
Network Working Group D. Harrington
Request for Comments: 3411 Enterasys Networks
STD: 62 R. Presuhn
Obsoletes: 2571 BMC Software, Inc.
Category: Standards Track B. Wijnen
 Lucent Technologies
 December 2002

 An Architecture for Describing
 Simple Network Management Protocol (SNMP) Management Frameworks

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This document describes an architecture for describing Simple Network
 Management Protocol (SNMP) Management Frameworks. The architecture
 is designed to be modular to allow the evolution of the SNMP protocol
 standards over time. The major portions of the architecture are an
 SNMP engine containing a Message Processing Subsystem, a Security
 Subsystem and an Access Control Subsystem, and possibly multiple SNMP
 applications which provide specific functional processing of
 management data. This document obsoletes RFC 2571.

Table of Contents

 1. Introduction .. 4
 1.1. Overview .. 4
 1.2. SNMP .. 5
 1.3. Goals of this Architecture 6
 1.4. Security Requirements of this Architecture 6
 1.5. Design Decisions .. 8
 2. Documentation Overview 10
 2.1. Document Roadmap .. 11
 2.2. Applicability Statement 11

Harrington, et al. Standards Track [Page 1]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 2.3. Coexistence and Transition 11
 2.4. Transport Mappings .. 12
 2.5. Message Processing .. 12
 2.6. Security .. 12
 2.7. Access Control .. 13
 2.8. Protocol Operations 13
 2.9. Applications .. 14
 2.10. Structure of Management Information 15
 2.11. Textual Conventions 15
 2.12. Conformance Statements 15
 2.13. Management Information Base Modules 15
 2.13.1. SNMP Instrumentation MIBs 15
 2.14. SNMP Framework Documents 15
 3. Elements of the Architecture 16
 3.1. The Naming of Entities 17
 3.1.1. SNMP engine ... 18
 3.1.1.1. snmpEngineID .. 18
 3.1.1.2. Dispatcher .. 18
 3.1.1.3. Message Processing Subsystem 19
 3.1.1.3.1. Message Processing Model 19
 3.1.1.4. Security Subsystem 20
 3.1.1.4.1. Security Model 20
 3.1.1.4.2. Security Protocol 20
 3.1.2. Access Control Subsystem 21
 3.1.2.1. Access Control Model 21
 3.1.3. Applications .. 21
 3.1.3.1. SNMP Manager .. 22
 3.1.3.2. SNMP Agent .. 23
 3.2. The Naming of Identities 25
 3.2.1. Principal ... 25
 3.2.2. securityName .. 25
 3.2.3. Model-dependent security ID 26
 3.3. The Naming of Management Information 26
 3.3.1. An SNMP Context ... 28
 3.3.2. contextEngineID ... 28
 3.3.3. contextName ... 29
 3.3.4. scopedPDU ... 29
 3.4. Other Constructs .. 29
 3.4.1. maxSizeResponseScopedPDU 29
 3.4.2. Local Configuration Datastore 29
 3.4.3. securityLevel ... 29
 4. Abstract Service Interfaces 30
 4.1. Dispatcher Primitives 30
 4.1.1. Generate Outgoing Request or Notification 31
 4.1.2. Process Incoming Request or Notification PDU 31
 4.1.3. Generate Outgoing Response 32
 4.1.4. Process Incoming Response PDU 32
 4.1.5. Registering Responsibility for Handling SNMP PDUs 32

Harrington, et al. Standards Track [Page 2]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 4.2. Message Processing Subsystem Primitives 33
 4.2.1. Prepare Outgoing SNMP Request or Notification Message ... 33
 4.2.2. Prepare an Outgoing SNMP Response Message 34
 4.2.3. Prepare Data Elements from an Incoming SNMP Message 35
 4.3. Access Control Subsystem Primitives 35
 4.4. Security Subsystem Primitives 36
 4.4.1. Generate a Request or Notification Message 36
 4.4.2. Process Incoming Message 36
 4.4.3. Generate a Response Message 37
 4.5. Common Primitives ... 37
 4.5.1. Release State Reference Information 37
 4.6. Scenario Diagrams ... 38
 4.6.1. Command Generator or Notification Originator 38
 4.6.2. Scenario Diagram for a Command Responder Application 39
 5. Managed Object Definitions for SNMP Management Frameworks ... 40
 6. IANA Considerations ... 51
 6.1. Security Models ... 51
 6.2. Message Processing Models 51
 6.3. SnmpEngineID Formats 52
 7. Intellectual Property 52
 8. Acknowledgements .. 52
 9. Security Considerations 54
 10. References ... 54
 10.1. Normative References 54
 10.2. Informative References 56
 A. Guidelines for Model Designers 57
 A.1. Security Model Design Requirements 57
 A.1.1. Threats ... 57
 A.1.2. Security Processing 58
 A.1.3. Validate the security-stamp in a received message 59
 A.1.4. Security MIBs ... 59
 A.1.5. Cached Security Data 59
 A.2. Message Processing Model Design Requirements 60
 A.2.1. Receiving an SNMP Message from the Network 60
 A.2.2. Sending an SNMP Message to the Network 60
 A.3. Application Design Requirements 61
 A.3.1. Applications that Initiate Messages 61
 A.3.2. Applications that Receive Responses 62
 A.3.3. Applications that Receive Asynchronous Messages 62
 A.3.4. Applications that Send Responses 62
 A.4. Access Control Model Design Requirements 63
 Editors’ Addresses ... 63
 Full Copyright Statement 64

Harrington, et al. Standards Track [Page 3]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

1. Introduction

1.1. Overview

 This document defines a vocabulary for describing SNMP Management
 Frameworks, and an architecture for describing the major portions of
 SNMP Management Frameworks.

 This document does not provide a general introduction to SNMP. Other
 documents and books can provide a much better introduction to SNMP.
 Nor does this document provide a history of SNMP. That also can be
 found in books and other documents.

 Section 1 describes the purpose, goals, and design decisions of this
 architecture.

 Section 2 describes various types of documents which define (elements
 of) SNMP Frameworks, and how they fit into this architecture. It
 also provides a minimal road map to the documents which have
 previously defined SNMP frameworks.

 Section 3 details the vocabulary of this architecture and its pieces.
 This section is important for understanding the remaining sections,
 and for understanding documents which are written to fit within this
 architecture.

 Section 4 describes the primitives used for the abstract service
 interfaces between the various subsystems, models and applications
 within this architecture.

 Section 5 defines a collection of managed objects used to instrument
 SNMP entities within this architecture.

 Sections 6, 7, 8, 9, 10 and 11 are administrative in nature.

 Appendix A contains guidelines for designers of Models which are
 expected to fit within this architecture.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Harrington, et al. Standards Track [Page 4]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

1.2. SNMP

 An SNMP management system contains:

 - several (potentially many) nodes, each with an SNMP entity
 containing command responder and notification originator
 applications, which have access to management instrumentation
 (traditionally called agents);

 - at least one SNMP entity containing command generator and/or
 notification receiver applications (traditionally called a
 manager) and,

 - a management protocol, used to convey management information
 between the SNMP entities.

 SNMP entities executing command generator and notification receiver
 applications monitor and control managed elements. Managed elements
 are devices such as hosts, routers, terminal servers, etc., which are
 monitored and controlled via access to their management information.

 It is the purpose of this document to define an architecture which
 can evolve to realize effective management in a variety of
 configurations and environments. The architecture has been designed
 to meet the needs of implementations of:

 - minimal SNMP entities with command responder and/or
 notification originator applications (traditionally called SNMP
 agents),

 - SNMP entities with proxy forwarder applications (traditionally
 called SNMP proxy agents),

 - command line driven SNMP entities with command generator and/or
 notification receiver applications (traditionally called SNMP
 command line managers),

 - SNMP entities with command generator and/or notification
 receiver, plus command responder and/or notification originator
 applications (traditionally called SNMP mid-level managers or
 dual-role entities),

 - SNMP entities with command generator and/or notification
 receiver and possibly other types of applications for managing
 a potentially very large number of managed nodes (traditionally
 called (network) management stations).

Harrington, et al. Standards Track [Page 5]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

1.3. Goals of this Architecture

 This architecture was driven by the following goals:

 - Use existing materials as much as possible. It is heavily
 based on previous work, informally known as SNMPv2u and
 SNMPv2*, based in turn on SNMPv2p.

 - Address the need for secure SET support, which is considered
 the most important deficiency in SNMPv1 and SNMPv2c.

 - Make it possible to move portions of the architecture forward
 in the standards track, even if consensus has not been reached
 on all pieces.

 - Define an architecture that allows for longevity of the SNMP
 Frameworks that have been and will be defined.

 - Keep SNMP as simple as possible.

 - Make it relatively inexpensive to deploy a minimal conforming
 implementation.

 - Make it possible to upgrade portions of SNMP as new approaches
 become available, without disrupting an entire SNMP framework.

 - Make it possible to support features required in large
 networks, but make the expense of supporting a feature directly
 related to the support of the feature.

1.4. Security Requirements of this Architecture

 Several of the classical threats to network protocols are applicable
 to the management problem and therefore would be applicable to any
 Security Model used in an SNMP Management Framework. Other threats
 are not applicable to the management problem. This section discusses
 principal threats, secondary threats, and threats which are of lesser
 importance.

 The principal threats against which any Security Model used within
 this architecture SHOULD provide protection are:

 Modification of Information
 The modification threat is the danger that some unauthorized
 entity may alter in-transit SNMP messages generated on behalf
 of an authorized principal in such a way as to effect
 unauthorized management operations, including falsifying the
 value of an object.

Harrington, et al. Standards Track [Page 6]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 Masquerade
 The masquerade threat is the danger that management operations
 not authorized for some principal may be attempted by assuming
 the identity of another principal that has the appropriate
 authorizations.

 Secondary threats against which any Security Model used within this
 architecture SHOULD provide protection are:

 Message Stream Modification
 The SNMP protocol is typically based upon a connectionless
 transport service which may operate over any subnetwork
 service. The re-ordering, delay or replay of messages can and
 does occur through the natural operation of many such
 subnetwork services. The message stream modification threat is
 the danger that messages may be maliciously re-ordered, delayed
 or replayed to an extent which is greater than can occur
 through the natural operation of a subnetwork service, in order
 to effect unauthorized management operations.

 Disclosure
 The disclosure threat is the danger of eavesdropping on the
 exchanges between SNMP engines. Protecting against this threat
 may be required as a matter of local policy.

 There are at least two threats against which a Security Model within
 this architecture need not protect, since they are deemed to be of
 lesser importance in this context:

 Denial of Service
 A Security Model need not attempt to address the broad range of
 attacks by which service on behalf of authorized users is
 denied. Indeed, such denial-of-service attacks are in many
 cases indistinguishable from the type of network failures with
 which any viable management protocol must cope as a matter of
 course.

 Traffic Analysis
 A Security Model need not attempt to address traffic analysis
 attacks. Many traffic patterns are predictable - entities may
 be managed on a regular basis by a relatively small number of
 management stations - and therefore there is no significant
 advantage afforded by protecting against traffic analysis.

Harrington, et al. Standards Track [Page 7]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

1.5. Design Decisions

 Various design decisions were made in support of the goals of the
 architecture and the security requirements:

 - Architecture
 An architecture should be defined which identifies the
 conceptual boundaries between the documents. Subsystems should
 be defined which describe the abstract services provided by
 specific portions of an SNMP framework. Abstract service
 interfaces, as described by service primitives, define the
 abstract boundaries between documents, and the abstract
 services that are provided by the conceptual subsystems of an
 SNMP framework.

 - Self-contained Documents
 Elements of procedure plus the MIB objects which are needed for
 processing for a specific portion of an SNMP framework should
 be defined in the same document, and as much as possible,
 should not be referenced in other documents. This allows
 pieces to be designed and documented as independent and self-
 contained parts, which is consistent with the general SNMP MIB
 module approach. As portions of SNMP change over time, the
 documents describing other portions of SNMP are not directly
 impacted. This modularity allows, for example, Security
 Models, authentication and privacy mechanisms, and message
 formats to be upgraded and supplemented as the need arises.
 The self-contained documents can move along the standards track
 on different time-lines.

 This modularity of specification is not meant to be interpreted
 as imposing any specific requirements on implementation.

 - Threats
 The Security Models in the Security Subsystem SHOULD protect
 against the principal and secondary threats: modification of
 information, masquerade, message stream modification and
 disclosure. They do not need to protect against denial of
 service and traffic analysis.

 - Remote Configuration
 The Security and Access Control Subsystems add a whole new set
 of SNMP configuration parameters. The Security Subsystem also
 requires frequent changes of secrets at the various SNMP
 entities. To make this deployable in a large operational
 environment, these SNMP parameters must be remotely
 configurable.

Harrington, et al. Standards Track [Page 8]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 - Controlled Complexity
 It is recognized that producers of simple managed devices want
 to keep the resources used by SNMP to a minimum. At the same
 time, there is a need for more complex configurations which can
 spend more resources for SNMP and thus provide more
 functionality. The design tries to keep the competing
 requirements of these two environments in balance and allows
 the more complex environments to logically extend the simple
 environment.

Harrington, et al. Standards Track [Page 9]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

2. Documentation Overview

 The following figure shows the set of documents that fit within the
 SNMP Architecture.

 +------------------------- Document Set ----------------------------+
 | |
 | +----------+ +-----------------+ +----------------+ |
 | | Document | | Applicability | | Coexistence | |
 | | Roadmap | | Statement | | & Transition | |
 | +----------+ +-----------------+ +----------------+ |
 | |
 | +---+ |
	Message Handling							
	+----------------+ +-----------------+ +-----------------+							
		Transport		Message		Security		
		Mappings		Processing and				
				Dispatcher				
	+----------------+ +-----------------+ +-----------------+							
+---+								
+---+								
	PDU Handling							
	+----------------+ +-----------------+ +-----------------+							
		Protocol		Applications		Access		
		Operations				Control		
	+----------------+ +-----------------+ +-----------------+							
+---+								
+---+								
	Information Model							
	+--------------+ +--------------+ +---------------+							
		Structure of		Textual		Conformance		
		Management		Conventions		Statements		
		Information						
	+--------------+ +--------------+ +---------------+							
+---+								
+---+								
	MIB Modules written in various formats, e.g.:							
	+----------------+ +----------------+							
		SMIv1 (STD 18)		SMIv2 (STD 58)				
		format		format				
	+----------------+ +----------------+							
+---+								
 +---+

Harrington, et al. Standards Track [Page 10]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 Each of these documents may be replaced or supplemented. This
 Architecture document specifically describes how new documents fit
 into the set of documents in the area of Message and PDU handling.

2.1. Document Roadmap

 One or more documents may be written to describe how sets of
 documents taken together form specific Frameworks. The configuration
 of document sets might change over time, so the "road map" should be
 maintained in a document separate from the standards documents
 themselves.

 An example of such a roadmap is "Introduction and Applicability
 Statements for the Internet-Standard Management Framework" [RFC3410].

2.2. Applicability Statement

 SNMP is used in networks that vary widely in size and complexity, by
 organizations that vary widely in their requirements of management.
 Some models will be designed to address specific problems of
 management, such as message security.

 One or more documents may be written to describe the environments to
 which certain versions of SNMP or models within SNMP would be
 appropriately applied, and those to which a given model might be
 inappropriately applied.

2.3. Coexistence and Transition

 The purpose of an evolutionary architecture is to permit new models
 to replace or supplement existing models. The interactions between
 models could result in incompatibilities, security "holes", and other
 undesirable effects.

 The purpose of Coexistence documents is to detail recognized
 anomalies and to describe required and recommended behaviors for
 resolving the interactions between models within the architecture.

 Coexistence documents may be prepared separately from model
 definition documents, to describe and resolve interaction anomalies
 between a model definition and one or more other model definitions.

 Additionally, recommendations for transitions between models may also
 be described, either in a coexistence document or in a separate
 document.

Harrington, et al. Standards Track [Page 11]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 One such coexistence document is [RFC2576], "Coexistence between
 Version 1, Version 2, and Version 3 of the Internet-Standard Network
 Management Framework".

2.4. Transport Mappings

 SNMP messages are sent over various transports. It is the purpose of
 Transport Mapping documents to define how the mapping between SNMP
 and the transport is done.

2.5. Message Processing

 A Message Processing Model document defines a message format, which
 is typically identified by a version field in an SNMP message header.
 The document may also define a MIB module for use in message
 processing and for instrumentation of version-specific interactions.

 An SNMP engine includes one or more Message Processing Models, and
 thus may support sending and receiving multiple versions of SNMP
 messages.

2.6. Security

 Some environments require secure protocol interactions. Security is
 normally applied at two different stages:

 - in the transmission/receipt of messages, and

 - in the processing of the contents of messages.

 For purposes of this document, "security" refers to message-level
 security; "access control" refers to the security applied to protocol
 operations.

 Authentication, encryption, and timeliness checking are common
 functions of message level security.

 A security document describes a Security Model, the threats against
 which the model protects, the goals of the Security Model, the
 protocols which it uses to meet those goals, and it may define a MIB
 module to describe the data used during processing, and to allow the
 remote configuration of message-level security parameters, such as
 keys.

 An SNMP engine may support multiple Security Models concurrently.

Harrington, et al. Standards Track [Page 12]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

2.7. Access Control

 During processing, it may be required to control access to managed
 objects for operations.

 An Access Control Model defines mechanisms to determine whether
 access to a managed object should be allowed. An Access Control
 Model may define a MIB module used during processing and to allow the
 remote configuration of access control policies.

2.8. Protocol Operations

 SNMP messages encapsulate an SNMP Protocol Data Unit (PDU). SNMP
 PDUs define the operations performed by the receiving SNMP engine.
 It is the purpose of a Protocol Operations document to define the
 operations of the protocol with respect to the processing of the
 PDUs. Every PDU belongs to one or more of the PDU classes defined
 below:

 1) Read Class:

 The Read Class contains protocol operations that retrieve
 management information. For example, [RFC3416] defines the
 following protocol operations for the Read Class: GetRequest-
 PDU, GetNextRequest-PDU, and GetBulkRequest-PDU.

 2) Write Class:

 The Write Class contains protocol operations which attempt to
 modify management information. For example, [RFC3416] defines
 the following protocol operation for the Write Class:
 SetRequest-PDU.

 3) Response Class:

 The Response Class contains protocol operations which are sent
 in response to a previous request. For example, [RFC3416]
 defines the following for the Response Class: Response-PDU,
 Report-PDU.

 4) Notification Class:

 The Notification Class contains protocol operations which send
 a notification to a notification receiver application. For
 example, [RFC3416] defines the following operations for the
 Notification Class: Trapv2-PDU, InformRequest-PDU.

Harrington, et al. Standards Track [Page 13]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 5) Internal Class:

 The Internal Class contains protocol operations which are
 exchanged internally between SNMP engines. For example,
 [RFC3416] defines the following operation for the Internal
 Class: Report-PDU.

 The preceding five classifications are based on the functional
 properties of a PDU. It is also useful to classify PDUs based on
 whether a response is expected:

 6) Confirmed Class:

 The Confirmed Class contains all protocol operations which
 cause the receiving SNMP engine to send back a response. For
 example, [RFC3416] defines the following operations for the
 Confirmed Class: GetRequest-PDU, GetNextRequest-PDU,
 GetBulkRequest-PDU, SetRequest-PDU, and InformRequest-PDU.

 7) Unconfirmed Class:

 The Unconfirmed Class contains all protocol operations which
 are not acknowledged. For example, [RFC3416] defines the
 following operations for the Unconfirmed Class: Report-PDU,
 Trapv2-PDU, and GetResponse-PDU.

 An application document defines which Protocol Operations are
 supported by the application.

2.9. Applications

 An SNMP entity normally includes a number of applications.
 Applications use the services of an SNMP engine to accomplish
 specific tasks. They coordinate the processing of management
 information operations, and may use SNMP messages to communicate with
 other SNMP entities.

 An applications document describes the purpose of an application, the
 services required of the associated SNMP engine, and the protocol
 operations and informational model that the application uses to
 perform management operations.

 An application document defines which set of documents are used to
 specifically define the structure of management information, textual
 conventions, conformance requirements, and operations supported by
 the application.

Harrington, et al. Standards Track [Page 14]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

2.10. Structure of Management Information

 Management information is viewed as a collection of managed objects,
 residing in a virtual information store, termed the Management
 Information Base (MIB). Collections of related objects are defined
 in MIB modules.

 It is the purpose of a Structure of Management Information document
 to establish the notation for defining objects, modules, and other
 elements of managed information.

2.11. Textual Conventions

 When designing a MIB module, it is often useful to define new types
 similar to those defined in the SMI, but with more precise semantics,
 or which have special semantics associated with them. These newly
 defined types are termed textual conventions, and may be defined in
 separate documents, or within a MIB module.

2.12. Conformance Statements

 It may be useful to define the acceptable lower-bounds of
 implementation, along with the actual level of implementation
 achieved. It is the purpose of the Conformance Statements document
 to define the notation used for these purposes.

2.13. Management Information Base Modules

 MIB documents describe collections of managed objects which
 instrument some aspect of a managed node.

2.13.1. SNMP Instrumentation MIBs

 An SNMP MIB document may define a collection of managed objects which
 instrument the SNMP protocol itself. In addition, MIB modules may be
 defined within the documents which describe portions of the SNMP
 architecture, such as the documents for Message processing Models,
 Security Models, etc. for the purpose of instrumenting those Models,
 and for the purpose of allowing their remote configuration.

2.14. SNMP Framework Documents

 This architecture is designed to allow an orderly evolution of
 portions of SNMP Frameworks.

 Throughout the rest of this document, the term "subsystem" refers to
 an abstract and incomplete specification of a portion of a Framework,
 that is further refined by a model specification.

Harrington, et al. Standards Track [Page 15]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 A "model" describes a specific design of a subsystem, defining
 additional constraints and rules for conformance to the model. A
 model is sufficiently detailed to make it possible to implement the
 specification.

 An "implementation" is an instantiation of a subsystem, conforming to
 one or more specific models.

 SNMP version 1 (SNMPv1), is the original Internet-Standard Network
 Management Framework, as described in RFCs 1155, 1157, and 1212.

 SNMP version 2 (SNMPv2), is the SNMPv2 Framework as derived from the
 SNMPv1 Framework. It is described in STD 58, RFCs 2578, 2579, 2580,
 and STD 62, RFCs 3416, 3417, and 3418. SNMPv2 has no message
 definition.

 The Community-based SNMP version 2 (SNMPv2c), is an experimental SNMP
 Framework which supplements the SNMPv2 Framework, as described in
 [RFC1901]. It adds the SNMPv2c message format, which is similar to
 the SNMPv1 message format.

 SNMP version 3 (SNMPv3), is an extensible SNMP Framework which
 supplements the SNMPv2 Framework, by supporting the following:

 - a new SNMP message format,

 - Security for Messages,

 - Access Control, and

 - Remote configuration of SNMP parameters.

 Other SNMP Frameworks, i.e., other configurations of implemented
 subsystems, are expected to also be consistent with this
 architecture.

3. Elements of the Architecture

 This section describes the various elements of the architecture and
 how they are named. There are three kinds of naming:

 1) the naming of entities,

 2) the naming of identities, and

 3) the naming of management information.

Harrington, et al. Standards Track [Page 16]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 This architecture also defines some names for other constructs that
 are used in the documentation.

3.1. The Naming of Entities

 An SNMP entity is an implementation of this architecture. Each such
 SNMP entity consists of an SNMP engine and one or more associated
 applications.

 The following figure shows details about an SNMP entity and the
 components within it.

 +---+
 | SNMP entity |
 | |
 | +---+ |
	SNMP engine (identified by snmpEngineID)									
	+------------+ +------------+ +-----------+ +-----------+									
		Dispatcher		Message		Security		Access		
				Processing		Subsystem		Control		
				Subsystem				Subsystem		
	+------------+ +------------+ +-----------+ +-----------+									
+---+										
+---+										
	Application(s)									
	+-------------+ +--------------+ +--------------+									
		Command		Notification		Proxy				
		Generator		Receiver		Forwarder				
	+-------------+ +--------------+ +--------------+									
	+-------------+ +--------------+ +--------------+									
		Command		Notification		Other				
		Responder		Originator						
	+-------------+ +--------------+ +--------------+									
+---+										
 +---+

Harrington, et al. Standards Track [Page 17]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

3.1.1. SNMP engine

 An SNMP engine provides services for sending and receiving messages,
 authenticating and encrypting messages, and controlling access to
 managed objects. There is a one-to-one association between an SNMP
 engine and the SNMP entity which contains it.

 The engine contains:

 1) a Dispatcher,

 2) a Message Processing Subsystem,

 3) a Security Subsystem, and

 4) an Access Control Subsystem.

3.1.1.1. snmpEngineID

 Within an administrative domain, an snmpEngineID is the unique and
 unambiguous identifier of an SNMP engine. Since there is a one-to-
 one association between SNMP engines and SNMP entities, it also
 uniquely and unambiguously identifies the SNMP entity within that
 administrative domain. Note that it is possible for SNMP entities in
 different administrative domains to have the same value for
 snmpEngineID. Federation of administrative domains may necessitate
 assignment of new values.

3.1.1.2. Dispatcher

 There is only one Dispatcher in an SNMP engine. It allows for
 concurrent support of multiple versions of SNMP messages in the SNMP
 engine. It does so by:

 - sending and receiving SNMP messages to/from the network,

 - determining the version of an SNMP message and interacting with
 the corresponding Message Processing Model,

 - providing an abstract interface to SNMP applications for
 delivery of a PDU to an application.

 - providing an abstract interface for SNMP applications that
 allows them to send a PDU to a remote SNMP entity.

Harrington, et al. Standards Track [Page 18]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

3.1.1.3. Message Processing Subsystem

 The Message Processing Subsystem is responsible for preparing
 messages for sending, and extracting data from received messages.

 The Message Processing Subsystem potentially contains multiple
 Message Processing Models as shown in the next figure.

 * One or more Message Processing Models may be present.

 +--+
 | |
 | Message Processing Subsystem |
 | |
 | +------------+ +------------+ +------------+ +------------+ |
	*		*		*		*	
	SNMPv3		SNMPv1		SNMPv2c		Other	
	Message		Message		Message		Message	
	Processing		Processing		Processing		Processing	
	Model		Model		Model		Model	
+------------+ +------------+ +------------+ +------------+								
 +--+

3.1.1.3.1. Message Processing Model

 Each Message Processing Model defines the format of a particular
 version of an SNMP message and coordinates the preparation and
 extraction of each such version-specific message format.

Harrington, et al. Standards Track [Page 19]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

3.1.1.4. Security Subsystem

 The Security Subsystem provides security services such as the
 authentication and privacy of messages and potentially contains
 multiple Security Models as shown in the following figure

 * One or more Security Models may be present.

 +--+
 | |
 | Security Subsystem |
 | |
 | +----------------+ +-----------------+ +-------------------+ |
	*		*		*	
	User-Based		Other		Other	
	Security		Security		Security	
	Model		Model		Model	
+----------------+ +-----------------+ +-------------------+						
 +--+

3.1.1.4.1. Security Model

 A Security Model specifies the threats against which it protects, the
 goals of its services, and the security protocols used to provide
 security services such as authentication and privacy.

3.1.1.4.2. Security Protocol

 A Security Protocol specifies the mechanisms, procedures, and MIB
 objects used to provide a security service such as authentication or
 privacy.

Harrington, et al. Standards Track [Page 20]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

3.1.2. Access Control Subsystem

 The Access Control Subsystem provides authorization services by means
 of one or more (*) Access Control Models.

 +--+
 | |
 | Access Control Subsystem |
 | |
 | +---------------+ +-----------------+ +------------------+ |
	*		*		*	
	View-Based		Other		Other	
	Access		Access		Access	
	Control		Control		Control	
	Model		Model		Model	
+---------------+ +-----------------+ +------------------+						
 +--+

3.1.2.1. Access Control Model

 An Access Control Model defines a particular access decision function
 in order to support decisions regarding access rights.

3.1.3. Applications

 There are several types of applications, including:

 - command generators, which monitor and manipulate management
 data,

 - command responders, which provide access to management data,

 - notification originators, which initiate asynchronous messages,

 - notification receivers, which process asynchronous messages,

 and

 - proxy forwarders, which forward messages between entities.

 These applications make use of the services provided by the SNMP
 engine.

Harrington, et al. Standards Track [Page 21]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

3.1.3.1. SNMP Manager

 An SNMP entity containing one or more command generator and/or
 notification receiver applications (along with their associated SNMP
 engine) has traditionally been called an SNMP manager.

 (traditional SNMP manager)
 +---+
 | +--------------+ +--------------+ +--------------+ SNMP entity |
	NOTIFICATION		NOTIFICATION		COMMAND	
	ORIGINATOR		RECEIVER		GENERATOR	
	applications		applications		applications	
+--------------+ +--------------+ +--------------+						
^ ^ ^						
v v v						
+-------+--------+-----------------+						
^						
	+---------------------+ +----------------+					
		Message Processing		Security		
Dispatcher v	Subsystem		Subsystem			
+-------------------+	+------------+					
	PDU Dispatcher		+->	v1MP *	<--->	+------------+
				+------------+		
				+------------+		
			+->	v2cMP *	<--->	
	Message			+------------+		+------------+
	Dispatcher <--------->+					
				+------------+		+------------+
			+->	v3MP *	<--->	
	Transport			+------------+		
	Mapping			+------------+		
	(e.g., RFC 3417)		+->	otherMP *	<--->	+------------+
+-------------------+	+------------+					
^ +---------------------+ +----------------+						
v						
+---+						
+-----+ +-----+ +-------+						
UDP		IPX	. . .	other		
 +-----+ +-----+ +-------+
 ^ ^ ^
 | | | * One or more models may be present.
 v v v
 +------------------------------+
 | Network |
 +------------------------------+

Harrington, et al. Standards Track [Page 22]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

3.1.3.2. SNMP Agent

 An SNMP entity containing one or more command responder and/or
 notification originator applications (along with their associated
 SNMP engine) has traditionally been called an SNMP agent.

Harrington, et al. Standards Track [Page 23]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 * One or more models may be present.

 +------------------------------+
 | Network |
 +------------------------------+
 ^ ^ ^
 | | |
 v v v
 +-----+ +-----+ +-------+
 | UDP | | IPX | . . . | other |
 +-----+ +-----+ +-------+ (traditional SNMP agent)
 +---+
 | ^ |
	+---------------------+ +----------------+								
		Message Processing		Security					
Dispatcher v	Subsystem		Subsystem						
+-------------------+	+------------+								
	Transport		+->	v1MP *	<--->	+------------+			
	Mapping			+------------+			Other		
	(e.g., RFC 3417)			+------------+			Security		
			+->	v2cMP *	<--->		Model		
	Message			+------------+		+------------+			
	Dispatcher <--------->	+------------+		+------------+					
			+->	v3MP *	<--->		User-based		
				+------------+			Security		
	PDU Dispatcher			+------------+			Model		
+-------------------+	+->	otherMP *	<--->	+------------+					
^	+------------+								
	+---------------------+ +----------------+								
v									
+-------+-------------------------+---------------+									
^ ^ ^									
v v v									
+-------------+ +---------+ +--------------+ +-------------+									
	COMMAND		ACCESS		NOTIFICATION		PROXY		
	RESPONDER	<->	CONTROL	<->	ORIGINATOR		FORWARDER		
	application				applications		application		
+-------------+ +---------+ +--------------+ +-------------+									
^ ^									
v v									
+--+									
	MIB instrumentation	SNMP entity							
 +---+

Harrington, et al. Standards Track [Page 24]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

3.2. The Naming of Identities

 principal
 ^
 |
 |
 +----------------------------|-------------+
 | SNMP engine v |
 | +--------------+ |
+-----------------	securityName	---+		
	Security Model			
	+--------------+			
	^			
	v			
	+------------------------------+			
		Model		
		Dependent		
		Security ID		
	+------------------------------+			
	^			
+-------------------------	----------+			
 +----------------------------|-------------+
 |
 v
 network

3.2.1. Principal

 A principal is the "who" on whose behalf services are provided or
 processing takes place.

 A principal can be, among other things, an individual acting in a
 particular role; a set of individuals, with each acting in a
 particular role; an application or a set of applications; and
 combinations thereof.

3.2.2. securityName

 A securityName is a human readable string representing a principal.
 It has a model-independent format, and can be used outside a
 particular Security Model.

Harrington, et al. Standards Track [Page 25]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

3.2.3. Model-dependent security ID

 A model-dependent security ID is the model-specific representation of
 a securityName within a particular Security Model.

 Model-dependent security IDs may or may not be human readable, and
 have a model-dependent syntax. Examples include community names, and
 user names.

 The transformation of model-dependent security IDs into securityNames
 and vice versa is the responsibility of the relevant Security Model.

3.3. The Naming of Management Information

 Management information resides at an SNMP entity where a Command
 Responder Application has local access to potentially multiple
 contexts. This application uses a contextEngineID equal to the
 snmpEngineID of its associated SNMP engine.

Harrington, et al. Standards Track [Page 26]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 +---+
 | SNMP entity (identified by snmpEngineID, for example: |
 | ’800002b804616263’H (enterpise 696, string "abc") |
 | |
 | +--+ |
	SNMP engine (identified by snmpEngineID)									
	+-------------+ +------------+ +-----------+ +-----------+									
		Dispatcher		Message		Security		Access		
				Processing		Subsystem		Control		
				Subsystem				Subsystem		
	+-------------+ +------------+ +-----------+ +-----------+									
+--+										
+--+										
	Command Responder Application									
	(contextEngineID, example: ’800002b804616263’H)									
	example contextNames:									
	"bridge1" "bridge2" "" (default)									
	--------- --------- ------------									
+------	------------------	-------------------	--------------+							
+------	------------------	-------------------	--------------+							
	MIB	instrumentation								
	+---v------------+ +---v------------+ +----v-----------+									
		context		context		context				
		+------------+		+------------+		+------------+				
			bridge MIB				bridge MIB			
		+------------+		+------------+		+------------+				
						+------------+				
							other MIB			
						+------------+				
 +---+

Harrington, et al. Standards Track [Page 27]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

3.3.1. An SNMP Context

 An SNMP context, or just "context" for short, is a collection of
 management information accessible by an SNMP entity. An item of
 management information may exist in more than one context. An SNMP
 entity potentially has access to many contexts.

 Typically, there are many instances of each managed object type
 within a management domain. For simplicity, the method for
 identifying instances specified by the MIB module does not allow each
 instance to be distinguished amongst the set of all instances within
 a management domain; rather, it allows each instance to be identified
 only within some scope or "context", where there are multiple such
 contexts within the management domain. Often, a context is a
 physical device, or perhaps, a logical device, although a context can
 also encompass multiple devices, or a subset of a single device, or
 even a subset of multiple devices, but a context is always defined as
 a subset of a single SNMP entity. Thus, in order to identify an
 individual item of management information within the management
 domain, its contextName and contextEngineID must be identified in
 addition to its object type and its instance.

 For example, the managed object type ifDescr [RFC2863], is defined as
 the description of a network interface. To identify the description
 of device-X’s first network interface, four pieces of information are
 needed: the snmpEngineID of the SNMP entity which provides access to
 the management information at device-X, the contextName (device-X),
 the managed object type (ifDescr), and the instance ("1").

 Each context has (at least) one unique identification within the
 management domain. The same item of management information can exist
 in multiple contexts. An item of management information may have
 multiple unique identifications. This occurs when an item of
 management information exists in multiple contexts, and this also
 occurs when a context has multiple unique identifications.

 The combination of a contextEngineID and a contextName unambiguously
 identifies a context within an administrative domain; note that there
 may be multiple unique combinations of contextEngineID and
 contextName that unambiguously identify the same context.

3.3.2. contextEngineID

 Within an administrative domain, a contextEngineID uniquely
 identifies an SNMP entity that may realize an instance of a context
 with a particular contextName.

Harrington, et al. Standards Track [Page 28]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

3.3.3. contextName

 A contextName is used to name a context. Each contextName MUST be
 unique within an SNMP entity.

3.3.4. scopedPDU

 A scopedPDU is a block of data containing a contextEngineID, a
 contextName, and a PDU.

 The PDU is an SNMP Protocol Data Unit containing information named in
 the context which is unambiguously identified within an
 administrative domain by the combination of the contextEngineID and
 the contextName. See, for example, RFC 3416 for more information
 about SNMP PDUs.

3.4. Other Constructs

3.4.1. maxSizeResponseScopedPDU

 The maxSizeResponseScopedPDU is the maximum size of a scopedPDU that
 a PDU’s sender would be willing to accept. Note that the size of a
 scopedPDU does not include the size of the SNMP message header.

3.4.2. Local Configuration Datastore

 The subsystems, models, and applications within an SNMP entity may
 need to retain their own sets of configuration information.

 Portions of the configuration information may be accessible as
 managed objects.

 The collection of these sets of information is referred to as an
 entity’s Local Configuration Datastore (LCD).

3.4.3. securityLevel

 This architecture recognizes three levels of security:

 - without authentication and without privacy (noAuthNoPriv)

 - with authentication but without privacy (authNoPriv)

 - with authentication and with privacy (authPriv)

Harrington, et al. Standards Track [Page 29]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 These three values are ordered such that noAuthNoPriv is less than
 authNoPriv and authNoPriv is less than authPriv.

 Every message has an associated securityLevel. All Subsystems
 (Message Processing, Security, Access Control) and applications are
 REQUIRED to either supply a value of securityLevel or to abide by the
 supplied value of securityLevel while processing the message and its
 contents.

4. Abstract Service Interfaces

 Abstract service interfaces have been defined to describe the
 conceptual interfaces between the various subsystems within an SNMP
 entity. The abstract service interfaces are intended to help clarify
 the externally observable behavior of SNMP entities, and are not
 intended to constrain the structure or organization of
 implementations in any way. Most specifically, they should not be
 interpreted as APIs or as requirements statements for APIs.

 These abstract service interfaces are defined by a set of primitives
 that define the services provided and the abstract data elements that
 are to be passed when the services are invoked. This section lists
 the primitives that have been defined for the various subsystems.

4.1. Dispatcher Primitives

 The Dispatcher typically provides services to the SNMP applications
 via its PDU Dispatcher. This section describes the primitives
 provided by the PDU Dispatcher.

Harrington, et al. Standards Track [Page 30]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

4.1.1. Generate Outgoing Request or Notification

 The PDU Dispatcher provides the following primitive for an
 application to send an SNMP Request or Notification to another SNMP
 entity:

 statusInformation = -- sendPduHandle if success
 -- errorIndication if failure
 sendPdu(
 IN transportDomain -- transport domain to be used
 IN transportAddress -- transport address to be used
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model to use
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security requested
 IN contextEngineID -- data from/at this entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN expectResponse -- TRUE or FALSE
)

4.1.2. Process Incoming Request or Notification PDU

 The PDU Dispatcher provides the following primitive to pass an
 incoming SNMP PDU to an application:

 processPdu(-- process Request/Notification PDU
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model in use
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security
 IN contextEngineID -- data from/at this SNMP entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN maxSizeResponseScopedPDU -- maximum size of the Response PDU
 IN stateReference -- reference to state information
) -- needed when sending a response

Harrington, et al. Standards Track [Page 31]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

4.1.3. Generate Outgoing Response

 The PDU Dispatcher provides the following primitive for an
 application to return an SNMP Response PDU to the PDU Dispatcher:

 result = -- SUCCESS or FAILURE
 returnResponsePdu(
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model in use
 IN securityName -- on behalf of this principal
 IN securityLevel -- same as on incoming request
 IN contextEngineID -- data from/at this SNMP entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN maxSizeResponseScopedPDU -- maximum size sender can accept
 IN stateReference -- reference to state information
 -- as presented with the request
 IN statusInformation -- success or errorIndication
) -- error counter OID/value if error

4.1.4. Process Incoming Response PDU

 The PDU Dispatcher provides the following primitive to pass an
 incoming SNMP Response PDU to an application:

 processResponsePdu(-- process Response PDU
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model in use
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security
 IN contextEngineID -- data from/at this SNMP entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN statusInformation -- success or errorIndication
 IN sendPduHandle -- handle from sendPdu
)

4.1.5. Registering Responsibility for Handling SNMP PDUs

 Applications can register/unregister responsibility for a specific
 contextEngineID, for specific pduTypes, with the PDU Dispatcher
 according to the following primitives. The list of particular
 pduTypes that an application can register for is determined by the
 Message Processing Model(s) supported by the SNMP entity that
 contains the PDU Dispatcher.

Harrington, et al. Standards Track [Page 32]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 statusInformation = -- success or errorIndication
 registerContextEngineID(
 IN contextEngineID -- take responsibility for this one
 IN pduType -- the pduType(s) to be registered
)

 unregisterContextEngineID(
 IN contextEngineID -- give up responsibility for this one
 IN pduType -- the pduType(s) to be unregistered
)

 Note that realizations of the registerContextEngineID and
 unregisterContextEngineID abstract service interfaces may provide
 implementation-specific ways for applications to register/deregister
 responsibility for all possible values of the contextEngineID or
 pduType parameters.

4.2. Message Processing Subsystem Primitives

 The Dispatcher interacts with a Message Processing Model to process a
 specific version of an SNMP Message. This section describes the
 primitives provided by the Message Processing Subsystem.

4.2.1. Prepare Outgoing SNMP Request or Notification Message

 The Message Processing Subsystem provides this service primitive for
 preparing an outgoing SNMP Request or Notification Message:

 statusInformation = -- success or errorIndication
 prepareOutgoingMessage(
 IN transportDomain -- transport domain to be used
 IN transportAddress -- transport address to be used
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model to use
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security requested
 IN contextEngineID -- data from/at this entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN expectResponse -- TRUE or FALSE
 IN sendPduHandle -- the handle for matching
 -- incoming responses
 OUT destTransportDomain -- destination transport domain
 OUT destTransportAddress -- destination transport address
 OUT outgoingMessage -- the message to send
 OUT outgoingMessageLength -- its length
)

Harrington, et al. Standards Track [Page 33]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

4.2.2. Prepare an Outgoing SNMP Response Message

 The Message Processing Subsystem provides this service primitive for
 preparing an outgoing SNMP Response Message:

 result = -- SUCCESS or FAILURE
 prepareResponseMessage(
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- same as on incoming request
 IN securityName -- same as on incoming request
 IN securityLevel -- same as on incoming request
 IN contextEngineID -- data from/at this SNMP entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN maxSizeResponseScopedPDU -- maximum size able to accept
 IN stateReference -- reference to state information
 -- as presented with the request
 IN statusInformation -- success or errorIndication
 -- error counter OID/value if error
 OUT destTransportDomain -- destination transport domain
 OUT destTransportAddress -- destination transport address
 OUT outgoingMessage -- the message to send
 OUT outgoingMessageLength -- its length
)

Harrington, et al. Standards Track [Page 34]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

4.2.3. Prepare Data Elements from an Incoming SNMP Message

 The Message Processing Subsystem provides this service primitive for
 preparing the abstract data elements from an incoming SNMP message:

 result = -- SUCCESS or errorIndication
 prepareDataElements(
 IN transportDomain -- origin transport domain
 IN transportAddress -- origin transport address
 IN wholeMsg -- as received from the network
 IN wholeMsgLength -- as received from the network
 OUT messageProcessingModel -- typically, SNMP version
 OUT securityModel -- Security Model to use
 OUT securityName -- on behalf of this principal
 OUT securityLevel -- Level of Security requested
 OUT contextEngineID -- data from/at this entity
 OUT contextName -- data from/in this context
 OUT pduVersion -- the version of the PDU
 OUT PDU -- SNMP Protocol Data Unit
 OUT pduType -- SNMP PDU type
 OUT sendPduHandle -- handle for matched request
 OUT maxSizeResponseScopedPDU -- maximum size sender can accept
 OUT statusInformation -- success or errorIndication
 -- error counter OID/value if error
 OUT stateReference -- reference to state information
 -- to be used for possible Response
)

4.3. Access Control Subsystem Primitives

 Applications are the typical clients of the service(s) of the Access
 Control Subsystem.

 The following primitive is provided by the Access Control Subsystem
 to check if access is allowed:

 statusInformation = -- success or errorIndication
 isAccessAllowed(
 IN securityModel -- Security Model in use
 IN securityName -- principal who wants to access
 IN securityLevel -- Level of Security
 IN viewType -- read, write, or notify view
 IN contextName -- context containing variableName
 IN variableName -- OID for the managed object
)

Harrington, et al. Standards Track [Page 35]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

4.4. Security Subsystem Primitives

 The Message Processing Subsystem is the typical client of the
 services of the Security Subsystem.

4.4.1. Generate a Request or Notification Message

 The Security Subsystem provides the following primitive to generate a
 Request or Notification message:

 statusInformation =
 generateRequestMsg(
 IN messageProcessingModel -- typically, SNMP version
 IN globalData -- message header, admin data
 IN maxMessageSize -- of the sending SNMP entity
 IN securityModel -- for the outgoing message
 IN securityEngineID -- authoritative SNMP entity
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security requested
 IN scopedPDU -- message (plaintext) payload
 OUT securityParameters -- filled in by Security Module
 OUT wholeMsg -- complete generated message
 OUT wholeMsgLength -- length of the generated message
)

4.4.2. Process Incoming Message

 The Security Subsystem provides the following primitive to process an
 incoming message:

 statusInformation = -- errorIndication or success
 -- error counter OID/value if error
 processIncomingMsg(
 IN messageProcessingModel -- typically, SNMP version
 IN maxMessageSize -- of the sending SNMP entity
 IN securityParameters -- for the received message
 IN securityModel -- for the received message
 IN securityLevel -- Level of Security
 IN wholeMsg -- as received on the wire
 IN wholeMsgLength -- length as received on the wire
 OUT securityEngineID -- authoritative SNMP entity
 OUT securityName -- identification of the principal
 OUT scopedPDU, -- message (plaintext) payload
 OUT maxSizeResponseScopedPDU -- maximum size sender can handle
 OUT securityStateReference -- reference to security state
) -- information, needed for response

Harrington, et al. Standards Track [Page 36]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

4.4.3. Generate a Response Message

 The Security Subsystem provides the following primitive to generate a
 Response message:

 statusInformation =
 generateResponseMsg(
 IN messageProcessingModel -- typically, SNMP version
 IN globalData -- message header, admin data
 IN maxMessageSize -- of the sending SNMP entity
 IN securityModel -- for the outgoing message
 IN securityEngineID -- authoritative SNMP entity
 IN securityName -- on behalf of this principal
 IN securityLevel -- for the outgoing message
 IN scopedPDU -- message (plaintext) payload
 IN securityStateReference -- reference to security state
 -- information from original request
 OUT securityParameters -- filled in by Security Module
 OUT wholeMsg -- complete generated message
 OUT wholeMsgLength -- length of the generated message
)

4.5. Common Primitives

 These primitive(s) are provided by multiple Subsystems.

4.5.1. Release State Reference Information

 All Subsystems which pass stateReference information also provide a
 primitive to release the memory that holds the referenced state
 information:

 stateRelease(
 IN stateReference -- handle of reference to be released
)

Harrington, et al. Standards Track [Page 37]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

4.6. Scenario Diagrams

4.6.1. Command Generator or Notification Originator

 This diagram shows how a Command Generator or Notification Originator
 application requests that a PDU be sent, and how the response is
 returned (asynchronously) to that application.

 Command Dispatcher Message Security
 Generator | Processing Model
	Model	
sendPdu		
------------------->		
	prepareOutgoingMessage	
:	----------------------->	
:		generateRequestMsg
:		-------------------->
:		
:		<--------------------
:		
:	<-----------------------	
:		
:	------------------+	
:	Send SNMP	
:	Request Message	
:	to Network	
:	v	
: : : : :		
: : : : :		
: : : : :		
:		
:	Receive SNMP	
:	Response Message	
:	from Network	
:	<-----------------+	
:		
:	prepareDataElements	
:	----------------------->	
:		processIncomingMsg
:		-------------------->
:		
:		<--------------------
:		
:	<-----------------------	
processResponsePdu		
<-------------------		

Harrington, et al. Standards Track [Page 38]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

4.6.2. Scenario Diagram for a Command Responder Application

 This diagram shows how a Command Responder or Notification Receiver
 application registers for handling a pduType, how a PDU is dispatched
 to the application after an SNMP message is received, and how the
 Response is (asynchronously) send back to the network.

 Command Dispatcher Message Security
 Responder | Processing Model
	Model		
registerContextEngineID			
------------------------>			
<------------------------			
	Receive SNMP		
:	Message		
:	from Network		
:	<-------------+		
:			
:	prepareDataElements		
:	------------------->		
:		processIncomingMsg	
:		------------------->	
:			
:		<-------------------	
:			
:	<-------------------		
processPdu			
<------------------------			
: : : :			
: : : :			
returnResponsePdu			
------------------------>			
 : | prepareResponseMsg | |
 : |------------------->| |
 : | |generateResponseMsg |
 : | |------------------->|
 : | | |
 : | |<-------------------|
 : | | |
 : |<-------------------| |
 : | | |
 : |--------------+ | |
 : | Send SNMP | | |
 : | Message | | |
 : | to Network | | |
 : | v | |

Harrington, et al. Standards Track [Page 39]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

5. Managed Object Definitions for SNMP Management Frameworks

SNMP-FRAMEWORK-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE,
 OBJECT-IDENTITY,
 snmpModules FROM SNMPv2-SMI
 TEXTUAL-CONVENTION FROM SNMPv2-TC
 MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF;

snmpFrameworkMIB MODULE-IDENTITY
 LAST-UPDATED "200210140000Z"
 ORGANIZATION "SNMPv3 Working Group"
 CONTACT-INFO "WG-EMail: snmpv3@lists.tislabs.com
 Subscribe: snmpv3-request@lists.tislabs.com

 Co-Chair: Russ Mundy
 Network Associates Laboratories
 postal: 15204 Omega Drive, Suite 300
 Rockville, MD 20850-4601
 USA
 EMail: mundy@tislabs.com
 phone: +1 301-947-7107

 Co-Chair &
 Co-editor: David Harrington
 Enterasys Networks
 postal: 35 Industrial Way
 P. O. Box 5005
 Rochester, New Hampshire 03866-5005
 USA
 EMail: dbh@enterasys.com
 phone: +1 603-337-2614

 Co-editor: Randy Presuhn
 BMC Software, Inc.
 postal: 2141 North First Street
 San Jose, California 95131
 USA
 EMail: randy_presuhn@bmc.com
 phone: +1 408-546-1006

 Co-editor: Bert Wijnen
 Lucent Technologies
 postal: Schagen 33
 3461 GL Linschoten
 Netherlands

Harrington, et al. Standards Track [Page 40]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 EMail: bwijnen@lucent.com
 phone: +31 348-680-485
 "
 DESCRIPTION "The SNMP Management Architecture MIB

 Copyright (C) The Internet Society (2002). This
 version of this MIB module is part of RFC 3411;
 see the RFC itself for full legal notices.
 "

 REVISION "200210140000Z" -- 14 October 2002
 DESCRIPTION "Changes in this revision:
 - Updated various administrative information.
 - Corrected some typos.
 - Corrected typo in description of SnmpEngineID
 that led to range overlap for 127.
 - Changed ’255a’ to ’255t’ in definition of
 SnmpAdminString to align with current SMI.
 - Reworded ’reserved’ for value zero in
 DESCRIPTION of SnmpSecurityModel.
 - The algorithm for allocating security models
 should give 256 per enterprise block, rather
 than 255.
 - The example engine ID of ’abcd’ is not
 legal. Replaced with ’800002b804616263’H based
 on example enterprise 696, string ’abc’.
 - Added clarification that engineID should
 persist across re-initializations.
 This revision published as RFC 3411.
 "
 REVISION "199901190000Z" -- 19 January 1999
 DESCRIPTION "Updated editors’ addresses, fixed typos.
 Published as RFC 2571.
 "
 REVISION "199711200000Z" -- 20 November 1997
 DESCRIPTION "The initial version, published in RFC 2271.
 "
 ::= { snmpModules 10 }

 -- Textual Conventions used in the SNMP Management Architecture ***

SnmpEngineID ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION "An SNMP engine’s administratively-unique identifier.
 Objects of this type are for identification, not for
 addressing, even though it is possible that an
 address may have been used in the generation of
 a specific value.

Harrington, et al. Standards Track [Page 41]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 The value for this object may not be all zeros or
 all ’ff’H or the empty (zero length) string.

 The initial value for this object may be configured
 via an operator console entry or via an algorithmic
 function. In the latter case, the following
 example algorithm is recommended.

 In cases where there are multiple engines on the
 same system, the use of this algorithm is NOT
 appropriate, as it would result in all of those
 engines ending up with the same ID value.

 1) The very first bit is used to indicate how the
 rest of the data is composed.

 0 - as defined by enterprise using former methods
 that existed before SNMPv3. See item 2 below.

 1 - as defined by this architecture, see item 3
 below.

 Note that this allows existing uses of the
 engineID (also known as AgentID [RFC1910]) to
 co-exist with any new uses.

 2) The snmpEngineID has a length of 12 octets.

 The first four octets are set to the binary
 equivalent of the agent’s SNMP management
 private enterprise number as assigned by the
 Internet Assigned Numbers Authority (IANA).
 For example, if Acme Networks has been assigned
 { enterprises 696 }, the first four octets would
 be assigned ’000002b8’H.

 The remaining eight octets are determined via
 one or more enterprise-specific methods. Such
 methods must be designed so as to maximize the
 possibility that the value of this object will
 be unique in the agent’s administrative domain.
 For example, it may be the IP address of the SNMP
 entity, or the MAC address of one of the
 interfaces, with each address suitably padded
 with random octets. If multiple methods are
 defined, then it is recommended that the first
 octet indicate the method being used and the
 remaining octets be a function of the method.

Harrington, et al. Standards Track [Page 42]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 3) The length of the octet string varies.

 The first four octets are set to the binary
 equivalent of the agent’s SNMP management
 private enterprise number as assigned by the
 Internet Assigned Numbers Authority (IANA).
 For example, if Acme Networks has been assigned
 { enterprises 696 }, the first four octets would
 be assigned ’000002b8’H.

 The very first bit is set to 1. For example, the
 above value for Acme Networks now changes to be
 ’800002b8’H.

 The fifth octet indicates how the rest (6th and
 following octets) are formatted. The values for
 the fifth octet are:

 0 - reserved, unused.

 1 - IPv4 address (4 octets)
 lowest non-special IP address

 2 - IPv6 address (16 octets)
 lowest non-special IP address

 3 - MAC address (6 octets)
 lowest IEEE MAC address, canonical
 order

 4 - Text, administratively assigned
 Maximum remaining length 27

 5 - Octets, administratively assigned
 Maximum remaining length 27

 6-127 - reserved, unused

 128-255 - as defined by the enterprise
 Maximum remaining length 27
 "
 SYNTAX OCTET STRING (SIZE(5..32))

Harrington, et al. Standards Track [Page 43]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

SnmpSecurityModel ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION "An identifier that uniquely identifies a
 Security Model of the Security Subsystem within
 this SNMP Management Architecture.

 The values for securityModel are allocated as
 follows:

 - The zero value does not identify any particular
 security model.

 - Values between 1 and 255, inclusive, are reserved
 for standards-track Security Models and are
 managed by the Internet Assigned Numbers Authority
 (IANA).
 - Values greater than 255 are allocated to
 enterprise-specific Security Models. An
 enterprise-specific securityModel value is defined
 to be:

 enterpriseID * 256 + security model within
 enterprise

 For example, the fourth Security Model defined by
 the enterprise whose enterpriseID is 1 would be
 259.

 This scheme for allocation of securityModel
 values allows for a maximum of 255 standards-
 based Security Models, and for a maximum of
 256 Security Models per enterprise.

 It is believed that the assignment of new
 securityModel values will be rare in practice
 because the larger the number of simultaneously
 utilized Security Models, the larger the
 chance that interoperability will suffer.
 Consequently, it is believed that such a range
 will be sufficient. In the unlikely event that
 the standards committee finds this number to be
 insufficient over time, an enterprise number
 can be allocated to obtain an additional 256
 possible values.

 Note that the most significant bit must be zero;
 hence, there are 23 bits allocated for various
 organizations to design and define non-standard

Harrington, et al. Standards Track [Page 44]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 securityModels. This limits the ability to
 define new proprietary implementations of Security
 Models to the first 8,388,608 enterprises.

 It is worthwhile to note that, in its encoded
 form, the securityModel value will normally
 require only a single byte since, in practice,
 the leftmost bits will be zero for most messages
 and sign extension is suppressed by the encoding
 rules.

 As of this writing, there are several values
 of securityModel defined for use with SNMP or
 reserved for use with supporting MIB objects.
 They are as follows:

 0 reserved for ’any’
 1 reserved for SNMPv1
 2 reserved for SNMPv2c
 3 User-Based Security Model (USM)
 "
 SYNTAX INTEGER(0 .. 2147483647)

SnmpMessageProcessingModel ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION "An identifier that uniquely identifies a Message
 Processing Model of the Message Processing
 Subsystem within this SNMP Management Architecture.

 The values for messageProcessingModel are
 allocated as follows:

 - Values between 0 and 255, inclusive, are
 reserved for standards-track Message Processing
 Models and are managed by the Internet Assigned
 Numbers Authority (IANA).

 - Values greater than 255 are allocated to
 enterprise-specific Message Processing Models.
 An enterprise messageProcessingModel value is
 defined to be:

 enterpriseID * 256 +
 messageProcessingModel within enterprise

 For example, the fourth Message Processing Model
 defined by the enterprise whose enterpriseID

Harrington, et al. Standards Track [Page 45]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 is 1 would be 259.

 This scheme for allocating messageProcessingModel
 values allows for a maximum of 255 standards-
 based Message Processing Models, and for a
 maximum of 256 Message Processing Models per
 enterprise.

 It is believed that the assignment of new
 messageProcessingModel values will be rare
 in practice because the larger the number of
 simultaneously utilized Message Processing Models,
 the larger the chance that interoperability
 will suffer. It is believed that such a range
 will be sufficient. In the unlikely event that
 the standards committee finds this number to be
 insufficient over time, an enterprise number
 can be allocated to obtain an additional 256
 possible values.

 Note that the most significant bit must be zero;
 hence, there are 23 bits allocated for various
 organizations to design and define non-standard
 messageProcessingModels. This limits the ability
 to define new proprietary implementations of
 Message Processing Models to the first 8,388,608
 enterprises.

 It is worthwhile to note that, in its encoded
 form, the messageProcessingModel value will
 normally require only a single byte since, in
 practice, the leftmost bits will be zero for
 most messages and sign extension is suppressed
 by the encoding rules.

 As of this writing, there are several values of
 messageProcessingModel defined for use with SNMP.
 They are as follows:

 0 reserved for SNMPv1
 1 reserved for SNMPv2c
 2 reserved for SNMPv2u and SNMPv2*
 3 reserved for SNMPv3
 "
 SYNTAX INTEGER(0 .. 2147483647)

Harrington, et al. Standards Track [Page 46]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

SnmpSecurityLevel ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION "A Level of Security at which SNMP messages can be
 sent or with which operations are being processed;
 in particular, one of:

 noAuthNoPriv - without authentication and
 without privacy,
 authNoPriv - with authentication but
 without privacy,
 authPriv - with authentication and
 with privacy.

 These three values are ordered such that
 noAuthNoPriv is less than authNoPriv and
 authNoPriv is less than authPriv.
 "
 SYNTAX INTEGER { noAuthNoPriv(1),
 authNoPriv(2),
 authPriv(3)
 }

SnmpAdminString ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "255t"
 STATUS current
 DESCRIPTION "An octet string containing administrative
 information, preferably in human-readable form.

 To facilitate internationalization, this
 information is represented using the ISO/IEC
 IS 10646-1 character set, encoded as an octet
 string using the UTF-8 transformation format
 described in [RFC2279].

 Since additional code points are added by
 amendments to the 10646 standard from time
 to time, implementations must be prepared to
 encounter any code point from 0x00000000 to
 0x7fffffff. Byte sequences that do not
 correspond to the valid UTF-8 encoding of a
 code point or are outside this range are
 prohibited.

 The use of control codes should be avoided.

 When it is necessary to represent a newline,
 the control code sequence CR LF should be used.

Harrington, et al. Standards Track [Page 47]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 The use of leading or trailing white space should
 be avoided.

 For code points not directly supported by user
 interface hardware or software, an alternative
 means of entry and display, such as hexadecimal,
 may be provided.

 For information encoded in 7-bit US-ASCII,
 the UTF-8 encoding is identical to the
 US-ASCII encoding.

 UTF-8 may require multiple bytes to represent a
 single character / code point; thus the length
 of this object in octets may be different from
 the number of characters encoded. Similarly,
 size constraints refer to the number of encoded
 octets, not the number of characters represented
 by an encoding.

 Note that when this TC is used for an object that
 is used or envisioned to be used as an index, then
 a SIZE restriction MUST be specified so that the
 number of sub-identifiers for any object instance
 does not exceed the limit of 128, as defined by
 [RFC3416].

 Note that the size of an SnmpAdminString object is
 measured in octets, not characters.
 "
 SYNTAX OCTET STRING (SIZE (0..255))

-- Administrative assignments ***************************************

snmpFrameworkAdmin
 OBJECT IDENTIFIER ::= { snmpFrameworkMIB 1 }
snmpFrameworkMIBObjects
 OBJECT IDENTIFIER ::= { snmpFrameworkMIB 2 }
snmpFrameworkMIBConformance
 OBJECT IDENTIFIER ::= { snmpFrameworkMIB 3 }

-- the snmpEngine Group **

snmpEngine OBJECT IDENTIFIER ::= { snmpFrameworkMIBObjects 1 }

Harrington, et al. Standards Track [Page 48]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

snmpEngineID OBJECT-TYPE
 SYNTAX SnmpEngineID
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "An SNMP engine’s administratively-unique identifier.

 This information SHOULD be stored in non-volatile
 storage so that it remains constant across
 re-initializations of the SNMP engine.
 "
 ::= { snmpEngine 1 }

snmpEngineBoots OBJECT-TYPE
 SYNTAX INTEGER (1..2147483647)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The number of times that the SNMP engine has
 (re-)initialized itself since snmpEngineID
 was last configured.
 "
 ::= { snmpEngine 2 }

snmpEngineTime OBJECT-TYPE
 SYNTAX INTEGER (0..2147483647)
 UNITS "seconds"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The number of seconds since the value of
 the snmpEngineBoots object last changed.
 When incrementing this object’s value would
 cause it to exceed its maximum,
 snmpEngineBoots is incremented as if a
 re-initialization had occurred, and this
 object’s value consequently reverts to zero.
 "
 ::= { snmpEngine 3 }

snmpEngineMaxMessageSize OBJECT-TYPE
 SYNTAX INTEGER (484..2147483647)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The maximum length in octets of an SNMP message
 which this SNMP engine can send or receive and
 process, determined as the minimum of the maximum
 message size values supported among all of the
 transports available to and supported by the engine.
 "
 ::= { snmpEngine 4 }

Harrington, et al. Standards Track [Page 49]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

-- Registration Points for Authentication and Privacy Protocols **

snmpAuthProtocols OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "Registration point for standards-track
 authentication protocols used in SNMP Management
 Frameworks.
 "
 ::= { snmpFrameworkAdmin 1 }

snmpPrivProtocols OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "Registration point for standards-track privacy
 protocols used in SNMP Management Frameworks.
 "
 ::= { snmpFrameworkAdmin 2 }

-- Conformance information **

snmpFrameworkMIBCompliances
 OBJECT IDENTIFIER ::= {snmpFrameworkMIBConformance 1}
snmpFrameworkMIBGroups
 OBJECT IDENTIFIER ::= {snmpFrameworkMIBConformance 2}

-- compliance statements

snmpFrameworkMIBCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION "The compliance statement for SNMP engines which
 implement the SNMP Management Framework MIB.
 "
 MODULE -- this module
 MANDATORY-GROUPS { snmpEngineGroup }

 ::= { snmpFrameworkMIBCompliances 1 }

-- units of conformance

snmpEngineGroup OBJECT-GROUP
 OBJECTS {
 snmpEngineID,
 snmpEngineBoots,
 snmpEngineTime,
 snmpEngineMaxMessageSize
 }
 STATUS current
 DESCRIPTION "A collection of objects for identifying and
 determining the configuration and current timeliness

Harrington, et al. Standards Track [Page 50]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 values of an SNMP engine.
 "
 ::= { snmpFrameworkMIBGroups 1 }

END

6. IANA Considerations

 This document defines three number spaces administered by IANA, one
 for security models, another for message processing models, and a
 third for SnmpEngineID formats.

6.1. Security Models

 The SnmpSecurityModel TEXTUAL-CONVENTION values managed by IANA are
 in the range from 0 to 255 inclusive, and are reserved for
 standards-track Security Models. If this range should in the future
 prove insufficient, an enterprise number can be allocated to obtain
 an additional 256 possible values.

 As of this writing, there are several values of securityModel defined
 for use with SNMP or reserved for use with supporting MIB objects.
 They are as follows:

 0 reserved for ’any’
 1 reserved for SNMPv1
 2 reserved for SNMPv2c
 3 User-Based Security Model (USM)

6.2. Message Processing Models

 The SnmpMessageProcessingModel TEXTUAL-CONVENTION values managed by
 IANA are in the range 0 to 255, inclusive. Each value uniquely
 identifies a standards-track Message Processing Model of the Message
 Processing Subsystem within the SNMP Management Architecture.

 Should this range prove insufficient in the future, an enterprise
 number may be obtained for the standards committee to get an
 additional 256 possible values.

 As of this writing, there are several values of
 messageProcessingModel defined for use with SNMP. They are as
 follows:

 0 reserved for SNMPv1
 1 reserved for SNMPv2c
 2 reserved for SNMPv2u and SNMPv2*
 3 reserved for SNMPv3

Harrington, et al. Standards Track [Page 51]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

6.3. SnmpEngineID Formats

 The SnmpEngineID TEXTUAL-CONVENTION’s fifth octet contains a format
 identifier. The values managed by IANA are in the range 6 to 127,
 inclusive. Each value uniquely identifies a standards-track
 SnmpEngineID format.

7. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in RFC 2028. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

8. Acknowledgements

 This document is the result of the efforts of the SNMPv3 Working
 Group. Some special thanks are in order to the following SNMPv3 WG
 members:

 Harald Tveit Alvestrand (Maxware)
 Dave Battle (SNMP Research, Inc.)
 Alan Beard (Disney Worldwide Services)
 Paul Berrevoets (SWI Systemware/Halcyon Inc.)
 Martin Bjorklund (Ericsson)
 Uri Blumenthal (IBM T.J. Watson Research Center)
 Jeff Case (SNMP Research, Inc.)
 John Curran (BBN)
 Mike Daniele (Compaq Computer Corporation)
 T. Max Devlin (Eltrax Systems)
 John Flick (Hewlett Packard)
 Rob Frye (MCI)
 Wes Hardaker (U.C.Davis, Information Technology - D.C.A.S.)

Harrington, et al. Standards Track [Page 52]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 David Harrington (Cabletron Systems Inc.)
 Lauren Heintz (BMC Software, Inc.)
 N.C. Hien (IBM T.J. Watson Research Center)
 Michael Kirkham (InterWorking Labs, Inc.)
 Dave Levi (SNMP Research, Inc.)
 Louis A Mamakos (UUNET Technologies Inc.)
 Joe Marzot (Nortel Networks)
 Paul Meyer (Secure Computing Corporation)
 Keith McCloghrie (Cisco Systems)
 Bob Moore (IBM)
 Russ Mundy (TIS Labs at Network Associates)
 Bob Natale (ACE*COMM Corporation)
 Mike O’Dell (UUNET Technologies Inc.)
 Dave Perkins (DeskTalk)
 Peter Polkinghorne (Brunel University)
 Randy Presuhn (BMC Software, Inc.)
 David Reeder (TIS Labs at Network Associates)
 David Reid (SNMP Research, Inc.)
 Aleksey Romanov (Quality Quorum)
 Shawn Routhier (Epilogue)
 Juergen Schoenwaelder (TU Braunschweig)
 Bob Stewart (Cisco Systems)
 Mike Thatcher (Independent Consultant)
 Bert Wijnen (IBM T.J. Watson Research Center)

 The document is based on recommendations of the IETF Security and
 Administrative Framework Evolution for SNMP Advisory Team. Members
 of that Advisory Team were:

 David Harrington (Cabletron Systems Inc.)
 Jeff Johnson (Cisco Systems)
 David Levi (SNMP Research Inc.)
 John Linn (Openvision)
 Russ Mundy (Trusted Information Systems) chair
 Shawn Routhier (Epilogue)
 Glenn Waters (Nortel)
 Bert Wijnen (IBM T. J. Watson Research Center)

 As recommended by the Advisory Team and the SNMPv3 Working Group
 Charter, the design incorporates as much as practical from previous
 RFCs and drafts. As a result, special thanks are due to the authors
 of previous designs known as SNMPv2u and SNMPv2*:

 Jeff Case (SNMP Research, Inc.)
 David Harrington (Cabletron Systems Inc.)
 David Levi (SNMP Research, Inc.)
 Keith McCloghrie (Cisco Systems)
 Brian O’Keefe (Hewlett Packard)

Harrington, et al. Standards Track [Page 53]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 Marshall T. Rose (Dover Beach Consulting)
 Jon Saperia (BGS Systems Inc.)
 Steve Waldbusser (International Network Services)
 Glenn W. Waters (Bell-Northern Research Ltd.)

9. Security Considerations

 This document describes how an implementation can include a Security
 Model to protect management messages and an Access Control Model to
 control access to management information.

 The level of security provided is determined by the specific Security
 Model implementation(s) and the specific Access Control Model
 implementation(s) used.

 Applications have access to data which is not secured. Applications
 SHOULD take reasonable steps to protect the data from disclosure.

 It is the responsibility of the purchaser of an implementation to
 ensure that:

 1) an implementation complies with the rules defined by this
 architecture,

 2) the Security and Access Control Models utilized satisfy the
 security and access control needs of the organization,

 3) the implementations of the Models and Applications comply with
 the model and application specifications,

 4) and the implementation protects configuration secrets from
 inadvertent disclosure.

 This document also contains a MIB definition module. None of the
 objects defined is writable, and the information they represent is
 not deemed to be particularly sensitive. However, if they are deemed
 sensitive in a particular environment, access to them should be
 restricted through the use of appropriately configured Security and
 Access Control models.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Harrington, et al. Standards Track [Page 54]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 [RFC2279] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", RFC 2279, January 1998.

 [RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Structure of Management
 Information Version 2 (SMIv2)", STD 58, RFC 2578, April
 1999.

 [RFC2579] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Textual Conventions for
 SMIv2", STD 58, RFC 2579, April 1999.

 [RFC2580] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Conformance Statements for
 SMIv2", STD 58, RFC 2580, April 1999.

 [RFC3412] Case, J., Harrington, D., Presuhn, R. and B. Wijnen,
 "Message Processing and Dispatching for the Simple
 Network Management Protocol (SNMP)", STD 62, RFC 3412,
 December 2002.

