
ï»¿

Internet Engineering Task Force (IETF) C. Bormann
Request for Comments: 8949 UniversitÃ¤t Bremen TZI
STD: 94 P. Hoffman
Obsoletes: 7049 ICANN
Category: Standards Track December 2020
ISSN: 2070-1721

 Concise Binary Object Representation (CBOR)

Abstract

 The Concise Binary Object Representation (CBOR) is a data format
 whose design goals include the possibility of extremely small code
 size, fairly small message size, and extensibility without the need
 for version negotiation. These design goals make it different from
 earlier binary serializations such as ASN.1 and MessagePack.

 This document obsoletes RFC 7049, providing editorial improvements,
 new details, and errata fixes while keeping full compatibility with
 the interchange format of RFC 7049. It does not create a new version
 of the format.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8949.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 1.1. Objectives
 1.2. Terminology
 2. CBOR Data Models
 2.1. Extended Generic Data Models
 2.2. Specific Data Models
 3. Specification of the CBOR Encoding
 3.1. Major Types
 3.2. Indefinite Lengths for Some Major Types
 3.2.1. The "break" Stop Code
 3.2.2. Indefinite-Length Arrays and Maps
 3.2.3. Indefinite-Length Byte Strings and Text Strings
 3.2.4. Summary of Indefinite-Length Use of Major Types

 3.3. Floating-Point Numbers and Values with No Content
 3.4. Tagging of Items
 3.4.1. Standard Date/Time String
 3.4.2. Epoch-Based Date/Time
 3.4.3. Bignums
 3.4.4. Decimal Fractions and Bigfloats
 3.4.5. Content Hints
 3.4.5.1. Encoded CBOR Data Item
 3.4.5.2. Expected Later Encoding for CBOR-to-JSON Converters
 3.4.5.3. Encoded Text
 3.4.6. Self-Described CBOR
 4. Serialization Considerations
 4.1. Preferred Serialization
 4.2. Deterministically Encoded CBOR
 4.2.1. Core Deterministic Encoding Requirements
 4.2.2. Additional Deterministic Encoding Considerations
 4.2.3. Length-First Map Key Ordering
 5. Creating CBOR-Based Protocols
 5.1. CBOR in Streaming Applications
 5.2. Generic Encoders and Decoders
 5.3. Validity of Items
 5.3.1. Basic validity
 5.3.2. Tag validity
 5.4. Validity and Evolution
 5.5. Numbers
 5.6. Specifying Keys for Maps
 5.6.1. Equivalence of Keys
 5.7. Undefined Values
 6. Converting Data between CBOR and JSON
 6.1. Converting from CBOR to JSON
 6.2. Converting from JSON to CBOR
 7. Future Evolution of CBOR
 7.1. Extension Points
 7.2. Curating the Additional Information Space
 8. Diagnostic Notation
 8.1. Encoding Indicators
 9. IANA Considerations
 9.1. CBOR Simple Values Registry
 9.2. CBOR Tags Registry
 9.3. Media Types Registry
 9.4. CoAP Content-Format Registry
 9.5. Structured Syntax Suffix Registry
 10. Security Considerations
 11. References
 11.1. Normative References
 11.2. Informative References
 Appendix A. Examples of Encoded CBOR Data Items
 Appendix B. Jump Table for Initial Byte
 Appendix C. Pseudocode
 Appendix D. Half-Precision
 Appendix E. Comparison of Other Binary Formats to CBOR’s Design
 Objectives
 E.1. ASN.1 DER, BER, and PER
 E.2. MessagePack
 E.3. BSON
 E.4. MSDTP: RFC 713
 E.5. Conciseness on the Wire
 Appendix F. Well-Formedness Errors and Examples
 F.1. Examples of CBOR Data Items That Are Not Well-Formed
 Appendix G. Changes from RFC 7049
 G.1. Errata Processing and Clerical Changes
 G.2. Changes in IANA Considerations
 G.3. Changes in Suggestions and Other Informational Components
 Acknowledgements
 Authors’ Addresses

1. Introduction

 There are hundreds of standardized formats for binary representation
 of structured data (also known as binary serialization formats). Of
 those, some are for specific domains of information, while others are

 generalized for arbitrary data. In the IETF, probably the best-known
 formats in the latter category are ASN.1’s BER and DER [ASN.1].

 The format defined here follows some specific design goals that are
 not well met by current formats. The underlying data model is an
 extended version of the JSON data model [RFC8259]. It is important
 to note that this is not a proposal that the grammar in RFC 8259 be
 extended in general, since doing so would cause a significant
 backwards incompatibility with already deployed JSON documents.
 Instead, this document simply defines its own data model that starts
 from JSON.

 Appendix E lists some existing binary formats and discusses how well
 they do or do not fit the design objectives of the Concise Binary
 Object Representation (CBOR).

 This document obsoletes [RFC7049], providing editorial improvements,
 new details, and errata fixes while keeping full compatibility with
 the interchange format of RFC 7049. It does not create a new version
 of the format.

1.1. Objectives

 The objectives of CBOR, roughly in decreasing order of importance,
 are:

 1. The representation must be able to unambiguously encode most
 common data formats used in Internet standards.

 * It must represent a reasonable set of basic data types and
 structures using binary encoding. "Reasonable" here is
 largely influenced by the capabilities of JSON, with the major
 addition of binary byte strings. The structures supported are
 limited to arrays and trees; loops and lattice-style graphs
 are not supported.

 * There is no requirement that all data formats be uniquely
 encoded; that is, it is acceptable that the number "7" might
 be encoded in multiple different ways.

 2. The code for an encoder or decoder must be able to be compact in
 order to support systems with very limited memory, processor
 power, and instruction sets.

 * An encoder and a decoder need to be implementable in a very
 small amount of code (for example, in class 1 constrained
 nodes as defined in [RFC7228]).

 * The format should use contemporary machine representations of
 data (for example, not requiring binary-to-decimal
 conversion).

 3. Data must be able to be decoded without a schema description.

 * Similar to JSON, encoded data should be self-describing so
 that a generic decoder can be written.

 4. The serialization must be reasonably compact, but data
 compactness is secondary to code compactness for the encoder and
 decoder.

 * "Reasonable" here is bounded by JSON as an upper bound in size
 and by the implementation complexity, which limits the amount
 of effort that can go into achieving that compactness. Using
 either general compression schemes or extensive bit-fiddling
 violates the complexity goals.

 5. The format must be applicable to both constrained nodes and high-
 volume applications.

 * This means it must be reasonably frugal in CPU usage for both

 encoding and decoding. This is relevant both for constrained
 nodes and for potential usage in applications with a very high
 volume of data.

 6. The format must support all JSON data types for conversion to and
 from JSON.

 * It must support a reasonable level of conversion as long as
 the data represented is within the capabilities of JSON. It
 must be possible to define a unidirectional mapping towards
 JSON for all types of data.

 7. The format must be extensible, and the extended data must be
 decodable by earlier decoders.

 * The format is designed for decades of use.

 * The format must support a form of extensibility that allows
 fallback so that a decoder that does not understand an
 extension can still decode the message.

 * The format must be able to be extended in the future by later
 IETF standards.

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The term "byte" is used in its now-customary sense as a synonym for
 "octet". All multi-byte values are encoded in network byte order
 (that is, most significant byte first, also known as "big-endian").

 This specification makes use of the following terminology:

 Data item: A single piece of CBOR data. The structure of a data
 item may contain zero, one, or more nested data items. The term
 is used both for the data item in representation format and for
 the abstract idea that can be derived from that by a decoder; the
 former can be addressed specifically by using the term "encoded
 data item".

 Decoder: A process that decodes a well-formed encoded CBOR data item
 and makes it available to an application. Formally speaking, a
 decoder contains a parser to break up the input using the syntax
 rules of CBOR, as well as a semantic processor to prepare the data
 in a form suitable to the application.

 Encoder: A process that generates the (well-formed) representation
 format of a CBOR data item from application information.

 Data Stream: A sequence of zero or more data items, not further
 assembled into a larger containing data item (see [RFC8742] for
 one application). The independent data items that make up a data
 stream are sometimes also referred to as "top-level data items".

 Well-formed: A data item that follows the syntactic structure of
 CBOR. A well-formed data item uses the initial bytes and the byte
 strings and/or data items that are implied by their values as
 defined in CBOR and does not include following extraneous data.
 CBOR decoders by definition only return contents from well-formed
 data items.

 Valid: A data item that is well-formed and also follows the semantic
 restrictions that apply to CBOR data items (Section 5.3).

 Expected: Besides its normal English meaning, the term "expected" is
 used to describe requirements beyond CBOR validity that an

 application has on its input data. Well-formed (processable at
 all), valid (checked by a validity-checking generic decoder), and
 expected (checked by the application) form a hierarchy of layers
 of acceptability.

 Stream decoder: A process that decodes a data stream and makes each
 of the data items in the sequence available to an application as
 they are received.

 Terms and concepts for floating-point values such as Infinity, NaN
 (not a number), negative zero, and subnormal are defined in
 [IEEE754].

 Where bit arithmetic or data types are explained, this document uses
 the notation familiar from the programming language C [C], except
 that ".." denotes a range that includes both ends given, and
 superscript notation denotes exponentiation. For example, 2 to the
 power of 64 is notated: 2^(64). In the plain-text version of this
 specification, superscript notation is not available and therefore is
 rendered by a surrogate notation. That notation is not optimized for
 this RFC; it is unfortunately ambiguous with C’s exclusive-or (which
 is only used in the appendices, which in turn do not use
 exponentiation) and requires circumspection from the reader of the
 plain-text version.

 Examples and pseudocode assume that signed integers use two’s
 complement representation and that right shifts of signed integers
 perform sign extension; these assumptions are also specified in
 Sections 6.8.1 (basic.fundamental) and 7.6.7 (expr.shift) of the 2020
 version of C++ (currently available as a final draft, [Cplusplus20]).

 Similar to the "0x" notation for hexadecimal numbers, numbers in
 binary notation are prefixed with "0b". Underscores can be added to
 a number solely for readability, so 0b00100001 (0x21) might be
 written 0b001_00001 to emphasize the desired interpretation of the
 bits in the byte; in this case, it is split into three bits and five
 bits. Encoded CBOR data items are sometimes given in the "0x" or
 "0b" notation; these values are first interpreted as numbers as in C
 and are then interpreted as byte strings in network byte order,
 including any leading zero bytes expressed in the notation.

 Words may be _italicized_ for emphasis; in the plain text form of
 this specification, this is indicated by surrounding words with
 underscore characters. Verbatim text (e.g., names from a programming
 language) may be set in "monospace" type; in plain text, this is
 approximated somewhat ambiguously by surrounding the text in double
 quotes (which also retain their usual meaning).

2. CBOR Data Models

 CBOR is explicit about its generic data model, which defines the set
 of all data items that can be represented in CBOR. Its basic generic
 data model is extensible by the registration of "simple values" and
 tags. Applications can then create a subset of the resulting
 extended generic data model to build their specific data models.

 Within environments that can represent the data items in the generic
 data model, generic CBOR encoders and decoders can be implemented
 (which usually involves defining additional implementation data types
 for those data items that do not already have a natural
 representation in the environment). The ability to provide generic
 encoders and decoders is an explicit design goal of CBOR; however,
 many applications will provide their own application-specific
 encoders and/or decoders.

 In the basic (unextended) generic data model defined in Section 3, a
 data item is one of the following:

 * an integer in the range -2^(64)..2^(64)-1 inclusive

 * a simple value, identified by a number between 0 and 255, but

 distinct from that number itself

 * a floating-point value, distinct from an integer, out of the set
 representable by IEEE 754 binary64 (including non-finites)
 [IEEE754]

 * a sequence of zero or more bytes ("byte string")

 * a sequence of zero or more Unicode code points ("text string")

 * a sequence of zero or more data items ("array")

 * a mapping (mathematical function) from zero or more data items
 ("keys") each to a data item ("values"), ("map")

 * a tagged data item ("tag"), comprising a tag number (an integer in
 the range 0..2^(64)-1) and the tag content (a data item)

 Note that integer and floating-point values are distinct in this
 model, even if they have the same numeric value.

 Also note that serialization variants are not visible at the generic
 data model level. This deliberate absence of visibility includes the
 number of bytes of the encoded floating-point value. It also
 includes the choice of encoding for an "argument" (see Section 3)
 such as the encoding for an integer, the encoding for the length of a
 text or byte string, the encoding for the number of elements in an
 array or pairs in a map, or the encoding for a tag number.

2.1. Extended Generic Data Models

 This basic generic data model has been extended in this document by
 the registration of a number of simple values and tag numbers, such
 as:

 * "false", "true", "null", and "undefined" (simple values identified
 by 20..23, Section 3.3)

 * integer and floating-point values with a larger range and
 precision than the above (tag numbers 2 to 5, Section 3.4)

 * application data types such as a point in time or date/time string
 defined in RFC 3339 (tag numbers 1 and 0, Section 3.4)

 Additional elements of the extended generic data model can be (and
 have been) defined via the IANA registries created for CBOR. Even if
 such an extension is unknown to a generic encoder or decoder, data
 items using that extension can be passed to or from the application
 by representing them at the application interface within the basic
 generic data model, i.e., as generic simple values or generic tags.

 In other words, the basic generic data model is stable as defined in
 this document, while the extended generic data model expands by the
 registration of new simple values or tag numbers, but never shrinks.

 While there is a strong expectation that generic encoders and
 decoders can represent "false", "true", and "null" ("undefined" is
 intentionally omitted) in the form appropriate for their programming
 environment, the implementation of the data model extensions created
 by tags is truly optional and a matter of implementation quality.

2.2. Specific Data Models

 The specific data model for a CBOR-based protocol usually takes a
 subset of the extended generic data model and assigns application
 semantics to the data items within this subset and its components.
 When documenting such specific data models and specifying the types
 of data items, it is preferable to identify the types by their
 generic data model names ("negative integer", "array") instead of
 referring to aspects of their CBOR representation ("major type 1",
 "major type 4").

 Specific data models can also specify value equivalency (including
 values of different types) for the purposes of map keys and encoder
 freedom. For example, in the generic data model, a valid map MAY
 have both "0" and "0.0" as keys, and an encoder MUST NOT encode "0.0"
 as an integer (major type 0, Section 3.1). However, if a specific
 data model declares that floating-point and integer representations
 of integral values are equivalent, using both map keys "0" and "0.0"
 in a single map would be considered duplicates, even while encoded as
 different major types, and so invalid; and an encoder could encode
 integral-valued floats as integers or vice versa, perhaps to save
 encoded bytes.

3. Specification of the CBOR Encoding

 A CBOR data item (Section 2) is encoded to or decoded from a byte
 string carrying a well-formed encoded data item as described in this
 section. The encoding is summarized in Table 7 in Appendix B,
 indexed by the initial byte. An encoder MUST produce only well-
 formed encoded data items. A decoder MUST NOT return a decoded data
 item when it encounters input that is not a well-formed encoded CBOR
 data item (this does not detract from the usefulness of diagnostic
 and recovery tools that might make available some information from a
 damaged encoded CBOR data item).

 The initial byte of each encoded data item contains both information
 about the major type (the high-order 3 bits, described in
 Section 3.1) and additional information (the low-order 5 bits). With
 a few exceptions, the additional information’s value describes how to
 load an unsigned integer "argument":

 Less than 24: The argument’s value is the value of the additional
 information.

 24, 25, 26, or 27: The argument’s value is held in the following 1,
 2, 4, or 8 bytes, respectively, in network byte order. For major
 type 7 and additional information value 25, 26, 27, these bytes
 are not used as an integer argument, but as a floating-point value
 (see Section 3.3).

 28, 29, 30: These values are reserved for future additions to the
 CBOR format. In the present version of CBOR, the encoded item is
 not well-formed.

 31: No argument value is derived. If the major type is 0, 1, or 6,
 the encoded item is not well-formed. For major types 2 to 5, the
 item’s length is indefinite, and for major type 7, the byte does
 not constitute a data item at all but terminates an indefinite-
 length item; all are described in Section 3.2.

 The initial byte and any additional bytes consumed to construct the
 argument are collectively referred to as the _head_ of the data item.

 The meaning of this argument depends on the major type. For example,
 in major type 0, the argument is the value of the data item itself
 (and in major type 1, the value of the data item is computed from the
 argument); in major type 2 and 3, it gives the length of the string
 data in bytes that follow; and in major types 4 and 5, it is used to
 determine the number of data items enclosed.

 If the encoded sequence of bytes ends before the end of a data item,
 that item is not well-formed. If the encoded sequence of bytes still
 has bytes remaining after the outermost encoded item is decoded, that
 encoding is not a single well-formed CBOR item. Depending on the
 application, the decoder may either treat the encoding as not well-
 formed or just identify the start of the remaining bytes to the
 application.

 A CBOR decoder implementation can be based on a jump table with all
 256 defined values for the initial byte (Table 7). A decoder in a
 constrained implementation can instead use the structure of the

 initial byte and following bytes for more compact code (see
 Appendix C for a rough impression of how this could look).

3.1. Major Types

 The following lists the major types and the additional information
 and other bytes associated with the type.

 Major type 0:
 An unsigned integer in the range 0..2^(64)-1 inclusive. The value
 of the encoded item is the argument itself. For example, the
 integer 10 is denoted as the one byte 0b000_01010 (major type 0,
 additional information 10). The integer 500 would be 0b000_11001
 (major type 0, additional information 25) followed by the two
 bytes 0x01f4, which is 500 in decimal.

 Major type 1:
 A negative integer in the range -2^(64)..-1 inclusive. The value
 of the item is -1 minus the argument. For example, the integer
 -500 would be 0b001_11001 (major type 1, additional information
 25) followed by the two bytes 0x01f3, which is 499 in decimal.

