default TCP acknowledgment behavior is to
acknowledge the highest sequence number of in-order bytes. This
default behavior is prone to cause unnecessary retransmission of
data, which can exacerbate a congestion condition that may have
been the cause of the original packet loss. The SACK option allows
the receiver to modify the acknowledgment field to describe noncon-
tinuous blocks of received data, so that the sender can retransmit
only what is missing at the receiver’s end

[4]

.

TCP Performance:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

6

Any robust high-performance implementation of TCP should negotiate
these parameters at the start of the TCP session, ensuring the following:
that the session is using the largest possible IP packet size that can be
carried without fragmentation, that the window sizes used in the trans-
fer are adequate for the bandwidth-delay product of the network path,
and that selective acknowledgment can be used for rapid recovery from
line-error conditions or from short periods of marginally degraded net-
work performance.

TCP Operation

The first phase of a TCP session is establishment of the connection. This
requires a

three-way handshake,

 ensuring that both sides of the connec-
tion have an unambiguous understanding of the sequence number space
of the remote side for this session. The operation of the connection is as
follows:

• The local system sends the remote end an initial sequence number to
the remote port, using a SYN packet.

• The remote system responds with an ACK of the initial sequence
number and the initial sequence number of the remote end in a
response SYN packet.

• The local end responds with an ACK of this remote sequence
number.

The connection is opened.

The operation of this algorithm is shown in Figure 2. The performance
implication of this protocol exchange is that it takes one and a half

round-trip times

 (RTTs) for the two systems to synchronize state before
any data can be sent.

Figure 2:
TCP Connection

Handshake

ESTABLISHED

TCP State TCP Packet TCP State

ESTABLISHED

SYN-SENT

CLOSED

ESTABLISHED

SYN-RECEIVED

SYN-RECEIVED

LISTEN

SEQ=1000, CTL=SYN

SEQ=750, ACK=1001, CTL=SYN|ACK

SEQ=1000, ACK=751, CTL=ACK

T h e I n t e r n e t P r o t o c o l J o u r n a l

7

After the connection has been established, the TCP protocol manages
the reliable exchange of data between the two systems. The algorithms
that determine the various retransmission timers have been redefined nu-
merous times. TCP is a

sliding-window

 protocol, and the general
principle of flow control is based on the management of the advertised
window size and the management of retransmission timeouts, attempt-
ing to optimize protocol performance within the observed delay and loss
parameters of the connection. Tuning a TCP protocol stack for optimal
performance over a very low-delay, high-bandwidth LAN requires dif-
ferent settings to obtain optimal performance over a dialup Internet
connection, which in turn is different for the requirements of a high-
speed wide-area network. Although TCP attempts to discover the delay
bandwidth product of the connection, and attempts to automatically op-
timize its flow rates within the estimated parameters of the network
path, some estimates will not be accurate, and the corresponding efforts
by TCP to optimize behavior may not be completely successful.

Another critical aspect is that TCP is an adaptive flow-control protocol.
TCP uses a basic flow-control algorithm of increasing the data-flow rate
until the network signals that some form of saturation level has been
reached (normally indicated by data loss). When the sender receives an
indication of data loss, the TCP flow rate is reduced; when reliable
transmission is reestablished, the flow rate slowly increases again.

If no reliable flow is reestablished, the flow rate backs further off to an
initial probe of a single packet, and the entire adaptive flow-control pro-
cess starts again.

This process has numerous results relevant to service quality. First, TCP
behaves

adaptively,

 rather than

predictively.

 The flow-control algo-
rithms are intended to increase the data-flow rate to fill all available
network path capacity, but they are also intended to quickly back off if
the available capacity changes because of interaction with other traffic,
or if a dynamic change occurs in the end-to-end network path. For ex-
ample, a single TCP flow across an otherwise idle network attempts to
fill the network path with data, optimizing the flow rate within the
available network capacity. If a second TCP flow opens up across the
same path, the two flow-control algorithms will interact so that both
flows will stabilize to use approximately half of the available capacity
per flow. The objective of the TCP algorithms is to adapt so that the net-
work is fully used whenever one or more data flows are present. In
design, tension always exists between the efficiency of network use and
the enforcement of predictable session performance. With TCP, you give
up predictable throughput but gain a highly utilized, efficient network.

TCP Performance:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

8

Protocol Performance

In this section we examine the transfer of data using the TCP protocol,
focusing on the relationship between the protocol and performance.
TCP is generally used within two distinct application areas: short-delay
short data packets sent on demand, to support interactive applications
such as

Telnet,

 or

rlogin,

 and large packet data streams supporting reli-
able volume data transfers, such as mail transfers, Web-page transfers,
and

File Transfer Protocol

 (FTP). Different protocol mechanisms come
into play to support interactive applications, as distinct from short- and
long-held volume transactions.