 [RFC3413] Levi, D., Meyer, P. and B. Stewart, "Simple Network
 Management Protocol (SNMP) Applications", STD 62, RFC
 3413, December 2002.

 [RFC3414] Blumenthal, U. and B. Wijnen, "User-Based Security Model
 (USM) for Version 3 of the Simple Network Management
 Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.

 [RFC3415] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based
 Access Control Model (VACM) for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3415, December
 2002.

 [RFC3416] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Protocol Operations for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3416, December
 2002.

 [RFC3417] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Transport Mappings for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3417, December
 2002.

 [RFC3418] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Management Information Base (MIB) for the
 Simple Network Management Protocol (SNMP)", STD 62, RFC
 3418, December 2002.

Harrington, et al. Standards Track [Page 55]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

10.2. Informative References

 [RFC1155] Rose, M. and K. McCloghrie, "Structure and Identification
 of Management Information for TCP/IP-based internets",
 STD 16, RFC 1155, May 1990.

 [RFC1157] Case, J., Fedor, M., Schoffstall, M. and J. Davin, "The
 Simple Network Management Protocol", STD 15, RFC 1157,
 May 1990.

 [RFC1212] Rose, M. and K. McCloghrie, "Concise MIB Definitions",
 STD 16, RFC 1212, March 1991.

 [RFC1901] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Introduction to Community-based SNMPv2", RFC 1901,
 January 1996.

 [RFC1909] McCloghrie, K., Editor, "An Administrative Infrastructure
 for SNMPv2", RFC 1909, February 1996.

 [RFC1910] Waters, G., Editor, "User-based Security Model for
 SNMPv2", RFC 1910, February 1996.

 [RFC2028] Hovey, R. and S. Bradner, "The Organizations Involved in
 the IETF Standards Process", BCP 11, RFC 2028, October
 1996.

 [RFC2576] Frye, R., Levi, D., Routhier, S. and B. Wijnen,
 "Coexistence between Version 1, Version 2, and Version 3
 of the Internet-Standard Network Management Framework",
 RFC 2576, March 2000.

 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
 MIB", RFC 2863, June 2000.

 [RFC3410] Case, J., Mundy, R., Partain, D. and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410, December 2002.

Harrington, et al. Standards Track [Page 56]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

Appendix A

A. Guidelines for Model Designers

 This appendix describes guidelines for designers of models which are
 expected to fit into the architecture defined in this document.

 SNMPv1 and SNMPv2c are two SNMP frameworks which use communities to
 provide trivial authentication and access control. SNMPv1 and
 SNMPv2c Frameworks can coexist with Frameworks designed according to
 this architecture, and modified versions of SNMPv1 and SNMPv2c
 Frameworks could be designed to meet the requirements of this
 architecture, but this document does not provide guidelines for that
 coexistence.

 Within any subsystem model, there should be no reference to any
 specific model of another subsystem, or to data defined by a specific
 model of another subsystem.

 Transfer of data between the subsystems is deliberately described as
 a fixed set of abstract data elements and primitive functions which
 can be overloaded to satisfy the needs of multiple model definitions.

 Documents which define models to be used within this architecture
 SHOULD use the standard primitives between subsystems, possibly
 defining specific mechanisms for converting the abstract data
 elements into model-usable formats. This constraint exists to allow
 subsystem and model documents to be written recognizing common
 borders of the subsystem and model. Vendors are not constrained to
 recognize these borders in their implementations.

 The architecture defines certain standard services to be provided
 between subsystems, and the architecture defines abstract service
 interfaces to request these services.

 Each model definition for a subsystem SHOULD support the standard
 service interfaces, but whether, or how, or how well, it performs the
 service is dependent on the model definition.

A.1. Security Model Design Requirements

A.1.1. Threats

 A document describing a Security Model MUST describe how the model
 protects against the threats described under "Security Requirements
 of this Architecture", section 1.4.

Harrington, et al. Standards Track [Page 57]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

A.1.2. Security Processing

 Received messages MUST be validated by a Model of the Security
 Subsystem. Validation includes authentication and privacy processing
 if needed, but it is explicitly allowed to send messages which do not
 require authentication or privacy.

 A received message contains a specified securityLevel to be used
 during processing. All messages requiring privacy MUST also require
 authentication.

 A Security Model specifies rules by which authentication and privacy
 are to be done. A model may define mechanisms to provide additional
 security features, but the model definition is constrained to using
 (possibly a subset of) the abstract data elements defined in this
 document for transferring data between subsystems.

 Each Security Model may allow multiple security protocols to be used
 concurrently within an implementation of the model. Each Security
 Model defines how to determine which protocol to use, given the
 securityLevel and the security parameters relevant to the message.
 Each Security Model, with its associated protocol(s) defines how the
 sending/receiving entities are identified, and how secrets are
 configured.

 Authentication and Privacy protocols supported by Security Models are
 uniquely identified using Object Identifiers. IETF standard
 protocols for authentication or privacy should have an identifier
 defined within the snmpAuthProtocols or the snmpPrivProtocols
 subtrees. Enterprise specific protocol identifiers should be defined
 within the enterprise subtree.

 For privacy, the Security Model defines what portion of the message
 is encrypted.

 The persistent data used for security should be SNMP-manageable, but
 the Security Model defines whether an instantiation of the MIB is a
 conformance requirement.

 Security Models are replaceable within the Security Subsystem.
 Multiple Security Model implementations may exist concurrently within
 an SNMP engine. The number of Security Models defined by the SNMP
 community should remain small to promote interoperability.

Harrington, et al. Standards Track [Page 58]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

A.1.3. Validate the security-stamp in a received message

 A Message Processing Model requests that a Security Model:

 - verifies that the message has not been altered,

 - authenticates the identification of the principal for whom the
 message was generated.

 - decrypts the message if it was encrypted.

 Additional requirements may be defined by the model, and additional
 services may be provided by the model, but the model is constrained
 to use the following primitives for transferring data between
 subsystems. Implementations are not so constrained.

 A Message Processing Model uses the processIncomingMsg primitive as
 described in section 4.4.2.

A.1.4. Security MIBs

 Each Security Model defines the MIB module(s) required for security
 processing, including any MIB module(s) required for the security
 protocol(s) supported. The MIB module(s) SHOULD be defined
 concurrently with the procedures which use the MIB module(s). The
 MIB module(s) are subject to normal access control rules.

 The mapping between the model-dependent security ID and the
 securityName MUST be able to be determined using SNMP, if the model-
 dependent MIB is instantiated and if access control policy allows
 access.

A.1.5. Cached Security Data

 For each message received, the Security Model caches the state
 information such that a Response message can be generated using the
 same security information, even if the Local Configuration Datastore
 is altered between the time of the incoming request and the outgoing
 response.

 A Message Processing Model has the responsibility for explicitly
 releasing the cached data if such data is no longer needed. To
 enable this, an abstract securityStateReference data element is
 passed from the Security Model to the Message Processing Model.

 The cached security data may be implicitly released via the
 generation of a response, or explicitly released by using the
 stateRelease primitive, as described in section 4.5.1.

Harrington, et al. Standards Track [Page 59]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

A.2. Message Processing Model Design Requirements

 An SNMP engine contains a Message Processing Subsystem which may
 contain multiple Message Processing Models.

 The Message Processing Model MUST always (conceptually) pass the
 complete PDU, i.e., it never forwards less than the complete list of
 varBinds.

A.2.1. Receiving an SNMP Message from the Network

 Upon receipt of a message from the network, the Dispatcher in the
 SNMP engine determines the version of the SNMP message and interacts
 with the corresponding Message Processing Model to determine the
 abstract data elements.

 A Message Processing Model specifies the SNMP Message format it
 supports and describes how to determine the values of the abstract
 data elements (like msgID, msgMaxSize, msgFlags,
 msgSecurityParameters, securityModel, securityLevel etc). A Message
 Processing Model interacts with a Security Model to provide security
 processing for the message using the processIncomingMsg primitive, as
 described in section 4.4.2.

A.2.2. Sending an SNMP Message to the Network

 The Dispatcher in the SNMP engine interacts with a Message Processing
 Model to prepare an outgoing message. For that it uses the following
 primitives:

 - for requests and notifications: prepareOutgoingMessage, as
 described in section 4.2.1.

 - for response messages: prepareResponseMessage, as described in
 section 4.2.2.

 A Message Processing Model, when preparing an Outgoing SNMP Message,
 interacts with a Security Model to secure the message. For that it
 uses the following primitives:

 - for requests and notifications: generateRequestMsg, as
 described in section 4.4.1.

 - for response messages: generateResponseMsg as described in
 section 4.4.3.

Harrington, et al. Standards Track [Page 60]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

 Once the SNMP message is prepared by a Message Processing Model, the
 Dispatcher sends the message to the desired address using the
 appropriate transport.

A.3. Application Design Requirements

 Within an application, there may be an explicit binding to a specific
 SNMP message version, i.e., a specific Message Processing Model, and
 to a specific Access Control Model, but there should be no reference
 to any data defined by a specific Message Processing Model or Access
 Control Model.

 Within an application, there should be no reference to any specific
 Security Model, or any data defined by a specific Security Model.

 An application determines whether explicit or implicit access control
 should be applied to the operation, and, if access control is needed,
 which Access Control Model should be used.

 An application has the responsibility to define any MIB module(s)
 used to provide application-specific services.

 Applications interact with the SNMP engine to initiate messages,
 receive responses, receive asynchronous messages, and send responses.

A.3.1. Applications that Initiate Messages

 Applications may request that the SNMP engine send messages
 containing SNMP commands or notifications using the sendPdu primitive
 as described in section 4.1.1.

 If it is desired that a message be sent to multiple targets, it is
 the responsibility of the application to provide the iteration.

 The SNMP engine assumes necessary access control has been applied to
 the PDU, and provides no access control services.

 The SNMP engine looks at the "expectResponse" parameter, and if a
 response is expected, then the appropriate information is cached such
 that a later response can be associated to this message, and can then
 be returned to the application. A sendPduHandle is returned to the
 application so it can later correspond the response with this message
 as well.

Harrington, et al. Standards Track [Page 61]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

A.3.2. Applications that Receive Responses

 The SNMP engine matches the incoming response messages to outstanding
 messages sent by this SNMP engine, and forwards the response to the
 associated application using the processResponsePdu primitive, as
 described in section 4.1.4.

A.3.3. Applications that Receive Asynchronous Messages

 When an SNMP engine receives a message that is not the response to a
 request from this SNMP engine, it must determine to which application
 the message should be given.

 An Application that wishes to receive asynchronous messages registers
 itself with the engine using the primitive registerContextEngineID as
 described in section 4.1.5.

 An Application that wishes to stop receiving asynchronous messages
 should unregister itself with the SNMP engine using the primitive
 unregisterContextEngineID as described in section 4.1.5.

 Only one registration per combination of PDU type and contextEngineID
 is permitted at the same time. Duplicate registrations are ignored.
 An errorIndication will be returned to the application that attempts
 to duplicate a registration.

 All asynchronously received messages containing a registered
 combination of PDU type and contextEngineID are sent to the
 application which registered to support that combination.

 The engine forwards the PDU to the registered application, using the
 processPdu primitive, as described in section 4.1.2.

A.3.4. Applications that Send Responses

 Request operations require responses. An application sends a
 response via the returnResponsePdu primitive, as described in section
 4.1.3.

 The contextEngineID, contextName, securityModel, securityName,
 securityLevel, and stateReference parameters are from the initial
 processPdu primitive. The PDU and statusInformation are the results
 of processing.

Harrington, et al. Standards Track [Page 62]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

A.4. Access Control Model Design Requirements

 An Access Control Model determines whether the specified securityName
 is allowed to perform the requested operation on a specified managed
 object. The Access Control Model specifies the rules by which access
 control is determined.

 The persistent data used for access control should be manageable
 using SNMP, but the Access Control Model defines whether an
 instantiation of the MIB is a conformance requirement.

 The Access Control Model must provide the primitive isAccessAllowed.

Editors’ Addresses

 Bert Wijnen
 Lucent Technologies
 Schagen 33
 3461 GL Linschoten
 Netherlands

 Phone: +31 348-680-485
 EMail: bwijnen@lucent.com

 David Harrington
 Enterasys Networks
 Post Office Box 5005
 35 Industrial Way
 Rochester, New Hampshire 03866-5005
 USA

 Phone: +1 603-337-2614
 EMail: dbh@enterasys.com

 Randy Presuhn
 BMC Software, Inc.
 2141 North First Street
 San Jose, California 95131
 USA

 Phone: +1 408-546-1006
 Fax: +1 408-965-0359
 EMail: randy_presuhn@bmc.com

Harrington, et al. Standards Track [Page 63]

RFC 3411 Architecture for SNMP Management Frameworks December 2002

Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Harrington, et al. Standards Track [Page 64]

===

Network Working Group J. Case
Request for Comments: 3412 SNMP Research, Inc.
STD: 62 D. Harrington
Obsoletes: 2572 Enterasys Networks
Category: Standards Track R. Presuhn
 BMC Software, Inc.
 B. Wijnen
 Lucent Technologies
 December 2002

 Message Processing and Dispatching for the
 Simple Network Management Protocol (SNMP)

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This document describes the Message Processing and Dispatching for
 Simple Network Management Protocol (SNMP) messages within the SNMP
 architecture. It defines the procedures for dispatching potentially
 multiple versions of SNMP messages to the proper SNMP Message
 Processing Models, and for dispatching PDUs to SNMP applications.
 This document also describes one Message Processing Model - the
 SNMPv3 Message Processing Model. This document obsoletes RFC 2572.

Case, et al. Standards Track [Page 1]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

Table of Contents

 1. Introduction .. 3
 2. Overview .. 4
 2.1. The Dispatcher .. 5
 2.2. Message Processing Subsystem 5
 3. Elements of Message Processing and Dispatching 6
 3.1. messageProcessingModel 6
 3.2. pduVersion .. 6
 3.3. pduType ... 7
 3.4. sendPduHandle ... 7
 4. Dispatcher Elements of Procedure 7
 4.1. Sending an SNMP Message to the Network 7
 4.1.1. Sending a Request or Notification 8
 4.1.2. Sending a Response to the Network 9
 4.2. Receiving an SNMP Message from the Network 11
 4.2.1. Message Dispatching of received SNMP Messages 11
 4.2.2. PDU Dispatching for Incoming Messages 12
 4.2.2.1. Incoming Requests and Notifications 13
 4.2.2.2. Incoming Responses 14
 4.3. Application Registration for Handling PDU types 15
 4.4. Application Unregistration for Handling PDU Types 16
 5. Definitions ... 16
 5.1. Definitions for SNMP Message Processing and Dispatching ... 16
 6. The SNMPv3 Message Format 19
 6.1. msgVersion .. 20
 6.2. msgID ... 20
 6.3. msgMaxSize .. 21
 6.4. msgFlags .. 21
 6.5. msgSecurityModel .. 24
 6.6. msgSecurityParameters 24
 6.7. scopedPduData ... 24
 6.8. scopedPDU ... 24
 6.8.1. contextEngineID ... 24
 6.8.2. contextName ... 25
 6.8.3. data .. 25
 7. Elements of Procedure for v3MP 25
 7.1. Prepare an Outgoing SNMP Message 26
 7.2. Prepare Data Elements from an Incoming SNMP Message 32
 8. Intellectual Property 37
 9. Acknowledgements .. 38
 10. Security Considerations 39
 11. References ... 40
 11.1. Normative References 40
 11.2. Informative References 41
 12. Editors’ Addresses ... 42
 13. Full Copyright Statement 43

Case, et al. Standards Track [Page 2]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

1. Introduction

 The Architecture for describing Internet Management Frameworks
 [RFC3411] describes that an SNMP engine is composed of:

 1) a Dispatcher
 2) a Message Processing Subsystem,
 3) a Security Subsystem, and
 4) an Access Control Subsystem.

 Applications make use of the services of these subsystems.

 It is important to understand the SNMP architecture and its
 terminology to understand where the Message Processing Subsystem and
 Dispatcher described in this document fit into the architecture and
 interact with other subsystems within the architecture. The reader
 is expected to have read and understood the description of the SNMP
 architecture, defined in [RFC3411].

 The Dispatcher in the SNMP engine sends and receives SNMP messages.
 It also dispatches SNMP PDUs to SNMP applications. When an SNMP
 message needs to be prepared or when data needs to be extracted from
 an SNMP message, the Dispatcher delegates these tasks to a message
 version-specific Message Processing Model within the Message
 Processing Subsystem.

 A Message Processing Model is responsible for processing an SNMP
 version-specific message and for coordinating the interaction with
 the Security Subsystem to ensure proper security is applied to the
 SNMP message being handled.

 Interactions between the Dispatcher, the Message Processing
 Subsystem, and applications are modeled using abstract data elements
 and abstract service interface primitives defined by the SNMP
 architecture.

 Similarly, interactions between the Message Processing Subsystem and
 the Security Subsystem are modeled using abstract data elements and
 abstract service interface primitives as defined by the SNMP
 architecture.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119.

Case, et al. Standards Track [Page 3]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

2. Overview

 The following illustration depicts the Message Processing in relation
 to SNMP applications, the Security Subsystem and Transport Mappings.

 +---+
 | SNMP Entity |
 | |
 | +---+ |
	Applications					
	+-----------+ +--------------+					
		Command		Notification		
		Generator		Originator	+-----------+ +--------------+	
	+-----------+ +--------------+	Proxy		Other		
	+-----------+ +--------------+	Forwarder		Application(s)		
		Command		Notification	+-----------+ +--------------+	
		Responder		Receiver		
	+-----------+ +--------------+					
+---+						
^ ^ ^ ^						
v v v v						
+--------+-------+---------------+-----------+						
^						
	+---------------------+ +-----------------+					
		Message Processing		Security		
Dispatcher v	Subsystem		Subsystem			
+------------------+	+------------+					
	PDU Dispatcher		+->	v1MP *	<--->	+-------------+
				+------------+		
				+------------+		
			+->	v2cMP *	<--->	
	Message			+------------+		+-------------+
	Dispatcher <-------->+					
				+------------+		+-------------+
			+->	v3MP *	<--->	
	Transport			+------------+		
	Mapping			+------------+		
	(e.g., RFC 3417)		+->	otherMP *	<--->	+-------------+
+------------------+	+------------+					
^ +---------------------+ +-----------------+						
 +----------|--+
 v
 +------------------+
 | Network | * One or more models may be present.
 +------------------+

Case, et al. Standards Track [Page 4]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

2.1. The Dispatcher

 The Dispatcher is a key piece of an SNMP engine. There is only one
 in an SNMP engine, and its job is to dispatch tasks to the multiple
 version-specific Message Processing Models, and to dispatch PDUs to
 various applications.

 For outgoing messages, an application provides a PDU to be sent, plus
 the data needed to prepare and send the message, and the application
 specifies which version-specific Message Processing Model will be
 used to prepare the message with the desired security processing.
 Once the message is prepared, the Dispatcher sends the message.

 For incoming messages, the Dispatcher determines the SNMP version of
 the incoming message and passes the message to the version-specific
 Message Processing Model to extract the components of the message and
 to coordinate the processing of security services for the message.
 After version-specific processing, the PDU Dispatcher determines
 which application, if any, should receive the PDU for processing and
 forwards it accordingly.

 The Dispatcher, while sending and receiving SNMP messages, collects
 statistics about SNMP messages and the behavior of the SNMP engine in
 managed objects to make them accessible to remote SNMP entities.
 This document defines these managed objects, the MIB module which
 contains them, and how these managed objects might be used to provide
 useful management.

2.2. Message Processing Subsystem

 The SNMP Message Processing Subsystem is the part of an SNMP engine
 which interacts with the Dispatcher to handle the version-specific
 SNMP messages. It contains one or more Message Processing Models.

 This document describes one Message Processing Model, the SNMPv3
 Message Processing Model, in Section 6. The SNMPv3 Message
 Processing Model is defined in a separate section to show that
 multiple (independent) Message Processing Models can exist at the
 same time and that such Models can be described in different
 documents. The SNMPv3 Message Processing Model can be replaced or
 supplemented with other Message Processing Models in the future. Two
 Message Processing Models which are expected to be developed in the
 future are the SNMPv1 message format [RFC1157] and the SNMPv2c
 message format [RFC1901]. Others may be developed as needed.

Case, et al. Standards Track [Page 5]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

3. Elements of Message Processing and Dispatching

 See [RFC3411] for the definitions of:

 contextEngineID
 contextName
 scopedPDU
 maxSizeResponseScopedPDU
 securityModel
 securityName
 securityLevel
 messageProcessingModel

 For incoming messages, a version-specific message processing module
 provides these values to the Dispatcher. For outgoing messages, an
 application provides these values to the Dispatcher.

 For some version-specific processing, the values may be extracted
 from received messages; for other versions, the values may be
 determined by algorithm, or by an implementation-defined mechanism.
 The mechanism by which the value is determined is irrelevant to the
 Dispatcher.

 The following additional or expanded definitions are for use within
 the Dispatcher.

3.1. messageProcessingModel

 The value of messageProcessingModel identifies a Message Processing
 Model. A Message Processing Model describes the version-specific
 procedures for extracting data from messages, generating messages,
 calling upon a securityModel to apply its security services to
 messages, for converting data from a version-specific message format
 into a generic format usable by the Dispatcher, and for converting
 data from Dispatcher format into a version-specific message format.

3.2. pduVersion

 The value of pduVersion represents a specific version of protocol
 operation and its associated PDU formats, such as SNMPv1 or SNMPv2
 [RFC3416]. The values of pduVersion are specific to the version of
 the PDU contained in a message, and the PDUs processed by
 applications. The Dispatcher does not use the value of pduVersion
 directly.

Case, et al. Standards Track [Page 6]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 An application specifies the pduVersion when it requests the PDU
 Dispatcher to send a PDU to another SNMP engine. The Dispatcher
 passes the pduVersion to a Message Processing Model, so it knows how
 to handle the PDU properly.

 For incoming messages, the pduVersion is provided to the Dispatcher
 by a version-specific Message Processing module. The PDU Dispatcher
 passes the pduVersion to the application so it knows how to handle
 the PDU properly. For example, a command responder application needs
 to know whether to use [RFC3416] elements of procedure and syntax
 instead of those specified for SNMPv1.

3.3. pduType

 A value of the pduType represents a specific type of protocol
 operation. The values of the pduType are specific to the version of
 the PDU contained in a message.

 Applications register to support particular pduTypes for particular
 contextEngineIDs.

 For incoming messages, pduType is provided to the Dispatcher by a
 version-specific Message Processing module. It is subsequently used
 to dispatch the PDU to the application which registered for the
 pduType for the contextEngineID of the associated scopedPDU.

3.4. sendPduHandle

 This handle is generated for coordinating the processing of requests
 and responses between the SNMP engine and an application. The handle
 must be unique across all version-specific Message Processing Models,
 and is of local significance only.

4. Dispatcher Elements of Procedure

 This section describes the procedures followed by the Dispatcher when
 generating and processing SNMP messages.

4.1. Sending an SNMP Message to the Network

 This section describes the procedure followed by an SNMP engine
 whenever it sends an SNMP message.

Case, et al. Standards Track [Page 7]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

4.1.1. Sending a Request or Notification

 The following procedures are followed by the Dispatcher when an
 application wants to send an SNMP PDU to another (remote)
 application, i.e., to initiate a communication by originating a
 message, such as one containing a request or a notification.

 1) The application requests this using the abstract service
 primitive:

 statusInformation = -- sendPduHandle if success
 -- errorIndication if failure
 sendPdu(
 IN transportDomain -- transport domain to be used
 IN transportAddress -- destination network address
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model to use
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security requested
 IN contextEngineID -- data from/at this entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN expectResponse -- TRUE or FALSE
)

 2) If the messageProcessingModel value does not represent a Message
 Processing Model known to the Dispatcher, then an errorIndication
 (implementation-dependent) is returned to the calling application.
 No further processing is performed.

 3) The Dispatcher generates a sendPduHandle to coordinate subsequent
 processing.

Case, et al. Standards Track [Page 8]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 4) The Message Dispatcher sends the request to the version-specific
 Message Processing module identified by messageProcessingModel
 using the abstract service primitive:

 statusInformation = -- success or error indication
 prepareOutgoingMessage(
 IN transportDomain -- as specified by application
 IN transportAddress -- as specified by application
 IN messageProcessingModel -- as specified by application
 IN securityModel -- as specified by application
 IN securityName -- as specified by application
 IN securityLevel -- as specified by application
 IN contextEngineID -- as specified by application
 IN contextName -- as specified by application
 IN pduVersion -- as specified by application
 IN PDU -- as specified by application
 IN expectResponse -- as specified by application
 IN sendPduHandle -- as determined in step 3.
 OUT destTransportDomain -- destination transport domain
 OUT destTransportAddress -- destination transport address
 OUT outgoingMessage -- the message to send
 OUT outgoingMessageLength -- the message length
)

 5) If the statusInformation indicates an error, the errorIndication
 is returned to the calling application. No further processing is
 performed.

 6) If the statusInformation indicates success, the sendPduHandle is
 returned to the application, and the outgoingMessage is sent. The
 transport used to send the outgoingMessage is returned via
 destTransportDomain, and the address to which it was sent is
 returned via destTransportAddress.

 Outgoing Message Processing is complete.

4.1.2. Sending a Response to the Network

 The following procedure is followed when an application wants to
 return a response back to the originator of an SNMP Request.

Case, et al. Standards Track [Page 9]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 1) An application can request this using the abstract service
 primitive:

 result =
 returnResponsePdu(
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model in use
 IN securityName -- on behalf of this principal
 IN securityLevel -- same as on incoming request
 IN contextEngineID -- data from/at this SNMP entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN maxSizeResponseScopedPDU -- maximum size of Response PDU
 IN stateReference -- reference to state information
 -- as presented with the request
 IN statusInformation -- success or errorIndication
) -- (error counter OID and value
 -- when errorIndication)

 2) The Message Dispatcher sends the request to the appropriate
 Message Processing Model indicated by the received value of
 messageProcessingModel using the abstract service primitive:

 result = -- SUCCESS or errorIndication
 prepareResponseMessage(
 IN messageProcessingModel -- specified by application
 IN securityModel -- specified by application
 IN securityName -- specified by application
 IN securityLevel -- specified by application
 IN contextEngineID -- specified by application
 IN contextName -- specified by application
 IN pduVersion -- specified by application
 IN PDU -- specified by application
 IN maxSizeResponseScopedPDU -- specified by application
 IN stateReference -- specified by application
 IN statusInformation -- specified by application
 OUT destTransportDomain -- destination transport domain
 OUT destTransportAddress -- destination transport address
 OUT outgoingMessage -- the message to send
 OUT outgoingMessageLength -- the message length
)

 3) If the result is an errorIndication, the errorIndication is
 returned to the calling application. No further processing is
 performed.

Case, et al. Standards Track [Page 10]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 4) If the result is success, the outgoingMessage is sent. The
 transport used to send the outgoingMessage is returned via
 destTransportDomain, and the address to which it was sent is
 returned via destTransportAddress.

 Message Processing is complete.

4.2. Receiving an SNMP Message from the Network

 This section describes the procedure followed by an SNMP engine
 whenever it receives an SNMP message.

 Please note, that for the sake of clarity and to prevent the text
 from being even longer and more complicated, some details were
 omitted from the steps below. In particular, the elements of
 procedure do not always explicitly indicate when state information
 needs to be released. The general rule is that if state information
 is available when a message is to be "discarded without further
 processing", then the state information must also be released at that
 same time.

4.2.1. Message Dispatching of received SNMP Messages

 1) The snmpInPkts counter [RFC3418] is incremented.

 2) The version of the SNMP message is determined in an
 implementation-dependent manner. If the packet cannot be
 sufficiently parsed to determine the version of the SNMP message,
 then the snmpInASNParseErrs [RFC3418] counter is incremented, and
 the message is discarded without further processing. If the
 version is not supported, then the snmpInBadVersions [RFC3418]
 counter is incremented, and the message is discarded without
 further processing.

 3) The origin transportDomain and origin transportAddress are
 determined.

Case, et al. Standards Track [Page 11]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 4) The message is passed to the version-specific Message Processing
 Model which returns the abstract data elements required by the
 Dispatcher. This is performed using the abstract service
 primitive:

 result = -- SUCCESS or errorIndication
 prepareDataElements(
 IN transportDomain -- origin as determined in step 3.
 IN transportAddress -- origin as determined in step 3.
 IN wholeMsg -- as received from the network
 IN wholeMsgLength -- as received from the network
 OUT messageProcessingModel -- typically, SNMP version
 OUT securityModel -- Security Model specified
 OUT securityName -- on behalf of this principal
 OUT securityLevel -- Level of Security specified
 OUT contextEngineID -- data from/at this entity
 OUT contextName -- data from/in this context
 OUT pduVersion -- the version of the PDU
 OUT PDU -- SNMP Protocol Data Unit
 OUT pduType -- SNMP PDU type
 OUT sendPduHandle -- handle for a matched request
 OUT maxSizeResponseScopedPDU -- maximum size of Response PDU
 OUT statusInformation -- success or errorIndication
 -- (error counter OID and value
 -- when errorIndication)
 OUT stateReference -- reference to state information
 -- to be used for a possible
) -- Response

 5) If the result is a FAILURE errorIndication, the message is
 discarded without further processing.

 6) At this point, the abstract data elements have been prepared and
 processing continues as described in Section 4.2.2, PDU
 Dispatching for Incoming Messages.

4.2.2. PDU Dispatching for Incoming Messages

 The elements of procedure for the dispatching of PDUs depends on the
 value of sendPduHandle. If the value of sendPduHandle is <none>,
 then this is a request or notification and the procedures specified
 in Section 4.2.2.1 apply. If the value of snmpPduHandle is not
 <none>, then this is a response and the procedures specified in
 Section 4.2.2.2 apply.

Case, et al. Standards Track [Page 12]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

4.2.2.1. Incoming Requests and Notifications

 The following procedures are followed for the dispatching of PDUs
 when the value of sendPduHandle is <none>, indicating this is a
 request or notification.

 1) The combination of contextEngineID and pduType is used to
 determine which application has registered for this request or
 notification.

 2) If no application has registered for the combination, then:

 a) The snmpUnknownPDUHandlers counter is incremented.

 b) A Response message is generated using the abstract service
 primitive:

 result = -- SUCCESS or FAILURE
 prepareResponseMessage(
 IN messageProcessingModel -- as provided by MP module
 IN securityModel -- as provided by MP module
 IN securityName -- as provided by MP module
 IN securityLevel -- as provided by MP module
 IN contextEngineID -- as provided by MP module
 IN contextName -- as provided by MP module
 IN pduVersion -- as provided by MP module
 IN PDU -- as provided by MP module
 IN maxSizeResponseScopedPDU -- as provided by MP module
 IN stateReference -- as provided by MP module
 IN statusInformation -- errorIndication plus
 -- snmpUnknownPDUHandlers OID
 -- value pair.
 OUT destTransportDomain -- destination transportDomain
 OUT destTransportAddress -- destination transportAddress
 OUT outgoingMessage -- the message to send
 OUT outgoingMessageLength -- its length
)

 c) If the result is SUCCESS, then the prepared message is sent to
 the originator of the request as identified by the
 transportDomain and transportAddress. The transport used to
 send the outgoingMessage is returned via destTransportDomain,
 and the address to which it was sent is returned via
 destTransportAddress.

 d) The incoming message is discarded without further processing.
 Message Processing for this message is complete.

Case, et al. Standards Track [Page 13]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 3) The PDU is dispatched to the application, using the abstract
 service primitive:

 processPdu(-- process Request/Notification
 IN messageProcessingModel -- as provided by MP module
 IN securityModel -- as provided by MP module
 IN securityName -- as provided by MP module
 IN securityLevel -- as provided by MP module
 IN contextEngineID -- as provided by MP module
 IN contextName -- as provided by MP module
 IN pduVersion -- as provided by MP module
 IN PDU -- as provided by MP module
 IN maxSizeResponseScopedPDU -- as provided by MP module
 IN stateReference -- as provided by MP module
 -- needed when sending response
)

 Message processing for this message is complete.

4.2.2.2. Incoming Responses

 The following procedures are followed for the dispatching of PDUs
 when the value of sendPduHandle is not <none>, indicating this is a
 response.

 1) The value of sendPduHandle is used to determine, in an
 implementation-defined manner, which application is waiting for a
 response associated with this sendPduHandle.

 2) If no waiting application is found, the message is discarded
 without further processing, and the stateReference is released.
 The snmpUnknownPDUHandlers counter is incremented. Message
 Processing is complete for this message.

 3) Any cached information, including stateReference, about the
 message is discarded.

Case, et al. Standards Track [Page 14]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 4) The response is dispatched to the application using the abstract
 service primitive:

 processResponsePdu(-- process Response PDU
 IN messageProcessingModel -- provided by the MP module
 IN securityModel -- provided by the MP module
 IN securityName -- provided by the MP module
 IN securityLevel -- provided by the MP module
 IN contextEngineID -- provided by the MP module
 IN contextName -- provided by the MP module
 IN pduVersion -- provided by the MP module
 IN PDU -- provided by the MP module
 IN statusInformation -- provided by the MP module
 IN sendPduHandle -- provided by the MP module
)

 Message Processing is complete for this message.

4.3. Application Registration for Handling PDU types

 Applications that want to process certain PDUs must register with the
 PDU Dispatcher. Applications specify the combination of
 contextEngineID and pduType(s) for which they want to take
 responsibility.

 1) An application registers according to the abstract interface
 primitive:

 statusInformation = -- success or errorIndication
 registerContextEngineID(
 IN contextEngineID -- take responsibility for this one
 IN pduType -- the pduType(s) to be registered
)

 Note: Implementations may provide a means of requesting
 registration for simultaneous multiple contextEngineID values,
 e.g., all contextEngineID values, and may also provide a means for
 requesting simultaneous registration for multiple values of the
 pduType.

 2) The parameters may be checked for validity; if they are not, then
 an errorIndication (invalidParameter) is returned to the
 application.

 3) Each combination of contextEngineID and pduType can be registered
 only once. If another application has already registered for the
 specified combination, then an errorIndication (alreadyRegistered)
 is returned to the application.

Case, et al. Standards Track [Page 15]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 4) Otherwise, the registration is saved so that SNMP PDUs can be
 dispatched to this application.

4.4. Application Unregistration for Handling PDU Types

 Applications that no longer want to process certain PDUs must
 unregister with the PDU Dispatcher.

 1) An application unregisters using the abstract service primitive:

 unregisterContextEngineID(
 IN contextEngineID -- give up responsibility for this
 IN pduType -- the pduType(s) to be unregistered
)

 Note: Implementations may provide a means for requesting the
 unregistration for simultaneous multiple contextEngineID values,
 e.g., all contextEngineID values, and may also provide a means for
 requesting simultaneous unregistration for multiple values of
 pduType.

 2) If the contextEngineID and pduType combination has been
 registered, then the registration is deleted.

 If no such registration exists, then the request is ignored.

5. Definitions

5.1. Definitions for SNMP Message Processing and Dispatching

 SNMP-MPD-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF
 MODULE-IDENTITY, OBJECT-TYPE,
 snmpModules, Counter32 FROM SNMPv2-SMI;

 snmpMPDMIB MODULE-IDENTITY
 LAST-UPDATED "200210140000Z"
 ORGANIZATION "SNMPv3 Working Group"
 CONTACT-INFO "WG-EMail: snmpv3@lists.tislabs.com
 Subscribe: snmpv3-request@lists.tislabs.com

 Co-Chair: Russ Mundy
 Network Associates Laboratories
 postal: 15204 Omega Drive, Suite 300
 Rockville, MD 20850-4601
 USA

Case, et al. Standards Track [Page 16]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 EMail: mundy@tislabs.com
 phone: +1 301-947-7107

 Co-Chair &
 Co-editor: David Harrington
 Enterasys Networks
 postal: 35 Industrial Way
 P. O. Box 5005
 Rochester NH 03866-5005
 USA
 EMail: dbh@enterasys.com
 phone: +1 603-337-2614

 Co-editor: Jeffrey Case
 SNMP Research, Inc.
 postal: 3001 Kimberlin Heights Road
 Knoxville, TN 37920-9716
 USA
 EMail: case@snmp.com
 phone: +1 423-573-1434

 Co-editor: Randy Presuhn
 BMC Software, Inc.
 postal: 2141 North First Street
 San Jose, CA 95131
 USA
 EMail: randy_presuhn@bmc.com
 phone: +1 408-546-1006

 Co-editor: Bert Wijnen
 Lucent Technologies
 postal: Schagen 33
 3461 GL Linschoten
 Netherlands
 EMail: bwijnen@lucent.com
 phone: +31 348-680-485
 "
 DESCRIPTION "The MIB for Message Processing and Dispatching

 Copyright (C) The Internet Society (2002). This
 version of this MIB module is part of RFC 3412;
 see the RFC itself for full legal notices.
 "
 REVISION "200210140000Z" -- 14 October 2002
 DESCRIPTION "Updated addresses, published as RFC 3412."
 REVISION "199905041636Z" -- 4 May 1999
 DESCRIPTION "Updated addresses, published as RFC 2572."

Case, et al. Standards Track [Page 17]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 REVISION "199709300000Z" -- 30 September 1997
 DESCRIPTION "Original version, published as RFC 2272."
 ::= { snmpModules 11 }

 -- Administrative assignments ***************************************

 snmpMPDAdmin OBJECT IDENTIFIER ::= { snmpMPDMIB 1 }
 snmpMPDMIBObjects OBJECT IDENTIFIER ::= { snmpMPDMIB 2 }
 snmpMPDMIBConformance OBJECT IDENTIFIER ::= { snmpMPDMIB 3 }

 -- Statistics for SNMP Messages *************************************

 snmpMPDStats OBJECT IDENTIFIER ::= { snmpMPDMIBObjects 1 }

 snmpUnknownSecurityModels OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The total number of packets received by the SNMP
 engine which were dropped because they referenced a
 securityModel that was not known to or supported by
 the SNMP engine.
 "
 ::= { snmpMPDStats 1 }

 snmpInvalidMsgs OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The total number of packets received by the SNMP
 engine which were dropped because there were invalid
 or inconsistent components in the SNMP message.
 "
 ::= { snmpMPDStats 2 }

 snmpUnknownPDUHandlers OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The total number of packets received by the SNMP
 engine which were dropped because the PDU contained
 in the packet could not be passed to an application
 responsible for handling the pduType, e.g. no SNMP
 application had registered for the proper
 combination of the contextEngineID and the pduType.
 "
 ::= { snmpMPDStats 3 }

Case, et al. Standards Track [Page 18]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 -- Conformance information **

 snmpMPDMIBCompliances OBJECT IDENTIFIER ::= {snmpMPDMIBConformance 1}
 snmpMPDMIBGroups OBJECT IDENTIFIER ::= {snmpMPDMIBConformance 2}

 -- Compliance statements

 snmpMPDCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION "The compliance statement for SNMP entities which
 implement the SNMP-MPD-MIB.
 "
 MODULE -- this module
 MANDATORY-GROUPS { snmpMPDGroup }
 ::= { snmpMPDMIBCompliances 1 }

 snmpMPDGroup OBJECT-GROUP
 OBJECTS {
 snmpUnknownSecurityModels,
 snmpInvalidMsgs,
 snmpUnknownPDUHandlers
 }
 STATUS current
 DESCRIPTION "A collection of objects providing for remote
 monitoring of the SNMP Message Processing and
 Dispatching process.
 "
 ::= { snmpMPDMIBGroups 1 }

 END

6. The SNMPv3 Message Format

 This section defines the SNMPv3 message format and the corresponding
 SNMP version 3 Message Processing Model (v3MP).

 SNMPv3MessageSyntax DEFINITIONS IMPLICIT TAGS ::= BEGIN

 SNMPv3Message ::= SEQUENCE {
 -- identify the layout of the SNMPv3Message
 -- this element is in same position as in SNMPv1
 -- and SNMPv2c, allowing recognition
 -- the value 3 is used for snmpv3
 msgVersion INTEGER (0 .. 2147483647),
 -- administrative parameters
 msgGlobalData HeaderData,
 -- security model-specific parameters
 -- format defined by Security Model

Case, et al. Standards Track [Page 19]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 msgSecurityParameters OCTET STRING,
 msgData ScopedPduData
 }

 HeaderData ::= SEQUENCE {
 msgID INTEGER (0..2147483647),
 msgMaxSize INTEGER (484..2147483647),

 msgFlags OCTET STRING (SIZE(1)),
 -- 1 authFlag
 -- 1. privFlag
 -- 1.. reportableFlag
 -- Please observe:
 -- 00 is OK, means noAuthNoPriv
 -- 01 is OK, means authNoPriv
 -- 10 reserved, MUST NOT be used.
 -- 11 is OK, means authPriv

 msgSecurityModel INTEGER (1..2147483647)
 }

 ScopedPduData ::= CHOICE {
 plaintext ScopedPDU,
 encryptedPDU OCTET STRING -- encrypted scopedPDU value
 }

 ScopedPDU ::= SEQUENCE {
 contextEngineID OCTET STRING,
 contextName OCTET STRING,
 data ANY -- e.g., PDUs as defined in [RFC3416]
 }
 END

6.1. msgVersion

 The msgVersion field is set to snmpv3(3) and identifies the message
 as an SNMP version 3 Message.

6.2. msgID

 The msgID is used between two SNMP entities to coordinate request
 messages and responses, and by the v3MP to coordinate the processing
 of the message by different subsystem models within the architecture.

 Values for msgID SHOULD be generated in a manner that avoids re-use
 of any outstanding values. Doing so provides protection against some
 replay attacks. One possible implementation strategy would be to use
 the low-order bits of snmpEngineBoots [RFC3411] as the high-order

Case, et al. Standards Track [Page 20]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 portion of the msgID value and a monotonically increasing integer for
 the low-order portion of msgID.

 Note that the request-id in a PDU may be used by SNMP applications to
 identify the PDU; the msgID is used by the engine to identify the
 message which carries a PDU. The engine needs to identify the
 message even if decryption of the PDU (and request-id) fails. No
 assumption should be made that the value of the msgID and the value
 of the request-id are equivalent.

 The value of the msgID field for a response takes the value of the
 msgID field from the message to which it is a response. By use of
 the msgID value, an engine can distinguish the (potentially multiple)
 outstanding requests, and thereby correlate incoming responses with
 outstanding requests. In cases where an unreliable datagram service
 is used, the msgID also provides a simple means of identifying
 messages duplicated by the network. If a request is retransmitted, a
 new msgID value SHOULD be used for each retransmission.

6.3. msgMaxSize

 The msgMaxSize field of the message conveys the maximum message size
 supported by the sender of the message, i.e., the maximum message
 size that the sender can accept when another SNMP engine sends an
 SNMP message (be it a response or any other message) to the sender of
 this message on the transport in use for this message.

 When an SNMP message is being generated, the msgMaxSize is provided
 by the SNMP engine which generates the message. At the receiving
 SNMP engine, the msgMaxSize is used to determine the maximum message
 size the sender can accommodate.

6.4. msgFlags

 The msgFlags field of the message contains several bit fields which
 control processing of the message.

 The reportableFlag is a secondary aid in determining whether a Report
 PDU MUST be sent. It is only used in cases where the PDU portion of
 a message cannot be decoded, due to, for example, an incorrect
 encryption key. If the PDU can be decoded, the PDU type forms the
 basis for decisions on sending Report PDUs.

 When the reportableFlag is used, if its value is one, a Report PDU
 MUST be returned to the sender under those conditions which can cause
 the generation of Report PDUs. Similarly, when the reportableFlag is
 used and its value is zero, then a Report PDU MUST NOT be sent. The
 reportableFlag MUST always be zero when the message contains a PDU

Case, et al. Standards Track [Page 21]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 from the Unconfirmed Class, such as a Report PDU, a response-type PDU
 (such as a Response PDU), or an unacknowledged notification-type PDU
 (such as an SNMPv2-trap PDU). The reportableFlag MUST always be one
 for a PDU from the Confirmed Class, including request-type PDUs (such
 as a Get PDU) and acknowledged notification-type PDUs (such as an
 Inform PDU).

 If the reportableFlag is set to one for a message containing a PDU
 from the Unconfirmed Class, such as a Report PDU, a response-type PDU
 (such as a Response PDU), or an unacknowledged notification-type PDU
 (such as an SNMPv2-trap PDU), then the receiver of that message MUST
 process it as though the reportableFlag had been set to zero.

 If the reportableFlag is set to zero for a message containing a
 request-type PDU (such as a Get PDU) or an acknowledged
 notification-type PDU (such as an Inform PDU), then the receiver of
 that message MUST process it as though the reportableFlag had been
 set to one.

 Report PDUs are generated directly by the SNMPv3 Message Processing
 Model, and support engine-to-engine communications, but may be passed
 to applications for processing.

 An SNMP engine that receives a reportPDU may use it to determine what
 kind of problem was detected by the remote SNMP engine. It can do so
 based on the error counter included as the first (and only) varBind
 of the reportPDU. Based on the detected error, the SNMP engine may
 try to send a corrected SNMP message. If that is not possible, it
 may pass an indication of the error to the application on whose
 behalf the failed SNMP request was issued.

 The authFlag and privFlag portions of the msgFlags field are set by
 the sender to indicate the securityLevel that was applied to the
 message before it was sent on the wire. The receiver of the message
 MUST apply the same securityLevel when the message is received and
 the contents are being processed.

 There are three securityLevels, namely noAuthNoPriv, which is less
 than authNoPriv, which is in turn less than authPriv. See the SNMP
 architecture document [RFC3411] for details about the securityLevel.

 a) authFlag

 If the authFlag is set to one, then the securityModel used by the
 SNMP engine which sent the message MUST identify the securityName
 on whose behalf the SNMP message was generated and MUST provide,
 in a securityModel-specific manner, sufficient data for the
 receiver of the message to be able to authenticate that

Case, et al. Standards Track [Page 22]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 identification. In general, this authentication will allow the
 receiver to determine with reasonable certainty that the message
 was:

 - sent on behalf of the principal associated with the
 securityName,

 - was not redirected,

 - was not modified in transit, and

 - was not replayed.

 If the authFlag is zero, then the securityModel used by the SNMP
 engine which sent the message MUST identify the securityName on
 whose behalf the SNMP message was generated but it does not need
 to provide sufficient data for the receiver of the message to
 authenticate the identification, as there is no need to
 authenticate the message in this case.

 b) privFlag

 If the privFlag is set, then the securityModel used by the SNMP
 engine which sent the message MUST also protect the scopedPDU in
 an SNMP message from disclosure, i.e., it MUST encrypt/decrypt the
 scopedPDU. If the privFlag is zero, then the securityModel in use
 does not need to protect the data from disclosure.

 It is an explicit requirement of the SNMP architecture that if
 privacy is selected, then authentication is also required. That
 means that if the privFlag is set, then the authFlag MUST also be
 set to one.

 The combination of the authFlag and the privFlag comprises a Level
 of Security as follows:

 authFlag zero, privFlag zero -> securityLevel is noAuthNoPriv
 authFlag zero, privFlag one -> invalid combination, see below
 authFlag one, privFlag zero -> securityLevel is authNoPriv
 authFlag one, privFlag one -> securityLevel is authPriv

 The elements of procedure (see below) describe the action to be taken
 when the invalid combination of authFlag equal to zero and privFlag
 equal to one is encountered.

 The remaining bits in msgFlags are reserved, and MUST be set to zero
 when sending a message and SHOULD be ignored when receiving a
 message.

Case, et al. Standards Track [Page 23]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

6.5. msgSecurityModel

 The v3MP supports the concurrent existence of multiple Security
 Models to provide security services for SNMPv3 messages. The
 msgSecurityModel field in an SNMPv3 Message identifies which Security
 Model was used by the sender to generate the message and therefore
 which securityModel MUST be used by the receiver to perform security
 processing for the message. The mapping to the appropriate
 securityModel implementation within an SNMP engine is accomplished in
 an implementation-dependent manner.

6.6. msgSecurityParameters

 The msgSecurityParameters field of the SNMPv3 Message is used for
 communication between the Security Model modules in the sending and
 receiving SNMP engines. The data in the msgSecurityParameters field
 is used exclusively by the Security Model, and the contents and
 format of the data is defined by the Security Model. This OCTET
 STRING is not interpreted by the v3MP, but is passed to the local
 implementation of the Security Model indicated by the
 msgSecurityModel field in the message.

6.7. scopedPduData

 The scopedPduData field represents either the plain text scopedPDU if
 the privFlag in the msgFlags is zero, or it represents an
 encryptedPDU (encoded as an OCTET STRING) which MUST be decrypted by
 the securityModel in use to produce a plaintext scopedPDU.

6.8. scopedPDU

 The scopedPDU contains information to identify an administratively
 unique context and a PDU. The object identifiers in the PDU refer to
 managed objects which are (expected to be) accessible within the
 specified context.

6.8.1. contextEngineID

 The contextEngineID in the SNMPv3 message uniquely identifies, within
 an administrative domain, an SNMP entity that may realize an instance
 of a context with a particular contextName.

 For incoming messages, the contextEngineID is used in conjunction
 with the pduType to determine to which application the scopedPDU will
 be sent for processing.

 For outgoing messages, the v3MP sets the contextEngineID to the value
 provided by the application in the request for a message to be sent.

Case, et al. Standards Track [Page 24]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

6.8.2. contextName

 The contextName field in an SNMPv3 message, in conjunction with the
 contextEngineID field, identifies the particular context associated
 with the management information contained in the PDU portion of the
 message. The contextName is unique within the SNMP entity specified
 by the contextEngineID, which may realize the managed objects
 referenced within the PDU. An application which originates a message
 provides the value for the contextName field and this value may be
 used during processing by an application at the receiving SNMP
 Engine.

6.8.3. data

 The data field of the SNMPv3 Message contains the PDU. Among other
 things, the PDU contains the PDU type that is used by the v3MP to
 determine the type of the incoming SNMP message. The v3MP specifies
 that the PDU MUST be one of those specified in [RFC3416].

7. Elements of Procedure for v3MP

 This section describes the procedures followed by an SNMP engine when
 generating and processing SNMP messages according to the SNMPv3
 Message Processing Model.

 Please note, that for the sake of clarity and to prevent the text
 from being even longer and more complicated, some details were
 omitted from the steps below.

 a) Some steps specify that when some error conditions are
 encountered when processing a received message, a message
 containing a Report PDU is generated and the received message
 is discarded without further processing. However, a Report-PDU
 MUST NOT be generated unless the PDU causing generation of the
 Report PDU can be determined to be a member of the Confirmed
 Class, or the reportableFlag is set to one and the PDU class
 cannot be determined.

 b) The elements of procedure do not always explicitly indicate
 when state information needs to be released. The general rule
 is that if state information is available when a message is to
 be "discarded without further processing", then the state
 information should also be released at that same time.

Case, et al. Standards Track [Page 25]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

7.1. Prepare an Outgoing SNMP Message

 This section describes the procedure followed to prepare an SNMPv3
 message from the data elements passed by the Message Dispatcher.

 1) The Message Dispatcher may request that an SNMPv3 message
 containing a Read Class, Write Class, or Notification Class PDU be
 prepared for sending.

 a) It makes such a request according to the abstract service
 primitive:

 statusInformation = -- success or errorIndication
 prepareOutgoingMessage(
 IN transportDomain -- requested transport domain
 IN transportAddress -- requested destination address
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model to use
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security requested
 IN contextEngineID -- data from/at this entity
 IN contextName -- data from/in this context
 IN pduVersion -- version of the PDU *
 IN PDU -- SNMP Protocol Data Unit
 IN expectResponse -- TRUE or FALSE *
 IN sendPduHandle -- the handle for matching
 -- incoming responses
 OUT destTransportDomain -- destination transport domain
 OUT destTransportAddress -- destination transport address
 OUT outgoingMessage -- the message to send
 OUT outgoingMessageLength -- the length of the message
)

 * The SNMPv3 Message Processing Model does not use the values of
 expectResponse or pduVersion.

 b) A unique msgID is generated. The number used for msgID should
 not have been used recently, and MUST NOT be the same as was
 used for any outstanding request.

 2) The Message Dispatcher may request that an SNMPv3 message
 containing a Response Class or Internal Class PDU be prepared for
 sending.

Case, et al. Standards Track [Page 26]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 a) It makes such a request according to the abstract service
 primitive:

 result = -- SUCCESS or FAILURE
 prepareResponseMessage(
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- same as on incoming request
 IN securityName -- same as on incoming request
 IN securityLevel -- same as on incoming request
 IN contextEngineID -- data from/at this SNMP entity
 IN contextName -- data from/in this context
 IN pduVersion -- version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN maxSizeResponseScopedPDU -- maximum size sender can
 -- accept
 IN stateReference -- reference to state
 -- information presented with
 -- the request
 IN statusInformation -- success or errorIndication
 -- error counter OID and value
 -- when errorIndication
 OUT destTransportDomain -- destination transport domain
 OUT destTransportAddress -- destination transport address
 OUT outgoingMessage -- the message to send
 OUT outgoingMessageLength -- the length of the message
)

 b) The cached information for the original request is retrieved
 via the stateReference, including:

 - msgID,
 - contextEngineID,
 - contextName,
 - securityModel,
 - securityName,
 - securityLevel,
 - securityStateReference,
 - reportableFlag,
 - transportDomain, and
 - transportAddress.

 The SNMPv3 Message Processing Model does not allow cached data
 to be overridden, except by error indications as detailed in
 (3) below.

Case, et al. Standards Track [Page 27]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 3) If statusInformation contains values for an OID/value combination
 (potentially also containing a securityLevel value,
 contextEngineID value, or contextName value), then:

 a) If a PDU is provided, it is the PDU from the original request.
 If possible, extract the request-id and pduType.

 b) If the pduType is determined to not be a member of the
 Confirmed Class, or if the reportableFlag is zero and the
 pduType cannot be determined, then the original message is
 discarded, and no further processing is done. A result of
 FAILURE is returned. SNMPv3 Message Processing is complete.

 c) A Report PDU is prepared:

 1) the varBindList is set to contain the OID and value from the
 statusInformation.

 2) error-status is set to 0.

 3) error-index is set to 0.

 4) request-id is set to the value extracted in step b).
 Otherwise, request-id is set to 0.

 d) The errorIndication in statusInformation may be accompanied by
 a securityLevel value, a contextEngineID value, or a
 contextName value.

 1) If statusInformation contains a value for securityLevel,
 then securityLevel is set to that value, otherwise it is set
 to noAuthNoPriv.

 2) If statusInformation contains a value for contextEngineID,
 then contextEngineID is set to that value, otherwise it is
 set to the value of this entity’s snmpEngineID.

 3) If statusInformation contains a value for contextName, then
 contextName is set to that value, otherwise it is set to the
 default context of "" (zero-length string).

 e) PDU is set to refer to the new Report-PDU. The old PDU is
 discarded.

 f) Processing continues with step 6) below.

Case, et al. Standards Track [Page 28]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 4) If the contextEngineID is not yet determined, then the
 contextEngineID is determined, in an implementation-dependent
 manner, possibly using the transportDomain and transportAddress.

 5) If the contextName is not yet determined, the contextName is set
 to the default context.

 6) A scopedPDU is prepared from the contextEngineID, contextName, and
 PDU.

 7) msgGlobalData is constructed as follows:

 a) The msgVersion field is set to snmpv3(3).

 b) msgID is set as determined in step 1 or 2 above.

 c) msgMaxSize is set to an implementation-dependent value.

 d) msgFlags are set as follows:

 - If securityLevel specifies noAuthNoPriv, then authFlag and
 privFlag are both set to zero.

 - If securityLevel specifies authNoPriv, then authFlag is set
 to one and privFlag is set to zero.

 - If securityLevel specifies authPriv, then authFlag is set to
 one and privFlag is set to one.

 - If the PDU is from the Unconfirmed Class, then the
 reportableFlag is set to zero.

 - If the PDU is from the Confirmed Class then the
 reportableFlag is set to one.

 - All other msgFlags bits are set to zero.

 e) msgSecurityModel is set to the value of securityModel.

Case, et al. Standards Track [Page 29]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 8) If the PDU is from the Response Class or the Internal Class, then:

 a) The specified Security Model is called to generate the message
 according to the primitive:

 statusInformation =
 generateResponseMsg(
 IN messageProcessingModel -- SNMPv3 Message Processing
 -- Model
 IN globalData -- msgGlobalData from step 7
 IN maxMessageSize -- from msgMaxSize (step 7c)
 IN securityModel -- as determined in step 7e
 IN securityEngineID -- the value of snmpEngineID
 IN securityName -- on behalf of this principal
 IN securityLevel -- for the outgoing message
 IN scopedPDU -- as prepared in step 6)
 IN securityStateReference -- as determined in step 2
 OUT securityParameters -- filled in by Security Module
 OUT wholeMsg -- complete generated message
 OUT wholeMsgLength -- length of generated message
)

 If, upon return from the Security Model, the statusInformation
 includes an errorIndication, then any cached information about
 the outstanding request message is discarded, and an
 errorIndication is returned, so it can be returned to the
 calling application. SNMPv3 Message Processing is complete.

 b) A SUCCESS result is returned. SNMPv3 Message Processing is
 complete.

 9) If the PDU is from the Confirmed Class or the Notification Class,
 then:

 a) If the PDU is from the Unconfirmed Class, then securityEngineID
 is set to the value of this entity’s snmpEngineID.

 Otherwise, the snmpEngineID of the target entity is determined,
 in an implementation-dependent manner, possibly using
 transportDomain and transportAddress. The value of the
 securityEngineID is set to the value of the target entity’s
 snmpEngineID.

Case, et al. Standards Track [Page 30]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 b) The specified Security Model is called to generate the message
 according to the primitive:

 statusInformation =
 generateRequestMsg(
 IN messageProcessingModel -- SNMPv3 Message Processing Model
 IN globalData -- msgGlobalData, from step 7
 IN maxMessageSize -- from msgMaxSize in step 7 c)
 IN securityModel -- as provided by caller
 IN securityEngineID -- authoritative SNMP entity
 -- from step 9 a)
 IN securityName -- as provided by caller
 IN securityLevel -- as provided by caller
 IN scopedPDU -- as prepared in step 6
 OUT securityParameters -- filled in by Security Module
 OUT wholeMsg -- complete generated message
 OUT wholeMsgLength -- length of the generated message
)

 If, upon return from the Security Model, the statusInformation
 includes an errorIndication, then the message is discarded, and
 the errorIndication is returned, so it can be returned to the
 calling application, and no further processing is done. SNMPv3
 Message Processing is complete.

 c) If the PDU is from the Confirmed Class, information about the
 outgoing message is cached, and an implementation-specific
 stateReference is created. Information to be cached includes
 the values of:

 - sendPduHandle
 - msgID
 - snmpEngineID
 - securityModel
 - securityName
 - securityLevel
 - contextEngineID
 - contextName

 d) A SUCCESS result is returned. SNMPv3 Message Processing is
 complete.

Case, et al. Standards Track [Page 31]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

7.2. Prepare Data Elements from an Incoming SNMP Message

 This section describes the procedure followed to extract data from an
 SNMPv3 message, and to prepare the data elements required for further
 processing of the message by the Message Dispatcher.

 1) The message is passed in from the Message Dispatcher according to
 the abstract service primitive:

 result = -- SUCCESS or errorIndication
 prepareDataElements(
 IN transportDomain -- origin transport domain
 IN transportAddress -- origin transport address
 IN wholeMsg -- as received from the network
 IN wholeMsgLength -- as received from the network
 OUT messageProcessingModel -- typically, SNMP version
 OUT securityModel -- Security Model to use
 OUT securityName -- on behalf of this principal
 OUT securityLevel -- Level of Security requested
 OUT contextEngineID -- data from/at this entity
 OUT contextName -- data from/in this context
 OUT pduVersion -- version of the PDU
 OUT PDU -- SNMP Protocol Data Unit
 OUT pduType -- SNMP PDU type
 OUT sendPduHandle -- handle for matched request
 OUT maxSizeResponseScopedPDU -- maximum size sender can accept
 OUT statusInformation -- success or errorIndication
 -- error counter OID and value
 -- when errorIndication
 OUT stateReference -- reference to state information
 -- to be used for a possible
) -- Response

 2) If the received message is not the serialization (according to
 the conventions of [RFC3417]) of an SNMPv3Message value, then the
 snmpInASNParseErrs counter [RFC3418] is incremented, the message
 is discarded without further processing, and a FAILURE result is
 returned. SNMPv3 Message Processing is complete.

 3) The values for msgVersion, msgID, msgMaxSize, msgFlags,
 msgSecurityModel, msgSecurityParameters, and msgData are
 extracted from the message.

 4) If the value of the msgSecurityModel component does not match a
 supported securityModel, then the snmpUnknownSecurityModels
 counter is incremented, the message is discarded without further
 processing, and a FAILURE result is returned. SNMPv3 Message
 Processing is complete.

Case, et al. Standards Track [Page 32]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 5) The securityLevel is determined from the authFlag and the
 privFlag bits of the msgFlags component as follows:

 a) If the authFlag is not set and the privFlag is not set, then
 securityLevel is set to noAuthNoPriv.

 b) If the authFlag is set and the privFlag is not set, then
 securityLevel is set to authNoPriv.

 c) If the authFlag is set and the privFlag is set, then
 securityLevel is set to authPriv.

 d) If the authFlag is not set and privFlag is set, then the
 snmpInvalidMsgs counter is incremented, the message is
 discarded without further processing, and a FAILURE result is
 returned. SNMPv3 Message Processing is complete.

 e) Any other bits in the msgFlags are ignored.

 6) The security module implementing the Security Model as specified
 by the securityModel component is called for authentication and
 privacy services. This is done according to the abstract service
 primitive:

 statusInformation = -- errorIndication or success
 -- error counter OID and
 -- value if error
 processIncomingMsg(
 IN messageProcessingModel -- SNMPv3 Message Processing Model
 IN maxMessageSize -- of the sending SNMP entity
 IN securityParameters -- for the received message
 IN securityModel -- for the received message
 IN securityLevel -- Level of Security
 IN wholeMsg -- as received on the wire
 IN wholeMsgLength -- length as received on the wire
 OUT securityEngineID -- authoritative SNMP entity
 OUT securityName -- identification of the principal
 OUT scopedPDU, -- message (plaintext) payload
 OUT maxSizeResponseScopedPDU -- maximum size sender can accept
 OUT securityStateReference -- reference to security state
) -- information, needed for
 -- response

 If an errorIndication is returned by the security module, then:

 a) If statusInformation contains values for an OID/value pair,
 then generation of a Report PDU is attempted (see step 3 in
 section 7.1).

Case, et al. Standards Track [Page 33]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 1) If the scopedPDU has been returned from processIncomingMsg,
 then determine contextEngineID, contextName, and PDU.

 2) Information about the message is cached and a
 stateReference is created (implementation-specific).
 Information to be cached includes the values of:

 msgVersion,
 msgID,
 securityLevel,
 msgFlags,
 msgMaxSize,
 securityModel,
 maxSizeResponseScopedPDU,
 securityStateReference

 3) Request that a Report-PDU be prepared and sent, according
 to the abstract service primitive:

 result = -- SUCCESS or FAILURE
 returnResponsePdu(
 IN messageProcessingModel -- SNMPv3(3)
 IN securityModel -- same as on incoming request
 IN securityName -- from processIncomingMsg
 IN securityLevel -- same as on incoming request
 IN contextEngineID -- from step 6 a) 1)
 IN contextName -- from step 6 a) 1)
 IN pduVersion -- SNMPv2-PDU
 IN PDU -- from step 6 a) 1)
 IN maxSizeResponseScopedPDU -- from processIncomingMsg
 IN stateReference -- from step 6 a) 2)
 IN statusInformation -- from processIncomingMsg
)

 b) The incoming message is discarded without further processing,
 and a FAILURE result is returned. SNMPv3 Message Processing
 is complete.

 7) The scopedPDU is parsed to extract the contextEngineID, the
 contextName and the PDU. If any parse error occurs, then the
 snmpInASNParseErrs counter [RFC3418] is incremented, the security
 state information is discarded, the message is discarded without
 further processing, and a FAILURE result is returned. SNMPv3
 Message Processing is complete. Treating an unknown PDU type is
 treated as a parse error is an implementation option.

Case, et al. Standards Track [Page 34]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 8) The pduVersion is determined in an implementation-dependent
 manner. For SNMPv3, the pduVersion would be an SNMPv2-PDU.

 9) The pduType is determined, in an implementation-dependent manner.
 For [RFC3416], the pduTypes include:

 - GetRequest-PDU,
 - GetNextRequest-PDU,
 - GetBulkRequest-PDU,
 - SetRequest-PDU,
 - InformRequest-PDU,
 - SNMPv2-Trap-PDU,
 - Response-PDU,
 - Report-PDU.

 10) If the pduType is from the Response Class or the Internal Class,
 then:

 a) The value of the msgID component is used to find the cached
 information for a corresponding outstanding Request message.
 If no such outstanding Request message is found, then the
 security state information is discarded, the message is
 discarded without further processing, and a FAILURE result is
 returned. SNMPv3 Message Processing is complete.

 b) sendPduHandle is retrieved from the cached information.

 Otherwise, sendPduHandle is set to <none>, an implementation
 defined value.

 11) If the pduType is from the Internal Class, then:

 a) statusInformation is created using the contents of the
 Report-PDU, in an implementation-dependent manner. This
 statusInformation will be forwarded to the application
 associated with the sendPduHandle.

 b) The cached data for the outstanding message, referred to by
 stateReference, is retrieved. If the securityModel or
 securityLevel values differ from the cached ones, it is
 important to recognize that Internal Class PDUs delivered at
 the security level of noAuthNoPriv open a window of
 opportunity for spoofing or replay attacks. If the receiver
 of such messages is aware of these risks, the use of such
 unauthenticated messages is acceptable and may provide a
 useful function for discovering engine IDs or for detecting
 misconfiguration at remote nodes.

Case, et al. Standards Track [Page 35]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 When the securityModel or securityLevel values differ from the
 cached ones, an implementation may retain the cached
 information about the outstanding Request message, in
 anticipation of the possibility that the Internal Class PDU
 received might be illegitimate. Otherwise, any cached
 information about the outstanding Request message is
 discarded.

 c) The security state information for this incoming message is
 discarded.

 d) stateReference is set to <none>.

 e) A SUCCESS result is returned. SNMPv3 Message Processing is
 complete.

 12) If the pduType is from the Response Class, then:

 a) The cached data for the outstanding request, referred to by
 stateReference, is retrieved, including:

 - snmpEngineID
 - securityModel
 - securityName
 - securityLevel
 - contextEngineID
 - contextName

 b) If the values extracted from the incoming message differ from
 the cached data, then any cached information about the
 outstanding Request message is discarded, the incoming message
 is discarded without further processing, and a FAILURE result
 is returned. SNMPv3 Message Processing is complete.

 When the securityModel or securityLevel values differ from the
 cached ones, an implementation may retain the cached
 information about the outstanding Request message, in
 anticipation of the possibility that the Response Class PDU
 received might be illegitimate.

 c) Otherwise, any cached information about the outstanding
 Request message is discarded, and the stateReference is set to
 <none>.

 d) A SUCCESS result is returned. SNMPv3 Message Processing is
 complete.

 13) If the pduType is from the Confirmed Class, then:

Case, et al. Standards Track [Page 36]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 a) If the value of securityEngineID is not equal to the value of
 snmpEngineID, then the security state information is
 discarded, any cached information about this message is
 discarded, the incoming message is discarded without further
 processing, and a FAILURE result is returned. SNMPv3 Message
 Processing is complete.

 b) Information about the message is cached and a stateReference
 is created (implementation-specific). Information to be
 cached includes the values of:

 msgVersion,
 msgID,
 securityLevel,
 msgFlags,
 msgMaxSize,
 securityModel,
 maxSizeResponseScopedPDU,
 securityStateReference

 c) A SUCCESS result is returned. SNMPv3 Message Processing is
 complete.

 14) If the pduType is from the Unconfirmed Class, then a SUCCESS
 result is returned. SNMPv3 Message Processing is complete.

8. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Case, et al. Standards Track [Page 37]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

9. Acknowledgements

 This document is the result of the efforts of the SNMPv3 Working
 Group. Some special thanks are in order to the following SNMPv3 WG
 members:

 Harald Tveit Alvestrand (Maxware)
 Dave Battle (SNMP Research, Inc.)
 Alan Beard (Disney Worldwide Services)
 Paul Berrevoets (SWI Systemware/Halcyon Inc.)
 Martin Bjorklund (Ericsson)
 Uri Blumenthal (IBM T. J. Watson Research Center)
 Jeff Case (SNMP Research, Inc.)
 John Curran (BBN)
 Mike Daniele (Compaq Computer Corporation)
 T. Max Devlin (Eltrax Systems)
 John Flick (Hewlett Packard)
 Rob Frye (MCI)
 Wes Hardaker (U.C.Davis, Information Technology - D.C.A.S.)
 David Harrington (Cabletron Systems Inc.)
 Lauren Heintz (BMC Software, Inc.)
 N.C. Hien (IBM T. J. Watson Research Center)
 Michael Kirkham (InterWorking Labs, Inc.)
 Dave Levi (SNMP Research, Inc.)
 Louis A Mamakos (UUNET Technologies Inc.)
 Joe Marzot (Nortel Networks)
 Paul Meyer (Secure Computing Corporation)
 Keith McCloghrie (Cisco Systems)
 Bob Moore (IBM)
 Russ Mundy (TIS Labs at Network Associates)
 Bob Natale (ACE*COMM Corporation)
 Mike O’Dell (UUNET Technologies Inc.)
 Dave Perkins (DeskTalk)
 Peter Polkinghorne (Brunel University)
 Randy Presuhn (BMC Software, Inc.)
 David Reeder (TIS Labs at Network Associates)
 David Reid (SNMP Research, Inc.)
 Aleksey Romanov (Quality Quorum)
 Shawn Routhier (Epilogue)
 Juergen Schoenwaelder (TU Braunschweig)
 Bob Stewart (Cisco Systems)
 Mike Thatcher (Independent Consultant)
 Bert Wijnen (IBM T. J. Watson Research Center)

Case, et al. Standards Track [Page 38]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 The document is based on recommendations of the IETF Security and
 Administrative Framework Evolution for SNMP Advisory Team. Members
 of that Advisory Team were:

 David Harrington (Cabletron Systems Inc.)
 Jeff Johnson (Cisco Systems)
 David Levi (SNMP Research Inc.)
 John Linn (Openvision)
 Russ Mundy (Trusted Information Systems) chair
 Shawn Routhier (Epilogue)
 Glenn Waters (Nortel)
 Bert Wijnen (IBM T. J. Watson Research Center)

 As recommended by the Advisory Team and the SNMPv3 Working Group
 Charter, the design incorporates as much as practical from previous
 RFCs and drafts. As a result, special thanks are due to the authors
 of previous designs known as SNMPv2u and SNMPv2*:

 Jeff Case (SNMP Research, Inc.)
 David Harrington (Cabletron Systems Inc.)
 David Levi (SNMP Research, Inc.)
 Keith McCloghrie (Cisco Systems)
 Brian O’Keefe (Hewlett Packard)
 Marshall T. Rose (Dover Beach Consulting)
 Jon Saperia (BGS Systems Inc.)
 Steve Waldbusser (International Network Services)
 Glenn W. Waters (Bell-Northern Research Ltd.)