 Major type 2:
 A byte string. The number of bytes in the string is equal to the
 argument. For example, a byte string whose length is 5 would have
 an initial byte of 0b010_00101 (major type 2, additional
 information 5 for the length), followed by 5 bytes of binary
 content. A byte string whose length is 500 would have 3 initial
 bytes of 0b010_11001 (major type 2, additional information 25 to
 indicate a two-byte length) followed by the two bytes 0x01f4 for a
 length of 500, followed by 500 bytes of binary content.

 Major type 3:
 A text string (Section 2) encoded as UTF-8 [RFC3629]. The number
 of bytes in the string is equal to the argument. A string
 containing an invalid UTF-8 sequence is well-formed but invalid
 (Section 1.2). This type is provided for systems that need to
 interpret or display human-readable text, and allows the
 differentiation between unstructured bytes and text that has a
 specified repertoire (that of Unicode) and encoding (UTF-8). In
 contrast to formats such as JSON, the Unicode characters in this
 type are never escaped. Thus, a newline character (U+000A) is
 always represented in a string as the byte 0x0a, and never as the
 bytes 0x5c6e (the characters "\" and "n") nor as 0x5c7530303061
 (the characters "\", "u", "0", "0", "0", and "a").

 Major type 4:
 An array of data items. In other formats, arrays are also called
 lists, sequences, or tuples (a "CBOR sequence" is something
 slightly different, though [RFC8742]). The argument is the number
 of data items in the array. Items in an array do not need to all
 be of the same type. For example, an array that contains 10 items
 of any type would have an initial byte of 0b100_01010 (major type
 4, additional information 10 for the length) followed by the 10
 remaining items.

 Major type 5:
 A map of pairs of data items. Maps are also called tables,
 dictionaries, hashes, or objects (in JSON). A map is comprised of
 pairs of data items, each pair consisting of a key that is
 immediately followed by a value. The argument is the number of
 pairs of data items in the map. For example, a map that
 contains 9 pairs would have an initial byte of 0b101_01001 (major
 type 5, additional information 9 for the number of pairs) followed
 by the 18 remaining items. The first item is the first key, the
 second item is the first value, the third item is the second key,
 and so on. Because items in a map come in pairs, their total
 number is always even: a map that contains an odd number of items
 (no value data present after the last key data item) is not well-
 formed. A map that has duplicate keys may be well-formed, but it
 is not valid, and thus it causes indeterminate decoding; see also

 Section 5.6.

 Major type 6:
 A tagged data item ("tag") whose tag number, an integer in the
 range 0..2^(64)-1 inclusive, is the argument and whose enclosed
 data item (_tag content_) is the single encoded data item that
 follows the head. See Section 3.4.

 Major type 7:
 Floating-point numbers and simple values, as well as the "break"
 stop code. See Section 3.3.

 These eight major types lead to a simple table showing which of the
 256 possible values for the initial byte of a data item are used
 (Table 7).

 In major types 6 and 7, many of the possible values are reserved for
 future specification. See Section 9 for more information on these
 values.

 Table 1 summarizes the major types defined by CBOR, ignoring
 Section 3.2 for now. The number N in this table stands for the
 argument.

 +============+=======================+=========================+
 | Major Type | Meaning | Content |
 +============+=======================+=========================+
 | 0 | unsigned integer N | - |
 +------------+-----------------------+-------------------------+
 | 1 | negative integer -1-N | - |
 +------------+-----------------------+-------------------------+
 | 2 | byte string | N bytes |
 +------------+-----------------------+-------------------------+
 | 3 | text string | N bytes (UTF-8 text) |
 +------------+-----------------------+-------------------------+
 | 4 | array | N data items (elements) |
 +------------+-----------------------+-------------------------+
 | 5 | map | 2N data items (key/ |
 | | | value pairs) |
 +------------+-----------------------+-------------------------+
 | 6 | tag of number N | 1 data item |
 +------------+-----------------------+-------------------------+
 | 7 | simple/float | - |
 +------------+-----------------------+-------------------------+

 Table 1: Overview over the Definite-Length Use of CBOR Major
 Types (N = Argument)

3.2. Indefinite Lengths for Some Major Types

 Four CBOR items (arrays, maps, byte strings, and text strings) can be
 encoded with an indefinite length using additional information value
 31. This is useful if the encoding of the item needs to begin before
 the number of items inside the array or map, or the total length of
 the string, is known. (The ability to start sending a data item
 before all of it is known is often referred to as "streaming" within
 that data item.)

 Indefinite-length arrays and maps are dealt with differently than
 indefinite-length strings (byte strings and text strings).

3.2.1. The "break" Stop Code

 The "break" stop code is encoded with major type 7 and additional
 information value 31 (0b111_11111). It is not itself a data item: it
 is just a syntactic feature to close an indefinite-length item.

 If the "break" stop code appears where a data item is expected, other
 than directly inside an indefinite-length string, array, or map --
 for example, directly inside a definite-length array or map -- the
 enclosing item is not well-formed.

3.2.2. Indefinite-Length Arrays and Maps

 Indefinite-length arrays and maps are represented using their major
 type with the additional information value of 31, followed by an
 arbitrary-length sequence of zero or more items for an array or key/
 value pairs for a map, followed by the "break" stop code
 (Section 3.2.1). In other words, indefinite-length arrays and maps
 look identical to other arrays and maps except for beginning with the
 additional information value of 31 and ending with the "break" stop
 code.

 If the "break" stop code appears after a key in a map, in place of
 that key’s value, the map is not well-formed.

 There is no restriction against nesting indefinite-length array or
 map items. A "break" only terminates a single item, so nested
 indefinite-length items need exactly as many "break" stop codes as
 there are type bytes starting an indefinite-length item.

 For example, assume an encoder wants to represent the abstract array
 [1, [2, 3], [4, 5]]. The definite-length encoding would be
 0x8301820203820405:

 83 -- Array of length 3
 01 -- 1
 82 -- Array of length 2
 02 -- 2
 03 -- 3
 82 -- Array of length 2
 04 -- 4
 05 -- 5

 Indefinite-length encoding could be applied independently to each of
 the three arrays encoded in this data item, as required, leading to
 representations such as:

 0x9f018202039f0405ffff
 9F -- Start indefinite-length array
 01 -- 1
 82 -- Array of length 2
 02 -- 2
 03 -- 3
 9F -- Start indefinite-length array
 04 -- 4
 05 -- 5
 FF -- "break" (inner array)
 FF -- "break" (outer array)

 0x9f01820203820405ff
 9F -- Start indefinite-length array
 01 -- 1
 82 -- Array of length 2
 02 -- 2
 03 -- 3
 82 -- Array of length 2
 04 -- 4
 05 -- 5
 FF -- "break"

 0x83018202039f0405ff
 83 -- Array of length 3
 01 -- 1
 82 -- Array of length 2
 02 -- 2
 03 -- 3
 9F -- Start indefinite-length array
 04 -- 4
 05 -- 5
 FF -- "break"

 0x83019f0203ff820405
 83 -- Array of length 3
 01 -- 1
 9F -- Start indefinite-length array
 02 -- 2
 03 -- 3
 FF -- "break"
 82 -- Array of length 2
 04 -- 4
 05 -- 5

 An example of an indefinite-length map (that happens to have two key/
 value pairs) might be:

 0xbf6346756ef563416d7421ff
 BF -- Start indefinite-length map
 63 -- First key, UTF-8 string length 3
 46756e -- "Fun"
 F5 -- First value, true
 63 -- Second key, UTF-8 string length 3
 416d74 -- "Amt"
 21 -- Second value, -2
 FF -- "break"

3.2.3. Indefinite-Length Byte Strings and Text Strings

 Indefinite-length strings are represented by a byte containing the
 major type for byte string or text string with an additional
 information value of 31, followed by a series of zero or more strings
 of the specified type ("chunks") that have definite lengths, and
 finished by the "break" stop code (Section 3.2.1). The data item
 represented by the indefinite-length string is the concatenation of
 the chunks. If no chunks are present, the data item is an empty
 string of the specified type. Zero-length chunks, while not
 particularly useful, are permitted.

 If any item between the indefinite-length string indicator
 (0b010_11111 or 0b011_11111) and the "break" stop code is not a
 definite-length string item of the same major type, the string is not
 well-formed.

 The design does not allow nesting indefinite-length strings as chunks
 into indefinite-length strings. If it were allowed, it would require
 decoder implementations to keep a stack, or at least a count, of
 nesting levels. It is unnecessary on the encoder side because the
 inner indefinite-length string would consist of chunks, and these
 could instead be put directly into the outer indefinite-length
 string.

 If any definite-length text string inside an indefinite-length text
 string is invalid, the indefinite-length text string is invalid.
 Note that this implies that the UTF-8 bytes of a single Unicode code
 point (scalar value) cannot be spread between chunks: a new chunk of
 a text string can only be started at a code point boundary.

 For example, assume an encoded data item consisting of the bytes:

 0b010_11111 0b010_00100 0xaabbccdd 0b010_00011 0xeeff99 0b111_11111
 5F -- Start indefinite-length byte string
 44 -- Byte string of length 4
 aabbccdd -- Bytes content
 43 -- Byte string of length 3
 eeff99 -- Bytes content
 FF -- "break"

 After decoding, this results in a single byte string with seven
 bytes: 0xaabbccddeeff99.

3.2.4. Summary of Indefinite-Length Use of Major Types

 Table 2 summarizes the major types defined by CBOR as used for

 indefinite-length encoding (with additional information set to 31).

 +============+===================+==================================+
 | Major Type | Meaning | Enclosed up to "break" Stop Code |
 +============+===================+==================================+
 | 0 | (not well- | - |
 | | formed) | |
 +------------+-------------------+----------------------------------+
 | 1 | (not well- | - |
 | | formed) | |
 +------------+-------------------+----------------------------------+
 | 2 | byte string | definite-length byte strings |
 +------------+-------------------+----------------------------------+
 | 3 | text string | definite-length text strings |
 +------------+-------------------+----------------------------------+
 | 4 | array | data items (elements) |
 +------------+-------------------+----------------------------------+
 | 5 | map | data items (key/value pairs) |
 +------------+-------------------+----------------------------------+
 | 6 | (not well- | - |
 | | formed) | |
 +------------+-------------------+----------------------------------+
 | 7 | "break" stop | - |
 | | code | |
 +------------+-------------------+----------------------------------+

 Table 2: Overview of the Indefinite-Length Use of CBOR Major
 Types (Additional Information = 31)

3.3. Floating-Point Numbers and Values with No Content

 Major type 7 is for two types of data: floating-point numbers and
 "simple values" that do not need any content. Each value of the
 5-bit additional information in the initial byte has its own separate
 meaning, as defined in Table 3. Like the major types for integers,
 items of this major type do not carry content data; all the
 information is in the initial bytes (the head).

 +=============+===+
 | 5-Bit Value | Semantics |
 +=============+===+
 | 0..23 | Simple value (value 0..23) |
 +-------------+---+
 | 24 | Simple value (value 32..255 in following byte) |
 +-------------+---+
 | 25 | IEEE 754 Half-Precision Float (16 bits follow) |
 +-------------+---+
 | 26 | IEEE 754 Single-Precision Float (32 bits follow) |
 +-------------+---+
 | 27 | IEEE 754 Double-Precision Float (64 bits follow) |
 +-------------+---+
 | 28-30 | Reserved, not well-formed in the present document |
 +-------------+---+
 | 31 | "break" stop code for indefinite-length items |
 | | (Section 3.2.1) |
 +-------------+---+

 Table 3: Values for Additional Information in Major Type 7

 As with all other major types, the 5-bit value 24 signifies a single-
 byte extension: it is followed by an additional byte to represent the
 simple value. (To minimize confusion, only the values 32 to 255 are
 used.) This maintains the structure of the initial bytes: as for the
 other major types, the length of these always depends on the
 additional information in the first byte. Table 4 lists the numeric
 values assigned and available for simple values.

 +=========+==============+
 | Value | Semantics |
 +=========+==============+
 | 0..19 | (unassigned) |

 +---------+--------------+
 | 20 | false |
 +---------+--------------+
 | 21 | true |
 +---------+--------------+
 | 22 | null |
 +---------+--------------+
 | 23 | undefined |
 +---------+--------------+
 | 24..31 | (reserved) |
 +---------+--------------+
 | 32..255 | (unassigned) |
 +---------+--------------+

 Table 4: Simple Values

 An encoder MUST NOT issue two-byte sequences that start with 0xf8
 (major type 7, additional information 24) and continue with a byte
 less than 0x20 (32 decimal). Such sequences are not well-formed.
 (This implies that an encoder cannot encode "false", "true", "null",
 or "undefined" in two-byte sequences and that only the one-byte
 variants of these are well-formed; more generally speaking, each
 simple value only has a single representation variant).

 The 5-bit values of 25, 26, and 27 are for 16-bit, 32-bit, and 64-bit
 IEEE 754 binary floating-point values [IEEE754]. These floating-
 point values are encoded in the additional bytes of the appropriate
 size. (See Appendix D for some information about 16-bit floating-
 point numbers.)

3.4. Tagging of Items

 In CBOR, a data item can be enclosed by a tag to give it some
 additional semantics, as uniquely identified by a _tag number_. The
 tag is major type 6, its argument (Section 3) indicates the tag
 number, and it contains a single enclosed data item, the _tag
 content_. (If a tag requires further structure to its content, this
 structure is provided by the enclosed data item.) We use the term
 tag for the entire data item consisting of both a tag number and
 the tag content: the tag content is the data item that is being
 tagged.

 For example, assume that a byte string of length 12 is marked with a
 tag of number 2 to indicate it is an unsigned _bignum_
 (Section 3.4.3). The encoded data item would start with a byte
 0b110_00010 (major type 6, additional information 2 for the tag
 number) followed by the encoded tag content: 0b010_01100 (major type
 2, additional information 12 for the length) followed by the 12 bytes
 of the bignum.

 In the extended generic data model, a tag number’s definition
 describes the additional semantics conveyed with the tag number.
 These semantics may include equivalence of some tagged data items
 with other data items, including some that can be represented in the
 basic generic data model. For instance, 0xc24101, a bignum the tag
 content of which is the byte string with the single byte 0x01, is
 equivalent to an integer 1, which could also be encoded as 0x01,
 0x1801, or 0x190001. The tag definition may specify a preferred
 serialization (Section 4.1) that is recommended for generic encoders;
 this may prefer basic generic data model representations over ones
 that employ a tag.

 The tag definition usually defines which nested data items are valid
 for such tags. Tag definitions may restrict their content to a very
 specific syntactic structure, as the tags defined in this document
 do, or they may define their content more semantically. An example
 for the latter is how tags 40 and 1040 accept multiple ways to
 represent arrays [RFC8746].

 As a matter of convention, many tags do not accept "null" or
 "undefined" values as tag content; instead, the expectation is that a

 "null" or "undefined" value can be used in place of the entire tag;
 Section 3.4.2 provides some further considerations for one specific
 tag about the handling of this convention in application protocols
 and in mapping to platform types.

 Decoders do not need to understand tags of every tag number, and tags
 may be of little value in applications where the implementation
 creating a particular CBOR data item and the implementation decoding
 that stream know the semantic meaning of each item in the data flow.
 The primary purpose of tags in this specification is to define common
 data types such as dates. A secondary purpose is to provide
 conversion hints when it is foreseen that the CBOR data item needs to
 be translated into a different format, requiring hints about the
 content of items. Understanding the semantics of tags is optional
 for a decoder; it can simply present both the tag number and the tag
 content to the application, without interpreting the additional
 semantics of the tag.

 A tag applies semantics to the data item it encloses. Tags can nest:
 if tag A encloses tag B, which encloses data item C, tag A applies to
 the result of applying tag B on data item C.

 IANA maintains a registry of tag numbers as described in Section 9.2.
 Table 5 provides a list of tag numbers that were defined in [RFC7049]
 with definitions in the rest of this section. (Tag number 35 was
 also defined in [RFC7049]; a discussion of this tag number follows in
 Section 3.4.5.3.) Note that many other tag numbers have been defined
 since the publication of [RFC7049]; see the registry described at
 Section 9.2 for the complete list.

 +=======+=============+==================================+
 | Tag | Data Item | Semantics |
 +=======+=============+==================================+
 | 0 | text string | Standard date/time string; see |
 | | | Section 3.4.1 |
 +-------+-------------+----------------------------------+
 | 1 | integer or | Epoch-based date/time; see |
 | | float | Section 3.4.2 |
 +-------+-------------+----------------------------------+
 | 2 | byte string | Unsigned bignum; see |
 | | | Section 3.4.3 |
 +-------+-------------+----------------------------------+
 | 3 | byte string | Negative bignum; see |
 | | | Section 3.4.3 |
 +-------+-------------+----------------------------------+
 | 4 | array | Decimal fraction; see |
 | | | Section 3.4.4 |
 +-------+-------------+----------------------------------+
 | 5 | array | Bigfloat; see Section 3.4.4 |
 +-------+-------------+----------------------------------+
 | 21 | (any) | Expected conversion to base64url |
 | | | encoding; see Section 3.4.5.2 |
 +-------+-------------+----------------------------------+
 | 22 | (any) | Expected conversion to base64 |
 | | | encoding; see Section 3.4.5.2 |
 +-------+-------------+----------------------------------+
 | 23 | (any) | Expected conversion to base16 |
 | | | encoding; see Section 3.4.5.2 |
 +-------+-------------+----------------------------------+
 | 24 | byte string | Encoded CBOR data item; see |
 | | | Section 3.4.5.1 |
 +-------+-------------+----------------------------------+
 | 32 | text string | URI; see Section 3.4.5.3 |
 +-------+-------------+----------------------------------+
 | 33 | text string | base64url; see Section 3.4.5.3 |
 +-------+-------------+----------------------------------+
 | 34 | text string | base64; see Section 3.4.5.3 |
 +-------+-------------+----------------------------------+
 | 36 | text string | MIME message; see |
 | | | Section 3.4.5.3 |
 +-------+-------------+----------------------------------+

 | 55799 | (any) | Self-described CBOR; see |
 | | | Section 3.4.6 |
 +-------+-------------+----------------------------------+

 Table 5: Tag Numbers Defined in RFC 7049

 Conceptually, tags are interpreted in the generic data model, not at
 (de-)serialization time. A small number of tags (at this time, tag
 number 25 and tag number 29 [IANA.cbor-tags]) have been registered
 with semantics that may require processing at (de-)serialization
 time: the decoder needs to be aware of, and the encoder needs to be
 in control of, the exact sequence in which data items are encoded
 into the CBOR data item. This means these tags cannot be implemented
 on top of an arbitrary generic CBOR encoder/decoder (which might not
 reflect the serialization order for entries in a map at the data
 model level and vice versa); their implementation therefore typically
 needs to be integrated into the generic encoder/decoder. The
 definition of new tags with this property is NOT RECOMMENDED.