Interactive TCP

Interactive protocols are typically directed at supporting single-charac-
ter interactions, where each character is carried in a single packet, as is
its echo. The protocol interaction to support this is indicated in Figure 3.
These 2 bytes of data generate four TCP/IP packets, or 160 bytes of pro-
tocol overhead. TCP makes some small improvement in this exchange
through the use of

piggybacking,

 where an ACK is carried in the same
packet as the data, and

delayed acknowledgment,

 where an ACK is de-
layed up to 200 ms before sending, to give the server application the
opportunity to generate data that the ACK can piggyback. The result-
ant protocol exchange is indicated in Figure 4.

Figure 3:
Interactive Exchange

Client Network

Data T

Data Y
ACK

ACK
Data T

Data P
ACK

ACK
Data Y

Data E

T

Y

P

E

Telnet Data: TYPE

Echo of TYPE

ACK

ACK

ACK
Data P

ACK
Data E

T

Y

P

E

Time Time
Server

T h e I n t e r n e t P r o t o c o l J o u r n a l

9

Figure 4:
Interactive Exchange

with Delayed ACK

For short-delay LANs, this protocol exchange offers acceptable perfor-
mance. This protocol exchange for a single data character and its echo
occurs within about 16 ms on an Ethernet LAN, corresponding to an in-
teractive rate of 60 characters per second. When the network delay is
increased in a WAN, these small packets can be a source of congestion
load. The TCP mechanism to address this small-packet congestion was
described by John Nagle in RFC 896

[5]

. Commonly referred to as the

Nagle Algorithm,

 this mechanism inhibits a sender from transmitting
any additional small segments while the TCP connection has outstand-
ing unacknowledged small segments. On a LAN, this modification to
the algorithm has a negligible effect; in contrast, on a WAN, it has a
dramatic effect in reducing the number of small packets in direct correla-
tion to the network path congestion level (as shown in Figures 5 and 6).
The cost is an increase in session jitter by up to a round-trip time inter-
val. Applications that are jitter-sensitive typically disable this control
algorithm.

TCP is not a highly efficient protocol for the transmission of interactive
traffic. The typical carriage efficiency of the protocol across a LAN is 2
bytes of payload and 120 bytes of protocol overhead. Across a WAN,
the Nagle algorithm may improve this carriage efficiency slightly by in-
creasing the number of bytes of payload for each payload transaction,
although it will do so at the expense of increased session jitter.

Client Network

Data T

Data Y
ACK

Data T + ACK

Data P
ACK

Data Y + ACK

Data E

T

Y

P

E

Telnet Data: TYPE

Echo of TYPE

ACK

ACK

Data P + ACK

Data E + ACK

T

Delayed ACK
allows ACK to
be combined
with echo

Y

P

E

Time Time
Server

TCP Performance:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

1 0

Figure 5: WAN
Interactive Exchange

Figure 6: WAN
Interactive Exchange
with Nagle Algorithm

Client Network

Data T

Data P

T

Y

P

E

T

Y

P

E

Telnet Data: TYPE

Echo of TYPE

ACK

Delayed ACK
allows ACK to
be combined
with echo

Time Time
Server

Data Y

ACK

ACK

Data T + ACK

Data E + ACK

Data P + ACK

Data Y + ACK

Data E + ACK

Client Network

Data T

Data YPE + ACK

T

Y

P

E

T

Y
P
E

Telnet Data: TYPE

Echo of TYPE

ACK

Data delayed
due to Nagle
algorithm

Time Time
Server

Data T + ACK

Data YPE + ACK

T h e I n t e r n e t P r o t o c o l J o u r n a l

1 1

TCP Volume Transfer

The objective for this application is to maximize the efficiency of the
data transfer, implying that TCP should endeavor to locate the point of
dynamic equilibrium of maximum network efficiency, where the send-
ing data rate is maximized just prior to the onset of sustained packet
loss.

Further increasing the sending rate from such a point will run the risk of
generating a congestion condition within the network, with rapidly in-
creasing packet-loss levels. This, in turn, will force the TCP protocol to
retransmit the lost data, resulting in reduced data-transfer efficiency. On
the other hand, attempting to completely eliminate packet-loss rates im-
plies that the sender must reduce the sending rate of data into the
network so as not to create transient congestion conditions along the
path to the receiver. Such an action will, in all probability, leave the net-
work with idle capacity, resulting in inefficient use of available network
resources.

The notion of a point of equilibrium is an important one. The objective
of TCP is to coordinate the actions of the sender, the network, and the
receiver so that the network path has sufficient data such that the net-
work is not idle, but it is not so overloaded that a congestion backlog
builds up and data loss occurs. Maintaining this point of equilibrium re-
quires the sender and receiver to be synchronized so that the sender
passes a packet into the network at precisely the same time as the re-
ceiver removes a packet from the network. If the sender attempts to
exceed this equilibrium rate, network congestion will occur. If the sender
attempts to reduce its rate, the efficiency of the network will drop.

TCP uses a sliding-window protocol to support bulk data transfer (Fig-
ure 7). The receiver advertises to the sender the available buffer space at
the receiver. The sender can transmit up to this amount of data before
having to await a further buffer update from the receiver. The sender
should have no more than this amount of data in transit in the network.
The sender must also buffer sent data until it has been ACKed by the re-
ceiver. The send window is the minimum of the sender’s buffer size and
the advertised receiver window. Each time an ACK is received, the trail-
ing edge of the send window is advanced. The minimum of the sender’s
buffer and the advertised receiver’s window is used to calculate a new
leading edge. If this send window encompasses unsent data, this data
can be sent immediately.