10. Security Considerations

 The Dispatcher coordinates the processing of messages to provide a
 level of security for management messages and to direct the SNMP PDUs
 to the proper SNMP application(s).

 A Message Processing Model, and in particular the v3MP defined in
 this document, interacts as part of the Message Processing with
 Security Models in the Security Subsystem via the abstract service
 interface primitives defined in [RFC3411] and elaborated above.

 The level of security actually provided is primarily determined by
 the specific Security Model implementation(s) and the specific SNMP
 application implementation(s) incorporated into this framework.
 Applications have access to data which is not secured. Applications
 should take reasonable steps to protect the data from disclosure, and
 when they send data across the network, they should obey the
 securityLevel and call upon the services of an Access Control Model
 as they apply access control.

Case, et al. Standards Track [Page 39]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 The values for the msgID element used in communication between SNMP
 entities MUST be chosen to avoid replay attacks. The values do not
 need to be unpredictable; it is sufficient that they not repeat.

 When exchanges are carried out over an insecure network, there is an
 open opportunity for a third party to spoof or replay messages when
 any message of an exchange is given at the security level of
 noAuthNoPriv. For most exchanges, all messages exist at the same
 security level. In the case where the final message is an Internal
 Class PDU, this message may be delivered at a level of noAuthNoPriv
 or authNoPriv, independent of the security level of the preceding
 messages. Internal Class PDUs delivered at the level of authNoPriv
 are not considered to pose a security hazard. Internal Class PDUs
 delivered at the security level of noAuthNoPriv open a window of
 opportunity for spoofing or replay attacks. If the receiver of such
 messages is aware of these risks, the use of such unauthenticated
 messages is acceptable and may provide a useful function for
 discovering engine IDs or for detecting misconfiguration at remote
 nodes.

 This document also contains a MIB definition module. None of the
 objects defined is writable, and the information they represent is
 not deemed to be particularly sensitive. However, if they are deemed
 sensitive in a particular environment, access to them should be
 restricted through the use of appropriately configured Security and
 Access Control models.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Structure of Management
 Information Version 2 (SMIv2)", STD 58, RFC 2578, April
 1999.

 [RFC2580] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Conformance Statements for
 SMIv2", STD 58, RFC 2580, April 1999.

 [RFC3411] Harrington, D., Presuhn, R. and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

Case, et al. Standards Track [Page 40]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

 [RFC3413] Levi, D., Meyer, P. and B. Stewart, "Simple Network
 Management Protocol (SNMP) Applications", STD 62, RFC
 3413, December 2002.

 [RFC3414] Blumenthal, U. and B. Wijnen, "The User-Based Security
 Model (USM) for Version 3 of the Simple Network
 Management Protocol (SNMPv3)", STD 62, RFC 3414, December
 2002.

 [RFC3415] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based
 Access Control Model (VACM) for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3415, December
 2002.

 [RFC3416] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Version 2 of the Protocol Operations for the
 Simple Network Management Protocol (SNMP)", STD 62, RFC
 3416, December 2002.

 [RFC3417] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Transport Mappings for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3417, December
 2002.

 [RFC3418] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Management Information Base (MIB) for the
 Simple Network Management Protocol (SNMP)", STD 62, RFC
 3418, December 2002.

11.2. Informative References

 [RFC1901] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Introduction to Community-based SNMPv2", RFC 1901,
 January 1996.

 [RFC2028] Hovey, R. and S. Bradner, "The Organizations Involved in
 the IETF Standards Process", BCP 11, RFC 2028, October
 1996.

 [RFC2576] Frye, R., Levi, D., Routhier, S. and B. Wijnen,
 "Coexistence between Version 1, Version 2, and Version 3
 of the Internet-Standard Network Management Framework",
 RFC 2576, March 2000.

 [RFC3410] Case, J., Mundy, R., Partain, D. and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410, December 2002.

Case, et al. Standards Track [Page 41]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

12. Editors’ Addresses

 Jeffrey Case
 SNMP Research, Inc.
 3001 Kimberlin Heights Road
 Knoxville, TN 37920-9716
 USA

 Phone: +1 423-573-1434
 EMail: case@snmp.com

 David Harrington
 Enterasys Networks
 35 Industrial Way
 Post Office Box 5005
 Rochester, NH 03866-5005
 USA

 Phone: +1 603-337-2614
 EMail: dbh@enterasys.com

 Randy Presuhn
 BMC Software, Inc.
 2141 North First Street
 San Jose, CA 95131
 USA

 Phone: +1 408-546-1006
 EMail: randy_presuhn@bmc.com

 Bert Wijnen
 Lucent Technologies
 Schagen 33
 3461 GL Linschoten
 Netherlands

 Phone: +31 348-680-485
 EMail: bwijnen@lucent.com

Case, et al. Standards Track [Page 42]

RFC 3412 Message Processing and Dispatching for SNMP December 2002

13. Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Case, et al. Standards Track [Page 43]

==

Network Working Group D. Levi
Request for Comments: 3413 Nortel Networks
STD: 62 P. Meyer
Obsoletes: 2573 Secure Computing Corporation
Category: Standards Track B. Stewart
 Retired
 December 2002

 Simple Network Management Protocol (SNMP) Applications

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 This document describes five types of Simple Network Management
 Protocol (SNMP) applications which make use of an SNMP engine as
 described in STD 62, RFC 3411. The types of application described
 are Command Generators, Command Responders, Notification Originators,
 Notification Receivers, and Proxy Forwarders.

 This document also defines Management Information Base (MIB) modules
 for specifying targets of management operations, for notification
 filtering, and for proxy forwarding. This document obsoletes RFC
 2573.

Table of Contents

 1 Overview ... 2
 1.1 Command Generator Applications 3
 1.2 Command Responder Applications 3
 1.3 Notification Originator Applications 3
 1.4 Notification Receiver Applications 3
 1.5 Proxy Forwarder Applications 4
 2 Management Targets 5
 3 Elements Of Procedure 6
 3.1 Command Generator Applications 6
 3.2 Command Responder Applications 9
 3.3 Notification Originator Applications 14
 3.4 Notification Receiver Applications 17
 3.5 Proxy Forwarder Applications 19
 3.5.1 Request Forwarding 21

Levi, et. al. Standards Track [Page 1]

RFC 3413 SNMP Applications December 2002

 3.5.1.1 Processing an Incoming Request 21
 3.5.1.2 Processing an Incoming Response 24
 3.5.1.3 Processing an Incoming Internal-Class PDU 25
 3.5.2 Notification Forwarding 26
 4 The Structure of the MIB Modules 29
 4.1 The Management Target MIB Module 29
 4.1.1 Tag Lists,........................ 29
 4.1.2 Definitions,......................... 30
 4.2 The Notification MIB Module 44
 4.2.1 Definitions .. 44
 4.3 The Proxy MIB Module 56
 4.3.1 Definitions .. 57
 5 Identification of Management Targets in
 Notification Originators 63
 6 Notification Filtering 64
 7 Management Target Translation in
 Proxy Forwarder Applications 65
 7.1 Management Target Translation for
 Request Forwarding 65
 7.2 Management Target Translation for
 Notification Forwarding 66
 8 Intellectual Property 67
 9 Acknowledgments .. 67
 10 Security Considerations 69
 11 References ... 69
 A. Trap Configuration Example 71
 Editors’ Addresses 73
 Full Copyright Statement 74

1. Overview

 This document describes five types of SNMP applications:

 - Applications which initiate SNMP Read-Class, and/or Write-Class
 requests, called ’command generators.’

 - Applications which respond to SNMP Read-Class, and/or Write-Class
 requests, called ’command responders.’

 - Applications which generate SNMP Notification-Class PDUs, called
 ’notification originators.’

 - Applications which receive SNMP Notification-Class PDUs, called
 ’notification receivers.’

 - Applications which forward SNMP messages, called ’proxy
 forwarders.’

Levi, et. al. Standards Track [Page 2]

RFC 3413 SNMP Applications December 2002

 Note that there are no restrictions on which types of applications
 may be associated with a particular SNMP engine. For example, a
 single SNMP engine may, in fact, be associated with both command
 generator and command responder applications.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.1. Command Generator Applications

 A command generator application initiates SNMP Read-Class and/or
 Write-Class requests, and processes responses to requests which it
 generated.

1.2. Command Responder Applications

 A command responder application receives SNMP Read-Class and/or
 Write-Class requests destined for the local system as indicated by
 the fact that the contextEngineID in the received request is equal to
 that of the local engine through which the request was received. The
 command responder application will perform the appropriate protocol
 operation, using access control, and will generate a response message
 to be sent to the request’s originator.

1.3. Notification Originator Applications

 A notification originator application conceptually monitors a system
 for particular events or conditions, and generates Notification-Class
 messages based on these events or conditions. A notification
 originator must have a mechanism for determining where to send
 messages, and what SNMP version and security parameters to use when
 sending messages. A mechanism and MIB module for this purpose is
 provided in this document. Note that Notification-Class PDUs
 generated by a notification originator may be either Confirmed-Class
 or Unconfirmed-Class PDU types.

1.4. Notification Receiver Applications

 A notification receiver application listens for notification
 messages, and generates response messages when a message containing a
 Confirmed-Class PDU is received.

Levi, et. al. Standards Track [Page 3]

RFC 3413 SNMP Applications December 2002

1.5. Proxy Forwarder Applications

 A proxy forwarder application forwards SNMP messages. Note that
 implementation of a proxy forwarder application is optional. The
 sections describing proxy (3.5, 4.3, and 7) may be skipped for
 implementations that do not include a proxy forwarder application.

 The term "proxy" has historically been used very loosely, with
 multiple different meanings. These different meanings include (among
 others):

 (1) the forwarding of SNMP requests to other SNMP entities without
 regard for what managed object types are being accessed; for
 example, in order to forward an SNMP request from one transport
 domain to another, or to translate SNMP requests of one version
 into SNMP requests of another version;

 (2) the translation of SNMP requests into operations of some non-SNMP
 management protocol; and

 (3) support for aggregated managed objects where the value of one
 managed object instance depends upon the values of multiple other
 (remote) items of management information.

 Each of these scenarios can be advantageous; for example, support for
 aggregation of management information can significantly reduce the
 bandwidth requirements of large-scale management activities.

 However, using a single term to cover multiple different scenarios
 causes confusion.

 To avoid such confusion, this document uses the term "proxy" with a
 much more tightly defined meaning. The term "proxy" is used in this
 document to refer to a proxy forwarder application which forwards
 either SNMP messages without regard for what managed objects are
 contained within those messages. This definition is most closely
 related to the first definition above. Note, however, that in the
 SNMP architecture [RFC3411], a proxy forwarder is actually an
 application, and need not be associated with what is traditionally
 thought of as an SNMP agent.

 Specifically, the distinction between a traditional SNMP agent and a
 proxy forwarder application is simple:

Levi, et. al. Standards Track [Page 4]

RFC 3413 SNMP Applications December 2002

 - a proxy forwarder application forwards SNMP messages to other SNMP
 engines according to the context, and irrespective of the specific
 managed object types being accessed, and forwards the response to
 such previously forwarded messages back to the SNMP engine from
 which the original message was received;

 - in contrast, the command responder application that is part of what
 is traditionally thought of as an SNMP agent, and which processes
 SNMP requests according to the (names of the) individual managed
 object types and instances being accessed, is NOT a proxy forwarder
 application from the perspective of this document.

 Thus, when a proxy forwarder application forwards a request or
 notification for a particular contextEngineID / contextName pair, not
 only is the information on how to forward the request specifically
 associated with that context, but the proxy forwarder application has
 no need of a detailed definition of a MIB view (since the proxy
 forwarder application forwards the request irrespective of the
 managed object types).

 In contrast, a command responder application must have the detailed
 definition of the MIB view, and even if it needs to issue requests to
 other entities, via SNMP or otherwise, that need is dependent on the
 individual managed object instances being accessed (i.e., not only on
 the context).

 Note that it is a design goal of a proxy forwarder application to act
 as an intermediary between the endpoints of a transaction. In
 particular, when forwarding Confirmed Notification-Class messages,
 the associated response is forwarded when it is received from the
 target to which the Notification-Class message was forwarded, rather
 than generating a response immediately when the Notification-Class
 message is received.

2. Management Targets

 Some types of applications (notification generators and proxy
 forwarders in particular) require a mechanism for determining where
 and how to send generated messages. This document provides a
 mechanism and MIB module for this purpose. The set of information
 that describes where and how to send a message is called a
 ’Management Target’, and consists of two kinds of information:

 - Destination information, consisting of a transport domain and a
 transport address. This is also termed a transport endpoint.

 - SNMP parameters, consisting of message processing model, security
 model, security level, and security name information.

Levi, et. al. Standards Track [Page 5]

RFC 3413 SNMP Applications December 2002

 The SNMP-TARGET-MIB module described later in this document contains
 one table for each of these types of information. There can be a
 many-to-many relationship in the MIB between these two types of
 information. That is, there may be multiple transport endpoints
 associated with a particular set of SNMP parameters, or a particular
 transport endpoint may be associated with several sets of SNMP
 parameters.

3. Elements Of Procedure

 The following sections describe the procedures followed by each type
 of application when generating messages for transmission or when
 processing received messages. Applications communicate with the
 Dispatcher using the abstract service interfaces defined in
 [RFC3411].

3.1. Command Generator Applications

 A command generator initiates an SNMP request by calling the
 Dispatcher using the following abstract service interface:

 statusInformation = -- sendPduHandle if success
 -- errorIndication if failure
 sendPdu(
 IN transportDomain -- transport domain to be used
 IN transportAddress -- destination network address
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model to use
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security requested
 IN contextEngineID -- data from/at this entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN expectResponse -- TRUE or FALSE
)

 Where:

 - The transportDomain is that of the destination of the message.

 - The transportAddress is that of the destination of the message.

 - The messageProcessingModel indicates which Message Processing Model
 the application wishes to use.

 - The securityModel is the security model that the application wishes
 to use.

Levi, et. al. Standards Track [Page 6]

RFC 3413 SNMP Applications December 2002

 - The securityName is the security model independent name for the
 principal on whose behalf the application wishes the message to be
 generated.

 - The securityLevel is the security level that the application wishes
 to use.

 - The contextEngineID specifies the location of the management
 information it is requesting. Note that unless the request is
 being sent to a proxy, this value will usually be equal to the
 snmpEngineID value of the engine to which the request is being
 sent.

 - The contextName specifies the local context name for the management
 information it is requesting.

 - The pduVersion indicates the version of the PDU to be sent.

 - The PDU is a value constructed by the command generator containing
 the management operation that the command generator wishes to
 perform.

 - The expectResponse argument indicates that a response is expected.

 The result of the sendPdu interface indicates whether the PDU was
 successfully sent. If it was successfully sent, the returned value
 will be a sendPduHandle. The command generator should store the
 sendPduHandle so that it can correlate a response to the original
 request.

 The Dispatcher is responsible for delivering the response to a
 particular request to the correct command generator application. The
 abstract service interface used is:

 processResponsePdu(-- process Response PDU
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model in use
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security
 IN contextEngineID -- data from/at this SNMP entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN statusInformation -- success or errorIndication
 IN sendPduHandle -- handle from sendPdu
)

Levi, et. al. Standards Track [Page 7]

RFC 3413 SNMP Applications December 2002

 Where:

 - The messageProcessingModel is the value from the received response.

 - The securityModel is the value from the received response.

 - The securityName is the value from the received response.

 - The securityLevel is the value from the received response.

 - The contextEngineID is the value from the received response.

 - The contextName is the value from the received response.

 - The pduVersion indicates the version of the PDU in the received
 response.

 - The PDU is the value from the received response.

 - The statusInformation indicates success or failure in receiving the
 response.

 - The sendPduHandle is the value returned by the sendPdu call which
 generated the original request to which this is a response.

 The procedure when a command generator receives a message is as
 follows:

 (1) If the received values of messageProcessingModel, securityModel,
 securityName, contextEngineID, contextName, and pduVersion are
 not all equal to the values used in the original request, the
 response is discarded.

 (2) The operation type, request-id, error-status, error-index, and
 variable-bindings are extracted from the PDU and saved. If the
 request-id is not equal to the value used in the original
 request, the response is discarded.

 (3) At this point, it is up to the application to take an appropriate
 action. The specific action is implementation dependent. If the
 statusInformation indicates that the request failed, an
 appropriate action might be to attempt to transmit the request
 again, or to notify the person operating the application that a
 failure occurred.

Levi, et. al. Standards Track [Page 8]

RFC 3413 SNMP Applications December 2002

3.2. Command Responder Applications

 Before a command responder application can process messages, it must
 first associate itself with an SNMP engine. The abstract service
 interface used for this purpose is:

 statusInformation = -- success or errorIndication
 registerContextEngineID(
 IN contextEngineID -- take responsibility for this one
 IN pduType -- the pduType(s) to be registered
)

 Where:

 - The statusInformation indicates success or failure of the
 registration attempt.

 - The contextEngineID is equal to the snmpEngineID of the SNMP engine
 with which the command responder is registering.

 - The pduType indicates a Read-Class and/or Write-Class PDU.

 Note that if another command responder application is already
 registered with an SNMP engine, any further attempts to register with
 the same contextEngineID and pduType will be denied. This implies
 that separate command responder applications could register
 separately for the various pdu types. However, in practice this is
 undesirable, and only a single command responder application should
 be registered with an SNMP engine at any given time.

 A command responder application can disassociate with an SNMP engine
 using the following abstract service interface:

 unregisterContextEngineID(
 IN contextEngineID -- give up responsibility for this one
 IN pduType -- the pduType(s) to be unregistered
)

 Where:

 - The contextEngineID is equal to the snmpEngineID of the SNMP engine
 with which the command responder is cancelling the registration.

 - The pduType indicates a Read-Class and/or Write-Class PDU.

Levi, et. al. Standards Track [Page 9]

RFC 3413 SNMP Applications December 2002

 Once the command responder has registered with the SNMP engine, it
 waits to receive SNMP messages. The abstract service interface used
 for receiving messages is:

 processPdu(-- process Request/Notification PDU
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model in use
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security
 IN contextEngineID -- data from/at this SNMP entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN maxSizeResponseScopedPDU -- maximum size of the Response PDU
 IN stateReference -- reference to state information
) -- needed when sending a response

 Where:

 - The messageProcessingModel indicates which Message Processing Model
 received and processed the message.

 - The securityModel is the value from the received message.

 - The securityName is the value from the received message.

 - The securityLevel is the value from the received message.

 - The contextEngineID is the value from the received message.

 - The contextName is the value from the received message.

 - The pduVersion indicates the version of the PDU in the received
 message.

 - The PDU is the value from the received message.

 - The maxSizeResponseScopedPDU is the maximum allowable size of a
 ScopedPDU containing a Response PDU (based on the maximum message
 size that the originator of the message can accept).

 - The stateReference is a value which references cached information
 about each received request message. This value must be returned
 to the Dispatcher in order to generate a response.

Levi, et. al. Standards Track [Page 10]

RFC 3413 SNMP Applications December 2002

 The procedure when a message is received is as follows:

 (1) The operation type is determined from the ASN.1 tag value
 associated with the PDU parameter. The operation type should
 always be one of the types previously registered by the
 application.

 (2) The request-id is extracted from the PDU and saved.

 (3) Any PDU type specific parameters are extracted from the PDU and
 saved (for example, if the PDU type is an SNMPv2 GetBulk PDU, the
 non-repeaters and max-repetitions values are extracted).

 (4) The variable-bindings are extracted from the PDU and saved.

 (5) The management operation represented by the PDU type is performed
 with respect to the relevant MIB view within the context named by
 the contextName (for an SNMPv2 PDU type, the operation is
 performed according to the procedures set forth in [RFC1905]).
 The relevant MIB view is determined by the securityLevel,
 securityModel, contextName, securityName, and the class of the
 PDU type. To determine whether a particular object instance is
 within the relevant MIB view, the following abstract service
 interface is called:

 statusInformation = -- success or errorIndication
 isAccessAllowed(
 IN securityModel -- Security Model in use
 IN securityName -- principal who wants to access
 IN securityLevel -- Level of Security
 IN viewType -- read, write, or notify view
 IN contextName -- context containing variableName
 IN variableName -- OID for the managed object
)

 Where:

 - The securityModel is the value from the received message.

 - The securityName is the value from the received message.

 - The securityLevel is the value from the received message.

 - The viewType indicates whether the PDU type is a Read-Class or
 Write-Class operation.

 - The contextName is the value from the received message.

Levi, et. al. Standards Track [Page 11]

RFC 3413 SNMP Applications December 2002

 - The variableName is the object instance of the variable for
 which access rights are to be checked.

 Normally, the result of the management operation will be a new
 PDU value, and processing will continue in step (6) below.
 However, at any time during the processing of the management
 operation:

 - If the isAccessAllowed ASI returns a noSuchView, noAccessEntry,
 or noGroupName error, processing of the management operation is
 halted, a PDU value is constructed using the values from the
 originally received PDU, but replacing the error-status with an
 authorizationError code, and error-index value of 0, and
 control is passed to step (6) below.

 - If the isAccessAllowed ASI returns an otherError, processing of
 the management operation is halted, a different PDU value is
 constructed using the values from the originally received PDU,
 but replacing the error-status with a genError code and the
 error-index with the index of the failed variable binding, and
 control is passed to step (6) below.

 - If the isAccessAllowed ASI returns a noSuchContext error,
 processing of the management operation is halted, no result PDU
 is generated, the snmpUnknownContexts counter is incremented,
 and control is passed to step (6) below for generation of a
 report message.

 - If the context named by the contextName parameter is
 unavailable, processing of the management operation is halted,
 no result PDU is generated, the snmpUnavailableContexts counter
 is incremented, and control is passed to step (6) below for
 generation of a report message.

 (6) The Dispatcher is called to generate a response or report
 message. The abstract service interface is:

Levi, et. al. Standards Track [Page 12]

RFC 3413 SNMP Applications December 2002

returnResponsePdu(
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model in use
 IN securityName -- on behalf of this principal
 IN securityLevel -- same as on incoming request
 IN contextEngineID -- data from/at this SNMP entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN maxSizeResponseScopedPDU -- maximum size of the Response PDU
 IN stateReference -- reference to state information
 -- as presented with the request
 IN statusInformation -- success or errorIndication
) -- error counter OID/value if error

 Where:

 - The messageProcessingModel is the value from the processPdu
 call.

 - The securityModel is the value from the processPdu call.

 - The securityName is the value from the processPdu call.

 - The securityLevel is the value from the processPdu call.

 - The contextEngineID is the value from the processPdu call.

 - The contextName is the value from the processPdu call.

 - The pduVersion indicates the version of the PDU to be returned.
 If no result PDU was generated, the pduVersion is an undefined
 value.

 - The PDU is the result generated in step (5) above. If no
 result PDU was generated, the PDU is an undefined value.

 - The maxSizeResponseScopedPDU is a local value indicating the
 maximum size of a ScopedPDU that the application can accept.

 - The stateReference is the value from the processPdu call.

 - The statusInformation either contains an indication that no
 error occurred and that a response should be generated, or
 contains an indication that an error occurred along with the
 OID and counter value of the appropriate error counter object.

Levi, et. al. Standards Track [Page 13]

RFC 3413 SNMP Applications December 2002

 Note that a command responder application should always call the
 returnResponsePdu abstract service interface, even in the event of an
 error such as a resource allocation error. In the event of such an
 error, the PDU value passed to returnResponsePdu should contain
 appropriate values for errorStatus and errorIndex.

 Note that the text above describes situations where the
 snmpUnknownContexts counter is incremented, and where the
 snmpUnavailableContexts counter is incremented. The difference
 between these is that the snmpUnknownContexts counter is incremented
 when a request is received for a context which is unknown to the SNMP
 entity. The snmpUnavailableContexts counter is incremented when a
 request is received for a context which is known to the SNMP entity,
 but is currently unavailable. Determining when a context is
 unavailable is implementation specific, and some implementations may
 never encounter this situation, and so may never increment the
 snmpUnavailableContexts counter.

3.3. Notification Originator Applications

 A notification originator application generates SNMP messages
 containing Notification-Class PDUs (for example, SNMPv2-Trap PDUs or
 Inform PDUs). There is no requirement as to what specific types of
 Notification-Class PDUs a particular implementation must be capable
 of generating.

 Notification originator applications require a mechanism for
 identifying the management targets to which notifications should be
 sent. The particular mechanism used is implementation dependent.
 However, if an implementation makes the configuration of management
 targets SNMP manageable, it MUST use the SNMP-TARGET-MIB module
 described in this document.

 When a notification originator wishes to generate a notification, it
 must first determine in which context the information to be conveyed
 in the notification exists, i.e., it must determine the
 contextEngineID and contextName. It must then determine the set of
 management targets to which the notification should be sent. The
 application must also determine, for each management target, what
 specific PDU type the notification message should contain, and if it
 is to contain a Confirmed-Class PDU, the number of retries and
 retransmission algorithm.

Levi, et. al. Standards Track [Page 14]

RFC 3413 SNMP Applications December 2002

 The mechanism by which a notification originator determines this
 information is implementation dependent. Once the application has
 determined this information, the following procedure is performed for
 each management target:

 (1) Any appropriate filtering mechanisms are applied to determine
 whether the notification should be sent to the management target.
 If such filtering mechanisms determine that the notification
 should not be sent, processing continues with the next management
 target. Otherwise,

 (2) The appropriate set of variable-bindings is retrieved from local
 MIB instrumentation within the relevant MIB view. The relevant
 MIB view is determined by the securityLevel, securityModel,
 contextName, and securityName of the management target. To
 determine whether a particular object instance is within the
 relevant MIB view, the isAccessAllowed abstract service interface
 is used, in the same manner as described in the preceding
 section, except that the viewType indicates a Notification-Class
 operation. If the statusInformation returned by isAccessAllowed
 does not indicate accessAllowed, the notification is not sent to
 the management target.

 (3) The NOTIFICATION-TYPE OBJECT IDENTIFIER of the notification (this
 is the value of the element of the variable bindings whose name
 is snmpTrapOID.0, i.e., the second variable binding) is checked
 using the isAccessAllowed abstract service interface, using the
 same parameters used in the preceding step. If the
 statusInformation returned by isAccessAllowed does not indicate
 accessAllowed, the notification is not sent to the management
 target.

 (4) A PDU is constructed using a locally unique request-id value, a
 PDU type as determined by the implementation, an error-status and
 error-index value of 0, and the variable-bindings supplied
 previously in step (2).

 (5) If the notification contains an Unconfirmed-Class PDU, the
 Dispatcher is called using the following abstract service
 interface:

Levi, et. al. Standards Track [Page 15]

RFC 3413 SNMP Applications December 2002

 statusInformation = -- sendPduHandle if success
 -- errorIndication if failure
 sendPdu(
 IN transportDomain -- transport domain to be used
 IN transportAddress -- destination network address
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model to use
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security requested
 IN contextEngineID -- data from/at this entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN expectResponse -- TRUE or FALSE
)

 Where:

 - The transportDomain is that of the management target.

 - The transportAddress is that of the management target.

 - The messageProcessingModel is that of the management target.

 - The securityModel is that of the management target.

 - The securityName is that of the management target.

 - The securityLevel is that of the management target.

 - The contextEngineID is the value originally determined for the
 notification.

 - The contextName is the value originally determined for the
 notification.

 - The pduVersion is the version of the PDU to be sent.

 - The PDU is the value constructed in step (4) above.

 - The expectResponse argument indicates that no response is
 expected.

 Otherwise,

Levi, et. al. Standards Track [Page 16]

RFC 3413 SNMP Applications December 2002

 (6) If the notification contains a Confirmed-Class PDU, then:

 a) The Dispatcher is called using the sendPdu abstract service
 interface as described in step (5) above, except that the
 expectResponse argument indicates that a response is expected.

 b) The application caches information about the management
 target.

 c) If a response is received within an appropriate time interval
 from the transport endpoint of the management target, the
 notification is considered acknowledged and the cached
 information is deleted. Otherwise,

 d) If a response is not received within an appropriate time
 period, or if a report indication is received, information
 about the management target is retrieved from the cache, and
 steps a) through d) are repeated. The number of times these
 steps are repeated is equal to the previously determined retry
 count. If this retry count is exceeded, the acknowledgement
 of the notification is considered to have failed, and
 processing of the notification for this management target is
 halted. Note that some report indications might be considered
 a failure. Such report indications should be interpreted to
 mean that the acknowledgement of the notification has failed,
 and that steps a) through d) need not be repeated.

 Responses to Confirmed-Class PDU notifications will be received via
 the processResponsePdu abstract service interface.

 To summarize, the steps that a notification originator follows when
 determining where to send a notification are:

 - Determine the targets to which the notification should be sent.

 - Apply any required filtering to the list of targets.

 - Determine which targets are authorized to receive the notification.

3.4. Notification Receiver Applications

 Notification receiver applications receive SNMP Notification messages
 from the Dispatcher. Before any messages can be received, the
 notification receiver must register with the Dispatcher using the
 registerContextEngineID abstract service interface. The parameters
 used are:

Levi, et. al. Standards Track [Page 17]

RFC 3413 SNMP Applications December 2002

 - The contextEngineID is an undefined ’wildcard’ value.
 Notifications are delivered to a registered notification receiver
 regardless of the contextEngineID contained in the notification
 message.

 - The pduType indicates the type of notifications that the
 application wishes to receive (for example, SNMPv2-Trap PDUs or
 Inform PDUs).

 Once the notification receiver has registered with the Dispatcher,
 messages are received using the processPdu abstract service
 interface. Parameters are:

 - The messageProcessingModel indicates which Message Processing Model
 received and processed the message.

 - The securityModel is the value from the received message.

 - The securityName is the value from the received message.

 - The securityLevel is the value from the received message.

 - The contextEngineID is the value from the received message.

 - The contextName is the value from the received message.

 - The pduVersion indicates the version of the PDU in the received
 message.

 - The PDU is the value from the received message.

 - The maxSizeResponseScopedPDU is the maximum allowable size of a
 ScopedPDU containing a Response PDU (based on the maximum message
 size that the originator of the message can accept).

 - If the message contains an Unconfirmed-Class PDU, the
 stateReference is undefined and unused. Otherwise, the
 stateReference is a value which references cached information about
 the notification. This value must be returned to the Dispatcher in
 order to generate a response.

 When an Unconfirmed-Class PDU is delivered to a notification receiver
 application, it first extracts the SNMP operation type, request-id,
 error-status, error-index, and variable-bindings from the PDU. After
 this, processing depends on the particular implementation.

Levi, et. al. Standards Track [Page 18]

RFC 3413 SNMP Applications December 2002

 When a Confirmed-Class PDU is received, the notification receiver
 application follows the following procedure:

 (1) The PDU type, request-id, error-status, error-index, and
 variable-bindings are extracted from the PDU.

 (2) A Response-Class PDU is constructed using the extracted
 request-id and variable-bindings, and with error-status and
 error-index both set to 0.

 (3) The Dispatcher is called to generate a response message using the
 returnResponsePdu abstract service interface. Parameters are:

 - The messageProcessingModel is the value from the processPdu
 call.

 - The securityModel is the value from the processPdu call.

 - The securityName is the value from the processPdu call.

 - The securityLevel is the value from the processPdu call.

 - The contextEngineID is the value from the processPdu call.

 - The contextName is the value from the processPdu call.

 - The pduVersion indicates the version of the PDU to be returned.

 - The PDU is the result generated in step (2) above.

 - The maxSizeResponseScopedPDU is a local value indicating the
 maximum size of a ScopedPDU that the application can accept.

 - The stateReference is the value from the processPdu call.

 - The statusInformation indicates that no error occurred and that
 a response should be generated.

 (4) After this, processing depends on the particular implementation.

3.5. Proxy Forwarder Applications

 A proxy forwarder application deals with forwarding SNMP messages.
 There are four basic types of messages which a proxy forwarder
 application may need to forward. These are grouped according to the
 class of PDU type contained in a message. The four basic types of
 messages are:

Levi, et. al. Standards Track [Page 19]

RFC 3413 SNMP Applications December 2002

 - Those containing Read-Class or Write-Class PDU types (for example,
 Get, GetNext, GetBulk, and Set PDU types). These deal with
 requesting or modifying information located within a particular
 context.

 - Those containing Notification-Class PDU types (for example,
 SNMPv2-Trap and Inform PDU types). These deal with notifications
 concerning information located within a particular context.

 - Those containing a Response-Class PDU type. Forwarding of
 Response-Class PDUs always occurs as a result of receiving a
 response to a previously forwarded message.

 - Those containing Internal-Class PDU types (for example, a Report
 PDU). Forwarding of Internal-Class PDU types always occurs as a
 result of receiving an Internal-Class PDU in response to a
 previously forwarded message.

 For the first type, the proxy forwarder’s role is to deliver a
 request for management information to an SNMP engine which is
 "closer" or "downstream in the path" to the SNMP engine which has
 access to that information, and to deliver the response containing
 the information back to the SNMP engine from which the request was
 received. The context information in a request is used to determine
 which SNMP engine has access to the requested information, and this
 is used to determine where and how to forward the request.

 For the second type, the proxy forwarder’s role is to determine which
 SNMP engines should receive notifications about management
 information from a particular location. The context information in a
 notification message determines the location to which the information
 contained in the notification applies. This is used to determine
 which SNMP engines should receive notification about this
 information.

 For the third type, the proxy forwarder’s role is to determine which
 previously forwarded request or notification (if any) the response
 matches, and to forward the response back to the initiator of the
 request or notification.

 For the fourth type, the proxy forwarder’s role is to determine which
 previously forwarded request or notification (if any) the Internal-
 Class PDU matches, and to forward the Internal-Class PDU back to the
 initiator of the request or notification.

Levi, et. al. Standards Track [Page 20]

RFC 3413 SNMP Applications December 2002

 When forwarding messages, a proxy forwarder application must perform
 a translation of incoming management target information into outgoing
 management target information. How this translation is performed is
 implementation specific. In many cases, this will be driven by a
 preconfigured translation table. If a proxy forwarder application
 makes the contents of this table SNMP manageable, it MUST use the
 SNMP-PROXY-MIB module defined in this document.

3.5.1. Request Forwarding

 There are two phases for request forwarding. First, the incoming
 request needs to be passed through the proxy application. Then, the
 resulting response needs to be passed back. These phases are
 described in the following two sections.

3.5.1.1. Processing an Incoming Request

 A proxy forwarder application that wishes to forward request messages
 must first register with the Dispatcher using the
 registerContextEngineID abstract service interface. The proxy
 forwarder must register each contextEngineID for which it wishes to
 forward messages, as well as for each pduType. Note that as the
 configuration of a proxy forwarder is changed, the particular
 contextEngineID values for which it is forwarding may change. The
 proxy forwarder should call the registerContextEngineID and
 unregisterContextEngineID abstract service interfaces as needed to
 reflect its current configuration.

 A proxy forwarder application should never attempt to register a
 value of contextEngineID which is equal to the snmpEngineID of the
 SNMP engine to which the proxy forwarder is associated.

 Once the proxy forwarder has registered for the appropriate
 contextEngineID values, it can start processing messages. The
 following procedure is used:

 (1) A message is received using the processPdu abstract service
 interface. The incoming management target information received
 from the processPdu interface is translated into outgoing
 management target information. Note that this translation may
 vary for different values of contextEngineID and/or contextName.
 The translation should result in a single management target.

 (2) If appropriate outgoing management target information cannot be
 found, the proxy forwarder increments the snmpProxyDrops counter
 [RFC1907], and then calls the Dispatcher using the
 returnResponsePdu abstract service interface. Parameters are:

Levi, et. al. Standards Track [Page 21]

RFC 3413 SNMP Applications December 2002

 - The messageProcessingModel is the value from the processPdu
 call.

 - The securityModel is the value from the processPdu call.

 - The securityName is the value from the processPdu call.

 - The securityLevel is the value from the processPdu call.

 - The contextEngineID is the value from the processPdu call.

 - The contextName is the value from the processPdu call.

 - The pduVersion is the value from the processPdu call.

 - The PDU is an undefined value.

 - The maxSizeResponseScopedPDU is a local value indicating the
 maximum size of a ScopedPDU that the application can accept.

 - The stateReference is the value from the processPdu call.

 - The statusInformation indicates that an error occurred and
 includes the OID and value of the snmpProxyDrops object.

 Processing of the message stops at this point. Otherwise,

 (3) A new PDU is constructed. A unique value of request-id should be
 used in the new PDU (this value will enable a subsequent response
 message to be correlated with this request). The remainder of
 the new PDU is identical to the received PDU, unless the incoming
 SNMP version and the outgoing SNMP version support different PDU
 versions, in which case the proxy forwarder may need to perform a
 translation on the PDU. (A method for performing such a
 translation is described in [RFC2576].)

 (4) The proxy forwarder calls the Dispatcher to generate the
 forwarded message, using the sendPdu abstract service interface.
 The parameters are:

 - The transportDomain is that of the outgoing management target.

 - The transportAddress is that of the outgoing management target.

 - The messageProcessingModel is that of the outgoing management
 target.

 - The securityModel is that of the outgoing management target.

Levi, et. al. Standards Track [Page 22]

RFC 3413 SNMP Applications December 2002

 - The securityName is that of the outgoing management target.

 - The securityLevel is that of the outgoing management target.

 - The contextEngineID is the value from the processPdu call.

 - The contextName is the value from the processPdu call.

 - The pduVersion is the version of the PDU to be sent.

 - The PDU is the value constructed in step (3) above.

 - The expectResponse argument indicates that a response is
 expected. If the sendPdu call is unsuccessful, the proxy
 forwarder performs the steps described in (2) above.
 Otherwise:

 (5) The proxy forwarder caches the following information in order to
 match an incoming response to the forwarded request:

 - The sendPduHandle returned from the call to sendPdu,

 - The request-id from the received PDU.

 - The contextEngineID,

 - The contextName,

 - The stateReference,

 - The incoming management target information,

 - The outgoing management information,

 - Any other information needed to match an incoming response to
 the forwarded request.

 If this information cannot be cached (possibly due to a lack of
 resources), the proxy forwarder performs the steps described in
 (2) above. Otherwise:

 (6) Processing of the request stops until a response to the forwarded
 request is received, or until an appropriate time interval has
 expired. If this time interval expires before a response has
 been received, the cached information about this request is
 removed.

Levi, et. al. Standards Track [Page 23]

RFC 3413 SNMP Applications December 2002

3.5.1.2. Processing an Incoming Response

 A proxy forwarder follows the following procedure when an
 incoming response is received:

 (1) The incoming response is received using the processResponsePdu
 interface. The proxy forwarder uses the received parameters to
 locate an entry in its cache of pending forwarded requests. This
 is done by matching the received parameters with the cached
 values of sendPduHandle, contextEngineID, contextName, outgoing
 management target information, and the request-id contained in
 the received PDU (the proxy forwarder must extract the request-id
 for this purpose). If an appropriate cache entry cannot be
 found, processing of the response is halted. Otherwise:

 (2) The cache information is extracted, and removed from the cache.

 (3) A new Response-Class PDU is constructed, using the request-id
 value from the original forwarded request (as extracted from the
 cache). All other values are identical to those in the received
 Response-Class PDU, unless the incoming SNMP version and the
 outgoing SNMP version support different PDU versions, in which
 case the proxy forwarder may need to perform a translation on the
 PDU. (A method for performing such a translation is described in
 [RFC2576].)

 (4) The proxy forwarder calls the Dispatcher using the
 returnResponsePdu abstract service interface. Parameters are:

 - The messageProcessingModel indicates the Message Processing
 Model by which the original incoming message was processed.

 - The securityModel is that of the original incoming management
 target extracted from the cache.

 - The securityName is that of the original incoming management
 target extracted from the cache.

 - The securityLevel is that of the original incoming management
 target extracted from the cache.

 - The contextEngineID is the value extracted from the cache.

 - The contextName is the value extracted from the cache.

 - The pduVersion indicates the version of the PDU to be returned.

 - The PDU is the (possibly translated) Response PDU.

Levi, et. al. Standards Track [Page 24]

RFC 3413 SNMP Applications December 2002

 - The maxSizeResponseScopedPDU is a local value indicating the
 maximum size of a ScopedPDU that the application can accept.

 - The stateReference is the value extracted from the cache.

 - The statusInformation indicates that no error occurred and that
 a Response PDU message should be generated.

3.5.1.3. Processing an Incoming Internal-Class PDU

 A proxy forwarder follows the following procedure when an incoming
 Internal-Class PDU is received:

 (1) The incoming Internal-Class PDU is received using the
 processResponsePdu interface. The proxy forwarder uses the
 received parameters to locate an entry in its cache of pending
 forwarded requests. This is done by matching the received
 parameters with the cached values of sendPduHandle. If an
 appropriate cache entry cannot be found, processing of the
 Internal-Class PDU is halted. Otherwise:

 (2) The cache information is extracted, and removed from the cache.

 (3) If the original incoming management target information indicates
 an SNMP version which does not support Report PDUs, processing of
 the Internal-Class PDU is halted.

 (4) The proxy forwarder calls the Dispatcher using the
 returnResponsePdu abstract service interface. Parameters are:

 - The messageProcessingModel indicates the Message Processing
 Model by which the original incoming message was processed.

 - The securityModel is that of the original incoming management
 target extracted from the cache.

 - The securityName is that of the original incoming management
 target extracted from the cache.

 - The securityLevel is that of the original incoming management
 target extracted from the cache.

 - The contextEngineID is the value extracted from the cache.

 - The contextName is the value extracted from the cache.

 - The pduVersion indicates the version of the PDU to be returned.

Levi, et. al. Standards Track [Page 25]

RFC 3413 SNMP Applications December 2002

 - The PDU is unused.

 - The maxSizeResponseScopedPDU is a local value indicating the
 maximum size of a ScopedPDU that the application can accept.

 - The stateReference is the value extracted from the cache.

 - The statusInformation contains values specific to the
 Internal-Class PDU type (for example, for a Report PDU, the
 statusInformation contains the contextEngineID, contextName,
 counter OID, and counter value received in the incoming Report
 PDU).

3.5.2. Notification Forwarding

 A proxy forwarder receives notifications in the same manner as a
 notification receiver application, using the processPdu abstract
 service interface. The following procedure is used when a
 notification is received:

 (1) The incoming management target information received from the
 processPdu interface is translated into outgoing management
 target information. Note that this translation may vary for
 different values of contextEngineID and/or contextName. The
 translation may result in multiple management targets.

 (2) If appropriate outgoing management target information cannot be
 found and the notification was an Unconfirmed-Class PDU,
 processing of the notification is halted. If appropriate
 outgoing management target information cannot be found and the
 notification was a Confirmed-Class PDU, the proxy forwarder
 increments the snmpProxyDrops object, and calls the Dispatcher
 using the returnResponsePdu abstract service interface. The
 parameters are:

 - The messageProcessingModel is the value from the processPdu
 call.

 - The securityModel is the value from the processPdu call.

 - The securityName is the value from the processPdu call.

 - The securityLevel is the value from the processPdu call.

 - The contextEngineID is the value from the processPdu call.

 - The contextName is the value from the processPdu call.

Levi, et. al. Standards Track [Page 26]

RFC 3413 SNMP Applications December 2002

 - The pduVersion is the value from the processPdu call.

 - The PDU is an undefined and unused value.

 - The maxSizeResponseScopedPDU is a local value indicating the
 maximum size of a ScopedPDU that the application can accept.

 - The stateReference is the value from the processPdu call.

 - The statusInformation indicates that an error occurred and that
 a Report message should be generated.

 Processing of the message stops at this point. Otherwise,

 (3) The proxy forwarder generates a notification using the procedures
 described in the preceding section on Notification Originators,
 with the following exceptions:

 - The contextEngineID and contextName values from the original
 received notification are used.

 - The outgoing management targets previously determined are used.

 - No filtering mechanisms are applied.

 - The variable-bindings from the original received notification
 are used, rather than retrieving variable-bindings from local
 MIB instrumentation. In particular, no access-control is
 applied to these variable-bindings, nor to the value of the
 variable-binding containing snmpTrapOID.0.

 - If the original notification contains a Confirmed-Class PDU,
 then any outgoing management targets for which the outgoing
 SNMP version does not support any PDU types that are both
 Notification-Class and Confirmed-Class PDUs will not be used
 when generating the forwarded notifications.

 - If, for any of the outgoing management targets, the incoming
 SNMP version and the outgoing SNMP version support different
 PDU versions, the proxy forwarder may need to perform a
 translation on the PDU. (A method for performing such a
 translation is described in [RFC2576].)

 (4) If the original received notification contains an
 Unconfirmed-Class PDU, processing of the notification is now
 completed. Otherwise, the original received notification must
 contain Confirmed-Class PDU, and processing continues.

Levi, et. al. Standards Track [Page 27]

RFC 3413 SNMP Applications December 2002

 (5) If the forwarded notifications included any Confirmed-Class PDUs,
 processing continues when the procedures described in the section
 for Notification Originators determine that either:

 - None of the generated notifications containing Confirmed-Class
 PDUs have been successfully acknowledged within the longest of
 the time intervals, in which case processing of the original
 notification is halted, or,

 - At least one of the generated notifications containing
 Confirmed-Class PDUs is successfully acknowledged, in which
 case a response to the original received notification
 containing an Confirmed-Class PDU is generated as described in
 the following steps.

 (6) A Response-Class PDU is constructed, using the values of
 request-id and variable-bindings from the original received
 Notification-Class PDU, and error-status and error-index values
 of 0.

 (7) The Dispatcher is called using the returnResponsePdu abstract
 service interface. Parameters are:

 - The messageProcessingModel is the value from the processPdu
 call.

 - The securityModel is the value from the processPdu call.

 - The securityName is the value from the processPdu call.

 - The securityLevel is the value from the processPdu call.

 - The contextEngineID is the value from the processPdu call.

 - The contextName is the value from the processPdu call.

 - The pduVersion indicates the version of the PDU constructed in
 step (6) above.

 - The PDU is the value constructed in step (6) above.

 - The maxSizeResponseScopedPDU is a local value indicating the
 maximum size of a ScopedPDU that the application can accept.

 - The stateReference is the value from the processPdu call.

 - The statusInformation indicates that no error occurred and that
 a Response-Class PDU message should be generated.

Levi, et. al. Standards Track [Page 28]

RFC 3413 SNMP Applications December 2002

4. The Structure of the MIB Modules

 There are three separate MIB modules described in this document, the
 management target MIB, the notification MIB, and the proxy MIB. The
 following sections describe the structure of these three MIB modules.

 The use of these MIBs by particular types of applications is
 described later in this document:

 - The use of the management target MIB and the notification MIB in
 notification originator applications is described in section 5.

 - The use of the notification MIB for filtering notifications in
 notification originator applications is described in section 6.

 - The use of the management target MIB and the proxy MIB in proxy
 forwarding applications is described in section 7.

4.1. The Management Target MIB Module

 The SNMP-TARGET-MIB module contains objects for defining management
 targets. It consists of two tables and conformance/compliance
 statements.

 The first table, the snmpTargetAddrTable, contains information about
 transport domains and addresses. It also contains an object,
 snmpTargetAddrTagList, which provides a mechanism for grouping
 entries.

 The second table, the snmpTargetParamsTable, contains information
 about SNMP version and security information to be used when sending
 messages to particular transport domains and addresses.

 The Management Target MIB is intended to provide a general-purpose
 mechanism for specifying transport address, and for specifying
 parameters of SNMP messages generated by an SNMP entity. It is used
 within this document for generation of notifications and for proxy
 forwarding. However, it may be used for other purposes. If another
 document makes use of this MIB, that document is responsible for
 specifying how it is used. For example, [RFC2576] uses this MIB for
 source address validation of SNMPv1 messages.

4.1.1. Tag Lists

 The snmpTargetAddrTagList object is used for grouping entries in the
 snmpTargetAddrTable. The value of this object contains a list of tag
 values which are used to select target addresses to be used for a
 particular operation.

Levi, et. al. Standards Track [Page 29]

RFC 3413 SNMP Applications December 2002

 A tag value, which may also be used in MIB objects other than
 snmpTargetAddrTagList, is an arbitrary string of octets, but may not
 contain a delimiter character. Delimiter characters are defined to
 be one of the following characters:

 - An ASCII space character (0x20).

 - An ASCII TAB character (0x09).

 - An ASCII carriage return (CR) character (0x0D).

 - An ASCII line feed (LF) character (0x0A).

 In addition, a tag value within a tag list may not have a zero
 length. Generally, a particular MIB object may contain either

 - a zero-length octet string representing an empty list, or

 - a single tag value, in which case the value of the MIB object may
 not contain a delimiter character, or

 - a list of tag values, separated by single delimiter characters.

 For a list of tag values, these constraints imply certain
 restrictions on the value of a MIB object:

 - There cannot be a leading or trailing delimiter character.

 - There cannot be multiple adjacent delimiter characters.

4.1.2. Definitions

 SNMP-TARGET-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY,
 OBJECT-TYPE,
 snmpModules,
 Counter32,
 Integer32
 FROM SNMPv2-SMI

 TEXTUAL-CONVENTION,
 TDomain,
 TAddress,
 TimeInterval,
 RowStatus,
 StorageType,

Levi, et. al. Standards Track [Page 30]

RFC 3413 SNMP Applications December 2002

 TestAndIncr
 FROM SNMPv2-TC

 SnmpSecurityModel,
 SnmpMessageProcessingModel,
 SnmpSecurityLevel,
 SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB

 MODULE-COMPLIANCE,
 OBJECT-GROUP
 FROM SNMPv2-CONF;

 snmpTargetMIB MODULE-IDENTITY
 LAST-UPDATED "200210140000Z"
 ORGANIZATION "IETF SNMPv3 Working Group"
 CONTACT-INFO
 "WG-email: snmpv3@lists.tislabs.com
 Subscribe: majordomo@lists.tislabs.com
 In message body: subscribe snmpv3

 Co-Chair: Russ Mundy
 Network Associates Laboratories
 Postal: 15204 Omega Drive, Suite 300
 Rockville, MD 20850-4601
 USA
 EMail: mundy@tislabs.com
 Phone: +1 301-947-7107

 Co-Chair: David Harrington
 Enterasys Networks
 Postal: 35 Industrial Way
 P. O. Box 5004
 Rochester, New Hampshire 03866-5005
 USA
 EMail: dbh@enterasys.com
 Phone: +1 603-337-2614

 Co-editor: David B. Levi
 Nortel Networks
 Postal: 3505 Kesterwood Drive
 Knoxville, Tennessee 37918
 EMail: dlevi@nortelnetworks.com
 Phone: +1 865 686 0432

 Co-editor: Paul Meyer
 Secure Computing Corporation
 Postal: 2675 Long Lake Road

Levi, et. al. Standards Track [Page 31]

RFC 3413 SNMP Applications December 2002

 Roseville, Minnesota 55113
 EMail: paul_meyer@securecomputing.com
 Phone: +1 651 628 1592

 Co-editor: Bob Stewart
 Retired"
 DESCRIPTION
 "This MIB module defines MIB objects which provide
 mechanisms to remotely configure the parameters used
 by an SNMP entity for the generation of SNMP messages.

 Copyright (C) The Internet Society (2002). This
 version of this MIB module is part of RFC 3413;
 see the RFC itself for full legal notices.
 "
 REVISION "200210140000Z" -- 14 October 2002
 DESCRIPTION "Fixed DISPLAY-HINTS for UTF-8 strings, fixed hex
 value of LF characters, clarified meaning of zero
 length tag values, improved tag list examples.
 Published as RFC 3413."
 REVISION "199808040000Z" -- 4 August 1998
 DESCRIPTION "Clarifications, published as
 RFC 2573."
 REVISION "199707140000Z" -- 14 July 1997
 DESCRIPTION "The initial revision, published as RFC2273."
 ::= { snmpModules 12 }

 snmpTargetObjects OBJECT IDENTIFIER ::= { snmpTargetMIB 1 }
 snmpTargetConformance OBJECT IDENTIFIER ::= { snmpTargetMIB 3 }

 SnmpTagValue ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "255t"
 STATUS current
 DESCRIPTION
 "An octet string containing a tag value.
 Tag values are preferably in human-readable form.

 To facilitate internationalization, this information
 is represented using the ISO/IEC IS 10646-1 character
 set, encoded as an octet string using the UTF-8
 character encoding scheme described in RFC 2279.

 Since additional code points are added by amendments
 to the 10646 standard from time to time,
 implementations must be prepared to encounter any code
 point from 0x00000000 to 0x7fffffff.

 The use of control codes should be avoided, and certain

Levi, et. al. Standards Track [Page 32]

RFC 3413 SNMP Applications December 2002

 control codes are not allowed as described below.

 For code points not directly supported by user
 interface hardware or software, an alternative means
 of entry and display, such as hexadecimal, may be
 provided.

 For information encoded in 7-bit US-ASCII, the UTF-8
 representation is identical to the US-ASCII encoding.

 Note that when this TC is used for an object that
 is used or envisioned to be used as an index, then a
 SIZE restriction must be specified so that the number
 of sub-identifiers for any object instance does not
 exceed the limit of 128, as defined by [RFC1905].

 An object of this type contains a single tag value
 which is used to select a set of entries in a table.

 A tag value is an arbitrary string of octets, but
 may not contain a delimiter character. Delimiter
 characters are defined to be one of the following:

 - An ASCII space character (0x20).

 - An ASCII TAB character (0x09).

 - An ASCII carriage return (CR) character (0x0D).

 - An ASCII line feed (LF) character (0x0A).

 Delimiter characters are used to separate tag values
 in a tag list. An object of this type may only
 contain a single tag value, and so delimiter
 characters are not allowed in a value of this type.

 Note that a tag value of 0 length means that no tag is
 defined. In other words, a tag value of 0 length would
 never match anything in a tag list, and would never
 select any table entries.

 Some examples of valid tag values are:

 - ’acme’

 - ’router’

 - ’host’

Levi, et. al. Standards Track [Page 33]

RFC 3413 SNMP Applications December 2002

 The use of a tag value to select table entries is
 application and MIB specific."
 SYNTAX OCTET STRING (SIZE (0..255))

 SnmpTagList ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "255t"
 STATUS current
 DESCRIPTION
 "An octet string containing a list of tag values.
 Tag values are preferably in human-readable form.

 To facilitate internationalization, this information
 is represented using the ISO/IEC IS 10646-1 character
 set, encoded as an octet string using the UTF-8
 character encoding scheme described in RFC 2279.

 Since additional code points are added by amendments
 to the 10646 standard from time to time,
 implementations must be prepared to encounter any code
 point from 0x00000000 to 0x7fffffff.

 The use of control codes should be avoided, except as
 described below.

 For code points not directly supported by user
 interface hardware or software, an alternative means
 of entry and display, such as hexadecimal, may be
 provided.

 For information encoded in 7-bit US-ASCII, the UTF-8
 representation is identical to the US-ASCII encoding.

 An object of this type contains a list of tag values
 which are used to select a set of entries in a table.

 A tag value is an arbitrary string of octets, but
 may not contain a delimiter character. Delimiter
 characters are defined to be one of the following:

 - An ASCII space character (0x20).

 - An ASCII TAB character (0x09).

 - An ASCII carriage return (CR) character (0x0D).

 - An ASCII line feed (LF) character (0x0A).

 Delimiter characters are used to separate tag values

Levi, et. al. Standards Track [Page 34]

RFC 3413 SNMP Applications December 2002

 in a tag list. Only a single delimiter character may
 occur between two tag values. A tag value may not
 have a zero length. These constraints imply certain
 restrictions on the contents of this object:

 - There cannot be a leading or trailing delimiter
 character.

 - There cannot be multiple adjacent delimiter
 characters.

 Some examples of valid tag lists are:

 - ’’ -- an empty list

 - ’acme’ -- list of one tag

 - ’host router bridge’ -- list of several tags

 Note that although a tag value may not have a length of
 zero, an empty string is still valid. This indicates
 an empty list (i.e. there are no tag values in the list).

 The use of the tag list to select table entries is
 application and MIB specific. Typically, an application
 will provide one or more tag values, and any entry
 which contains some combination of these tag values
 will be selected."
 SYNTAX OCTET STRING (SIZE (0..255))

 --
 --
 -- The snmpTargetObjects group
 --
 --

 snmpTargetSpinLock OBJECT-TYPE
 SYNTAX TestAndIncr
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "This object is used to facilitate modification of table
 entries in the SNMP-TARGET-MIB module by multiple
 managers. In particular, it is useful when modifying
 the value of the snmpTargetAddrTagList object.

 The procedure for modifying the snmpTargetAddrTagList
 object is as follows:

Levi, et. al. Standards Track [Page 35]

RFC 3413 SNMP Applications December 2002

 1. Retrieve the value of snmpTargetSpinLock and
 of snmpTargetAddrTagList.

 2. Generate a new value for snmpTargetAddrTagList.

 3. Set the value of snmpTargetSpinLock to the
 retrieved value, and the value of
 snmpTargetAddrTagList to the new value. If
 the set fails for the snmpTargetSpinLock
 object, go back to step 1."
 ::= { snmpTargetObjects 1 }

 snmpTargetAddrTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SnmpTargetAddrEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table of transport addresses to be used in the generation
 of SNMP messages."
 ::= { snmpTargetObjects 2 }

 snmpTargetAddrEntry OBJECT-TYPE
 SYNTAX SnmpTargetAddrEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A transport address to be used in the generation
 of SNMP operations.

 Entries in the snmpTargetAddrTable are created and
 deleted using the snmpTargetAddrRowStatus object."
 INDEX { IMPLIED snmpTargetAddrName }
 ::= { snmpTargetAddrTable 1 }

 SnmpTargetAddrEntry ::= SEQUENCE {
 snmpTargetAddrName SnmpAdminString,
 snmpTargetAddrTDomain TDomain,
 snmpTargetAddrTAddress TAddress,
 snmpTargetAddrTimeout TimeInterval,
 snmpTargetAddrRetryCount Integer32,
 snmpTargetAddrTagList SnmpTagList,
 snmpTargetAddrParams SnmpAdminString,
 snmpTargetAddrStorageType StorageType,
 snmpTargetAddrRowStatus RowStatus
 }

 snmpTargetAddrName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(1..32))

Levi, et. al. Standards Track [Page 36]

RFC 3413 SNMP Applications December 2002

 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The locally arbitrary, but unique identifier associated
 with this snmpTargetAddrEntry."
 ::= { snmpTargetAddrEntry 1 }

 snmpTargetAddrTDomain OBJECT-TYPE
 SYNTAX TDomain
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object indicates the transport type of the address
 contained in the snmpTargetAddrTAddress object."
 ::= { snmpTargetAddrEntry 2 }

 snmpTargetAddrTAddress OBJECT-TYPE
 SYNTAX TAddress
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object contains a transport address. The format of
 this address depends on the value of the
 snmpTargetAddrTDomain object."
 ::= { snmpTargetAddrEntry 3 }

 snmpTargetAddrTimeout OBJECT-TYPE
 SYNTAX TimeInterval
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object should reflect the expected maximum round
 trip time for communicating with the transport address
 defined by this row. When a message is sent to this
 address, and a response (if one is expected) is not
 received within this time period, an implementation
 may assume that the response will not be delivered.

 Note that the time interval that an application waits
 for a response may actually be derived from the value
 of this object. The method for deriving the actual time
 interval is implementation dependent. One such method
 is to derive the expected round trip time based on a
 particular retransmission algorithm and on the number
 of timeouts which have occurred. The type of message may
 also be considered when deriving expected round trip
 times for retransmissions. For example, if a message is
 being sent with a securityLevel that indicates both

Levi, et. al. Standards Track [Page 37]

RFC 3413 SNMP Applications December 2002

 authentication and privacy, the derived value may be
 increased to compensate for extra processing time spent
 during authentication and encryption processing."
 DEFVAL { 1500 }
 ::= { snmpTargetAddrEntry 4 }

 snmpTargetAddrRetryCount OBJECT-TYPE
 SYNTAX Integer32 (0..255)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object specifies a default number of retries to be
 attempted when a response is not received for a generated
 message. An application may provide its own retry count,
 in which case the value of this object is ignored."
 DEFVAL { 3 }
 ::= { snmpTargetAddrEntry 5 }

 snmpTargetAddrTagList OBJECT-TYPE
 SYNTAX SnmpTagList
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object contains a list of tag values which are
 used to select target addresses for a particular
 operation."
 DEFVAL { "" }
 ::= { snmpTargetAddrEntry 6 }

 snmpTargetAddrParams OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(1..32))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The value of this object identifies an entry in the
 snmpTargetParamsTable. The identified entry
 contains SNMP parameters to be used when generating
 messages to be sent to this transport address."
 ::= { snmpTargetAddrEntry 7 }

 snmpTargetAddrStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type for this conceptual row.
 Conceptual rows having the value ’permanent’ need not
 allow write-access to any columnar objects in the row."

Levi, et. al. Standards Track [Page 38]

RFC 3413 SNMP Applications December 2002

 DEFVAL { nonVolatile }
 ::= { snmpTargetAddrEntry 8 }

 snmpTargetAddrRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this conceptual row.

 To create a row in this table, a manager must
 set this object to either createAndGo(4) or
 createAndWait(5).

 Until instances of all corresponding columns are
 appropriately configured, the value of the
 corresponding instance of the snmpTargetAddrRowStatus
 column is ’notReady’.

 In particular, a newly created row cannot be made
 active until the corresponding instances of
 snmpTargetAddrTDomain, snmpTargetAddrTAddress, and
 snmpTargetAddrParams have all been set.

 The following objects may not be modified while the
 value of this object is active(1):
 - snmpTargetAddrTDomain
 - snmpTargetAddrTAddress
 An attempt to set these objects while the value of
 snmpTargetAddrRowStatus is active(1) will result in
 an inconsistentValue error."
 ::= { snmpTargetAddrEntry 9 }

 snmpTargetParamsTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SnmpTargetParamsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table of SNMP target information to be used
 in the generation of SNMP messages."
 ::= { snmpTargetObjects 3 }

 snmpTargetParamsEntry OBJECT-TYPE
 SYNTAX SnmpTargetParamsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A set of SNMP target information.

Levi, et. al. Standards Track [Page 39]

RFC 3413 SNMP Applications December 2002

 Entries in the snmpTargetParamsTable are created and
 deleted using the snmpTargetParamsRowStatus object."
 INDEX { IMPLIED snmpTargetParamsName }
 ::= { snmpTargetParamsTable 1 }

 SnmpTargetParamsEntry ::= SEQUENCE {
 snmpTargetParamsName SnmpAdminString,
 snmpTargetParamsMPModel SnmpMessageProcessingModel,
 snmpTargetParamsSecurityModel SnmpSecurityModel,
 snmpTargetParamsSecurityName SnmpAdminString,
 snmpTargetParamsSecurityLevel SnmpSecurityLevel,
 snmpTargetParamsStorageType StorageType,
 snmpTargetParamsRowStatus RowStatus
 }

 snmpTargetParamsName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(1..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The locally arbitrary, but unique identifier associated
 with this snmpTargetParamsEntry."
 ::= { snmpTargetParamsEntry 1 }

 snmpTargetParamsMPModel OBJECT-TYPE
 SYNTAX SnmpMessageProcessingModel
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The Message Processing Model to be used when generating
 SNMP messages using this entry."
 ::= { snmpTargetParamsEntry 2 }

 snmpTargetParamsSecurityModel OBJECT-TYPE
 SYNTAX SnmpSecurityModel (1..2147483647)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The Security Model to be used when generating SNMP
 messages using this entry. An implementation may
 choose to return an inconsistentValue error if an
 attempt is made to set this variable to a value
 for a security model which the implementation does
 not support."
 ::= { snmpTargetParamsEntry 3 }

 snmpTargetParamsSecurityName OBJECT-TYPE
 SYNTAX SnmpAdminString

Levi, et. al. Standards Track [Page 40]

RFC 3413 SNMP Applications December 2002

 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The securityName which identifies the Principal on
 whose behalf SNMP messages will be generated using
 this entry."
 ::= { snmpTargetParamsEntry 4 }

 snmpTargetParamsSecurityLevel OBJECT-TYPE
 SYNTAX SnmpSecurityLevel
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The Level of Security to be used when generating
 SNMP messages using this entry."
 ::= { snmpTargetParamsEntry 5 }

 snmpTargetParamsStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type for this conceptual row.
 Conceptual rows having the value ’permanent’ need not
 allow write-access to any columnar objects in the row."
 DEFVAL { nonVolatile }
 ::= { snmpTargetParamsEntry 6 }

 snmpTargetParamsRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this conceptual row.

 To create a row in this table, a manager must
 set this object to either createAndGo(4) or
 createAndWait(5).

 Until instances of all corresponding columns are
 appropriately configured, the value of the
 corresponding instance of the snmpTargetParamsRowStatus
 column is ’notReady’.

 In particular, a newly created row cannot be made
 active until the corresponding
 snmpTargetParamsMPModel,
 snmpTargetParamsSecurityModel,

Levi, et. al. Standards Track [Page 41]

RFC 3413 SNMP Applications December 2002

 snmpTargetParamsSecurityName,
 and snmpTargetParamsSecurityLevel have all been set.

 The following objects may not be modified while the
 value of this object is active(1):
 - snmpTargetParamsMPModel
 - snmpTargetParamsSecurityModel
 - snmpTargetParamsSecurityName
 - snmpTargetParamsSecurityLevel
 An attempt to set these objects while the value of
 snmpTargetParamsRowStatus is active(1) will result in
 an inconsistentValue error."
 ::= { snmpTargetParamsEntry 7 }

 snmpUnavailableContexts OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The total number of packets received by the SNMP
 engine which were dropped because the context
 contained in the message was unavailable."
 ::= { snmpTargetObjects 4 }

 snmpUnknownContexts OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The total number of packets received by the SNMP
 engine which were dropped because the context
 contained in the message was unknown."
 ::= { snmpTargetObjects 5 }

 --
 --
 -- Conformance information
 --
 --

 snmpTargetCompliances OBJECT IDENTIFIER ::=
 { snmpTargetConformance 1 }
 snmpTargetGroups OBJECT IDENTIFIER ::=
 { snmpTargetConformance 2 }

 --
 --
 -- Compliance statements

Levi, et. al. Standards Track [Page 42]

RFC 3413 SNMP Applications December 2002

 --
 --

 snmpTargetCommandResponderCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for SNMP entities which include
 a command responder application."
 MODULE -- This Module
 MANDATORY-GROUPS { snmpTargetCommandResponderGroup }
 ::= { snmpTargetCompliances 1 }

 snmpTargetBasicGroup OBJECT-GROUP
 OBJECTS {
 snmpTargetSpinLock,
 snmpTargetAddrTDomain,
 snmpTargetAddrTAddress,
 snmpTargetAddrTagList,
 snmpTargetAddrParams,
 snmpTargetAddrStorageType,
 snmpTargetAddrRowStatus,
 snmpTargetParamsMPModel,
 snmpTargetParamsSecurityModel,
 snmpTargetParamsSecurityName,
 snmpTargetParamsSecurityLevel,
 snmpTargetParamsStorageType,
 snmpTargetParamsRowStatus
 }
 STATUS current
 DESCRIPTION
 "A collection of objects providing basic remote
 configuration of management targets."
 ::= { snmpTargetGroups 1 }

 snmpTargetResponseGroup OBJECT-GROUP
 OBJECTS {
 snmpTargetAddrTimeout,
 snmpTargetAddrRetryCount
 }
 STATUS current
 DESCRIPTION
 "A collection of objects providing remote configuration
 of management targets for applications which generate
 SNMP messages for which a response message would be
 expected."
 ::= { snmpTargetGroups 2 }

 snmpTargetCommandResponderGroup OBJECT-GROUP

Levi, et. al. Standards Track [Page 43]

RFC 3413 SNMP Applications December 2002

 OBJECTS {
 snmpUnavailableContexts,
 snmpUnknownContexts
 }
 STATUS current
 DESCRIPTION
 "A collection of objects required for command responder
 applications, used for counting error conditions."
 ::= { snmpTargetGroups 3 }

 END

4.2. The Notification MIB Module

 The SNMP-NOTIFICATION-MIB module contains objects for the remote
 configuration of the parameters used by an SNMP entity for the
 generation of notifications. It consists of three tables and
 conformance/compliance statements. The first table, the
 snmpNotifyTable, contains entries which select which entries in the
 snmpTargetAddrTable should be used for generating notifications, and
 the type of notifications to be generated.

 The second table, the snmpNotifyFilterProfileTable, sparsely augments
 the snmpTargetParamsTable with an object which is used to associate a
 set of filters with a particular management target.

 The third table, the snmpNotifyFilterTable, defines filters which are
 used to limit the number of notifications which are generated using
 particular management targets.

4.2.1. Definitions

 SNMP-NOTIFICATION-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY,
 OBJECT-TYPE,
 snmpModules
 FROM SNMPv2-SMI

 RowStatus,
 StorageType
 FROM SNMPv2-TC

 SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB

 SnmpTagValue,

Levi, et. al. Standards Track [Page 44]

RFC 3413 SNMP Applications December 2002

 snmpTargetParamsName
 FROM SNMP-TARGET-MIB

 MODULE-COMPLIANCE,
 OBJECT-GROUP
 FROM SNMPv2-CONF;

 snmpNotificationMIB MODULE-IDENTITY
 LAST-UPDATED "200210140000Z"
 ORGANIZATION "IETF SNMPv3 Working Group"
 CONTACT-INFO
 "WG-email: snmpv3@lists.tislabs.com
 Subscribe: majordomo@lists.tislabs.com
 In message body: subscribe snmpv3

 Co-Chair: Russ Mundy
 Network Associates Laboratories
 Postal: 15204 Omega Drive, Suite 300
 Rockville, MD 20850-4601
 USA
 EMail: mundy@tislabs.com
 Phone: +1 301-947-7107

 Co-Chair: David Harrington
 Enterasys Networks
 Postal: 35 Industrial Way
 P. O. Box 5004
 Rochester, New Hampshire 03866-5005
 USA
 EMail: dbh@enterasys.com
 Phone: +1 603-337-2614

 Co-editor: David B. Levi
 Nortel Networks
 Postal: 3505 Kesterwood Drive
 Knoxville, Tennessee 37918
 EMail: dlevi@nortelnetworks.com
 Phone: +1 865 686 0432

 Co-editor: Paul Meyer
 Secure Computing Corporation
 Postal: 2675 Long Lake Road
 Roseville, Minnesota 55113
 EMail: paul_meyer@securecomputing.com
 Phone: +1 651 628 1592

 Co-editor: Bob Stewart
 Retired"

Levi, et. al. Standards Track [Page 45]

RFC 3413 SNMP Applications December 2002

 DESCRIPTION
 "This MIB module defines MIB objects which provide
 mechanisms to remotely configure the parameters
 used by an SNMP entity for the generation of
 notifications.