 IANA allocated tag numbers 65535, 4294967295, and
 18446744073709551615 (binary all-ones in 16-bit, 32-bit, and 64-bit).
 These can be used as a convenience for implementers who want a
 single-integer data structure to indicate either the presence of a
 specific tag or absence of a tag. That allocation is described in
 Section 10 of [CBOR-TAGS]. These tags are not intended to occur in
 actual CBOR data items; implementations MAY flag such an occurrence
 as an error.

 Protocols can extend the generic data model (Section 2) with data
 items representing points in time by using tag numbers 0 and 1, with
 arbitrarily sized integers by using tag numbers 2 and 3, and with
 floating-point values of arbitrary size and precision by using tag
 numbers 4 and 5.

3.4.1. Standard Date/Time String

 Tag number 0 contains a text string in the standard format described
 by the "date-time" production in [RFC3339], as refined by Section 3.3
 of [RFC4287], representing the point in time described there. A
 nested item of another type or a text string that doesn’t match the
 format described in [RFC4287] is invalid.

3.4.2. Epoch-Based Date/Time

 Tag number 1 contains a numerical value counting the number of
 seconds from 1970-01-01T00:00Z in UTC time to the represented point
 in civil time.

 The tag content MUST be an unsigned or negative integer (major types
 0 and 1) or a floating-point number (major type 7 with additional
 information 25, 26, or 27). Other contained types are invalid.

 Nonnegative values (major type 0 and nonnegative floating-point
 numbers) stand for time values on or after 1970-01-01T00:00Z UTC and
 are interpreted according to POSIX [TIME_T]. (POSIX time is also
 known as "UNIX Epoch time".) Leap seconds are handled specially by
 POSIX time, and this results in a 1-second discontinuity several
 times per decade. Note that applications that require the expression
 of times beyond early 2106 cannot leave out support of 64-bit
 integers for the tag content.

 Negative values (major type 1 and negative floating-point numbers)
 are interpreted as determined by the application requirements as
 there is no universal standard for UTC count-of-seconds time before
 1970-01-01T00:00Z (this is particularly true for points in time that
 precede discontinuities in national calendars). The same applies to
 non-finite values.

 To indicate fractional seconds, floating-point values can be used
 within tag number 1 instead of integer values. Note that this
 generally requires binary64 support, as binary16 and binary32 provide

 nonzero fractions of seconds only for a short period of time around
 early 1970. An application that requires tag number 1 support may
 restrict the tag content to be an integer (or a floating-point value)
 only.

 Note that platform types for date/time may include "null" or
 "undefined" values, which may also be desirable at an application
 protocol level. While emitting tag number 1 values with non-finite
 tag content values (e.g., with NaN for undefined date/time values or
 with Infinity for an expiry date that is not set) may seem an obvious
 way to handle this, using untagged "null" or "undefined" avoids the
 use of non-finites and results in a shorter encoding. Application
 protocol designers are encouraged to consider these cases and include
 clear guidelines for handling them.

3.4.3. Bignums

 Protocols using tag numbers 2 and 3 extend the generic data model
 (Section 2) with "bignums" representing arbitrarily sized integers.
 In the basic generic data model, bignum values are not equal to
 integers from the same model, but the extended generic data model
 created by this tag definition defines equivalence based on numeric
 value, and preferred serialization (Section 4.1) never makes use of
 bignums that also can be expressed as basic integers (see below).

 Bignums are encoded as a byte string data item, which is interpreted
 as an unsigned integer n in network byte order. Contained items of
 other types are invalid. For tag number 2, the value of the bignum
 is n. For tag number 3, the value of the bignum is -1 - n. The
 preferred serialization of the byte string is to leave out any
 leading zeroes (note that this means the preferred serialization for
 n = 0 is the empty byte string, but see below). Decoders that
 understand these tags MUST be able to decode bignums that do have
 leading zeroes. The preferred serialization of an integer that can
 be represented using major type 0 or 1 is to encode it this way
 instead of as a bignum (which means that the empty string never
 occurs in a bignum when using preferred serialization). Note that
 this means the non-preferred choice of a bignum representation
 instead of a basic integer for encoding a number is not intended to
 have application semantics (just as the choice of a longer basic
 integer representation than needed, such as 0x1800 for 0x00, does
 not).

 For example, the number 18446744073709551616 (2^(64)) is represented
 as 0b110_00010 (major type 6, tag number 2), followed by 0b010_01001
 (major type 2, length 9), followed by 0x010000000000000000 (one byte
 0x01 and eight bytes 0x00). In hexadecimal:

 C2 -- Tag 2
 49 -- Byte string of length 9
 010000000000000000 -- Bytes content

3.4.4. Decimal Fractions and Bigfloats

 Protocols using tag number 4 extend the generic data model with data
 items representing arbitrary-length decimal fractions of the form
 m*(10^(e)). Protocols using tag number 5 extend the generic data
 model with data items representing arbitrary-length binary fractions
 of the form m*(2^(e)). As with bignums, values of different types
 are not equal in the generic data model.

 Decimal fractions combine an integer mantissa with a base-10 scaling
 factor. They are most useful if an application needs the exact
 representation of a decimal fraction such as 1.1 because there is no
 exact representation for many decimal fractions in binary floating-
 point representations.

 "Bigfloats" combine an integer mantissa with a base-2 scaling factor.
 They are binary floating-point values that can exceed the range or
 the precision of the three IEEE 754 formats supported by CBOR
 (Section 3.3). Bigfloats may also be used by constrained

 applications that need some basic binary floating-point capability
 without the need for supporting IEEE 754.

 A decimal fraction or a bigfloat is represented as a tagged array
 that contains exactly two integer numbers: an exponent e and a
 mantissa m. Decimal fractions (tag number 4) use base-10 exponents;
 the value of a decimal fraction data item is m*(10^(e)). Bigfloats
 (tag number 5) use base-2 exponents; the value of a bigfloat data
 item is m*(2^(e)). The exponent e MUST be represented in an integer
 of major type 0 or 1, while the mantissa can also be a bignum
 (Section 3.4.3). Contained items with other structures are invalid.

 An example of a decimal fraction is the representation of the number
 273.15 as 0b110_00100 (major type 6 for tag, additional information 4
 for the tag number), followed by 0b100_00010 (major type 4 for the
 array, additional information 2 for the length of the array),
 followed by 0b001_00001 (major type 1 for the first integer,
 additional information 1 for the value of -2), followed by
 0b000_11001 (major type 0 for the second integer, additional
 information 25 for a two-byte value), followed by 0b0110101010110011
 (27315 in two bytes). In hexadecimal:

 C4 -- Tag 4
 82 -- Array of length 2
 21 -- -2
 19 6ab3 -- 27315

 An example of a bigfloat is the representation of the number 1.5 as
 0b110_00101 (major type 6 for tag, additional information 5 for the
 tag number), followed by 0b100_00010 (major type 4 for the array,
 additional information 2 for the length of the array), followed by
 0b001_00000 (major type 1 for the first integer, additional
 information 0 for the value of -1), followed by 0b000_00011 (major
 type 0 for the second integer, additional information 3 for the value
 of 3). In hexadecimal:

 C5 -- Tag 5
 82 -- Array of length 2
 20 -- -1
 03 -- 3

 Decimal fractions and bigfloats provide no representation of
 Infinity, -Infinity, or NaN; if these are needed in place of a
 decimal fraction or bigfloat, the IEEE 754 half-precision
 representations from Section 3.3 can be used.

3.4.5. Content Hints

 The tags in this section are for content hints that might be used by
 generic CBOR processors. These content hints do not extend the
 generic data model.

3.4.5.1. Encoded CBOR Data Item

 Sometimes it is beneficial to carry an embedded CBOR data item that
 is not meant to be decoded immediately at the time the enclosing data
 item is being decoded. Tag number 24 (CBOR data item) can be used to
 tag the embedded byte string as a single data item encoded in CBOR
 format. Contained items that aren’t byte strings are invalid. A
 contained byte string is valid if it encodes a well-formed CBOR data
 item; validity checking of the decoded CBOR item is not required for
 tag validity (but could be offered by a generic decoder as a special
 option).

3.4.5.2. Expected Later Encoding for CBOR-to-JSON Converters

 Tag numbers 21 to 23 indicate that a byte string might require a
 specific encoding when interoperating with a text-based
 representation. These tags are useful when an encoder knows that the
 byte string data it is writing is likely to be later converted to a
 particular JSON-based usage. That usage specifies that some strings

 are encoded as base64, base64url, and so on. The encoder uses byte
 strings instead of doing the encoding itself to reduce the message
 size, to reduce the code size of the encoder, or both. The encoder
 does not know whether or not the converter will be generic, and
 therefore wants to say what it believes is the proper way to convert
 binary strings to JSON.

 The data item tagged can be a byte string or any other data item. In
 the latter case, the tag applies to all of the byte string data items
 contained in the data item, except for those contained in a nested
 data item tagged with an expected conversion.

 These three tag numbers suggest conversions to three of the base data
 encodings defined in [RFC4648]. Tag number 21 suggests conversion to
 base64url encoding (Section 5 of [RFC4648]) where padding is not used
 (see Section 3.2 of [RFC4648]); that is, all trailing equals signs
 ("=") are removed from the encoded string. Tag number 22 suggests
 conversion to classical base64 encoding (Section 4 of [RFC4648]) with
 padding as defined in RFC 4648. For both base64url and base64,
 padding bits are set to zero (see Section 3.5 of [RFC4648]), and the
 conversion to alternate encoding is performed on the contents of the
 byte string (that is, without adding any line breaks, whitespace, or
 other additional characters). Tag number 23 suggests conversion to
 base16 (hex) encoding with uppercase alphabetics (see Section 8 of
 [RFC4648]). Note that, for all three tag numbers, the encoding of
 the empty byte string is the empty text string.

3.4.5.3. Encoded Text

 Some text strings hold data that have formats widely used on the
 Internet, and sometimes those formats can be validated and presented
 to the application in appropriate form by the decoder. There are
 tags for some of these formats.

 * Tag number 32 is for URIs, as defined in [RFC3986]. If the text
 string doesn’t match the "URI-reference" production, the string is
 invalid.

 * Tag numbers 33 and 34 are for base64url- and base64-encoded text
 strings, respectively, as defined in [RFC4648]. If any of the
 following apply:

 - the encoded text string contains non-alphabet characters or
 only 1 alphabet character in the last block of 4 (where
 alphabet is defined by Section 5 of [RFC4648] for tag number 33
 and Section 4 of [RFC4648] for tag number 34), or

 - the padding bits in a 2- or 3-character block are not 0, or

 - the base64 encoding has the wrong number of padding characters,
 or

 - the base64url encoding has padding characters,

 the string is invalid.

 * Tag number 36 is for MIME messages (including all headers), as
 defined in [RFC2045]. A text string that isn’t a valid MIME
 message is invalid. (For this tag, validity checking may be
 particularly onerous for a generic decoder and might therefore not
 be offered. Note that many MIME messages are general binary data
 and therefore cannot be represented in a text string;
 [IANA.cbor-tags] lists a registration for tag number 257 that is
 similar to tag number 36 but uses a byte string as its tag
 content.)

 Note that tag numbers 33 and 34 differ from 21 and 22 in that the
 data is transported in base-encoded form for the former and in raw
 byte string form for the latter.

 [RFC7049] also defined a tag number 35 for regular expressions that

 are in Perl Compatible Regular Expressions (PCRE/PCRE2) form [PCRE]
 or in JavaScript regular expression syntax [ECMA262]. The state of
 the art in these regular expression specifications has since advanced
 and is continually advancing, so this specification does not attempt
 to update the references. Instead, this tag remains available (as
 registered in [RFC7049]) for applications that specify the particular
 regular expression variant they use out-of-band (possibly by limiting
 the usage to a defined common subset of both PCRE and ECMA262). As
 this specification clarifies tag validity beyond [RFC7049], we note
 that due to the open way the tag was defined in [RFC7049], any
 contained string value needs to be valid at the CBOR tag level (but
 then may not be "expected" at the application level).

3.4.6. Self-Described CBOR

 In many applications, it will be clear from the context that CBOR is
 being employed for encoding a data item. For instance, a specific
 protocol might specify the use of CBOR, or a media type is indicated
 that specifies its use. However, there may be applications where
 such context information is not available, such as when CBOR data is
 stored in a file that does not have disambiguating metadata. Here,
 it may help to have some distinguishing characteristics for the data
 itself.

 Tag number 55799 is defined for this purpose, specifically for use at
 the start of a stored encoded CBOR data item as specified by an
 application. It does not impart any special semantics on the data
 item that it encloses; that is, the semantics of the tag content
 enclosed in tag number 55799 is exactly identical to the semantics of
 the tag content itself.

 The serialization of this tag’s head is 0xd9d9f7, which does not
 appear to be in use as a distinguishing mark for any frequently used
 file types. In particular, 0xd9d9f7 is not a valid start of a
 Unicode text in any Unicode encoding if it is followed by a valid
 CBOR data item.

 For instance, a decoder might be able to decode both CBOR and JSON.
 Such a decoder would need to mechanically distinguish the two
 formats. An easy way for an encoder to help the decoder would be to
 tag the entire CBOR item with tag number 55799, the serialization of
 which will never be found at the beginning of a JSON text.

4. Serialization Considerations

4.1. Preferred Serialization

 For some values at the data model level, CBOR provides multiple
 serializations. For many applications, it is desirable that an
 encoder always chooses a preferred serialization (preferred
 encoding); however, the present specification does not put the burden
 of enforcing this preference on either the encoder or decoder.

 Some constrained decoders may be limited in their ability to decode
 non-preferred serializations: for example, if only integers below
 1_000_000_000 (one billion) are expected in an application, the
 decoder may leave out the code that would be needed to decode 64-bit
 arguments in integers. An encoder that always uses preferred
 serialization ("preferred encoder") interoperates with this decoder
 for the numbers that can occur in this application. Generally
 speaking, a preferred encoder is more universally interoperable (and
 also less wasteful) than one that, say, always uses 64-bit integers.

 Similarly, a constrained encoder may be limited in the variety of
 representation variants it supports such that it does not emit
 preferred serializations ("variant encoder"). For instance, a
 constrained encoder could be designed to always use the 32-bit
 variant for an integer that it encodes even if a short representation
 is available (assuming that there is no application need for integers
 that can only be represented with the 64-bit variant). A decoder
 that does not rely on receiving only preferred serializations

 ("variation-tolerant decoder") can therefore be said to be more
 universally interoperable (it might very well optimize for the case
 of receiving preferred serializations, though). Full implementations
 of CBOR decoders are by definition variation tolerant; the
 distinction is only relevant if a constrained implementation of a
 CBOR decoder meets a variant encoder.

 The preferred serialization always uses the shortest form of
 representing the argument (Section 3); it also uses the shortest
 floating-point encoding that preserves the value being encoded.

 The preferred serialization for a floating-point value is the
 shortest floating-point encoding that preserves its value, e.g.,
 0xf94580 for the number 5.5, and 0xfa45ad9c00 for the number 5555.5.
 For NaN values, a shorter encoding is preferred if zero-padding the
 shorter significand towards the right reconstitutes the original NaN
 value (for many applications, the single NaN encoding 0xf97e00 will
 suffice).

 Definite-length encoding is preferred whenever the length is known at
 the time the serialization of the item starts.

4.2. Deterministically Encoded CBOR

 Some protocols may want encoders to only emit CBOR in a particular
 deterministic format; those protocols might also have the decoders
 check that their input is in that deterministic format. Those
 protocols are free to define what they mean by a "deterministic
 format" and what encoders and decoders are expected to do. This
 section defines a set of restrictions that can serve as the base of
 such a deterministic format.

4.2.1. Core Deterministic Encoding Requirements

 A CBOR encoding satisfies the "core deterministic encoding
 requirements" if it satisfies the following restrictions:

 * Preferred serialization MUST be used. In particular, this means
 that arguments (see Section 3) for integers, lengths in major
 types 2 through 5, and tags MUST be as short as possible, for
 instance:

 - 0 to 23 and -1 to -24 MUST be expressed in the same byte as the
 major type;

 - 24 to 255 and -25 to -256 MUST be expressed only with an
 additional uint8_t;

 - 256 to 65535 and -257 to -65536 MUST be expressed only with an
 additional uint16_t;

 - 65536 to 4294967295 and -65537 to -4294967296 MUST be expressed
 only with an additional uint32_t.