TCP Performance:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

1 2

Figure 7: TCP Sliding Window

The size of TCP buffers in each host is a critical limitation to perfor-
mance in WANs. The protocol is capable of transferring one send
window of data per round-trip interval. For example, with a send win-
dow of 4096 bytes and a transmission path with an RTT of 600 ms, a
TCP session is capable of sustaining a maximum transfer rate of 48
Kbps, regardless of the bandwidth of the network path. Maximum
efficiency of the transfer is obtained only if the sender is capable of com-
pletely filling the network path with data. Because the sender will have
an amount of data in forward transit and an equivalent amount of data
awaiting reception of an ACK signal, both the sender’s buffer and the
receiver’s advertised window should be no smaller than the

Delay-Band-
width Product

 of the network path. That is:

Window size

≥

 Bandwidth (bytes/sec) × Round-trip time (sec)

The 16-bit field within the TCP header can contain values up to 65,535,
imposing an upper limit on the available window size of 65,535 bytes.
This imposes an upper limit on TCP performance of some 64 KB per
RTT, even when both end systems have arbitrarily large send and re-
ceive buffers. This limit can be modified by the use of a window-scale
option, described in RFC 1323, effectively increasing the size of the win-
dow to a 30-bit field, but transmitting only the most significant 16 bits
of the value. This allows the sender and receiver to use buffer sizes that
can operate efficiently at speeds that encompass most of the current
very-high-speed network transmission technologies across distances of
the scale of the terrestrial intercontinental cable systems.

Total window size is minimum of sender’s buffer size, advertised
receiver window size and current congestion window

Sent Data, and buffered awaiting
Acknowledgement (may be resent
upon network loss)

Received ACK advances the
trailing edge of the window

The TCP Sliding Window

Local host advances this
marker as data is transmitted
into the network

Receiver’s advertised window
advances the leading edge of
the sliding window

Unsent Data, may be
transmitted immediately

Unsent Data, cannot be sent
until the window opens

Sent and
Acknowledged Data

T h e I n t e r n e t P r o t o c o l J o u r n a l
1 3

Although the maximum window size and the RTT together determine
the maximum achievable data-transfer rate, there is an additional ele-
ment of flow control required for TCP. If a TCP session commenced by
injecting a full window of data into the network, then there is a strong
probability that much of the initial burst of data would be lost because
of transient congestion, particularly if a large window is being used. In-
stead, TCP adopts a more conservative approach by starting with a
modest amount of data that has a high probability of successful trans-
mission, and then probing the network with increasing amounts of data
for as long as the network does not show signs of congestion. When
congestion is experienced, the sending rate is dropped and the probing
for additional capacity is resumed.

The dynamic operation of the window is a critical component of TCP
performance for volume transfer. The mechanics of the protocol in-
volve an additional overriding modifier of the sender’s window, the
congestion window, referred to as cwnd. The objective of the window-
management algorithm is to start transmitting at a rate that has a very
low probability of packet loss, then to increase the rate (by increasing
the cwnd size) until the sender receives an indication, through the detec-
tion of packet loss, that the rate has exceeded the available capacity of
the network. The sender then immediately halves its sending rate by re-
ducing the value of cwnd, and resumes a gradual increase of the sending
rate. The goal is to continually modify the sending rate such that it oscil-
lates around the true value of available network capacity. This
oscillation enables a dynamic adjustment that automatically senses any
increase or decrease in available capacity through the lifetime of the data
flow.

The intended outcome is that of a dynamically adjusting cooperative
data flow, where a combination of such flows behaves fairly, in that
each flow obtains essentially a fair share of the network, and so that
close to maximal use of available network resources is made. This flow-
control functionality is achieved through a combination of cwnd value
management and packet-loss and retransmission algorithms. TCP flow
control has three major parts: the flow-control modes of Slow Start and
Congestion Avoidance, and the response to packet loss that determines
how TCP switches between these two modes of operation.

TCP Slow Start
The starting value of the cwnd window (the Initial Window, or IW) is
set to that of the Sender Maximum Segment Size (SMSS) value. This
SMSS value is based on the receiver’s maximum segment size, obtained
during the SYN handshake, the discovered path MTU (if used), the
MTU of the sending interface, or, in the absence of other information,
536 bytes. The sender then enters a flow-control mode termed Slow
Start.

TCP Performance: continued

T h e I n t e r n e t P r o t o c o l J o u r n a l
1 4

The sender sends a single data segment, and because the window is now
full, it then awaits the corresponding ACK. When the ACK is received,
the sender increases its window by increasing the value of cwnd by the
value of SMSS. This then allows the sender to transmit two segments; at
that point, the congestion window is again full, and the sender must
await the corresponding ACKs for these segments. This algorithm con-
tinues by increasing the value of cwnd (and, correspondingly, opening
the size of the congestion window) by one SMSS for every ACK re-
ceived that acknowledges new data.