 Copyright (C) The Internet Society (2002). This
 version of this MIB module is part of RFC 3413;
 see the RFC itself for full legal notices.
 "
 REVISION "200210140000Z" -- 14 October 2002
 DESCRIPTION "Clarifications, published as
 RFC 3413."
 REVISION "199808040000Z" -- 4 August 1998
 DESCRIPTION "Clarifications, published as
 RFC 2573."
 REVISION "199707140000Z" -- 14 July 1997
 DESCRIPTION "The initial revision, published as RFC2273."
 ::= { snmpModules 13 }

 snmpNotifyObjects OBJECT IDENTIFIER ::=
 { snmpNotificationMIB 1 }
 snmpNotifyConformance OBJECT IDENTIFIER ::=
 { snmpNotificationMIB 3 }

 --
 --
 -- The snmpNotifyObjects group
 --
 --

 snmpNotifyTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SnmpNotifyEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table is used to select management targets which should
 receive notifications, as well as the type of notification
 which should be sent to each selected management target."
 ::= { snmpNotifyObjects 1 }

 snmpNotifyEntry OBJECT-TYPE
 SYNTAX SnmpNotifyEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry in this table selects a set of management targets
 which should receive notifications, as well as the type of

Levi, et. al. Standards Track [Page 46]

RFC 3413 SNMP Applications December 2002

 notification which should be sent to each selected
 management target.

 Entries in the snmpNotifyTable are created and
 deleted using the snmpNotifyRowStatus object."
 INDEX { IMPLIED snmpNotifyName }
 ::= { snmpNotifyTable 1 }

 SnmpNotifyEntry ::= SEQUENCE {
 snmpNotifyName SnmpAdminString,
 snmpNotifyTag SnmpTagValue,
 snmpNotifyType INTEGER,
 snmpNotifyStorageType StorageType,
 snmpNotifyRowStatus RowStatus
 }

 snmpNotifyName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(1..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The locally arbitrary, but unique identifier associated
 with this snmpNotifyEntry."
 ::= { snmpNotifyEntry 1 }

 snmpNotifyTag OBJECT-TYPE
 SYNTAX SnmpTagValue
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object contains a single tag value which is used
 to select entries in the snmpTargetAddrTable. Any entry
 in the snmpTargetAddrTable which contains a tag value
 which is equal to the value of an instance of this
 object is selected. If this object contains a value
 of zero length, no entries are selected."
 DEFVAL { "" }
 ::= { snmpNotifyEntry 2 }

 snmpNotifyType OBJECT-TYPE
 SYNTAX INTEGER {
 trap(1),
 inform(2)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object determines the type of notification to

Levi, et. al. Standards Track [Page 47]

RFC 3413 SNMP Applications December 2002

 be generated for entries in the snmpTargetAddrTable
 selected by the corresponding instance of
 snmpNotifyTag. This value is only used when
 generating notifications, and is ignored when
 using the snmpTargetAddrTable for other purposes.

 If the value of this object is trap(1), then any
 messages generated for selected rows will contain
 Unconfirmed-Class PDUs.

 If the value of this object is inform(2), then any
 messages generated for selected rows will contain
 Confirmed-Class PDUs.

 Note that if an SNMP entity only supports
 generation of Unconfirmed-Class PDUs (and not
 Confirmed-Class PDUs), then this object may be
 read-only."
 DEFVAL { trap }
 ::= { snmpNotifyEntry 3 }

 snmpNotifyStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type for this conceptual row.
 Conceptual rows having the value ’permanent’ need not
 allow write-access to any columnar objects in the row."
 DEFVAL { nonVolatile }
 ::= { snmpNotifyEntry 4 }

 snmpNotifyRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this conceptual row.

 To create a row in this table, a manager must
 set this object to either createAndGo(4) or
 createAndWait(5)."
 ::= { snmpNotifyEntry 5 }

 snmpNotifyFilterProfileTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SnmpNotifyFilterProfileEntry
 MAX-ACCESS not-accessible
 STATUS current

Levi, et. al. Standards Track [Page 48]

RFC 3413 SNMP Applications December 2002

 DESCRIPTION
 "This table is used to associate a notification filter
 profile with a particular set of target parameters."
 ::= { snmpNotifyObjects 2 }

 snmpNotifyFilterProfileEntry OBJECT-TYPE
 SYNTAX SnmpNotifyFilterProfileEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry in this table indicates the name of the filter
 profile to be used when generating notifications using
 the corresponding entry in the snmpTargetParamsTable.

 Entries in the snmpNotifyFilterProfileTable are created
 and deleted using the snmpNotifyFilterProfileRowStatus
 object."
 INDEX { IMPLIED snmpTargetParamsName }
 ::= { snmpNotifyFilterProfileTable 1 }

 SnmpNotifyFilterProfileEntry ::= SEQUENCE {
 snmpNotifyFilterProfileName SnmpAdminString,
 snmpNotifyFilterProfileStorType StorageType,
 snmpNotifyFilterProfileRowStatus RowStatus
 }

 snmpNotifyFilterProfileName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(1..32))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The name of the filter profile to be used when generating
 notifications using the corresponding entry in the
 snmpTargetAddrTable."
 ::= { snmpNotifyFilterProfileEntry 1 }

 snmpNotifyFilterProfileStorType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type for this conceptual row.
 Conceptual rows having the value ’permanent’ need not
 allow write-access to any columnar objects in the row."
 DEFVAL { nonVolatile }
 ::= { snmpNotifyFilterProfileEntry 2 }

 snmpNotifyFilterProfileRowStatus OBJECT-TYPE

Levi, et. al. Standards Track [Page 49]

RFC 3413 SNMP Applications December 2002

 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this conceptual row.

 To create a row in this table, a manager must
 set this object to either createAndGo(4) or
 createAndWait(5).

 Until instances of all corresponding columns are
 appropriately configured, the value of the
 corresponding instance of the
 snmpNotifyFilterProfileRowStatus column is ’notReady’.

 In particular, a newly created row cannot be made
 active until the corresponding instance of
 snmpNotifyFilterProfileName has been set."
 ::= { snmpNotifyFilterProfileEntry 3 }

 snmpNotifyFilterTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SnmpNotifyFilterEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The table of filter profiles. Filter profiles are used
 to determine whether particular management targets should
 receive particular notifications.

 When a notification is generated, it must be compared
 with the filters associated with each management target
 which is configured to receive notifications, in order to
 determine whether it may be sent to each such management
 target.

 A more complete discussion of notification filtering
 can be found in section 6. of [SNMP-APPL]."
 ::= { snmpNotifyObjects 3 }

 snmpNotifyFilterEntry OBJECT-TYPE
 SYNTAX SnmpNotifyFilterEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An element of a filter profile.

 Entries in the snmpNotifyFilterTable are created and
 deleted using the snmpNotifyFilterRowStatus object."

Levi, et. al. Standards Track [Page 50]

RFC 3413 SNMP Applications December 2002

 INDEX { snmpNotifyFilterProfileName,
 IMPLIED snmpNotifyFilterSubtree }
 ::= { snmpNotifyFilterTable 1 }

 SnmpNotifyFilterEntry ::= SEQUENCE {
 snmpNotifyFilterSubtree OBJECT IDENTIFIER,
 snmpNotifyFilterMask OCTET STRING,
 snmpNotifyFilterType INTEGER,
 snmpNotifyFilterStorageType StorageType,
 snmpNotifyFilterRowStatus RowStatus
 }

 snmpNotifyFilterSubtree OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The MIB subtree which, when combined with the corresponding
 instance of snmpNotifyFilterMask, defines a family of
 subtrees which are included in or excluded from the
 filter profile."
 ::= { snmpNotifyFilterEntry 1 }

 snmpNotifyFilterMask OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE(0..16))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The bit mask which, in combination with the corresponding
 instance of snmpNotifyFilterSubtree, defines a family of
 subtrees which are included in or excluded from the
 filter profile.

 Each bit of this bit mask corresponds to a
 sub-identifier of snmpNotifyFilterSubtree, with the
 most significant bit of the i-th octet of this octet
 string value (extended if necessary, see below)
 corresponding to the (8*i - 7)-th sub-identifier, and
 the least significant bit of the i-th octet of this
 octet string corresponding to the (8*i)-th
 sub-identifier, where i is in the range 1 through 16.

 Each bit of this bit mask specifies whether or not
 the corresponding sub-identifiers must match when
 determining if an OBJECT IDENTIFIER matches this
 family of filter subtrees; a ’1’ indicates that an
 exact match must occur; a ’0’ indicates ’wild card’,
 i.e., any sub-identifier value matches.

Levi, et. al. Standards Track [Page 51]

RFC 3413 SNMP Applications December 2002

 Thus, the OBJECT IDENTIFIER X of an object instance
 is contained in a family of filter subtrees if, for
 each sub-identifier of the value of
 snmpNotifyFilterSubtree, either:

 the i-th bit of snmpNotifyFilterMask is 0, or

 the i-th sub-identifier of X is equal to the i-th
 sub-identifier of the value of
 snmpNotifyFilterSubtree.

 If the value of this bit mask is M bits long and
 there are more than M sub-identifiers in the
 corresponding instance of snmpNotifyFilterSubtree,
 then the bit mask is extended with 1’s to be the
 required length.

 Note that when the value of this object is the
 zero-length string, this extension rule results in
 a mask of all-1’s being used (i.e., no ’wild card’),
 and the family of filter subtrees is the one
 subtree uniquely identified by the corresponding
 instance of snmpNotifyFilterSubtree."
 DEFVAL { ’’H }
 ::= { snmpNotifyFilterEntry 2 }

 snmpNotifyFilterType OBJECT-TYPE
 SYNTAX INTEGER {
 included(1),
 excluded(2)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object indicates whether the family of filter subtrees
 defined by this entry are included in or excluded from a
 filter. A more detailed discussion of the use of this
 object can be found in section 6. of [SNMP-APPL]."
 DEFVAL { included }
 ::= { snmpNotifyFilterEntry 3 }

 snmpNotifyFilterStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type for this conceptual row.
 Conceptual rows having the value ’permanent’ need not

Levi, et. al. Standards Track [Page 52]

RFC 3413 SNMP Applications December 2002

 allow write-access to any columnar objects in the row."
 DEFVAL { nonVolatile }
 ::= { snmpNotifyFilterEntry 4 }

 snmpNotifyFilterRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this conceptual row.

 To create a row in this table, a manager must
 set this object to either createAndGo(4) or
 createAndWait(5)."
 ::= { snmpNotifyFilterEntry 5 }

 --
 --
 -- Conformance information
 --
 --

 snmpNotifyCompliances OBJECT IDENTIFIER ::=
 { snmpNotifyConformance 1 }
 snmpNotifyGroups OBJECT IDENTIFIER ::=
 { snmpNotifyConformance 2 }

 --
 --
 -- Compliance statements
 --
 --

 snmpNotifyBasicCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for minimal SNMP entities which
 implement only SNMP Unconfirmed-Class notifications and
 read-create operations on only the snmpTargetAddrTable."
 MODULE SNMP-TARGET-MIB
 MANDATORY-GROUPS { snmpTargetBasicGroup }

 OBJECT snmpTargetParamsMPModel
 MIN-ACCESS read-only
 DESCRIPTION
 "Create/delete/modify access is not required."

 OBJECT snmpTargetParamsSecurityModel

Levi, et. al. Standards Track [Page 53]

RFC 3413 SNMP Applications December 2002

 MIN-ACCESS read-only
 DESCRIPTION
 "Create/delete/modify access is not required."

 OBJECT snmpTargetParamsSecurityName
 MIN-ACCESS read-only
 DESCRIPTION
 "Create/delete/modify access is not required."

 OBJECT snmpTargetParamsSecurityLevel
 MIN-ACCESS read-only
 DESCRIPTION
 "Create/delete/modify access is not required."

 OBJECT snmpTargetParamsStorageType
 SYNTAX INTEGER {
 readOnly(5)
 }
 MIN-ACCESS read-only
 DESCRIPTION
 "Create/delete/modify access is not required.
 Support of the values other(1), volatile(2),
 nonVolatile(3), and permanent(4) is not required."

 OBJECT snmpTargetParamsRowStatus
 SYNTAX INTEGER {
 active(1)
 }
 MIN-ACCESS read-only
 DESCRIPTION
 "Create/delete/modify access to the
 snmpTargetParamsTable is not required.
 Support of the values notInService(2), notReady(3),
 createAndGo(4), createAndWait(5), and destroy(6) is
 not required."

 MODULE -- This Module
 MANDATORY-GROUPS { snmpNotifyGroup }

 OBJECT snmpNotifyTag
 MIN-ACCESS read-only
 DESCRIPTION
 "Create/delete/modify access is not required."

 OBJECT snmpNotifyType
 SYNTAX INTEGER {
 trap(1)
 }

Levi, et. al. Standards Track [Page 54]

RFC 3413 SNMP Applications December 2002

 MIN-ACCESS read-only
 DESCRIPTION
 "Create/delete/modify access is not required.
 Support of the value notify(2) is not required."

 OBJECT snmpNotifyStorageType
 SYNTAX INTEGER {
 readOnly(5)
 }
 MIN-ACCESS read-only
 DESCRIPTION
 "Create/delete/modify access is not required.
 Support of the values other(1), volatile(2),
 nonVolatile(3), and permanent(4) is not required."

 OBJECT snmpNotifyRowStatus
 SYNTAX INTEGER {
 active(1)
 }
 MIN-ACCESS read-only
 DESCRIPTION
 "Create/delete/modify access to the
 snmpNotifyTable is not required.
 Support of the values notInService(2), notReady(3),
 createAndGo(4), createAndWait(5), and destroy(6) is
 not required."

 ::= { snmpNotifyCompliances 1 }

 snmpNotifyBasicFiltersCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for SNMP entities which implement
 SNMP Unconfirmed-Class notifications with filtering, and
 read-create operations on all related tables."
 MODULE SNMP-TARGET-MIB
 MANDATORY-GROUPS { snmpTargetBasicGroup }
 MODULE -- This Module
 MANDATORY-GROUPS { snmpNotifyGroup,
 snmpNotifyFilterGroup }
 ::= { snmpNotifyCompliances 2 }

 snmpNotifyFullCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for SNMP entities which either
 implement only SNMP Confirmed-Class notifications, or both
 SNMP Unconfirmed-Class and Confirmed-Class notifications,

Levi, et. al. Standards Track [Page 55]

RFC 3413 SNMP Applications December 2002

 plus filtering and read-create operations on all related
 tables."
 MODULE SNMP-TARGET-MIB
 MANDATORY-GROUPS { snmpTargetBasicGroup,
 snmpTargetResponseGroup }
 MODULE -- This Module
 MANDATORY-GROUPS { snmpNotifyGroup,
 snmpNotifyFilterGroup }
 ::= { snmpNotifyCompliances 3 }

 snmpNotifyGroup OBJECT-GROUP
 OBJECTS {
 snmpNotifyTag,
 snmpNotifyType,
 snmpNotifyStorageType,
 snmpNotifyRowStatus
 }
 STATUS current
 DESCRIPTION
 "A collection of objects for selecting which management
 targets are used for generating notifications, and the
 type of notification to be generated for each selected
 management target."
 ::= { snmpNotifyGroups 1 }

 snmpNotifyFilterGroup OBJECT-GROUP
 OBJECTS {
 snmpNotifyFilterProfileName,
 snmpNotifyFilterProfileStorType,
 snmpNotifyFilterProfileRowStatus,
 snmpNotifyFilterMask,
 snmpNotifyFilterType,
 snmpNotifyFilterStorageType,
 snmpNotifyFilterRowStatus
 }
 STATUS current
 DESCRIPTION
 "A collection of objects providing remote configuration
 of notification filters."
 ::= { snmpNotifyGroups 2 }

 END

Levi, et. al. Standards Track [Page 56]

RFC 3413 SNMP Applications December 2002

4.3. The Proxy MIB Module

 The SNMP-PROXY-MIB module, which defines MIB objects that provide
 mechanisms to remotely configure the parameters used by an SNMP
 entity for proxy forwarding operations, contains a single table.
 This table, snmpProxyTable, is used to define translations between
 management targets for use when forwarding messages.

4.3.1. Definitions

 SNMP-PROXY-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY,
 OBJECT-TYPE,
 snmpModules
 FROM SNMPv2-SMI

 RowStatus,
 StorageType
 FROM SNMPv2-TC

 SnmpEngineID,
 SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB

 SnmpTagValue
 FROM SNMP-TARGET-MIB

 MODULE-COMPLIANCE,
 OBJECT-GROUP
 FROM SNMPv2-CONF;

 snmpProxyMIB MODULE-IDENTITY
 LAST-UPDATED "200210140000Z"
 ORGANIZATION "IETF SNMPv3 Working Group"
 CONTACT-INFO
 "WG-email: snmpv3@lists.tislabs.com
 Subscribe: majordomo@lists.tislabs.com
 In message body: subscribe snmpv3

 Co-Chair: Russ Mundy
 Network Associates Laboratories
 Postal: 15204 Omega Drive, Suite 300
 Rockville, MD 20850-4601
 USA
 EMail: mundy@tislabs.com
 Phone: +1 301-947-7107

Levi, et. al. Standards Track [Page 57]

RFC 3413 SNMP Applications December 2002

 Co-Chair: David Harrington
 Enterasys Networks
 Postal: 35 Industrial Way
 P. O. Box 5004
 Rochester, New Hampshire 03866-5005
 USA
 EMail: dbh@enterasys.com
 Phone: +1 603-337-2614

 Co-editor: David B. Levi
 Nortel Networks
 Postal: 3505 Kesterwood Drive
 Knoxville, Tennessee 37918
 EMail: dlevi@nortelnetworks.com
 Phone: +1 865 686 0432

 Co-editor: Paul Meyer
 Secure Computing Corporation
 Postal: 2675 Long Lake Road
 Roseville, Minnesota 55113
 EMail: paul_meyer@securecomputing.com
 Phone: +1 651 628 1592

 Co-editor: Bob Stewart
 Retired"
 DESCRIPTION
 "This MIB module defines MIB objects which provide
 mechanisms to remotely configure the parameters
 used by a proxy forwarding application.

 Copyright (C) The Internet Society (2002). This
 version of this MIB module is part of RFC 3413;
 see the RFC itself for full legal notices.
 "
 REVISION "200210140000Z" -- 14 October 2002
 DESCRIPTION "Clarifications, published as
 RFC 3413."
 REVISION "199808040000Z" -- 4 August 1998
 DESCRIPTION "Clarifications, published as
 RFC 2573."
 REVISION "199707140000Z" -- 14 July 1997
 DESCRIPTION "The initial revision, published as RFC2273."
 ::= { snmpModules 14 }

 snmpProxyObjects OBJECT IDENTIFIER ::= { snmpProxyMIB 1 }
 snmpProxyConformance OBJECT IDENTIFIER ::= { snmpProxyMIB 3 }

 --

Levi, et. al. Standards Track [Page 58]

RFC 3413 SNMP Applications December 2002

 --
 -- The snmpProxyObjects group
 --
 --

 snmpProxyTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SnmpProxyEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The table of translation parameters used by proxy forwarder
 applications for forwarding SNMP messages."
 ::= { snmpProxyObjects 2 }

 snmpProxyEntry OBJECT-TYPE
 SYNTAX SnmpProxyEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A set of translation parameters used by a proxy forwarder
 application for forwarding SNMP messages.

 Entries in the snmpProxyTable are created and deleted
 using the snmpProxyRowStatus object."
 INDEX { IMPLIED snmpProxyName }
 ::= { snmpProxyTable 1 }

 SnmpProxyEntry ::= SEQUENCE {
 snmpProxyName SnmpAdminString,
 snmpProxyType INTEGER,
 snmpProxyContextEngineID SnmpEngineID,
 snmpProxyContextName SnmpAdminString,
 snmpProxyTargetParamsIn SnmpAdminString,
 snmpProxySingleTargetOut SnmpAdminString,
 snmpProxyMultipleTargetOut SnmpTagValue,
 snmpProxyStorageType StorageType,
 snmpProxyRowStatus RowStatus
 }

 snmpProxyName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(1..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The locally arbitrary, but unique identifier associated
 with this snmpProxyEntry."
 ::= { snmpProxyEntry 1 }

Levi, et. al. Standards Track [Page 59]

RFC 3413 SNMP Applications December 2002

 snmpProxyType OBJECT-TYPE
 SYNTAX INTEGER {
 read(1),
 write(2),
 trap(3),
 inform(4)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The type of message that may be forwarded using
 the translation parameters defined by this entry."
 ::= { snmpProxyEntry 2 }

 snmpProxyContextEngineID OBJECT-TYPE
 SYNTAX SnmpEngineID
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The contextEngineID contained in messages that
 may be forwarded using the translation parameters
 defined by this entry."
 ::= { snmpProxyEntry 3 }

 snmpProxyContextName OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The contextName contained in messages that may be
 forwarded using the translation parameters defined
 by this entry.

 This object is optional, and if not supported, the
 contextName contained in a message is ignored when
 selecting an entry in the snmpProxyTable."
 ::= { snmpProxyEntry 4 }

 snmpProxyTargetParamsIn OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object selects an entry in the snmpTargetParamsTable.
 The selected entry is used to determine which row of the
 snmpProxyTable to use for forwarding received messages."
 ::= { snmpProxyEntry 5 }

Levi, et. al. Standards Track [Page 60]

RFC 3413 SNMP Applications December 2002

 snmpProxySingleTargetOut OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object selects a management target defined in the
 snmpTargetAddrTable (in the SNMP-TARGET-MIB). The
 selected target is defined by an entry in the
 snmpTargetAddrTable whose index value (snmpTargetAddrName)
 is equal to this object.

 This object is only used when selection of a single
 target is required (i.e. when forwarding an incoming
 read or write request)."
 ::= { snmpProxyEntry 6 }

 snmpProxyMultipleTargetOut OBJECT-TYPE
 SYNTAX SnmpTagValue
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object selects a set of management targets defined
 in the snmpTargetAddrTable (in the SNMP-TARGET-MIB).

 This object is only used when selection of multiple
 targets is required (i.e. when forwarding an incoming
 notification)."
 ::= { snmpProxyEntry 7 }

 snmpProxyStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type of this conceptual row.
 Conceptual rows having the value ’permanent’ need not
 allow write-access to any columnar objects in the row."
 DEFVAL { nonVolatile }
 ::= { snmpProxyEntry 8 }

 snmpProxyRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this conceptual row.

 To create a row in this table, a manager must

Levi, et. al. Standards Track [Page 61]

RFC 3413 SNMP Applications December 2002

 set this object to either createAndGo(4) or
 createAndWait(5).

 The following objects may not be modified while the
 value of this object is active(1):
 - snmpProxyType
 - snmpProxyContextEngineID
 - snmpProxyContextName
 - snmpProxyTargetParamsIn
 - snmpProxySingleTargetOut
 - snmpProxyMultipleTargetOut"
 ::= { snmpProxyEntry 9 }

 --
 --
 -- Conformance information
 --
 --

 snmpProxyCompliances OBJECT IDENTIFIER ::=
 { snmpProxyConformance 1 }
 snmpProxyGroups OBJECT IDENTIFIER ::=
 { snmpProxyConformance 2 }

 --
 --
 -- Compliance statements
 --
 --

 snmpProxyCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for SNMP entities which include
 a proxy forwarding application."
 MODULE SNMP-TARGET-MIB
 MANDATORY-GROUPS { snmpTargetBasicGroup,
 snmpTargetResponseGroup }
 MODULE -- This Module
 MANDATORY-GROUPS { snmpProxyGroup }
 ::= { snmpProxyCompliances 1 }

 snmpProxyGroup OBJECT-GROUP
 OBJECTS {
 snmpProxyType,
 snmpProxyContextEngineID,
 snmpProxyContextName,
 snmpProxyTargetParamsIn,

Levi, et. al. Standards Track [Page 62]

RFC 3413 SNMP Applications December 2002

 snmpProxySingleTargetOut,
 snmpProxyMultipleTargetOut,
 snmpProxyStorageType,
 snmpProxyRowStatus
 }
 STATUS current
 DESCRIPTION
 "A collection of objects providing remote configuration of
 management target translation parameters for use by
 proxy forwarder applications."
 ::= { snmpProxyGroups 3 }

 END

5. Identification of Management Targets in Notification Originators

 This section describes the mechanisms used by a notification
 originator application when using the MIB module described in this
 document to determine the set of management targets to be used when
 generating a notification.

 A notification originator uses all active entries in the
 snmpNotifyTable to find the management targets to be used for
 generating notifications. Each active entry in this table selects
 zero or more entries in the snmpTargetAddrTable. When a notification
 is generated, it is sent to all of the targets specified by the
 selected snmpTargetAddrTable entries (subject to the application of
 access control and notification filtering).

 Any entry in the snmpTargetAddrTable whose snmpTargetAddrTagList
 object contains a tag value which is equal to a value of
 snmpNotifyTag is selected by the snmpNotifyEntry which contains that
 instance of snmpNotifyTag. Note that a particular
 snmpTargetAddrEntry may be selected by multiple entries in the
 snmpNotifyTable, resulting in multiple notifications being generated
 using that snmpTargetAddrEntry (this allows, for example, both traps
 and informs to be sent to the same target).

 Each snmpTargetAddrEntry contains a pointer to the
 snmpTargetParamsTable (snmpTargetAddrParams). This pointer selects a
 set of SNMP parameters to be used for generating notifications. If
 the selected entry in the snmpTargetParamsTable does not exist, the
 management target is not used to generate notifications.

 The decision as to whether a notification should contain an
 Unconfirmed-Class or a Confirmed-Class PDU is determined by the value
 of the snmpNotifyType object. If the value of this object is
 trap(1), the notification should contain an Unconfirmed-Class PDU.

Levi, et. al. Standards Track [Page 63]

RFC 3413 SNMP Applications December 2002

 If the value of this object is inform(2), then the notification
 should contain a Confirmed-Class PDU, and the timeout time and number
 of retries for the notification are the value of
 snmpTargetAddrTimeout and snmpTargetAddrRetryCount. Note that the
 exception to these rules is when the snmpTargetParamsMPModel object
 indicates an SNMP version which supports a different PDU version. In
 this case, the notification may be sent using a different PDU type
 ([RFC2576] defines the PDU type in the case where the outgoing SNMP
 version is SNMPv1).

6. Notification Filtering

 This section describes the mechanisms used by a notification
 originator application when using the MIB module described in this
 document to filter generation of notifications.

 A notification originator uses the snmpNotifyFilterTable to filter
 notifications. A notification filter profile may be associated with
 a particular entry in the snmpTargetParamsTable. The associated
 filter profile is identified by an entry in the
 snmpNotifyFilterProfileTable whose index is equal to the index of the
 entry in the snmpTargetParamsTable. If no such entry exists in the
 snmpNotifyFilterProfileTable, no filtering is performed for that
 management target.

 If such an entry does exist, the value of snmpNotifyFilterProfileName
 of the entry is compared with the corresponding portion of the index
 of all active entries in the snmpNotifyFilterTable. All such entries
 for which this comparison results in an exact match are used for
 filtering a notification generated using the associated
 snmpTargetParamsEntry. If no such entries exist, no filtering is
 performed, and a notification may be sent to the management target.

 Otherwise, if matching entries do exist, a notification may be sent
 if the NOTIFICATION-TYPE OBJECT IDENTIFIER of the notification (this
 is the value of the element of the variable bindings whose name is
 snmpTrapOID.0, i.e., the second variable binding) is specifically
 included, and none of the object instances to be included in the
 variable-bindings of the notification are specifically excluded by
 the matching entries.

 Each set of snmpNotifyFilterTable entries is divided into two
 collections of filter subtrees: the included filter subtrees, and
 the excluded filter subtrees. The snmpNotifyFilterType object
 defines the collection to which each matching entry belongs.

 To determine whether a particular notification name or object
 instance is excluded by the set of matching entries, compare the

Levi, et. al. Standards Track [Page 64]

RFC 3413 SNMP Applications December 2002

 notification name’s or object instance’s OBJECT IDENTIFIER with each
 of the matching entries. For a notification name, if none match,
 then the notification name is considered excluded, and the
 notification should not be sent to this management target. For an
 object instance, if none match, the object instance is considered
 included, and the notification may be sent to this management target.
 If one or more match, then the notification name or object instance
 is included or excluded, according to the value of
 snmpNotifyFilterType in the entry whose value of
 snmpNotifyFilterSubtree has the most sub-identifiers. If multiple
 entries match and have the same number of sub-identifiers, then the
 value of snmpNotifyFilterType, in the entry among those which match,
 and whose instance is lexicographically the largest, determines the
 inclusion or exclusion.

 A notification name or object instance’s OBJECT IDENTIFIER X matches
 an entry in the snmpNotifyFilterTable when the number of sub-
 identifiers in X is at least as many as in the value of
 snmpNotifyFilterSubtree for the entry, and each sub-identifier in the
 value of snmpNotifyFilterSubtree matches its corresponding sub-
 identifier in X. Two sub-identifiers match either if the
 corresponding bit of snmpNotifyFilterMask is zero (the ’wild card’
 value), or if the two sub-identifiers are equal.

7. Management Target Translation in Proxy Forwarder Applications

 This section describes the mechanisms used by a proxy forwarder
 application when using the MIB module described in this document to
 translate incoming management target information into outgoing
 management target information for the purpose of forwarding messages.
 There are actually two mechanisms a proxy forwarder may use, one for
 forwarding request messages, and one for forwarding notification
 messages.

7.1. Management Target Translation for Request Forwarding

 When forwarding request messages, the proxy forwarder will select a
 single entry in the snmpProxyTable. To select this entry, it will
 perform the following comparisons:

 - The snmpProxyType must be read(1) if the request is a Read-Class
 PDU. The snmpProxyType must be write(2) if the request is a
 Write-Class PDU.

 - The contextEngineID must equal the snmpProxyContextEngineID object.

 - If the snmpProxyContextName object is supported, it must equal the
 contextName.

Levi, et. al. Standards Track [Page 65]

RFC 3413 SNMP Applications December 2002

 - The snmpProxyTargetParamsIn object identifies an entry in the
 snmpTargetParamsTable. The messageProcessingModel, security model,
 securityName, and securityLevel must match the values of
 snmpTargetParamsMPModel, snmpTargetParamsSecurityModel,
 snmpTargetParamsSecurityName, and snmpTargetParamsSecurityLevel of
 the identified entry in the snmpTargetParamsTable.

 There may be multiple entries in the snmpProxyTable for which these
 comparisons succeed. The entry whose snmpProxyName has the
 lexicographically smallest value and for which the comparisons
 succeed will be selected by the proxy forwarder.

 The outgoing management target information is identified by the value
 of the snmpProxySingleTargetOut object of the selected entry. This
 object identifies an entry in the snmpTargetAddrTable. The
 identified entry in the snmpTargetAddrTable also contains a reference
 to the snmpTargetParamsTable (snmpTargetAddrParams). If either the
 identified entry in the snmpTargetAddrTable does not exist, or the
 identified entry in the snmpTargetParamsTable does not exist, then
 this snmpProxyEntry does not identify valid forwarding information,
 and the proxy forwarder should attempt to identify another row.

 If there is no entry in the snmpProxyTable for which all of the
 conditions above may be met, then there is no appropriate forwarding
 information, and the proxy forwarder should take appropriate actions.

 Otherwise, The snmpTargetAddrTDomain, snmpTargetAddrTAddress,
 snmpTargetAddrTimeout, and snmpTargetRetryCount of the identified
 snmpTargetAddrEntry, and the snmpTargetParamsMPModel,
 snmpTargetParamsSecurityModel, snmpTargetParamsSecurityName, and
 snmpTargetParamsSecurityLevel of the identified snmpTargetParamsEntry
 are used as the destination management target.

7.2. Management Target Translation for Notification Forwarding

 When forwarding notification messages, the proxy forwarder will
 select multiple entries in the snmpProxyTable. To select these
 entries, it will perform the following comparisons:

 - The snmpProxyType must be trap(3) if the notification is an
 Unconfirmed-Class PDU. The snmpProxyType must be inform(4) if the
 request is a Confirmed-Class PDU.

 - The contextEngineID must equal the snmpProxyContextEngineID object.

 - If the snmpProxyContextName object is supported, it must equal the
 contextName.

Levi, et. al. Standards Track [Page 66]

RFC 3413 SNMP Applications December 2002

 - The snmpProxyTargetParamsIn object identifies an entry in the
 snmpTargetParamsTable. The messageProcessingModel, security model,
 securityName, and securityLevel must match the values of
 snmpTargetParamsMPModel, snmpTargetParamsSecurityModel,
 snmpTargetParamsSecurityName, and snmpTargetParamsSecurityLevel of
 the identified entry in the snmpTargetParamsTable.

 All entries for which these conditions are met are selected. The
 snmpProxyMultipleTargetOut object of each such entry is used to
 select a set of entries in the snmpTargetAddrTable. Any
 snmpTargetAddrEntry whose snmpTargetAddrTagList object contains a tag
 value equal to the value of snmpProxyMultipleTargetOut, and whose
 snmpTargetAddrParams object references an existing entry in the
 snmpTargetParamsTable, is selected as a destination for the forwarded
 notification.

8. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

9. Acknowledgments

 This document is the result of the efforts of the SNMPv3 Working
 Group. Some special thanks are in order to the following SNMPv3 WG
 members:

 Harald Tveit Alvestrand (Maxware)
 Dave Battle (SNMP Research, Inc.)
 Alan Beard (Disney Worldwide Services)
 Paul Berrevoets (SWI Systemware/Halcyon Inc.)

Levi, et. al. Standards Track [Page 67]

RFC 3413 SNMP Applications December 2002

 Martin Bjorklund (Ericsson)
 Uri Blumenthal (IBM T.J. Watson Research Center)
 Jeff Case (SNMP Research, Inc.)
 John Curran (BBN)
 Mike Daniele (Compaq Computer Corporation)
 T. Max Devlin (Eltrax Systems)
 John Flick (Hewlett Packard)
 Rob Frye (MCI)
 Wes Hardaker (U.C.Davis, Information Technology - D.C.A.S.)
 David Harrington (Enterasys Networks)
 Lauren Heintz (BMC Software, Inc.)
 N.C. Hien (IBM T.J. Watson Research Center)
 Michael Kirkham (InterWorking Labs, Inc.)
 Dave Levi (Nortel Networks)
 Louis A Mamakos (UUNET Technologies Inc.)
 Joe Marzot (Nortel Networks)
 Paul Meyer (Secure Computing Corporation)
 Keith McCloghrie (Cisco Systems)
 Bob Moore (IBM)
 Russ Mundy (TIS Labs at Network Associates)
 Bob Natale (ACE*COMM Corporation)
 Mike O’Dell (UUNET Technologies Inc.)
 Dave Perkins (DeskTalk)
 Peter Polkinghorne (Brunel University)
 Randy Presuhn (BMC Software, Inc.)
 David Reeder (TIS Labs at Network Associates)
 David Reid (SNMP Research, Inc.)
 Aleksey Romanov (Quality Quorum)
 Shawn Routhier (Epilogue)
 Juergen Schoenwaelder (TU Braunschweig)
 Bob Stewart (Cisco Systems)
 Mike Thatcher (Independent Consultant)
 Bert Wijnen (Lucent Technologies)

 The document is based on recommendations of the IETF Security and
 Administrative Framework Evolution for SNMP Advisory Team. Members of
 that Advisory Team were:

 David Harrington (Enterasys Networks)
 Jeff Johnson (Cisco Systems)
 David Levi (Nortel Networks)
 John Linn (Openvision)
 Russ Mundy (Trusted Information Systems) chair
 Shawn Routhier (Epilogue)
 Glenn Waters (Nortel)
 Bert Wijnen (Lucent Technologies)

Levi, et. al. Standards Track [Page 68]

RFC 3413 SNMP Applications December 2002

 As recommended by the Advisory Team and the SNMPv3 Working Group
 Charter, the design incorporates as much as practical from previous
 RFCs and drafts. As a result, special thanks are due to the authors
 of previous designs known as SNMPv2u and SNMPv2*:

 Jeff Case (SNMP Research, Inc.)
 David Harrington (Enterasys Networks)
 David Levi (Nortel Networks)
 Keith McCloghrie (Cisco Systems)
 Brian O’Keefe (Hewlett Packard)
 Marshall T. Rose (Dover Beach Consulting)
 Jon Saperia (BGS Systems Inc.)
 Steve Waldbusser (International Network Services)
 Glenn W. Waters (Bell-Northern Research Ltd.)

10. Security Considerations

 The SNMP applications described in this document typically have
 direct access to MIB instrumentation. Thus, it is very important
 that these applications be strict in their application of access
 control as described in this document.

 In addition, there may be some types of notification generator
 applications which, rather than accessing MIB instrumentation using
 access control, will obtain MIB information through other means (such
 as from a command line). The implementors and users of such
 applications must be responsible for not divulging MIB information
 that normally would be inaccessible due to access control.

 Finally, the MIBs described in this document contain potentially
 sensitive information. A security administrator may wish to limit
 access to these MIBs.

11. References

11.1 Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Structure of Management
 Information Version 2 (SMIv2)", STD 58, RFC 2578, April
 1999.

 [RFC2579] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Textual Conventions for
 SMIv2", STD 58, RFC 2579, April 1999.

Levi, et. al. Standards Track [Page 69]

RFC 3413 SNMP Applications December 2002

 [RFC2580] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Conformance Statements for
 SMIv2", STD 58, RFC 2580, April 1999.

 [RFC3411] Harrington, D., Presuhn, R. and B. Wijnen, "An
 Architecture for describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

 [RFC3412] Case, J., Harrington, D., Presuhn, R. and B. Wijnen,
 "Message Processing and Dispatching for the Simple
 Network Management Protocol (SNMP)", STD 62, RFC 3412,
 December 2002.

 [RFC3415] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based
 Access Control Model (VACM) for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3415, December
 2002.

 [RFC3416] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Protocol Operations for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3416, December
 2002.

 [RFC3418] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Management Information Base (MIB) for the
 Simple Network Management Protocol (SNMP)", STD 62, RFC
 3418, December 2002.

11.2 Informative References

 [RFC1157] Case, J., Fedor, M., Schoffstall, M. and J. Davin,
 "Simple Network Management Protocol", STD 15, RFC 1157,
 May 1990.

 [RFC1213] McCloghrie, K. and M. Rose, Editors, "Management
 Information Base for Network Management of TCP/IP-based
 internets: MIB-II", STD 17, RFC 1213, March 1991.

 [RFC2576] Frye, R.,Levi, D., Routhier, S. and B. Wijnen,
 "Coexistence between Version 1, Version 2, and Version 3
 of the Internet-standard Network Management Framework",
 RFC 2576, February 1999.

Levi, et. al. Standards Track [Page 70]

RFC 3413 SNMP Applications December 2002

Appendix A - Trap Configuration Example

 This section describes an example configuration for a Notification
 Generator application which implements the snmpNotifyBasicCompliance
 level. The example configuration specifies that the Notification
 Generator should send notifications to 3 separate managers, using
 authentication and no privacy for the first 2 managers, and using
 both authentication and privacy for the third manager.

 The configuration consists of three rows in the snmpTargetAddrTable,
 two rows in the snmpTargetTable, and two rows in the snmpNotifyTable.

 * snmpTargetAddrName = "addr1"
 snmpTargetAddrTDomain = snmpUDPDomain
 snmpTargetAddrTAddress = 128.1.2.3/162
 snmpTargetAddrTagList = "group1"
 snmpTargetAddrParams = "AuthNoPriv-joe"
 snmpTargetAddrStorageType = readOnly(5)
 snmpTargetAddrRowStatus = active(1)

 * snmpTargetAddrName = "addr2"
 snmpTargetAddrTDomain = snmpUDPDomain
 snmpTargetAddrTAddress = 128.2.4.6/162
 snmpTargetAddrTagList = "group1"
 snmpTargetAddrParams = "AuthNoPriv-joe"
 snmpTargetAddrStorageType = readOnly(5)
 snmpTargetAddrRowStatus = active(1)

 * snmpTargetAddrName = "addr3"
 snmpTargetAddrTDomain = snmpUDPDomain
 snmpTargetAddrTAddress = 128.1.5.9/162
 snmpTargetAddrTagList = "group2"
 snmpTargetAddrParams = "AuthPriv-bob"
 snmpTargetAddrStorageType = readOnly(5)
 snmpTargetAddrRowStatus = active(1)

 * snmpTargetParamsName = "AuthNoPriv-joe"
 snmpTargetParamsMPModel = 3
 snmpTargetParamsSecurityModel = 3 (USM)
 snmpTargetParamsSecurityName = "joe"
 snmpTargetParamsSecurityLevel = authNoPriv(2)
 snmpTargetParamsStorageType = readOnly(5)
 snmpTargetParamsRowStatus = active(1)

Levi, et. al. Standards Track [Page 71]

RFC 3413 SNMP Applications December 2002

 * snmpTargetParamsName = "AuthPriv-bob"
 snmpTargetParamsMPModel = 3
 snmpTargetParamsSecurityModel = 3 (USM)
 snmpTargetParamsSecurityName = "bob"
 snmpTargetParamsSecurityLevel = authPriv(3)
 snmpTargetParamsStorageType = readOnly(5)
 snmpTargetParamsRowStatus = active(1)

 * snmpNotifyName = "group1"
 snmpNotifyTag = "group1"
 snmpNotifyType = trap(1)
 snmpNotifyStorageType = readOnly(5)
 snmpNotifyRowStatus = active(1)

 * snmpNotifyName = "group2"
 snmpNotifyTag = "group2"
 snmpNotifyType = trap(1)
 snmpNotifyStorageType = readOnly(5)
 snmpNotifyRowStatus = active(1)

 These entries define two groups of management targets. The first
 group contains two management targets:

 first target second target
 ------------ -------------
 messageProcessingModel SNMPv3 SNMPv3
 securityModel 3 (USM) 3 (USM)
 securityName "joe" "joe"
 securityLevel authNoPriv(2) authNoPriv(2)
 transportDomain snmpUDPDomain snmpUDPDomain
 transportAddress 128.1.2.3/162 128.2.4.6/162

 And the second group contains a single management target:

 messageProcessingModel SNMPv3
 securityLevel authPriv(3)
 securityModel 3 (USM)
 securityName "bob"
 transportDomain snmpUDPDomain
 transportAddress 128.1.5.9/162

Levi, et. al. Standards Track [Page 72]

RFC 3413 SNMP Applications December 2002

Editors’ Addresses

 David B. Levi
 Nortel Networks
 3505 Kesterwood Drive
 Knoxville, TN 37918
 U.S.A.

 Phone: +1 865 686 0432
 EMail: dlevi@nortelnetworks.com

 Paul Meyer
 Secure Computing Corporation
 2675 Long Lake Road
 Roseville, MN 55113
 U.S.A.

 Phone: +1 651 628 1592
 EMail: paul_meyer@securecomputing.com

 Bob Stewart
 Retired

Levi, et. al. Standards Track [Page 73]

RFC 3413 SNMP Applications December 2002

Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Levi, et. al. Standards Track [Page 74]

==

Network Working Group U. Blumenthal
Request for Comments: 3414 B. Wijnen
STD: 62 Lucent Technologies
Obsoletes: 2574 December 2002
Category: Standards Track

 User-based Security Model (USM) for version 3 of the
 Simple Network Management Protocol (SNMPv3)

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This document describes the User-based Security Model (USM) for
 Simple Network Management Protocol (SNMP) version 3 for use in the
 SNMP architecture. It defines the Elements of Procedure for
 providing SNMP message level security. This document also includes a
 Management Information Base (MIB) for remotely monitoring/managing
 the configuration parameters for this Security Model. This document
 obsoletes RFC 2574.

Table of Contents

 1. Introduction.. 4
 1.1. Threats... 4
 1.2. Goals and Constraints................................. 6
 1.3. Security Services..................................... 6
 1.4. Module Organization................................... 7
 1.4.1. Timeliness Module..................................... 8
 1.4.2. Authentication Protocol............................... 8
 1.4.3. Privacy Protocol...................................... 8
 1.5. Protection against Message Replay, Delay
 and Redirection....................................... 9
 1.5.1. Authoritative SNMP engine............................. 9
 1.5.2. Mechanisms.. 9
 1.6. Abstract Service Interfaces........................... 11

Blumenthal & Wijnen Standards Track [Page 1]

RFC 3414 USM for SNMPv3 December 2002

 1.6.1. User-based Security Model Primitives
 for Authentication.................................... 11
 1.6.2. User-based Security Model Primitives
 for Privacy... 12
 2. Elements of the Model................................. 12
 2.1. User-based Security Model Users....................... 12
 2.2. Replay Protection..................................... 13
 2.2.1. msgAuthoritativeEngineID.............................. 14
 2.2.2. msgAuthoritativeEngineBoots and
 msgAuthoritativeEngineTime............................ 14
 2.2.3. Time Window... 15
 2.3. Time Synchronization.................................. 15
 2.4. SNMP Messages Using this Security Model............... 16
 2.5. Services provided by the User-based Security Model.... 17
 2.5.1. Services for Generating an Outgoing SNMP Message...... 17
 2.5.2. Services for Processing an Incoming SNMP Message...... 20
 2.6. Key Localization Algorithm............................ 22
 3. Elements of Procedure................................. 22
 3.1. Generating an Outgoing SNMP Message................... 22
 3.2. Processing an Incoming SNMP Message................... 26
 4. Discovery... 31
 5. Definitions... 32
 6. HMAC-MD5-96 Authentication Protocol................... 51
 6.1. Mechanisms.. 51
 6.1.1. Digest Authentication Mechanism....................... 51
 6.2. Elements of the Digest Authentication Protocol........ 52
 6.2.1. Users... 52
 6.2.2. msgAuthoritativeEngineID.............................. 53
 6.2.3. SNMP Messages Using this Authentication Protocol...... 53
 6.2.4. Services provided by the HMAC-MD5-96
 Authentication Module................................. 53
 6.2.4.1. Services for Generating an Outgoing SNMP Message...... 53
 6.2.4.2. Services for Processing an Incoming SNMP Message...... 54
 6.3. Elements of Procedure................................. 55
 6.3.1. Processing an Outgoing Message........................ 55
 6.3.2. Processing an Incoming Message........................ 56
 7. HMAC-SHA-96 Authentication Protocol................... 57
 7.1. Mechanisms.. 57
 7.1.1. Digest Authentication Mechanism....................... 57
 7.2. Elements of the HMAC-SHA-96 Authentication Protocol... 58
 7.2.1. Users... 58
 7.2.2. msgAuthoritativeEngineID.............................. 58
 7.2.3. SNMP Messages Using this Authentication Protocol...... 59
 7.2.4. Services provided by the HMAC-SHA-96
 Authentication Module................................. 59
 7.2.4.1. Services for Generating an Outgoing SNMP Message...... 59
 7.2.4.2. Services for Processing an Incoming SNMP Message...... 60
 7.3. Elements of Procedure................................. 61

Blumenthal & Wijnen Standards Track [Page 2]

RFC 3414 USM for SNMPv3 December 2002

 7.3.1. Processing an Outgoing Message........................ 61
 7.3.2. Processing an Incoming Message........................ 61
 8. CBC-DES Symmetric Encryption Protocol................. 63
 8.1. Mechanisms.. 63
 8.1.1. Symmetric Encryption Protocol......................... 63
 8.1.1.1. DES key and Initialization Vector..................... 64
 8.1.1.2. Data Encryption....................................... 65
 8.1.1.3. Data Decryption....................................... 65
 8.2. Elements of the DES Privacy Protocol.................. 65
 8.2.1. Users... 65
 8.2.2. msgAuthoritativeEngineID.............................. 66
 8.2.3. SNMP Messages Using this Privacy Protocol............. 66
 8.2.4. Services provided by the DES Privacy Module........... 66
 8.2.4.1. Services for Encrypting Outgoing Data................. 66
 8.2.4.2. Services for Decrypting Incoming Data................. 67
 8.3. Elements of Procedure................................. 68
 8.3.1. Processing an Outgoing Message........................ 68
 8.3.2. Processing an Incoming Message........................ 69
 9. Intellectual Property................................. 69
 10. Acknowledgements...................................... 70
 11. Security Considerations............................... 71
 11.1. Recommended Practices................................. 71
 11.2. Defining Users.. 73
 11.3. Conformance... 74
 11.4. Use of Reports.. 75
 11.5. Access to the SNMP-USER-BASED-SM-MIB.................. 75
 12. References.. 75
 A.1. SNMP engine Installation Parameters................... 78
 A.2. Password to Key Algorithm............................. 80
 A.2.1. Password to Key Sample Code for MD5................... 81
 A.2.2. Password to Key Sample Code for SHA................... 82
 A.3. Password to Key Sample Results........................ 83
 A.3.1. Password to Key Sample Results using MD5.............. 83
 A.3.2. Password to Key Sample Results using SHA.............. 83
 A.4. Sample encoding of msgSecurityParameters.............. 83
 A.5. Sample keyChange Results.............................. 84
 A.5.1. Sample keyChange Results using MD5.................... 84
 A.5.2. Sample keyChange Results using SHA.................... 85
 B. Change Log.. 86
 Editors’ Addresses.................................... 87
 Full Copyright Statement.............................. 88

Blumenthal & Wijnen Standards Track [Page 3]

RFC 3414 USM for SNMPv3 December 2002

1. Introduction

 The Architecture for describing Internet Management Frameworks
 [RFC3411] describes that an SNMP engine is composed of:

 1) a Dispatcher,
 2) a Message Processing Subsystem,
 3) a Security Subsystem, and
 4) an Access Control Subsystem.

 Applications make use of the services of these subsystems.

 It is important to understand the SNMP architecture and the
 terminology of the architecture to understand where the Security
 Model described in this document fits into the architecture and
 interacts with other subsystems within the architecture. The reader
 is expected to have read and understood the description of the SNMP
 architecture, as defined in [RFC3411].

 This memo describes the User-based Security Model as it is used
 within the SNMP Architecture. The main idea is that we use the
 traditional concept of a user (identified by a userName) with which
 to associate security information.

 This memo describes the use of HMAC-MD5-96 and HMAC-SHA-96 as the
 authentication protocols and the use of CBC-DES as the privacy
 protocol. The User-based Security Model however allows for other
 such protocols to be used instead of or concurrent with these
 protocols. Therefore, the description of HMAC-MD5-96, HMAC-SHA-96
 and CBC-DES are in separate sections to reflect their self-contained
 nature and to indicate that they can be replaced or supplemented in
 the future.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.1. Threats

 Several of the classical threats to network protocols are applicable
 to the network management problem and therefore would be applicable
 to any SNMP Security Model. Other threats are not applicable to the
 network management problem. This section discusses principal
 threats, secondary threats, and threats which are of lesser
 importance.

 The principal threats against which this SNMP Security Model should
 provide protection are:

Blumenthal & Wijnen Standards Track [Page 4]

RFC 3414 USM for SNMPv3 December 2002

 - Modification of Information The modification threat is the danger
 that some unauthorized entity may alter in-transit SNMP messages
 generated on behalf of an authorized principal in such a way as to
 effect unauthorized management operations, including falsifying the
 value of an object.

 - Masquerade The masquerade threat is the danger that management
 operations not authorized for some user may be attempted by
 assuming the identity of another user that has the appropriate
 authorizations.

 Two secondary threats are also identified. The Security Model
 defined in this memo provides limited protection against:

 - Disclosure The disclosure threat is the danger of eavesdropping on
 the exchanges between managed agents and a management station.
 Protecting against this threat may be required as a matter of local
 policy.

 - Message Stream Modification The SNMP protocol is typically based
 upon a connection-less transport service which may operate over any
 sub-network service. The re-ordering, delay or replay of messages
 can and does occur through the natural operation of many such sub-
 network services. The message stream modification threat is the
 danger that messages may be maliciously re-ordered, delayed or
 replayed to an extent which is greater than can occur through the
 natural operation of a sub-network service, in order to effect
 unauthorized management operations.

 There are at least two threats that an SNMP Security Model need not
 protect against. The security protocols defined in this memo do not
 provide protection against:

 - Denial of Service This SNMP Security Model does not attempt to
 address the broad range of attacks by which service on behalf of
 authorized users is denied. Indeed, such denial-of-service attacks
 are in many cases indistinguishable from the type of network
 failures with which any viable network management protocol must
 cope as a matter of course.

 - Traffic Analysis This SNMP Security Model does not attempt to
 address traffic analysis attacks. Indeed, many traffic patterns
 are predictable - devices may be managed on a regular basis by a
 relatively small number of management applications - and therefore
 there is no significant advantage afforded by protecting against
 traffic analysis.

Blumenthal & Wijnen Standards Track [Page 5]

RFC 3414 USM for SNMPv3 December 2002

1.2. Goals and Constraints

 Based on the foregoing account of threats in the SNMP network
 management environment, the goals of this SNMP Security Model are as
 follows.

 1) Provide for verification that each received SNMP message has not
 been modified during its transmission through the network.

 2) Provide for verification of the identity of the user on whose
 behalf a received SNMP message claims to have been generated.

 3) Provide for detection of received SNMP messages, which request or
 contain management information, whose time of generation was not
 recent.

 4) Provide, when necessary, that the contents of each received SNMP
 message are protected from disclosure.

 In addition to the principal goal of supporting secure network
 management, the design of this SNMP Security Model is also influenced
 by the following constraints:

 1) When the requirements of effective management in times of network
 stress are inconsistent with those of security, the design of USM
 has given preference to the former.

 2) Neither the security protocol nor its underlying security
 mechanisms should depend upon the ready availability of other
 network services (e.g., Network Time Protocol (NTP) or key
 management protocols).

 3) A security mechanism should entail no changes to the basic SNMP
 network management philosophy.

1.3. Security Services

 The security services necessary to support the goals of this SNMP
 Security Model are as follows:

 - Data Integrity is the provision of the property that data has not
 been altered or destroyed in an unauthorized manner, nor have data
 sequences been altered to an extent greater than can occur non-
 maliciously.

 - Data Origin Authentication is the provision of the property that
 the claimed identity of the user on whose behalf received data was
 originated is corroborated.

Blumenthal & Wijnen Standards Track [Page 6]

RFC 3414 USM for SNMPv3 December 2002

 - Data Confidentiality is the provision of the property that
 information is not made available or disclosed to unauthorized
 individuals, entities, or processes.

 - Message timeliness and limited replay protection is the provision
 of the property that a message whose generation time is outside of
 a specified time window is not accepted. Note that message
 reordering is not dealt with and can occur in normal conditions
 too.

 For the protocols specified in this memo, it is not possible to
 assure the specific originator of a received SNMP message; rather, it
 is the user on whose behalf the message was originated that is
 authenticated.

 For these protocols, it not possible to obtain data integrity without
 data origin authentication, nor is it possible to obtain data origin
 authentication without data integrity. Further, there is no
 provision for data confidentiality without both data integrity and
 data origin authentication.

 The security protocols used in this memo are considered acceptably
 secure at the time of writing. However, the procedures allow for new
 authentication and privacy methods to be specified at a future time
 if the need arises.

1.4. Module Organization

 The security protocols defined in this memo are split in three
 different modules and each has its specific responsibilities such
 that together they realize the goals and security services described
 above:

 - The authentication module MUST provide for:

 - Data Integrity,

 - Data Origin Authentication,

 - The timeliness module MUST provide for:

 - Protection against message delay or replay (to an extent greater
 than can occur through normal operation).

 - The privacy module MUST provide for

 - Protection against disclosure of the message payload.

Blumenthal & Wijnen Standards Track [Page 7]

RFC 3414 USM for SNMPv3 December 2002

 The timeliness module is fixed for the User-based Security Model
 while there is provision for multiple authentication and/or privacy
 modules, each of which implements a specific authentication or
 privacy protocol respectively.

1.4.1. Timeliness Module

 Section 3 (Elements of Procedure) uses the timeliness values in an
 SNMP message to do timeliness checking. The timeliness check is only
 performed if authentication is applied to the message. Since the
 complete message is checked for integrity, we can assume that the
 timeliness values in a message that passes the authentication module
 are trustworthy.

1.4.2. Authentication Protocol

 Section 6 describes the HMAC-MD5-96 authentication protocol which is
 the first authentication protocol that MUST be supported with the
 User-based Security Model. Section 7 describes the HMAC-SHA-96
 authentication protocol which is another authentication protocol that
 SHOULD be supported with the User-based Security Model. In the
 future additional or replacement authentication protocols may be
 defined as new needs arise.

 The User-based Security Model prescribes that, if authentication is
 used, then the complete message is checked for integrity in the
 authentication module.

 For a message to be authenticated, it needs to pass authentication
 check by the authentication module and the timeliness check which is
 a fixed part of this User-based Security model.

1.4.3. Privacy Protocol

 Section 8 describes the CBC-DES Symmetric Encryption Protocol which
 is the first privacy protocol to be used with the User-based Security
 Model. In the future additional or replacement privacy protocols may
 be defined as new needs arise.

 The User-based Security Model prescribes that the scopedPDU is
 protected from disclosure when a message is sent with privacy.

 The User-based Security Model also prescribes that a message needs to
 be authenticated if privacy is in use.

Blumenthal & Wijnen Standards Track [Page 8]

RFC 3414 USM for SNMPv3 December 2002

1.5. Protection against Message Replay, Delay and Redirection

1.5.1. Authoritative SNMP Engine

 In order to protect against message replay, delay and redirection,
 one of the SNMP engines involved in each communication is designated
 to be the authoritative SNMP engine. When an SNMP message contains a
 payload which expects a response (those messages that contain a
 Confirmed Class PDU [RFC3411]), then the receiver of such messages is
 authoritative. When an SNMP message contains a payload which does
 not expect a response (those messages that contain an Unconfirmed
 Class PDU [RFC3411]), then the sender of such a message is
 authoritative.

1.5.2. Mechanisms

 The following mechanisms are used:

 1) To protect against the threat of message delay or replay (to an
 extent greater than can occur through normal operation), a set of
 timeliness indicators (for the authoritative SNMP engine) are
 included in each message generated. An SNMP engine evaluates the
 timeliness indicators to determine if a received message is
 recent. An SNMP engine may evaluate the timeliness indicators to
 ensure that a received message is at least as recent as the last
 message it received from the same source. A non-authoritative
 SNMP engine uses received authentic messages to advance its notion
 of the timeliness indicators at the remote authoritative source.

 An SNMP engine MUST also use a mechanism to match incoming
 Responses to outstanding Requests and it MUST drop any Responses
 that do not match an outstanding request. For example, a msgID
 can be inserted in every message to cater for this functionality.

 These mechanisms provide for the detection of authenticated
 messages whose time of generation was not recent.

 This protection against the threat of message delay or replay does
 not imply nor provide any protection against unauthorized deletion
 or suppression of messages. Also, an SNMP engine may not be able
 to detect message reordering if all the messages involved are sent
 within the Time Window interval. Other mechanisms defined
 independently of the security protocol can also be used to detect
 the re-ordering replay, deletion, or suppression of messages
 containing Set operations (e.g., the MIB variable snmpSetSerialNo
 [RFC3418]).

Blumenthal & Wijnen Standards Track [Page 9]

RFC 3414 USM for SNMPv3 December 2002

 2) Verification that a message sent to/from one authoritative SNMP
 engine cannot be replayed to/as-if-from another authoritative SNMP
 engine.

 Included in each message is an identifier unique to the
 authoritative SNMP engine associated with the sender or intended
 recipient of the message.

 A message containing an Unconfirmed Class PDU sent by an
 authoritative SNMP engine to one non-authoritative SNMP engine can
 potentially be replayed to another non-authoritative SNMP engine.
 The latter non-authoritative SNMP engine might (if it knows about
 the same userName with the same secrets at the authoritative SNMP
 engine) as a result update its notion of timeliness indicators of
 the authoritative SNMP engine, but that is not considered a
 threat. In this case, A Report or Response message will be
 discarded by the Message Processing Model, because there should
 not be an outstanding Request message. A Trap will possibly be
 accepted. Again, that is not considered a threat, because the
 communication was authenticated and timely. It is as if the
 authoritative SNMP engine was configured to start sending Traps to
 the second SNMP engine, which theoretically can happen without the
 knowledge of the second SNMP engine anyway. Anyway, the second
 SNMP engine may not expect to receive this Trap, but is allowed to
 see the management information contained in it.

 3) Detection of messages which were not recently generated.

 A set of time indicators are included in the message, indicating
 the time of generation. Messages without recent time indicators
 are not considered authentic. In addition, an SNMP engine MUST
 drop any Responses that do not match an outstanding request. This
 however is the responsibility of the Message Processing Model.

 This memo allows the same user to be defined on multiple SNMP
 engines. Each SNMP engine maintains a value, snmpEngineID, which
 uniquely identifies the SNMP engine. This value is included in each
 message sent to/from the SNMP engine that is authoritative (see
 section 1.5.1). On receipt of a message, an authoritative SNMP
 engine checks the value to ensure that it is the intended recipient,
 and a non-authoritative SNMP engine uses the value to ensure that the
 message is processed using the correct state information.

 Each SNMP engine maintains two values, snmpEngineBoots and
 snmpEngineTime, which taken together provide an indication of time at
 that SNMP engine. Both of these values are included in an
 authenticated message sent to/received from that SNMP engine. On
 receipt, the values are checked to ensure that the indicated

Blumenthal & Wijnen Standards Track [Page 10]

RFC 3414 USM for SNMPv3 December 2002

 timeliness value is within a Time Window of the current time. The
 Time Window represents an administrative upper bound on acceptable
 delivery delay for protocol messages.

 For an SNMP engine to generate a message which an authoritative SNMP
 engine will accept as authentic, and to verify that a message
 received from that authoritative SNMP engine is authentic, such an
 SNMP engine must first achieve timeliness synchronization with the
 authoritative SNMP engine. See section 2.3.

1.6. Abstract Service Interfaces

 Abstract service interfaces have been defined to describe the
 conceptual interfaces between the various subsystems within an SNMP
 entity. Similarly a set of abstract service interfaces have been
 defined within the User-based Security Model (USM) to describe the
 conceptual interfaces between the generic USM services and the
 self-contained authentication and privacy services.

 These abstract service interfaces are defined by a set of primitives
 that define the services provided and the abstract data elements that
 must be passed when the services are invoked. This section lists the
 primitives that have been defined for the User-based Security Model.

1.6.1. User-based Security Model Primitives for Authentication

 The User-based Security Model provides the following internal
 primitives to pass data back and forth between the Security Model
 itself and the authentication service:

 statusInformation =
 authenticateOutgoingMsg(
 IN authKey -- secret key for authentication
 IN wholeMsg -- unauthenticated complete message
 OUT authenticatedWholeMsg -- complete authenticated message
)

 statusInformation =
 authenticateIncomingMsg(
 IN authKey -- secret key for authentication
 IN authParameters -- as received on the wire
 IN wholeMsg -- as received on the wire
 OUT authenticatedWholeMsg -- complete authenticated message
)

Blumenthal & Wijnen Standards Track [Page 11]

RFC 3414 USM for SNMPv3 December 2002

1.6.2. User-based Security Model Primitives for Privacy

 The User-based Security Model provides the following internal
 primitives to pass data back and forth between the Security Model
 itself and the privacy service:

 statusInformation =
 encryptData(
 IN encryptKey -- secret key for encryption
 IN dataToEncrypt -- data to encrypt (scopedPDU)
 OUT encryptedData -- encrypted data (encryptedPDU)
 OUT privParameters -- filled in by service provider
)

 statusInformation =
 decryptData(
 IN decryptKey -- secret key for decrypting
 IN privParameters -- as received on the wire
 IN encryptedData -- encrypted data (encryptedPDU)
 OUT decryptedData -- decrypted data (scopedPDU)
)

2. Elements of the Model

 This section contains definitions required to realize the security
 model defined by this memo.

2.1. User-based Security Model Users

 Management operations using this Security Model make use of a defined
 set of user identities. For any user on whose behalf management
 operations are authorized at a particular SNMP engine, that SNMP
 engine must have knowledge of that user. An SNMP engine that wishes
 to communicate with another SNMP engine must also have knowledge of a
 user known to that engine, including knowledge of the applicable
 attributes of that user.

 A user and its attributes are defined as follows:

 userName
 A string representing the name of the user.

 securityName
 A human-readable string representing the user in a format that is
 Security Model independent. There is a one-to-one relationship
 between userName and securityName.

Blumenthal & Wijnen Standards Track [Page 12]

RFC 3414 USM for SNMPv3 December 2002

 authProtocol
 An indication of whether messages sent on behalf of this user can
 be authenticated, and if so, the type of authentication protocol
 which is used. Two such protocols are defined in this memo:

 - the HMAC-MD5-96 authentication protocol.
 - the HMAC-SHA-96 authentication protocol.

 authKey
 If messages sent on behalf of this user can be authenticated, the
 (private) authentication key for use with the authentication
 protocol. Note that a user’s authentication key will normally be
 different at different authoritative SNMP engines. The authKey is
 not accessible via SNMP. The length requirements of the authKey
 are defined by the authProtocol in use.

 authKeyChange and authOwnKeyChange
 The only way to remotely update the authentication key. Does that
 in a secure manner, so that the update can be completed without
 the need to employ privacy protection.

 privProtocol
 An indication of whether messages sent on behalf of this user can
 be protected from disclosure, and if so, the type of privacy
 protocol which is used. One such protocol is defined in this
 memo: the CBC-DES Symmetric Encryption Protocol.

 privKey
 If messages sent on behalf of this user can be en/decrypted, the
 (private) privacy key for use with the privacy protocol. Note
 that a user’s privacy key will normally be different at different
 authoritative SNMP engines. The privKey is not accessible via
 SNMP. The length requirements of the privKey are defined by the
 privProtocol in use.

 privKeyChange and privOwnKeyChange
 The only way to remotely update the encryption key. Does that in
 a secure manner, so that the update can be completed without the
 need to employ privacy protection.

2.2. Replay Protection

 Each SNMP engine maintains three objects:

 - snmpEngineID, which (at least within an administrative domain)
 uniquely and unambiguously identifies an SNMP engine.

Blumenthal & Wijnen Standards Track [Page 13]

RFC 3414 USM for SNMPv3 December 2002

 - snmpEngineBoots, which is a count of the number of times the SNMP
 engine has re-booted/re-initialized since snmpEngineID was last
 configured; and,

 - snmpEngineTime, which is the number of seconds since the
 snmpEngineBoots counter was last incremented.

 Each SNMP engine is always authoritative with respect to these
 objects in its own SNMP entity. It is the responsibility of a non-
 authoritative SNMP engine to synchronize with the authoritative SNMP
 engine, as appropriate.

 An authoritative SNMP engine is required to maintain the values of
 its snmpEngineID and snmpEngineBoots in non-volatile storage.

2.2.1. msgAuthoritativeEngineID

 The msgAuthoritativeEngineID value contained in an authenticated
 message is used to defeat attacks in which messages from one SNMP
 engine to another SNMP engine are replayed to a different SNMP
 engine. It represents the snmpEngineID at the authoritative SNMP
 engine involved in the exchange of the message.

 When an authoritative SNMP engine is first installed, it sets its
 local value of snmpEngineID according to a enterprise-specific
 algorithm (see the definition of the Textual Convention for
 SnmpEngineID in the SNMP Architecture document [RFC3411]).

2.2.2. msgAuthoritativeEngineBoots and msgAuthoritativeEngineTime

 The msgAuthoritativeEngineBoots and msgAuthoritativeEngineTime values
 contained in an authenticated message are used to defeat attacks in
 which messages are replayed when they are no longer valid. They
 represent the snmpEngineBoots and snmpEngineTime values at the
 authoritative SNMP engine involved in the exchange of the message.

 Through use of snmpEngineBoots and snmpEngineTime, there is no
 requirement for an SNMP engine to have a non-volatile clock which
 ticks (i.e., increases with the passage of time) even when the
 SNMP engine is powered off. Rather, each time an SNMP engine
 re-boots, it retrieves, increments, and then stores snmpEngineBoots
 in non-volatile storage, and resets snmpEngineTime to zero.

 When an SNMP engine is first installed, it sets its local values of
 snmpEngineBoots and snmpEngineTime to zero. If snmpEngineTime ever
 reaches its maximum value (2147483647), then snmpEngineBoots is
 incremented as if the SNMP engine has re-booted and snmpEngineTime is
 reset to zero and starts incrementing again.

Blumenthal & Wijnen Standards Track [Page 14]

RFC 3414 USM for SNMPv3 December 2002

 Each time an authoritative SNMP engine re-boots, any SNMP engines
 holding that authoritative SNMP engine’s values of snmpEngineBoots
 and snmpEngineTime need to re-synchronize prior to sending correctly
 authenticated messages to that authoritative SNMP engine (see Section
 2.3 for (re-)synchronization procedures). Note, however, that the
 procedures do provide for a notification to be accepted as authentic
 by a receiving SNMP engine, when sent by an authoritative SNMP engine
 which has re-booted since the receiving SNMP engine last (re-
)synchronized.

 If an authoritative SNMP engine is ever unable to determine its
 latest snmpEngineBoots value, then it must set its snmpEngineBoots
 value to 2147483647.

 Whenever the local value of snmpEngineBoots has the value 2147483647
 it latches at that value and an authenticated message always causes
 an notInTimeWindow authentication failure.

 In order to reset an SNMP engine whose snmpEngineBoots value has
 reached the value 2147483647, manual intervention is required. The
 engine must be physically visited and re-configured, either with a
 new snmpEngineID value, or with new secret values for the
 authentication and privacy protocols of all users known to that SNMP
 engine. Note that even if an SNMP engine re-boots once a second that
 it would still take approximately 68 years before the max value of
 2147483647 would be reached.

2.2.3. Time Window

 The Time Window is a value that specifies the window of time in which
 a message generated on behalf of any user is valid. This memo
 specifies that the same value of the Time Window, 150 seconds, is
 used for all users.

2.3. Time Synchronization

 Time synchronization, required by a non-authoritative SNMP engine
 in order to proceed with authentic communications, has occurred
 when the non-authoritative SNMP engine has obtained a local notion
 of the authoritative SNMP engine’s values of snmpEngineBoots and
 snmpEngineTime from the authoritative SNMP engine. These values
 must be (and remain) within the authoritative SNMP engine’s Time
 Window. So the local notion of the authoritative SNMP engine’s
 values must be kept loosely synchronized with the values stored
 at the authoritative SNMP engine. In addition to keeping a local
 copy of snmpEngineBoots and snmpEngineTime from the authoritative
 SNMP engine, a non-authoritative SNMP engine must also keep one

Blumenthal & Wijnen Standards Track [Page 15]

RFC 3414 USM for SNMPv3 December 2002

 local variable, latestReceivedEngineTime. This value records the
 highest value of snmpEngineTime that was received by the
 non-authoritative SNMP engine from the authoritative SNMP engine
 and is used to eliminate the possibility of replaying messages
 that would prevent the non-authoritative SNMP engine’s notion of
 the snmpEngineTime from advancing.

 A non-authoritative SNMP engine must keep local notions of these
 values (snmpEngineBoots, snmpEngineTime and latestReceivedEngineTime)
 for each authoritative SNMP engine with which it wishes to
 communicate. Since each authoritative SNMP engine is uniquely and
 unambiguously identified by its value of snmpEngineID, the
 non-authoritative SNMP engine may use this value as a key in order to
 cache its local notions of these values.