 Floating-point values also MUST use the shortest form that
 preserves the value, e.g., 1.5 is encoded as 0xf93e00 (binary16)
 and 1000000.5 as 0xfa49742408 (binary32). (One implementation of
 this is to have all floats start as a 64-bit float, then do a test
 conversion to a 32-bit float; if the result is the same numeric
 value, use the shorter form and repeat the process with a test
 conversion to a 16-bit float. This also works to select 16-bit
 float for positive and negative Infinity as well.)

 * Indefinite-length items MUST NOT appear. They can be encoded as
 definite-length items instead.

 * The keys in every map MUST be sorted in the bytewise lexicographic
 order of their deterministic encodings. For example, the
 following keys are sorted correctly:

 1. 10, encoded as 0x0a.

 2. 100, encoded as 0x1864.

 3. -1, encoded as 0x20.

 4. "z", encoded as 0x617a.

 5. "aa", encoded as 0x626161.

 6. [100], encoded as 0x811864.

 7. [-1], encoded as 0x8120.

 8. false, encoded as 0xf4.

 | Implementation note: the self-delimiting nature of the CBOR
 | encoding means that there are no two well-formed CBOR encoded
 | data items where one is a prefix of the other. The bytewise
 | lexicographic comparison of deterministic encodings of
 | different map keys therefore always ends in a position where
 | the byte differs between the keys, before the end of a key is
 | reached.

4.2.2. Additional Deterministic Encoding Considerations

 CBOR tags present additional considerations for deterministic
 encoding. If a CBOR-based protocol were to provide the same
 semantics for the presence and absence of a specific tag (e.g., by
 allowing both tag 1 data items and raw numbers in a date/time
 position, treating the latter as if they were tagged), the
 deterministic format would not allow the presence of the tag, based
 on the "shortest form" principle. For example, a protocol might give
 encoders the choice of representing a URL as either a text string or,
 using Section 3.4.5.3, tag number 32 containing a text string. This
 protocol’s deterministic encoding needs either to require that the
 tag is present or to require that it is absent, not allow either one.

 In a protocol that does require tags in certain places to obtain
 specific semantics, the tag needs to appear in the deterministic
 format as well. Deterministic encoding considerations also apply to
 the content of tags.

 If a protocol includes a field that can express integers with an
 absolute value of 2^(64) or larger using tag numbers 2 or 3
 (Section 3.4.3), the protocol’s deterministic encoding needs to
 specify whether smaller integers are also expressed using these tags
 or using major types 0 and 1. Preferred serialization uses the
 latter choice, which is therefore recommended.

 Protocols that include floating-point values, whether represented
 using basic floating-point values (Section 3.3) or using tags (or
 both), may need to define extra requirements on their deterministic
 encodings, such as:

 * Although IEEE floating-point values can represent both positive
 and negative zero as distinct values, the application might not
 distinguish these and might decide to represent all zero values
 with a positive sign, disallowing negative zero. (The application
 may also want to restrict the precision of floating-point values
 in such a way that there is never a need to represent 64-bit -- or
 even 32-bit -- floating-point values.)

 * If a protocol includes a field that can express floating-point
 values, with a specific data model that declares integer and
 floating-point values to be interchangeable, the protocol’s
 deterministic encoding needs to specify whether, for example, the
 integer 1.0 is encoded as 0x01 (unsigned integer), 0xf93c00
 (binary16), 0xfa3f800000 (binary32), or 0xfb3ff0000000000000
 (binary64). Example rules for this are:

 1. Encode integral values that fit in 64 bits as values from

 major types 0 and 1, and other values as the preferred
 (smallest of 16-, 32-, or 64-bit) floating-point
 representation that accurately represents the value,

 2. Encode all values as the preferred floating-point
 representation that accurately represents the value, even for
 integral values, or

 3. Encode all values as 64-bit floating-point representations.

 Rule 1 straddles the boundaries between integers and floating-
 point values, and Rule 3 does not use preferred serialization, so
 Rule 2 may be a good choice in many cases.

 * If NaN is an allowed value, and there is no intent to support NaN
 payloads or signaling NaNs, the protocol needs to pick a single
 representation, typically 0xf97e00. If that simple choice is not
 possible, specific attention will be needed for NaN handling.

 * Subnormal numbers (nonzero numbers with the lowest possible
 exponent of a given IEEE 754 number format) may be flushed to zero
 outputs or be treated as zero inputs in some floating-point
 implementations. A protocol’s deterministic encoding may want to
 specifically accommodate such implementations while creating an
 onus on other implementations by excluding subnormal numbers from
 interchange, interchanging zero instead.

 * The same number can be represented by different decimal fractions,
 by different bigfloats, and by different forms under other tags
 that may be defined to express numeric values. Depending on the
 implementation, it may not always be practical to determine
 whether any of these forms (or forms in the basic generic data
 model) are equivalent. An application protocol that presents
 choices of this kind for the representation format of numbers
 needs to be explicit about how the formats for deterministic
 encoding are to be chosen.

4.2.3. Length-First Map Key Ordering

 The core deterministic encoding requirements (Section 4.2.1) sort map
 keys in a different order from the one suggested by Section 3.9 of
 [RFC7049] (called "Canonical CBOR" there). Protocols that need to be
 compatible with the order specified in [RFC7049] can instead be
 specified in terms of this specification’s "length-first core
 deterministic encoding requirements":

 A CBOR encoding satisfies the "length-first core deterministic
 encoding requirements" if it satisfies the core deterministic
 encoding requirements except that the keys in every map MUST be
 sorted such that:

 1. If two keys have different lengths, the shorter one sorts
 earlier;

 2. If two keys have the same length, the one with the lower value in
 (bytewise) lexical order sorts earlier.

 For example, under the length-first core deterministic encoding
 requirements, the following keys are sorted correctly:

 1. 10, encoded as 0x0a.

 2. -1, encoded as 0x20.

 3. false, encoded as 0xf4.

 4. 100, encoded as 0x1864.

 5. "z", encoded as 0x617a.

 6. [-1], encoded as 0x8120.

 7. "aa", encoded as 0x626161.

 8. [100], encoded as 0x811864.

 | Although [RFC7049] used the term "Canonical CBOR" for its form
 | of requirements on deterministic encoding, this document avoids
 | this term because "canonicalization" is often associated with
 | specific uses of deterministic encoding only. The terms are
 | essentially interchangeable, however, and the set of core
 | requirements in this document could also be called "Canonical
 | CBOR", while the length-first-ordered version of that could be
 | called "Old Canonical CBOR".

5. Creating CBOR-Based Protocols

 Data formats such as CBOR are often used in environments where there
 is no format negotiation. A specific design goal of CBOR is to not
 need any included or assumed schema: a decoder can take a CBOR item
 and decode it with no other knowledge.

 Of course, in real-world implementations, the encoder and the decoder
 will have a shared view of what should be in a CBOR data item. For
 example, an agreed-to format might be "the item is an array whose
 first value is a UTF-8 string, second value is an integer, and
 subsequent values are zero or more floating-point numbers" or "the
 item is a map that has byte strings for keys and contains a pair
 whose key is 0xab01".

 CBOR-based protocols MUST specify how their decoders handle invalid
 and other unexpected data. CBOR-based protocols MAY specify that
 they treat arbitrary valid data as unexpected. Encoders for CBOR-
 based protocols MUST produce only valid items, that is, the protocol
 cannot be designed to make use of invalid items. An encoder can be
 capable of encoding as many or as few types of values as is required
 by the protocol in which it is used; a decoder can be capable of
 understanding as many or as few types of values as is required by the
 protocols in which it is used. This lack of restrictions allows CBOR
 to be used in extremely constrained environments.

 The rest of this section discusses some considerations in creating
 CBOR-based protocols. With few exceptions, it is advisory only and
 explicitly excludes any language from BCP 14 [RFC2119] [RFC8174]
 other than words that could be interpreted as "MAY" in the sense of
 BCP 14. The exceptions aim at facilitating interoperability of CBOR-
 based protocols while making use of a wide variety of both generic
 and application-specific encoders and decoders.

5.1. CBOR in Streaming Applications

 In a streaming application, a data stream may be composed of a
 sequence of CBOR data items concatenated back-to-back. In such an
 environment, the decoder immediately begins decoding a new data item
 if data is found after the end of a previous data item.

 Not all of the bytes making up a data item may be immediately
 available to the decoder; some decoders will buffer additional data
 until a complete data item can be presented to the application.
 Other decoders can present partial information about a top-level data
 item to an application, such as the nested data items that could
 already be decoded, or even parts of a byte string that hasn’t
 completely arrived yet. Such an application also MUST have a
 matching streaming security mechanism, where the desired protection
 is available for incremental data presented to the application.

 Note that some applications and protocols will not want to use
 indefinite-length encoding. Using indefinite-length encoding allows
 an encoder to not need to marshal all the data for counting, but it
 requires a decoder to allocate increasing amounts of memory while
 waiting for the end of the item. This might be fine for some
 applications but not others.

5.2. Generic Encoders and Decoders

 A generic CBOR decoder can decode all well-formed encoded CBOR data
 items and present the data items to an application. See Appendix C.
 (The diagnostic notation, Section 8, may be used to present well-
 formed CBOR values to humans.)

 Generic CBOR encoders provide an application interface that allows
 the application to specify any well-formed value to be encoded as a
 CBOR data item, including simple values and tags unknown to the
 encoder.

 Even though CBOR attempts to minimize these cases, not all well-
 formed CBOR data is valid: for example, the encoded text string
 "0x62c0ae" does not contain valid UTF-8 (because [RFC3629] requires
 always using the shortest form) and so is not a valid CBOR item.
 Also, specific tags may make semantic constraints that may be
 violated, for instance, by a bignum tag enclosing another tag or by
 an instance of tag number 0 containing a byte string or containing a
 text string with contents that do not match the "date-time"
 production of [RFC3339]. There is no requirement that generic
 encoders and decoders make unnatural choices for their application
 interface to enable the processing of invalid data. Generic encoders
 and decoders are expected to forward simple values and tags even if
 their specific codepoints are not registered at the time the encoder/
 decoder is written (Section 5.4).

5.3. Validity of Items

 A well-formed but invalid CBOR data item (Section 1.2) presents a
 problem with interpreting the data encoded in it in the CBOR data
 model. A CBOR-based protocol could be specified in several layers,
 in which the lower layers don’t process the semantics of some of the
 CBOR data they forward. These layers can’t notice any validity
 errors in data they don’t process and MUST forward that data as-is.
 The first layer that does process the semantics of an invalid CBOR
 item MUST pick one of two choices:

 1. Replace the problematic item with an error marker and continue
 with the next item, or

 2. Issue an error and stop processing altogether.

 A CBOR-based protocol MUST specify which of these options its
 decoders take for each kind of invalid item they might encounter.

 Such problems might occur at the basic validity level of CBOR or in
 the context of tags (tag validity).

5.3.1. Basic validity

 Two kinds of validity errors can occur in the basic generic data
 model:

 Duplicate keys in a map: Generic decoders (Section 5.2) make data
 available to applications using the native CBOR data model. That
 data model includes maps (key-value mappings with unique keys),
 not multimaps (key-value mappings where multiple entries can have
 the same key). Thus, a generic decoder that gets a CBOR map item
 that has duplicate keys will decode to a map with only one
 instance of that key, or it might stop processing altogether. On
 the other hand, a "streaming decoder" may not even be able to
 notice. See Section 5.6 for more discussion of keys in maps.

 Invalid UTF-8 string: A decoder might or might not want to verify
 that the sequence of bytes in a UTF-8 string (major type 3) is
 actually valid UTF-8 and react appropriately.

5.3.2. Tag validity

 Two additional kinds of validity errors are introduced by adding tags
 to the basic generic data model:

 Inadmissible type for tag content: Tag numbers (Section 3.4) specify
 what type of data item is supposed to be used as their tag
 content; for example, the tag numbers for unsigned or negative
 bignums are supposed to be put on byte strings. A decoder that
 decodes the tagged data item into a native representation (a
 native big integer in this example) is expected to check the type
 of the data item being tagged. Even decoders that don’t have such
 native representations available in their environment may perform
 the check on those tags known to them and react appropriately.

 Inadmissible value for tag content: The type of data item may be
 admissible for a tag’s content, but the specific value may not be;
 e.g., a value of "yesterday" is not acceptable for the content of
 tag 0, even though it properly is a text string. A decoder that
 normally ingests such tags into equivalent platform types might
 present this tag to the application in a similar way to how it
 would present a tag with an unknown tag number (Section 5.4).

5.4. Validity and Evolution

 A decoder with validity checking will expend the effort to reliably
 detect data items with validity errors. For example, such a decoder
 needs to have an API that reports an error (and does not return data)
 for a CBOR data item that contains any of the validity errors listed
 in the previous subsection.

 The set of tags defined in the "Concise Binary Object Representation
 (CBOR) Tags" registry (Section 9.2), as well as the set of simple
 values defined in the "Concise Binary Object Representation (CBOR)
 Simple Values" registry (Section 9.1), can grow at any time beyond
 the set understood by a generic decoder. A validity-checking decoder
 can do one of two things when it encounters such a case that it does
 not recognize:

 * It can report an error (and not return data). Note that treating
 this case as an error can cause ossification and is thus not
 encouraged. This error is not a validity error, per se. This
 kind of error is more likely to be raised by a decoder that would
 be performing validity checking if this were a known case.

 * It can emit the unknown item (type, value, and, for tags, the
 decoded tagged data item) to the application calling the decoder,
 and then give the application an indication that the decoder did
 not recognize that tag number or simple value.

 The latter approach, which is also appropriate for decoders that do
 not support validity checking, provides forward compatibility with
 newly registered tags and simple values without the requirement to
 update the encoder at the same time as the calling application. (For
 this, the decoder’s API needs the ability to mark unknown items so
 that the calling application can handle them in a manner appropriate
 for the program.)

 Since some of the processing needed for validity checking may have an
 appreciable cost (in particular with duplicate detection for maps),
 support of validity checking is not a requirement placed on all CBOR
 decoders.

 Some encoders will rely on their applications to provide input data
 in such a way that valid CBOR results from the encoder. A generic
 encoder may also want to provide a validity-checking mode where it
 reliably limits its output to valid CBOR, independent of whether or
 not its application is indeed providing API-conformant data.

5.5. Numbers

 CBOR-based protocols should take into account that different language
 environments pose different restrictions on the range and precision

 of numbers that are representable. For example, the basic JavaScript
 number system treats all numbers as floating-point values, which may
 result in the silent loss of precision in decoding integers with more
 than 53 significant bits. Another example is that, since CBOR keeps
 the sign bit for its integer representation in the major type, it has
 one bit more for signed numbers of a certain length (e.g.,
 -2^(64)..2^(64)-1 for 1+8-byte integers) than the typical platform
 signed integer representation of the same length (-2^(63)..2^(63)-1
 for 8-byte int64_t). A protocol that uses numbers should define its
 expectations on the handling of nontrivial numbers in decoders and
 receiving applications.

 A CBOR-based protocol that includes floating-point numbers can
 restrict which of the three formats (half-precision, single-
 precision, and double-precision) are to be supported. For an
 integer-only application, a protocol may want to completely exclude
 the use of floating-point values.

 A CBOR-based protocol designed for compactness may want to exclude
 specific integer encodings that are longer than necessary for the
 application, such as to save the need to implement 64-bit integers.
 There is an expectation that encoders will use the most compact
 integer representation that can represent a given value. However, a
 compact application that does not require deterministic encoding
 should accept values that use a longer-than-needed encoding (such as
 encoding "0" as 0b000_11001 followed by two bytes of 0x00) as long as
 the application can decode an integer of the given size. Similar
 considerations apply to floating-point values; decoding both
 preferred serializations and longer-than-needed ones is recommended.

 CBOR-based protocols for constrained applications that provide a
 choice between representing a specific number as an integer and as a
 decimal fraction or bigfloat (such as when the exponent is small and
 nonnegative) might express a quality-of-implementation expectation
 that the integer representation is used directly.

5.6. Specifying Keys for Maps

 The encoding and decoding applications need to agree on what types of
 keys are going to be used in maps. In applications that need to
 interwork with JSON-based applications, conversion is simplified by
 limiting keys to text strings only; otherwise, there has to be a
 specified mapping from the other CBOR types to text strings, and this
 often leads to implementation errors. In applications where keys are
 numeric in nature, and numeric ordering of keys is important to the
 application, directly using the numbers for the keys is useful.

 If multiple types of keys are to be used, consideration should be
 given to how these types would be represented in the specific
 programming environments that are to be used. For example, in
 JavaScript Maps [ECMA262], a key of integer 1 cannot be distinguished
 from a key of floating-point 1.0. This means that, if integer keys
 are used, the protocol needs to avoid the use of floating-point keys
 the values of which happen to be integer numbers in the same map.

 Decoders that deliver data items nested within a CBOR data item
 immediately on decoding them ("streaming decoders") often do not keep
 the state that is necessary to ascertain uniqueness of a key in a
 map. Similarly, an encoder that can start encoding data items before
 the enclosing data item is completely available ("streaming encoder")
 may want to reduce its overhead significantly by relying on its data
 source to maintain uniqueness.

 A CBOR-based protocol MUST define what to do when a receiving
 application sees multiple identical keys in a map. The resulting
 rule in the protocol MUST respect the CBOR data model: it cannot
 prescribe a specific handling of the entries with the identical keys,
 except that it might have a rule that having identical keys in a map
 indicates a malformed map and that the decoder has to stop with an
 error. When processing maps that exhibit entries with duplicate
 keys, a generic decoder might do one of the following:

 * Not accept maps with duplicate keys (that is, enforce validity for
 maps, see also Section 5.4). These generic decoders are
 universally useful. An application may still need to perform its
 own duplicate checking based on application rules (for instance,
 if the application equates integers and floating-point values in
 map key positions for specific maps).

 * Pass all map entries to the application, including ones with
 duplicate keys. This requires that the application handle (check
 against) duplicate keys, even if the application rules are
 identical to the generic data model rules.