If the receiver is sending an ACK for every packet, the effect of this algo-
rithm is that the data rate of the sender doubles every round-trip time
interval. If the receiver supports delayed ACKs, the rate of increase will
be slightly lower, but nevertheless the rate will increase by a minimum of
one SMSS each round-trip time. Obviously, this cannot be sustained
indefinitely. Either the value of cwnd will exceed the advertised receive
window or the sender’s window, or the capacity of the network will be
exceeded, in which case packets will be lost.

There is another limit to the slow-start rate increase, maintained in a
variable termed ssthresh, or Slow-Start Threshold. If the value of cwnd
increases past the value of ssthresh, the TCP flow-control mode is
changed from Slow Start to congestion avoidance. Initially the value of
ssthresh is set to the receiver’s maximum window size. However, when
congestion is noted, ssthresh is set to half the current window size, pro-
viding TCP with a memory of the point where the onset of network
congestion may be anticipated in future.

One aspect to highlight concerns the interaction of the slow-start algo-
rithm with high-capacity long-delay networks, the so-called Long Fat
Networks (or LFNs, pronounced “elephants”). The behavior of the
slow-start algorithm is to send a single packet, await an ACK, then send
two packets, and await the corresponding ACKs, and so on. The TCP
activity on LFNs tends to cluster at each epoch of the round-trip time,
with a quiet period that follows after the available window of data has
been transmitted. The received ACKs arrive back at the sender with an
inter-ACK spacing that is equivalent to the data rate of the bottleneck
point on the network path. During Slow Start, the sender transmits at a
rate equal to twice this bottleneck rate. The rate adaptation function
that must occur within the network takes place in the router at the en-
trance to the bottleneck point. The sender’s packets arrive at this router
at twice the rate of egress from the router, and the router stores the
overflow within its internal buffer. When this buffer overflows, packets
will be dropped, and the slow-start phase is over. The important conclu-
sion is that the sender will stop increasing its data rate when there is
buffer exhaustion, a condition that may not be the same as reaching the
true available data rate. If the router has a buffer capacity considerably
less than the delay-bandwidth product of the egress circuit, the two val-
ues are certainly not the same.

T h e I n t e r n e t P r o t o c o l J o u r n a l
1 5

In this case, the TCP slow-start algorithm will finish with a sending rate
that is well below the actual available capacity. The efficient operation
of TCP, particularly in LFNs, is critically reliant on adequately large
buffers within the network routers.

Another aspect of Slow Start is the choice of a single segment as the ini-
tial sending window. Experimentation indicates that an initial value of
up to four segments can allow for a more efficient session startup, par-
ticularly for those short-duration TCP sessions so prevalent with Web
fetches[6]. Observation of Web traffic indicates an average Web data
transfer of 17 segments. A slow start from one segment will take five
RTT intervals to transfer this data, while using an initial value of four
will reduce the transfer time to three RTT intervals. However, four seg-
ments may be too many when using low-speed links with limited
buffers, so a more robust approach is to use an initial value of no more
than two segments to commence Slow Start[7].

Packet Loss
Slow Start attempts to start a TCP session at a rate the network can sup-
port and then continually increase the rate. How does TCP know when
to stop this increase? This slow-start rate increase stops when the con-
gestion window exceeds the receiver’s advertised window, when the rate
exceeds the remembered value of the onset of congestion as recorded in
ssthresh, or when the rate is greater than the network can sustain. Ad-
dressing the last condition, how does a TCP sender know that it is
sending at a rate greater than the network can sustain? The answer is
that this is shown by data packets being dropped by the network. In this
case, TCP has to undertake many functions:

• The packet loss has to be detected by the sender.

• The missing data has to be retransmitted.

• The sending data rate should be adjusted to reduce the probability of
further packet loss.

TCP can detect packet loss in two ways. First, if a single packet is lost
within a sequence of packets, the successful delivery packets following
the lost packet will cause the receiver to generate a duplicate ACK for
each successive packet The reception of these duplicate ACKs is a signal
of such packet loss. Second, if a packet is lost at the end of a sequence of
sent packets, there are no following packets to generate duplicate ACKs.
In this case, there are no corresponding ACKs for this packet, and the
sender’s retransmit timer will expire and the sender will assume packet
loss.

A single duplicate ACK is not a reliable signal of packet loss. When a
TCP receiver gets a data packet with an out-of-order TCP sequence
value, the receiver must generate an immediate ACK of the highest in-
order data byte received. This will be a duplicate of an earlier transmit-
ted ACK. Where a single packet is lost from a sequence of packets, all
subsequent packets will generate a duplicate ACK packet.

TCP Performance: continued

T h e I n t e r n e t P r o t o c o l J o u r n a l
1 6

On the other hand, where a packet is rerouted with an additional incre-
mental delay, the reordering of the packet stream at the receiver’s end
will generate a small number of duplicate ACKs, followed by an ACK of
the entire data sequence, after the errant packet is received. The sender
distinguishes between these cases by using three duplicate ACK packets
as a signal of packet loss.