 Time synchronization occurs as part of the procedures of receiving an
 SNMP message (Section 3.2, step 7b). As such, no explicit time
 synchronization procedure is required by a non-authoritative SNMP
 engine. Note, that whenever the local value of snmpEngineID is
 changed (e.g., through discovery) or when secure communications are
 first established with an authoritative SNMP engine, the local values
 of snmpEngineBoots and latestReceivedEngineTime should be set to
 zero. This will cause the time synchronization to occur when the
 next authentic message is received.

2.4. SNMP Messages Using this Security Model

 The syntax of an SNMP message using this Security Model adheres to
 the message format defined in the version-specific Message Processing
 Model document (for example [RFC3412]).

 The field msgSecurityParameters in SNMPv3 messages has a data type of
 OCTET STRING. Its value is the BER serialization of the following
 ASN.1 sequence:

 USMSecurityParametersSyntax DEFINITIONS IMPLICIT TAGS ::= BEGIN

 UsmSecurityParameters ::=
 SEQUENCE {
 -- global User-based security parameters
 msgAuthoritativeEngineID OCTET STRING,
 msgAuthoritativeEngineBoots INTEGER (0..2147483647),
 msgAuthoritativeEngineTime INTEGER (0..2147483647),
 msgUserName OCTET STRING (SIZE(0..32)),
 -- authentication protocol specific parameters
 msgAuthenticationParameters OCTET STRING,
 -- privacy protocol specific parameters
 msgPrivacyParameters OCTET STRING

Blumenthal & Wijnen Standards Track [Page 16]

RFC 3414 USM for SNMPv3 December 2002

 }
 END

 The fields of this sequence are:

 - The msgAuthoritativeEngineID specifies the snmpEngineID of the
 authoritative SNMP engine involved in the exchange of the message.

 - The msgAuthoritativeEngineBoots specifies the snmpEngineBoots value
 at the authoritative SNMP engine involved in the exchange of the
 message.

 - The msgAuthoritativeEngineTime specifies the snmpEngineTime value
 at the authoritative SNMP engine involved in the exchange of the
 message.

 - The msgUserName specifies the user (principal) on whose behalf the
 message is being exchanged. Note that a zero-length userName will
 not match any user, but it can be used for snmpEngineID discovery.

 - The msgAuthenticationParameters are defined by the authentication
 protocol in use for the message, as defined by the
 usmUserAuthProtocol column in the user’s entry in the usmUserTable.

 - The msgPrivacyParameters are defined by the privacy protocol in use
 for the message, as defined by the usmUserPrivProtocol column in
 the user’s entry in the usmUserTable).

 See appendix A.4 for an example of the BER encoding of field
 msgSecurityParameters.

2.5. Services provided by the User-based Security Model

 This section describes the services provided by the User-based
 Security Model with their inputs and outputs.

 The services are described as primitives of an abstract service
 interface and the inputs and outputs are described as abstract data
 elements as they are passed in these abstract service primitives.

2.5.1. Services for Generating an Outgoing SNMP Message

 When the Message Processing (MP) Subsystem invokes the User-based
 Security module to secure an outgoing SNMP message, it must use the
 appropriate service as provided by the Security module. These two
 services are provided:

Blumenthal & Wijnen Standards Track [Page 17]

RFC 3414 USM for SNMPv3 December 2002

 1) A service to generate a Request message. The abstract service
 primitive is:

 statusInformation = -- success or errorIndication
 generateRequestMsg(
 IN messageProcessingModel -- typically, SNMP version
 IN globalData -- message header, admin data
 IN maxMessageSize -- of the sending SNMP entity
 IN securityModel -- for the outgoing message
 IN securityEngineID -- authoritative SNMP entity
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security requested
 IN scopedPDU -- message (plaintext) payload
 OUT securityParameters -- filled in by Security Module
 OUT wholeMsg -- complete generated message
 OUT wholeMsgLength -- length of generated message
)

 2) A service to generate a Response message. The abstract service
 primitive is:

 statusInformation = -- success or errorIndication
 generateResponseMsg(
 IN messageProcessingModel -- typically, SNMP version
 IN globalData -- message header, admin data
 IN maxMessageSize -- of the sending SNMP entity
 IN securityModel -- for the outgoing message
 IN securityEngineID -- authoritative SNMP entity
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security requested
 IN scopedPDU -- message (plaintext) payload
 IN securityStateReference -- reference to security state
 -- information from original
 -- request
 OUT securityParameters -- filled in by Security Module
 OUT wholeMsg -- complete generated message
 OUT wholeMsgLength -- length of generated message
)

 The abstract data elements passed as parameters in the abstract
 service primitives are as follows:

 statusInformation
 An indication of whether the encoding and securing of the message
 was successful. If not it is an indication of the problem.

Blumenthal & Wijnen Standards Track [Page 18]

RFC 3414 USM for SNMPv3 December 2002

 messageProcessingModel
 The SNMP version number for the message to be generated. This
 data is not used by the User-based Security module.

 globalData
 The message header (i.e., its administrative information). This
 data is not used by the User-based Security module.

 maxMessageSize
 The maximum message size as included in the message. This data is
 not used by the User-based Security module.

 securityParameters
 These are the security parameters. They will be filled in by the
 User-based Security module.

 securityModel
 The securityModel in use. Should be User-based Security Model.
 This data is not used by the User-based Security module.

 securityName
 Together with the snmpEngineID it identifies a row in the
 usmUserTablethat is to be used for securing the message. The
 securityName has a format that is independent of the Security
 Model. In case of a response this parameter is ignored and the
 value from the cache is used.

 securityLevel
 The Level of Security from which the User-based Security module
 determines if the message needs to be protected from disclosure
 and if the message needs to be authenticated.

 securityEngineID
 The snmpEngineID of the authoritative SNMP engine to which a
 dateRequest message is to be sent. In case of a response it is
 implied to be the processing SNMP engine’s snmpEngineID and so if
 it is specified, then it is ignored.

 scopedPDU
 The message payload. The data is opaque as far as the User-based
 Security Model is concerned.

 securityStateReference
 A handle/reference to cachedSecurityData to be used when securing
 an outgoing Response message. This is the exact same
 handle/reference as it was generated by the User-based Security
 module when processing the incoming Request message to which this
 is the Response message.

Blumenthal & Wijnen Standards Track [Page 19]

RFC 3414 USM for SNMPv3 December 2002

 wholeMsg
 The fully encoded and secured message ready for sending on the
 wire.

 wholeMsgLength
 The length of the encoded and secured message (wholeMsg).

 Upon completion of the process, the User-based Security module
 returns statusInformation. If the process was successful, the
 completed message with privacy and authentication applied if such was
 requested by the specified securityLevel is returned. If the process
 was not successful, then an errorIndication is returned.

2.5.2. Services for Processing an Incoming SNMP Message

 When the Message Processing (MP) Subsystem invokes the User-based
 Security module to verify proper security of an incoming message, it
 must use the service provided for an incoming message. The abstract
 service primitive is:

 statusInformation = -- errorIndication or success
 -- error counter OID/value if error
 processIncomingMsg(
 IN messageProcessingModel -- typically, SNMP version
 IN maxMessageSize -- of the sending SNMP entity
 IN securityParameters -- for the received message
 IN securityModel -- for the received message
 IN securityLevel -- Level of Security
 IN wholeMsg -- as received on the wire
 IN wholeMsgLength -- length as received on the wire
 OUT securityEngineID -- authoritative SNMP entity
 OUT securityName -- identification of the principal
 OUT scopedPDU, -- message (plaintext) payload
 OUT maxSizeResponseScopedPDU -- maximum size of the Response PDU
 OUT securityStateReference -- reference to security state
) -- information, needed for response

 The abstract data elements passed as parameters in the abstract
 service primitives are as follows:

 statusInformation
 An indication of whether the process was successful or not. If
 not, then the statusInformation includes the OID and the value of
 the error counter that was incremented.

 messageProcessingModel
 The SNMP version number as received in the message. This data is
 not used by the User-based Security module.

Blumenthal & Wijnen Standards Track [Page 20]

RFC 3414 USM for SNMPv3 December 2002

 maxMessageSize
 The maximum message size as included in the message. The User-bas
 User-based Security module uses this value to calculate the
 maxSizeResponseScopedPDU.

 securityParameters
 These are the security parameters as received in the message.

 securityModel
 The securityModel in use. Should be the User-based Security
 Model. This data is not used by the User-based Security module.

 securityLevel
 The Level of Security from which the User-based Security module
 determines if the message needs to be protected from disclosure
 and if the message needs to be authenticated.

 wholeMsg
 The whole message as it was received.

 wholeMsgLength
 The length of the message as it was received (wholeMsg).

 securityEngineID
 The snmpEngineID that was extracted from the field
 msgAuthoritativeEngineID and that was used to lookup the secrets
 in the usmUserTable.

 securityName
 The security name representing the user on whose behalf the
 message was received. The securityName has a format that is
 independent of the Security Model.

 scopedPDU
 The message payload. The data is opaque as far as the User-based
 Security Model is concerned.

 maxSizeResponseScopedPDU
 The maximum size of a scopedPDU to be included in a possible
 Response message. The User-based Security module calculates this
 size based on the msgMaxSize (as received in the message) and the
 space required for the message header (including the
 securityParameters) for such a Response message.

 securityStateReference
 A handle/reference to cachedSecurityData to be used when securing
 an outgoing Response message. When the Message Processing
 Subsystem calls the User-based Security module to generate a

Blumenthal & Wijnen Standards Track [Page 21]

RFC 3414 USM for SNMPv3 December 2002

 response to this incoming message it must pass this
 handle/reference.

 Upon completion of the process, the User-based Security module
 returns statusInformation and, if the process was successful, the
 additional data elements for further processing of the message. If
 the process was not successful, then an errorIndication, possibly
 with a OID and value pair of an error counter that was incremented.

2.6. Key Localization Algorithm.

 A localized key is a secret key shared between a user U and one
 authoritative SNMP engine E. Even though a user may have only one
 password and therefore one key for the whole network, the actual
 secrets shared between the user and each authoritative SNMP engine
 will be different. This is achieved by key localization [Localized-
 key].

 First, if a user uses a password, then the user’s password is
 converted into a key Ku using one of the two algorithms described in
 Appendices A.2.1 and A.2.2.

 To convert key Ku into a localized key Kul of user U at the
 authoritative SNMP engine E, one appends the snmpEngineID of the
 authoritative SNMP engine to the key Ku and then appends the key Ku
 to the result, thus enveloping the snmpEngineID within the two copies
 of user’s key Ku. Then one runs a secure hash function (which one
 depends on the authentication protocol defined for this user U at
 authoritative SNMP engine E; this document defines two authentication
 protocols with their associated algorithms based on MD5 and SHA).
 The output of the hash-function is the localized key Kul for user U
 at the authoritative SNMP engine E.

3. Elements of Procedure

 This section describes the security related procedures followed by an
 SNMP engine when processing SNMP messages according to the User-based
 Security Model.

3.1. Generating an Outgoing SNMP Message

 This section describes the procedure followed by an SNMP engine
 whenever it generates a message containing a management operation
 (like a request, a response, a notification, or a report) on behalf
 of a user, with a particular securityLevel.

Blumenthal & Wijnen Standards Track [Page 22]

RFC 3414 USM for SNMPv3 December 2002

 1) a) If any securityStateReference is passed (Response or Report
 message), then information concerning the user is extracted
 from the cachedSecurityData. The cachedSecurityData can now be
 discarded. The securityEngineID is set to the local
 snmpEngineID. The securityLevel is set to the value specified
 by the calling module.

 Otherwise,

 b) based on the securityName, information concerning the user at
 the destination snmpEngineID, specified by the
 securityEngineID, is extracted from the Local Configuration
 Datastore (LCD, usmUserTable). If information about the user
 is absent from the LCD, then an error indication
 (unknownSecurityName) is returned to the calling module.

 2) If the securityLevel specifies that the message is to be protected
 from disclosure, but the user does not support both an
 authentication and a privacy protocol then the message cannot be
 sent. An error indication (unsupportedSecurityLevel) is returned
 to the calling module.

 3) If the securityLevel specifies that the message is to be
 authenticated, but the user does not support an authentication
 protocol, then the message cannot be sent. An error indication
 (unsupportedSecurityLevel) is returned to the calling module.

 4) a) If the securityLevel specifies that the message is to be
 protected from disclosure, then the octet sequence representing
 the serialized scopedPDU is encrypted according to the user’s
 privacy protocol. To do so a call is made to the privacy
 module that implements the user’s privacy protocol according to
 the abstract primitive:

 statusInformation = -- success or failure
 encryptData(
 IN encryptKey -- user’s localized privKey
 IN dataToEncrypt -- serialized scopedPDU
 OUT encryptedData -- serialized encryptedPDU
 OUT privParameters -- serialized privacy parameters
)

 statusInformation
 indicates if the encryption process was successful or not.

 encryptKey
 the user’s localized private privKey is the secret key that
 can be used by the encryption algorithm.

Blumenthal & Wijnen Standards Track [Page 23]

RFC 3414 USM for SNMPv3 December 2002

 dataToEncrypt
 the serialized scopedPDU is the data to be encrypted.

 encryptedData
 the encryptedPDU represents the encrypted scopedPDU, encoded
 as an OCTET STRING.

 privParameters
 the privacy parameters, encoded as an OCTET STRING.

 If the privacy module returns failure, then the message cannot
 be sent and an error indication (encryptionError) is returned
 to the calling module.

 If the privacy module returns success, then the returned
 privParameters are put into the msgPrivacyParameters field of
 the securityParameters and the encryptedPDU serves as the
 payload of the message being prepared.

 Otherwise,

 b) If the securityLevel specifies that the message is not to be be
 protected from disclosure, then a zero-length OCTET STRING is
 encoded into the msgPrivacyParameters field of the
 securityParameters and the plaintext scopedPDU serves as the
 payload of the message being prepared.

 5) The securityEngineID is encoded as an OCTET STRING into the
 msgAuthoritativeEngineID field of the securityParameters. Note
 that an empty (zero length) securityEngineID is OK for a Request
 message, because that will cause the remote (authoritative) SNMP
 engine to return a Report PDU with the proper securityEngineID
 included in the msgAuthoritativeEngineID in the securityParameters
 of that returned Report PDU.

 6) a) If the securityLevel specifies that the message is to be
 authenticated, then the current values of snmpEngineBoots and
 snmpEngineTime corresponding to the securityEngineID from the
 LCD are used.

 Otherwise,

 b) If this is a Response or Report message, then the current value
 of snmpEngineBoots and snmpEngineTime corresponding to the
 local snmpEngineID from the LCD are used.

Blumenthal & Wijnen Standards Track [Page 24]

RFC 3414 USM for SNMPv3 December 2002

 Otherwise,

 c) If this is a Request message, then a zero value is used for
 both snmpEngineBoots and snmpEngineTime. This zero value gets
 used if snmpEngineID is empty.

 The values are encoded as INTEGER respectively into the
 msgAuthoritativeEngineBoots and msgAuthoritativeEngineTime
 fields of the securityParameters.

 7) The userName is encoded as an OCTET STRING into the msgUserName
 field of the securityParameters.

 8) a) If the securityLevel specifies that the message is to be
 authenticated, the message is authenticated according to the
 user’s authentication protocol. To do so a call is made to the
 authentication module that implements the user’s authentication
 protocol according to the abstract service primitive:

 statusInformation =
 authenticateOutgoingMsg(
 IN authKey -- the user’s localized authKey
 IN wholeMsg -- unauthenticated message
 OUT authenticatedWholeMsg -- authenticated complete message
)

 statusInformation
 indicates if authentication was successful or not.

 authKey
 the user’s localized private authKey is the secret key that
 can be used by the authentication algorithm.

 wholeMsg
 the complete serialized message to be authenticated.

 authenticatedWholeMsg
 the same as the input given to the authenticateOutgoingMsg
 service, but with msgAuthenticationParameters properly
 filled in.

 If the authentication module returns failure, then the message
 cannot be sent and an error indication (authenticationFailure)
 is returned to the calling module.

Blumenthal & Wijnen Standards Track [Page 25]

RFC 3414 USM for SNMPv3 December 2002

 If the authentication module returns success, then the
 msgAuthenticationParameters field is put into the
 securityParameters and the authenticatedWholeMsg represents the
 serialization of the authenticated message being prepared.

 Otherwise,

 b) If the securityLevel specifies that the message is not to be
 authenticated then a zero-length OCTET STRING is encoded into
 the msgAuthenticationParameters field of the
 securityParameters. The wholeMsg is now serialized and then
 represents the unauthenticated message being prepared.

 9) The completed message with its length is returned to the calling
 module with the statusInformation set to success.

3.2. Processing an Incoming SNMP Message

 This section describes the procedure followed by an SNMP engine
 whenever it receives a message containing a management operation on
 behalf of a user, with a particular securityLevel.

 To simplify the elements of procedure, the release of state
 information is not always explicitly specified. As a general rule,
 if state information is available when a message gets discarded, the
 state information should also be released. Also, an error indication
 can return an OID and value for an incremented counter and optionally
 a value for securityLevel, and values for contextEngineID or
 contextName for the counter. In addition, the securityStateReference
 data is returned if any such information is available at the point
 where the error is detected.

 1) If the received securityParameters is not the serialization
 (according to the conventions of [RFC3417]) of an OCTET STRING
 formatted according to the UsmSecurityParameters defined in
 section 2.4, then the snmpInASNParseErrs counter [RFC3418] is
 incremented, and an error indication (parseError) is returned to
 the calling module. Note that we return without the OID and
 value of the incremented counter, because in this case there is
 not enough information to generate a Report PDU.

 2) The values of the security parameter fields are extracted from
 the securityParameters. The securityEngineID to be returned to
 the caller is the value of the msgAuthoritativeEngineID field.
 The cachedSecurityData is prepared and a securityStateReference
 is prepared to reference this data. Values to be cached are:

 msgUserName

Blumenthal & Wijnen Standards Track [Page 26]

RFC 3414 USM for SNMPv3 December 2002

 3) If the value of the msgAuthoritativeEngineID field in the
 securityParameters is unknown then:

 a) a non-authoritative SNMP engine that performs discovery may
 optionally create a new entry in its Local Configuration
 Datastore (LCD) and continue processing;

 or

 b) the usmStatsUnknownEngineIDs counter is incremented, and an
 error indication (unknownEngineID) together with the OID and
 value of the incremented counter is returned to the calling
 module.

 Note in the event that a zero-length, or other illegally sized
 msgAuthoritativeEngineID is received, b) should be chosen to
 facilitate engineID discovery. Otherwise the choice between a)
 and b) is an implementation issue.

 4) Information about the value of the msgUserName and
 msgAuthoritativeEngineID fields is extracted from the Local
 Configuration Datastore (LCD, usmUserTable). If no information
 is available for the user, then the usmStatsUnknownUserNames
 counter is incremented and an error indication
 (unknownSecurityName) together with the OID and value of the
 incremented counter is returned to the calling module.

 5) If the information about the user indicates that it does not
 support the securityLevel requested by the caller, then the
 usmStatsUnsupportedSecLevels counter is incremented and an error
 indication (unsupportedSecurityLevel) together with the OID and
 value of the incremented counter is returned to the calling
 module.

 6) If the securityLevel specifies that the message is to be
 authenticated, then the message is authenticated according to the
 user’s authentication protocol. To do so a call is made to the
 authentication module that implements the user’s authentication
 protocol according to the abstract service primitive:

 statusInformation = -- success or failure
 authenticateIncomingMsg(
 IN authKey -- the user’s localized authKey
 IN authParameters -- as received on the wire
 IN wholeMsg -- as received on the wire
 OUT authenticatedWholeMsg -- checked for authentication
)

Blumenthal & Wijnen Standards Track [Page 27]

RFC 3414 USM for SNMPv3 December 2002

 statusInformation
 indicates if authentication was successful or not.

 authKey
 the user’s localized private authKey is the secret key that
 can be used by the authentication algorithm.

 wholeMsg
 the complete serialized message to be authenticated.

 authenticatedWholeMsg
 the same as the input given to the authenticateIncomingMsg
 service, but after authentication has been checked.

 If the authentication module returns failure, then the message
 cannot be trusted, so the usmStatsWrongDigests counter is
 incremented and an error indication (authenticationFailure)
 together with the OID and value of the incremented counter is
 returned to the calling module.

 If the authentication module returns success, then the message is
 authentic and can be trusted so processing continues.

 7) If the securityLevel indicates an authenticated message, then the
 local values of snmpEngineBoots, snmpEngineTime and
 latestReceivedEngineTime corresponding to the value of the
 msgAuthoritativeEngineID field are extracted from the Local
 Configuration Datastore.

 a) If the extracted value of msgAuthoritativeEngineID is the same
 as the value of snmpEngineID of the processing SNMP engine
 (meaning this is the authoritative SNMP engine), then if any
 of the following conditions is true, then the message is
 considered to be outside of the Time Window:

 - the local value of snmpEngineBoots is 2147483647;

 - the value of the msgAuthoritativeEngineBoots field differs
 from the local value of snmpEngineBoots; or,

 - the value of the msgAuthoritativeEngineTime field differs
 from the local notion of snmpEngineTime by more than +/- 150
 seconds.

 If the message is considered to be outside of the Time Window
 then the usmStatsNotInTimeWindows counter is incremented and
 an error indication (notInTimeWindow) together with the OID,
 the value of the incremented counter, and an indication that

Blumenthal & Wijnen Standards Track [Page 28]

RFC 3414 USM for SNMPv3 December 2002

 the error must be reported with a securityLevel of authNoPriv,
 is returned to the calling module

 b) If the extracted value of msgAuthoritativeEngineID is not the
 same as the value snmpEngineID of the processing SNMP engine
 (meaning this is not the authoritative SNMP engine), then:

 1) if at least one of the following conditions is true:

 - the extracted value of the msgAuthoritativeEngineBoots
 field is greater than the local notion of the value of
 snmpEngineBoots; or,

 - the extracted value of the msgAuthoritativeEngineBoots
 field is equal to the local notion of the value of
 snmpEngineBoots, and the extracted value of
 msgAuthoritativeEngineTime field is greater than the
 value of latestReceivedEngineTime,

 then the LCD entry corresponding to the extracted value of
 the msgAuthoritativeEngineID field is updated, by setting:

 - the local notion of the value of snmpEngineBoots to the
 value of the msgAuthoritativeEngineBoots field,

 - the local notion of the value of snmpEngineTime to the
 value of the msgAuthoritativeEngineTime field, and

 - the latestReceivedEngineTime to the value of the value of
 the msgAuthoritativeEngineTime field.

 2) if any of the following conditions is true, then the
 message is considered to be outside of the Time Window:

 - the local notion of the value of snmpEngineBoots is
 2147483647;

 - the value of the msgAuthoritativeEngineBoots field is
 less than the local notion of the value of
 snmpEngineBoots; or,

 - the value of the msgAuthoritativeEngineBoots field is
 equal to the local notion of the value of snmpEngineBoots
 and the value of the msgAuthoritativeEngineTime field is
 more than 150 seconds less than the local notion of the
 value of snmpEngineTime.

Blumenthal & Wijnen Standards Track [Page 29]

RFC 3414 USM for SNMPv3 December 2002

 If the message is considered to be outside of the Time
 Window then an error indication (notInTimeWindow) is
 returned to the calling module.

 Note that this means that a too old (possibly replayed)
 message has been detected and is deemed unauthentic.

 Note that this procedure allows for the value of
 msgAuthoritativeEngineBoots in the message to be greater
 than the local notion of the value of snmpEngineBoots to
 allow for received messages to be accepted as authentic
 when received from an authoritative SNMP engine that has
 re-booted since the receiving SNMP engine last
 (re-)synchronized.

 8) a) If the securityLevel indicates that the message was protected
 from disclosure, then the OCTET STRING representing the
 encryptedPDU is decrypted according to the user’s privacy
 protocol to obtain an unencrypted serialized scopedPDU value.
 To do so a call is made to the privacy module that implements
 the user’s privacy protocol according to the abstract
 primitive:

 statusInformation = -- success or failure
 decryptData(
 IN decryptKey -- the user’s localized privKey
 IN privParameters -- as received on the wire
 IN encryptedData -- encryptedPDU as received
 OUT decryptedData -- serialized decrypted scopedPDU
)

 statusInformation
 indicates if the decryption process was successful or not.

 decryptKey
 the user’s localized private privKey is the secret key that
 can be used by the decryption algorithm.

 privParameters
 the msgPrivacyParameters, encoded as an OCTET STRING.

 encryptedData
 the encryptedPDU represents the encrypted scopedPDU,
 encoded as an OCTET STRING.

 decryptedData
 the serialized scopedPDU if decryption is successful.

Blumenthal & Wijnen Standards Track [Page 30]

RFC 3414 USM for SNMPv3 December 2002

 If the privacy module returns failure, then the message can
 not be processed, so the usmStatsDecryptionErrors counter is
 incremented and an error indication (decryptionError) together
 with the OID and value of the incremented counter is returned
 to the calling module.

 If the privacy module returns success, then the decrypted
 scopedPDU is the message payload to be returned to the calling
 module.

 Otherwise,

 b) The scopedPDU component is assumed to be in plain text and is
 the message payload to be returned to the calling module.

 9) The maxSizeResponseScopedPDU is calculated. This is the maximum
 size allowed for a scopedPDU for a possible Response message.
 Provision is made for a message header that allows the same
 securityLevel as the received Request.

 10) The securityName for the user is retrieved from the usmUserTable.

 11) The security data is cached as cachedSecurityData, so that a
 possible response to this message can and will use the same
 authentication and privacy secrets. Information to be
 saved/cached is as follows:

 msgUserName,
 usmUserAuthProtocol, usmUserAuthKey
 usmUserPrivProtocol, usmUserPrivKey

 12) The statusInformation is set to success and a return is made to
 the calling module passing back the OUT parameters as specified
 in the processIncomingMsg primitive.

4. Discovery

 The User-based Security Model requires that a discovery process
 obtains sufficient information about other SNMP engines in order to
 communicate with them. Discovery requires an non-authoritative SNMP
 engine to learn the authoritative SNMP engine’s snmpEngineID value
 before communication may proceed. This may be accomplished by
 generating a Request message with a securityLevel of noAuthNoPriv, a
 msgUserName of zero-length, a msgAuthoritativeEngineID value of zero
 length, and the varBindList left empty. The response to this message
 will be a Report message containing the snmpEngineID of the
 authoritative SNMP engine as the value of the
 msgAuthoritativeEngineID field within the msgSecurityParameters

Blumenthal & Wijnen Standards Track [Page 31]

RFC 3414 USM for SNMPv3 December 2002

 field. It contains a Report PDU with the usmStatsUnknownEngineIDs
 counter in the varBindList.

 If authenticated communication is required, then the discovery
 process should also establish time synchronization with the
 authoritative SNMP engine. This may be accomplished by sending an
 authenticated Request message with the value of
 msgAuthoritativeEngineID set to the newly learned snmpEngineID and
 with the values of msgAuthoritativeEngineBoots and
 msgAuthoritativeEngineTime set to zero. For an authenticated Request
 message, a valid userName must be used in the msgUserName field. The
 response to this authenticated message will be a Report message
 containing the up to date values of the authoritative SNMP engine’s
 snmpEngineBoots and snmpEngineTime as the value of the
 msgAuthoritativeEngineBoots and msgAuthoritativeEngineTime fields
 respectively. It also contains the usmStatsNotInTimeWindows counter
 in the varBindList of the Report PDU. The time synchronization then
 happens automatically as part of the procedures in section 3.2 step
 7b. See also section 2.3.

5. Definitions

SNMP-USER-BASED-SM-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE,
 OBJECT-IDENTITY,
 snmpModules, Counter32 FROM SNMPv2-SMI
 TEXTUAL-CONVENTION, TestAndIncr,
 RowStatus, RowPointer,
 StorageType, AutonomousType FROM SNMPv2-TC
 MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF
 SnmpAdminString, SnmpEngineID,
 snmpAuthProtocols, snmpPrivProtocols FROM SNMP-FRAMEWORK-MIB;

snmpUsmMIB MODULE-IDENTITY
 LAST-UPDATED "200210160000Z" -- 16 Oct 2002, midnight
 ORGANIZATION "SNMPv3 Working Group"
 CONTACT-INFO "WG-email: snmpv3@lists.tislabs.com
 Subscribe: majordomo@lists.tislabs.com
 In msg body: subscribe snmpv3

 Chair: Russ Mundy
 Network Associates Laboratories
 postal: 15204 Omega Drive, Suite 300
 Rockville, MD 20850-4601
 USA
 email: mundy@tislabs.com

Blumenthal & Wijnen Standards Track [Page 32]

RFC 3414 USM for SNMPv3 December 2002

 phone: +1 301-947-7107

 Co-Chair: David Harrington
 Enterasys Networks
 Postal: 35 Industrial Way
 P. O. Box 5004
 Rochester, New Hampshire 03866-5005
 USA
 EMail: dbh@enterasys.com
 Phone: +1 603-337-2614

 Co-editor Uri Blumenthal
 Lucent Technologies
 postal: 67 Whippany Rd.
 Whippany, NJ 07981
 USA
 email: uri@lucent.com
 phone: +1-973-386-2163

 Co-editor: Bert Wijnen
 Lucent Technologies
 postal: Schagen 33
 3461 GL Linschoten
 Netherlands
 email: bwijnen@lucent.com
 phone: +31-348-480-685
 "
 DESCRIPTION "The management information definitions for the
 SNMP User-based Security Model.

 Copyright (C) The Internet Society (2002). This
 version of this MIB module is part of RFC 3414;
 see the RFC itself for full legal notices.
 "
-- Revision history

 REVISION "200210160000Z" -- 16 Oct 2002, midnight
 DESCRIPTION "Changes in this revision:
 - Updated references and contact info.
 - Clarification to usmUserCloneFrom DESCRIPTION
 clause
 - Fixed ’command responder’ into ’command generator’
 in last para of DESCRIPTION clause of
 usmUserTable.
 This revision published as RFC3414.
 "
 REVISION "199901200000Z" -- 20 Jan 1999, midnight
 DESCRIPTION "Clarifications, published as RFC2574"

Blumenthal & Wijnen Standards Track [Page 33]

RFC 3414 USM for SNMPv3 December 2002

 REVISION "199711200000Z" -- 20 Nov 1997, midnight
 DESCRIPTION "Initial version, published as RFC2274"

 ::= { snmpModules 15 }

-- Administrative assignments **

usmMIBObjects OBJECT IDENTIFIER ::= { snmpUsmMIB 1 }
usmMIBConformance OBJECT IDENTIFIER ::= { snmpUsmMIB 2 }

-- Identification of Authentication and Privacy Protocols ************

usmNoAuthProtocol OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "No Authentication Protocol."
 ::= { snmpAuthProtocols 1 }

usmHMACMD5AuthProtocol OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "The HMAC-MD5-96 Digest Authentication Protocol."
 REFERENCE "- H. Krawczyk, M. Bellare, R. Canetti HMAC:
 Keyed-Hashing for Message Authentication,
 RFC2104, Feb 1997.
 - Rivest, R., Message Digest Algorithm MD5, RFC1321.
 "
 ::= { snmpAuthProtocols 2 }

usmHMACSHAAuthProtocol OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "The HMAC-SHA-96 Digest Authentication Protocol."
 REFERENCE "- H. Krawczyk, M. Bellare, R. Canetti, HMAC:
 Keyed-Hashing for Message Authentication,
 RFC2104, Feb 1997.
 - Secure Hash Algorithm. NIST FIPS 180-1.
 "
 ::= { snmpAuthProtocols 3 }

usmNoPrivProtocol OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "No Privacy Protocol."
 ::= { snmpPrivProtocols 1 }

usmDESPrivProtocol OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "The CBC-DES Symmetric Encryption Protocol."
 REFERENCE "- Data Encryption Standard, National Institute of
 Standards and Technology. Federal Information
 Processing Standard (FIPS) Publication 46-1.

Blumenthal & Wijnen Standards Track [Page 34]

RFC 3414 USM for SNMPv3 December 2002

 Supersedes FIPS Publication 46,
 (January, 1977; reaffirmed January, 1988).

 - Data Encryption Algorithm, American National
 Standards Institute. ANSI X3.92-1981,
 (December, 1980).

 - DES Modes of Operation, National Institute of
 Standards and Technology. Federal Information
 Processing Standard (FIPS) Publication 81,
 (December, 1980).

 - Data Encryption Algorithm - Modes of Operation,
 American National Standards Institute.
 ANSI X3.106-1983, (May 1983).
 "
 ::= { snmpPrivProtocols 2 }

-- Textual Conventions ***

KeyChange ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "Every definition of an object with this syntax must identify
 a protocol P, a secret key K, and a hash algorithm H
 that produces output of L octets.

 The object’s value is a manager-generated, partially-random
 value which, when modified, causes the value of the secret
 key K, to be modified via a one-way function.

 The value of an instance of this object is the concatenation
 of two components: first a ’random’ component and then a
 ’delta’ component.

 The lengths of the random and delta components
 are given by the corresponding value of the protocol P;
 if P requires K to be a fixed length, the length of both the
 random and delta components is that fixed length; if P
 allows the length of K to be variable up to a particular
 maximum length, the length of the random component is that
 maximum length and the length of the delta component is any
 length less than or equal to that maximum length.
 For example, usmHMACMD5AuthProtocol requires K to be a fixed
 length of 16 octets and L - of 16 octets.
 usmHMACSHAAuthProtocol requires K to be a fixed length of
 20 octets and L - of 20 octets. Other protocols may define
 other sizes, as deemed appropriate.

Blumenthal & Wijnen Standards Track [Page 35]

RFC 3414 USM for SNMPv3 December 2002

 When a requester wants to change the old key K to a new
 key keyNew on a remote entity, the ’random’ component is
 obtained from either a true random generator, or from a
 pseudorandom generator, and the ’delta’ component is
 computed as follows:

 - a temporary variable is initialized to the existing value
 of K;
 - if the length of the keyNew is greater than L octets,
 then:
 - the random component is appended to the value of the
 temporary variable, and the result is input to the
 the hash algorithm H to produce a digest value, and
 the temporary variable is set to this digest value;
 - the value of the temporary variable is XOR-ed with
 the first (next) L-octets (16 octets in case of MD5)
 of the keyNew to produce the first (next) L-octets
 (16 octets in case of MD5) of the ’delta’ component.
 - the above two steps are repeated until the unused
 portion of the keyNew component is L octets or less,
 - the random component is appended to the value of the
 temporary variable, and the result is input to the
 hash algorithm H to produce a digest value;
 - this digest value, truncated if necessary to be the same
 length as the unused portion of the keyNew, is XOR-ed
 with the unused portion of the keyNew to produce the
 (final portion of the) ’delta’ component.

 For example, using MD5 as the hash algorithm H:

 iterations = (lenOfDelta - 1)/16; /* integer division */
 temp = keyOld;
 for (i = 0; i < iterations; i++) {
 temp = MD5 (temp || random);
 delta[i*16 .. (i*16)+15] =
 temp XOR keyNew[i*16 .. (i*16)+15];
 }
 temp = MD5 (temp || random);
 delta[i*16 .. lenOfDelta-1] =
 temp XOR keyNew[i*16 .. lenOfDelta-1];

 The ’random’ and ’delta’ components are then concatenated as
 described above, and the resulting octet string is sent to
 the recipient as the new value of an instance of this object.

 At the receiver side, when an instance of this object is set
 to a new value, then a new value of K is computed as follows:

Blumenthal & Wijnen Standards Track [Page 36]

RFC 3414 USM for SNMPv3 December 2002

 - a temporary variable is initialized to the existing value
 of K;
 - if the length of the delta component is greater than L
 octets, then:
 - the random component is appended to the value of the
 temporary variable, and the result is input to the
 hash algorithm H to produce a digest value, and the
 temporary variable is set to this digest value;
 - the value of the temporary variable is XOR-ed with
 the first (next) L-octets (16 octets in case of MD5)
 of the delta component to produce the first (next)
 L-octets (16 octets in case of MD5) of the new value
 of K.
 - the above two steps are repeated until the unused
 portion of the delta component is L octets or less,
 - the random component is appended to the value of the
 temporary variable, and the result is input to the
 hash algorithm H to produce a digest value;
 - this digest value, truncated if necessary to be the same
 length as the unused portion of the delta component, is
 XOR-ed with the unused portion of the delta component to
 produce the (final portion of the) new value of K.

 For example, using MD5 as the hash algorithm H:

 iterations = (lenOfDelta - 1)/16; /* integer division */
 temp = keyOld;
 for (i = 0; i < iterations; i++) {
 temp = MD5 (temp || random);
 keyNew[i*16 .. (i*16)+15] =
 temp XOR delta[i*16 .. (i*16)+15];
 }
 temp = MD5 (temp || random);
 keyNew[i*16 .. lenOfDelta-1] =
 temp XOR delta[i*16 .. lenOfDelta-1];

 The value of an object with this syntax, whenever it is
 retrieved by the management protocol, is always the zero
 length string.

 Note that the keyOld and keyNew are the localized keys.

 Note that it is probably wise that when an SNMP entity sends
 a SetRequest to change a key, that it keeps a copy of the old
 key until it has confirmed that the key change actually
 succeeded.
 "
 SYNTAX OCTET STRING

Blumenthal & Wijnen Standards Track [Page 37]

RFC 3414 USM for SNMPv3 December 2002

-- Statistics for the User-based Security Model **********************

usmStats OBJECT IDENTIFIER ::= { usmMIBObjects 1 }

usmStatsUnsupportedSecLevels OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The total number of packets received by the SNMP
 engine which were dropped because they requested a
 securityLevel that was unknown to the SNMP engine
 or otherwise unavailable.
 "
 ::= { usmStats 1 }

usmStatsNotInTimeWindows OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The total number of packets received by the SNMP
 engine which were dropped because they appeared
 outside of the authoritative SNMP engine’s window.
 "
 ::= { usmStats 2 }

usmStatsUnknownUserNames OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The total number of packets received by the SNMP
 engine which were dropped because they referenced a
 user that was not known to the SNMP engine.
 "
 ::= { usmStats 3 }

usmStatsUnknownEngineIDs OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The total number of packets received by the SNMP
 engine which were dropped because they referenced an
 snmpEngineID that was not known to the SNMP engine.
 "
 ::= { usmStats 4 }

usmStatsWrongDigests OBJECT-TYPE

Blumenthal & Wijnen Standards Track [Page 38]

RFC 3414 USM for SNMPv3 December 2002

 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The total number of packets received by the SNMP
 engine which were dropped because they didn’t
 contain the expected digest value.
 "
 ::= { usmStats 5 }

usmStatsDecryptionErrors OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The total number of packets received by the SNMP
 engine which were dropped because they could not be
 decrypted.
 "
 ::= { usmStats 6 }

-- The usmUser Group **

usmUser OBJECT IDENTIFIER ::= { usmMIBObjects 2 }

usmUserSpinLock OBJECT-TYPE
 SYNTAX TestAndIncr
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION "An advisory lock used to allow several cooperating
 Command Generator Applications to coordinate their
 use of facilities to alter secrets in the
 usmUserTable.
 "
 ::= { usmUser 1 }

-- The table of valid users for the User-based Security Model ********

usmUserTable OBJECT-TYPE
 SYNTAX SEQUENCE OF UsmUserEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "The table of users configured in the SNMP engine’s
 Local Configuration Datastore (LCD).

 To create a new user (i.e., to instantiate a new
 conceptual row in this table), it is recommended to
 follow this procedure:

 1) GET(usmUserSpinLock.0) and save in sValue.

Blumenthal & Wijnen Standards Track [Page 39]

RFC 3414 USM for SNMPv3 December 2002

 2) SET(usmUserSpinLock.0=sValue,
 usmUserCloneFrom=templateUser,
 usmUserStatus=createAndWait)
 You should use a template user to clone from
 which has the proper auth/priv protocol defined.

 If the new user is to use privacy:

 3) generate the keyChange value based on the secret
 privKey of the clone-from user and the secret key
 to be used for the new user. Let us call this
 pkcValue.
 4) GET(usmUserSpinLock.0) and save in sValue.
 5) SET(usmUserSpinLock.0=sValue,
 usmUserPrivKeyChange=pkcValue
 usmUserPublic=randomValue1)
 6) GET(usmUserPulic) and check it has randomValue1.
 If not, repeat steps 4-6.

 If the new user will never use privacy:

 7) SET(usmUserPrivProtocol=usmNoPrivProtocol)

 If the new user is to use authentication:

 8) generate the keyChange value based on the secret
 authKey of the clone-from user and the secret key
 to be used for the new user. Let us call this
 akcValue.
 9) GET(usmUserSpinLock.0) and save in sValue.
 10) SET(usmUserSpinLock.0=sValue,
 usmUserAuthKeyChange=akcValue
 usmUserPublic=randomValue2)
 11) GET(usmUserPulic) and check it has randomValue2.
 If not, repeat steps 9-11.

 If the new user will never use authentication:

 12) SET(usmUserAuthProtocol=usmNoAuthProtocol)

 Finally, activate the new user:

 13) SET(usmUserStatus=active)

 The new user should now be available and ready to be
 used for SNMPv3 communication. Note however that access
 to MIB data must be provided via configuration of the
 SNMP-VIEW-BASED-ACM-MIB.

Blumenthal & Wijnen Standards Track [Page 40]

RFC 3414 USM for SNMPv3 December 2002

 The use of usmUserSpinlock is to avoid conflicts with
 another SNMP command generator application which may
 also be acting on the usmUserTable.
 "
 ::= { usmUser 2 }

usmUserEntry OBJECT-TYPE
 SYNTAX UsmUserEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "A user configured in the SNMP engine’s Local
 Configuration Datastore (LCD) for the User-based
 Security Model.
 "
 INDEX { usmUserEngineID,
 usmUserName
 }
 ::= { usmUserTable 1 }

UsmUserEntry ::= SEQUENCE
 {
 usmUserEngineID SnmpEngineID,
 usmUserName SnmpAdminString,
 usmUserSecurityName SnmpAdminString,
 usmUserCloneFrom RowPointer,
 usmUserAuthProtocol AutonomousType,
 usmUserAuthKeyChange KeyChange,
 usmUserOwnAuthKeyChange KeyChange,
 usmUserPrivProtocol AutonomousType,
 usmUserPrivKeyChange KeyChange,
 usmUserOwnPrivKeyChange KeyChange,
 usmUserPublic OCTET STRING,
 usmUserStorageType StorageType,
 usmUserStatus RowStatus
 }

usmUserEngineID OBJECT-TYPE
 SYNTAX SnmpEngineID
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "An SNMP engine’s administratively-unique identifier.

 In a simple agent, this value is always that agent’s
 own snmpEngineID value.

 The value can also take the value of the snmpEngineID
 of a remote SNMP engine with which this user can
 communicate.

Blumenthal & Wijnen Standards Track [Page 41]

RFC 3414 USM for SNMPv3 December 2002

 "
 ::= { usmUserEntry 1 }

usmUserName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(1..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "A human readable string representing the name of
 the user.

 This is the (User-based Security) Model dependent
 security ID.
 "
 ::= { usmUserEntry 2 }

usmUserSecurityName OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "A human readable string representing the user in
 Security Model independent format.

 The default transformation of the User-based Security
 Model dependent security ID to the securityName and
 vice versa is the identity function so that the
 securityName is the same as the userName.
 "
 ::= { usmUserEntry 3 }

usmUserCloneFrom OBJECT-TYPE
 SYNTAX RowPointer
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "A pointer to another conceptual row in this
 usmUserTable. The user in this other conceptual
 row is called the clone-from user.

 When a new user is created (i.e., a new conceptual
 row is instantiated in this table), the privacy and
 authentication parameters of the new user must be
 cloned from its clone-from user. These parameters are:
 - authentication protocol (usmUserAuthProtocol)
 - privacy protocol (usmUserPrivProtocol)
 They will be copied regardless of what the current
 value is.

 Cloning also causes the initial values of the secret
 authentication key (authKey) and the secret encryption

Blumenthal & Wijnen Standards Track [Page 42]

RFC 3414 USM for SNMPv3 December 2002

 key (privKey) of the new user to be set to the same
 values as the corresponding secrets of the clone-from
 user to allow the KeyChange process to occur as
 required during user creation.

 The first time an instance of this object is set by
 a management operation (either at or after its
 instantiation), the cloning process is invoked.
 Subsequent writes are successful but invoke no
 action to be taken by the receiver.
 The cloning process fails with an ’inconsistentName’
 error if the conceptual row representing the
 clone-from user does not exist or is not in an active
 state when the cloning process is invoked.

 When this object is read, the ZeroDotZero OID
 is returned.
 "
 ::= { usmUserEntry 4 }

usmUserAuthProtocol OBJECT-TYPE
 SYNTAX AutonomousType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "An indication of whether messages sent on behalf of
 this user to/from the SNMP engine identified by
 usmUserEngineID, can be authenticated, and if so,
 the type of authentication protocol which is used.

 An instance of this object is created concurrently
 with the creation of any other object instance for
 the same user (i.e., as part of the processing of
 the set operation which creates the first object
 instance in the same conceptual row).

 If an initial set operation (i.e. at row creation time)
 tries to set a value for an unknown or unsupported
 protocol, then a ’wrongValue’ error must be returned.

 The value will be overwritten/set when a set operation
 is performed on the corresponding instance of
 usmUserCloneFrom.

 Once instantiated, the value of such an instance of
 this object can only be changed via a set operation to
 the value of the usmNoAuthProtocol.

 If a set operation tries to change the value of an

Blumenthal & Wijnen Standards Track [Page 43]

RFC 3414 USM for SNMPv3 December 2002

 existing instance of this object to any value other
 than usmNoAuthProtocol, then an ’inconsistentValue’
 error must be returned.

 If a set operation tries to set the value to the
 usmNoAuthProtocol while the usmUserPrivProtocol value
 in the same row is not equal to usmNoPrivProtocol,
 then an ’inconsistentValue’ error must be returned.
 That means that an SNMP command generator application
 must first ensure that the usmUserPrivProtocol is set
 to the usmNoPrivProtocol value before it can set
 the usmUserAuthProtocol value to usmNoAuthProtocol.
 "
 DEFVAL { usmNoAuthProtocol }
 ::= { usmUserEntry 5 }

usmUserAuthKeyChange OBJECT-TYPE
 SYNTAX KeyChange -- typically (SIZE (0 | 32)) for HMACMD5
 -- typically (SIZE (0 | 40)) for HMACSHA
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "An object, which when modified, causes the secret
 authentication key used for messages sent on behalf
 of this user to/from the SNMP engine identified by
 usmUserEngineID, to be modified via a one-way
 function.

 The associated protocol is the usmUserAuthProtocol.
 The associated secret key is the user’s secret
 authentication key (authKey). The associated hash
 algorithm is the algorithm used by the user’s
 usmUserAuthProtocol.

 When creating a new user, it is an ’inconsistentName’
 error for a set operation to refer to this object
 unless it is previously or concurrently initialized
 through a set operation on the corresponding instance
 of usmUserCloneFrom.

 When the value of the corresponding usmUserAuthProtocol
 is usmNoAuthProtocol, then a set is successful, but
 effectively is a no-op.

 When this object is read, the zero-length (empty)
 string is returned.

 The recommended way to do a key change is as follows:

Blumenthal & Wijnen Standards Track [Page 44]

RFC 3414 USM for SNMPv3 December 2002

 1) GET(usmUserSpinLock.0) and save in sValue.
 2) generate the keyChange value based on the old
 (existing) secret key and the new secret key,
 let us call this kcValue.

 If you do the key change on behalf of another user:

 3) SET(usmUserSpinLock.0=sValue,
 usmUserAuthKeyChange=kcValue
 usmUserPublic=randomValue)

 If you do the key change for yourself:

 4) SET(usmUserSpinLock.0=sValue,
 usmUserOwnAuthKeyChange=kcValue
 usmUserPublic=randomValue)

 If you get a response with error-status of noError,
 then the SET succeeded and the new key is active.
 If you do not get a response, then you can issue a
 GET(usmUserPublic) and check if the value is equal
 to the randomValue you did send in the SET. If so, then
 the key change succeeded and the new key is active
 (probably the response got lost). If not, then the SET
 request probably never reached the target and so you
 can start over with the procedure above.
 "
 DEFVAL { ’’H } -- the empty string
 ::= { usmUserEntry 6 }

usmUserOwnAuthKeyChange OBJECT-TYPE
 SYNTAX KeyChange -- typically (SIZE (0 | 32)) for HMACMD5
 -- typically (SIZE (0 | 40)) for HMACSHA
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "Behaves exactly as usmUserAuthKeyChange, with one
 notable difference: in order for the set operation
 to succeed, the usmUserName of the operation
 requester must match the usmUserName that
 indexes the row which is targeted by this
 operation.
 In addition, the USM security model must be
 used for this operation.

 The idea here is that access to this column can be
 public, since it will only allow a user to change
 his own secret authentication key (authKey).
 Note that this can only be done once the row is active.

Blumenthal & Wijnen Standards Track [Page 45]

RFC 3414 USM for SNMPv3 December 2002

 When a set is received and the usmUserName of the
 requester is not the same as the umsUserName that
 indexes the row which is targeted by this operation,
 then a ’noAccess’ error must be returned.

 When a set is received and the security model in use
 is not USM, then a ’noAccess’ error must be returned.
 "
 DEFVAL { ’’H } -- the empty string
 ::= { usmUserEntry 7 }

usmUserPrivProtocol OBJECT-TYPE
 SYNTAX AutonomousType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "An indication of whether messages sent on behalf of
 this user to/from the SNMP engine identified by
 usmUserEngineID, can be protected from disclosure,
 and if so, the type of privacy protocol which is used.

 An instance of this object is created concurrently
 with the creation of any other object instance for
 the same user (i.e., as part of the processing of
 the set operation which creates the first object
 instance in the same conceptual row).

 If an initial set operation (i.e. at row creation time)
 tries to set a value for an unknown or unsupported
 protocol, then a ’wrongValue’ error must be returned.

 The value will be overwritten/set when a set operation
 is performed on the corresponding instance of
 usmUserCloneFrom.

 Once instantiated, the value of such an instance of
 this object can only be changed via a set operation to
 the value of the usmNoPrivProtocol.

 If a set operation tries to change the value of an
 existing instance of this object to any value other
 than usmNoPrivProtocol, then an ’inconsistentValue’
 error must be returned.

 Note that if any privacy protocol is used, then you
 must also use an authentication protocol. In other
 words, if usmUserPrivProtocol is set to anything else
 than usmNoPrivProtocol, then the corresponding instance
 of usmUserAuthProtocol cannot have a value of

Blumenthal & Wijnen Standards Track [Page 46]

RFC 3414 USM for SNMPv3 December 2002

 usmNoAuthProtocol. If it does, then an
 ’inconsistentValue’ error must be returned.
 "
 DEFVAL { usmNoPrivProtocol }
 ::= { usmUserEntry 8 }

usmUserPrivKeyChange OBJECT-TYPE
 SYNTAX KeyChange -- typically (SIZE (0 | 32)) for DES
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "An object, which when modified, causes the secret
 encryption key used for messages sent on behalf
 of this user to/from the SNMP engine identified by
 usmUserEngineID, to be modified via a one-way
 function.

 The associated protocol is the usmUserPrivProtocol.
 The associated secret key is the user’s secret
 privacy key (privKey). The associated hash
 algorithm is the algorithm used by the user’s
 usmUserAuthProtocol.

 When creating a new user, it is an ’inconsistentName’
 error for a set operation to refer to this object
 unless it is previously or concurrently initialized
 through a set operation on the corresponding instance
 of usmUserCloneFrom.

 When the value of the corresponding usmUserPrivProtocol
 is usmNoPrivProtocol, then a set is successful, but
 effectively is a no-op.

 When this object is read, the zero-length (empty)
 string is returned.
 See the description clause of usmUserAuthKeyChange for
 a recommended procedure to do a key change.
 "
 DEFVAL { ’’H } -- the empty string
 ::= { usmUserEntry 9 }

usmUserOwnPrivKeyChange OBJECT-TYPE
 SYNTAX KeyChange -- typically (SIZE (0 | 32)) for DES
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "Behaves exactly as usmUserPrivKeyChange, with one
 notable difference: in order for the Set operation
 to succeed, the usmUserName of the operation
 requester must match the usmUserName that indexes

Blumenthal & Wijnen Standards Track [Page 47]

RFC 3414 USM for SNMPv3 December 2002

 the row which is targeted by this operation.
 In addition, the USM security model must be
 used for this operation.

 The idea here is that access to this column can be
 public, since it will only allow a user to change
 his own secret privacy key (privKey).
 Note that this can only be done once the row is active.

 When a set is received and the usmUserName of the
 requester is not the same as the umsUserName that
 indexes the row which is targeted by this operation,
 then a ’noAccess’ error must be returned.

 When a set is received and the security model in use
 is not USM, then a ’noAccess’ error must be returned.
 "
 DEFVAL { ’’H } -- the empty string
 ::= { usmUserEntry 10 }

usmUserPublic OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE(0..32))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "A publicly-readable value which can be written as part
 of the procedure for changing a user’s secret
 authentication and/or privacy key, and later read to
 determine whether the change of the secret was
 effected.
 "
 DEFVAL { ’’H } -- the empty string
 ::= { usmUserEntry 11 }

usmUserStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "The storage type for this conceptual row.

 Conceptual rows having the value ’permanent’ must
 allow write-access at a minimum to:

 - usmUserAuthKeyChange, usmUserOwnAuthKeyChange
 and usmUserPublic for a user who employs
 authentication, and
 - usmUserPrivKeyChange, usmUserOwnPrivKeyChange
 and usmUserPublic for a user who employs
 privacy.

Blumenthal & Wijnen Standards Track [Page 48]

RFC 3414 USM for SNMPv3 December 2002

 Note that any user who employs authentication or
 privacy must allow its secret(s) to be updated and
 thus cannot be ’readOnly’.

 If an initial set operation tries to set the value to
 ’readOnly’ for a user who employs authentication or
 privacy, then an ’inconsistentValue’ error must be
 returned. Note that if the value has been previously
 set (implicit or explicit) to any value, then the rules
 as defined in the StorageType Textual Convention apply.

 It is an implementation issue to decide if a SET for
 a readOnly or permanent row is accepted at all. In some
 contexts this may make sense, in others it may not. If
 a SET for a readOnly or permanent row is not accepted
 at all, then a ’wrongValue’ error must be returned.
 "
 DEFVAL { nonVolatile }
 ::= { usmUserEntry 12 }

usmUserStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "The status of this conceptual row.

 Until instances of all corresponding columns are
 appropriately configured, the value of the
 corresponding instance of the usmUserStatus column
 is ’notReady’.

 In particular, a newly created row for a user who
 employs authentication, cannot be made active until the
 corresponding usmUserCloneFrom and usmUserAuthKeyChange
 have been set.

 Further, a newly created row for a user who also
 employs privacy, cannot be made active until the
 usmUserPrivKeyChange has been set.

 The RowStatus TC [RFC2579] requires that this
 DESCRIPTION clause states under which circumstances
 other objects in this row can be modified:

 The value of this object has no effect on whether
 other objects in this conceptual row can be modified,
 except for usmUserOwnAuthKeyChange and
 usmUserOwnPrivKeyChange. For these 2 objects, the

Blumenthal & Wijnen Standards Track [Page 49]

RFC 3414 USM for SNMPv3 December 2002

 value of usmUserStatus MUST be active.
 "
 ::= { usmUserEntry 13 }

-- Conformance Information ***

usmMIBCompliances OBJECT IDENTIFIER ::= { usmMIBConformance 1 }
usmMIBGroups OBJECT IDENTIFIER ::= { usmMIBConformance 2 }

-- Compliance statements

usmMIBCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION "The compliance statement for SNMP engines which
 implement the SNMP-USER-BASED-SM-MIB.
 "

 MODULE -- this module
 MANDATORY-GROUPS { usmMIBBasicGroup }

 OBJECT usmUserAuthProtocol
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

 OBJECT usmUserPrivProtocol
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

 ::= { usmMIBCompliances 1 }

-- Units of compliance
usmMIBBasicGroup OBJECT-GROUP
 OBJECTS {
 usmStatsUnsupportedSecLevels,
 usmStatsNotInTimeWindows,
 usmStatsUnknownUserNames,
 usmStatsUnknownEngineIDs,
 usmStatsWrongDigests,
 usmStatsDecryptionErrors,
 usmUserSpinLock,
 usmUserSecurityName,
 usmUserCloneFrom,
 usmUserAuthProtocol,
 usmUserAuthKeyChange,
 usmUserOwnAuthKeyChange,
 usmUserPrivProtocol,
 usmUserPrivKeyChange,
 usmUserOwnPrivKeyChange,

Blumenthal & Wijnen Standards Track [Page 50]

RFC 3414 USM for SNMPv3 December 2002

 usmUserPublic,
 usmUserStorageType,
 usmUserStatus
 }
 STATUS current
 DESCRIPTION "A collection of objects providing for configuration
 of an SNMP engine which implements the SNMP
 User-based Security Model.
 "
 ::= { usmMIBGroups 1 }

END

6. HMAC-MD5-96 Authentication Protocol

 This section describes the HMAC-MD5-96 authentication protocol. This
 authentication protocol is the first defined for the User-based
 Security Model. It uses MD5 hash-function which is described in
 [RFC1321], in HMAC mode described in [RFC2104], truncating the output
 to 96 bits.

 This protocol is identified by usmHMACMD5AuthProtocol.

 Over time, other authentication protocols may be defined either as a
 replacement of this protocol or in addition to this protocol.

6.1. Mechanisms

 - In support of data integrity, a message digest algorithm is
 required. A digest is calculated over an appropriate portion of an
 SNMP message and included as part of the message sent to the
 recipient.

 - In support of data origin authentication and data integrity, a
 secret value is prepended to SNMP message prior to computing the
 digest; the calculated digest is partially inserted into the SNMP
 message prior to transmission, and the prepended value is not
 transmitted. The secret value is shared by all SNMP engines
 authorized to originate messages on behalf of the appropriate user.

6.1.1. Digest Authentication Mechanism

 The Digest Authentication Mechanism defined in this memo provides
 for:

 - verification of the integrity of a received message, i.e., the
 message received is the message sent.

Blumenthal & Wijnen Standards Track [Page 51]

RFC 3414 USM for SNMPv3 December 2002

 The integrity of the message is protected by computing a digest
 over an appropriate portion of the message. The digest is computed
 by the originator of the message, transmitted with the message, and
 verified by the recipient of the message.

 - verification of the user on whose behalf the message was generated.

 A secret value known only to SNMP engines authorized to generate
 messages on behalf of a user is used in HMAC mode (see [RFC2104]).
 It also recommends the hash-function output used as Message
 Authentication Code, to be truncated.

 This protocol uses the MD5 [RFC1321] message digest algorithm. A
 128-bit MD5 digest is calculated in a special (HMAC) way over the
 designated portion of an SNMP message and the first 96 bits of this
 digest is included as part of the message sent to the recipient. The
 size of the digest carried in a message is 12 octets. The size of
 the private authentication key (the secret) is 16 octets. For the
 details see section 6.3.

6.2. Elements of the Digest Authentication Protocol

 This section contains definitions required to realize the
 authentication module defined in this section of this memo.

6.2.1. Users

 Authentication using this authentication protocol makes use of a
 defined set of userNames. For any user on whose behalf a message
 must be authenticated at a particular SNMP engine, that SNMP engine
 must have knowledge of that user. An SNMP engine that wishes to
 communicate with another SNMP engine must also have knowledge of a
 user known to that engine, including knowledge of the applicable
 attributes of that user.

 A user and its attributes are defined as follows:

 <userName>
 A string representing the name of the user.
 <authKey>
 A user’s secret key to be used when calculating a digest.
 It MUST be 16 octets long for MD5.

Blumenthal & Wijnen Standards Track [Page 52]

RFC 3414 USM for SNMPv3 December 2002

6.2.2. msgAuthoritativeEngineID

 The msgAuthoritativeEngineID value contained in an authenticated
 message specifies the authoritative SNMP engine for that particular
 message (see the definition of SnmpEngineID in the SNMP Architecture
 document [RFC3411]).

 The user’s (private) authentication key is normally different at each
 authoritative SNMP engine and so the snmpEngineID is used to select
 the proper key for the authentication process.

6.2.3. SNMP Messages Using this Authentication Protocol

 Messages using this authentication protocol carry a
 msgAuthenticationParameters field as part of the
 msgSecurityParameters. For this protocol, the
 msgAuthenticationParameters field is the serialized OCTET STRING
 representing the first 12 octets of the HMAC-MD5-96 output done over
 the wholeMsg.

 The digest is calculated over the wholeMsg so if a message is
 authenticated, that also means that all the fields in the message are
 intact and have not been tampered with.

6.2.4. Services provided by the HMAC-MD5-96 Authentication Module

 This section describes the inputs and outputs that the HMAC-MD5-96
 Authentication module expects and produces when the User-based
 Security module calls the HMAC-MD5-96 Authentication module for
 services.

6.2.4.1. Services for Generating an Outgoing SNMP Message

 The HMAC-MD5-96 authentication protocol assumes that the selection of
 the authKey is done by the caller and that the caller passes the
 secret key to be used.

 Upon completion the authentication module returns statusInformation
 and, if the message digest was correctly calculated, the wholeMsg
 with the digest inserted at the proper place. The abstract service
 primitive is:

 statusInformation = -- success or failure
 authenticateOutgoingMsg(
 IN authKey -- secret key for authentication
 IN wholeMsg -- unauthenticated complete message
 OUT authenticatedWholeMsg -- complete authenticated message
)

Blumenthal & Wijnen Standards Track [Page 53]

RFC 3414 USM for SNMPv3 December 2002

 The abstract data elements are:

 statusInformation
 An indication of whether the authentication process was successful.
 If not it is an indication of the problem.

 authKey
 The secret key to be used by the authentication algorithm. The
 length of this key MUST be 16 octets.

 wholeMsg
 The message to be authenticated.

 authenticatedWholeMsg
 The authenticated message (including inserted digest) on output.

 Note, that authParameters field is filled by the authentication
 module and this module and this field should be already present in
 the wholeMsg before the Message Authentication Code (MAC) is
 generated.

6.2.4.2. Services for Processing an Incoming SNMP Message

 The HMAC-MD5-96 authentication protocol assumes that the selection of
 the authKey is done by the caller and that the caller passes the
 secret key to be used.

 Upon completion the authentication module returns statusInformation
 and, if the message digest was correctly calculated, the wholeMsg as
 it was processed. The abstract service primitive is:

 statusInformation = -- success or failure
 authenticateIncomingMsg(
 IN authKey -- secret key for authentication
 IN authParameters -- as received on the wire
 IN wholeMsg -- as received on the wire
 OUT authenticatedWholeMsg -- complete authenticated message
)

 The abstract data elements are:

 statusInformation
 An indication of whether the authentication process was successful.
 If not it is an indication of the problem.

 authKey
 The secret key to be used by the authentication algorithm. The
 length of this key MUST be 16 octets.

Blumenthal & Wijnen Standards Track [Page 54]

RFC 3414 USM for SNMPv3 December 2002

 authParameters
 The authParameters from the incoming message.

 wholeMsg
 The message to be authenticated on input and the authenticated
 message on output.

 authenticatedWholeMsg
 The whole message after the authentication check is complete.

6.3. Elements of Procedure

 This section describes the procedures for the HMAC-MD5-96
 authentication protocol.

6.3.1. Processing an Outgoing Message

 This section describes the procedure followed by an SNMP engine
 whenever it must authenticate an outgoing message using the
 usmHMACMD5AuthProtocol.

 1) The msgAuthenticationParameters field is set to the serialization,
 according to the rules in [RFC3417], of an OCTET STRING containing
 12 zero octets.

 2) From the secret authKey, two keys K1 and K2 are derived:

 a) extend the authKey to 64 octets by appending 48 zero octets;
 save it as extendedAuthKey

 b) obtain IPAD by replicating the octet 0x36 64 times;

 c) obtain K1 by XORing extendedAuthKey with IPAD;

 d) obtain OPAD by replicating the octet 0x5C 64 times;

 e) obtain K2 by XORing extendedAuthKey with OPAD.

 3) Prepend K1 to the wholeMsg and calculate MD5 digest over it
 according to [RFC1321].

 4) Prepend K2 to the result of the step 4 and calculate MD5 digest
 over it according to [RFC1321]. Take the first 12 octets of the
 final digest - this is Message Authentication Code (MAC).

 5) Replace the msgAuthenticationParameters field with MAC obtained in
 the step 4.

Blumenthal & Wijnen Standards Track [Page 55]

RFC 3414 USM for SNMPv3 December 2002

 6) The authenticatedWholeMsg is then returned to the caller together
 with statusInformation indicating success.

6.3.2. Processing an Incoming Message

 This section describes the procedure followed by an SNMP engine
 whenever it must authenticate an incoming message using the
 usmHMACMD5AuthProtocol.

 1) If the digest received in the msgAuthenticationParameters field is
 not 12 octets long, then an failure and an errorIndication
 (authenticationError) is returned to the calling module.

 2) The MAC received in the msgAuthenticationParameters field is
 saved.

 3) The digest in the msgAuthenticationParameters field is replaced by
 the 12 zero octets.

 4) From the secret authKey, two keys K1 and K2 are derived:

 a) extend the authKey to 64 octets by appending 48 zero octets;
 save it as extendedAuthKey

 b) obtain IPAD by replicating the octet 0x36 64 times;

 c) obtain K1 by XORing extendedAuthKey with IPAD;

 d) obtain OPAD by replicating the octet 0x5C 64 times;

 e) obtain K2 by XORing extendedAuthKey with OPAD.

 5) The MAC is calculated over the wholeMsg:

 a) prepend K1 to the wholeMsg and calculate the MD5 digest over
 it;

 b) prepend K2 to the result of step 5.a and calculate the MD5
 digest over it;

 c) first 12 octets of the result of step 5.b is the MAC.

 The msgAuthenticationParameters field is replaced with the MAC
 value that was saved in step 2.

Blumenthal & Wijnen Standards Track [Page 56]

RFC 3414 USM for SNMPv3 December 2002

 6) Then the newly calculated MAC is compared with the MAC saved in
 step 2. If they do not match, then an failure and an
 errorIndication (authenticationFailure) is returned to the calling
 module.

 7) The authenticatedWholeMsg and statusInformation indicating success
 are then returned to the caller.

7. HMAC-SHA-96 Authentication Protocol

 This section describes the HMAC-SHA-96 authentication protocol. This
 protocol uses the SHA hash-function which is described in [SHA-NIST],
 in HMAC mode described in [RFC2104], truncating the output to 96
 bits.

 This protocol is identified by usmHMACSHAAuthProtocol.

 Over time, other authentication protocols may be defined either as a
 replacement of this protocol or in addition to this protocol.

7.1. Mechanisms

 - In support of data integrity, a message digest algorithm is
 required. A digest is calculated over an appropriate portion of an
 SNMP message and included as part of the message sent to the
 recipient.

 - In support of data origin authentication and data integrity, a
 secret value is prepended to the SNMP message prior to computing
 the digest; the calculated digest is then partially inserted into
 the message prior to transmission. The prepended secret is not
 transmitted. The secret value is shared by all SNMP engines
 authorized to originate messages on behalf of the appropriate user.

7.1.1. Digest Authentication Mechanism

 The Digest Authentication Mechanism defined in this memo provides
 for:

 - verification of the integrity of a received message, i.e., the
 message received is the message sent.

 The integrity of the message is protected by computing a digest
 over an appropriate portion of the message. The digest is computed
 by the originator of the message, transmitted with the message, and
 verified by the recipient of the message.

Blumenthal & Wijnen Standards Track [Page 57]

RFC 3414 USM for SNMPv3 December 2002

 - verification of the user on whose behalf the message was generated.

 A secret value known only to SNMP engines authorized to generate
 messages on behalf of a user is used in HMAC mode (see [RFC2104]).
 It also recommends the hash-function output used as Message
 Authentication Code, to be truncated.

 This mechanism uses the SHA [SHA-NIST] message digest algorithm. A
 160-bit SHA digest is calculated in a special (HMAC) way over the
 designated portion of an SNMP message and the first 96 bits of this
 digest is included as part of the message sent to the recipient. The
 size of the digest carried in a message is 12 octets. The size of
 the private authentication key (the secret) is 20 octets. For the
 details see section 7.3.

7.2. Elements of the HMAC-SHA-96 Authentication Protocol

 This section contains definitions required to realize the
 authentication module defined in this section of this memo.

7.2.1. Users

 Authentication using this authentication protocol makes use of a
 defined set of userNames. For any user on whose behalf a message
 must be authenticated at a particular SNMP engine, that SNMP engine
 must have knowledge of that user. An SNMP engine that wishes to
 communicate with another SNMP engine must also have knowledge of a
 user known to that engine, including knowledge of the applicable
 attributes of that user.

 A user and its attributes are defined as follows:

 <userName>
 A string representing the name of the user.
 <authKey>
 A user’s secret key to be used when calculating a digest.
 It MUST be 20 octets long for SHA.

7.2.2. msgAuthoritativeEngineID

 The msgAuthoritativeEngineID value contained in an authenticated
 message specifies the authoritative SNMP engine for that particular
 message (see the definition of SnmpEngineID in the SNMP Architecture
 document [RFC3411]).

 The user’s (private) authentication key is normally different at each
 authoritative SNMP engine and so the snmpEngineID is used to select
 the proper key for the authentication process.

Blumenthal & Wijnen Standards Track [Page 58]

RFC 3414 USM for SNMPv3 December 2002

7.2.3. SNMP Messages Using this Authentication Protocol

 Messages using this authentication protocol carry a
 msgAuthenticationParameters field as part of the
 msgSecurityParameters. For this protocol, the
 msgAuthenticationParameters field is the serialized OCTET STRING
 representing the first 12 octets of HMAC-SHA-96 output done over the
 wholeMsg.

 The digest is calculated over the wholeMsg so if a message is
 authenticated, that also means that all the fields in the message are
 intact and have not been tampered with.

7.2.4. Services Provided by the HMAC-SHA-96 Authentication Module

 This section describes the inputs and outputs that the HMAC-SHA-96
 Authentication module expects and produces when the User-based
 Security module calls the HMAC-SHA-96 Authentication module for
 services.

7.2.4.1. Services for Generating an Outgoing SNMP Message

 HMAC-SHA-96 authentication protocol assumes that the selection of the
 authKey is done by the caller and that the caller passes the secret
 key to be used.

 Upon completion the authentication module returns statusInformation
 and, if the message digest was correctly calculated, the wholeMsg
 with the digest inserted at the proper place. The abstract service
 primitive is:

 statusInformation = -- success or failure
 authenticateOutgoingMsg(
 IN authKey -- secret key for authentication
 IN wholeMsg -- unauthenticated complete message
 OUT authenticatedWholeMsg -- complete authenticated message
)

 The abstract data elements are:

 statusInformation
 An indication of whether the authentication process was successful.
 If not it is an indication of the problem.

 authKey
 The secret key to be used by the authentication algorithm. The
 length of this key MUST be 20 octets.