 * Lose some entries with duplicate keys, e.g., deliver only the
 final (or first) entry out of the entries with the same key. With
 such a generic decoder, applications may get different results for
 a specific key on different runs, and with different generic
 decoders, which value is returned is based on generic decoder
 implementation and the actual order of keys in the map. In
 particular, applications cannot validate key uniqueness on their
 own as they do not necessarily see all entries; they may not be
 able to use such a generic decoder if they need to validate key
 uniqueness. These generic decoders can only be used in situations
 where the data source and transfer always provide valid maps; this
 is not possible if the data source and transfer can be attacked.

 Generic decoders need to document which of these three approaches
 they implement.

 The CBOR data model for maps does not allow ascribing semantics to
 the order of the key/value pairs in the map representation. Thus, a
 CBOR-based protocol MUST NOT specify that changing the key/value pair
 order in a map changes the semantics, except to specify that some
 orders are disallowed, for example, where they would not meet the
 requirements of a deterministic encoding (Section 4.2). (Any
 secondary effects of map ordering such as on timing, cache usage, and
 other potential side channels are not considered part of the
 semantics but may be enough reason on their own for a protocol to
 require a deterministic encoding format.)

 Applications for constrained devices should consider using small
 integers as keys if they have maps with a small number of frequently
 used keys; for instance, a set of 24 or fewer keys can be encoded in
 a single byte as unsigned integers, up to 48 if negative integers are
 also used. Less frequently occurring keys can then use integers with
 longer encodings.

5.6.1. Equivalence of Keys

 The specific data model that applies to a CBOR data item is used to
 determine whether keys occurring in maps are duplicates or distinct.

 At the generic data model level, numerically equivalent integer and
 floating-point values are distinct from each other, as they are from
 the various big numbers (Tags 2 to 5). Similarly, text strings are
 distinct from byte strings, even if composed of the same bytes. A
 tagged value is distinct from an untagged value or from a value
 tagged with a different tag number.

 Within each of these groups, numeric values are distinct unless they
 are numerically equal (specifically, -0.0 is equal to 0.0); for the
 purpose of map key equivalence, NaN values are equivalent if they
 have the same significand after zero-extending both significands at
 the right to 64 bits.

 Both byte strings and text strings are compared byte by byte, arrays
 are compared element by element, and are equal if they have the same
 number of bytes/elements and the same values at the same positions.
 Two maps are equal if they have the same set of pairs regardless of
 their order; pairs are equal if both the key and value are equal.

 Tagged values are equal if both the tag number and the tag content
 are equal. (Note that a generic decoder that provides processing for
 a specific tag may not be able to distinguish some semantically
 equivalent values, e.g., if leading zeroes occur in the content of
 tag 2 or tag 3 (Section 3.4.3).) Simple values are equal if they
 simply have the same value. Nothing else is equal in the generic
 data model; a simple value 2 is not equivalent to an integer 2, and
 an array is never equivalent to a map.

 As discussed in Section 2.2, specific data models can make values
 equivalent for the purpose of comparing map keys that are distinct in
 the generic data model. Note that this implies that a generic
 decoder may deliver a decoded map to an application that needs to be
 checked for duplicate map keys by that application (alternatively,
 the decoder may provide a programming interface to perform this
 service for the application). Specific data models are not able to
 distinguish values for map keys that are equal for this purpose at
 the generic data model level.

5.7. Undefined Values

 In some CBOR-based protocols, the simple value (Section 3.3) of
 "undefined" might be used by an encoder as a substitute for a data
 item with an encoding problem, in order to allow the rest of the
 enclosing data items to be encoded without harm.

6. Converting Data between CBOR and JSON

 This section gives non-normative advice about converting between CBOR
 and JSON. Implementations of converters MAY use whichever advice
 here they want.

 It is worth noting that a JSON text is a sequence of characters, not
 an encoded sequence of bytes, while a CBOR data item consists of
 bytes, not characters.

6.1. Converting from CBOR to JSON

 Most of the types in CBOR have direct analogs in JSON. However, some
 do not, and someone implementing a CBOR-to-JSON converter has to
 consider what to do in those cases. The following non-normative
 advice deals with these by converting them to a single substitute
 value, such as a JSON null.

 * An integer (major type 0 or 1) becomes a JSON number.

 * A byte string (major type 2) that is not embedded in a tag that
 specifies a proposed encoding is encoded in base64url without
 padding and becomes a JSON string.

 * A UTF-8 string (major type 3) becomes a JSON string. Note that
 JSON requires escaping certain characters ([RFC8259], Section 7):
 quotation mark (U+0022), reverse solidus (U+005C), and the "C0
 control characters" (U+0000 through U+001F). All other characters
 are copied unchanged into the JSON UTF-8 string.

 * An array (major type 4) becomes a JSON array.

 * A map (major type 5) becomes a JSON object. This is possible
 directly only if all keys are UTF-8 strings. A converter might
 also convert other keys into UTF-8 strings (such as by converting
 integers into strings containing their decimal representation);
 however, doing so introduces a danger of key collision. Note also
 that, if tags on UTF-8 strings are ignored as proposed below, this
 will cause a key collision if the tags are different but the
 strings are the same.

 * False (major type 7, additional information 20) becomes a JSON
 false.

 * True (major type 7, additional information 21) becomes a JSON

 true.

 * Null (major type 7, additional information 22) becomes a JSON
 null.

 * A floating-point value (major type 7, additional information 25
 through 27) becomes a JSON number if it is finite (that is, it can
 be represented in a JSON number); if the value is non-finite (NaN,
 or positive or negative Infinity), it is represented by the
 substitute value.

 * Any other simple value (major type 7, any additional information
 value not yet discussed) is represented by the substitute value.

 * A bignum (major type 6, tag number 2 or 3) is represented by
 encoding its byte string in base64url without padding and becomes
 a JSON string. For tag number 3 (negative bignum), a "˜" (ASCII
 tilde) is inserted before the base-encoded value. (The conversion
 to a binary blob instead of a number is to prevent a likely
 numeric overflow for the JSON decoder.)

 * A byte string with an encoding hint (major type 6, tag number 21
 through 23) is encoded as described by the hint and becomes a JSON
 string.

 * For all other tags (major type 6, any other tag number), the tag
 content is represented as a JSON value; the tag number is ignored.

 * Indefinite-length items are made definite before conversion.

 A CBOR-to-JSON converter may want to keep to the JSON profile I-JSON
 [RFC7493], to maximize interoperability and increase confidence that
 the JSON output can be processed with predictable results. For
 example, this has implications on the range of integers that can be
 represented reliably, as well as on the top-level items that may be
 supported by older JSON implementations.

6.2. Converting from JSON to CBOR

 All JSON values, once decoded, directly map into one or more CBOR
 values. As with any kind of CBOR generation, decisions have to be
 made with respect to number representation. In a suggested
 conversion:

 * JSON numbers without fractional parts (integer numbers) are
 represented as integers (major types 0 and 1, possibly major type
 6, tag number 2 and 3), choosing the shortest form; integers
 longer than an implementation-defined threshold may instead be
 represented as floating-point values. The default range that is
 represented as integer is -2^(53)+1..2^(53)-1 (fully exploiting
 the range for exact integers in the binary64 representation often
 used for decoding JSON [RFC7493]). A CBOR-based protocol, or a
 generic converter implementation, may choose -2^(32)..2^(32)-1 or
 -2^(64)..2^(64)-1 (fully using the integer ranges available in
 CBOR with uint32_t or uint64_t, respectively) or even
 -2^(31)..2^(31)-1 or -2^(63)..2^(63)-1 (using popular ranges for
 two’s complement signed integers). (If the JSON was generated
 from a JavaScript implementation, its precision is already limited
 to 53 bits maximum.)

 * Numbers with fractional parts are represented as floating-point
 values, performing the decimal-to-binary conversion based on the
 precision provided by IEEE 754 binary64. The mathematical value
 of the JSON number is converted to binary64 using the
 roundTiesToEven procedure in Section 4.3.1 of [IEEE754]. Then,
 when encoding in CBOR, the preferred serialization uses the
 shortest floating-point representation exactly representing this
 conversion result; for instance, 1.5 is represented in a 16-bit
 floating-point value (not all implementations will be capable of
 efficiently finding the minimum form, though). Instead of using
 the default binary64 precision, there may be an implementation-

 defined limit to the precision of the conversion that will affect
 the precision of the represented values. Decimal representation
 should only be used on the CBOR side if that is specified in a
 protocol.

 CBOR has been designed to generally provide a more compact encoding
 than JSON. One implementation strategy that might come to mind is to
 perform a JSON-to-CBOR encoding in place in a single buffer. This
 strategy would need to carefully consider a number of pathological
 cases, such as that some strings represented with no or very few
 escapes and longer (or much longer) than 255 bytes may expand when
 encoded as UTF-8 strings in CBOR. Similarly, a few of the binary
 floating-point representations might cause expansion from some short
 decimal representations (1.1, 1e9) in JSON. This may be hard to get
 right, and any ensuing vulnerabilities may be exploited by an
 attacker.

7. Future Evolution of CBOR

 Successful protocols evolve over time. New ideas appear,
 implementation platforms improve, related protocols are developed and
 evolve, and new requirements from applications and protocols are
 added. Facilitating protocol evolution is therefore an important
 design consideration for any protocol development.

 For protocols that will use CBOR, CBOR provides some useful
 mechanisms to facilitate their evolution. Best practices for this
 are well known, particularly from JSON format development of JSON-
 based protocols. Therefore, such best practices are outside the
 scope of this specification.

 However, facilitating the evolution of CBOR itself is very well
 within its scope. CBOR is designed to both provide a stable basis
 for development of CBOR-based protocols and to be able to evolve.
 Since a successful protocol may live for decades, CBOR needs to be
 designed for decades of use and evolution. This section provides
 some guidance for the evolution of CBOR. It is necessarily more
 subjective than other parts of this document. It is also necessarily
 incomplete, lest it turn into a textbook on protocol development.

7.1. Extension Points

 In a protocol design, opportunities for evolution are often included
 in the form of extension points. For example, there may be a
 codepoint space that is not fully allocated from the outset, and the
 protocol is designed to tolerate and embrace implementations that
 start using more codepoints than initially allocated.

 Sizing the codepoint space may be difficult because the range
 required may be hard to predict. Protocol designs should attempt to
 make the codepoint space large enough so that it can slowly be filled
 over the intended lifetime of the protocol.

 CBOR has three major extension points:

 the "simple" space (values in major type 7): Of the 24 efficient
 (and 224 slightly less efficient) values, only a small number have
 been allocated. Implementations receiving an unknown simple data
 item may easily be able to process it as such, given that the
 structure of the value is indeed simple. The IANA registry in
 Section 9.1 is the appropriate way to address the extensibility of
 this codepoint space.

 the "tag" space (values in major type 6): The total codepoint space
 is abundant; only a tiny part of it has been allocated. However,
 not all of these codepoints are equally efficient: the first 24
 only consume a single ("1+0") byte, and half of them have already
 been allocated. The next 232 values only consume two ("1+1")
 bytes, with nearly a quarter already allocated. These subspaces
 need some curation to last for a few more decades.
 Implementations receiving an unknown tag number can choose to

 process just the enclosed tag content or, preferably, to process
 the tag as an unknown tag number wrapping the tag content. The
 IANA registry in Section 9.2 is the appropriate way to address the
 extensibility of this codepoint space.

 the "additional information" space: An implementation receiving an
 unknown additional information value has no way to continue
 decoding, so allocating codepoints in this space is a major step
 beyond just exercising an extension point. There are also very
 few codepoints left. See also Section 7.2.

7.2. Curating the Additional Information Space

 The human mind is sometimes drawn to filling in little perceived gaps
 to make something neat. We expect the remaining gaps in the
 codepoint space for the additional information values to be an
 attractor for new ideas, just because they are there.

 The present specification does not manage the additional information
 codepoint space by an IANA registry. Instead, allocations out of
 this space can only be done by updating this specification.

 For an additional information value of n >= 24, the size of the
 additional data typically is 2^(n-24) bytes. Therefore, additional
 information values 28 and 29 should be viewed as candidates for
 128-bit and 256-bit quantities, in case a need arises to add them to
 the protocol. Additional information value 30 is then the only
 additional information value available for general allocation, and
 there should be a very good reason for allocating it before assigning
 it through an update of the present specification.

8. Diagnostic Notation

 CBOR is a binary interchange format. To facilitate documentation and
 debugging, and in particular to facilitate communication between
 entities cooperating in debugging, this section defines a simple
 human-readable diagnostic notation. All actual interchange always
 happens in the binary format.

 Note that this truly is a diagnostic format; it is not meant to be
 parsed. Therefore, no formal definition (as in ABNF) is given in
 this document. (Implementers looking for a text-based format for
 representing CBOR data items in configuration files may also want to
 consider YAML [YAML].)

 The diagnostic notation is loosely based on JSON as it is defined in
 RFC 8259, extending it where needed.

 The notation borrows the JSON syntax for numbers (integer and
 floating-point), True (>true<), False (>false<), Null (>null<), UTF-8
 strings, arrays, and maps (maps are called objects in JSON; the
 diagnostic notation extends JSON here by allowing any data item in
 the key position). Undefined is written >undefined< as in
 JavaScript. The non-finite floating-point numbers Infinity,
 -Infinity, and NaN are written exactly as in this sentence (this is
 also a way they can be written in JavaScript, although JSON does not
 allow them). A tag is written as an integer number for the tag
 number, followed by the tag content in parentheses; for instance, a
 date in the format specified by RFC 3339 (ISO 8601) could be notated
 as:

 0("2013-03-21T20:04:00Z")

 or the equivalent relative time as the following:

 1(1363896240)

 Byte strings are notated in one of the base encodings, without
 padding, enclosed in single quotes, prefixed by >h< for base16, >b32<
 for base32, >h32< for base32hex, >b64< for base64 or base64url (the
 actual encodings do not overlap, so the string remains unambiguous).

 For example, the byte string 0x12345678 could be written h’12345678’,
 b32’CI2FM6A’, or b64’EjRWeA’.

 Unassigned simple values are given as "simple()" with the appropriate
 integer in the parentheses. For example, "simple(42)" indicates
 major type 7, value 42.

 A number of useful extensions to the diagnostic notation defined here
 are provided in Appendix G of [RFC8610], "Extended Diagnostic
 Notation" (EDN). Similarly, this notation could be extended in a
 separate document to provide documentation for NaN payloads, which
 are not covered in this document.

8.1. Encoding Indicators

 Sometimes it is useful to indicate in the diagnostic notation which
 of several alternative representations were actually used; for
 example, a data item written >1.5< by a diagnostic decoder might have
 been encoded as a half-, single-, or double-precision float.

 The convention for encoding indicators is that anything starting with
 an underscore and all following characters that are alphanumeric or
 underscore is an encoding indicator, and can be ignored by anyone not
 interested in this information. For example, "_" or "_3". Encoding
 indicators are always optional.

 A single underscore can be written after the opening brace of a map
 or the opening bracket of an array to indicate that the data item was
 represented in indefinite-length format. For example, [_ 1, 2]
 contains an indicator that an indefinite-length representation was
 used to represent the data item [1, 2].

 An underscore followed by a decimal digit n indicates that the
 preceding item (or, for arrays and maps, the item starting with the
 preceding bracket or brace) was encoded with an additional
 information value of 24+n. For example, 1.5_1 is a half-precision
 floating-point number, while 1.5_3 is encoded as double precision.
 This encoding indicator is not shown in Appendix A. (Note that the
 encoding indicator "_" is thus an abbreviation of the full form "_7",
 which is not used.)

 The detailed chunk structure of byte and text strings of indefinite
 length can be notated in the form (_ h’0123’, h’4567’) and (_ "foo",
 "bar"). However, for an indefinite-length string with no chunks
 inside, (_) would be ambiguous as to whether a byte string (0x5fff)
 or a text string (0x7fff) is meant and is therefore not used. The
 basic forms ’’_ and ""_ can be used instead and are reserved for the
 case of no chunks only -- not as short forms for the (permitted, but
 not really useful) encodings with only empty chunks, which need to be
 notated as (_ ’’), (_ ""), etc., to preserve the chunk structure.

9. IANA Considerations

 IANA has created two registries for new CBOR values. The registries
 are separate, that is, not under an umbrella registry, and follow the
 rules in [RFC8126]. IANA has also assigned a new media type, an
 associated CoAP Content-Format entry, and a structured syntax suffix.

9.1. CBOR Simple Values Registry

 IANA has created the "Concise Binary Object Representation (CBOR)
 Simple Values" registry at [IANA.cbor-simple-values]. The initial
 values are shown in Table 4.

 New entries in the range 0 to 19 are assigned by Standards Action
 [RFC8126]. It is suggested that IANA allocate values starting with
 the number 16 in order to reserve the lower numbers for contiguous
 blocks (if any).

 New entries in the range 32 to 255 are assigned by Specification
 Required.

9.2. CBOR Tags Registry

 IANA has created the "Concise Binary Object Representation (CBOR)
 Tags" registry at [IANA.cbor-tags]. The tags that were defined in
 [RFC7049] are described in detail in Section 3.4, and other tags have
 already been defined since then.

 New entries in the range 0 to 23 ("1+0") are assigned by Standards
 Action. New entries in the ranges 24 to 255 ("1+1") and 256 to 32767
 (lower half of "1+2") are assigned by Specification Required. New
 entries in the range 32768 to 18446744073709551615 (upper half of
 "1+2", "1+4", and "1+8") are assigned by First Come First Served.
 The template for registration requests is:

 * Data item

 * Semantics (short form)

 In addition, First Come First Served requests should include:

 * Point of contact

 * Description of semantics (URL) -- This description is optional;
 the URL can point to something like an Internet-Draft or a web
 page.