The third duplicate ACK triggers the sender to immediately send the seg-
ment referenced by the duplicate ACK value (fast retransmit) and
commence a sequence termed Fast Recovery. In fast recovery, the value
of ssthresh is set to half the current send window size (the send window
is the amount of unacknowledged data outstanding). The congestion
window, cwnd, is set three segments greater than ssthresh to allow for
three segments already buffered at the receiver. If this allows additional
data to be sent, then this is done. Each additional duplicate ACK inflates
cwnd by a further segment size, allowing more data to be sent. When an
ACK arrives that encompasses new data, the value of cwnd is set back
to ssthresh, and TCP enters congestion-avoidance mode. Fast Recovery
is intended to rapidly repair single packet loss, allowing the sender to
continue to maintain the ACK-clocked data rate for new data while the
packet loss repair is being undertaken. This is because there is still a se-
quence of ACKs arriving at the sender, so that the network is continuing
to pass timing signals to the sender indicating the rate at which packets
are arriving at the receiver. Only when the repair has been completed
does the sender drop its window to the ssthresh value as part of the tran-
sition to congestion-avoidance mode[8].

The other signal of packet loss is a complete cessation of any ACK pack-
ets arriving to the sender. The sender cannot wait indefinitely for a
delayed ACK, but must make the assumption at some point in time that
the next unacknowledged data segment must be retransmitted. This is
managed by the sender maintaining a Retransmission Timer. The main-
tenance of this timer has performance and efficiency implications. If the
timer triggers too early, the sender will push duplicate data into the net-
work unnecessarily. If the timer triggers too slowly, the sender will
remain idle for too long, unnecessarily slowing down the flow of data.
The TCP sender uses a timer to measure the elapsed time between send-
ing a data segment and receiving the corresponding acknowledgment.
Individual measurements of this time interval will exhibit significant
variance, and implementations of TCP use a smoothing function when
updating the retransmission timer of the flow with each measurement.
The commonly used algorithm was originally described by Van Jacob-
son[9], modified so that the retransmission timer is set to the smoothed
round-trip-time value, plus four times a smoothed mean deviation
factor[10].

T h e I n t e r n e t P r o t o c o l J o u r n a l
1 7

When the retransmission timer expires, the actions are similar to that of
duplicate ACK packets, in that the sender must reduce its sending rate in
response to congestion. The threshold value, ssthresh, is set to half of the
current value of outstanding unacknowledged data, as in the duplicate
ACK case. However, the sender cannot make any valid assumptions
about the current state of the network, given that no useful information
has been provided to the sender for more than one RTT interval. In this
case, the sender closes the congestion window back to one segment, and
restarts the flow in slow start-mode by sending a single segment. The
difference from the initial slow start is that, in this case, the ssthresh
value is set so that the sender will probe the congestion area more slowly
using a linear sending rate increase when the congestion window reaches
the remembered ssthresh value.

Congestion Avoidance
Compared to Slow Start, congestion avoidance is a more tentative prob-
ing of the network to discover the point of threshold of packet loss.
Where Slow Start uses an exponential increase in the sending rate to find
a first-level approximation of the loss threshold, congestion avoidance
uses a linear growth function.

When the value of cwnd is greater than ssthresh, the sender increments
the value of cwnd by the value SMSS × SMSS/cwnd, in response to each
received nonduplicate ACK[7], ensuring that the congestion window
opens by one segment within each RTT time interval.

The congestion window continues to open in this fashion until packet
loss occurs. If the packet loss is isolated to a single packet within a
packet sequence, the resultant duplicate ACKs will trigger the sender to
halve the sending rate and continue a linear growth of the congestion
window from this new point, as described above in fast recovery.

The behavior of cwnd in an idealized configuration is shown in Figure 8,
along with the corresponding data-flow rates. The overall characteris-
tics of the TCP algorithm are an initial relatively fast scan of the
network capacity to establish the approximate bounds of maximal
efficiency, followed by a cyclic mode of adaptive behavior that reacts
quickly to congestion, and then slowly increases the sending rate across
the area of maximal transfer efficiency.

Packet loss, as signaled by the triggering of the retransmission timer,
causes the sender to recommence slow-start mode, following a timeout
interval. The corresponding data-flow rates are indicated in Figure 9.

TCP Performance: continued

T h e I n t e r n e t P r o t o c o l J o u r n a l
1 8

Figure 8: Simulation of Single TCP Transfer

The inefficiency of this mode of performance is caused by the complete
cessation of any form of flow signaling from the receiver to the sender.
In the absence of any information, the sender can only assume that the
network is heavily congested, and so must restart its probing of the net-
work capacity with an initial congestion window of a single segment.
This leads to the performance observation that any form of packet-drop
management that tends to discard the trailing end of a sequence of data
packets may cause significant TCP performance degradation, because
such drop behavior forces the TCP session to continually time out and
restart the flow from a single segment again.