Blumenthal & Wijnen Standards Track [Page 59]

RFC 3414 USM for SNMPv3 December 2002

 wholeMsg
 The message to be authenticated.

 authenticatedWholeMsg
 The authenticated message (including inserted digest) on output.

 Note, that authParameters field is filled by the authentication
 module and this field should be already present in the wholeMsg
 before the Message Authentication Code (MAC) is generated.

7.2.4.2. Services for Processing an Incoming SNMP Message

 HMAC-SHA-96 authentication protocol assumes that the selection of the
 authKey is done by the caller and that the caller passes the secret
 key to be used.

 Upon completion the authentication module returns statusInformation
 and, if the message digest was correctly calculated, the wholeMsg as
 it was processed. The abstract service primitive is:

 statusInformation = -- success or failure
 authenticateIncomingMsg(
 IN authKey -- secret key for authentication
 IN authParameters -- as received on the wire
 IN wholeMsg -- as received on the wire
 OUT authenticatedWholeMsg -- complete authenticated message
)

 The abstract data elements are:

 statusInformation
 An indication of whether the authentication process was successful.
 If not it is an indication of the problem.

 authKey
 The secret key to be used by the authentication algorithm. The
 length of this key MUST be 20 octets.

 authParameters
 The authParameters from the incoming message.

 wholeMsg
 The message to be authenticated on input and the authenticated
 message on output.

 authenticatedWholeMsg
 The whole message after the authentication check is complete.

Blumenthal & Wijnen Standards Track [Page 60]

RFC 3414 USM for SNMPv3 December 2002

7.3. Elements of Procedure

 This section describes the procedures for the HMAC-SHA-96
 authentication protocol.

7.3.1. Processing an Outgoing Message

 This section describes the procedure followed by an SNMP engine
 whenever it must authenticate an outgoing message using the
 usmHMACSHAAuthProtocol.

 1) The msgAuthenticationParameters field is set to the serialization,
 according to the rules in [RFC3417], of an OCTET STRING containing
 12 zero octets.

 2) From the secret authKey, two keys K1 and K2 are derived:

 a) extend the authKey to 64 octets by appending 44 zero octets;
 save it as extendedAuthKey

 b) obtain IPAD by replicating the octet 0x36 64 times;

 c) obtain K1 by XORing extendedAuthKey with IPAD;

 d) obtain OPAD by replicating the octet 0x5C 64 times;

 e) obtain K2 by XORing extendedAuthKey with OPAD.

 3) Prepend K1 to the wholeMsg and calculate the SHA digest over it
 according to [SHA-NIST].

 4) Prepend K2 to the result of the step 4 and calculate SHA digest
 over it according to [SHA-NIST]. Take the first 12 octets of the
 final digest - this is Message Authentication Code (MAC).

 5) Replace the msgAuthenticationParameters field with MAC obtained in
 the step 5.

 6) The authenticatedWholeMsg is then returned to the caller together
 with statusInformation indicating success.

7.3.2. Processing an Incoming Message

 This section describes the procedure followed by an SNMP engine
 whenever it must authenticate an incoming message using the
 usmHMACSHAAuthProtocol.

Blumenthal & Wijnen Standards Track [Page 61]

RFC 3414 USM for SNMPv3 December 2002

 1) If the digest received in the msgAuthenticationParameters field is
 not 12 octets long, then an failure and an errorIndication
 (authenticationError) is returned to the calling module.

 2) The MAC received in the msgAuthenticationParameters field is
 saved.

 3) The digest in the msgAuthenticationParameters field is replaced by
 the 12 zero octets.

 4) From the secret authKey, two keys K1 and K2 are derived:

 a) extend the authKey to 64 octets by appending 44 zero octets;
 save it as extendedAuthKey

 b) obtain IPAD by replicating the octet 0x36 64 times;

 c) obtain K1 by XORing extendedAuthKey with IPAD;

 d) obtain OPAD by replicating the octet 0x5C 64 times;

 e) obtain K2 by XORing extendedAuthKey with OPAD.

 5) The MAC is calculated over the wholeMsg:

 a) prepend K1 to the wholeMsg and calculate the SHA digest over
 it;

 b) prepend K2 to the result of step 5.a and calculate the SHA
 digest over it;

 c) first 12 octets of the result of step 5.b is the MAC.

 The msgAuthenticationParameters field is replaced with the MAC
 value that was saved in step 2.

 6) The the newly calculated MAC is compared with the MAC saved in
 step 2. If they do not match, then a failure and an
 errorIndication (authenticationFailure) are returned to the
 calling module.

 7) The authenticatedWholeMsg and statusInformation indicating success
 are then returned to the caller.

Blumenthal & Wijnen Standards Track [Page 62]

RFC 3414 USM for SNMPv3 December 2002

8. CBC-DES Symmetric Encryption Protocol

 This section describes the CBC-DES Symmetric Encryption Protocol.
 This protocol is the first privacy protocol defined for the
 User-based Security Model.

 This protocol is identified by usmDESPrivProtocol.

 Over time, other privacy protocols may be defined either as a
 replacement of this protocol or in addition to this protocol.

8.1. Mechanisms

 - In support of data confidentiality, an encryption algorithm is
 required. An appropriate portion of the message is encrypted prior
 to being transmitted. The User-based Security Model specifies that
 the scopedPDU is the portion of the message that needs to be
 encrypted.

 - A secret value in combination with a timeliness value is used to
 create the en/decryption key and the initialization vector. The
 secret value is shared by all SNMP engines authorized to originate
 messages on behalf of the appropriate user.

8.1.1. Symmetric Encryption Protocol

 The Symmetric Encryption Protocol defined in this memo provides
 support for data confidentiality. The designated portion of an SNMP
 message is encrypted and included as part of the message sent to the
 recipient.

 Two organizations have published specifications defining the DES:
 the National Institute of Standards and Technology (NIST) [DES-NIST]
 and the American National Standards Institute [DES-ANSI]. There is a
 companion Modes of Operation specification for each definition
 ([DESO-NIST] and [DESO-ANSI], respectively).

 The NIST has published three additional documents that implementors
 may find useful.

 - There is a document with guidelines for implementing and using the
 DES, including functional specifications for the DES and its modes
 of operation [DESG-NIST].

 - There is a specification of a validation test suite for the DES
 [DEST-NIST]. The suite is designed to test all aspects of the DES
 and is useful for pinpointing specific problems.

Blumenthal & Wijnen Standards Track [Page 63]

RFC 3414 USM for SNMPv3 December 2002

 - There is a specification of a maintenance test for the DES [DESM-
 NIST]. The test utilizes a minimal amount of data and processing
 to test all components of the DES. It provides a simple yes-or-no
 indication of correct operation and is useful to run as part of an
 initialization step, e.g., when a computer re-boots.

8.1.1.1. DES key and Initialization Vector

 The first 8 octets of the 16-octet secret (private privacy key) are
 used as a DES key. Since DES uses only 56 bits, the Least
 Significant Bit in each octet is disregarded.

 The Initialization Vector for encryption is obtained using the
 following procedure.

 The last 8 octets of the 16-octet secret (private privacy key) are
 used as pre-IV.

 In order to ensure that the IV for two different packets encrypted by
 the same key, are not the same (i.e., the IV does not repeat) we need
 to "salt" the pre-IV with something unique per packet. An 8-octet
 string is used as the "salt". The concatenation of the generating
 SNMP engine’s 32-bit snmpEngineBoots and a local 32-bit integer, that
 the encryption engine maintains, is input to the "salt". The 32-bit
 integer is initialized to an arbitrary value at boot time.

 The 32-bit snmpEngineBoots is converted to the first 4 octets (Most
 Significant Byte first) of our "salt". The 32-bit integer is then
 converted to the last 4 octet (Most Significant Byte first) of our
 "salt". The resulting "salt" is then XOR-ed with the pre-IV to
 obtain the IV. The 8-octet "salt" is then put into the
 privParameters field encoded as an OCTET STRING. The "salt" integer
 is then modified. We recommend that it be incremented by one and
 wrap when it reaches the maximum value.

 How exactly the value of the "salt" (and thus of the IV) varies, is
 an implementation issue, as long as the measures are taken to avoid
 producing a duplicate IV.

 The "salt" must be placed in the privParameters field to enable the
 receiving entity to compute the correct IV and to decrypt the
 message.

Blumenthal & Wijnen Standards Track [Page 64]

RFC 3414 USM for SNMPv3 December 2002

8.1.1.2. Data Encryption

 The data to be encrypted is treated as sequence of octets. Its
 length should be an integral multiple of 8 - and if it is not, the
 data is padded at the end as necessary. The actual pad value is
 irrelevant.

 The data is encrypted in Cipher Block Chaining mode.

 The plaintext is divided into 64-bit blocks.

 The plaintext for each block is XOR-ed with the ciphertext of the
 previous block, the result is encrypted and the output of the
 encryption is the ciphertext for the block. This procedure is
 repeated until there are no more plaintext blocks.

 For the very first block, the Initialization Vector is used instead
 of the ciphertext of the previous block.

8.1.1.3. Data Decryption

 Before decryption, the encrypted data length is verified. If the
 length of the OCTET STRING to be decrypted is not an integral
 multiple of 8 octets, the decryption process is halted and an
 appropriate exception noted. When decrypting, the padding is
 ignored.

 The first ciphertext block is decrypted, the decryption output is
 XOR-ed with the Initialization Vector, and the result is the first
 plaintext block.

 For each subsequent block, the ciphertext block is decrypted, the
 decryption output is XOR-ed with the previous ciphertext block and
 the result is the plaintext block.

8.2. Elements of the DES Privacy Protocol

 This section contains definitions required to realize the privacy
 module defined by this memo.

8.2.1. Users

 Data en/decryption using this Symmetric Encryption Protocol makes use
 of a defined set of userNames. For any user on whose behalf a
 message must be en/decrypted at a particular SNMP engine, that SNMP
 engine must have knowledge of that user. An SNMP engine that wishes

Blumenthal & Wijnen Standards Track [Page 65]

RFC 3414 USM for SNMPv3 December 2002

 to communicate with another SNMP engine must also have knowledge of a
 user known to that SNMP engine, including knowledge of the applicable
 attributes of that user.

 A user and its attributes are defined as follows:

 <userName>
 An octet string representing the name of the user.

 <privKey>
 A user’s secret key to be used as input for the DES key and IV.
 The length of this key MUST be 16 octets.

8.2.2. msgAuthoritativeEngineID

 The msgAuthoritativeEngineID value contained in an authenticated
 message specifies the authoritative SNMP engine for that particular
 message (see the definition of SnmpEngineID in the SNMP Architecture
 document [RFC3411]).

 The user’s (private) privacy key is normally different at each
 authoritative SNMP engine and so the snmpEngineID is used to select
 the proper key for the en/decryption process.

8.2.3. SNMP Messages Using this Privacy Protocol

 Messages using this privacy protocol carry a msgPrivacyParameters
 field as part of the msgSecurityParameters. For this protocol, the
 msgPrivacyParameters field is the serialized OCTET STRING
 representing the "salt" that was used to create the IV.

8.2.4. Services Provided by the DES Privacy Module

 This section describes the inputs and outputs that the DES Privacy
 module expects and produces when the User-based Security module
 invokes the DES Privacy module for services.

8.2.4.1. Services for Encrypting Outgoing Data

 This DES privacy protocol assumes that the selection of the privKey
 is done by the caller and that the caller passes the secret key to be
 used.

 Upon completion the privacy module returns statusInformation and, if
 the encryption process was successful, the encryptedPDU and the
 msgPrivacyParameters encoded as an OCTET STRING. The abstract
 service primitive is:

Blumenthal & Wijnen Standards Track [Page 66]

RFC 3414 USM for SNMPv3 December 2002

 statusInformation = -- success of failure
 encryptData(
 IN encryptKey -- secret key for encryption
 IN dataToEncrypt -- data to encrypt (scopedPDU)
 OUT encryptedData -- encrypted data (encryptedPDU)
 OUT privParameters -- filled in by service provider
)

 The abstract data elements are:

 statusInformation
 An indication of the success or failure of the encryption process.
 In case of failure, it is an indication of the error.

 encryptKey
 The secret key to be used by the encryption algorithm. The length
 of this key MUST be 16 octets.

 dataToEncrypt
 The data that must be encrypted.

 encryptedData
 The encrypted data upon successful completion.

 privParameters
 The privParameters encoded as an OCTET STRING.

8.2.4.2. Services for Decrypting Incoming Data

 This DES privacy protocol assumes that the selection of the privKey
 is done by the caller and that the caller passes the secret key to be
 used.

 Upon completion the privacy module returns statusInformation and, if
 the decryption process was successful, the scopedPDU in plain text.
 The abstract service primitive is:

 statusInformation =
 decryptData(
 IN decryptKey -- secret key for decryption
 IN privParameters -- as received on the wire
 IN encryptedData -- encrypted data (encryptedPDU)
 OUT decryptedData -- decrypted data (scopedPDU)
)

Blumenthal & Wijnen Standards Track [Page 67]

RFC 3414 USM for SNMPv3 December 2002

 The abstract data elements are:

 statusInformation
 An indication whether the data was successfully decrypted and if
 not an indication of the error.

 decryptKey
 The secret key to be used by the decryption algorithm. The length
 of this key MUST be 16 octets.

 privParameters
 The "salt" to be used to calculate the IV.

 encryptedData
 The data to be decrypted.

 decryptedData
 The decrypted data.

8.3. Elements of Procedure.

 This section describes the procedures for the DES privacy protocol.

8.3.1. Processing an Outgoing Message

 This section describes the procedure followed by an SNMP engine
 whenever it must encrypt part of an outgoing message using the
 usmDESPrivProtocol.

 1) The secret cryptKey is used to construct the DES encryption key,
 the "salt" and the DES pre-IV (from which the IV is computed as
 described in section 8.1.1.1).

 2) The privParameters field is set to the serialization according to
 the rules in [RFC3417] of an OCTET STRING representing the "salt"
 string.

 3) The scopedPDU is encrypted (as described in section 8.1.1.2)
 and the encrypted data is serialized according to the rules in
 [RFC3417] as an OCTET STRING.

 4) The serialized OCTET STRING representing the encrypted scopedPDU
 together with the privParameters and statusInformation indicating
 success is returned to the calling module.

Blumenthal & Wijnen Standards Track [Page 68]

RFC 3414 USM for SNMPv3 December 2002

8.3.2. Processing an Incoming Message

 This section describes the procedure followed by an SNMP engine
 whenever it must decrypt part of an incoming message using the
 usmDESPrivProtocol.

 1) If the privParameters field is not an 8-octet OCTET STRING, then
 an error indication (decryptionError) is returned to the calling
 module.

 2) The "salt" is extracted from the privParameters field.

 3) The secret cryptKey and the "salt" are then used to construct the
 DES decryption key and pre-IV (from which the IV is computed as
 described in section 8.1.1.1).

 4) The encryptedPDU is then decrypted (as described in section
 8.1.1.3).

 5) If the encryptedPDU cannot be decrypted, then an error indication
 (decryptionError) is returned to the calling module.

 6) The decrypted scopedPDU and statusInformation indicating success
 are returned to the calling module.

9. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Blumenthal & Wijnen Standards Track [Page 69]

RFC 3414 USM for SNMPv3 December 2002

10. Acknowledgements

 This document is the result of the efforts of the SNMPv3 Working
 Group. Some special thanks are in order to the following SNMPv3 WG
 members:

 Harald Tveit Alvestrand (Maxware)
 Dave Battle (SNMP Research, Inc.)
 Alan Beard (Disney Worldwide Services)
 Paul Berrevoets (SWI Systemware/Halcyon Inc.)
 Martin Bjorklund (Ericsson)
 Uri Blumenthal (IBM T.J. Watson Research Center)
 Jeff Case (SNMP Research, Inc.)
 John Curran (BBN)
 Mike Daniele (Compaq Computer Corporation))
 T. Max Devlin (Eltrax Systems)
 John Flick (Hewlett Packard)
 Rob Frye (MCI)
 Wes Hardaker (U.C.Davis, Information Technology - D.C.A.S.)
 David Harrington (Cabletron Systems Inc.)
 Lauren Heintz (BMC Software, Inc.)
 N.C. Hien (IBM T.J. Watson Research Center)
 Michael Kirkham (InterWorking Labs, Inc.)
 Dave Levi (SNMP Research, Inc.)
 Louis A Mamakos (UUNET Technologies Inc.)
 Joe Marzot (Nortel Networks)
 Paul Meyer (Secure Computing Corporation)
 Keith McCloghrie (Cisco Systems)
 Bob Moore (IBM)
 Russ Mundy (TIS Labs at Network Associates)
 Bob Natale (ACE*COMM Corporation)
 Mike O’Dell (UUNET Technologies Inc.)
 Dave Perkins (DeskTalk)
 Peter Polkinghorne (Brunel University)
 Randy Presuhn (BMC Software, Inc.)
 David Reeder (TIS Labs at Network Associates)
 David Reid (SNMP Research, Inc.)
 Aleksey Romanov (Quality Quorum)
 Shawn Routhier (Epilogue)
 Juergen Schoenwaelder (TU Braunschweig)
 Bob Stewart (Cisco Systems)
 Mike Thatcher (Independent Consultant)
 Bert Wijnen (IBM T.J. Watson Research Center)

Blumenthal & Wijnen Standards Track [Page 70]

RFC 3414 USM for SNMPv3 December 2002

 The document is based on recommendations of the IETF Security and
 Administrative Framework Evolution for SNMP Advisory Team. Members
 of that Advisory Team were:

 David Harrington (Cabletron Systems Inc.)
 Jeff Johnson (Cisco Systems)
 David Levi (SNMP Research Inc.)
 John Linn (Openvision)
 Russ Mundy (Trusted Information Systems) chair
 Shawn Routhier (Epilogue)
 Glenn Waters (Nortel)
 Bert Wijnen (IBM T. J. Watson Research Center)

 As recommended by the Advisory Team and the SNMPv3 Working Group
 Charter, the design incorporates as much as practical from previous
 RFCs and drafts. As a result, special thanks are due to the authors
 of previous designs known as SNMPv2u and SNMPv2*:

 Jeff Case (SNMP Research, Inc.)
 David Harrington (Cabletron Systems Inc.)
 David Levi (SNMP Research, Inc.)
 Keith McCloghrie (Cisco Systems)
 Brian O’Keefe (Hewlett Packard)
 Marshall T. Rose (Dover Beach Consulting)
 Jon Saperia (BGS Systems Inc.)
 Steve Waldbusser (International Network Services)
 Glenn W. Waters (Bell-Northern Research Ltd.)

11. Security Considerations

11.1. Recommended Practices

 This section describes practices that contribute to the secure,
 effective operation of the mechanisms defined in this memo.

 - An SNMP engine must discard SNMP Response messages that do not
 correspond to any currently outstanding Request message. It is the
 responsibility of the Message Processing module to take care of
 this. For example it can use a msgID for that.

 An SNMP Command Generator Application must discard any Response
 Class PDU for which there is no currently outstanding Confirmed
 Class PDU; for example for SNMPv2 [RFC3416] PDUs, the request-id
 component in the PDU can be used to correlate Responses to
 outstanding Requests.

Blumenthal & Wijnen Standards Track [Page 71]

RFC 3414 USM for SNMPv3 December 2002

 Although it would be typical for an SNMP engine and an SNMP Command
 Generator Application to do this as a matter of course, when using
 these security protocols it is significant due to the possibility
 of message duplication (malicious or otherwise).

 - If an SNMP engine uses a msgID for correlating Response messages to
 outstanding Request messages, then it MUST use different msgIDs in
 all such Request messages that it sends out during a Time Window
 (150 seconds) period.

 A Command Generator or Notification Originator Application MUST use
 different request-ids in all Request PDUs that it sends out during
 a TimeWindow (150 seconds) period.

 This must be done to protect against the possibility of message
 duplication (malicious or otherwise).

 For example, starting operations with a msgID and/or request-id
 value of zero is not a good idea. Initializing them with an
 unpredictable number (so they do not start out the same after each
 reboot) and then incrementing by one would be acceptable.

 - An SNMP engine should perform time synchronization using
 authenticated messages in order to protect against the possibility
 of message duplication (malicious or otherwise).

 - When sending state altering messages to a managed authoritative
 SNMP engine, a Command Generator Application should delay sending
 successive messages to that managed SNMP engine until a positive
 acknowledgement is received for the previous message or until the
 previous message expires.

 No message ordering is imposed by the SNMP. Messages may be
 received in any order relative to their time of generation and each
 will be processed in the ordered received. Note that when an
 authenticated message is sent to a managed SNMP engine, it will be
 valid for a period of time of approximately 150 seconds under
 normal circumstances, and is subject to replay during this period.
 Indeed, an SNMP engine and SNMP Command Generator Applications must
 cope with the loss and re-ordering of messages resulting from
 anomalies in the network as a matter of course.

 However, a managed object, snmpSetSerialNo [RFC3418], is
 specifically defined for use with SNMP Set operations in order to
 provide a mechanism to ensure that the processing of SNMP messages
 occurs in a specific order.

Blumenthal & Wijnen Standards Track [Page 72]

RFC 3414 USM for SNMPv3 December 2002

 - The frequency with which the secrets of a User-based Security Model
 user should be changed is indirectly related to the frequency of
 their use.

 Protecting the secrets from disclosure is critical to the overall
 security of the protocols. Frequent use of a secret provides a
 continued source of data that may be useful to a cryptanalyst in
 exploiting known or perceived weaknesses in an algorithm. Frequent
 changes to the secret avoid this vulnerability.

 Changing a secret after each use is generally regarded as the most
 secure practice, but a significant amount of overhead may be
 associated with that approach.

 Note, too, in a local environment the threat of disclosure may be
 less significant, and as such the changing of secrets may be less
 frequent. However, when public data networks are used as the
 communication paths, more caution is prudent.

11.2 Defining Users

 The mechanisms defined in this document employ the notion of users on
 whose behalf messages are sent. How "users" are defined is subject
 to the security policy of the network administration. For example,
 users could be individuals (e.g., "joe" or "jane"), or a particular
 role (e.g., "operator" or "administrator"), or a combination (e.g.,
 "joe-operator", "jane-operator" or "joe-admin"). Furthermore, a user
 may be a logical entity, such as an SNMP Application or a set of SNMP
 Applications, acting on behalf of an individual or role, or set of
 individuals, or set of roles, including combinations.

 Appendix A describes an algorithm for mapping a user "password" to a
 16/20 octet value for use as either a user’s authentication key or
 privacy key (or both). Note however, that using the same password
 (and therefore the same key) for both authentication and privacy is
 very poor security practice and should be strongly discouraged.
 Passwords are often generated, remembered, and input by a human.
 Human-generated passwords may be less than the 16/20 octets required
 by the authentication and privacy protocols, and brute force attacks
 can be quite easy on a relatively short ASCII character set.
 Therefore, the algorithm is Appendix A performs a transformation on
 the password. If the Appendix A algorithm is used, SNMP
 implementations (and SNMP configuration applications) must ensure
 that passwords are at least 8 characters in length. Please note that
 longer passwords with repetitive strings may result in exactly the
 same key. For example, a password ’bertbert’ will result in exactly
 the same key as password ’bertbertbert’.

Blumenthal & Wijnen Standards Track [Page 73]

RFC 3414 USM for SNMPv3 December 2002

 Because the Appendix A algorithm uses such passwords (nearly)
 directly, it is very important that they not be easily guessed. It
 is suggested that they be composed of mixed-case alphanumeric and
 punctuation characters that don’t form words or phrases that might be
 found in a dictionary. Longer passwords improve the security of the
 system. Users may wish to input multiword phrases to make their
 password string longer while ensuring that it is memorable.

 Since it is infeasible for human users to maintain different
 passwords for every SNMP engine, but security requirements strongly
 discourage having the same key for more than one SNMP engine, the
 User-based Security Model employs a compromise proposed in
 [Localized-key]. It derives the user keys for the SNMP engines from
 user’s password in such a way that it is practically impossible to
 either determine the user’s password, or user’s key for another SNMP
 engine from any combination of user’s keys on SNMP engines.

 Note however, that if user’s password is disclosed, then key
 localization will not help and network security may be compromised in
 this case. Therefore a user’s password or non-localized key MUST NOT
 be stored on a managed device/node. Instead the localized key SHALL
 be stored (if at all), so that, in case a device does get
 compromised, no other managed or managing devices get compromised.

11.3. Conformance

 To be termed a "Secure SNMP implementation" based on the User-based
 Security Model, an SNMP implementation MUST:

 - implement one or more Authentication Protocol(s). The HMAC-MD5-96
 and HMAC-SHA-96 Authentication Protocols defined in this memo are
 examples of such protocols.

 - to the maximum extent possible, prohibit access to the secret(s) of
 each user about which it maintains information in a Local
 Configuration Datastore (LCD) under all circumstances except as
 required to generate and/or validate SNMP messages with respect to
 that user.

 - implement the key-localization mechanism.

 - implement the SNMP-USER-BASED-SM-MIB.

 In addition, an authoritative SNMP engine SHOULD provide initial
 configuration in accordance with Appendix A.1.

 Implementation of a Privacy Protocol (the DES Symmetric Encryption
 Protocol defined in this memo is one such protocol) is optional.

Blumenthal & Wijnen Standards Track [Page 74]

RFC 3414 USM for SNMPv3 December 2002

11.4. Use of Reports

 The use of unsecure reports (i.e., sending them with a securityLevel
 of noAuthNoPriv) potentially exposes a non-authoritative SNMP engine
 to some form of attacks. Some people consider these denial of
 service attacks, others don’t. An installation should evaluate the
 risk involved before deploying unsecure Report PDUs.

11.5 Access to the SNMP-USER-BASED-SM-MIB

 The objects in this MIB may be considered sensitive in many
 environments. Specifically the objects in the usmUserTable contain
 information about users and their authentication and privacy
 protocols. It is important to closely control (both read and write)
 access to these MIB objects by using appropriately configured Access
 Control models (for example the View-based Access Control Model as
 specified in [RFC3415]).

12. References

12.1 Normative References

 [RFC1321] Rivest, R., "Message Digest Algorithm MD5", RFC 1321,
 April 1992.

 [RFC2104] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC:
 Keyed-Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case,
 J., Rose, M. and S. Waldbusser, "Structure of
 Management Information Version 2 (SMIv2)", STD 58,
 RFC 2578, April 1999.

 [RFC2579] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case,
 J., Rose, M. and S. Waldbusser, "Textual Conventions
 for SMIv2", STD 58, RFC 2579, April 1999.

 [RFC2580] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case,
 J., Rose, M. and S. Waldbusser, "Conformance
 Statements for SMIv2", STD 58, RFC 2580, April 1999.

Blumenthal & Wijnen Standards Track [Page 75]

RFC 3414 USM for SNMPv3 December 2002

 [RFC3411] Harrington, D., Presuhn, R. and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC
 3411, December 2002.

 [RFC3412] Case, J., Harrington, D., Presuhn, R. and B. Wijnen,
 "Message Processing and Dispatching for the Simple
 Network Management Protocol (SNMP)", STD 62, RFC
 3412, December 2002.

 [RFC3415] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-
 based Access Control Model (VACM) for the Simple
 Network Management Protocol (SNMP)", STD 62, RFC
 3415, December 2002.

 [RFC3416] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and
 S. Waldbusser, "Version 2 of the Protocol Operations
 for the Simple Network Management Protocol (SNMP)",
 STD 62, RFC 3416, December 2002.

 [RFC3417] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and
 S. Waldbusser, "Transport Mappings for the Simple
 Network Management Protocol (SNMP)", STD 62, RFC
 3417, December 2002.

 [RFC3418] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and
 S. Waldbusser, "Management Information Base (MIB) for
 the Simple Network Management Protocol (SNMP)", STD
 62, RFC 3418, December 2002.

 [DES-NIST] Data Encryption Standard, National Institute of
 Standards and Technology. Federal Information
 Processing Standard (FIPS) Publication 46-1.
 Supersedes FIPS Publication 46, (January, 1977;
 reaffirmed January, 1988).

 [DESO-NIST] DES Modes of Operation, National Institute of
 Standards and Technology. Federal Information
 Processing Standard (FIPS) Publication 81, (December,
 1980).

 [SHA-NIST] Secure Hash Algorithm. NIST FIPS 180-1, (April, 1995)
 http://csrc.nist.gov/fips/fip180-1.txt (ASCII)
 http://csrc.nist.gov/fips/fip180-1.ps (Postscript)

Blumenthal & Wijnen Standards Track [Page 76]

RFC 3414 USM for SNMPv3 December 2002

12.1 Informative References

 [Localized-Key] U. Blumenthal, N. C. Hien, B. Wijnen "Key Derivation
 for Network Management Applications" IEEE Network
 Magazine, April/May issue, 1997.

 [DES-ANSI] Data Encryption Algorithm, American National
 Standards Institute. ANSI X3.92-1981, (December,
 1980).

 [DESO-ANSI] Data Encryption Algorithm - Modes of Operation,
 American National Standards Institute. ANSI X3.106-
 1983, (May 1983).

 [DESG-NIST] Guidelines for Implementing and Using the NBS Data
 Encryption Standard, National Institute of Standards
 and Technology. Federal Information Processing
 Standard (FIPS) Publication 74, (April, 1981).

 [DEST-NIST] Validating the Correctness of Hardware
 Implementations of the NBS Data Encryption Standard,
 National Institute of Standards and Technology.
 Special Publication 500-20.

 [DESM-NIST] Maintenance Testing for the Data Encryption Standard,
 National Institute of Standards and Technology.
 Special Publication 500-61, (August, 1980).

 [RFC3174] Eastlake, D. 3rd and P. Jones, "US Secure Hash
 Algorithm 1 (SHA1)", RFC 3174, September 2001.

Blumenthal & Wijnen Standards Track [Page 77]

RFC 3414 USM for SNMPv3 December 2002

APPENDIX A - Installation

A.1. SNMP engine Installation Parameters

 During installation, an authoritative SNMP engine SHOULD (in the
 meaning as defined in [RFC2119]) be configured with several initial
 parameters. These include:

 1) A Security Posture

 The choice of security posture determines if initial configuration
 is implemented and if so how. One of three possible choices is
 selected:

 minimum-secure,
 semi-secure,
 very-secure (i.e., no-initial-configuration)

 In the case of a very-secure posture, there is no initial
 configuration, and so the following steps are irrelevant.

 2) One or More Secrets

 These are the authentication/privacy secrets for the first user to
 be configured.

 One way to accomplish this is to have the installer enter a
 "password" for each required secret. The password is then
 algorithmically converted into the required secret by:

 - forming a string of length 1,048,576 octets by repeating the
 value of the password as often as necessary, truncating
 accordingly, and using the resulting string as the input to the
 MD5 algorithm [RFC1321]. The resulting digest, termed
 "digest1", is used in the next step.

 - a second string is formed by concatenating digest1, the SNMP
 engine’s snmpEngineID value, and digest1. This string is used
 as input to the MD5 algorithm [RFC1321].

 The resulting digest is the required secret (see Appendix A.2).

Blumenthal & Wijnen Standards Track [Page 78]

RFC 3414 USM for SNMPv3 December 2002

 With these configured parameters, the SNMP engine instantiates the
 following usmUserEntry in the usmUserTable:

 no privacy support privacy support
 ------------------ ---------------
 usmUserEngineID localEngineID localEngineID
 usmUserName "initial" "initial"
 usmUserSecurityName "initial" "initial"
 usmUserCloneFrom ZeroDotZero ZeroDotZero
 usmUserAuthProtocol usmHMACMD5AuthProtocol usmHMACMD5AuthProtocol
 usmUserAuthKeyChange "" ""
 usmUserOwnAuthKeyChange "" ""
 usmUserPrivProtocol none usmDESPrivProtocol
 usmUserPrivKeyChange "" ""
 usmUserOwnPrivKeyChange "" ""
 usmUserPublic "" ""
 usmUserStorageType anyValidStorageType anyValidStorageType
 usmUserStatus active active

 It is recommended to also instantiate a set of template
 usmUserEntries which can be used as clone-from users for newly
 created usmUserEntries. These are the two suggested entries:

 no privacy support privacy support
 ------------------ ---------------
 usmUserEngineID localEngineID localEngineID
 usmUserName "templateMD5" "templateMD5"
 usmUserSecurityName "templateMD5" "templateMD5"
 usmUserCloneFrom ZeroDotZero ZeroDotZero
 usmUserAuthProtocol usmHMACMD5AuthProtocol usmHMACMD5AuthProtocol
 usmUserAuthKeyChange "" ""
 usmUserOwnAuthKeyChange "" ""
 usmUserPrivProtocol none usmDESPrivProtocol
 usmUserPrivKeyChange "" ""
 usmUserOwnPrivKeyChange "" ""
 usmUserPublic "" ""
 usmUserStorageType permanent permanent
 usmUserStatus active active

Blumenthal & Wijnen Standards Track [Page 79]

RFC 3414 USM for SNMPv3 December 2002

 no privacy support privacy support
 ------------------ ---------------
 usmUserEngineID localEngineID localEngineID
 usmUserName "templateSHA" "templateSHA"
 usmUserSecurityName "templateSHA" "templateSHA"
 usmUserCloneFrom ZeroDotZero ZeroDotZero
 usmUserAuthProtocol usmHMACSHAAuthProtocol usmHMACSHAAuthProtocol
 usmUserAuthKeyChange "" ""
 usmUserOwnAuthKeyChange "" ""
 usmUserPrivProtocol none usmDESPrivProtocol
 usmUserPrivKeyChange "" ""
 usmUserOwnPrivKeyChange "" ""
 usmUserPublic "" ""
 usmUserStorageType permanent permanent
 usmUserStatus active active

A.2. Password to Key Algorithm

 A sample code fragment (section A.2.1) demonstrates the password to
 key algorithm which can be used when mapping a password to an
 authentication or privacy key using MD5. The reference source code
 of MD5 is available in [RFC1321].

 Another sample code fragment (section A.2.2) demonstrates the
 password to key algorithm which can be used when mapping a password
 to an authentication or privacy key using SHA (documented in SHA-
 NIST).

 An example of the results of a correct implementation is provided
 (section A.3) which an implementor can use to check if his
 implementation produces the same result.

Blumenthal & Wijnen Standards Track [Page 80]

RFC 3414 USM for SNMPv3 December 2002

A.2.1. Password to Key Sample Code for MD5

 void password_to_key_md5(
 u_char *password, /* IN */
 u_int passwordlen, /* IN */
 u_char *engineID, /* IN - pointer to snmpEngineID */
 u_int engineLength,/* IN - length of snmpEngineID */
 u_char *key) /* OUT - pointer to caller 16-octet buffer */
 {
 MD5_CTX MD;
 u_char *cp, password_buf[64];
 u_long password_index = 0;
 u_long count = 0, i;

 MD5Init (&MD); /* initialize MD5 */

 /**/
 /* Use while loop until we’ve done 1 Megabyte */
 /**/
 while (count < 1048576) {
 cp = password_buf;
 for (i = 0; i < 64; i++) {
 /***/
 /* Take the next octet of the password, wrapping */
 /* to the beginning of the password as necessary.*/
 /***/
 *cp++ = password[password_index++ % passwordlen];
 }
 MD5Update (&MD, password_buf, 64);
 count += 64;
 }
 MD5Final (key, &MD); /* tell MD5 we’re done */

 /***/
 /* Now localize the key with the engineID and pass */
 /* through MD5 to produce final key */
 /* May want to ensure that engineLength <= 32, */
 /* otherwise need to use a buffer larger than 64 */
 /***/
 memcpy(password_buf, key, 16);
 memcpy(password_buf+16, engineID, engineLength);
 memcpy(password_buf+16+engineLength, key, 16);

 MD5Init(&MD);
 MD5Update(&MD, password_buf, 32+engineLength);
 MD5Final(key, &MD);
 return;
 }

Blumenthal & Wijnen Standards Track [Page 81]

RFC 3414 USM for SNMPv3 December 2002

A.2.2. Password to Key Sample Code for SHA

 void password_to_key_sha(
 u_char *password, /* IN */
 u_int passwordlen, /* IN */
 u_char *engineID, /* IN - pointer to snmpEngineID */
 u_int engineLength,/* IN - length of snmpEngineID */
 u_char *key) /* OUT - pointer to caller 20-octet buffer */
 {
 SHA_CTX SH;
 u_char *cp, password_buf[72];
 u_long password_index = 0;
 u_long count = 0, i;

 SHAInit (&SH); /* initialize SHA */

 /**/
 /* Use while loop until we’ve done 1 Megabyte */
 /**/
 while (count < 1048576) {
 cp = password_buf;
 for (i = 0; i < 64; i++) {
 /***/
 /* Take the next octet of the password, wrapping */
 /* to the beginning of the password as necessary.*/
 /***/
 *cp++ = password[password_index++ % passwordlen];
 }
 SHAUpdate (&SH, password_buf, 64);
 count += 64;
 }
 SHAFinal (key, &SH); /* tell SHA we’re done */

 /***/
 /* Now localize the key with the engineID and pass */
 /* through SHA to produce final key */
 /* May want to ensure that engineLength <= 32, */
 /* otherwise need to use a buffer larger than 72 */
 /***/
 memcpy(password_buf, key, 20);
 memcpy(password_buf+20, engineID, engineLength);
 memcpy(password_buf+20+engineLength, key, 20);

 SHAInit(&SH);
 SHAUpdate(&SH, password_buf, 40+engineLength);
 SHAFinal(key, &SH);
 return;
 }

Blumenthal & Wijnen Standards Track [Page 82]

RFC 3414 USM for SNMPv3 December 2002

A.3. Password to Key Sample Results

A.3.1. Password to Key Sample Results using MD5

 The following shows a sample output of the password to key algorithm
 for a 16-octet key using MD5.

 With a password of "maplesyrup" the output of the password to key
 algorithm before the key is localized with the SNMP engine’s
 snmpEngineID is:

 ’9f af 32 83 88 4e 92 83 4e bc 98 47 d8 ed d9 63’H

 After the intermediate key (shown above) is localized with the
 snmpEngineID value of:

 ’00 00 00 00 00 00 00 00 00 00 00 02’H

 the final output of the password to key algorithm is:

 ’52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b’H

A.3.2. Password to Key Sample Results using SHA

 The following shows a sample output of the password to key algorithm
 for a 20-octet key using SHA.

 With a password of "maplesyrup" the output of the password to key
 algorithm before the key is localized with the SNMP engine’s
 snmpEngineID is:

 ’9f b5 cc 03 81 49 7b 37 93 52 89 39 ff 78 8d 5d 79 14 52 11’H

 After the intermediate key (shown above) is localized with the
 snmpEngineID value of:

 ’00 00 00 00 00 00 00 00 00 00 00 02’H

 the final output of the password to key algorithm is:

 ’66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84 97 b3 8f 3f’H

A.4. Sample Encoding of msgSecurityParameters

 The msgSecurityParameters in an SNMP message are represented as an
 OCTET STRING. This OCTET STRING should be considered opaque outside
 a specific Security Model.

Blumenthal & Wijnen Standards Track [Page 83]

RFC 3414 USM for SNMPv3 December 2002

 The User-based Security Model defines the contents of the OCTET
 STRING as a SEQUENCE (see section 2.4).

 Given these two properties, the following is an example of they
 msgSecurityParameters for the User-based Security Model, encoded as
 an OCTET STRING:

 04 <length>
 30 <length>
 04 <length> <msgAuthoritativeEngineID>
 02 <length> <msgAuthoritativeEngineBoots>
 02 <length> <msgAuthoritativeEngineTime>
 04 <length> <msgUserName>
 04 0c <HMAC-MD5-96-digest>
 04 08 <salt>

 Here is the example once more, but now with real values (except for
 the digest in msgAuthenticationParameters and the salt in
 msgPrivacyParameters, which depend on variable data that we have not
 defined here):

 Hex Data Description
 -------------- ---
 04 39 OCTET STRING, length 57
 30 37 SEQUENCE, length 55
 04 0c 80000002 msgAuthoritativeEngineID: IBM
 01 IPv4 address
 09840301 9.132.3.1
 02 01 01 msgAuthoritativeEngineBoots: 1
 02 02 0101 msgAuthoritativeEngineTime: 257
 04 04 62657274 msgUserName: bert
 04 0c 01234567 msgAuthenticationParameters: sample value
 89abcdef
 fedcba98
 04 08 01234567 msgPrivacyParameters: sample value
 89abcdef

A.5. Sample keyChange Results

A.5.1. Sample keyChange Results using MD5

 Let us assume that a user has a current password of "maplesyrup" as
 in section A.3.1. and let us also assume the snmpEngineID of 12
 octets:

 ’00 00 00 00 00 00 00 00 00 00 00 02’H

Blumenthal & Wijnen Standards Track [Page 84]

RFC 3414 USM for SNMPv3 December 2002

 If we now want to change the password to "newsyrup", then we first
 calculate the key for the new password. It is as follows:

 ’01 ad d2 73 10 7c 4e 59 6b 4b 00 f8 2b 1d 42 a7’H

 If we localize it for the above snmpEngineID, then the localized new
 key becomes:

 ’87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a’H

 If we then use a (not so good, but easy to test) random value of:

 ’00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00’H

 Then the value we must send for keyChange is:

 ’00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 88 05 61 51 41 67 6c c9 19 61 74 e7 42 a3 25 51’H

 If this were for the privacy key, then it would be exactly the same.

A.5.2. Sample keyChange Results using SHA

 Let us assume that a user has a current password of "maplesyrup" as
 in section A.3.2. and let us also assume the snmpEngineID of 12
 octets:

 ’00 00 00 00 00 00 00 00 00 00 00 02’H

 If we now want to change the password to "newsyrup", then we first
 calculate the key for the new password. It is as follows:

 ’3a 51 a6 d7 36 aa 34 7b 83 dc 4a 87 e3 e5 5e e4 d6 98 ac 71’H

 If we localize it for the above snmpEngineID, then the localized new
 key becomes:

 ’78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63 91 f1 cd 25’H

 If we then use a (not so good, but easy to test) random value of:

 ’00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00’H

 Then the value we must send for keyChange is:

 ’00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 9c 10 17 f4 fd 48 3d 2d e8 d5 fa db f8 43 92 cb 06 45 70 51’

Blumenthal & Wijnen Standards Track [Page 85]

RFC 3414 USM for SNMPv3 December 2002

 For the key used for privacy, the new nonlocalized key would be:

 ’3a 51 a6 d7 36 aa 34 7b 83 dc 4a 87 e3 e5 5e e4 d6 98 ac 71’H

 For the key used for privacy, the new localized key would be (note
 that they localized key gets truncated to 16 octets for DES):

 ’78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63’H

 If we then use a (not so good, but easy to test) random value of:

 ’00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00’H

 Then the value we must send for keyChange for the privacy key is:

 ’00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ’7e f8 d8 a4 c9 cd b2 6b 47 59 1c d8 52 ff 88 b5’H

B. Change Log

 Changes made since RFC2574:

 - Updated references
 - Updated contact info
 - Clarifications
 - to first constraint item 1) on page 6.
 - to usmUserCloneFrom DESCRIPTION clause
 - to securityName in section 2.1
 - Fixed "command responder" into "command generator" in last para of
 DESCRIPTION clause of usmUserTable.

 Changes made since RFC2274:

 - Fixed msgUserName to allow size of zero and explain that this can
 be used for snmpEngineID discovery.
 - Clarified section 3.1 steps 4.b, 5, 6 and 8.b.
 - Clarified section 3.2 paragraph 2.
 - Clarified section 3.2 step 7.a last paragraph, step 7.b.1 second
 bullet and step 7.b.2 third bullet.
 - Clarified section 4 to indicate that discovery can use a userName
 of zero length in unAuthenticated messages, whereas a valid
 userName must be used in authenticated messages.
 - Added REVISION clauses to MODULE-IDENTITY
 - Clarified KeyChange TC by adding a note that localized keys must be
 used when calculating a KeyChange value.
 - Added clarifying text to the DESCRIPTION clause of usmUserTable.
 Added text describes a recommended procedure for adding a new user.
 - Clarified the use of usmUserCloneFrom object.

Blumenthal & Wijnen Standards Track [Page 86]

RFC 3414 USM for SNMPv3 December 2002

 - Clarified how and under which conditions the usmUserAuthProtocol
 and usmUserPrivProtocol can be initialized and/or changed.
 - Added comment on typical sizes for usmUserAuthKeyChange and
 usmUserPrivKeyChange. Also for usmUserOwnAuthKeyChange and
 usmUserOwnPrivKeyChange.
 - Added clarifications to the DESCRIPTION clauses of
 usmUserAuthKeyChange, usmUserOwnAuthKeychange, usmUserPrivKeyChange
 and usmUserOwnPrivKeychange.
 - Added clarification to DESCRIPTION clause of usmUserStorageType.
 - Added clarification to DESCRIPTION clause of usmUserStatus.
 - Clarified IV generation procedure in section 8.1.1.1 and in
 addition clarified section 8.3.1 step 1 and section 8.3.2. step 3.
 - Clarified section 11.2 and added a warning that different size
 passwords with repetitive strings may result in same key.
 - Added template users to appendix A for cloning process.
 - Fixed C-code examples in Appendix A.
 - Fixed examples of generated keys in Appendix A.
 - Added examples of KeyChange values to Appendix A.
 - Used PDU Classes instead of RFC1905 PDU types.
 - Added text in the security section about Reports and Access Control
 to the MIB.
 - Removed a incorrect note at the end of section 3.2 step 7.
 - Added a note in section 3.2 step 3.
 - Corrected various spelling errors and typos.
 - Corrected procedure for 3.2 step 2.a)
 - various clarifications.
 - Fixed references to new/revised documents
 - Change to no longer cache data that is not used

Editors’ Addresses

 Uri Blumenthal
 Lucent Technologies
 67 Whippany Rd.
 Whippany, NJ 07981
 USA

 Phone: +1-973-386-2163
 EMail: uri@lucent.com

 Bert Wijnen
 Lucent Technologies
 Schagen 33
 3461 GL Linschoten
 Netherlands

 Phone: +31-348-480-685
 EMail: bwijnen@lucent.com

Blumenthal & Wijnen Standards Track [Page 87]

RFC 3414 USM for SNMPv3 December 2002

Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Blumenthal & Wijnen Standards Track [Page 88]

==

Network Working Group B. Wijnen
Request for Comments: 3415 Lucent Technologies
STD: 62 R. Presuhn
Obsoletes: 2575 BMC Software, Inc.
Category: Standards Track K. McCloghrie
 Cisco Systems, Inc.
 December 2002

 View-based Access Control Model (VACM) for the
 Simple Network Management Protocol (SNMP)

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This document describes the View-based Access Control Model (VACM)
 for use in the Simple Network Management Protocol (SNMP)
 architecture. It defines the Elements of Procedure for controlling
 access to management information. This document also includes a
 Management Information Base (MIB) for remotely managing the
 configuration parameters for the View-based Access Control Model.
 This document obsoletes RFC 2575.

Wijnen, et al. Standards Track [Page 1]

RFC 3415 VACM for the SNMP December 2002

Table of Contents

 1. Introduction ... 2
 1.2. Access Control ... 3
 1.3. Local Configuration Datastore 3
 2. Elements of the Model .. 4
 2.1. Groups ... 4
 2.2. securityLevel .. 4
 2.3. Contexts ... 4
 2.4. MIB Views and View Families 5
 2.4.1. View Subtree ... 5
 2.4.2. ViewTreeFamily ... 6
 2.5. Access Policy .. 6
 3. Elements of Procedure .. 7
 3.1. Overview of isAccessAllowed Process 8
 3.2. Processing the isAccessAllowed Service Request 9
 4. Definitions .. 11
 5. Intellectual Property .. 28
 6. Acknowledgements ... 28
 7. Security Considerations 30
 7.1. Recommended Practices 30
 7.2. Defining Groups .. 30
 7.3. Conformance .. 31
 7.4. Access to the SNMP-VIEW-BASED-ACM-MIB 31
 8. References ... 31
 A. Installation ... 33
 B. Change Log ... 36
 Editors’ Addresses ... 38
 Full Copyright Statement ... 39

1. Introduction

 The Architecture for describing Internet Management Frameworks
 [RFC3411] describes that an SNMP engine is composed of:

 1) a Dispatcher
 2) a Message Processing Subsystem,
 3) a Security Subsystem, and
 4) an Access Control Subsystem.

 Applications make use of the services of these subsystems.

 It is important to understand the SNMP architecture and its
 terminology to understand where the View-based Access Control Model
 described in this document fits into the architecture and interacts
 with other subsystems within the architecture. The reader is
 expected to have read and understood the description and terminology
 of the SNMP architecture, as defined in [RFC3411].

Wijnen, et al. Standards Track [Page 2]

RFC 3415 VACM for the SNMP December 2002

 The Access Control Subsystem of an SNMP engine has the responsibility
 for checking whether a specific type of access (read, write, notify)
 to a particular object (instance) is allowed.

 It is the purpose of this document to define a specific model of the
 Access Control Subsystem, designated the View-based Access Control
 Model. Note that this is not necessarily the only Access Control
 Model.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119.

1.2. Access Control

 Access Control occurs (either implicitly or explicitly) in an SNMP
 entity when processing SNMP retrieval or modification request
 messages from an SNMP entity. For example a Command Responder
 application applies Access Control when processing requests that it
 received from a Command Generator application. These requests
 contain Read Class and Write Class PDUs as defined in [RFC3411].

 Access Control also occurs in an SNMP entity when an SNMP
 notification message is generated (by a Notification Originator
 application). These notification messages contain Notification Class
 PDUs as defined in [RFC3411].

 The View-based Access Control Model defines a set of services that an
 application (such as a Command Responder or a Notification Originator
 application) can use for checking access rights. It is the
 responsibility of the application to make the proper service calls
 for access checking.

1.3. Local Configuration Datastore

 To implement the model described in this document, an SNMP entity
 needs to retain information about access rights and policies. This
 information is part of the SNMP engine’s Local Configuration
 Datastore (LCD). See [RFC3411] for the definition of LCD.

 In order to allow an SNMP entity’s LCD to be remotely configured,
 portions of the LCD need to be accessible as managed objects. A MIB
 module, the View-based Access Control Model Configuration MIB, which
 defines these managed object types is included in this document.

Wijnen, et al. Standards Track [Page 3]

RFC 3415 VACM for the SNMP December 2002

2. Elements of the Model

 This section contains definitions to realize the access control
 service provided by the View-based Access Control Model.

2.1. Groups

 A group is a set of zero or more <securityModel, securityName> tuples
 on whose behalf SNMP management objects can be accessed. A group
 defines the access rights afforded to all securityNames which belong
 to that group. The combination of a securityModel and a securityName
 maps to at most one group. A group is identified by a groupName.

 The Access Control module assumes that the securityName has already
 been authenticated as needed and provides no further authentication
 of its own.

 The View-based Access Control Model uses the securityModel and the
 securityName as inputs to the Access Control module when called to
 check for access rights. It determines the groupName as a function
 of securityModel and securityName.

2.2. securityLevel

 Different access rights for members of a group can be defined for
 different levels of security, i.e., noAuthNoPriv, authNoPriv, and
 authPriv. The securityLevel identifies the level of security that
 will be assumed when checking for access rights. See the SNMP
 Architecture document [RFC3411] for a definition of securityLevel.

 The View-based Access Control Model requires that the securityLevel
 is passed as input to the Access Control module when called to check
 for access rights.

2.3. Contexts

 An SNMP context is a collection of management information accessible
 by an SNMP entity. An item of management information may exist in
 more than one context. An SNMP entity potentially has access to many
 contexts. Details about the naming of management information can be
 found in the SNMP Architecture document [RFC3411].

 The View-based Access Control Model defines a vacmContextTable that
 lists the locally available contexts by contextName.

Wijnen, et al. Standards Track [Page 4]

RFC 3415 VACM for the SNMP December 2002

2.4. MIB Views and View Families

 For security reasons, it is often valuable to be able to restrict the
 access rights of some groups to only a subset of the management
 information in the management domain. To provide this capability,
 access to a context is via a "MIB view" which details a specific set
 of managed object types (and optionally, the specific instances of
 object types) within that context. For example, for a given context,
 there will typically always be one MIB view which provides access to
 all management information in that context, and often there will be
 other MIB views each of which contains some subset of the
 information. So, the access allowed for a group can be restricted in
 the desired manner by specifying its rights in terms of the
 particular (subset) MIB view it can access within each appropriate
 context.

 Since managed object types (and their instances) are identified via
 the tree-like naming structure of ISO’s OBJECT IDENTIFIERs [ISO-
 ASN.1, RFC2578], it is convenient to define a MIB view as the
 combination of a set of "view subtrees", where each view subtree is a
 subtree within the managed object naming tree. Thus, a simple MIB
 view (e.g., all managed objects within the Internet Network
 Management Framework) can be defined as a single view subtree, while
 more complicated MIB views (e.g., all information relevant to a
 particular network interface) can be represented by the union of
 multiple view subtrees.

 While any set of managed objects can be described by the union of
 some number of view subtrees, situations can arise that would require
 a very large number of view subtrees. This could happen, for
 example, when specifying all columns in one conceptual row of a MIB
 table because they would appear in separate subtrees, one per column,
 each with a very similar format. Because the formats are similar,
 the required set of subtrees can easily be aggregated into one
 structure. This structure is named a family of view subtrees after
 the set of subtrees that it conceptually represents. A family of
 view subtrees can either be included or excluded from a MIB view.

2.4.1. View Subtree

 A view subtree is the set of all MIB object instances which have a
 common ASN.1 OBJECT IDENTIFIER prefix to their names. A view subtree
 is identified by the OBJECT IDENTIFIER value which is the longest
 OBJECT IDENTIFIER prefix common to all (potential) MIB object
 instances in that subtree.

Wijnen, et al. Standards Track [Page 5]

RFC 3415 VACM for the SNMP December 2002

2.4.2. ViewTreeFamily

 A family of view subtrees is a pairing of an OBJECT IDENTIFIER value
 (called the family name) together with a bit string value (called the
 family mask). The family mask indicates which sub-identifiers of the
 associated family name are significant to the family’s definition.

 For each possible managed object instance, that instance belongs to a
 particular ViewTreeFamily if both of the following conditions are
 true:

 - the OBJECT IDENTIFIER name of the managed object instance contains
 at least as many sub-identifiers as does the family name, and

 - each sub-identifier in the OBJECT IDENTIFIER name of the managed
 object instance matches the corresponding sub-identifier of the
 family name whenever the corresponding bit of the associated
 family mask is non-zero.

 When the configured value of the family mask is all ones, the view
 subtree family is identical to the single view subtree identified by
 the family name.

 When the configured value of the family mask is shorter than required
 to perform the above test, its value is implicitly extended with
 ones. Consequently, a view subtree family having a family mask of
 zero length always corresponds to a single view subtree.

2.5. Access Policy

 The View-based Access Control Model determines the access rights of a
 group, representing zero or more securityNames which have the same
 access rights. For a particular context, identified by contextName,
 to which a group, identified by groupName, has access using a
 particular securityModel and securityLevel, that group’s access
 rights are given by a read-view, a write-view and a notify-view.

 The read-view represents the set of object instances authorized for
 the group when reading objects. Reading objects occurs when
 processing a retrieval operation (when handling Read Class PDUs).

 The write-view represents the set of object instances authorized for
 the group when writing objects. Writing objects occurs when
 processing a write operation (when handling Write Class PDUs).

 The notify-view represents the set of object instances authorized for
 the group when sending objects in a notification, such as when
 sending a notification (when sending Notification Class PDUs).

Wijnen, et al. Standards Track [Page 6]

RFC 3415 VACM for the SNMP December 2002

3. Elements of Procedure

 This section describes the procedures followed by an Access Control
 module that implements the View-based Access Control Model when
 checking access rights as requested by an application (for example a
 Command Responder or a Notification Originator application). The
 abstract service primitive is:

 statusInformation = -- success or errorIndication
 isAccessAllowed(
 securityModel -- Security Model in use
 securityName -- principal who wants access
 securityLevel -- Level of Security
 viewType -- read, write, or notify view
 contextName -- context containing variableName
 variableName -- OID for the managed object
)

 The abstract data elements are:

 statusInformation - one of the following:
 accessAllowed - a MIB view was found and access is granted.
 notInView - a MIB view was found but access is denied.
 The variableName is not in the configured
 MIB view for the specified viewType (e.g., in
 the relevant entry in the vacmAccessTable).
 noSuchView - no MIB view found because no view has been
 configured for specified viewType (e.g., in
 the relevant entry in the vacmAccessTable).
 noSuchContext - no MIB view found because of no entry in the
 vacmContextTable for specified contextName.
 noGroupName - no MIB view found because no entry has been
 configured in the vacmSecurityToGroupTable
 for the specified combination of
 securityModel and securityName.
 noAccessEntry - no MIB view found because no entry has been
 configured in the vacmAccessTable for the
 specified combination of contextName,
 groupName (from vacmSecurityToGroupTable),
 securityModel and securityLevel.
 otherError - failure, an undefined error occurred.
 securityModel - Security Model under which access is requested.
 securityName - the principal on whose behalf access is requested.
 securityLevel - Level of Security under which access is requested.
 viewType - view to be checked (read, write or notify).
 contextName - context in which access is requested.
 variableName - object instance to which access is requested.

Wijnen, et al. Standards Track [Page 7]

RFC 3415 VACM for the SNMP December 2002

3.1. Overview of isAccessAllowed Process

 The following picture shows how the decision for access control is
 made by the View-based Access Control Model.

 +--+
 | |
 | +-> securityModel -+ |
 | | (a) | |
 | who -+ +-> groupName ----+ |
(1)		(x)	
+-> securityName --+			
(b)			
where -> contextName ---------------------+			
(2) (e)			
+-> securityModel -------------------+			
	(a)		
how -+ +-> viewName -+			
(3)		(y)	
+-> securityLevel -------------------+			
(c)	+-> yes/no		
		decision	
why ---> viewType (read/write/notify) ----+	(z)		
(4) (d)			
what --> object-type ------+			
(5) (m)			
+-> variableName (OID) ------+			
	(f)		
which -> object-instance --+			
(6) (n)			
 +--+

Wijnen, et al. Standards Track [Page 8]

RFC 3415 VACM for the SNMP December 2002

 How the decision for isAccessAllowed is made.

 1) Inputs to the isAccessAllowed service are:

 (a) securityModel -- Security Model in use
 (b) securityName -- principal who wants to access
 (c) securityLevel -- Level of Security
 (d) viewType -- read, write, or notify view
 (e) contextName -- context containing variableName
 (f) variableName -- OID for the managed object
 -- this is made up of:
 - object-type (m)
 - object-instance (n)

 2) The partial "who" (1), represented by the securityModel (a) and
 the securityName (b), are used as the indices (a,b) into the
 vacmSecurityToGroupTable to find a single entry that produces a
 group, represented by groupName (x).

 3) The "where" (2), represented by the contextName (e), the "who",
 represented by the groupName (x) from the previous step, and the
 "how" (3), represented by securityModel (a) and securityLevel (c),
 are used as indices (e,x,a,c) into the vacmAccessTable to find a
 single entry that contains three MIB views.

 4) The "why" (4), represented by the viewType (d), is used to select
 the proper MIB view, represented by a viewName (y), from the
 vacmAccessEntry selected in the previous step. This viewName (y)
 is an index into the vacmViewTreeFamilyTable and selects the set
 of entries that define the variableNames which are included in or
 excluded from the MIB view identified by the viewName (y).

 5) The "what" (5) type of management data and "which" (6) particular
 instance, represented by the variableName (f), is then checked to
 be in the MIB view or not, e.g., the yes/no decision (z).

3.2. Processing the isAccessAllowed Service Request

 This section describes the procedure followed by an Access Control
 module that implements the View-based Access Control Model whenever
 it receives an isAccessAllowed request.

 1) The vacmContextTable is consulted for information about the SNMP
 context identified by the contextName. If information about this
 SNMP context is absent from the table, then an errorIndication
 (noSuchContext) is returned to the calling module.

Wijnen, et al. Standards Track [Page 9]

RFC 3415 VACM for the SNMP December 2002

 2) The vacmSecurityToGroupTable is consulted for mapping the
 securityModel and securityName to a groupName. If the information
 about this combination is absent from the table, then an
 errorIndication (noGroupName) is returned to the calling module.

 3) The vacmAccessTable is consulted for information about the
 groupName, contextName, securityModel and securityLevel. If
 information about this combination is absent from the table, then
 an errorIndication (noAccessEntry) is returned to the calling
 module.

 4) a) If the viewType is "read", then the read view is used for
 checking access rights.

 b) If the viewType is "write", then the write view is used for
 checking access rights.

 c) If the viewType is "notify", then the notify view is used for
 checking access rights.

 If the view to be used is the empty view (zero length viewName)
 then an errorIndication (noSuchView) is returned to the calling
 module.

 5) a) If there is no view configured for the specified viewType, then
 an errorIndication (noSuchView) is returned to the calling
 module.

 b) If the specified variableName (object instance) is not in the
 MIB view (see DESCRIPTION clause for vacmViewTreeFamilyTable in
 section 4), then an errorIndication (notInView) is returned to
 the calling module.

 Otherwise,

 c) The specified variableName is in the MIB view. A
 statusInformation of success (accessAllowed) is returned to the
 calling module.

Wijnen, et al. Standards Track [Page 10]

RFC 3415 VACM for the SNMP December 2002

4. Definitions

SNMP-VIEW-BASED-ACM-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF
 MODULE-IDENTITY, OBJECT-TYPE,
 snmpModules FROM SNMPv2-SMI
 TestAndIncr,
 RowStatus, StorageType FROM SNMPv2-TC
 SnmpAdminString,
 SnmpSecurityLevel,
 SnmpSecurityModel FROM SNMP-FRAMEWORK-MIB;

snmpVacmMIB MODULE-IDENTITY
 LAST-UPDATED "200210160000Z" -- 16 Oct 2002, midnight
 ORGANIZATION "SNMPv3 Working Group"
 CONTACT-INFO "WG-email: snmpv3@lists.tislabs.com
 Subscribe: majordomo@lists.tislabs.com
 In message body: subscribe snmpv3

 Co-Chair: Russ Mundy
 Network Associates Laboratories
 postal: 15204 Omega Drive, Suite 300
 Rockville, MD 20850-4601
 USA
 email: mundy@tislabs.com
 phone: +1 301-947-7107

 Co-Chair: David Harrington
 Enterasys Networks
 Postal: 35 Industrial Way
 P. O. Box 5004
 Rochester, New Hampshire 03866-5005
 USA
 EMail: dbh@enterasys.com
 Phone: +1 603-337-2614

 Co-editor: Bert Wijnen
 Lucent Technologies
 postal: Schagen 33
 3461 GL Linschoten
 Netherlands
 email: bwijnen@lucent.com
 phone: +31-348-480-685

 Co-editor: Randy Presuhn
 BMC Software, Inc.

Wijnen, et al. Standards Track [Page 11]

RFC 3415 VACM for the SNMP December 2002

 postal: 2141 North First Street
 San Jose, CA 95131
 USA
 email: randy_presuhn@bmc.com
 phone: +1 408-546-1006

 Co-editor: Keith McCloghrie
 Cisco Systems, Inc.
 postal: 170 West Tasman Drive
 San Jose, CA 95134-1706
 USA
 email: kzm@cisco.com
 phone: +1-408-526-5260
 "
 DESCRIPTION "The management information definitions for the
 View-based Access Control Model for SNMP.

 Copyright (C) The Internet Society (2002). This
 version of this MIB module is part of RFC 3415;
 see the RFC itself for full legal notices.
 "
-- Revision history

 REVISION "200210160000Z" -- 16 Oct 2002, midnight
 DESCRIPTION "Clarifications, published as RFC3415"

 REVISION "199901200000Z" -- 20 Jan 1999, midnight
 DESCRIPTION "Clarifications, published as RFC2575"

 REVISION "199711200000Z" -- 20 Nov 1997, midnight
 DESCRIPTION "Initial version, published as RFC2275"

 ::= { snmpModules 16 }

-- Administrative assignments **

vacmMIBObjects OBJECT IDENTIFIER ::= { snmpVacmMIB 1 }
vacmMIBConformance OBJECT IDENTIFIER ::= { snmpVacmMIB 2 }

-- Information about Local Contexts **********************************

vacmContextTable OBJECT-TYPE
 SYNTAX SEQUENCE OF VacmContextEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "The table of locally available contexts.

 This table provides information to SNMP Command

Wijnen, et al. Standards Track [Page 12]

RFC 3415 VACM for the SNMP December 2002

 Generator applications so that they can properly
 configure the vacmAccessTable to control access to
 all contexts at the SNMP entity.

 This table may change dynamically if the SNMP entity
 allows that contexts are added/deleted dynamically
 (for instance when its configuration changes). Such
 changes would happen only if the management
 instrumentation at that SNMP entity recognizes more
 (or fewer) contexts.

 The presence of entries in this table and of entries
 in the vacmAccessTable are independent. That is, a
 context identified by an entry in this table is not
 necessarily referenced by any entries in the
 vacmAccessTable; and the context(s) referenced by an
 entry in the vacmAccessTable does not necessarily
 currently exist and thus need not be identified by an
 entry in this table.

 This table must be made accessible via the default
 context so that Command Responder applications have
 a standard way of retrieving the information.

 This table is read-only. It cannot be configured via
 SNMP.
 "
 ::= { vacmMIBObjects 1 }

vacmContextEntry OBJECT-TYPE
 SYNTAX VacmContextEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "Information about a particular context."
 INDEX {
 vacmContextName
 }
 ::= { vacmContextTable 1 }

VacmContextEntry ::= SEQUENCE
 {
 vacmContextName SnmpAdminString
 }

vacmContextName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(0..32))
 MAX-ACCESS read-only
 STATUS current

Wijnen, et al. Standards Track [Page 13]

RFC 3415 VACM for the SNMP December 2002

 DESCRIPTION "A human readable name identifying a particular
 context at a particular SNMP entity.

 The empty contextName (zero length) represents the
 default context.
 "
 ::= { vacmContextEntry 1 }

-- Information about Groups **

vacmSecurityToGroupTable OBJECT-TYPE
 SYNTAX SEQUENCE OF VacmSecurityToGroupEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "This table maps a combination of securityModel and
 securityName into a groupName which is used to define
 an access control policy for a group of principals.
 "
 ::= { vacmMIBObjects 2 }

vacmSecurityToGroupEntry OBJECT-TYPE
 SYNTAX VacmSecurityToGroupEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "An entry in this table maps the combination of a
 securityModel and securityName into a groupName.
 "
 INDEX {
 vacmSecurityModel,
 vacmSecurityName
 }
 ::= { vacmSecurityToGroupTable 1 }

VacmSecurityToGroupEntry ::= SEQUENCE
 {
 vacmSecurityModel SnmpSecurityModel,
 vacmSecurityName SnmpAdminString,
 vacmGroupName SnmpAdminString,
 vacmSecurityToGroupStorageType StorageType,
 vacmSecurityToGroupStatus RowStatus
 }

vacmSecurityModel OBJECT-TYPE
 SYNTAX SnmpSecurityModel(1..2147483647)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "The Security Model, by which the vacmSecurityName
 referenced by this entry is provided.

Wijnen, et al. Standards Track [Page 14]

RFC 3415 VACM for the SNMP December 2002

 Note, this object may not take the ’any’ (0) value.
 "
 ::= { vacmSecurityToGroupEntry 1 }

vacmSecurityName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(1..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "The securityName for the principal, represented in a
 Security Model independent format, which is mapped by
 this entry to a groupName.
 "
 ::= { vacmSecurityToGroupEntry 2 }

vacmGroupName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(1..32))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "The name of the group to which this entry (e.g., the
 combination of securityModel and securityName)
 belongs.

 This groupName is used as index into the
 vacmAccessTable to select an access control policy.
 However, a value in this table does not imply that an
 instance with the value exists in table vacmAccesTable.
 "
 ::= { vacmSecurityToGroupEntry 3 }

vacmSecurityToGroupStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "The storage type for this conceptual row.
 Conceptual rows having the value ’permanent’ need not
 allow write-access to any columnar objects in the row.
 "
 DEFVAL { nonVolatile }
 ::= { vacmSecurityToGroupEntry 4 }

vacmSecurityToGroupStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "The status of this conceptual row.

 Until instances of all corresponding columns are
 appropriately configured, the value of the

Wijnen, et al. Standards Track [Page 15]

RFC 3415 VACM for the SNMP December 2002

 corresponding instance of the vacmSecurityToGroupStatus
 column is ’notReady’.

 In particular, a newly created row cannot be made
 active until a value has been set for vacmGroupName.

 The RowStatus TC [RFC2579] requires that this
 DESCRIPTION clause states under which circumstances
 other objects in this row can be modified:

 The value of this object has no effect on whether
 other objects in this conceptual row can be modified.
 "
 ::= { vacmSecurityToGroupEntry 5 }

-- Information about Access Rights ***********************************

vacmAccessTable OBJECT-TYPE
 SYNTAX SEQUENCE OF VacmAccessEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "The table of access rights for groups.

 Each entry is indexed by a groupName, a contextPrefix,
 a securityModel and a securityLevel. To determine
 whether access is allowed, one entry from this table
 needs to be selected and the proper viewName from that
 entry must be used for access control checking.

 To select the proper entry, follow these steps:

 1) the set of possible matches is formed by the
 intersection of the following sets of entries:

 the set of entries with identical vacmGroupName
 the union of these two sets:
 - the set with identical vacmAccessContextPrefix
 - the set of entries with vacmAccessContextMatch
 value of ’prefix’ and matching
 vacmAccessContextPrefix
 intersected with the union of these two sets:
 - the set of entries with identical
 vacmSecurityModel
 - the set of entries with vacmSecurityModel
 value of ’any’
 intersected with the set of entries with
 vacmAccessSecurityLevel value less than or equal
 to the requested securityLevel

Wijnen, et al. Standards Track [Page 16]

RFC 3415 VACM for the SNMP December 2002

 2) if this set has only one member, we’re done
 otherwise, it comes down to deciding how to weight
 the preferences between ContextPrefixes,
 SecurityModels, and SecurityLevels as follows:
 a) if the subset of entries with securityModel
 matching the securityModel in the message is
 not empty, then discard the rest.
 b) if the subset of entries with
 vacmAccessContextPrefix matching the contextName
 in the message is not empty,
 then discard the rest
 c) discard all entries with ContextPrefixes shorter
 than the longest one remaining in the set
 d) select the entry with the highest securityLevel

 Please note that for securityLevel noAuthNoPriv, all
 groups are really equivalent since the assumption that
 the securityName has been authenticated does not hold.
 "
 ::= { vacmMIBObjects 4 }

vacmAccessEntry OBJECT-TYPE
 SYNTAX VacmAccessEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "An access right configured in the Local Configuration
 Datastore (LCD) authorizing access to an SNMP context.