 Applicants exercising the First Come First Served range and making a
 suggestion for a tag number that is not representable in 32 bits
 (i.e., larger than 4294967295) should be aware that this could reduce
 interoperability with implementations that do not support 64-bit
 numbers.

9.3. Media Types Registry

 The Internet media type [RFC6838] ("MIME type") for a single encoded
 CBOR data item is "application/cbor" as defined in the "Media Types"
 registry [IANA.media-types]:

 Type name: application

 Subtype name: cbor

 Required parameters: n/a

 Optional parameters: n/a

 Encoding considerations: Binary

 Security considerations: See Section 10 of RFC 8949.

 Interoperability considerations: n/a

 Published specification: RFC 8949

 Applications that use this media type: Many

 Additional information:

 Magic number(s): n/a
 File extension(s): .cbor
 Macintosh file type code(s): n/a

 Person & email address to contact for further information: IETF CBOR
 Working Group (cbor@ietf.org) or IETF Applications and Real-Time
 Area (art@ietf.org)

 Intended usage: COMMON

 Restrictions on usage: none

 Author: IETF CBOR Working Group (cbor@ietf.org)

 Change controller: The IESG (iesg@ietf.org)

9.4. CoAP Content-Format Registry

 The CoAP Content-Format for CBOR has been registered in the "CoAP
 Content-Formats" subregistry within the "Constrained RESTful
 Environments (CoRE) Parameters" registry [IANA.core-parameters]:

 Media Type: application/cbor

 Encoding: -

 ID: 60

 Reference: RFC 8949

9.5. Structured Syntax Suffix Registry

 The structured syntax suffix [RFC6838] for media types based on a
 single encoded CBOR data item is +cbor, which IANA has registered in
 the "Structured Syntax Suffixes" registry [IANA.structured-suffix]:

 Name: Concise Binary Object Representation (CBOR)

 +suffix: +cbor

 References: RFC 8949

 Encoding Considerations: CBOR is a binary format.

 Interoperability Considerations: n/a

 Fragment Identifier Considerations: The syntax and semantics of
 fragment identifiers specified for +cbor SHOULD be as specified
 for "application/cbor". (At publication of RFC 8949, there is no
 fragment identification syntax defined for "application/cbor".)

 The syntax and semantics for fragment identifiers for a specific
 "xxx/yyy+cbor" SHOULD be processed as follows:

 * For cases defined in +cbor, where the fragment identifier
 resolves per the +cbor rules, then process as specified in
 +cbor.

 * For cases defined in +cbor, where the fragment identifier does
 not resolve per the +cbor rules, then process as specified in
 "xxx/yyy+cbor".

 * For cases not defined in +cbor, then process as specified in
 "xxx/yyy+cbor".

 Security Considerations: See Section 10 of RFC 8949.

 Contact: IETF CBOR Working Group (cbor@ietf.org) or IETF
 Applications and Real-Time Area (art@ietf.org)

 Author/Change Controller: IETF

10. Security Considerations

 A network-facing application can exhibit vulnerabilities in its
 processing logic for incoming data. Complex parsers are well known
 as a likely source of such vulnerabilities, such as the ability to
 remotely crash a node, or even remotely execute arbitrary code on it.
 CBOR attempts to narrow the opportunities for introducing such
 vulnerabilities by reducing parser complexity, by giving the entire
 range of encodable values a meaning where possible.

 Because CBOR decoders are often used as a first step in processing

 unvalidated input, they need to be fully prepared for all types of
 hostile input that may be designed to corrupt, overrun, or achieve
 control of the system decoding the CBOR data item. A CBOR decoder
 needs to assume that all input may be hostile even if it has been
 checked by a firewall, has come over a secure channel such as TLS, is
 encrypted or signed, or has come from some other source that is
 presumed trusted.

 Section 4.1 gives examples of limitations in interoperability when
 using a constrained CBOR decoder with input from a CBOR encoder that
 uses a non-preferred serialization. When a single data item is
 consumed both by such a constrained decoder and a full decoder, it
 can lead to security issues that can be exploited by an attacker who
 can inject or manipulate content.

 As discussed throughout this document, there are many values that can
 be considered "equivalent" in some circumstances and "not equivalent"
 in others. As just one example, the numeric value for the number
 "one" might be expressed as an integer or a bignum. A system
 interpreting CBOR input might accept either form for the number
 "one", or might reject one (or both) forms. Such acceptance or
 rejection can have security implications in the program that is using
 the interpreted input.

 Hostile input may be constructed to overrun buffers, to overflow or
 underflow integer arithmetic, or to cause other decoding disruption.
 CBOR data items might have lengths or sizes that are intentionally
 extremely large or too short. Resource exhaustion attacks might
 attempt to lure a decoder into allocating very big data items
 (strings, arrays, maps, or even arbitrary precision numbers) or
 exhaust the stack depth by setting up deeply nested items. Decoders
 need to have appropriate resource management to mitigate these
 attacks. (Items for which very large sizes are given can also
 attempt to exploit integer overflow vulnerabilities.)

 A CBOR decoder, by definition, only accepts well-formed CBOR; this is
 the first step to its robustness. Input that is not well-formed CBOR
 causes no further processing from the point where the lack of well-
 formedness was detected. If possible, any data decoded up to this
 point should have no impact on the application using the CBOR
 decoder.

 In addition to ascertaining well-formedness, a CBOR decoder might
 also perform validity checks on the CBOR data. Alternatively, it can
 leave those checks to the application using the decoder. This choice
 needs to be clearly documented in the decoder. Beyond the validity
 at the CBOR level, an application also needs to ascertain that the
 input is in alignment with the application protocol that is
 serialized in CBOR.

 The input check itself may consume resources. This is usually linear
 in the size of the input, which means that an attacker has to spend
 resources that are commensurate to the resources spent by the
 defender on input validation. However, an attacker might be able to
 craft inputs that will take longer for a target decoder to process
 than for the attacker to produce. Processing for arbitrary-precision
 numbers may exceed linear effort. Also, some hash-table
 implementations that are used by decoders to build in-memory
 representations of maps can be attacked to spend quadratic effort,
 unless a secret key (see Section 7 of [SIPHASH_LNCS], also
 [SIPHASH_OPEN]) or some other mitigation is employed. Such
 superlinear efforts can be exploited by an attacker to exhaust
 resources at or before the input validator; they therefore need to be
 avoided in a CBOR decoder implementation. Note that tag number
 definitions and their implementations can add security considerations
 of this kind; this should then be discussed in the security
 considerations of the tag number definition.

 CBOR encoders do not receive input directly from the network and are
 thus not directly attackable in the same way as CBOR decoders.
 However, CBOR encoders often have an API that takes input from

 another level in the implementation and can be attacked through that
 API. The design and implementation of that API should assume the
 behavior of its caller may be based on hostile input or on coding
 mistakes. It should check inputs for buffer overruns, overflow and
 underflow of integer arithmetic, and other such errors that are aimed
 to disrupt the encoder.

 Protocols should be defined in such a way that potential multiple
 interpretations are reliably reduced to a single interpretation. For
 example, an attacker could make use of invalid input such as
 duplicate keys in maps, or exploit different precision in processing
 numbers to make one application base its decisions on a different
 interpretation than the one that will be used by a second
 application. To facilitate consistent interpretation, encoder and
 decoder implementations should provide a validity-checking mode of
 operation (Section 5.4). Note, however, that a generic decoder
 cannot know about all requirements that an application poses on its
 input data; it is therefore not relieving the application from
 performing its own input checking. Also, since the set of defined
 tag numbers evolves, the application may employ a tag number that is
 not yet supported for validity checking by the generic decoder it
 uses. Generic decoders therefore need to document which tag numbers
 they support and what validity checking they provide for those tag
 numbers as well as for basic CBOR (UTF-8 checking, duplicate map key
 checking).

 Section 3.4.3 notes that using the non-preferred choice of a bignum
 representation instead of a basic integer for encoding a number is
 not intended to have application semantics, but it can have such
 semantics if an application receiving CBOR data is using a decoder in
 the basic generic data model. This disparity causes a security issue
 if the two sets of semantics differ. Thus, applications using CBOR
 need to specify the data model that they are using for each use of
 CBOR data.

 It is common to convert CBOR data to other formats. In many cases,
 CBOR has more expressive types than other formats; this is
 particularly true for the common conversion to JSON. The loss of
 type information can cause security issues for the systems that are
 processing the less-expressive data.

 Section 6.2 describes a possibly common usage scenario of converting
 between CBOR and JSON that could allow an attack if the attacker
 knows that the application is performing the conversion.

 Security considerations for the use of base16 and base64 from
 [RFC4648], and the use of UTF-8 from [RFC3629], are relevant to CBOR
 as well.

11. References

11.1. Normative References

 [C] International Organization for Standardization,
 "Information technology - Programming languages - C",
 Fourth Edition, ISO/IEC 9899:2018, June 2018,
 <https://www.iso.org/standard/74528.html>.

 [Cplusplus20]
 International Organization for Standardization,
 "Programming languages - C++", Sixth Edition, ISO/IEC DIS
 14882, ISO/IEC ISO/IEC JTC1 SC22 WG21 N 4860, March 2020,
 <https://isocpp.org/files/papers/N4860.pdf>.

 [IEEE754] IEEE, "IEEE Standard for Floating-Point Arithmetic", IEEE
 Std 754-2019, DOI 10.1109/IEEESTD.2019.8766229,
 <https://ieeexplore.ieee.org/document/8766229>.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,

 <https://www.rfc-editor.org/info/rfc2045>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/info/rfc3339>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4287] Nottingham, M., Ed. and R. Sayre, Ed., "The Atom
 Syndication Format", RFC 4287, DOI 10.17487/RFC4287,
 December 2005, <https://www.rfc-editor.org/info/rfc4287>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [TIME_T] The Open Group, "The Open Group Base Specifications",
 Section 4.16, ’Seconds Since the Epoch’, Issue 7, 2018
 Edition, IEEE Std 1003.1, 2018,
 <https://pubs.opengroup.org/onlinepubs/9699919799/
 basedefs/V1_chap04.html#tag_04_16>.

11.2. Informative References

 [ASN.1] International Telecommunication Union, "Information
 Technology - ASN.1 encoding rules: Specification of Basic
 Encoding Rules (BER), Canonical Encoding Rules (CER) and
 Distinguished Encoding Rules (DER)", ITU-T Recommendation
 X.690, 2015,
 <https://www.itu.int/rec/T-REC-X.690-201508-I/en>.

 [BSON] Various, "BSON - Binary JSON", <http://bsonspec.org/>.

 [CBOR-TAGS]
 Bormann, C., "Notable CBOR Tags", Work in Progress,
 Internet-Draft, draft-bormann-cbor-notable-tags-02, 25
 June 2020, <https://tools.ietf.org/html/draft-bormann-
 cbor-notable-tags-02>.

 [ECMA262] Ecma International, "ECMAScript 2020 Language
 Specification", Standard ECMA-262, 11th Edition, June
 2020, <https://www.ecma-
 international.org/publications/standards/Ecma-262.htm>.

 [Err3764] RFC Errata, Erratum ID 3764, RFC 7049,
 <https://www.rfc-editor.org/errata/eid3764>.

 [Err3770] RFC Errata, Erratum ID 3770, RFC 7049,
 <https://www.rfc-editor.org/errata/eid3770>.

 [Err4294] RFC Errata, Erratum ID 4294, RFC 7049,
 <https://www.rfc-editor.org/errata/eid4294>.

 [Err4409] RFC Errata, Erratum ID 4409, RFC 7049,
 <https://www.rfc-editor.org/errata/eid4409>.

 [Err4963] RFC Errata, Erratum ID 4963, RFC 7049,
 <https://www.rfc-editor.org/errata/eid4963>.

 [Err4964] RFC Errata, Erratum ID 4964, RFC 7049,
 <https://www.rfc-editor.org/errata/eid4964>.

 [Err5434] RFC Errata, Erratum ID 5434, RFC 7049,
 <https://www.rfc-editor.org/errata/eid5434>.

 [Err5763] RFC Errata, Erratum ID 5763, RFC 7049,
 <https://www.rfc-editor.org/errata/eid5763>.

 [Err5917] RFC Errata, Erratum ID 5917, RFC 7049,
 <https://www.rfc-editor.org/errata/eid5917>.

 [IANA.cbor-simple-values]
 IANA, "Concise Binary Object Representation (CBOR) Simple
 Values",
 <https://www.iana.org/assignments/cbor-simple-values>.

 [IANA.cbor-tags]
 IANA, "Concise Binary Object Representation (CBOR) Tags",
 <https://www.iana.org/assignments/cbor-tags>.

 [IANA.core-parameters]
 IANA, "Constrained RESTful Environments (CoRE)
 Parameters",
 <https://www.iana.org/assignments/core-parameters>.

 [IANA.media-types]
 IANA, "Media Types",
 <https://www.iana.org/assignments/media-types>.

 [IANA.structured-suffix]
 IANA, "Structured Syntax Suffixes",
 <https://www.iana.org/assignments/media-type-structured-
 suffix>.

 [MessagePack]
 Furuhashi, S., "MessagePack", <https://msgpack.org/>.

 [PCRE] Hazel, P., "PCRE - Perl Compatible Regular Expressions",
 <https://www.pcre.org/>.

 [RFC0713] Haverty, J., "MSDTP-Message Services Data Transmission
 Protocol", RFC 713, DOI 10.17487/RFC0713, April 1976,
 <https://www.rfc-editor.org/info/rfc713>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <https://www.rfc-editor.org/info/rfc7493>.

 [RFC7991] Hoffman, P., "The "xml2rfc" Version 3 Vocabulary",
 RFC 7991, DOI 10.17487/RFC7991, December 2016,
 <https://www.rfc-editor.org/info/rfc7991>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [RFC8618] Dickinson, J., Hague, J., Dickinson, S., Manderson, T.,
 and J. Bond, "Compacted-DNS (C-DNS): A Format for DNS
 Packet Capture", RFC 8618, DOI 10.17487/RFC8618, September
 2019, <https://www.rfc-editor.org/info/rfc8618>.

 [RFC8742] Bormann, C., "Concise Binary Object Representation (CBOR)
 Sequences", RFC 8742, DOI 10.17487/RFC8742, February 2020,
 <https://www.rfc-editor.org/info/rfc8742>.

 [RFC8746] Bormann, C., Ed., "Concise Binary Object Representation
 (CBOR) Tags for Typed Arrays", RFC 8746,
 DOI 10.17487/RFC8746, February 2020,
 <https://www.rfc-editor.org/info/rfc8746>.

 [SIPHASH_LNCS]
 Aumasson, J. and D. Bernstein, "SipHash: A Fast Short-
 Input PRF", Progress in Cryptology - INDOCRYPT 2012, pp.
 489-508, DOI 10.1007/978-3-642-34931-7_28, 2012,
 <https://doi.org/10.1007/978-3-642-34931-7_28>.

 [SIPHASH_OPEN]
 Aumasson, J. and D.J. Bernstein, "SipHash: a fast short-
 input PRF", <https://www.aumasson.jp/siphash/siphash.pdf>.

 [YAML] Ben-Kiki, O., Evans, C., and I.d. Net, "YAML Ain’t Markup
 Language (YAML[TM]) Version 1.2", 3rd Edition, October
 2009, <https://www.yaml.org/spec/1.2/spec.html>.

Appendix A. Examples of Encoded CBOR Data Items

 The following table provides some CBOR-encoded values in hexadecimal
 (right column), together with diagnostic notation for these values
 (left column). Note that the string "\u00fc" is one form of
 diagnostic notation for a UTF-8 string containing the single Unicode
 character U+00FC (LATIN SMALL LETTER U WITH DIAERESIS, "Ã¼").
 Similarly, "\u6c34" is a UTF-8 string in diagnostic notation with a
 single character U+6C34 (CJK UNIFIED IDEOGRAPH-6C34, "æ°´"), often
 representing "water", and "\ud800\udd51" is a UTF-8 string in
 diagnostic notation with a single character U+10151 (GREEK ACROPHONIC
 ATTIC FIFTY STATERS, "ð\220\205\221"). (Note that all these single-character
 strings could also be represented in native UTF-8 in diagnostic
 notation, just not if an ASCII-only specification is required.) In
 the diagnostic notation provided for bignums, their intended numeric
 value is shown as a decimal number (such as 18446744073709551616)
 instead of a tagged byte string (such as 2(h’010000000000000000’)).