Figure 9: Simulation of TCP Transfer with Tail Drop Queue

100

140

120

80

60

40

20

160

0

Queue Saturation Point

Onset of queuing as rate
exceeds available capacity

Slow Start
(Rate doubles

each RTT
Interval)

Duplicate ACKs received. Halve cwnd to recover

Time

Queue size = 1/3 next hop delay-bandwidth product

Congestion Avoidance
(Rate increases by a fixed
amount each RTT Interval)Re

la
tiv

e
Th

ro
ug

hp
ut

 R
at

e
(%

)

80

120

100

60

40

20

0

140

Queue Saturation Point

Onset of queuing as rate
exceeds available capacity

Slow Start
(Rate doubles

each RTT
Interval)

Queue tail-drop discards burst load

Time

Re
la

tiv
e

Th
ro

ug
hp

ut
 R

at
e

(%
)

Queue size = 1/50 next hop delay-bandwidth product

Timeout Interval Timeout Interval

ssthresh -
Congestion
Avoidance
mode enteredRestart using Slow Start

T h e I n t e r n e t P r o t o c o l J o u r n a l
1 9

Assisting TCP Performance within the Network—RED and ECN
Although TCP is an end-to-end protocol, it is possible for the network
to assist TCP in optimizing performance. One approach is to alter the
queue behaviour of the network through the use of Random Early De-
tection (RED). RED permits a network router to discard a packet even
when there is additional space in the queue. Although this may sound
inefficient, the interaction between this early packet-drop behaviour and
TCP is very effective.

RED uses a the weighted average queue length as the probability factor
for packet drop. As the average queue length increases, the probability
of a packet being dropped, rather than being queued, increases. As the
queue length decreases, so does the packet-drop probability. (See Figure
10). Small packet bursts can pass through a RED filter relatively intact,
while larger packet bursts will experience increasingly higher packet-dis-
card rates. Sustained load will further increase the packet-discard rates.
This implies that the TCP sessions with the largest open windows will
have a higher probability of experiencing packet drop, causing a back-
off in the window size.

Figure 10: RED
Behavior

A major goal of RED is to avoid a situation in which all TCP flows ex-
perience congestion at the same time, all then back off and resume at the
same rate, and tend to synchronize their behaviour[11,12]. With RED, the
larger bursting flows experience a higher probability of packet drop,
while flows with smaller burst rates can continue without undue impact.
RED is also intended to reduce the incidence of complete loss of ACK
signals, leading to timeout and session restart in slow-start mode. The in-
tent is to signal the heaviest bursting TCP sessions the likelihood of
pending queue saturation and tail drop before the onset of such a tail-
drop congestion condition, allowing the TCP session to undertake a fast
retransmit recovery under conditions of congestion avoidance. Another
objective of RED is to allow the queue to operate efficiently, with the
queue depth ranging across the entire queue size within a timescale of
queue depth oscillation the same order as the average RTT of the traffic
flows.

Average Queue Depth

Pr
ob

ab
ili

ty
 o

f D
is

ca
rd

Queue Max.0

1

Once the average queue capacity reaches a certain threshold,
RED begins to select flows from which to discard packets, so
that congestion (buffer exhaustion) can be avoided. The more
the queue fills up, the greater the probability of packet discard.

TCP Performance: continued

T h e I n t e r n e t P r o t o c o l J o u r n a l
2 0

Behind RED is the observation that TCP sets very few assumptions
about the networks over which it must operate, and that it cannot count
on any consistent performance feedback signal being generated by the
network. As a minimal approach, TCP uses packet loss as its perfor-
mance signal, interpreting small-scale packet-loss events as peak load
congestion events and extended packet loss events as a sign of more criti-
cal congestion load. RED attempts to increase the number of small-scale
congestion signals, and in so doing avoid long-period sustained conges-
tion conditions.

It is not necessary for RED to discard the randomly selected packet. The
intent of RED is to signal the sender that there is the potential for queue
exhaustion, and that the sender should adapt to this condition. An alter-
native mechanism is for the router experiencing the load to mark packets
with an explicit Congestion Experienced (CE) bit flag, on the assump-
tion that the sender will see and react to this flag setting in a manner
comparable to its response to single packet drop[13] [14]. This mechanism,
Explicit Congestion Notification (ECN), uses a 2-bit scheme, claiming
bits 6 and 7 of the IP Version 4 Type-of-Service (ToS) field (or the two
Currently Unused [CU] bits of the IP Differentiated Services field). Bit 6
is set by the sender to indicate that it is an ECN-capable transport sys-
tem (the ECT bit). Bit 7 is the CE bit, and is set by a router when the
average queue length exceeds configured threshold levels.

The ECN algorithm is that an active router will perform RED, as de-
scribed. After a packet has been selected, the router may mark the CE
bit of the packet if the ECT bit is set; otherwise, it will discard the se-
lected packet. (See Figure 11).

Figure 11: Operation of
Explicit Congestion

Notification

The TCP interaction is slightly more involved. The initial TCP SYN
handshake includes the addition of ECN-echo capability and Conges-
tion Window Reduced (CWR) capability flags to allow each system to
negotiate with its peer as to whether it will properly handle packets with
the CE bit set during the data transfer. The sender sets the ECT bit in all
packets sent. If the sender receives a TCP packet with the ECN-echo flag
set in the TCP header, the sender will adjust its congestion window as if
it had undergone fast recovery from a single lost packet.