 Entries in this table can use an instance value for
 object vacmGroupName even if no entry in table
 vacmAccessSecurityToGroupTable has a corresponding
 value for object vacmGroupName.
 "
 INDEX { vacmGroupName,
 vacmAccessContextPrefix,
 vacmAccessSecurityModel,
 vacmAccessSecurityLevel
 }
 ::= { vacmAccessTable 1 }

VacmAccessEntry ::= SEQUENCE
 {
 vacmAccessContextPrefix SnmpAdminString,
 vacmAccessSecurityModel SnmpSecurityModel,
 vacmAccessSecurityLevel SnmpSecurityLevel,
 vacmAccessContextMatch INTEGER,
 vacmAccessReadViewName SnmpAdminString,
 vacmAccessWriteViewName SnmpAdminString,

Wijnen, et al. Standards Track [Page 17]

RFC 3415 VACM for the SNMP December 2002

 vacmAccessNotifyViewName SnmpAdminString,
 vacmAccessStorageType StorageType,
 vacmAccessStatus RowStatus
 }

vacmAccessContextPrefix OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "In order to gain the access rights allowed by this
 conceptual row, a contextName must match exactly
 (if the value of vacmAccessContextMatch is ’exact’)
 or partially (if the value of vacmAccessContextMatch
 is ’prefix’) to the value of the instance of this
 object.
 "
 ::= { vacmAccessEntry 1 }

vacmAccessSecurityModel OBJECT-TYPE
 SYNTAX SnmpSecurityModel
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "In order to gain the access rights allowed by this
 conceptual row, this securityModel must be in use.
 "
 ::= { vacmAccessEntry 2 }

vacmAccessSecurityLevel OBJECT-TYPE
 SYNTAX SnmpSecurityLevel
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "The minimum level of security required in order to
 gain the access rights allowed by this conceptual
 row. A securityLevel of noAuthNoPriv is less than
 authNoPriv which in turn is less than authPriv.

 If multiple entries are equally indexed except for
 this vacmAccessSecurityLevel index, then the entry
 which has the highest value for
 vacmAccessSecurityLevel is selected.
 "
 ::= { vacmAccessEntry 3 }

vacmAccessContextMatch OBJECT-TYPE
 SYNTAX INTEGER
 { exact (1), -- exact match of prefix and contextName
 prefix (2) -- Only match to the prefix
 }

Wijnen, et al. Standards Track [Page 18]

RFC 3415 VACM for the SNMP December 2002

 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "If the value of this object is exact(1), then all
 rows where the contextName exactly matches
 vacmAccessContextPrefix are selected.

 If the value of this object is prefix(2), then all
 rows where the contextName whose starting octets
 exactly match vacmAccessContextPrefix are selected.
 This allows for a simple form of wildcarding.
 "
 DEFVAL { exact }
 ::= { vacmAccessEntry 4 }

vacmAccessReadViewName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(0..32))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "The value of an instance of this object identifies
 the MIB view of the SNMP context to which this
 conceptual row authorizes read access.

 The identified MIB view is that one for which the
 vacmViewTreeFamilyViewName has the same value as the
 instance of this object; if the value is the empty
 string or if there is no active MIB view having this
 value of vacmViewTreeFamilyViewName, then no access
 is granted.
 "
 DEFVAL { ’’H } -- the empty string
 ::= { vacmAccessEntry 5 }

vacmAccessWriteViewName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(0..32))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "The value of an instance of this object identifies
 the MIB view of the SNMP context to which this
 conceptual row authorizes write access.

 The identified MIB view is that one for which the
 vacmViewTreeFamilyViewName has the same value as the
 instance of this object; if the value is the empty
 string or if there is no active MIB view having this
 value of vacmViewTreeFamilyViewName, then no access
 is granted.
 "
 DEFVAL { ’’H } -- the empty string

Wijnen, et al. Standards Track [Page 19]

RFC 3415 VACM for the SNMP December 2002

 ::= { vacmAccessEntry 6 }

vacmAccessNotifyViewName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(0..32))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "The value of an instance of this object identifies
 the MIB view of the SNMP context to which this
 conceptual row authorizes access for notifications.

 The identified MIB view is that one for which the
 vacmViewTreeFamilyViewName has the same value as the
 instance of this object; if the value is the empty
 string or if there is no active MIB view having this
 value of vacmViewTreeFamilyViewName, then no access
 is granted.
 "
 DEFVAL { ’’H } -- the empty string
 ::= { vacmAccessEntry 7 }

vacmAccessStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "The storage type for this conceptual row.

 Conceptual rows having the value ’permanent’ need not
 allow write-access to any columnar objects in the row.
 "
 DEFVAL { nonVolatile }
 ::= { vacmAccessEntry 8 }

vacmAccessStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "The status of this conceptual row.

 The RowStatus TC [RFC2579] requires that this
 DESCRIPTION clause states under which circumstances
 other objects in this row can be modified:

 The value of this object has no effect on whether
 other objects in this conceptual row can be modified.
 "
 ::= { vacmAccessEntry 9 }

-- Information about MIB views ***************************************

Wijnen, et al. Standards Track [Page 20]

RFC 3415 VACM for the SNMP December 2002

-- Support for instance-level granularity is optional.
--
-- In some implementations, instance-level access control
-- granularity may come at a high performance cost. Managers
-- should avoid requesting such configurations unnecessarily.

vacmMIBViews OBJECT IDENTIFIER ::= { vacmMIBObjects 5 }

vacmViewSpinLock OBJECT-TYPE
 SYNTAX TestAndIncr
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION "An advisory lock used to allow cooperating SNMP
 Command Generator applications to coordinate their
 use of the Set operation in creating or modifying
 views.

 When creating a new view or altering an existing
 view, it is important to understand the potential
 interactions with other uses of the view. The
 vacmViewSpinLock should be retrieved. The name of
 the view to be created should be determined to be
 unique by the SNMP Command Generator application by
 consulting the vacmViewTreeFamilyTable. Finally,
 the named view may be created (Set), including the
 advisory lock.
 If another SNMP Command Generator application has
 altered the views in the meantime, then the spin
 lock’s value will have changed, and so this creation
 will fail because it will specify the wrong value for
 the spin lock.

 Since this is an advisory lock, the use of this lock
 is not enforced.
 "
 ::= { vacmMIBViews 1 }

vacmViewTreeFamilyTable OBJECT-TYPE
 SYNTAX SEQUENCE OF VacmViewTreeFamilyEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "Locally held information about families of subtrees
 within MIB views.

 Each MIB view is defined by two sets of view subtrees:
 - the included view subtrees, and
 - the excluded view subtrees.
 Every such view subtree, both the included and the

Wijnen, et al. Standards Track [Page 21]

RFC 3415 VACM for the SNMP December 2002

 excluded ones, is defined in this table.

 To determine if a particular object instance is in
 a particular MIB view, compare the object instance’s
 OBJECT IDENTIFIER with each of the MIB view’s active
 entries in this table. If none match, then the
 object instance is not in the MIB view. If one or
 more match, then the object instance is included in,
 or excluded from, the MIB view according to the
 value of vacmViewTreeFamilyType in the entry whose
 value of vacmViewTreeFamilySubtree has the most
 sub-identifiers. If multiple entries match and have
 the same number of sub-identifiers (when wildcarding
 is specified with the value of vacmViewTreeFamilyMask),
 then the lexicographically greatest instance of
 vacmViewTreeFamilyType determines the inclusion or
 exclusion.

 An object instance’s OBJECT IDENTIFIER X matches an
 active entry in this table when the number of
 sub-identifiers in X is at least as many as in the
 value of vacmViewTreeFamilySubtree for the entry,
 and each sub-identifier in the value of
 vacmViewTreeFamilySubtree matches its corresponding
 sub-identifier in X. Two sub-identifiers match
 either if the corresponding bit of the value of
 vacmViewTreeFamilyMask for the entry is zero (the
 ’wild card’ value), or if they are equal.

 A ’family’ of subtrees is the set of subtrees defined
 by a particular combination of values of
 vacmViewTreeFamilySubtree and vacmViewTreeFamilyMask.

 In the case where no ’wild card’ is defined in the
 vacmViewTreeFamilyMask, the family of subtrees reduces
 to a single subtree.

 When creating or changing MIB views, an SNMP Command
 Generator application should utilize the
 vacmViewSpinLock to try to avoid collisions. See
 DESCRIPTION clause of vacmViewSpinLock.

 When creating MIB views, it is strongly advised that
 first the ’excluded’ vacmViewTreeFamilyEntries are
 created and then the ’included’ entries.

 When deleting MIB views, it is strongly advised that
 first the ’included’ vacmViewTreeFamilyEntries are

Wijnen, et al. Standards Track [Page 22]

RFC 3415 VACM for the SNMP December 2002

 deleted and then the ’excluded’ entries.

 If a create for an entry for instance-level access
 control is received and the implementation does not
 support instance-level granularity, then an
 inconsistentName error must be returned.
 "
 ::= { vacmMIBViews 2 }

vacmViewTreeFamilyEntry OBJECT-TYPE
 SYNTAX VacmViewTreeFamilyEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "Information on a particular family of view subtrees
 included in or excluded from a particular SNMP
 context’s MIB view.

 Implementations must not restrict the number of
 families of view subtrees for a given MIB view,
 except as dictated by resource constraints on the
 overall number of entries in the
 vacmViewTreeFamilyTable.

 If no conceptual rows exist in this table for a given
 MIB view (viewName), that view may be thought of as
 consisting of the empty set of view subtrees.
 "
 INDEX { vacmViewTreeFamilyViewName,
 vacmViewTreeFamilySubtree
 }
 ::= { vacmViewTreeFamilyTable 1 }

VacmViewTreeFamilyEntry ::= SEQUENCE
 {
 vacmViewTreeFamilyViewName SnmpAdminString,
 vacmViewTreeFamilySubtree OBJECT IDENTIFIER,
 vacmViewTreeFamilyMask OCTET STRING,
 vacmViewTreeFamilyType INTEGER,
 vacmViewTreeFamilyStorageType StorageType,
 vacmViewTreeFamilyStatus RowStatus
 }

vacmViewTreeFamilyViewName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(1..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "The human readable name for a family of view subtrees.
 "

Wijnen, et al. Standards Track [Page 23]

RFC 3415 VACM for the SNMP December 2002

 ::= { vacmViewTreeFamilyEntry 1 }

vacmViewTreeFamilySubtree OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "The MIB subtree which when combined with the
 corresponding instance of vacmViewTreeFamilyMask
 defines a family of view subtrees.
 "
 ::= { vacmViewTreeFamilyEntry 2 }

vacmViewTreeFamilyMask OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (0..16))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "The bit mask which, in combination with the
 corresponding instance of vacmViewTreeFamilySubtree,
 defines a family of view subtrees.

 Each bit of this bit mask corresponds to a
 sub-identifier of vacmViewTreeFamilySubtree, with the
 most significant bit of the i-th octet of this octet
 string value (extended if necessary, see below)
 corresponding to the (8*i - 7)-th sub-identifier, and
 the least significant bit of the i-th octet of this
 octet string corresponding to the (8*i)-th
 sub-identifier, where i is in the range 1 through 16.

 Each bit of this bit mask specifies whether or not
 the corresponding sub-identifiers must match when
 determining if an OBJECT IDENTIFIER is in this
 family of view subtrees; a ’1’ indicates that an
 exact match must occur; a ’0’ indicates ’wild card’,
 i.e., any sub-identifier value matches.

 Thus, the OBJECT IDENTIFIER X of an object instance
 is contained in a family of view subtrees if, for
 each sub-identifier of the value of
 vacmViewTreeFamilySubtree, either:

 the i-th bit of vacmViewTreeFamilyMask is 0, or

 the i-th sub-identifier of X is equal to the i-th
 sub-identifier of the value of
 vacmViewTreeFamilySubtree.

 If the value of this bit mask is M bits long and

Wijnen, et al. Standards Track [Page 24]

RFC 3415 VACM for the SNMP December 2002

 there are more than M sub-identifiers in the
 corresponding instance of vacmViewTreeFamilySubtree,
 then the bit mask is extended with 1’s to be the
 required length.

 Note that when the value of this object is the
 zero-length string, this extension rule results in
 a mask of all-1’s being used (i.e., no ’wild card’),
 and the family of view subtrees is the one view
 subtree uniquely identified by the corresponding
 instance of vacmViewTreeFamilySubtree.

 Note that masks of length greater than zero length
 do not need to be supported. In this case this
 object is made read-only.
 "
 DEFVAL { ’’H }
 ::= { vacmViewTreeFamilyEntry 3 }

vacmViewTreeFamilyType OBJECT-TYPE
 SYNTAX INTEGER { included(1), excluded(2) }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "Indicates whether the corresponding instances of
 vacmViewTreeFamilySubtree and vacmViewTreeFamilyMask
 define a family of view subtrees which is included in
 or excluded from the MIB view.
 "
 DEFVAL { included }
 ::= { vacmViewTreeFamilyEntry 4 }

vacmViewTreeFamilyStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "The storage type for this conceptual row.

 Conceptual rows having the value ’permanent’ need not
 allow write-access to any columnar objects in the row.
 "
 DEFVAL { nonVolatile }
 ::= { vacmViewTreeFamilyEntry 5 }

vacmViewTreeFamilyStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION "The status of this conceptual row.

Wijnen, et al. Standards Track [Page 25]

RFC 3415 VACM for the SNMP December 2002

 The RowStatus TC [RFC2579] requires that this
 DESCRIPTION clause states under which circumstances
 other objects in this row can be modified:

 The value of this object has no effect on whether
 other objects in this conceptual row can be modified.
 "
 ::= { vacmViewTreeFamilyEntry 6 }

-- Conformance information ***

vacmMIBCompliances OBJECT IDENTIFIER ::= { vacmMIBConformance 1 }
vacmMIBGroups OBJECT IDENTIFIER ::= { vacmMIBConformance 2 }

-- Compliance statements ***

vacmMIBCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION "The compliance statement for SNMP engines which
 implement the SNMP View-based Access Control Model
 configuration MIB.
 "
 MODULE -- this module
 MANDATORY-GROUPS { vacmBasicGroup }

 OBJECT vacmAccessContextMatch
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

 OBJECT vacmAccessReadViewName
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

 OBJECT vacmAccessWriteViewName
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

 OBJECT vacmAccessNotifyViewName
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

 OBJECT vacmAccessStorageType
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

 OBJECT vacmAccessStatus
 MIN-ACCESS read-only
 DESCRIPTION "Create/delete/modify access to the

Wijnen, et al. Standards Track [Page 26]

RFC 3415 VACM for the SNMP December 2002

 vacmAccessTable is not required.
 "

 OBJECT vacmViewTreeFamilyMask
 WRITE-SYNTAX OCTET STRING (SIZE (0))
 MIN-ACCESS read-only
 DESCRIPTION "Support for configuration via SNMP of subtree
 families using wild-cards is not required.
 "

 OBJECT vacmViewTreeFamilyType
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

 OBJECT vacmViewTreeFamilyStorageType
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

 OBJECT vacmViewTreeFamilyStatus
 MIN-ACCESS read-only
 DESCRIPTION "Create/delete/modify access to the
 vacmViewTreeFamilyTable is not required.
 "
 ::= { vacmMIBCompliances 1 }

-- Units of conformance **

vacmBasicGroup OBJECT-GROUP
 OBJECTS {
 vacmContextName,
 vacmGroupName,
 vacmSecurityToGroupStorageType,
 vacmSecurityToGroupStatus,
 vacmAccessContextMatch,
 vacmAccessReadViewName,
 vacmAccessWriteViewName,
 vacmAccessNotifyViewName,
 vacmAccessStorageType,
 vacmAccessStatus,
 vacmViewSpinLock,
 vacmViewTreeFamilyMask,
 vacmViewTreeFamilyType,
 vacmViewTreeFamilyStorageType,
 vacmViewTreeFamilyStatus
 }
 STATUS current
 DESCRIPTION "A collection of objects providing for remote
 configuration of an SNMP engine which implements

Wijnen, et al. Standards Track [Page 27]

RFC 3415 VACM for the SNMP December 2002

 the SNMP View-based Access Control Model.
 "
 ::= { vacmMIBGroups 1 }

END

5. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

6. Acknowledgements

 This document is the result of the efforts of the SNMPv3 Working
 Group. Some special thanks are in order to the following SNMPv3 WG
 members:

 Harald Tveit Alvestrand (Maxware)
 Dave Battle (SNMP Research, Inc.)
 Alan Beard (Disney Worldwide Services)
 Paul Berrevoets (SWI Systemware/Halcyon Inc.)
 Martin Bjorklund (Ericsson)
 Uri Blumenthal (IBM T.J. Watson Research Center)
 Jeff Case (SNMP Research, Inc.)
 John Curran (BBN)
 Mike Daniele (Compaq Computer Corporation)
 T. Max Devlin (Eltrax Systems)
 John Flick (Hewlett Packard)
 Rob Frye (MCI)
 Wes Hardaker (U.C.Davis, Information Technology - D.C.A.S.)
 David Harrington (Cabletron Systems Inc.)

Wijnen, et al. Standards Track [Page 28]

RFC 3415 VACM for the SNMP December 2002

 Lauren Heintz (BMC Software, Inc.)
 N.C. Hien (IBM T.J. Watson Research Center)
 Michael Kirkham (InterWorking Labs, Inc.)
 Dave Levi (SNMP Research, Inc.)
 Louis A Mamakos (UUNET Technologies Inc.)
 Joe Marzot (Nortel Networks)
 Paul Meyer (Secure Computing Corporation)
 Keith McCloghrie (Cisco Systems)
 Bob Moore (IBM)
 Russ Mundy (TIS Labs at Network Associates)
 Bob Natale (ACE*COMM Corporation)
 Mike O’Dell (UUNET Technologies Inc.)
 Dave Perkins (DeskTalk)
 Peter Polkinghorne (Brunel University)
 Randy Presuhn (BMC Software, Inc.)
 David Reeder (TIS Labs at Network Associates)
 David Reid (SNMP Research, Inc.)
 Aleksey Romanov (Quality Quorum)
 Shawn Routhier (Epilogue)
 Juergen Schoenwaelder (TU Braunschweig)
 Bob Stewart (Cisco Systems)
 Mike Thatcher (Independent Consultant)
 Bert Wijnen (IBM T.J. Watson Research Center)

 The document is based on recommendations of the IETF Security and
 Administrative Framework Evolution for SNMP Advisory Team. Members
 of that Advisory Team were:

 David Harrington (Cabletron Systems Inc.)
 Jeff Johnson (Cisco Systems)
 David Levi (SNMP Research Inc.)
 John Linn (Openvision)
 Russ Mundy (Trusted Information Systems) chair
 Shawn Routhier (Epilogue)
 Glenn Waters (Nortel)
 Bert Wijnen (IBM T. J. Watson Research Center)

 As recommended by the Advisory Team and the SNMPv3 Working Group
 Charter, the design incorporates as much as practical from previous
 RFCs and drafts. As a result, special thanks are due to the authors
 of previous designs known as SNMPv2u and SNMPv2*:

 Jeff Case (SNMP Research, Inc.)
 David Harrington (Cabletron Systems Inc.)
 David Levi (SNMP Research, Inc.)
 Keith McCloghrie (Cisco Systems)
 Brian O’Keefe (Hewlett Packard)
 Marshall T. Rose (Dover Beach Consulting)

Wijnen, et al. Standards Track [Page 29]

RFC 3415 VACM for the SNMP December 2002

 Jon Saperia (BGS Systems Inc.)
 Steve Waldbusser (International Network Services)
 Glenn W. Waters (Bell-Northern Research Ltd.)

7. Security Considerations

7.1. Recommended Practices

 This document is meant for use in the SNMP architecture. The View-
 based Access Control Model described in this document checks access
 rights to management information based on:

 - contextName, representing a set of management information at the
 managed system where the Access Control module is running.

 - groupName, representing a set of zero or more securityNames. The
 combination of a securityModel and a securityName is mapped into a
 group in the View-based Access Control Model.

 - securityModel under which access is requested.

 - securityLevel under which access is requested.

 - operation performed on the management information.

 - MIB views for read, write or notify access.

 When the User-based Access Control module is called for checking
 access rights, it is assumed that the calling module has ensured the
 authentication and privacy aspects as specified by the securityLevel
 that is being passed.

 When creating entries in or deleting entries from the
 vacmViewTreeFamilyTable it is important to do such in the sequence as
 recommended in the DESCRIPTION clause of the vacmViewTreeFamilyTable
 definition. Otherwise unwanted access may be granted while changing
 the entries in the table.

7.2. Defining Groups

 The groupNames are used to give access to a group of zero or more
 securityNames. Within the View-Based Access Control Model, a
 groupName is considered to exist if that groupName is listed in the
 vacmSecurityToGroupTable.

 By mapping the combination of a securityModel and securityName into a
 groupName, an SNMP Command Generator application can add/delete
 securityNames to/from a group, if proper access is allowed.

Wijnen, et al. Standards Track [Page 30]

RFC 3415 VACM for the SNMP December 2002

 Further it is important to realize that the grouping of
 <securityModel, securityName> tuples in the vacmSecurityToGroupTable
 does not take securityLevel into account. It is therefore important
 that the security administrator uses the securityLevel index in the
 vacmAccessTable to separate noAuthNoPriv from authPriv and/or
 authNoPriv access.

7.3. Conformance

 For an implementation of the View-based Access Control Model to be
 conformant, it MUST implement the SNMP-VIEW-BASED-ACM-MIB according
 to the vacmMIBCompliance. It also SHOULD implement the initial
 configuration, described in appendix A.

7.4. Access to the SNMP-VIEW-BASED-ACM-MIB

 The objects in this MIB control the access to all MIB data that is
 accessible via the SNMP engine and they may be considered sensitive
 in many environments. It is important to closely control (both read
 and write) access to these to these MIB objects by using
 appropriately configured Access Control models (for example the
 View-based Access Control Model as specified in this document).

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Structure of Management
 Information Version 2 (SMIv2)", STD 58, RFC 2578, April
 1999.

 [RFC2579] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Textual Conventions for
 SMIv2", STD 58, RFC 2579, April 1999.

 [RFC2580] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Conformance Statements for
 SMIv2", STD 58, RFC 2580, April 1999.

 [RFC3411] Harrington, D., Presuhn, R. and B. Wijnen, "An
 Architecture for describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

Wijnen, et al. Standards Track [Page 31]

RFC 3415 VACM for the SNMP December 2002

 [SNMP3412] Case, J., Harrington, D., Presuhn, R. and B. Wijnen,
 "Message Processing and Dispatching for the Simple
 Network Management Protocol (SNMP)", STD 62, RFC 3412,
 December 2002.

 [RFC3414] Blumenthal, U. and B. Wijnen, "User-based Security Model
 (USM) for version 3 of the Simple Network Management
 Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.

8.2. Informative References

 [ISO-ASN.1] Information processing systems - Open Systems
 Interconnection - Specification of Abstract Syntax
 Notation One (ASN.1), International Organization for
 Standardization. International Standard 8824, (December,
 1987).

Wijnen, et al. Standards Track [Page 32]

RFC 3415 VACM for the SNMP December 2002

Appendix A - Installation

A.1. Installation Parameters

 During installation, an authoritative SNMP engine which supports this
 View-based Access Control Model SHOULD be configured with several
 initial parameters. These include for the View-based Access Control
 Model:

 1) A security configuration

 The choice of security configuration determines if initial
 configuration is implemented and if so how. One of three possible
 choices is selected:

 - initial-minimum-security-configuration
 - initial-semi-security-configuration
 - initial-no-access-configuration

 In the case of a initial-no-access-configuration, there is no
 initial configuration, and so the following steps are irrelevant.

 2) A default context

 One entry in the vacmContextTable with a contextName of "" (the
 empty string), representing the default context. Note that this
 table gets created automatically if a default context exists.

 vacmContextName ""

 3) An initial group

 One entry in the vacmSecurityToGroupTable to allow access to group
 "initial".

 vacmSecurityModel 3 (USM)
 vacmSecurityName "initial"
 vacmGroupName "initial"
 vacmSecurityToGroupStorageType anyValidStorageType
 vacmSecurityToGroupStatus active

Wijnen, et al. Standards Track [Page 33]

RFC 3415 VACM for the SNMP December 2002

 4) Initial access rights

 Three entries in the vacmAccessTable as follows:

 - read-notify access for securityModel USM, securityLevel
 "noAuthNoPriv" on behalf of securityNames that belong to the
 group "initial" to the <restricted> MIB view in the default
 context with contextName "".

 - read-write-notify access for securityModel USM, securityLevel
 "authNoPriv" on behalf of securityNames that belong to the
 group "initial" to the <internet> MIB view in the default
 context with contextName "".

 - if privacy is supported, read-write-notify access for
 securityModel USM, securityLevel "authPriv" on behalf of
 securityNames that belong to the group "initial" to the
 <internet> MIB view in the default context with contextName "".

 That translates into the following entries in the vacmAccessTable.

 - One entry to be used for unauthenticated access (noAuthNoPriv):

 vacmGroupName "initial"
 vacmAccessContextPrefix ""
 vacmAccessSecurityModel 3 (USM)
 vacmAccessSecurityLevel noAuthNoPriv
 vacmAccessContextMatch exact
 vacmAccessReadViewName "restricted"
 vacmAccessWriteViewName ""
 vacmAccessNotifyViewName "restricted"
 vacmAccessStorageType anyValidStorageType
 vacmAccessStatus active

 - One entry to be used for authenticated access (authNoPriv) with
 optional privacy (authPriv):

 vacmGroupName "initial"
 vacmAccessContextPrefix ""
 vacmAccessSecurityModel 3 (USM)
 vacmAccessSecurityLevel authNoPriv
 vacmAccessContextMatch exact
 vacmAccessReadViewName "internet"
 vacmAccessWriteViewName "internet"
 vacmAccessNotifyViewName "internet"
 vacmAccessStorageType anyValidStorageType
 vacmAccessStatus active

Wijnen, et al. Standards Track [Page 34]

RFC 3415 VACM for the SNMP December 2002

 5) Two MIB views, of which the second one depends on the security
 configuration.

 - One view, the <internet> view, for authenticated access:

 - the <internet> MIB view is the following subtree:
 "internet" (subtree 1.3.6.1)

 - A second view, the <restricted> view, for unauthenticated
 access. This view is configured according to the selected
 security configuration:

 - For the initial-no-access-configuration there is no default
 initial configuration, so no MIB views are pre-scribed.

 - For the initial-semi-secure-configuration:

 the <restricted> MIB view is the union of these subtrees:
 (a) "system" (subtree 1.3.6.1.2.1.1) [RFC3918]
 (b) "snmp" (subtree 1.3.6.1.2.1.11) [RFC3918]
 (c) "snmpEngine" (subtree 1.3.6.1.6.3.10.2.1) [RFC3411]
 (d) "snmpMPDStats" (subtree 1.3.6.1.6.3.11.2.1) [RFC3412]
 (e) "usmStats" (subtree 1.3.6.1.6.3.15.1.1) [RFC3414]

 - For the initial-minimum-secure-configuration:

 the <restricted> MIB view is the following subtree.
 "internet" (subtree 1.3.6.1)

 This translates into the following "internet" entry in the
 vacmViewTreeFamilyTable:

 minimum-secure semi-secure
 ---------------- ---------------
 vacmViewTreeFamilyViewName "internet" "internet"
 vacmViewTreeFamilySubtree 1.3.6.1 1.3.6.1
 vacmViewTreeFamilyMask "" ""
 vacmViewTreeFamilyType 1 (included) 1 (included)
 vacmViewTreeFamilyStorageType anyValidStorageType anyValidStorageType
 vacmViewTreeFamilyStatus active active

Wijnen, et al. Standards Track [Page 35]

RFC 3415 VACM for the SNMP December 2002

 In addition it translates into the following "restricted" entries in
 the vacmViewTreeFamilyTable:

 minimum-secure semi-secure
 ---------------- ---------------
 vacmViewTreeFamilyViewName "restricted" "restricted"
 vacmViewTreeFamilySubtree 1.3.6.1 1.3.6.1.2.1.1
 vacmViewTreeFamilyMask "" ""
 vacmViewTreeFamilyType 1 (included) 1 (included)
 vacmViewTreeFamilyStorageType anyValidStorageType anyValidStorageType
 vacmViewTreeFamilyStatus active active

 vacmViewTreeFamilyViewName "restricted"
 vacmViewTreeFamilySubtree 1.3.6.1.2.1.11
 vacmViewTreeFamilyMask ""
 vacmViewTreeFamilyType 1 (included)
 vacmViewTreeFamilyStorageType anyValidStorageType
 vacmViewTreeFamilyStatus active

 vacmViewTreeFamilyViewName "restricted"
 vacmViewTreeFamilySubtree 1.3.6.1.6.3.10.2.1
 vacmViewTreeFamilyMask ""
 vacmViewTreeFamilyType 1 (included)
 vacmViewTreeFamilyStorageType anyValidStorageType
 vacmViewTreeFamilyStatus active

 vacmViewTreeFamilyViewName "restricted"
 vacmViewTreeFamilySubtree 1.3.6.1.6.3.11.2.1
 vacmViewTreeFamilyMask ""
 vacmViewTreeFamilyType 1 (included)
 vacmViewTreeFamilyStorageType anyValidStorageType
 vacmViewTreeFamilyStatus active

 vacmViewTreeFamilyViewName "restricted"
 vacmViewTreeFamilySubtree 1.3.6.1.6.3.15.1.1
 vacmViewTreeFamilyMask ""
 vacmViewTreeFamilyType 1 (included)
 vacmViewTreeFamilyStorageType anyValidStorageType
 vacmViewTreeFamilyStatus active

B. Change Log

 Changes made since RFC 2575:

 - Removed reference from abstract as per RFC-Editor guidelines
 - Updated references

Wijnen, et al. Standards Track [Page 36]

RFC 3415 VACM for the SNMP December 2002

 Changes made since RFC 2275:

 - Added text to vacmSecurityToGroupStatus DESCRIPTION clause to
 clarify under which conditions an entry in the
 vacmSecurityToGroupTable can be made active.
 - Added REVISION clauses to MODULE-IDENTITY
 - Clarified text in vacmAccessTable DESCRIPTION clause.
 - Added a DEFVAL clause to vacmAccessContextMatch object.
 - Added missing columns in Appendix A and re-arranged for
 clarity.
 - Fixed oids in appendix A.
 - Use the PDU Class terminology instead of RFC1905 PDU types.
 - Added section 7.4 about access control to the MIB.
 - Fixed references to new/revised documents
 - Fix Editor contact information.
 - fixed spelling errors
 - removed one vacmAccesEntry from sample in appendix A.
 - made some more clarifications.
 - updated acknowledgement section.

Wijnen, et al. Standards Track [Page 37]

RFC 3415 VACM for the SNMP December 2002

Editors’ Addresses

 Bert Wijnen
 Lucent Technologies
 Schagen 33
 3461 GL Linschoten
 Netherlands

 Phone: +31-348-480-685
 EMail: bwijnen@lucent.com

 Randy Presuhn
 BMC Software, Inc.
 2141 North First Street
 San Jose, CA 95131
 USA

 Phone: +1 408-546-1006
 EMail: randy_presuhn@bmc.com

 Keith McCloghrie
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA 95134-1706
 USA

 Phone: +1-408-526-5260
 EMail: kzm@cisco.com

Wijnen, et al. Standards Track [Page 38]

RFC 3415 VACM for the SNMP December 2002

Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Wijnen, et al. Standards Track [Page 39]

==

Network Working Group Editor of this version:
Request for Comments: 3416 R. Presuhn
STD: 62 BMC Software, Inc.
Obsoletes: 1905 Authors of previous version:
Category: Standards Track J. Case
 SNMP Research, Inc.
 K. McCloghrie
 Cisco Systems, Inc.
 M. Rose
 Dover Beach Consulting, Inc.
 S. Waldbusser
 International Network Services
 December 2002

 Version 2 of the Protocol Operations for
 the Simple Network Management Protocol (SNMP)

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This document defines version 2 of the protocol operations for the
 Simple Network Management Protocol (SNMP). It defines the syntax and
 elements of procedure for sending, receiving, and processing SNMP
 PDUs. This document obsoletes RFC 1905.

Presuhn, et al. Standards Track [Page 1]

RFC 3416 Protocol Operations for SNMP December 2002

Table of Contents

 1. Introduction .. 3
 2. Overview .. 4
 2.1. Management Information 4
 2.2. Retransmission of Requests 4
 2.3. Message Sizes ... 4
 2.4. Transport Mappings .. 5
 2.5. SMIv2 Data Type Mappings 6
 3. Definitions ... 6
 4. Protocol Specification 9
 4.1. Common Constructs ... 9
 4.2. PDU Processing .. 10
 4.2.1. The GetRequest-PDU 10
 4.2.2. The GetNextRequest-PDU 11
 4.2.2.1. Example of Table Traversal 12
 4.2.3. The GetBulkRequest-PDU 14
 4.2.3.1. Another Example of Table Traversal 17
 4.2.4. The Response-PDU .. 18
 4.2.5. The SetRequest-PDU 19
 4.2.6. The SNMPv2-Trap-PDU 22
 4.2.7. The InformRequest-PDU 23
 5. Notice on Intellectual Property 24
 6. Acknowledgments ... 24
 7. Security Considerations 26
 8. References .. 26
 8.1. Normative References 26
 8.2. Informative References 27
 9. Changes from RFC 1905 28
 10. Editor’s Address ... 30
 11. Full Copyright Statement 31

Presuhn, et al. Standards Track [Page 2]

RFC 3416 Protocol Operations for SNMP December 2002

1. Introduction

 The SNMP Management Framework at the time of this writing consists of
 five major components:

 - An overall architecture, described in STD 62, RFC 3411
 [RFC3411].

 - Mechanisms for describing and naming objects and events for the
 purpose of management. The first version of this Structure of
 Management Information (SMI) is called SMIv1 and described in
 STD 16, RFC 1155 [RFC1155], STD 16, RFC 1212 [RFC1212] and RFC
 1215 [RFC1215]. The second version, called SMIv2, is described
 in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and
 STD 58, RFC 2580 [RFC2580].

 - Message protocols for transferring management information. The
 first version of the SNMP message protocol is called SNMPv1 and
 described in STD 15, RFC 1157 [RFC1157]. A second version of
 the SNMP message protocol, which is not an Internet standards
 track protocol, is called SNMPv2c and described in RFC 1901
 [RFC1901] and STD 62, RFC 3417 [RFC3417]. The third version of
 the message protocol is called SNMPv3 and described in STD 62,
 RFC 3417 [RFC3417], RFC 3412 [RFC3412] and RFC 3414 [RFC3414].

 - Protocol operations for accessing management information. The
 first set of protocol operations and associated PDU formats is
 described in STD 15, RFC 1157 [RFC1157]. A second set of
 protocol operations and associated PDU formats is described in
 this document.

 - A set of fundamental applications described in STD 62, RFC 3413
 [RFC3413] and the view-based access control mechanism described
 in STD 62, RFC 3415 [RFC3415].

 A more detailed introduction to the SNMP Management Framework at the
 time of this writing can be found in RFC 3410 [RFC3410].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. Objects in the MIB are
 defined using the mechanisms defined in the SMI.

 This document, Version 2 of the Protocol Operations for the Simple
 Network Management Protocol, defines the operations of the protocol
 with respect to the sending and receiving of PDUs to be carried by
 the message protocol.

Presuhn, et al. Standards Track [Page 3]

RFC 3416 Protocol Operations for SNMP December 2002

2. Overview

 SNMP entities supporting command generator or notification receiver
 applications (traditionally called "managers") communicate with SNMP
 entities supporting command responder or notification originator
 applications (traditionally called "agents"). The purpose of this
 protocol is the transport of management information and operations.

2.1. Management Information

 The term "variable" refers to an instance of a non-aggregate object
 type defined according to the conventions set forth in the SMI
 [RFC2578] or the textual conventions based on the SMI [RFC2579]. The
 term "variable binding" normally refers to the pairing of the name of
 a variable and its associated value. However, if certain kinds of
 exceptional conditions occur during processing of a retrieval
 request, a variable binding will pair a name and an indication of
 that exception.

 A variable-binding list is a simple list of variable bindings.

 The name of a variable is an OBJECT IDENTIFIER which is the
 concatenation of the OBJECT IDENTIFIER of the corresponding object-
 type together with an OBJECT IDENTIFIER fragment identifying the
 instance. The OBJECT IDENTIFIER of the corresponding object-type is
 called the OBJECT IDENTIFIER prefix of the variable.

2.2. Retransmission of Requests

 For all types of request in this protocol, the receiver is required
 under normal circumstances, to generate and transmit a response to
 the originator of the request. Whether or not a request should be
 retransmitted if no corresponding response is received in an
 appropriate time interval, is at the discretion of the application
 originating the request. This will normally depend on the urgency of
 the request. However, such an application needs to act responsibly
 in respect to the frequency and duration of re-transmissions. See
 BCP 41 [RFC2914] for discussion of relevant congestion control
 principles.

2.3. Message Sizes

 The maximum size of an SNMP message is limited to the minimum of:

 (1) the maximum message size which the destination SNMP entity can
 accept; and,

Presuhn, et al. Standards Track [Page 4]

RFC 3416 Protocol Operations for SNMP December 2002

 (2) the maximum message size which the source SNMP entity can
 generate.

 The former may be known on a per-recipient basis; and in the absence
 of such knowledge, is indicated by transport domain used when sending
 the message. The latter is imposed by implementation-specific local
 constraints.

 Each transport mapping for the SNMP indicates the minimum message
 size which a SNMP implementation must be able to produce or consume.
 Although implementations are encouraged to support larger values
 whenever possible, a conformant implementation must never generate
 messages larger than allowed by the receiving SNMP entity.

 One of the aims of the GetBulkRequest-PDU, specified in this
 protocol, is to minimize the number of protocol exchanges required to
 retrieve a large amount of management information. As such, this PDU
 type allows an SNMP entity supporting command generator applications
 to request that the response be as large as possible given the
 constraints on message sizes. These constraints include the limits
 on the size of messages which the SNMP entity supporting command
 responder applications can generate, and the SNMP entity supporting
 command generator applications can receive.

 However, it is possible that such maximum sized messages may be
 larger than the Path MTU of the path across the network traversed by
 the messages. In this situation, such messages are subject to
 fragmentation. Fragmentation is generally considered to be harmful
 [FRAG], since among other problems, it leads to a decrease in the
 reliability of the transfer of the messages. Thus, an SNMP entity
 which sends a GetBulkRequest-PDU must take care to set its parameters
 accordingly, so as to reduce the risk of fragmentation. In
 particular, under conditions of network stress, only small values
 should be used for max-repetitions.

2.4. Transport Mappings

 It is important to note that the exchange of SNMP messages requires
 only an unreliable datagram service, with every message being
 entirely and independently contained in a single transport datagram.
 Specific transport mappings and encoding rules are specified
 elsewhere [RFC3417]. However, the preferred mapping is the use of
 the User Datagram Protocol [RFC768].

Presuhn, et al. Standards Track [Page 5]

RFC 3416 Protocol Operations for SNMP December 2002

2.5. SMIv2 Data Type Mappings

 The SMIv2 [RFC2578] defines 11 base types (INTEGER, OCTET STRING,
 OBJECT IDENTIFIER, Integer32, IpAddress, Counter32, Gauge32,
 Unsigned32, TimeTicks, Opaque, Counter64) and the BITS construct.
 The SMIv2 base types are mapped to the corresponding selection type
 in the SimpleSyntax and ApplicationSyntax choices of the ASN.1 SNMP
 protocol definition. Note that the INTEGER and Integer32 SMIv2 base
 types are mapped to the integer-value selection type of the
 SimpleSyntax choice. Similarly, the Gauge32 and Unsigned32 SMIv2
 base types are mapped to the unsigned-integer-value selection type of
 the ApplicationSyntax choice.

 The SMIv2 BITS construct is mapped to the string-value selection type
 of the SimpleSyntax choice. A BITS value is encoded as an OCTET
 STRING, in which all the named bits in (the definition of) the
 bitstring, commencing with the first bit and proceeding to the last
 bit, are placed in bits 8 (high order bit) to 1 (low order bit) of
 the first octet, followed by bits 8 to 1 of each subsequent octet in
 turn, followed by as many bits as are needed of the final subsequent
 octet, commencing with bit 8. Remaining bits, if any, of the final
 octet are set to zero on generation and ignored on receipt.

3. Definitions

 The PDU syntax is defined using ASN.1 notation [ASN1].

 SNMPv2-PDU DEFINITIONS ::= BEGIN

 ObjectName ::= OBJECT IDENTIFIER

 ObjectSyntax ::= CHOICE {
 simple SimpleSyntax,
 application-wide ApplicationSyntax }

 SimpleSyntax ::= CHOICE {
 integer-value INTEGER (-2147483648..2147483647),
 string-value OCTET STRING (SIZE (0..65535)),
 objectID-value OBJECT IDENTIFIER }

 ApplicationSyntax ::= CHOICE {
 ipAddress-value IpAddress,
 counter-value Counter32,
 timeticks-value TimeTicks,
 arbitrary-value Opaque,
 big-counter-value Counter64,
 unsigned-integer-value Unsigned32 }

Presuhn, et al. Standards Track [Page 6]

RFC 3416 Protocol Operations for SNMP December 2002

 IpAddress ::= [APPLICATION 0] IMPLICIT OCTET STRING (SIZE (4))

 Counter32 ::= [APPLICATION 1] IMPLICIT INTEGER (0..4294967295)

 Unsigned32 ::= [APPLICATION 2] IMPLICIT INTEGER (0..4294967295)

 Gauge32 ::= Unsigned32

 TimeTicks ::= [APPLICATION 3] IMPLICIT INTEGER (0..4294967295)

 Opaque ::= [APPLICATION 4] IMPLICIT OCTET STRING

 Counter64 ::= [APPLICATION 6]
 IMPLICIT INTEGER (0..18446744073709551615)

 -- protocol data units

 PDUs ::= CHOICE {
 get-request GetRequest-PDU,
 get-next-request GetNextRequest-PDU,
 get-bulk-request GetBulkRequest-PDU,
 response Response-PDU,
 set-request SetRequest-PDU,
 inform-request InformRequest-PDU,
 snmpV2-trap SNMPv2-Trap-PDU,
 report Report-PDU }

 -- PDUs

 GetRequest-PDU ::= [0] IMPLICIT PDU

 GetNextRequest-PDU ::= [1] IMPLICIT PDU

 Response-PDU ::= [2] IMPLICIT PDU

 SetRequest-PDU ::= [3] IMPLICIT PDU

 -- [4] is obsolete

 GetBulkRequest-PDU ::= [5] IMPLICIT BulkPDU

 InformRequest-PDU ::= [6] IMPLICIT PDU

 SNMPv2-Trap-PDU ::= [7] IMPLICIT PDU

 -- Usage and precise semantics of Report-PDU are not defined
 -- in this document. Any SNMP administrative framework making
 -- use of this PDU must define its usage and semantics.

Presuhn, et al. Standards Track [Page 7]

RFC 3416 Protocol Operations for SNMP December 2002

 Report-PDU ::= [8] IMPLICIT PDU

 max-bindings INTEGER ::= 2147483647

 PDU ::= SEQUENCE {
 request-id INTEGER (-214783648..214783647),

 error-status -- sometimes ignored
 INTEGER {
 noError(0),
 tooBig(1),
 noSuchName(2), -- for proxy compatibility
 badValue(3), -- for proxy compatibility
 readOnly(4), -- for proxy compatibility
 genErr(5),
 noAccess(6),
 wrongType(7),
 wrongLength(8),
 wrongEncoding(9),
 wrongValue(10),
 noCreation(11),
 inconsistentValue(12),
 resourceUnavailable(13),
 commitFailed(14),
 undoFailed(15),
 authorizationError(16),
 notWritable(17),
 inconsistentName(18)
 },

 error-index -- sometimes ignored
 INTEGER (0..max-bindings),

 variable-bindings -- values are sometimes ignored
 VarBindList
 }

 BulkPDU ::= -- must be identical in
 SEQUENCE { -- structure to PDU
 request-id INTEGER (-214783648..214783647),
 non-repeaters INTEGER (0..max-bindings),
 max-repetitions INTEGER (0..max-bindings),

 variable-bindings -- values are ignored
 VarBindList
 }

 -- variable binding

Presuhn, et al. Standards Track [Page 8]

RFC 3416 Protocol Operations for SNMP December 2002

 VarBind ::= SEQUENCE {
 name ObjectName,

 CHOICE {
 value ObjectSyntax,
 unSpecified NULL, -- in retrieval requests

 -- exceptions in responses
 noSuchObject [0] IMPLICIT NULL,
 noSuchInstance [1] IMPLICIT NULL,
 endOfMibView [2] IMPLICIT NULL
 }
 }

 -- variable-binding list

 VarBindList ::= SEQUENCE (SIZE (0..max-bindings)) OF VarBind

 END

4. Protocol Specification

4.1. Common Constructs

 The value of the request-id field in a Response-PDU takes the value
 of the request-id field in the request PDU to which it is a response.
 By use of the request-id value, an application can distinguish the
 (potentially multiple) outstanding requests, and thereby correlate
 incoming responses with outstanding requests. In cases where an
 unreliable datagram service is used, the request-id also provides a
 simple means of identifying messages duplicated by the network. Use
 of the same request-id on a retransmission of a request allows the
 response to either the original transmission or the retransmission to
 satisfy the request. However, in order to calculate the round trip
 time for transmission and processing of a request-response
 transaction, the application needs to use a different request-id
 value on a retransmitted request. The latter strategy is recommended
 for use in the majority of situations.

 A non-zero value of the error-status field in a Response-PDU is used
 to indicate that an error occurred to prevent the processing of the
 request. In these cases, a non-zero value of the Response-PDU’s
 error-index field provides additional information by identifying
 which variable binding in the list caused the error. A variable
 binding is identified by its index value. The first variable binding
 in a variable-binding list is index one, the second is index two,
 etc.

Presuhn, et al. Standards Track [Page 9]

RFC 3416 Protocol Operations for SNMP December 2002

 SNMP limits OBJECT IDENTIFIER values to a maximum of 128 sub-
 identifiers, where each sub-identifier has a maximum value of
 2**32-1.

4.2. PDU Processing

 In the elements of procedure below, any field of a PDU which is not
 referenced by the relevant procedure is ignored by the receiving SNMP
 entity. However, all components of a PDU, including those whose
 values are ignored by the receiving SNMP entity, must have valid
 ASN.1 syntax and encoding. For example, some PDUs (e.g., the
 GetRequest-PDU) are concerned only with the name of a variable and
 not its value. In this case, the value portion of the variable
 binding is ignored by the receiving SNMP entity. The unSpecified
 value is defined for use as the value portion of such bindings.

 On generating a management communication, the message "wrapper" to
 encapsulate the PDU is generated according to the "Elements of
 Procedure" of the administrative framework in use. The definition of
 "max-bindings" imposes an upper bound on the number of variable
 bindings. In practice, the size of a message is also limited by
 constraints on the maximum message size. A compliant implementation
 must support as many variable bindings in a PDU or BulkPDU as fit
 into the overall maximum message size limit of the SNMP engine, but
 no more than 2147483647 variable bindings.

 On receiving a management communication, the "Elements of Procedure"
 of the administrative framework in use is followed, and if those
 procedures indicate that the operation contained within the message
 is to be performed locally, then those procedures also indicate the
 MIB view which is visible to the operation.

4.2.1. The GetRequest-PDU

 A GetRequest-PDU is generated and transmitted at the request of an
 application.

 Upon receipt of a GetRequest-PDU, the receiving SNMP entity processes
 each variable binding in the variable-binding list to produce a
 Response-PDU. All fields of the Response-PDU have the same values as
 the corresponding fields of the received request except as indicated
 below. Each variable binding is processed as follows:

 (1) If the variable binding’s name exactly matches the name of a
 variable accessible by this request, then the variable
 binding’s value field is set to the value of the named
 variable.

Presuhn, et al. Standards Track [Page 10]

RFC 3416 Protocol Operations for SNMP December 2002

 (2) Otherwise, if the variable binding’s name does not have an
 OBJECT IDENTIFIER prefix which exactly matches the OBJECT
 IDENTIFIER prefix of any (potential) variable accessible by
 this request, then its value field is set to "noSuchObject".

 (3) Otherwise, the variable binding’s value field is set to
 "noSuchInstance".

 If the processing of any variable binding fails for a reason other
 than listed above, then the Response-PDU is re-formatted with the
 same values in its request-id and variable-bindings fields as the
 received GetRequest-PDU, with the value of its error-status field set
 to "genErr", and the value of its error-index field is set to the
 index of the failed variable binding.

 Otherwise, the value of the Response-PDU’s error-status field is set
 to "noError", and the value of its error-index field is zero.

 The generated Response-PDU is then encapsulated into a message. If
 the size of the resultant message is less than or equal to both a
 local constraint and the maximum message size of the originator, it
 is transmitted to the originator of the GetRequest-PDU.

 Otherwise, an alternate Response-PDU is generated. This alternate
 Response-PDU is formatted with the same value in its request-id field
 as the received GetRequest-PDU, with the value of its error-status
 field set to "tooBig", the value of its error-index field set to
 zero, and an empty variable-bindings field. This alternate
 Response-PDU is then encapsulated into a message. If the size of the
 resultant message is less than or equal to both a local constraint
 and the maximum message size of the originator, it is transmitted to
 the originator of the GetRequest-PDU. Otherwise, the snmpSilentDrops
 [RFC3418] counter is incremented and the resultant message is
 discarded.

4.2.2. The GetNextRequest-PDU

 A GetNextRequest-PDU is generated and transmitted at the request of
 an application.

 Upon receipt of a GetNextRequest-PDU, the receiving SNMP entity
 processes each variable binding in the variable-binding list to
 produce a Response-PDU. All fields of the Response-PDU have the same
 values as the corresponding fields of the received request except as
 indicated below. Each variable binding is processed as follows:

 (1) The variable is located which is in the lexicographically
 ordered list of the names of all variables which are

Presuhn, et al. Standards Track [Page 11]

RFC 3416 Protocol Operations for SNMP December 2002

 accessible by this request and whose name is the first
 lexicographic successor of the variable binding’s name in
 the incoming GetNextRequest-PDU. The corresponding variable
 binding’s name and value fields in the Response-PDU are set
 to the name and value of the located variable.

 (2) If the requested variable binding’s name does not
 lexicographically precede the name of any variable
 accessible by this request, i.e., there is no lexicographic
 successor, then the corresponding variable binding produced
 in the Response-PDU has its value field set to
 "endOfMibView", and its name field set to the variable
 binding’s name in the request.

 If the processing of any variable binding fails for a reason other
 than listed above, then the Response-PDU is re-formatted with the
 same values in its request-id and variable-bindings fields as the
 received GetNextRequest-PDU, with the value of its error-status field
 set to "genErr", and the value of its error-index field is set to the
 index of the failed variable binding.

 Otherwise, the value of the Response-PDU’s error-status field is set
 to "noError", and the value of its error-index field is zero.

 The generated Response-PDU is then encapsulated into a message. If
 the size of the resultant message is less than or equal to both a
 local constraint and the maximum message size of the originator, it
 is transmitted to the originator of the GetNextRequest-PDU.

 Otherwise, an alternate Response-PDU is generated. This alternate
 Response-PDU is formatted with the same values in its request-id
 field as the received GetNextRequest-PDU, with the value of its
 error-status field set to "tooBig", the value of its error-index
 field set to zero, and an empty variable-bindings field. This
 alternate Response-PDU is then encapsulated into a message. If the
 size of the resultant message is less than or equal to both a local
 constraint and the maximum message size of the originator, it is
 transmitted to the originator of the GetNextRequest-PDU. Otherwise,
 the snmpSilentDrops [RFC3418] counter is incremented and the
 resultant message is discarded.

4.2.2.1. Example of Table Traversal

 An important use of the GetNextRequest-PDU is the traversal of
 conceptual tables of information within a MIB. The semantics of this
 type of request, together with the method of identifying individual
 instances of objects in the MIB, provides access to related objects
 in the MIB as if they enjoyed a tabular organization.

Presuhn, et al. Standards Track [Page 12]

RFC 3416 Protocol Operations for SNMP December 2002

 In the protocol exchange sketched below, an application retrieves the
 media-dependent physical address and the address-mapping type for
 each entry in the IP net-to-media Address Translation Table [RFC1213]
 of a particular network element. It also retrieves the value of
 sysUpTime [RFC3418], at which the mappings existed. Suppose that the
 command responder’s IP net-to-media table has three entries:

 Interface-Number Network-Address Physical-Address Type

 1 10.0.0.51 00:00:10:01:23:45 static
 1 9.2.3.4 00:00:10:54:32:10 dynamic
 2 10.0.0.15 00:00:10:98:76:54 dynamic

 The SNMP entity supporting a command generator application begins by
 sending a GetNextRequest-PDU containing the indicated OBJECT
 IDENTIFIER values as the requested variable names:

 GetNextRequest (sysUpTime,
 ipNetToMediaPhysAddress,
 ipNetToMediaType)

 The SNMP entity supporting a command responder application responds
 with a Response-PDU:

 Response ((sysUpTime.0 = "123456"),
 (ipNetToMediaPhysAddress.1.9.2.3.4 = "000010543210"),
 (ipNetToMediaType.1.9.2.3.4 = "dynamic"))

 The SNMP entity supporting the command generator application
 continues with:

 GetNextRequest (sysUpTime,
 ipNetToMediaPhysAddress.1.9.2.3.4,
 ipNetToMediaType.1.9.2.3.4)

 The SNMP entity supporting the command responder application responds
 with:

 Response ((sysUpTime.0 = "123461"),
 (ipNetToMediaPhysAddress.1.10.0.0.51 = "000010012345"),
 (ipNetToMediaType.1.10.0.0.51 = "static"))

 The SNMP entity supporting the command generator application
 continues with:

 GetNextRequest (sysUpTime,
 ipNetToMediaPhysAddress.1.10.0.0.51,
 ipNetToMediaType.1.10.0.0.51)

Presuhn, et al. Standards Track [Page 13]

RFC 3416 Protocol Operations for SNMP December 2002

 The SNMP entity supporting the command responder application responds
 with:

 Response ((sysUpTime.0 = "123466"),
 (ipNetToMediaPhysAddress.2.10.0.0.15 = "000010987654"),
 (ipNetToMediaType.2.10.0.0.15 = "dynamic"))

 The SNMP entity supporting the command generator application
 continues with:

 GetNextRequest (sysUpTime,
 ipNetToMediaPhysAddress.2.10.0.0.15,
 ipNetToMediaType.2.10.0.0.15)

 As there are no further entries in the table, the SNMP entity
 supporting the command responder application responds with the
 variables that are next in the lexicographical ordering of the
 accessible object names, for example:

 Response ((sysUpTime.0 = "123471"),
 (ipNetToMediaNetAddress.1.9.2.3.4 = "9.2.3.4"),
 (ipRoutingDiscards.0 = "2"))

 Note how, having reached the end of the column for
 ipNetToMediaPhysAddress, the second variable binding from the command
 responder application has now "wrapped" to the first row in the next
 column. Furthermore, note how, having reached the end of the
 ipNetToMediaTable for the third variable binding, the command
 responder application has responded with the next available object,
 which is outside that table. This response signals the end of the
 table to the command generator application.

4.2.3. The GetBulkRequest-PDU

 A GetBulkRequest-PDU is generated and transmitted at the request of
 an application. The purpose of the GetBulkRequest-PDU is to request
 the transfer of a potentially large amount of data, including, but
 not limited to, the efficient and rapid retrieval of large tables.

 Upon receipt of a GetBulkRequest-PDU, the receiving SNMP entity
 processes each variable binding in the variable-binding list to
 produce a Response-PDU with its request-id field having the same
 value as in the request.

 For the GetBulkRequest-PDU type, the successful processing of each
 variable binding in the request generates zero or more variable
 bindings in the Response-PDU. That is, the one-to-one mapping
 between the variable bindings of the GetRequest-PDU, GetNextRequest-

Presuhn, et al. Standards Track [Page 14]

RFC 3416 Protocol Operations for SNMP December 2002

 PDU, and SetRequest-PDU types and the resultant Response-PDUs does
 not apply for the mapping between the variable bindings of a
 GetBulkRequest-PDU and the resultant Response-PDU.

 The values of the non-repeaters and max-repetitions fields in the
 request specify the processing requested. One variable binding in
 the Response-PDU is requested for the first N variable bindings in
 the request and M variable bindings are requested for each of the R
 remaining variable bindings in the request. Consequently, the total
 number of requested variable bindings communicated by the request is
 given by N + (M * R), where N is the minimum of: a) the value of the
 non-repeaters field in the request, and b) the number of variable
 bindings in the request; M is the value of the max-repetitions field
 in the request; and R is the maximum of: a) number of variable
 bindings in the request - N, and b) zero.

 The receiving SNMP entity produces a Response-PDU with up to the
 total number of requested variable bindings communicated by the
 request. The request-id shall have the same value as the received
 GetBulkRequest-PDU.

 If N is greater than zero, the first through the (N)-th variable
 bindings of the Response-PDU are each produced as follows:

 (1) The variable is located which is in the lexicographically
 ordered list of the names of all variables which are accessible
 by this request and whose name is the first lexicographic
 successor of the variable binding’s name in the incoming
 GetBulkRequest-PDU. The corresponding variable binding’s name
 and value fields in the Response-PDU are set to the name and
 value of the located variable.

 (2) If the requested variable binding’s name does not
 lexicographically precede the name of any variable accessible
 by this request, i.e., there is no lexicographic successor,
 then the corresponding variable binding produced in the
 Response-PDU has its value field set to "endOfMibView", and its
 name field set to the variable binding’s name in the request.

 If M and R are non-zero, the (N + 1)-th and subsequent variable
 bindings of the Response-PDU are each produced in a similar manner.
 For each iteration i, such that i is greater than zero and less than
 or equal to M, and for each repeated variable, r, such that r is
 greater than zero and less than or equal to R, the (N + ((i-1) * R)
 + r)-th variable binding of the Response-PDU is produced as follows:

Presuhn, et al. Standards Track [Page 15]

RFC 3416 Protocol Operations for SNMP December 2002

 (1) The variable which is in the lexicographically ordered list of
 the names of all variables which are accessible by this request
 and whose name is the (i)-th lexicographic successor of the (N
 + r)-th variable binding’s name in the incoming
 GetBulkRequest-PDU is located and the variable binding’s name
 and value fields are set to the name and value of the located
 variable.

 (2) If there is no (i)-th lexicographic successor, then the
 corresponding variable binding produced in the Response-PDU has
 its value field set to "endOfMibView", and its name field set
 to either the last lexicographic successor, or if there are no
 lexicographic successors, to the (N + r)-th variable binding’s
 name in the request.

 While the maximum number of variable bindings in the Response-PDU is
 bounded by N + (M * R), the response may be generated with a lesser
 number of variable bindings (possibly zero) for either of three
 reasons.

 (1) If the size of the message encapsulating the Response-PDU
 containing the requested number of variable bindings would be
 greater than either a local constraint or the maximum message
 size of the originator, then the response is generated with a
 lesser number of variable bindings. This lesser number is the
 ordered set of variable bindings with some of the variable
 bindings at the end of the set removed, such that the size of
 the message encapsulating the Response-PDU is approximately
 equal to but no greater than either a local constraint or the
 maximum message size of the originator. Note that the number
 of variable bindings removed has no relationship to the values
 of N, M, or R.

 (2) The response may also be generated with a lesser number of
 variable bindings if for some value of iteration i, such that i
 is greater than zero and less than or equal to M, that all of
 the generated variable bindings have the value field set to
 "endOfMibView". In this case, the variable bindings may be
 truncated after the (N + (i * R))-th variable binding.

 (3) In the event that the processing of a request with many
 repetitions requires a significantly greater amount of
 processing time than a normal request, then a command responder
 application may terminate the request with less than the full
 number of repetitions, providing at least one repetition is
 completed.

Presuhn, et al. Standards Track [Page 16]

RFC 3416 Protocol Operations for SNMP December 2002

 If the processing of any variable binding fails for a reason other
 than listed above, then the Response-PDU is re-formatted with the
 same values in its request-id and variable-bindings fields as the
 received GetBulkRequest-PDU, with the value of its error-status field
 set to "genErr", and the value of its error-index field is set to the
 index of the variable binding in the original request which
 corresponds to the failed variable binding.

 Otherwise, the value of the Response-PDU’s error-status field is set
 to "noError", and the value of its error-index field to zero.

 The generated Response-PDU (possibly with an empty variable-bindings
 field) is then encapsulated into a message. If the size of the
 resultant message is less than or equal to both a local constraint
 and the maximum message size of the originator, it is transmitted to
 the originator of the GetBulkRequest-PDU. Otherwise, the
 snmpSilentDrops [RFC3418] counter is incremented and the resultant
 message is discarded.

4.2.3.1. Another Example of Table Traversal

 This example demonstrates how the GetBulkRequest-PDU can be used as
 an alternative to the GetNextRequest-PDU. The same traversal of the
 IP net-to-media table as shown in Section 4.2.2.1 is achieved with
 fewer exchanges.

 The SNMP entity supporting the command generator application begins
 by sending a GetBulkRequest-PDU with the modest max-repetitions value
 of 2, and containing the indicated OBJECT IDENTIFIER values as the
 requested variable names:

 GetBulkRequest [non-repeaters = 1, max-repetitions = 2]
 (sysUpTime,
 ipNetToMediaPhysAddress,
 ipNetToMediaType)

 The SNMP entity supporting the command responder application responds
 with a Response-PDU:

 Response ((sysUpTime.0 = "123456"),
 (ipNetToMediaPhysAddress.1.9.2.3.4 = "000010543210"),
 (ipNetToMediaType.1.9.2.3.4 = "dynamic"),
 (ipNetToMediaPhysAddress.1.10.0.0.51 = "000010012345"),
 (ipNetToMediaType.1.10.0.0.51 = "static"))

Presuhn, et al. Standards Track [Page 17]

RFC 3416 Protocol Operations for SNMP December 2002

 The SNMP entity supporting the command generator application
 continues with:

 GetBulkRequest [non-repeaters = 1, max-repetitions = 2]
 (sysUpTime,
 ipNetToMediaPhysAddress.1.10.0.0.51,
 ipNetToMediaType.1.10.0.0.51)

 The SNMP entity supporting the command responder application responds
 with:

 Response ((sysUpTime.0 = "123466"),
 (ipNetToMediaPhysAddress.2.10.0.0.15 = "000010987654"),
 (ipNetToMediaType.2.10.0.0.15 = "dynamic"),
 (ipNetToMediaNetAddress.1.9.2.3.4 = "9.2.3.4"),
 (ipRoutingDiscards.0 = "2"))

 Note how, as in the first example, the variable bindings in the
 response indicate that the end of the table has been reached. The
 fourth variable binding does so by returning information from the
 next available column; the fifth variable binding does so by
 returning information from the first available object
 lexicographically following the table. This response signals the end
 of the table to the command generator application.

4.2.4. The Response-PDU

 The Response-PDU is generated by an SNMP entity only upon receipt of
 a GetRequest-PDU, GetNextRequest-PDU, GetBulkRequest-PDU,
 SetRequest-PDU, or InformRequest-PDU, as described elsewhere in this
 document.

 If the error-status field of the Response-PDU is non-zero, the value
 fields of the variable bindings in the variable binding list are
 ignored.

 If both the error-status field and the error-index field of the
 Response-PDU are non-zero, then the value of the error-index field is
 the index of the variable binding (in the variable-binding list of
 the corresponding request) for which the request failed. The first
 variable binding in a request’s variable-binding list is index one,
 the second is index two, etc.

 A compliant SNMP entity supporting a command generator application
 must be able to properly receive and handle a Response-PDU with an
 error-status field equal to "noSuchName", "badValue", or "readOnly".
 (See sections 1.3 and 4.3 of [RFC2576].)

Presuhn, et al. Standards Track [Page 18]

RFC 3416 Protocol Operations for SNMP December 2002

 Upon receipt of a Response-PDU, the receiving SNMP entity presents
 its contents to the application which generated the request with the
 same request-id value. For more details, see [RFC3412].

4.2.5. The SetRequest-PDU

 A SetRequest-PDU is generated and transmitted at the request of an
 application.

 Upon receipt of a SetRequest-PDU, the receiving SNMP entity
 determines the size of a message encapsulating a Response-PDU having
 the same values in its request-id and variable-bindings fields as the
 received SetRequest-PDU, and the largest possible sizes of the
 error-status and error-index fields. If the determined message size
 is greater than either a local constraint or the maximum message size
 of the originator, then an alternate Response-PDU is generated,
 transmitted to the originator of the SetRequest-PDU, and processing
 of the SetRequest-PDU terminates immediately thereafter. This
 alternate Response-PDU is formatted with the same values in its
 request-id field as the received SetRequest-PDU, with the value of
 its error-status field set to "tooBig", the value of its error-index
 field set to zero, and an empty variable-bindings field. This
 alternate Response-PDU is then encapsulated into a message. If the
 size of the resultant message is less than or equal to both a local
 constraint and the maximum message size of the originator, it is
 transmitted to the originator of the SetRequest-PDU. Otherwise, the
 snmpSilentDrops [RFC3418] counter is incremented and the resultant
 message is discarded. Regardless, processing of the SetRequest-PDU
 terminates.

 Otherwise, the receiving SNMP entity processes each variable binding
 in the variable-binding list to produce a Response-PDU. All fields
 of the Response-PDU have the same values as the corresponding fields
 of the received request except as indicated below.

 The variable bindings are conceptually processed as a two phase
 operation. In the first phase, each variable binding is validated;
 if all validations are successful, then each variable is altered in
 the second phase. Of course, implementors are at liberty to
 implement either the first, or second, or both, of these conceptual
 phases as multiple implementation phases. Indeed, such multiple
 implementation phases may be necessary in some cases to ensure
 consistency.

Presuhn, et al. Standards Track [Page 19]

RFC 3416 Protocol Operations for SNMP December 2002

 The following validations are performed in the first phase on each
 variable binding until they are all successful, or until one fails:

 (1) If the variable binding’s name specifies an existing or non-
 existent variable to which this request is/would be denied
 access because it is/would not be in the appropriate MIB view,
 then the value of the Response-PDU’s error-status field is set
 to "noAccess", and the value of its error-index field is set to
 the index of the failed variable binding.

 (2) Otherwise, if there are no variables which share the same
 OBJECT IDENTIFIER prefix as the variable binding’s name, and
 which are able to be created or modified no matter what new
 value is specified, then the value of the Response-PDU’s
 error-status field is set to "notWritable", and the value of
 its error-index field is set to the index of the failed
 variable binding.

 (3) Otherwise, if the variable binding’s value field specifies,
 according to the ASN.1 language, a type which is inconsistent
 with that required for all variables which share the same
 OBJECT IDENTIFIER prefix as the variable binding’s name, then
 the value of the Response-PDU’s error-status field is set to
 "wrongType", and the value of its error-index field is set to
 the index of the failed variable binding.

 (4) Otherwise, if the variable binding’s value field specifies,
 according to the ASN.1 language, a length which is inconsistent
 with that required for all variables which share the same
 OBJECT IDENTIFIER prefix as the variable binding’s name, then
 the value of the Response-PDU’s error-status field is set to
 "wrongLength", and the value of its error-index field is set to
 the index of the failed variable binding.

 (5) Otherwise, if the variable binding’s value field contains an
 ASN.1 encoding which is inconsistent with that field’s ASN.1
 tag, then the value of the Response-PDU’s error-status field is
 set to "wrongEncoding", and the value of its error-index field
 is set to the index of the failed variable binding. (Note that
 not all implementation strategies will generate this error.)

 (6) Otherwise, if the variable binding’s value field specifies a
 value which could under no circumstances be assigned to the
 variable, then the value of the Response-PDU’s error-status
 field is set to "wrongValue", and the value of its error-index
 field is set to the index of the failed variable binding.

Presuhn, et al. Standards Track [Page 20]

RFC 3416 Protocol Operations for SNMP December 2002

 (7) Otherwise, if the variable binding’s name specifies a variable
 which does not exist and could not ever be created (even though
 some variables sharing the same OBJECT IDENTIFIER prefix might
 under some circumstances be able to be created), then the value
 of the Response-PDU’s error-status field is set to
 "noCreation", and the value of its error-index field is set to
 the index of the failed variable binding.

 (8) Otherwise, if the variable binding’s name specifies a variable
 which does not exist but can not be created under the present
 circumstances (even though it could be created under other
 circumstances), then the value of the Response-PDU’s error-
 status field is set to "inconsistentName", and the value of its
 error-index field is set to the index of the failed variable
 binding.

 (9) Otherwise, if the variable binding’s name specifies a variable
 which exists but can not be modified no matter what new value
 is specified, then the value of the Response-PDU’s error-status
 field is set to "notWritable", and the value of its error-index
 field is set to the index of the failed variable binding.

 (10) Otherwise, if the variable binding’s value field specifies a
 value that could under other circumstances be held by the
 variable, but is presently inconsistent or otherwise unable to
 be assigned to the variable, then the value of the Response-
 PDU’s error-status field is set to "inconsistentValue", and the
 value of its error-index field is set to the index of the
 failed variable binding.

 (11) When, during the above steps, the assignment of the value
 specified by the variable binding’s value field to the
 specified variable requires the allocation of a resource which
 is presently unavailable, then the value of the Response-PDU’s
 error-status field is set to "resourceUnavailable", and the
 value of its error-index field is set to the index of the
 failed variable binding.

 (12) If the processing of the variable binding fails for a reason
 other than listed above, then the value of the Response-PDU’s
 error-status field is set to "genErr", and the value of its
 error-index field is set to the index of the failed variable
 binding.

 (13) Otherwise, the validation of the variable binding succeeds.

Presuhn, et al. Standards Track [Page 21]

RFC 3416 Protocol Operations for SNMP December 2002

 At the end of the first phase, if the validation of all variable
 bindings succeeded, then the value of the Response-PDU’s error-status
 field is set to "noError" and the value of its error-index field is
 zero, and processing continues as follows.

 For each variable binding in the request, the named variable is
 created if necessary, and the specified value is assigned to it.
 Each of these variable assignments occurs as if simultaneously with
 respect to all other assignments specified in the same request.
 However, if the same variable is named more than once in a single
 request, with different associated values, then the actual assignment
 made to that variable is implementation-specific.

 If any of these assignments fail (even after all the previous
 validations), then all other assignments are undone, and the
 Response-PDU is modified to have the value of its error-status field
 set to "commitFailed", and the value of its error-index field set to
 the index of the failed variable binding.

 If and only if it is not possible to undo all the assignments, then
 the Response-PDU is modified to have the value of its error-status
 field set to "undoFailed", and the value of its error-index field is
 set to zero. Note that implementations are strongly encouraged to
 take all possible measures to avoid use of either "commitFailed" or
 "undoFailed" - these two error-status codes are not to be taken as
 license to take the easy way out in an implementation.

 Finally, the generated Response-PDU is encapsulated into a message,
 and transmitted to the originator of the SetRequest-PDU.