 +==============================+====================================+
 |Diagnostic | Encoded |
 +==============================+====================================+
 |0 | 0x00 |
 +------------------------------+------------------------------------+
 |1 | 0x01 |
 +------------------------------+------------------------------------+
 |10 | 0x0a |
 +------------------------------+------------------------------------+

 |23 | 0x17 |
 +------------------------------+------------------------------------+
 |24 | 0x1818 |
 +------------------------------+------------------------------------+
 |25 | 0x1819 |
 +------------------------------+------------------------------------+
 |100 | 0x1864 |
 +------------------------------+------------------------------------+
 |1000 | 0x1903e8 |
 +------------------------------+------------------------------------+
 |1000000 | 0x1a000f4240 |
 +------------------------------+------------------------------------+
 |1000000000000 | 0x1b000000e8d4a51000 |
 +------------------------------+------------------------------------+
 |18446744073709551615 | 0x1bffffffffffffffff |
 +------------------------------+------------------------------------+
 |18446744073709551616 | 0xc249010000000000000000 |
 +------------------------------+------------------------------------+
 |-18446744073709551616 | 0x3bffffffffffffffff |
 +------------------------------+------------------------------------+
 |-18446744073709551617 | 0xc349010000000000000000 |
 +------------------------------+------------------------------------+
 |-1 | 0x20 |
 +------------------------------+------------------------------------+
 |-10 | 0x29 |
 +------------------------------+------------------------------------+
 |-100 | 0x3863 |
 +------------------------------+------------------------------------+
 |-1000 | 0x3903e7 |
 +------------------------------+------------------------------------+
 |0.0 | 0xf90000 |
 +------------------------------+------------------------------------+
 |-0.0 | 0xf98000 |
 +------------------------------+------------------------------------+
 |1.0 | 0xf93c00 |
 +------------------------------+------------------------------------+
 |1.1 | 0xfb3ff199999999999a |
 +------------------------------+------------------------------------+
 |1.5 | 0xf93e00 |
 +------------------------------+------------------------------------+
 |65504.0 | 0xf97bff |
 +------------------------------+------------------------------------+
 |100000.0 | 0xfa47c35000 |
 +------------------------------+------------------------------------+
 |3.4028234663852886e+38 | 0xfa7f7fffff |
 +------------------------------+------------------------------------+
 |1.0e+300 | 0xfb7e37e43c8800759c |
 +------------------------------+------------------------------------+
 |5.960464477539063e-8 | 0xf90001 |
 +------------------------------+------------------------------------+
 |0.00006103515625 | 0xf90400 |
 +------------------------------+------------------------------------+
 |-4.0 | 0xf9c400 |
 +------------------------------+------------------------------------+
 |-4.1 | 0xfbc010666666666666 |
 +------------------------------+------------------------------------+
 |Infinity | 0xf97c00 |
 +------------------------------+------------------------------------+
 |NaN | 0xf97e00 |
 +------------------------------+------------------------------------+
 |-Infinity | 0xf9fc00 |
 +------------------------------+------------------------------------+
 |Infinity | 0xfa7f800000 |
 +------------------------------+------------------------------------+
 |NaN | 0xfa7fc00000 |
 +------------------------------+------------------------------------+
 |-Infinity | 0xfaff800000 |
 +------------------------------+------------------------------------+
 |Infinity | 0xfb7ff0000000000000 |
 +------------------------------+------------------------------------+
 |NaN | 0xfb7ff8000000000000 |

 +------------------------------+------------------------------------+
 |-Infinity | 0xfbfff0000000000000 |
 +------------------------------+------------------------------------+
 |false | 0xf4 |
 +------------------------------+------------------------------------+
 |true | 0xf5 |
 +------------------------------+------------------------------------+
 |null | 0xf6 |
 +------------------------------+------------------------------------+
 |undefined | 0xf7 |
 +------------------------------+------------------------------------+
 |simple(16) | 0xf0 |
 +------------------------------+------------------------------------+
 |simple(255) | 0xf8ff |
 +------------------------------+------------------------------------+
 |0("2013-03-21T20:04:00Z") | 0xc074323031332d30332d32315432303a |
 | | 30343a30305a |
 +------------------------------+------------------------------------+
 |1(1363896240) | 0xc11a514b67b0 |
 +------------------------------+------------------------------------+
 |1(1363896240.5) | 0xc1fb41d452d9ec200000 |
 +------------------------------+------------------------------------+
 |23(h’01020304’) | 0xd74401020304 |
 +------------------------------+------------------------------------+
 |24(h’6449455446’) | 0xd818456449455446 |
 +------------------------------+------------------------------------+
 |32("http://www.example.com") | 0xd82076687474703a2f2f7777772e6578 |
 | | 616d706c652e636f6d |
 +------------------------------+------------------------------------+
 |h’’ | 0x40 |
 +------------------------------+------------------------------------+
 |h’01020304’ | 0x4401020304 |
 +------------------------------+------------------------------------+
 |"" | 0x60 |
 +------------------------------+------------------------------------+
 |"a" | 0x6161 |
 +------------------------------+------------------------------------+
 |"IETF" | 0x6449455446 |
 +------------------------------+------------------------------------+
 |"\"\\" | 0x62225c |
 +------------------------------+------------------------------------+
 |"\u00fc" | 0x62c3bc |
 +------------------------------+------------------------------------+
 |"\u6c34" | 0x63e6b0b4 |
 +------------------------------+------------------------------------+
 |"\ud800\udd51" | 0x64f0908591 |
 +------------------------------+------------------------------------+
 |[] | 0x80 |
 +------------------------------+------------------------------------+
 |[1, 2, 3] | 0x83010203 |
 +------------------------------+------------------------------------+
 |[1, [2, 3], [4, 5]] | 0x8301820203820405 |
 +------------------------------+------------------------------------+
[1, 2, 3, 4, 5, 6, 7, 8, 9,	0x98190102030405060708090a0b0c0d0e
10, 11, 12, 13, 14, 15, 16,	0f101112131415161718181819
17, 18, 19, 20, 21, 22, 23,	
24, 25]	
+------------------------------+------------------------------------+	
{}	0xa0
+------------------------------+------------------------------------+	
{1: 2, 3: 4}	0xa201020304
+------------------------------+------------------------------------+	
{"a": 1, "b": [2, 3]}	0xa26161016162820203
+------------------------------+------------------------------------+	
["a", {"b": "c"}]	0x826161a161626163
+------------------------------+------------------------------------+	
{"a": "A", "b": "B", "c": "C",	0xa5616161416162614261636143616461
"d": "D", "e": "E"}	4461656145
+------------------------------+------------------------------------+	
(_ h’0102’, h’030405’)	0x5f42010243030405ff
 +------------------------------+------------------------------------+

 |(_ "strea", "ming") | 0x7f657374726561646d696e67ff |
 +------------------------------+------------------------------------+
 |[_] | 0x9fff |
 +------------------------------+------------------------------------+
 |[_ 1, [2, 3], [_ 4, 5]] | 0x9f018202039f0405ffff |
 +------------------------------+------------------------------------+
 |[_ 1, [2, 3], [4, 5]] | 0x9f01820203820405ff |
 +------------------------------+------------------------------------+
 |[1, [2, 3], [_ 4, 5]] | 0x83018202039f0405ff |
 +------------------------------+------------------------------------+
 |[1, [_ 2, 3], [4, 5]] | 0x83019f0203ff820405 |
 +------------------------------+------------------------------------+
[_ 1, 2, 3, 4, 5, 6, 7, 8, 9,	0x9f0102030405060708090a0b0c0d0e0f
10, 11, 12, 13, 14, 15, 16,	101112131415161718181819ff
17, 18, 19, 20, 21, 22, 23,	
24, 25]	
+------------------------------+------------------------------------+	
{_ "a": 1, "b": [_ 2, 3]}	0xbf61610161629f0203ffff
+------------------------------+------------------------------------+	
["a", {_ "b": "c"}]	0x826161bf61626163ff
+------------------------------+------------------------------------+	
{_ "Fun": true, "Amt": -2}	0xbf6346756ef563416d7421ff
 +------------------------------+------------------------------------+

 Table 6: Examples of Encoded CBOR Data Items

Appendix B. Jump Table for Initial Byte

 For brevity, this jump table does not show initial bytes that are
 reserved for future extension. It also only shows a selection of the
 initial bytes that can be used for optional features. (All unsigned
 integers are in network byte order.)

 +============+==+
 | Byte | Structure/Semantics |
 +============+==+
 | 0x00..0x17 | unsigned integer 0x00..0x17 (0..23) |
 +------------+--+
 | 0x18 | unsigned integer (one-byte uint8_t follows) |
 +------------+--+
 | 0x19 | unsigned integer (two-byte uint16_t follows) |
 +------------+--+
 | 0x1a | unsigned integer (four-byte uint32_t follows) |
 +------------+--+
 | 0x1b | unsigned integer (eight-byte uint64_t follows) |
 +------------+--+
 | 0x20..0x37 | negative integer -1-0x00..-1-0x17 (-1..-24) |
 +------------+--+
 | 0x38 | negative integer -1-n (one-byte uint8_t for n |
 | | follows) |
 +------------+--+
 | 0x39 | negative integer -1-n (two-byte uint16_t for n |
 | | follows) |
 +------------+--+
 | 0x3a | negative integer -1-n (four-byte uint32_t for |
 | | n follows) |
 +------------+--+
 | 0x3b | negative integer -1-n (eight-byte uint64_t for |
 | | n follows) |
 +------------+--+
 | 0x40..0x57 | byte string (0x00..0x17 bytes follow) |
 +------------+--+
 | 0x58 | byte string (one-byte uint8_t for n, and then |
 | | n bytes follow) |
 +------------+--+
 | 0x59 | byte string (two-byte uint16_t for n, and then |
 | | n bytes follow) |
 +------------+--+
 | 0x5a | byte string (four-byte uint32_t for n, and |
 | | then n bytes follow) |
 +------------+--+

 | 0x5b | byte string (eight-byte uint64_t for n, and |
 | | then n bytes follow) |
 +------------+--+
 | 0x5f | byte string, byte strings follow, terminated |
 | | by "break" |
 +------------+--+
 | 0x60..0x77 | UTF-8 string (0x00..0x17 bytes follow) |
 +------------+--+
 | 0x78 | UTF-8 string (one-byte uint8_t for n, and then |
 | | n bytes follow) |
 +------------+--+
 | 0x79 | UTF-8 string (two-byte uint16_t for n, and |
 | | then n bytes follow) |
 +------------+--+
 | 0x7a | UTF-8 string (four-byte uint32_t for n, and |
 | | then n bytes follow) |
 +------------+--+
 | 0x7b | UTF-8 string (eight-byte uint64_t for n, and |
 | | then n bytes follow) |
 +------------+--+
 | 0x7f | UTF-8 string, UTF-8 strings follow, terminated |
 | | by "break" |
 +------------+--+
 | 0x80..0x97 | array (0x00..0x17 data items follow) |
 +------------+--+
 | 0x98 | array (one-byte uint8_t for n, and then n data |
 | | items follow) |
 +------------+--+
 | 0x99 | array (two-byte uint16_t for n, and then n |
 | | data items follow) |
 +------------+--+
 | 0x9a | array (four-byte uint32_t for n, and then n |
 | | data items follow) |
 +------------+--+
 | 0x9b | array (eight-byte uint64_t for n, and then n |
 | | data items follow) |
 +------------+--+
 | 0x9f | array, data items follow, terminated by |
 | | "break" |
 +------------+--+
 | 0xa0..0xb7 | map (0x00..0x17 pairs of data items follow) |
 +------------+--+
 | 0xb8 | map (one-byte uint8_t for n, and then n pairs |
 | | of data items follow) |
 +------------+--+
 | 0xb9 | map (two-byte uint16_t for n, and then n pairs |
 | | of data items follow) |
 +------------+--+
 | 0xba | map (four-byte uint32_t for n, and then n |
 | | pairs of data items follow) |
 +------------+--+
 | 0xbb | map (eight-byte uint64_t for n, and then n |
 | | pairs of data items follow) |
 +------------+--+
 | 0xbf | map, pairs of data items follow, terminated by |
 | | "break" |
 +------------+--+
 | 0xc0 | text-based date/time (data item follows; see |
 | | Section 3.4.1) |
 +------------+--+
 | 0xc1 | epoch-based date/time (data item follows; see |
 | | Section 3.4.2) |
 +------------+--+
 | 0xc2 | unsigned bignum (data item "byte string" |
 | | follows) |
 +------------+--+
 | 0xc3 | negative bignum (data item "byte string" |
 | | follows) |
 +------------+--+
 | 0xc4 | decimal Fraction (data item "array" follows; |
 | | see Section 3.4.4) |

 +------------+--+
 | 0xc5 | bigfloat (data item "array" follows; see |
 | | Section 3.4.4) |
 +------------+--+
 | 0xc6..0xd4 | (tag) |
 +------------+--+
 | 0xd5..0xd7 | expected conversion (data item follows; see |
 | | Section 3.4.5.2) |
 +------------+--+
 | 0xd8..0xdb | (more tags; 1/2/4/8 bytes of tag number and |
 | | then a data item follow) |
 +------------+--+
 | 0xe0..0xf3 | (simple value) |
 +------------+--+
 | 0xf4 | false |
 +------------+--+
 | 0xf5 | true |
 +------------+--+
 | 0xf6 | null |
 +------------+--+
 | 0xf7 | undefined |
 +------------+--+
 | 0xf8 | (simple value, one byte follows) |
 +------------+--+
 | 0xf9 | half-precision float (two-byte IEEE 754) |
 +------------+--+
 | 0xfa | single-precision float (four-byte IEEE 754) |
 +------------+--+
 | 0xfb | double-precision float (eight-byte IEEE 754) |
 +------------+--+
 | 0xff | "break" stop code |
 +------------+--+

 Table 7: Jump Table for Initial Byte

Appendix C. Pseudocode

 The well-formedness of a CBOR item can be checked by the pseudocode
 in Figure 1. The data is well-formed if and only if:

 * the pseudocode does not "fail";

 * after execution of the pseudocode, no bytes are left in the input
 (except in streaming applications).

 The pseudocode has the following prerequisites:

 * take(n) reads n bytes from the input data and returns them as a
 byte string. If n bytes are no longer available, take(n) fails.

 * uint() converts a byte string into an unsigned integer by
 interpreting the byte string in network byte order.

 * Arithmetic works as in C.

 * All variables are unsigned integers of sufficient range.

 Note that "well_formed" returns the major type for well-formed
 definite-length items, but 99 for an indefinite-length item (or -1
 for a "break" stop code, only if "breakable" is set). This is used
 in "well_formed_indefinite" to ascertain that indefinite-length
 strings only contain definite-length strings as chunks.

 well_formed(breakable = false) {
 // process initial bytes
 ib = uint(take(1));
 mt = ib >> 5;
 val = ai = ib & 0x1f;
 switch (ai) {
 case 24: val = uint(take(1)); break;
 case 25: val = uint(take(2)); break;

 case 26: val = uint(take(4)); break;
 case 27: val = uint(take(8)); break;
 case 28: case 29: case 30: fail();
 case 31:
 return well_formed_indefinite(mt, breakable);
 }
 // process content
 switch (mt) {
 // case 0, 1, 7 do not have content; just use val
 case 2: case 3: take(val); break; // bytes/UTF-8
 case 4: for (i = 0; i < val; i++) well_formed(); break;
 case 5: for (i = 0; i < val*2; i++) well_formed(); break;
 case 6: well_formed(); break; // 1 embedded data item
 case 7: if (ai == 24 && val < 32) fail(); // bad simple
 }
 return mt; // definite-length data item
 }

 well_formed_indefinite(mt, breakable) {
 switch (mt) {
 case 2: case 3:
 while ((it = well_formed(true)) != -1)
 if (it != mt) // need definite-length chunk
 fail(); // of same type
 break;
 case 4: while (well_formed(true) != -1); break;
 case 5: while (well_formed(true) != -1) well_formed(); break;
 case 7:
 if (breakable)
 return -1; // signal break out
 else fail(); // no enclosing indefinite
 default: fail(); // wrong mt
 }
 return 99; // indefinite-length data item
 }

 Figure 1: Pseudocode for Well-Formedness Check

 Note that the remaining complexity of a complete CBOR decoder is
 about presenting data that has been decoded to the application in an
 appropriate form.

 Major types 0 and 1 are designed in such a way that they can be
 encoded in C from a signed integer without actually doing an if-then-
 else for positive/negative (Figure 2). This uses the fact that
 (-1-n), the transformation for major type 1, is the same as ˜n
 (bitwise complement) in C unsigned arithmetic; ˜n can then be
 expressed as (-1)^n for the negative case, while 0^n leaves n
 unchanged for nonnegative. The sign of a number can be converted to
 -1 for negative and 0 for nonnegative (0 or positive) by arithmetic-
 shifting the number by one bit less than the bit length of the number
 (for example, by 63 for 64-bit numbers).

 void encode_sint(int64_t n) {
 uint64t ui = n >> 63; // extend sign to whole length
 unsigned mt = ui & 0x20; // extract (shifted) major type
 ui ^= n; // complement negatives
 if (ui < 24)
 *p++ = mt + ui;
 else if (ui < 256) {
 *p++ = mt + 24;
 *p++ = ui;
 } else
 ...

 Figure 2: Pseudocode for Encoding a Signed Integer

 See Section 1.2 for some specific assumptions about the profile of
 the C language used in these pieces of code.

Appendix D. Half-Precision

 As half-precision floating-point numbers were only added to IEEE 754
 in 2008 [IEEE754], today’s programming platforms often still only
 have limited support for them. It is very easy to include at least
 decoding support for them even without such support. An example of a
 small decoder for half-precision floating-point numbers in the C
 language is shown in Figure 3. A similar program for Python is in
 Figure 4; this code assumes that the 2-byte value has already been
 decoded as an (unsigned short) integer in network byte order (as
 would be done by the pseudocode in Appendix C).

 #include <math.h>

 double decode_half(unsigned char *halfp) {
 unsigned half = (halfp[0] << 8) + halfp[1];
 unsigned exp = (half >> 10) & 0x1f;
 unsigned mant = half & 0x3ff;
 double val;
 if (exp == 0) val = ldexp(mant, -24);
 else if (exp != 31) val = ldexp(mant + 1024, exp - 25);
 else val = mant == 0 ? INFINITY : NAN;
 return half & 0x8000 ? -val : val;
 }

 Figure 3: C Code for a Half-Precision Decoder

 import struct
 from math import ldexp

 def decode_single(single):
 return struct.unpack("!f", struct.pack("!I", single))[0]

 def decode_half(half):
 valu = (half & 0x7fff) << 13 | (half & 0x8000) << 16
 if ((half & 0x7c00) != 0x7c00):
 return ldexp(decode_single(valu), 112)
 return decode_single(valu | 0x7f800000)

 Figure 4: Python Code for a Half-Precision Decoder

Appendix E. Comparison of Other Binary Formats to CBOR’s Design
 Objectives

 The proposal for CBOR follows a history of binary formats that is as
 long as the history of computers themselves. Different formats have
 had different objectives. In most cases, the objectives of the
 format were never stated, although they can sometimes be implied by
 the context where the format was first used. Some formats were meant
 to be universally usable, although history has proven that no binary
 format meets the needs of all protocols and applications.