ECN Sender

TCP ACK packets with ECN-ECHO option set

All outoing data packets
have ECT bit set in IP header

Network Congestion
Point

Randomly selected TCP Data
packets with CE bit set in

IP header

ECN Receiver

T h e I n t e r n e t P r o t o c o l J o u r n a l

2 1

The next sent packet will set the TCP CWR flag, to indicate to the re-
ceiver that it has reacted to the congestion. The additional caveat is that
the sender will react in this way at most once every RTT interval. Fur-
ther, TCP packets with the ECN-echo flag set will have no further effect
on the sender within the same RTT interval. The receiver will set the
ECN-echo flag in all packets when it receives a packet with the CE bit
set. This will continue until it receives a packet with the CWR bit set, in-
dicating that the sender has reacted to the congestion. The ECT flag is set
only in packets that contain a data payload. TCP ACK packets that con-
tain no data payload should be sent with the ECT bit clear.

The connection does not have to await the reception of three duplicate
ACKs to detect the congestion condition. Instead, the receiver is notified
of the incipient congestion condition through the explicit setting of a
notification bit, which is in turn echoed back to the sender in the corre-
sponding ACK. Simulations of ECN using a RED marking function
indicate slightly superior throughput in comparison to configuring RED
as a packet-discard function.

However, widespread deployment of ECN is not considered likely in the
near future, at least in the context of Version 4 of IP. At this stage, there
has been no explicit standardization of the field within the IPv4 header
to carry this information, and the deployment base of IP is now so wide
that any modifications to the semantics of fields in the IPv4 header
would need to be very carefully considered to ensure that the changed
field interpretation did not exercise some malformed behavior in older
versions of the TCP stack or in older router software implementations.

ECN provides some level of performance improvement over a packet-
drop RED scheme. With large bulk data transfers, the improvement is
moderate, based on the difference between the packet retransmission
and congestion-window adjustment of RED and the congestion-win-
dow adjustment of ECN. The most notable improvements indicated in
ECN simulation experiments occur with short TCP transactions (com-
monly seen in Web transactions), where a RED packet drop of the initial
data packet may cause a six-second retransmit delay. Comparatively, the
ECN approach allows the transfer to proceed without this lengthy delay.

The major issue with ECN is the need to change the operation of both
the routers and the TCP software stacks to accommodate the operation
of ECN. While the ECN proposal is carefully constructed to allow an
essentially uncoordinated introduction into the Internet without nega-
tive side effects, the effectiveness of ECN in improving overall network
throughput will be apparent only after this approach has been widely
adopted. As the Internet grows, its inertial mass generates a natural re-
sistance to further technological change; therefore, it may be some years
before ECN is widely adopted in both host software and Internet rout-
ing systems. RED, on the other hand, has had a more rapid introduction
to the Internet, because it requires only a local modification to router be-
havior, and relies on existing TCP behavior to react to the packet drop.

TCP Performance:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

2 2

Tuning TCP

How can the host optimize its TCP stack for optimum performance?
Many recommendations can be considered. The following suggestions
are a combination of those measures that have been well studied and are
known to improve TCP performance, and those that appear to be highly
productive areas of further research and investigation

[1]

.

•

Use a good TCP protocol stack:

 Many of the performance patholo-
gies that exist in the network today are not necessarily the by-
product of oversubscribed networks and consequent congestion.
Many of these performance pathologies exist because of poor imple-
mentations of TCP flow-control algorithms; inadequate buffers
within the receiver; poor (or no) use of path-MTU discovery; no sup-
port for fast-retransmit flow recovery, no use of window scaling and
SACK, imprecise use of protocol-required timers, and very coarse-
grained timers. It is unclear whether network ingress-imposed Qual-
ity-of-Service (QoS) structures will adequately compensate for such
implementation deficiencies. The conclusion is that attempting to
address the symptoms is not the same as curing the disease. A good
protocol stack can produce even better results in the right
environment.

•

Implement a TCP Selective Acknowledgment (SACK) mechanism:

SACK, combined with a selective repeat-transmission policy, can
help overcome the limitation that traditional TCP experiences when
a sender can learn only about a single lost packet per RTT.

•

Implement larger buffers with TCP window-scaling options:

 The
TCP flow algorithm attempts to work at a data rate that is the mini-
mum of the delay-bandwidth product of the end-to-end network
path and the available buffer space of the sender. Larger buffers at
the sender and the receiver assist the sender in adapting more
efficiently to a wider diversity of network paths by permitting a
larger volume of traffic to be placed in flight across the end-to-end
path.

•

Support TCP ECN negotiation:

 ECN enables the host to be explic-
itly informed of conditions relating to the onset of congestion
without having to infer such a condition from the reserve stream of
ACK packets from the receiver. The host can react to such a condi-
tion promptly and effectively with a data flow-control response
without having to invoke packet retransmission.

•

Use a higher initial TCP slow-start rate than the current 1 MSS
(Maximum Segment Size) per RTT.