4.2.6. The SNMPv2-Trap-PDU

 An SNMPv2-Trap-PDU is generated and transmitted by an SNMP entity on
 behalf of a notification originator application. The SNMPv2-Trap-PDU
 is often used to notify a notification receiver application at a
 logically remote SNMP entity that an event has occurred or that a
 condition is present. There is no confirmation associated with this
 notification delivery mechanism.

 The destination(s) to which an SNMPv2-Trap-PDU is sent is determined
 in an implementation-dependent fashion by the SNMP entity. The first
 two variable bindings in the variable binding list of an SNMPv2-
 Trap-PDU are sysUpTime.0 [RFC3418] and snmpTrapOID.0 [RFC3418]
 respectively. If the OBJECTS clause is present in the invocation of
 the corresponding NOTIFICATION-TYPE macro, then each corresponding
 variable, as instantiated by this notification, is copied, in order,

Presuhn, et al. Standards Track [Page 22]

RFC 3416 Protocol Operations for SNMP December 2002

 to the variable-bindings field. If any additional variables are
 being included (at the option of the generating SNMP entity), then
 each is copied to the variable-bindings field.

4.2.7. The InformRequest-PDU

 An InformRequest-PDU is generated and transmitted by an SNMP entity
 on behalf of a notification originator application. The
 InformRequest-PDU is often used to notify a notification receiver
 application that an event has occurred or that a condition is
 present. This is a confirmed notification delivery mechanism,
 although there is, of course, no guarantee of delivery.

 The destination(s) to which an InformRequest-PDU is sent is specified
 by the notification originator application. The first two variable
 bindings in the variable binding list of an InformRequest-PDU are
 sysUpTime.0 [RFC3418] and snmpTrapOID.0 [RFC3418] respectively. If
 the OBJECTS clause is present in the invocation of the corresponding
 NOTIFICATION-TYPE macro, then each corresponding variable, as
 instantiated by this notification, is copied, in order, to the
 variable-bindings field. If any additional variables are being
 included (at the option of the generating SNMP entity), then each is
 copied to the variable-bindings field.

 Upon receipt of an InformRequest-PDU, the receiving SNMP entity
 determines the size of a message encapsulating a Response-PDU with
 the same values in its request-id, error-status, error-index and
 variable-bindings fields as the received InformRequest-PDU. If the
 determined message size is greater than either a local constraint or
 the maximum message size of the originator, then an alternate
 Response-PDU is generated, transmitted to the originator of the
 InformRequest-PDU, and processing of the InformRequest-PDU terminates
 immediately thereafter. This alternate Response-PDU is formatted
 with the same values in its request-id field as the received
 InformRequest-PDU, with the value of its error-status field set to
 "tooBig", the value of its error-index field set to zero, and an
 empty variable-bindings field. This alternate Response-PDU is then
 encapsulated into a message. If the size of the resultant message is
 less than or equal to both a local constraint and the maximum message
 size of the originator, it is transmitted to the originator of the
 InformRequest-PDU. Otherwise, the snmpSilentDrops [RFC3418] counter
 is incremented and the resultant message is discarded. Regardless,
 processing of the InformRequest-PDU terminates.

 Otherwise, the receiving SNMP entity:

 (1) presents its contents to the appropriate application;

Presuhn, et al. Standards Track [Page 23]

RFC 3416 Protocol Operations for SNMP December 2002

 (2) generates a Response-PDU with the same values in its request-id
 and variable-bindings fields as the received InformRequest-PDU,
 with the value of its error-status field set to "noError" and
 the value of its error-index field set to zero; and

 (3) transmits the generated Response-PDU to the originator of the
 InformRequest-PDU.

5. Notice on Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

6. Acknowledgments

 This document is the product of the SNMPv3 Working Group. Some
 special thanks are in order to the following Working Group members:

 Randy Bush
 Jeffrey D. Case
 Mike Daniele
 Rob Frye
 Lauren Heintz
 Keith McCloghrie
 Russ Mundy
 David T. Perkins
 Randy Presuhn
 Aleksey Romanov
 Juergen Schoenwaelder
 Bert Wijnen

Presuhn, et al. Standards Track [Page 24]

RFC 3416 Protocol Operations for SNMP December 2002

 This version of the document, edited by Randy Presuhn, was initially
 based on the work of a design team whose members were:

 Jeffrey D. Case
 Keith McCloghrie
 David T. Perkins
 Randy Presuhn
 Juergen Schoenwaelder

 The previous versions of this document, edited by Keith McCloghrie,
 was the result of significant work by four major contributors:

 Jeffrey D. Case
 Keith McCloghrie
 Marshall T. Rose
 Steven Waldbusser

 Additionally, the contributions of the SNMPv2 Working Group to the
 previous versions are also acknowledged. In particular, a special
 thanks is extended for the contributions of:

 Alexander I. Alten
 Dave Arneson
 Uri Blumenthal
 Doug Book
 Kim Curran
 Jim Galvin
 Maria Greene
 Iain Hanson
 Dave Harrington
 Nguyen Hien
 Jeff Johnson
 Michael Kornegay
 Deirdre Kostick
 David Levi
 Daniel Mahoney
 Bob Natale
 Brian O’Keefe
 Andrew Pearson
 Dave Perkins
 Randy Presuhn
 Aleksey Romanov
 Shawn Routhier
 Jon Saperia
 Juergen Schoenwaelder
 Bob Stewart

Presuhn, et al. Standards Track [Page 25]

RFC 3416 Protocol Operations for SNMP December 2002

 Kaj Tesink
 Glenn Waters
 Bert Wijnen

7. Security Considerations

 The protocol defined in this document by itself does not provide a
 secure environment. Even if the network itself is secure (for
 example by using IPSec), there is no control as to who on the secure
 network is allowed access to management information.

 It is recommended that the implementors consider the security
 features as provided by the SNMPv3 framework. Specifically, the use
 of the User-based Security Model STD 62, RFC 3414 [RFC3414] and the
 View-based Access Control Model STD 62, RFC 3415 [RFC3415] is
 recommended.

 It is then a customer/user responsibility to ensure that the SNMP
 entity is properly configured so that:

 - only those principals (users) having legitimate rights can
 access or modify the values of any MIB objects supported by
 that entity;

 - the occurrence of particular events on the entity will be
 communicated appropriately;

 - the entity responds appropriately and with due credence to
 events and information that have been communicated to it.

8. References

8.1. Normative References

 [RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Structure of Management
 Information Version 2 (SMIv2)", STD 58, RFC 2578, April
 1999.

 [RFC2579] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Textual Conventions for
 SMIv2", STD 58, RFC 2579, April 1999.

Presuhn, et al. Standards Track [Page 26]

RFC 3416 Protocol Operations for SNMP December 2002

 [RFC2580] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Conformance Statements for
 SMIv2", STD 58, RFC 2580, April 1999.

 [RFC3411] Harrington, D., Presuhn, R. and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

 [RFC3412] Case, J., Harrington, D., Presuhn, R. and B. Wijnen,
 "Message Processing and Dispatching for the Simple
 Network Management Protocol (SNMP)", STD 62, RFC 3412,
 December 2002.

 [RFC3413] Levi, D., Meyer, P. and B. Stewart, "Simple Network
 Management Protocol (SNMP) Applications", STD 62, RFC
 3413, December 2002.

 [RFC3414] Blumenthal, U. and B. Wijnen, "The User-Based Security
 Model (USM) for Version 3 of the Simple Network
 Management Protocol (SNMPv3)", STD 62, RFC 3414, December
 2002.

 [RFC3415] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based
 Access Control Model (VACM) for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3415, December
 2002.

 [RFC3417] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Transport Mappings for the Simple Network
 Management Protocol", STD 62, RFC 3417, December 2002.

 [RFC3418] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Management Information Base (MIB) for the
 Simple Network Management Protocol (SNMP)", STD 62, RFC
 3418, December 2002.

 [ASN1] Information processing systems - Open Systems
 Interconnection - Specification of Abstract Syntax
 Notation One (ASN.1), International Organization for
 Standardization. International Standard 8824, December
 1987.

8.2. Informative References

 [FRAG] Kent, C. and J. Mogul, "Fragmentation Considered
 Harmful," Proceedings, ACM SIGCOMM ’87, Stowe, VT, August
 1987.

Presuhn, et al. Standards Track [Page 27]

RFC 3416 Protocol Operations for SNMP December 2002

 [RFC1155] Rose, M. and K. McCloghrie, "Structure and Identification
 of Management Information for TCP/IP-based Internets",
 STD 16, RFC 1155, May 1990.

 [RFC1157] Case, J., Fedor, M., Schoffstall, M. and J. Davin,
 "Simple Network Management Protocol", STD 15, RFC 1157,
 May 1990.

 [RFC1212] Rose, M. and K. McCloghrie, "Concise MIB Definitions",
 STD 16, RFC 1212, March 1991.

 [RFC1213] McCloghrie, K. and M. Rose, Editors, "Management
 Information Base for Network Management of TCP/IP-based
 internets: MIB-II", STD 17, RFC 1213, March 1991.

 [RFC1215] Rose, M., "A Convention for Defining Traps for use with
 the SNMP", RFC 1215, March 1991.

 [RFC1901] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Introduction to Community-based SNMPv2", RFC 1901,
 January 1996.

 [RFC2576] Frye, R., Levi, D., Routhier, S. and B. Wijnen,
 "Coexistence between Version 1, Version 2, and Version 3
 of the Internet-Standard Network Management Framework",
 RFC 2576, March 2000.

 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
 MIB", RFC 2863, June 2000.

 [RFC2914] Floyd, S., "Congestion Control Principles", BCP 41, RFC
 2914, September 2000.

 [RFC3410] Case, J., Mundy, R., Partain, D. and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410, December 2002.

9. Changes from RFC 1905

 These are the changes from RFC 1905:

 - Corrected spelling error in copyright statement;

 - Updated copyright date;

 - Updated with new editor’s name and contact information;

 - Added notice on intellectual property;

Presuhn, et al. Standards Track [Page 28]

RFC 3416 Protocol Operations for SNMP December 2002

 - Cosmetic fixes to layout and typography;

 - Added table of contents;

 - Title changed;

 - Updated document headers and footers;

 - Deleted the old clause 2.3, entitled "Access to Management
 Information";

 - Changed the way in which request-id was defined, though with
 the same ultimate syntax and semantics, to avoid coupling with
 SMI. This does not affect the protocol in any way;

 - Replaced the word "exception" with the word "error" in the old
 clause 4.1. This does not affect the protocol in any way;

 - Deleted the first two paragraphs of the old clause 4.2;

 - Clarified the maximum number of variable bindings that an
 implementation must support in a PDU. This does not affect the
 protocol in any way;

 - Replaced occurrences of "SNMPv2 application" with
 "application";

 - Deleted three sentences in old clause 4.2.3 describing the
 handling of an impossible situation. This does not affect the
 protocol in any way;

 - Clarified the use of the SNMPv2-Trap-Pdu in the old clause
 4.2.6. This does not affect the protocol in any way;

 - Aligned description of the use of the InformRequest-Pdu in old
 clause 4.2.7 with the architecture. This does not affect the
 protocol in any way;

 - Updated references;

 - Re-wrote introduction clause;

 - Replaced manager/agent/SNMPv2 entity terminology with
 terminology from RFC 2571. This does not affect the protocol
 in any way;

 - Eliminated IMPORTS from the SMI, replaced with equivalent in-
 line ASN.1. This does not affect the protocol in any way;

Presuhn, et al. Standards Track [Page 29]

RFC 3416 Protocol Operations for SNMP December 2002

 - Added notes calling attention to two different manifestations
 of reaching the end of a table in the table walk examples;

 - Added content to security considerations clause;

 - Updated ASN.1 comment on use of Report-PDU. This does not
 affect the protocol in any way;

 - Updated acknowledgments section;

 - Included information on handling of BITS;

 - Deleted spurious comma in ASN.1 definition of PDUs;

 - Added abstract;

 - Made handling of additional variable bindings in informs
 consistent with that for traps. This was a correction of an
 editorial oversight, and reflects implementation practice;

 - Added reference to RFC 2914.

10. Editor’s Address

 Randy Presuhn
 BMC Software, Inc.
 2141 North First Street
 San Jose, CA 95131
 USA

 Phone: +1 408 546 1006
 EMail: randy_presuhn@bmc.com

Presuhn, et al. Standards Track [Page 30]

RFC 3416 Protocol Operations for SNMP December 2002

11. Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Presuhn, et al. Standards Track [Page 31]

===

Network Working Group Editor of this version:
Request for Comments: 3417 R. Presuhn
STD: 62 BMC Software, Inc.
Obsoletes: 1906 Authors of previous version:
Category: Standards Track J. Case
 SNMP Research, Inc.
 K. McCloghrie
 Cisco Systems, Inc.
 M. Rose
 Dover Beach Consulting, Inc.
 S. Waldbusser
 International Network Services
 December 2002

 Transport Mappings for
 the Simple Network Management Protocol (SNMP)

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This document defines the transport of Simple Network Management
 Protocol (SNMP) messages over various protocols. This document
 obsoletes RFC 1906.

Presuhn, et al. Standards Track [Page 1]

RFC 3417 Transport Mappings for SNMP December 2002

Table of Contents

 1. Introduction .. 2
 2. Definitions ... 3
 3. SNMP over UDP over IPv4 7
 3.1. Serialization ... 7
 3.2. Well-known Values ... 7
 4. SNMP over OSI ... 7
 4.1. Serialization ... 7
 4.2. Well-known Values ... 8
 5. SNMP over DDP ... 8
 5.1. Serialization ... 8
 5.2. Well-known Values ... 8
 5.3. Discussion of AppleTalk Addressing 9
 5.3.1. How to Acquire NBP names 9
 5.3.2. When to Turn NBP names into DDP addresses 10
 5.3.3. How to Turn NBP names into DDP addresses 10
 5.3.4. What if NBP is broken 10
 6. SNMP over IPX ... 11
 6.1. Serialization ... 11
 6.2. Well-known Values ... 11
 7. Proxy to SNMPv1 ... 12
 8. Serialization using the Basic Encoding Rules 12
 8.1. Usage Example ... 13
 9. Notice on Intellectual Property 14
 10. Acknowledgments .. 14
 11. IANA Considerations .. 15
 12. Security Considerations 16
 13. References ... 16
 13.1. Normative References 16
 13.2. Informative References 17
 14. Changes from RFC 1906 18
 15. Editor’s Address ... 18
 16. Full Copyright Statement 19

1. Introduction

 For a detailed overview of the documents that describe the current
 Internet-Standard Management Framework, please refer to section 7 of
 RFC 3410 [RFC3410].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. MIB objects are generally
 accessed through the Simple Network Management Protocol (SNMP).
 Objects in the MIB are defined using the mechanisms defined in the
 Structure of Management Information (SMI). This memo specifies a MIB

Presuhn, et al. Standards Track [Page 2]

RFC 3417 Transport Mappings for SNMP December 2002

 module that is compliant to the SMIv2, which is described in STD 58,
 RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
 [RFC2580].

 This document, Transport Mappings for the Simple Network Management
 Protocol, defines how the management protocol [RFC3416] may be
 carried over a variety of protocol suites. It is the purpose of this
 document to define how the SNMP maps onto an initial set of transport
 domains. At the time of this writing, work was in progress to define
 an IPv6 mapping, described in [RFC3419]. Other mappings may be
 defined in the future.

 Although several mappings are defined, the mapping onto UDP over IPv4
 is the preferred mapping for systems supporting IPv4. Systems
 implementing IPv4 MUST implement the mapping onto UDP over IPv4. To
 maximize interoperability, systems supporting other mappings SHOULD
 also provide for access via the UDP over IPv4 mapping.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119].

2. Definitions

 SNMPv2-TM DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY, OBJECT-IDENTITY,
 snmpModules, snmpDomains, snmpProxys
 FROM SNMPv2-SMI
 TEXTUAL-CONVENTION
 FROM SNMPv2-TC;

 snmpv2tm MODULE-IDENTITY
 LAST-UPDATED "200210160000Z"
 ORGANIZATION "IETF SNMPv3 Working Group"
 CONTACT-INFO
 "WG-EMail: snmpv3@lists.tislabs.com
 Subscribe: snmpv3-request@lists.tislabs.com

 Co-Chair: Russ Mundy
 Network Associates Laboratories
 postal: 15204 Omega Drive, Suite 300
 Rockville, MD 20850-4601
 USA
 EMail: mundy@tislabs.com
 phone: +1 301 947-7107

Presuhn, et al. Standards Track [Page 3]

RFC 3417 Transport Mappings for SNMP December 2002

 Co-Chair: David Harrington
 Enterasys Networks
 postal: 35 Industrial Way
 P. O. Box 5005
 Rochester, NH 03866-5005
 USA
 EMail: dbh@enterasys.com
 phone: +1 603 337-2614

 Editor: Randy Presuhn
 BMC Software, Inc.
 postal: 2141 North First Street
 San Jose, CA 95131
 USA
 EMail: randy_presuhn@bmc.com
 phone: +1 408 546-1006"
 DESCRIPTION
 "The MIB module for SNMP transport mappings.

 Copyright (C) The Internet Society (2002). This
 version of this MIB module is part of RFC 3417;
 see the RFC itself for full legal notices.
 "
 REVISION "200210160000Z"
 DESCRIPTION
 "Clarifications, published as RFC 3417."
 REVISION "199601010000Z"
 DESCRIPTION
 "Clarifications, published as RFC 1906."
 REVISION "199304010000Z"
 DESCRIPTION
 "The initial version, published as RFC 1449."
 ::= { snmpModules 19 }

 -- SNMP over UDP over IPv4

 snmpUDPDomain OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "The SNMP over UDP over IPv4 transport domain.
 The corresponding transport address is of type
 SnmpUDPAddress."
 ::= { snmpDomains 1 }

Presuhn, et al. Standards Track [Page 4]

RFC 3417 Transport Mappings for SNMP December 2002

 SnmpUDPAddress ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "1d.1d.1d.1d/2d"
 STATUS current
 DESCRIPTION
 "Represents a UDP over IPv4 address:

 octets contents encoding
 1-4 IP-address network-byte order
 5-6 UDP-port network-byte order
 "
 SYNTAX OCTET STRING (SIZE (6))

 -- SNMP over OSI

 snmpCLNSDomain OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "The SNMP over CLNS transport domain.
 The corresponding transport address is of type
 SnmpOSIAddress."
 ::= { snmpDomains 2 }

 snmpCONSDomain OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "The SNMP over CONS transport domain.
 The corresponding transport address is of type
 SnmpOSIAddress."
 ::= { snmpDomains 3 }

 SnmpOSIAddress ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "*1x:/1x:"
 STATUS current
 DESCRIPTION
 "Represents an OSI transport-address:

 octets contents encoding
 1 length of NSAP ’n’ as an unsigned-integer
 (either 0 or from 3 to 20)
 2..(n+1) NSAP concrete binary representation
 (n+2)..m TSEL string of (up to 64) octets
 "
 SYNTAX OCTET STRING (SIZE (1 | 4..85))

Presuhn, et al. Standards Track [Page 5]

RFC 3417 Transport Mappings for SNMP December 2002

 -- SNMP over DDP

 snmpDDPDomain OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "The SNMP over DDP transport domain. The corresponding
 transport address is of type SnmpNBPAddress."
 ::= { snmpDomains 4 }

 SnmpNBPAddress ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "Represents an NBP name:

 octets contents encoding
 1 length of object ’n’ as an unsigned integer
 2..(n+1) object string of (up to 32) octets
 n+2 length of type ’p’ as an unsigned integer
 (n+3)..(n+2+p) type string of (up to 32) octets
 n+3+p length of zone ’q’ as an unsigned integer
 (n+4+p)..(n+3+p+q) zone string of (up to 32) octets

 For comparison purposes, strings are
 case-insensitive. All strings may contain any octet
 other than 255 (hex ff)."
 SYNTAX OCTET STRING (SIZE (3..99))

 -- SNMP over IPX

 snmpIPXDomain OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "The SNMP over IPX transport domain. The corresponding
 transport address is of type SnmpIPXAddress."
 ::= { snmpDomains 5 }

 SnmpIPXAddress ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "4x.1x:1x:1x:1x:1x:1x.2d"
 STATUS current
 DESCRIPTION
 "Represents an IPX address:

 octets contents encoding
 1-4 network-number network-byte order
 5-10 physical-address network-byte order
 11-12 socket-number network-byte order
 "
 SYNTAX OCTET STRING (SIZE (12))

Presuhn, et al. Standards Track [Page 6]

RFC 3417 Transport Mappings for SNMP December 2002

 -- for proxy to SNMPv1 (RFC 1157)

 rfc1157Proxy OBJECT IDENTIFIER ::= { snmpProxys 1 }

 rfc1157Domain OBJECT-IDENTITY
 STATUS deprecated
 DESCRIPTION
 "The transport domain for SNMPv1 over UDP over IPv4.
 The corresponding transport address is of type
 SnmpUDPAddress."
 ::= { rfc1157Proxy 1 }

 -- ::= { rfc1157Proxy 2 } this OID is obsolete

 END

3. SNMP over UDP over IPv4

 This is the preferred transport mapping.

3.1. Serialization

 Each instance of a message is serialized (i.e., encoded according to
 the convention of [BER]) onto a single UDP [RFC768] over IPv4
 [RFC791] datagram, using the algorithm specified in Section 8.

3.2. Well-known Values

 It is suggested that administrators configure their SNMP entities
 supporting command responder applications to listen on UDP port 161.
 Further, it is suggested that SNMP entities supporting notification
 receiver applications be configured to listen on UDP port 162.

 When an SNMP entity uses this transport mapping, it must be capable
 of accepting messages up to and including 484 octets in size. It is
 recommended that implementations be capable of accepting messages of
 up to 1472 octets in size. Implementation of larger values is
 encouraged whenever possible.

4. SNMP over OSI

 This is an optional transport mapping.

4.1. Serialization

 Each instance of a message is serialized onto a single TSDU [IS8072]
 [IS8072A] for the OSI Connectionless-mode Transport Service (CLTS),
 using the algorithm specified in Section 8.

Presuhn, et al. Standards Track [Page 7]

RFC 3417 Transport Mappings for SNMP December 2002

4.2. Well-known Values

 It is suggested that administrators configure their SNMP entities
 supporting command responder applications to listen on transport
 selector "snmp-l" (which consists of six ASCII characters), when
 using a CL-mode network service to realize the CLTS. Further, it is
 suggested that SNMP entities supporting notification receiver
 applications be configured to listen on transport selector "snmpt-l"
 (which consists of seven ASCII characters, six letters and a hyphen)
 when using a CL-mode network service to realize the CLTS. Similarly,
 when using a CO-mode network service to realize the CLTS, the
 suggested transport selectors are "snmp-o" and "snmpt-o", for command
 responders and notification receivers, respectively.

 When an SNMP entity uses this transport mapping, it must be capable
 of accepting messages that are at least 484 octets in size.
 Implementation of larger values is encouraged whenever possible.

5. SNMP over DDP

 This is an optional transport mapping.

5.1. Serialization

 Each instance of a message is serialized onto a single DDP datagram
 [APPLETALK], using the algorithm specified in Section 8.

5.2. Well-known Values

 SNMP messages are sent using DDP protocol type 8. SNMP entities
 supporting command responder applications listen on DDP socket number
 8, while SNMP entities supporting notification receiver applications
 listen on DDP socket number 9.

 Administrators must configure their SNMP entities supporting command
 responder applications to use NBP type "SNMP Agent" (which consists
 of ten ASCII characters) while those supporting notification receiver
 applications must be configured to use NBP type "SNMP Trap Handler"
 (which consists of seventeen ASCII characters).

 The NBP name for SNMP entities supporting command responders and
 notification receivers should be stable - NBP names should not change
 any more often than the IP address of a typical TCP/IP node. It is
 suggested that the NBP name be stored in some form of stable storage.

 When an SNMP entity uses this transport mapping, it must be capable
 of accepting messages that are at least 484 octets in size.
 Implementation of larger values is encouraged whenever possible.

Presuhn, et al. Standards Track [Page 8]

RFC 3417 Transport Mappings for SNMP December 2002

5.3. Discussion of AppleTalk Addressing

 The AppleTalk protocol suite has certain features not manifest in the
 TCP/IP suite. AppleTalk’s naming strategy and the dynamic nature of
 address assignment can cause problems for SNMP entities that wish to
 manage AppleTalk networks. TCP/IP nodes have an associated IP
 address which distinguishes each from the other. In contrast,
 AppleTalk nodes generally have no such characteristic. The network-
 level address, while often relatively stable, can change at every
 reboot (or more frequently).

 Thus, when SNMP is mapped over DDP, nodes are identified by a "name",
 rather than by an "address". Hence, all AppleTalk nodes that
 implement this mapping are required to respond to NBP lookups and
 confirms (e.g., implement the NBP protocol stub), which guarantees
 that a mapping from NBP name to DDP address will be possible.

 In determining the SNMP identity to register for an SNMP entity, it
 is suggested that the SNMP identity be a name which is associated
 with other network services offered by the machine.

 NBP lookups, which are used to map NBP names into DDP addresses, can
 cause large amounts of network traffic as well as consume CPU
 resources. It is also the case that the ability to perform an NBP
 lookup is sensitive to certain network disruptions (such as zone
 table inconsistencies) which would not prevent direct AppleTalk
 communications between two SNMP entities.

 Thus, it is recommended that NBP lookups be used infrequently,
 primarily to create a cache of name-to-address mappings. These
 cached mappings should then be used for any further SNMP traffic. It
 is recommended that SNMP entities supporting command generator
 applications should maintain this cache between reboots. This
 caching can help minimize network traffic, reduce CPU load on the
 network, and allow for (some amount of) network trouble shooting when
 the basic name-to-address translation mechanism is broken.

5.3.1. How to Acquire NBP names

 An SNMP entity supporting command generator applications may have a
 pre-configured list of names of "known" SNMP entities supporting
 command responder applications. Similarly, an SNMP entity supporting
 command generator or notification receiver applications might
 interact with an operator. Finally, an SNMP entity supporting
 command generator or notification receiver applications might
 communicate with all SNMP entities supporting command responder or
 notification originator applications in a set of zones or networks.

Presuhn, et al. Standards Track [Page 9]

RFC 3417 Transport Mappings for SNMP December 2002

5.3.2. When to Turn NBP names into DDP addresses

 When an SNMP entity uses a cache entry to address an SNMP packet, it
 should attempt to confirm the validity mapping, if the mapping hasn’t
 been confirmed within the last T1 seconds. This cache entry
 lifetime, T1, has a minimum, default value of 60 seconds, and should
 be configurable.

 An SNMP entity supporting a command generator application may decide
 to prime its cache of names prior to actually communicating with
 another SNMP entity. In general, it is expected that such an entity
 may want to keep certain mappings "more current" than other mappings,
 e.g., those nodes which represent the network infrastructure (e.g.,
 routers) may be deemed "more important".

 Note that an SNMP entity supporting command generator applications
 should not prime its entire cache upon initialization - rather, it
 should attempt resolutions over an extended period of time (perhaps
 in some pre-determined or configured priority order). Each of these
 resolutions might, in fact, be a wildcard lookup in a given zone.

 An SNMP entity supporting command responder applications must never
 prime its cache. When generating a response, such an entity does not
 need to confirm a cache entry. An SNMP entity supporting
 notification originator applications should do NBP lookups (or
 confirms) only when it needs to send an SNMP trap or inform.

5.3.3. How to Turn NBP names into DDP addresses

 If the only piece of information available is the NBP name, then an
 NBP lookup should be performed to turn that name into a DDP address.
 However, if there is a piece of stale information, it can be used as
 a hint to perform an NBP confirm (which sends a unicast to the
 network address which is presumed to be the target of the name
 lookup) to see if the stale information is, in fact, still valid.

 An NBP name to DDP address mapping can also be confirmed implicitly
 using only SNMP transactions. For example, an SNMP entity supporting
 command generator applications issuing a retrieval operation could
 also retrieve the relevant objects from the NBP group [RFC1742] for
 the SNMP entity supporting the command responder application. This
 information can then be correlated with the source DDP address of the
 response.

5.3.4. What if NBP is broken

 Under some circumstances, there may be connectivity between two SNMP
 entities, but the NBP mapping machinery may be broken, e.g.,

Presuhn, et al. Standards Track [Page 10]

RFC 3417 Transport Mappings for SNMP December 2002

 o the NBP FwdReq (forward NBP lookup onto local attached network)
 mechanism might be broken at a router on the other entity’s
 network; or,

 o the NBP BrRq (NBP broadcast request) mechanism might be broken at
 a router on the entity’s own network; or,

 o NBP might be broken on the other entity’s node.

 An SNMP entity supporting command generator applications which is
 dedicated to AppleTalk management might choose to alleviate some of
 these failures by directly implementing the router portion of NBP.
 For example, such an entity might already know all the zones on the
 AppleTalk internet and the networks on which each zone appears.
 Given an NBP lookup which fails, the entity could send an NBP FwdReq
 to the network in which the SNMP entity supporting the command
 responder or notification originator application was last located.
 If that failed, the station could then send an NBP LkUp (NBP lookup
 packet) as a directed (DDP) multicast to each network number on that
 network. Of the above (single) failures, this combined approach will
 solve the case where either the local router’s BrRq-to-FwdReq
 mechanism is broken or the remote router’s FwdReq-to-LkUp mechanism
 is broken.

6. SNMP over IPX

 This is an optional transport mapping.

6.1. Serialization

 Each instance of a message is serialized onto a single IPX datagram
 [NOVELL], using the algorithm specified in Section 8.

6.2. Well-known Values

 SNMP messages are sent using IPX packet type 4 (i.e., Packet Exchange
 Protocol).

 It is suggested that administrators configure their SNMP entities
 supporting command responder applications to listen on IPX socket
 36879 (900f hexadecimal). Further, it is suggested that those
 supporting notification receiver applications be configured to listen
 on IPX socket 36880 (9010 hexadecimal).

 When an SNMP entity uses this transport mapping, it must be capable
 of accepting messages that are at least 546 octets in size.
 Implementation of larger values is encouraged whenever possible.

Presuhn, et al. Standards Track [Page 11]

RFC 3417 Transport Mappings for SNMP December 2002

7. Proxy to SNMPv1

 Historically, in order to support proxy to SNMPv1, as defined in
 [RFC2576], it was deemed useful to define a transport domain,
 rfc1157Domain, which indicates the transport mapping for SNMP
 messages as defined in [RFC1157].

8. Serialization using the Basic Encoding Rules

 When the Basic Encoding Rules [BER] are used for serialization:

 (1) When encoding the length field, only the definite form is used;
 use of the indefinite form encoding is prohibited. Note that
 when using the definite-long form, it is permissible to use
 more than the minimum number of length octets necessary to
 encode the length field.

 (2) When encoding the value field, the primitive form shall be used
 for all simple types, i.e., INTEGER, OCTET STRING, and OBJECT
 IDENTIFIER (either IMPLICIT or explicit). The constructed form
 of encoding shall be used only for structured types, i.e., a
 SEQUENCE or an IMPLICIT SEQUENCE.

 (3) When encoding an object whose syntax is described using the
 BITS construct, the value is encoded as an OCTET STRING, in
 which all the named bits in (the definition of) the bitstring,
 commencing with the first bit and proceeding to the last bit,
 are placed in bits 8 (high order bit) to 1 (low order bit) of
 the first octet, followed by bits 8 to 1 of each subsequent
 octet in turn, followed by as many bits as are needed of the
 final subsequent octet, commencing with bit 8. Remaining bits,
 if any, of the final octet are set to zero on generation and
 ignored on receipt.

 These restrictions apply to all aspects of ASN.1 encoding, including
 the message wrappers, protocol data units, and the data objects they
 contain.

Presuhn, et al. Standards Track [Page 12]

RFC 3417 Transport Mappings for SNMP December 2002

8.1. Usage Example

 As an example of applying the Basic Encoding Rules, suppose one
 wanted to encode an instance of the GetBulkRequest-PDU [RFC3416]:

 [5] IMPLICIT SEQUENCE {
 request-id 1414684022,
 non-repeaters 1,
 max-repetitions 2,
 variable-bindings {
 { name sysUpTime,
 value { unSpecified NULL } },
 { name ipNetToMediaPhysAddress,
 value { unSpecified NULL } },
 { name ipNetToMediaType,
 value { unSpecified NULL } }
 }
 }

 Applying the BER, this may be encoded (in hexadecimal) as:

 [5] IMPLICIT SEQUENCE a5 82 00 39
 INTEGER 02 04 54 52 5d 76
 INTEGER 02 01 01
 INTEGER 02 01 02
 SEQUENCE (OF) 30 2b
 SEQUENCE 30 0b
 OBJECT IDENTIFIER 06 07 2b 06 01 02 01 01 03
 NULL 05 00
 SEQUENCE 30 0d
 OBJECT IDENTIFIER 06 09 2b 06 01 02 01 04 16 01 02
 NULL 05 00
 SEQUENCE 30 0d
 OBJECT IDENTIFIER 06 09 2b 06 01 02 01 04 16 01 04
 NULL 05 00

 Note that the initial SEQUENCE in this example was not encoded using
 the minimum number of length octets. (The first octet of the length,
 82, indicates that the length of the content is encoded in the next
 two octets.)

Presuhn, et al. Standards Track [Page 13]

RFC 3417 Transport Mappings for SNMP December 2002

9. Notice on Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

10. Acknowledgments

 This document is the product of the SNMPv3 Working Group. Some
 special thanks are in order to the following Working Group members:

 Randy Bush
 Jeffrey D. Case
 Mike Daniele
 Rob Frye
 Lauren Heintz
 Keith McCloghrie
 Russ Mundy
 David T. Perkins
 Randy Presuhn
 Aleksey Romanov
 Juergen Schoenwaelder
 Bert Wijnen

 This version of the document, edited by Randy Presuhn, was initially
 based on the work of a design team whose members were:

 Jeffrey D. Case
 Keith McCloghrie
 David T. Perkins
 Randy Presuhn
 Juergen Schoenwaelder

Presuhn, et al. Standards Track [Page 14]

RFC 3417 Transport Mappings for SNMP December 2002

 The previous versions of this document, edited by Keith McCloghrie,
 was the result of significant work by four major contributors:

 Jeffrey D. Case
 Keith McCloghrie
 Marshall T. Rose
 Steven Waldbusser

 Additionally, the contributions of the SNMPv2 Working Group to the
 previous versions are also acknowledged. In particular, a special
 thanks is extended for the contributions of:

 Alexander I. Alten
 Dave Arneson
 Uri Blumenthal
 Doug Book
 Kim Curran
 Jim Galvin
 Maria Greene
 Iain Hanson
 Dave Harrington
 Nguyen Hien
 Jeff Johnson
 Michael Kornegay
 Deirdre Kostick
 David Levi
 Daniel Mahoney
 Bob Natale
 Brian O’Keefe
 Andrew Pearson
 Dave Perkins
 Randy Presuhn
 Aleksey Romanov
 Shawn Routhier
 Jon Saperia
 Juergen Schoenwaelder
 Bob Stewart
 Kaj Tesink
 Glenn Waters
 Bert Wijnen

11. IANA Considerations

 The SNMPv2-TM MIB module requires the allocation of a single object
 identifier for its MODULE-IDENTITY. IANA has allocated this object
 identifier in the snmpModules subtree, defined in the SNMPv2-SMI MIB
 module.

Presuhn, et al. Standards Track [Page 15]

RFC 3417 Transport Mappings for SNMP December 2002

12. Security Considerations

 SNMPv1 by itself is not a secure environment. Even if the network
 itself is secure (for example by using IPSec), even then, there is no
 control as to who on the secure network is allowed to access and
 GET/SET (read/change) the objects accessible through a command
 responder application.

 It is recommended that the implementors consider the security
 features as provided by the SNMPv3 framework. Specifically, the use
 of the User-based Security Model STD 62, RFC 3414 [RFC3414] and the
 View-based Access Control Model STD 62, RFC 3415 [RFC3415] is
 recommended.

 It is then a customer/user responsibility to ensure that the SNMP
 entity giving access to a MIB is properly configured to give access
 to the objects only to those principals (users) that have legitimate
 rights to indeed GET or SET (change) them.

13. References

13.1. Normative References

 [BER] Information processing systems - Open Systems
 Interconnection - Specification of Basic Encoding Rules
 for Abstract Syntax Notation One (ASN.1), International
 Organization for Standardization. International Standard
 8825, December 1987.

 [IS8072] Information processing systems - Open Systems
 Interconnection - Transport Service Definition,
 International Organization for Standardization.
 International Standard 8072, June 1986.

 [IS8072A] Information processing systems - Open Systems
 Interconnection - Transport Service Definition - Addendum
 1: Connectionless-mode Transmission, International
 Organization for Standardization. International Standard
 8072/AD 1, December 1986.

 [RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Presuhn, et al. Standards Track [Page 16]

RFC 3417 Transport Mappings for SNMP December 2002

 [RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Structure of Management
 Information Version 2 (SMIv2)", STD 58, RFC 2578, April
 1999.

 [RFC2579] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Textual Conventions for
 SMIv2", STD 58, RFC 2579, April 1999.

 [RFC2580] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Conformance Statements for
 SMIv2", STD 58, RFC 2580, April 1999.

 [RFC3414] Blumenthal, U. and B. Wijnen, "The User-Based Security
 Model (USM) for Version 3 of the Simple Network
 Management Protocol (SNMPv3)", STD 62, RFC 3414, December
 2002.

 [RFC3415] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based
 Access Control Model (VACM) for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3415, December
 2002.

 [RFC3416] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Version 2 of the Protocol Operations for the
 Simple Network Management Protocol (SNMP)", STD 62, RFC
 3416, December 2002.

13.2. Informative References

 [APPLETALK] Sidhu, G., Andrews, R. and A. Oppenheimer, Inside
 AppleTalk (second edition). Addison-Wesley, 1990.

 [NOVELL] Network System Technical Interface Overview. Novell,
 Inc., June 1989.

 [RFC1157] Case, J., Fedor, M., Schoffstall, M. and J. Davin,
 "Simple Network Management Protocol", STD 15, RFC 1157,
 May 1990.

 [RFC1742] Waldbusser, S. and K. Frisa, "AppleTalk Management
 Information Base II", RFC 1742, January 1995.

 [RFC2576] Frye, R., Levi, D., Routhier, S. and B. Wijnen,
 "Coexistence between Version 1, Version 2, and Version 3
 of the Internet-Standard Network Management Framework",
 RFC 2576, March 2000.

Presuhn, et al. Standards Track [Page 17]

RFC 3417 Transport Mappings for SNMP December 2002

 [RFC3410] Case, J., Mundy, R., Partain, D. and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410, December 2002.

 [RFC3419] Daniele, M. and J. Schoenwaelder, "Textual Conventions
 for Transport Addresses", RFC 3419, November 2002.

14. Changes from RFC 1906

 This document differs from RFC 1906 only in editorial improvements.
 The protocol is unchanged.

15. Editor’s Address

 Randy Presuhn
 BMC Software, Inc.
 2141 North First Street
 San Jose, CA 95131
 USA

 Phone: +1 408 546-1006
 EMail: randy_presuhn@bmc.com

Presuhn, et al. Standards Track [Page 18]

RFC 3417 Transport Mappings for SNMP December 2002

16. Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Presuhn, et al. Standards Track [Page 19]

==

Network Working Group Editor of this version:
Request for Comments: 3418 R. Presuhn
STD: 62 BMC Software, Inc.
Obsoletes: 1907 Authors of previous version:
Category: Standards Track J. Case
 SNMP Research, Inc.
 K. McCloghrie
 Cisco Systems, Inc.
 M. Rose
 Dover Beach Consulting, Inc.
 S. Waldbusser
 International Network Services
 December 2002

 Management Information Base (MIB) for the
 Simple Network Management Protocol (SNMP)

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This document defines managed objects which describe the behavior of
 a Simple Network Management Protocol (SNMP) entity. This document
 obsoletes RFC 1907, Management Information Base for Version 2 of the
 Simple Network Management Protocol (SNMPv2).

Presuhn, et al. Standards Track [Page 1]

RFC 3418 MIB for SNMP December 2002

Table of Contents

 1. The Internet-Standard Management Framework 2
 2. Definitions ... 2
 3. Notice on Intellectual Property 20
 4. Acknowledgments ... 21
 5. Security Considerations 22
 6. References .. 23
 6.1. Normative References 23
 6.2. Informative References 24
 7. Changes from RFC 1907 24
 8. Editor’s Address .. 25
 9. Full Copyright Statement 26

1. The Internet-Standard Management Framework

 For a detailed overview of the documents that describe the current
 Internet-Standard Management Framework, please refer to section 7 of
 RFC 3410 [RFC3410].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. MIB objects are generally
 accessed through the Simple Network Management Protocol (SNMP).

 Objects in the MIB are defined using the mechanisms defined in the
 Structure of Management Information (SMI). This memo specifies a MIB
 module that is compliant to the SMIv2, which is described in STD 58,
 RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
 [RFC2580].

 It is the purpose of this document to define managed objects which
 describe the behavior of an SNMP entity, as defined in the SNMP
 architecture STD 62, [RFC3411].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119].

2. Definitions

 SNMPv2-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
 TimeTicks, Counter32, snmpModules, mib-2
 FROM SNMPv2-SMI
 DisplayString, TestAndIncr, TimeStamp

Presuhn, et al. Standards Track [Page 2]

RFC 3418 MIB for SNMP December 2002

 FROM SNMPv2-TC
 MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
 FROM SNMPv2-CONF;

 snmpMIB MODULE-IDENTITY
 LAST-UPDATED "200210160000Z"
 ORGANIZATION "IETF SNMPv3 Working Group"
 CONTACT-INFO
 "WG-EMail: snmpv3@lists.tislabs.com
 Subscribe: snmpv3-request@lists.tislabs.com

 Co-Chair: Russ Mundy
 Network Associates Laboratories
 postal: 15204 Omega Drive, Suite 300
 Rockville, MD 20850-4601
 USA
 EMail: mundy@tislabs.com
 phone: +1 301 947-7107

 Co-Chair: David Harrington
 Enterasys Networks
 postal: 35 Industrial Way
 P. O. Box 5005
 Rochester, NH 03866-5005
 USA
 EMail: dbh@enterasys.com
 phone: +1 603 337-2614

 Editor: Randy Presuhn
 BMC Software, Inc.
 postal: 2141 North First Street
 San Jose, CA 95131
 USA
 EMail: randy_presuhn@bmc.com
 phone: +1 408 546-1006"
 DESCRIPTION
 "The MIB module for SNMP entities.

 Copyright (C) The Internet Society (2002). This
 version of this MIB module is part of RFC 3418;
 see the RFC itself for full legal notices.
 "
 REVISION "200210160000Z"
 DESCRIPTION
 "This revision of this MIB module was published as
 RFC 3418."
 REVISION "199511090000Z"
 DESCRIPTION

Presuhn, et al. Standards Track [Page 3]

RFC 3418 MIB for SNMP December 2002

 "This revision of this MIB module was published as
 RFC 1907."
 REVISION "199304010000Z"
 DESCRIPTION
 "The initial revision of this MIB module was published
 as RFC 1450."
 ::= { snmpModules 1 }

 snmpMIBObjects OBJECT IDENTIFIER ::= { snmpMIB 1 }

 -- ::= { snmpMIBObjects 1 } this OID is obsolete
 -- ::= { snmpMIBObjects 2 } this OID is obsolete
 -- ::= { snmpMIBObjects 3 } this OID is obsolete

 -- the System group
 --
 -- a collection of objects common to all managed systems.

 system OBJECT IDENTIFIER ::= { mib-2 1 }

 sysDescr OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A textual description of the entity. This value should
 include the full name and version identification of
 the system’s hardware type, software operating-system,
 and networking software."
 ::= { system 1 }

 sysObjectID OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The vendor’s authoritative identification of the
 network management subsystem contained in the entity.
 This value is allocated within the SMI enterprises
 subtree (1.3.6.1.4.1) and provides an easy and
 unambiguous means for determining ‘what kind of box’ is
 being managed. For example, if vendor ‘Flintstones,
 Inc.’ was assigned the subtree 1.3.6.1.4.1.424242,
 it could assign the identifier 1.3.6.1.4.1.424242.1.1
 to its ‘Fred Router’."
 ::= { system 2 }

 sysUpTime OBJECT-TYPE

Presuhn, et al. Standards Track [Page 4]

RFC 3418 MIB for SNMP December 2002

 SYNTAX TimeTicks
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The time (in hundredths of a second) since the
 network management portion of the system was last
 re-initialized."
 ::= { system 3 }

 sysContact OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The textual identification of the contact person for
 this managed node, together with information on how
 to contact this person. If no contact information is
 known, the value is the zero-length string."
 ::= { system 4 }

 sysName OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "An administratively-assigned name for this managed
 node. By convention, this is the node’s fully-qualified
 domain name. If the name is unknown, the value is
 the zero-length string."
 ::= { system 5 }

 sysLocation OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The physical location of this node (e.g., ’telephone
 closet, 3rd floor’). If the location is unknown, the
 value is the zero-length string."
 ::= { system 6 }

 sysServices OBJECT-TYPE
 SYNTAX INTEGER (0..127)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A value which indicates the set of services that this
 entity may potentially offer. The value is a sum.

Presuhn, et al. Standards Track [Page 5]

RFC 3418 MIB for SNMP December 2002

 This sum initially takes the value zero. Then, for
 each layer, L, in the range 1 through 7, that this node
 performs transactions for, 2 raised to (L - 1) is added
 to the sum. For example, a node which performs only
 routing functions would have a value of 4 (2^(3-1)).
 In contrast, a node which is a host offering application
 services would have a value of 72 (2^(4-1) + 2^(7-1)).
 Note that in the context of the Internet suite of
 protocols, values should be calculated accordingly:

 layer functionality
 1 physical (e.g., repeaters)
 2 datalink/subnetwork (e.g., bridges)
 3 internet (e.g., supports the IP)
 4 end-to-end (e.g., supports the TCP)
 7 applications (e.g., supports the SMTP)

 For systems including OSI protocols, layers 5 and 6
 may also be counted."
 ::= { system 7 }

 -- object resource information
 --
 -- a collection of objects which describe the SNMP entity’s
 -- (statically and dynamically configurable) support of
 -- various MIB modules.

 sysORLastChange OBJECT-TYPE
 SYNTAX TimeStamp
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value of sysUpTime at the time of the most recent
 change in state or value of any instance of sysORID."
 ::= { system 8 }

 sysORTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SysOREntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The (conceptual) table listing the capabilities of
 the local SNMP application acting as a command
 responder with respect to various MIB modules.
 SNMP entities having dynamically-configurable support
 of MIB modules will have a dynamically-varying number
 of conceptual rows."
 ::= { system 9 }

Presuhn, et al. Standards Track [Page 6]

RFC 3418 MIB for SNMP December 2002

 sysOREntry OBJECT-TYPE
 SYNTAX SysOREntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry (conceptual row) in the sysORTable."
 INDEX { sysORIndex }
 ::= { sysORTable 1 }

 SysOREntry ::= SEQUENCE {
 sysORIndex INTEGER,
 sysORID OBJECT IDENTIFIER,
 sysORDescr DisplayString,
 sysORUpTime TimeStamp
 }

 sysORIndex OBJECT-TYPE
 SYNTAX INTEGER (1..2147483647)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The auxiliary variable used for identifying instances
 of the columnar objects in the sysORTable."
 ::= { sysOREntry 1 }

 sysORID OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "An authoritative identification of a capabilities
 statement with respect to various MIB modules supported
 by the local SNMP application acting as a command
 responder."
 ::= { sysOREntry 2 }

 sysORDescr OBJECT-TYPE
 SYNTAX DisplayString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A textual description of the capabilities identified
 by the corresponding instance of sysORID."
 ::= { sysOREntry 3 }

 sysORUpTime OBJECT-TYPE
 SYNTAX TimeStamp
 MAX-ACCESS read-only

Presuhn, et al. Standards Track [Page 7]

RFC 3418 MIB for SNMP December 2002

 STATUS current
 DESCRIPTION
 "The value of sysUpTime at the time this conceptual
 row was last instantiated."
 ::= { sysOREntry 4 }

 -- the SNMP group
 --
 -- a collection of objects providing basic instrumentation and
 -- control of an SNMP entity.

 snmp OBJECT IDENTIFIER ::= { mib-2 11 }

 snmpInPkts OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The total number of messages delivered to the SNMP
 entity from the transport service."
 ::= { snmp 1 }

 snmpInBadVersions OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The total number of SNMP messages which were delivered
 to the SNMP entity and were for an unsupported SNMP
 version."
 ::= { snmp 3 }

 snmpInBadCommunityNames OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The total number of community-based SNMP messages (for
 example, SNMPv1) delivered to the SNMP entity which
 used an SNMP community name not known to said entity.
 Also, implementations which authenticate community-based
 SNMP messages using check(s) in addition to matching
 the community name (for example, by also checking
 whether the message originated from a transport address
 allowed to use a specified community name) MAY include
 in this value the number of messages which failed the
 additional check(s). It is strongly RECOMMENDED that

Presuhn, et al. Standards Track [Page 8]

RFC 3418 MIB for SNMP December 2002

 the documentation for any security model which is used
 to authenticate community-based SNMP messages specify
 the precise conditions that contribute to this value."
 ::= { snmp 4 }

 snmpInBadCommunityUses OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The total number of community-based SNMP messages (for
 example, SNMPv1) delivered to the SNMP entity which
 represented an SNMP operation that was not allowed for
 the SNMP community named in the message. The precise
 conditions under which this counter is incremented
 (if at all) depend on how the SNMP entity implements
 its access control mechanism and how its applications
 interact with that access control mechanism. It is
 strongly RECOMMENDED that the documentation for any
 access control mechanism which is used to control access
 to and visibility of MIB instrumentation specify the
 precise conditions that contribute to this value."
 ::= { snmp 5 }

 snmpInASNParseErrs OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The total number of ASN.1 or BER errors encountered by
 the SNMP entity when decoding received SNMP messages."
 ::= { snmp 6 }

 snmpEnableAuthenTraps OBJECT-TYPE
 SYNTAX INTEGER { enabled(1), disabled(2) }
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Indicates whether the SNMP entity is permitted to
 generate authenticationFailure traps. The value of this
 object overrides any configuration information; as such,
 it provides a means whereby all authenticationFailure
 traps may be disabled.

 Note that it is strongly recommended that this object
 be stored in non-volatile memory so that it remains
 constant across re-initializations of the network
 management system."

Presuhn, et al. Standards Track [Page 9]

RFC 3418 MIB for SNMP December 2002

 ::= { snmp 30 }

 snmpSilentDrops OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The total number of Confirmed Class PDUs (such as
 GetRequest-PDUs, GetNextRequest-PDUs,
 GetBulkRequest-PDUs, SetRequest-PDUs, and
 InformRequest-PDUs) delivered to the SNMP entity which
 were silently dropped because the size of a reply
 containing an alternate Response Class PDU (such as a
 Response-PDU) with an empty variable-bindings field
 was greater than either a local constraint or the
 maximum message size associated with the originator of
 the request."
 ::= { snmp 31 }

 snmpProxyDrops OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The total number of Confirmed Class PDUs
 (such as GetRequest-PDUs, GetNextRequest-PDUs,
 GetBulkRequest-PDUs, SetRequest-PDUs, and
 InformRequest-PDUs) delivered to the SNMP entity which
 were silently dropped because the transmission of
 the (possibly translated) message to a proxy target
 failed in a manner (other than a time-out) such that
 no Response Class PDU (such as a Response-PDU) could
 be returned."
 ::= { snmp 32 }

 -- information for notifications
 --
 -- a collection of objects which allow the SNMP entity, when
 -- supporting a notification originator application,
 -- to be configured to generate SNMPv2-Trap-PDUs.

 snmpTrap OBJECT IDENTIFIER ::= { snmpMIBObjects 4 }

 snmpTrapOID OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS accessible-for-notify
 STATUS current
 DESCRIPTION

Presuhn, et al. Standards Track [Page 10]

RFC 3418 MIB for SNMP December 2002

 "The authoritative identification of the notification
 currently being sent. This variable occurs as
 the second varbind in every SNMPv2-Trap-PDU and
 InformRequest-PDU."
 ::= { snmpTrap 1 }

 -- ::= { snmpTrap 2 } this OID is obsolete

 snmpTrapEnterprise OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS accessible-for-notify
 STATUS current
 DESCRIPTION
 "The authoritative identification of the enterprise
 associated with the trap currently being sent. When an
 SNMP proxy agent is mapping an RFC1157 Trap-PDU
 into a SNMPv2-Trap-PDU, this variable occurs as the
 last varbind."
 ::= { snmpTrap 3 }

 -- ::= { snmpTrap 4 } this OID is obsolete

 -- well-known traps

 snmpTraps OBJECT IDENTIFIER ::= { snmpMIBObjects 5 }

 coldStart NOTIFICATION-TYPE
 STATUS current
 DESCRIPTION
 "A coldStart trap signifies that the SNMP entity,
 supporting a notification originator application, is
 reinitializing itself and that its configuration may
 have been altered."
 ::= { snmpTraps 1 }

 warmStart NOTIFICATION-TYPE
 STATUS current
 DESCRIPTION
 "A warmStart trap signifies that the SNMP entity,
 supporting a notification originator application,
 is reinitializing itself such that its configuration
 is unaltered."
 ::= { snmpTraps 2 }

 -- Note the linkDown NOTIFICATION-TYPE ::= { snmpTraps 3 }
 -- and the linkUp NOTIFICATION-TYPE ::= { snmpTraps 4 }
 -- are defined in RFC 2863 [RFC2863]

Presuhn, et al. Standards Track [Page 11]

RFC 3418 MIB for SNMP December 2002

 authenticationFailure NOTIFICATION-TYPE
 STATUS current
 DESCRIPTION
 "An authenticationFailure trap signifies that the SNMP
 entity has received a protocol message that is not
 properly authenticated. While all implementations
 of SNMP entities MAY be capable of generating this
 trap, the snmpEnableAuthenTraps object indicates
 whether this trap will be generated."
 ::= { snmpTraps 5 }

 -- Note the egpNeighborLoss notification is defined
 -- as { snmpTraps 6 } in RFC 1213

 -- the set group
 --
 -- a collection of objects which allow several cooperating
 -- command generator applications to coordinate their use of the
 -- set operation.

 snmpSet OBJECT IDENTIFIER ::= { snmpMIBObjects 6 }

 snmpSetSerialNo OBJECT-TYPE
 SYNTAX TestAndIncr
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "An advisory lock used to allow several cooperating
 command generator applications to coordinate their
 use of the SNMP set operation.

 This object is used for coarse-grain coordination.
 To achieve fine-grain coordination, one or more similar
 objects might be defined within each MIB group, as
 appropriate."
 ::= { snmpSet 1 }

 -- conformance information

 snmpMIBConformance
 OBJECT IDENTIFIER ::= { snmpMIB 2 }

 snmpMIBCompliances
 OBJECT IDENTIFIER ::= { snmpMIBConformance 1 }
 snmpMIBGroups OBJECT IDENTIFIER ::= { snmpMIBConformance 2 }

 -- compliance statements

Presuhn, et al. Standards Track [Page 12]

RFC 3418 MIB for SNMP December 2002

 -- ::= { snmpMIBCompliances 1 } this OID is obsolete
 snmpBasicCompliance MODULE-COMPLIANCE
 STATUS deprecated
 DESCRIPTION
 "The compliance statement for SNMPv2 entities which
 implement the SNMPv2 MIB.

 This compliance statement is replaced by
 snmpBasicComplianceRev2."
 MODULE -- this module
 MANDATORY-GROUPS { snmpGroup, snmpSetGroup, systemGroup,
 snmpBasicNotificationsGroup }

 GROUP snmpCommunityGroup
 DESCRIPTION
 "This group is mandatory for SNMPv2 entities which
 support community-based authentication."

 ::= { snmpMIBCompliances 2 }

 snmpBasicComplianceRev2 MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for SNMP entities which
 implement this MIB module."
 MODULE -- this module
 MANDATORY-GROUPS { snmpGroup, snmpSetGroup, systemGroup,
 snmpBasicNotificationsGroup }

 GROUP snmpCommunityGroup
 DESCRIPTION
 "This group is mandatory for SNMP entities which
 support community-based authentication."

 GROUP snmpWarmStartNotificationGroup
 DESCRIPTION
 "This group is mandatory for an SNMP entity which
 supports command responder applications, and is
 able to reinitialize itself such that its
 configuration is unaltered."

 ::= { snmpMIBCompliances 3 }

 -- units of conformance

 -- ::= { snmpMIBGroups 1 } this OID is obsolete
 -- ::= { snmpMIBGroups 2 } this OID is obsolete
 -- ::= { snmpMIBGroups 3 } this OID is obsolete

Presuhn, et al. Standards Track [Page 13]

RFC 3418 MIB for SNMP December 2002

 -- ::= { snmpMIBGroups 4 } this OID is obsolete

 snmpGroup OBJECT-GROUP
 OBJECTS { snmpInPkts,
 snmpInBadVersions,
 snmpInASNParseErrs,
 snmpSilentDrops,
 snmpProxyDrops,
 snmpEnableAuthenTraps }
 STATUS current
 DESCRIPTION
 "A collection of objects providing basic instrumentation
 and control of an SNMP entity."
 ::= { snmpMIBGroups 8 }

 snmpCommunityGroup OBJECT-GROUP
 OBJECTS { snmpInBadCommunityNames,
 snmpInBadCommunityUses }
 STATUS current
 DESCRIPTION
 "A collection of objects providing basic instrumentation
 of a SNMP entity which supports community-based
 authentication."
 ::= { snmpMIBGroups 9 }

 snmpSetGroup OBJECT-GROUP
 OBJECTS { snmpSetSerialNo }
 STATUS current
 DESCRIPTION
 "A collection of objects which allow several cooperating
 command generator applications to coordinate their
 use of the set operation."
 ::= { snmpMIBGroups 5 }

 systemGroup OBJECT-GROUP
 OBJECTS { sysDescr, sysObjectID, sysUpTime,
 sysContact, sysName, sysLocation,
 sysServices,
 sysORLastChange, sysORID,
 sysORUpTime, sysORDescr }
 STATUS current
 DESCRIPTION
 "The system group defines objects which are common to all
 managed systems."
 ::= { snmpMIBGroups 6 }

 snmpBasicNotificationsGroup NOTIFICATION-GROUP
 NOTIFICATIONS { coldStart, authenticationFailure }

Presuhn, et al. Standards Track [Page 14]

RFC 3418 MIB for SNMP December 2002

 STATUS current
 DESCRIPTION
 "The basic notifications implemented by an SNMP entity
 supporting command responder applications."
 ::= { snmpMIBGroups 7 }

 snmpWarmStartNotificationGroup NOTIFICATION-GROUP
 NOTIFICATIONS { warmStart }
 STATUS current
 DESCRIPTION
 "An additional notification for an SNMP entity supporting
 command responder applications, if it is able to reinitialize
 itself such that its configuration is unaltered."
 ::= { snmpMIBGroups 11 }

 snmpNotificationGroup OBJECT-GROUP
 OBJECTS { snmpTrapOID, snmpTrapEnterprise }
 STATUS current
 DESCRIPTION
 "These objects are required for entities
 which support notification originator applications."
 ::= { snmpMIBGroups 12 }

 -- definitions in RFC 1213 made obsolete by the inclusion of a
 -- subset of the snmp group in this MIB

 snmpOutPkts OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number of SNMP Messages which were
 passed from the SNMP protocol entity to the
 transport service."
 ::= { snmp 2 }

 -- { snmp 7 } is not used

 snmpInTooBigs OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number of SNMP PDUs which were
 delivered to the SNMP protocol entity and for
 which the value of the error-status field was
 ‘tooBig’."
 ::= { snmp 8 }

Presuhn, et al. Standards Track [Page 15]

RFC 3418 MIB for SNMP December 2002

 snmpInNoSuchNames OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number of SNMP PDUs which were
 delivered to the SNMP protocol entity and for
 which the value of the error-status field was
 ‘noSuchName’."
 ::= { snmp 9 }

 snmpInBadValues OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number of SNMP PDUs which were
 delivered to the SNMP protocol entity and for
 which the value of the error-status field was
 ‘badValue’."
 ::= { snmp 10 }

 snmpInReadOnlys OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number valid SNMP PDUs which were delivered
 to the SNMP protocol entity and for which the value
 of the error-status field was ‘readOnly’. It should
 be noted that it is a protocol error to generate an
 SNMP PDU which contains the value ‘readOnly’ in the
 error-status field, as such this object is provided
 as a means of detecting incorrect implementations of
 the SNMP."
 ::= { snmp 11 }

 snmpInGenErrs OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number of SNMP PDUs which were delivered
 to the SNMP protocol entity and for which the value
 of the error-status field was ‘genErr’."
 ::= { snmp 12 }

 snmpInTotalReqVars OBJECT-TYPE

Presuhn, et al. Standards Track [Page 16]

RFC 3418 MIB for SNMP December 2002

 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number of MIB objects which have been
 retrieved successfully by the SNMP protocol entity
 as the result of receiving valid SNMP Get-Request
 and Get-Next PDUs."
 ::= { snmp 13 }

 snmpInTotalSetVars OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number of MIB objects which have been
 altered successfully by the SNMP protocol entity as
 the result of receiving valid SNMP Set-Request PDUs."
 ::= { snmp 14 }

 snmpInGetRequests OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number of SNMP Get-Request PDUs which
 have been accepted and processed by the SNMP
 protocol entity."
 ::= { snmp 15 }

 snmpInGetNexts OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number of SNMP Get-Next PDUs which have been
 accepted and processed by the SNMP protocol entity."
 ::= { snmp 16 }

 snmpInSetRequests OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number of SNMP Set-Request PDUs which
 have been accepted and processed by the SNMP protocol
 entity."
 ::= { snmp 17 }

Presuhn, et al. Standards Track [Page 17]

RFC 3418 MIB for SNMP December 2002

 snmpInGetResponses OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number of SNMP Get-Response PDUs which
 have been accepted and processed by the SNMP protocol
 entity."
 ::= { snmp 18 }

 snmpInTraps OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number of SNMP Trap PDUs which have been
 accepted and processed by the SNMP protocol entity."
 ::= { snmp 19 }

 snmpOutTooBigs OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number of SNMP PDUs which were generated
 by the SNMP protocol entity and for which the value
 of the error-status field was ‘tooBig.’"
 ::= { snmp 20 }

 snmpOutNoSuchNames OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number of SNMP PDUs which were generated
 by the SNMP protocol entity and for which the value
 of the error-status was ‘noSuchName’."
 ::= { snmp 21 }

 snmpOutBadValues OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number of SNMP PDUs which were generated
 by the SNMP protocol entity and for which the value
 of the error-status field was ‘badValue’."
 ::= { snmp 22 }

Presuhn, et al. Standards Track [Page 18]

RFC 3418 MIB for SNMP December 2002

 -- { snmp 23 } is not used

 snmpOutGenErrs OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number of SNMP PDUs which were generated
 by the SNMP protocol entity and for which the value
 of the error-status field was ‘genErr’."
 ::= { snmp 24 }

 snmpOutGetRequests OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number of SNMP Get-Request PDUs which
 have been generated by the SNMP protocol entity."
 ::= { snmp 25 }

 snmpOutGetNexts OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number of SNMP Get-Next PDUs which have
 been generated by the SNMP protocol entity."
 ::= { snmp 26 }

 snmpOutSetRequests OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number of SNMP Set-Request PDUs which
 have been generated by the SNMP protocol entity."
 ::= { snmp 27 }

 snmpOutGetResponses OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number of SNMP Get-Response PDUs which
 have been generated by the SNMP protocol entity."
 ::= { snmp 28 }

Presuhn, et al. Standards Track [Page 19]

RFC 3418 MIB for SNMP December 2002

 snmpOutTraps OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS obsolete
 DESCRIPTION
 "The total number of SNMP Trap PDUs which have
 been generated by the SNMP protocol entity."
 ::= { snmp 29 }

 snmpObsoleteGroup OBJECT-GROUP
 OBJECTS { snmpOutPkts, snmpInTooBigs, snmpInNoSuchNames,
 snmpInBadValues, snmpInReadOnlys, snmpInGenErrs,
 snmpInTotalReqVars, snmpInTotalSetVars,
 snmpInGetRequests, snmpInGetNexts, snmpInSetRequests,
 snmpInGetResponses, snmpInTraps, snmpOutTooBigs,
 snmpOutNoSuchNames, snmpOutBadValues,
 snmpOutGenErrs, snmpOutGetRequests, snmpOutGetNexts,
 snmpOutSetRequests, snmpOutGetResponses, snmpOutTraps
 }
 STATUS obsolete
 DESCRIPTION
 "A collection of objects from RFC 1213 made obsolete
 by this MIB module."
 ::= { snmpMIBGroups 10 }

 END

3. Notice on Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Presuhn, et al. Standards Track [Page 20]

RFC 3418 MIB for SNMP December 2002

4. Acknowledgments

 This document is the product of the SNMPv3 Working Group. Some
 special thanks are in order to the following Working Group members:

 Randy Bush
 Jeffrey D. Case
 Mike Daniele
 Rob Frye
 Lauren Heintz
 Keith McCloghrie
 Russ Mundy
 David T. Perkins
 Randy Presuhn
 Aleksey Romanov
 Juergen Schoenwaelder
 Bert Wijnen

 This version of the document, edited by Randy Presuhn, was initially
 based on the work of a design team whose members were:

 Jeffrey D. Case
 Keith McCloghrie
 David T. Perkins
 Randy Presuhn
 Juergen Schoenwaelder

 The previous versions of this document, edited by Keith McCloghrie,
 was the result of significant work by four major contributors:

 Jeffrey D. Case
 Keith McCloghrie
 Marshall T. Rose
 Steven Waldbusser

Presuhn, et al. Standards Track [Page 21]

RFC 3418 MIB for SNMP December 2002

 Additionally, the contributions of the SNMPv2 Working Group to the
 previous versions are also acknowledged. In particular, a special
 thanks is extended for the contributions of:

 Alexander I. Alten
 Dave Arneson
 Uri Blumenthal
 Doug Book
 Kim Curran
 Jim Galvin
 Maria Greene
 Iain Hanson
 Dave Harrington
 Nguyen Hien
 Jeff Johnson
 Michael Kornegay
 Deirdre Kostick
 David Levi
 Daniel Mahoney
 Bob Natale
 Brian O’Keefe
 Andrew Pearson
 Dave Perkins
 Randy Presuhn
 Aleksey Romanov
 Shawn Routhier
 Jon Saperia
 Juergen Schoenwaelder
 Bob Stewart
 Kaj Tesink
 Glenn Waters
 Bert Wijnen

5. Security Considerations

 There are a number of management objects defined in this MIB that
 have a MAX-ACCESS clause of read-write. Such objects may be
 considered sensitive or vulnerable in some network environments. The
 support for SET operations in a non-secure environment without proper
 protection can have a negative effect on network operations.

 SNMPv1 by itself is not a secure environment. Even if the network
 itself is secure (for example by using IPSec), even then, there is no
 control as to who on the secure network is allowed to access and
 GET/SET (read/change) the objects in this MIB.

Presuhn, et al. Standards Track [Page 22]

RFC 3418 MIB for SNMP December 2002

 It is recommended that the implementors consider the security
 features as provided by the SNMPv3 framework. Specifically, the use
 of the User-based Security Model STD 62, RFC 3414 [RFC3414] and the
 View-based Access Control Model STD 62, RFC 3415 [RFC3415] is
 recommended.

 It is then a customer/user responsibility to ensure that the SNMP
 entity giving access to an instance of this MIB is properly
 configured to give access to the objects only to those principals
 (users) that have legitimate rights to indeed GET or SET (change)
 them.

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Structure of Management
 Information Version 2 (SMIv2)", STD 58, RFC 2578, April
 1999.

 [RFC2579] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Textual Conventions for
 SMIv2", STD 58, RFC 2579, April 1999.

 [RFC2580] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Conformance Statements for
 SMIv2", STD 58, RFC 2580, April 1999.

 [RFC3411] Harrington, D., Presuhn, R. and B. Wijnen, "An
 Architecture for describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

 [RFC3414] Blumenthal, U. and B. Wijnen, "The User-Based Security
 Model (USM) for Version 3 of the Simple Network
 Management Protocol (SNMPv3)", STD 62, RFC 3414, December
 2002.

 [RFC3415] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based
 Access Control Model (VACM) for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3415, December
 2002.

Presuhn, et al. Standards Track [Page 23]

RFC 3418 MIB for SNMP December 2002

6.1. Informative References

 [RFC1157] Case, J., Fedor, M., Schoffstall, M. and J. Davin,
 "Simple Network Management Protocol", STD 15, RFC 1157,
 May 1990.

 [RFC1213] McCloghrie, K. and M. Rose, "Management Information Base
 for Network Management of TCP/IP-based internets: MIB-
 II", STD 16, RFC 1213, March 1991.

 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
 MIB", RFC 2863, June 2000.

 [RFC3410] Case, J., Mundy, R., Partain, D. and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410, December 2002.

7. Changes from RFC 1907

 These are the changes from RFC 1907:

 - Corrected typo in copyright statement;

 - Updated copyright date;

 - Updated with new editor’s name and contact information;

 - Cosmetic fixes to layout and typography;

 - Changed title;

 - Replace introduction with current MIB boilerplate;

 - Updated references;

 - Fixed typo in sysORUpTime;

 - Re-worded description of snmpSilentDrops;

 - Updated reference to RFC 1573 to 2863;

 - Added IPR boilerplate as required by RFC 2026;

 - Weakened authenticationFailure description from MUST to MAY,
 clarified that it pertains to all SNMP entities;

Presuhn, et al. Standards Track [Page 24]

RFC 3418 MIB for SNMP December 2002

 - Clarified descriptions of snmpInBadCommunityNames and
 snmpInBadCommunityUses;

 - Updated module-identity and contact information;

 - Updated the acknowledgments section;

 - Replaced references to "manager role", "agent role" and "SNMPv2
 entity" with appropriate terms from RFC 2571;

 - Updated document headers and footers;

 - Added security considerations, based on current recommendations
 for MIB modules;

 - Added NOTIFICATION-GROUP and OBJECT-GROUP constructs for
 NOTIFICATION-TYPEs and OBJECT-TYPEs that were left unreferenced
 in RFC 1907;

 - Fixed typos in sysServices DESCRIPTION;

 - Changed description of snmpProxyDrops to use terms from
 architecture;

 - Changed value used in example for sysObjectID;

 - Added an abstract;

 - Deprecated the snmpBasicCompliance MODULE-COMPLIANCE, and added
 the snmpBasicComplianceRev2 MODULE-COMPLIANCE to take its
 place;

 - Updated working group mailing list address;

 - Added co-chair’s address.

8. Editor’s Address

 Randy Presuhn
 BMC Software, Inc.
 2141 North First Street
 San Jose, CA 95131
 USA

 Phone: +1 408 546 1006
 EMail: randy_presuhn@bmc.com

Presuhn, et al. Standards Track [Page 25]

RFC 3418 MIB for SNMP December 2002

9. Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Presuhn, et al. Standards Track [Page 26]