 CBOR differs from many of these formats due to it starting with a set
 of objectives and attempting to meet just those. This section
 compares a few of the dozens of formats with CBOR’s objectives in
 order to help the reader decide if they want to use CBOR or a
 different format for a particular protocol or application.

 Note that the discussion here is not meant to be a criticism of any
 format: to the best of our knowledge, no format before CBOR was meant
 to cover CBOR’s objectives in the priority we have assigned them. A
 brief recap of the objectives from Section 1.1 is:

 1. unambiguous encoding of most common data formats from Internet
 standards

 2. code compactness for encoder or decoder

 3. no schema description needed

 4. reasonably compact serialization

 5. applicability to constrained and unconstrained applications

 6. good JSON conversion

 7. extensibility

 A discussion of CBOR and other formats with respect to a different
 set of design objectives is provided in Section 5 and Appendix C of
 [RFC8618].

E.1. ASN.1 DER, BER, and PER

 [ASN.1] has many serializations. In the IETF, DER and BER are the
 most common. The serialized output is not particularly compact for
 many items, and the code needed to decode numeric items can be
 complex on a constrained device.

 Few (if any) IETF protocols have adopted one of the several variants
 of Packed Encoding Rules (PER). There could be many reasons for
 this, but one that is commonly stated is that PER makes use of the
 schema even for parsing the surface structure of the data item,
 requiring significant tool support. There are different versions of
 the ASN.1 schema language in use, which has also hampered adoption.

E.2. MessagePack

 [MessagePack] is a concise, widely implemented counted binary
 serialization format, similar in many properties to CBOR, although
 somewhat less regular. While the data model can be used to represent
 JSON data, MessagePack has also been used in many remote procedure
 call (RPC) applications and for long-term storage of data.

 MessagePack has been essentially stable since it was first published
 around 2011; it has not yet had a transition. The evolution of
 MessagePack is impeded by an imperative to maintain complete
 backwards compatibility with existing stored data, while only few
 bytecodes are still available for extension. Repeated requests over
 the years from the MessagePack user community to separate out binary
 and text strings in the encoding recently have led to an extension
 proposal that would leave MessagePack’s "raw" data ambiguous between
 its usages for binary and text data. The extension mechanism for
 MessagePack remains unclear.

E.3. BSON

 [BSON] is a data format that was developed for the storage of JSON-
 like maps (JSON objects) in the MongoDB database. Its major
 distinguishing feature is the capability for in-place update, which
 prevents a compact representation. BSON uses a counted
 representation except for map keys, which are null-byte terminated.
 While BSON can be used for the representation of JSON-like objects on
 the wire, its specification is dominated by the requirements of the
 database application and has become somewhat baroque. The status of
 how BSON extensions will be implemented remains unclear.

E.4. MSDTP: RFC 713

 Message Services Data Transmission (MSDTP) is a very early example of
 a compact message format; it is described in [RFC0713], written in
 1976. It is included here for its historical value, not because it
 was ever widely used.

E.5. Conciseness on the Wire

 While CBOR’s design objective of code compactness for encoders and
 decoders is a higher priority than its objective of conciseness on
 the wire, many people focus on the wire size. Table 8 shows some
 encoding examples for the simple nested array [1, [2, 3]]; where some
 form of indefinite-length encoding is supported by the encoding,
 [_ 1, [2, 3]] (indefinite length on the outer array) is also shown.

 +=============+============================+================+
 | Format | [1, [2, 3]] | [_ 1, [2, 3]] |
 +=============+============================+================+
 | RFC 713 | c2 05 81 c2 02 82 83 | |
 +-------------+----------------------------+----------------+
 | ASN.1 BER | 30 0b 02 01 01 30 06 02 01 | 30 80 02 01 01 |
 | | 02 02 01 03 | 30 06 02 01 02 |
 | | | 02 01 03 00 00 |
 +-------------+----------------------------+----------------+
 | MessagePack | 92 01 92 02 03 | |
 +-------------+----------------------------+----------------+
 | BSON | 22 00 00 00 10 30 00 01 00 | |
 | | 00 00 04 31 00 13 00 00 00 | |
 | | 10 30 00 02 00 00 00 10 31 | |
 | | 00 03 00 00 00 00 00 | |
 +-------------+----------------------------+----------------+
 | CBOR | 82 01 82 02 03 | 9f 01 82 02 03 |
 | | | ff |
 +-------------+----------------------------+----------------+

 Table 8: Examples for Different Levels of Conciseness

Appendix F. Well-Formedness Errors and Examples

 There are three basic kinds of well-formedness errors that can occur
 in decoding a CBOR data item:

 Too much data: There are input bytes left that were not consumed.
 This is only an error if the application assumed that the input
 bytes would span exactly one data item. Where the application
 uses the self-delimiting nature of CBOR encoding to permit
 additional data after the data item, as is done in CBOR sequences
 [RFC8742], for example, the CBOR decoder can simply indicate which
 part of the input has not been consumed.

 Too little data: The input data available would need additional
 bytes added at their end for a complete CBOR data item. This may
 indicate the input is truncated; it is also a common error when
 trying to decode random data as CBOR. For some applications,
 however, this may not actually be an error, as the application may
 not be certain it has all the data yet and can obtain or wait for
 additional input bytes. Some of these applications may have an
 upper limit for how much additional data can appear; here the
 decoder may be able to indicate that the encoded CBOR data item
 cannot be completed within this limit.

 Syntax error: The input data are not consistent with the
 requirements of the CBOR encoding, and this cannot be remedied by
 adding (or removing) data at the end.

 In Appendix C, errors of the first kind are addressed in the first
 paragraph and bullet list (requiring "no bytes are left"), and errors
 of the second kind are addressed in the second paragraph/bullet list
 (failing "if n bytes are no longer available"). Errors of the third
 kind are identified in the pseudocode by specific instances of
 calling fail(), in order:

 * a reserved value is used for additional information (28, 29, 30)

 * major type 7, additional information 24, value < 32 (incorrect)

 * incorrect substructure of indefinite-length byte string or text
 string (may only contain definite-length strings of the same major
 type)

 * "break" stop code (major type 7, additional information 31) occurs
 in a value position of a map or except at a position directly in
 an indefinite-length item where also another enclosed data item
 could occur

 * additional information 31 used with major type 0, 1, or 6

F.1. Examples of CBOR Data Items That Are Not Well-Formed

 This subsection shows a few examples for CBOR data items that are not
 well-formed. Each example is a sequence of bytes, each shown in
 hexadecimal; multiple examples in a list are separated by commas.

 Examples for well-formedness error kind 1 (too much data) can easily
 be formed by adding data to a well-formed encoded CBOR data item.

 Similarly, examples for well-formedness error kind 2 (too little
 data) can be formed by truncating a well-formed encoded CBOR data
 item. In test suites, it may be beneficial to specifically test with
 incomplete data items that would require large amounts of addition to
 be completed (for instance by starting the encoding of a string of a
 very large size).

 A premature end of the input can occur in a head or within the
 enclosed data, which may be bare strings or enclosed data items that
 are either counted or should have been ended by a "break" stop code.

 End of input in a head: 18, 19, 1a, 1b, 19 01, 1a 01 02, 1b 01 02 03
 04 05 06 07, 38, 58, 78, 98, 9a 01 ff 00, b8, d8, f8, f9 00, fa 00
 00, fb 00 00 00

 Definite-length strings with short data: 41, 61, 5a ff ff ff ff 00,
 5b ff ff ff ff ff ff ff ff 01 02 03, 7a ff ff ff ff 00, 7b 7f ff
 ff ff ff ff ff ff 01 02 03

 Definite-length maps and arrays not closed with enough items: 81, 81
 81 81 81 81 81 81 81 81, 82 00, a1, a2 01 02, a1 00, a2 00 00 00

 Tag number not followed by tag content: c0

 Indefinite-length strings not closed by a "break" stop code: 5f 41
 00, 7f 61 00

 Indefinite-length maps and arrays not closed by a "break" stop
 code: 9f, 9f 01 02, bf, bf 01 02 01 02, 81 9f, 9f 80 00, 9f 9f 9f 9f
 9f ff ff ff ff, 9f 81 9f 81 9f 9f ff ff ff

 A few examples for the five subkinds of well-formedness error kind 3
 (syntax error) are shown below.

 Subkind 1:
 Reserved additional information values: 1c, 1d, 1e, 3c, 3d, 3e,
 5c, 5d, 5e, 7c, 7d, 7e, 9c, 9d, 9e, bc, bd, be, dc, dd, de, fc,
 fd, fe,

 Subkind 2:
 Reserved two-byte encodings of simple values: f8 00, f8 01, f8
 18, f8 1f

 Subkind 3:
 Indefinite-length string chunks not of the correct type: 5f 00
 ff, 5f 21 ff, 5f 61 00 ff, 5f 80 ff, 5f a0 ff, 5f c0 00 ff, 5f
 e0 ff, 7f 41 00 ff

 Indefinite-length string chunks not definite length: 5f 5f 41 00
 ff ff, 7f 7f 61 00 ff ff

 Subkind 4:
 Break occurring on its own outside of an indefinite-length
 item: ff

 Break occurring in a definite-length array or map or a tag: 81
 ff, 82 00 ff, a1 ff, a1 ff 00, a1 00 ff, a2 00 00 ff, 9f 81 ff,
 9f 82 9f 81 9f 9f ff ff ff ff

 Break in an indefinite-length map that would lead to an odd
 number of items (break in a value position): bf 00 ff, bf 00 00

 00 ff

 Subkind 5:
 Major type 0, 1, 6 with additional information 31: 1f, 3f, df

Appendix G. Changes from RFC 7049

 As discussed in the introduction, this document formally obsoletes
 RFC 7049 while keeping full compatibility with the interchange format
 from RFC 7049. This document provides editorial improvements, added
 detail, and fixed errata. This document does not create a new
 version of the format.

G.1. Errata Processing and Clerical Changes

 The two verified errata on RFC 7049, [Err3764] and [Err3770],
 concerned two encoding examples in the text that have been corrected
 (Section 3.4.3: "29" -> "49", Section 5.5: "0b000_11101" ->
 "0b000_11001"). Also, RFC 7049 contained an example using the
 numeric value 24 for a simple value [Err5917], which is not well-
 formed; this example has been removed. Errata report 5763 [Err5763]
 pointed to an error in the wording of the definition of tags; this
 was resolved during a rewrite of Section 3.4. Errata report 5434
 [Err5434] pointed out that the Universal Binary JSON (UBJSON) example
 in Appendix E no longer complied with the version of UBJSON current
 at the time of the errata report submission. It turned out that the
 UBJSON specification had completely changed since 2013; this example
 therefore was removed. Other errata reports [Err4409] [Err4963]
 [Err4964] complained that the map key sorting rules for canonical
 encoding were onerous; these led to a reconsideration of the
 canonical encoding suggestions and replacement by the deterministic
 encoding suggestions (described below). An editorial suggestion in
 errata report 4294 [Err4294] was also implemented (improved symmetry
 by adding "Second value" to a comment to the last example in
 Section 3.2.2).

 Other clerical changes include:

 * the use of new xml2rfc functionality [RFC7991];

 * more explanation of the notation used;

 * the update of references, e.g., from RFC 4627 to [RFC8259], from
 CNN-TERMS to [RFC7228], and from the 5.1 edition to the 11th
 edition of [ECMA262]; the addition of a reference to [IEEE754] and
 importation of required definitions; the addition of references to
 [C] and [Cplusplus20]; and the addition of a reference to
 [RFC8618] that further illustrates the discussion in Appendix E;

 * in the discussion of diagnostic notation (Section 8), the
 "Extended Diagnostic Notation" (EDN) defined in [RFC8610] is now
 mentioned, the gap in representing NaN payloads is now
 highlighted, and an explanation of representing indefinite-length
 strings with no chunks has been added (Section 8.1);

 * the addition of this appendix.

G.2. Changes in IANA Considerations

 The IANA considerations were generally updated (clerical changes,
 e.g., now pointing to the CBOR Working Group as the author of the
 specification). References to the respective IANA registries were
 added to the informative references.

 In the "Concise Binary Object Representation (CBOR) Tags" registry
 [IANA.cbor-tags], tags in the space from 256 to 32767 (lower half of
 "1+2") are no longer assigned by First Come First Served; this range
 is now Specification Required.

G.3. Changes in Suggestions and Other Informational Components

 While revising the document, beyond the addressing of the errata
 reports, the working group drew upon nearly seven years of experience
 with CBOR in a diverse set of applications. This led to a number of
 editorial changes, including adding tables for illustration, but also
 emphasizing some aspects and de-emphasizing others.

 A significant addition is Section 2, which discusses the CBOR data
 model and its small variations involved in the processing of CBOR.
 The introduction of terms for those variations (basic generic,
 extended generic, specific) enables more concise language in other
 places of the document and also helps to clarify expectations of
 implementations and of the extensibility features of the format.

 As a format derived from the JSON ecosystem, RFC 7049 was influenced
 by the JSON number system that was in turn inherited from JavaScript
 at the time. JSON does not provide distinct integers and floating-
 point values (and the latter are decimal in the format). CBOR
 provides binary representations of numbers, which do differ between
 integers and floating-point values. Experience from implementation
 and use suggested that the separation between these two number
 domains should be more clearly drawn in the document; language that
 suggested an integer could seamlessly stand in for a floating-point
 value was removed. Also, a suggestion (based on I-JSON [RFC7493])
 was added for handling these types when converting JSON to CBOR, and
 the use of a specific rounding mechanism has been recommended.

 For a single value in the data model, CBOR often provides multiple
 encoding options. A new section (Section 4) introduces the term
 "preferred serialization" (Section 4.1) and defines it for various
 kinds of data items. On the basis of this terminology, the section
 then discusses how a CBOR-based protocol can define "deterministic
 encoding" (Section 4.2), which avoids terms "canonical" and
 "canonicalization" from RFC 7049. The suggestion of "Core
 Deterministic Encoding Requirements" (Section 4.2.1) enables generic
 support for such protocol-defined encoding requirements. This
 document further eases the implementation of deterministic encoding
 by simplifying the map ordering suggested in RFC 7049 to a simple
 lexicographic ordering of encoded keys. A description of the older
 suggestion is kept as an alternative, now termed "length-first map
 key ordering" (Section 4.2.3).

 The terminology for well-formed and valid data was sharpened and more
 stringently used, avoiding less well-defined alternative terms such
 as "syntax error", "decoding error", and "strict mode" outside of
 examples. Also, a third level of requirements that an application
 has on its input data beyond CBOR-level validity is now explicitly
 called out. Well-formed (processable at all), valid (checked by a
 validity-checking generic decoder), and expected input (as checked by
 the application) are treated as a hierarchy of layers of
 acceptability.

 The handling of non-well-formed simple values was clarified in text
 and pseudocode. Appendix F was added to discuss well-formedness
 errors and provide examples for them. The pseudocode was updated to
 be more portable, and some portability considerations were added.

 The discussion of validity has been sharpened in two areas. Map
 validity (handling of duplicate keys) was clarified, and the domain
 of applicability of certain implementation choices explained. Also,
 while streamlining the terminology for tags, tag numbers, and tag
 content, discussion was added on tag validity, and the restrictions
 were clarified on tag content, in general and specifically for tag 1.

 An implementation note (and note for future tag definitions) was
 added to Section 3.4 about defining tags with semantics that depend
 on serialization order.

 Tag 35 is not defined by this document; the registration based on the
 definition in RFC 7049 remains in place.

 Terminology was introduced in Section 3 for "argument" and "head",

 simplifying further discussion.

 The security considerations (Section 10) were mostly rewritten and
 significantly expanded; in multiple other places, the document is now
 more explicit that a decoder cannot simply condone well-formedness
 errors.

Acknowledgements

 CBOR was inspired by MessagePack. MessagePack was developed and
 promoted by Sadayuki Furuhashi ("frsyuki"). This reference to
 MessagePack is solely for attribution; CBOR is not intended as a
 version of, or replacement for, MessagePack, as it has different
 design goals and requirements.

 The need for functionality beyond the original MessagePack
 specification became obvious to many people at about the same time
 around the year 2012. BinaryPack is a minor derivation of
 MessagePack that was developed by Eric Zhang for the binaryjs
 project. A similar, but different, extension was made by Tim Caswell
 for his msgpack-js and msgpack-js-browser projects. Many people have
 contributed to the discussion about extending MessagePack to separate
 text string representation from byte string representation.

 The encoding of the additional information in CBOR was inspired by
 the encoding of length information designed by Klaus Hartke for CoAP.

 This document also incorporates suggestions made by many people,
 notably Dan Frost, James Manger, Jeffrey Yasskin, Joe Hildebrand,
 Keith Moore, Laurence Lundblade, Matthew Lepinski, Michael
 Richardson, Nico Williams, Peter Occil, Phillip Hallam-Baker, Ray
 Polk, Stuart Cheshire, Tim Bray, Tony Finch, Tony Hansen, and Yaron
 Sheffer. Benjamin Kaduk provided an extensive review during IESG
 processing. Ã\211ric Vyncke, Erik Kline, Robert Wilton, and Roman Danyliw
 provided further IESG comments, which included an IoT directorate
 review by Eve Schooler.

Authors’ Addresses

 Carsten Bormann
 UniversitÃ¤t Bremen TZI
 Postfach 330440
 D-28359 Bremen
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

 Paul Hoffman
 ICANN

 Email: paul.hoffman@icann.org