 A size that seems feasible is an
initial burst of 2 MSS segments. The assumption is that there will be
adequate queuing capability to manage this initial packet burst; the
provision to back off the send window to 1 MSS segment should
remain intact to allow stable operation if the initial choice was too
large for the path. A robust initial choice is two segments, although
simulations have indicated that four initial segments is also highly
effective in many situations.

T h e I n t e r n e t P r o t o c o l J o u r n a l

2 3

•

Use a host platform that has sufficient processor and memory capac-
ity to drive the network.

 The highest-quality service network and
optimally provisioned access circuits cannot compensate for a host
system that does not have sufficient capacity to drive the service load.
This is a condition that can be observed in large or very popular pub-
lic Web servers, where the peak application load on the server drives
the platform into a state of memory and processor exhaustion, even
though the network itself has adequate resources to manage the
traffic load.

All these actions have one thing in common: They can be deployed in-
crementally at the edge of the network and can be deployed individually.
This allows end systems to obtain superior performance even in the ab-
sence of the network provider tuning the network’s service response
with various internal QoS mechanisms.

Conclusion

TCP is not a predictive protocol. It is an adaptive protocol that at-
tempts to operate the network at the point of greatest efficiency. Tuning
TCP is not a case of making TCP pass more packets into the network.
Tuning TCP involves recognizing how TCP senses current network load
conditions, working through the inevitable compromise between mak-
ing TCP highly sensitive to transient network conditions, and making
TCP resilient to what can be regarded as noise signals.

If the performance of end-to-end TCP is the perceived problem, the
most effective answer is not necessarily to add QoS service differentia-
tion into the network. Often, the greatest performance improvement can
be made by upgrading the way that hosts and the network interact
through the appropriate configuration of the host TCP stacks.

In the next article on this topic, we will examine how TCP is facing new
challenges with increasing use of wireless, short-lived connections, and
bandwidth-limited mobile devices, as well as the continuing effort for
improved TCP performance. We’ll look at a number of proposals to
change the standard actions of TCP to meet these various requirements
and how they would interact with the existing TCP protocol.

References

[1] Huston, G.,

Internet Performance Survival Guide: QoS Strategies for
Multiservice Networks,

 ISBN 0471-378089, John Wiley & Sons,
January 2000.

[2] Postel, J., “Transmission Control Protocol,” RFC 793, September 1981.

[3] Jacobson, V., Braden, R., and Borman, D., “TCP Extensions for High
Performance,” RFC 1323, May 1992.

[4] Mathis, M., Madavi, J., Floyd, S., and Romanow, A., “TCP Selective
Acknowledgement Options,” RFC 2018, October 1996.

TCP Performance:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

2 4

[5] Nagle, J., “Congestion Control in IP/TCP Internetworks,” RFC 896,
January 1984.

[6] Allman, M., Floyd, S., and Partridge, C., “Increasing TCP’s Initial
Window,” RFC 2414, September 1998.

[7] Allman, M., Paxson, V., and Stevens, W., “TCP Congestion Control,”
RFC 2581, April 1999.

[8] Stevens, W. R.,

TCP/IP Illustrated, Volume 1,

 Addison-Wesley, 1994.

[9] Jacobson V., “Congestion Avoidance and Control,” ACM

Computer
Communication Review,

 Vol. 18, No. 4, August 1988.

[10] Jacobson, V., “Berkeley TCP Evolution from 4.3-Tahoe to 4.3, Reno,”
Proceedings of the 18th Internet Engineering Task Force, University of
British Colombia, Vancouver, BC, September 1990.

[11] Floyd, S., and Jacobson, V., “Random Early Detection Gateways for
Congestion Avoidance,” IEEE/ACM

Transactions on Networking,

 Vol.
1, No. 4, August 1993.

[12] Braden, R. et al., “Recommendations on Queue Management and
Congestion Avoidance in the Internet,” RFC 2309, April 1998.

[13] Floyd, S., “TCP and Explicit Congestion Notification,” ACM

Computer
Communication Review,

 Vol. 24, No. 5, October 1994.

[14] Ramakrishnan, K., and Floyd, S., “A Proposal to Add Explicit
Congestion Notification (ECN) to IP,” RFC 2481, January 1999.

GEOFF HUSTON holds a B.Sc. and a M.Sc. from the Australian National University.
He has been closely involved with the development of the Internet for the past decade,
particularly within Australia, where he was responsible for the initial build of the Inter-
net within the Australian academic and research sector. Huston is currently the Chief
Technologist in the Internet area for Telstra. He is also an active member of the IETF,
and is the chair of the Internet Society Board of Trustees. He is author of

The ISP Sur-
vival Guide,

 ISBN 0-471-31499-4,

Internet Performance Survival Guide: QoS Strategies
for Multiservice Networks,

 ISBN 0471-378089, and coauthor of

Quality of Service: De-
livering QoS on the Internet and in Corporate Networks,

 ISBN 0-471-24358-2, a
collaboration with Paul Ferguson. All three books are published by John Wiley & Sons.
E-mail:

gih@telstra.net

