
Network Working Group Internet Engineering Task Force
Request for Comments: 1122 R. Braden, Editor
 October 1989

 Requirements for Internet Hosts -- Communication Layers

Status of This Memo

 This RFC is an official specification for the Internet community. It
 incorporates by reference, amends, corrects, and supplements the
 primary protocol standards documents relating to hosts. Distribution
 of this document is unlimited.

Summary

 This is one RFC of a pair that defines and discusses the requirements
 for Internet host software. This RFC covers the communications
 protocol layers: link layer, IP layer, and transport layer; its
 companion RFC-1123 covers the application and support protocols.

 Table of Contents

 1. INTRODUCTION ... 5
 1.1 The Internet Architecture 6
 1.1.1 Internet Hosts 6
 1.1.2 Architectural Assumptions 7
 1.1.3 Internet Protocol Suite 8
 1.1.4 Embedded Gateway Code 10
 1.2 General Considerations 12
 1.2.1 Continuing Internet Evolution 12
 1.2.2 Robustness Principle 12
 1.2.3 Error Logging 13
 1.2.4 Configuration 14
 1.3 Reading this Document 15
 1.3.1 Organization 15
 1.3.2 Requirements 16
 1.3.3 Terminology 17
 1.4 Acknowledgments .. 20

 2. LINK LAYER .. 21
 2.1 INTRODUCTION ... 21

Internet Engineering Task Force [Page 1]

RFC1122 INTRODUCTION October 1989

 2.2 PROTOCOL WALK-THROUGH 21
 2.3 SPECIFIC ISSUES .. 21
 2.3.1 Trailer Protocol Negotiation 21
 2.3.2 Address Resolution Protocol -- ARP 22
 2.3.2.1 ARP Cache Validation 22
 2.3.2.2 ARP Packet Queue 24
 2.3.3 Ethernet and IEEE 802 Encapsulation 24
 2.4 LINK/INTERNET LAYER INTERFACE 25
 2.5 LINK LAYER REQUIREMENTS SUMMARY 26

 3. INTERNET LAYER PROTOCOLS 27
 3.1 INTRODUCTION .. 27
 3.2 PROTOCOL WALK-THROUGH 29
 3.2.1 Internet Protocol -- IP 29
 3.2.1.1 Version Number 29
 3.2.1.2 Checksum 29
 3.2.1.3 Addressing 29
 3.2.1.4 Fragmentation and Reassembly 32
 3.2.1.5 Identification 32
 3.2.1.6 Type-of-Service 33
 3.2.1.7 Time-to-Live 34
 3.2.1.8 Options 35
 3.2.2 Internet Control Message Protocol -- ICMP 38
 3.2.2.1 Destination Unreachable 39
 3.2.2.2 Redirect 40
 3.2.2.3 Source Quench 41
 3.2.2.4 Time Exceeded 41
 3.2.2.5 Parameter Problem 42
 3.2.2.6 Echo Request/Reply 42
 3.2.2.7 Information Request/Reply 43
 3.2.2.8 Timestamp and Timestamp Reply 43
 3.2.2.9 Address Mask Request/Reply 45
 3.2.3 Internet Group Management Protocol IGMP 47
 3.3 SPECIFIC ISSUES .. 47
 3.3.1 Routing Outbound Datagrams 47
 3.3.1.1 Local/Remote Decision 47
 3.3.1.2 Gateway Selection 48
 3.3.1.3 Route Cache 49
 3.3.1.4 Dead Gateway Detection 51
 3.3.1.5 New Gateway Selection 55
 3.3.1.6 Initialization 56
 3.3.2 Reassembly .. 56
 3.3.3 Fragmentation 58
 3.3.4 Local Multihoming 60
 3.3.4.1 Introduction 60
 3.3.4.2 Multihoming Requirements 61
 3.3.4.3 Choosing a Source Address 64
 3.3.5 Source Route Forwarding 65

Internet Engineering Task Force [Page 2]

RFC1122 INTRODUCTION October 1989

 3.3.6 Broadcasts .. 66
 3.3.7 IP Multicasting 67
 3.3.8 Error Reporting 69
 3.4 INTERNET/TRANSPORT LAYER INTERFACE 69
 3.5 INTERNET LAYER REQUIREMENTS SUMMARY 72

 4. TRANSPORT PROTOCOLS ... 77
 4.1 USER DATAGRAM PROTOCOL -- UDP 77
 4.1.1 INTRODUCTION 77
 4.1.2 PROTOCOL WALK-THROUGH 77
 4.1.3 SPECIFIC ISSUES 77
 4.1.3.1 Ports .. 77
 4.1.3.2 IP Options 77
 4.1.3.3 ICMP Messages 78
 4.1.3.4 UDP Checksums 78
 4.1.3.5 UDP Multihoming 79
 4.1.3.6 Invalid Addresses 79
 4.1.4 UDP/APPLICATION LAYER INTERFACE 79
 4.1.5 UDP REQUIREMENTS SUMMARY 80
 4.2 TRANSMISSION CONTROL PROTOCOL -- TCP 82
 4.2.1 INTRODUCTION 82
 4.2.2 PROTOCOL WALK-THROUGH 82
 4.2.2.1 Well-Known Ports 82
 4.2.2.2 Use of Push 82
 4.2.2.3 Window Size 83
 4.2.2.4 Urgent Pointer 84
 4.2.2.5 TCP Options 85
 4.2.2.6 Maximum Segment Size Option 85
 4.2.2.7 TCP Checksum 86
 4.2.2.8 TCP Connection State Diagram 86
 4.2.2.9 Initial Sequence Number Selection 87
 4.2.2.10 Simultaneous Open Attempts 87
 4.2.2.11 Recovery from Old Duplicate SYN 87
 4.2.2.12 RST Segment 87
 4.2.2.13 Closing a Connection 87
 4.2.2.14 Data Communication 89
 4.2.2.15 Retransmission Timeout 90
 4.2.2.16 Managing the Window 91
 4.2.2.17 Probing Zero Windows 92
 4.2.2.18 Passive OPEN Calls 92
 4.2.2.19 Time to Live 93
 4.2.2.20 Event Processing 93
 4.2.2.21 Acknowledging Queued Segments 94
 4.2.3 SPECIFIC ISSUES 95
 4.2.3.1 Retransmission Timeout Calculation 95
 4.2.3.2 When to Send an ACK Segment 96
 4.2.3.3 When to Send a Window Update 97
 4.2.3.4 When to Send Data 98

Internet Engineering Task Force [Page 3]

RFC1122 INTRODUCTION October 1989

 4.2.3.5 TCP Connection Failures 100
 4.2.3.6 TCP Keep-Alives 101
 4.2.3.7 TCP Multihoming 103
 4.2.3.8 IP Options 103
 4.2.3.9 ICMP Messages 103
 4.2.3.10 Remote Address Validation 104
 4.2.3.11 TCP Traffic Patterns 104
 4.2.3.12 Efficiency 105
 4.2.4 TCP/APPLICATION LAYER INTERFACE 106
 4.2.4.1 Asynchronous Reports 106
 4.2.4.2 Type-of-Service 107
 4.2.4.3 Flush Call 107
 4.2.4.4 Multihoming 108
 4.2.5 TCP REQUIREMENT SUMMARY 108

 5. REFERENCES ... 112

Internet Engineering Task Force [Page 4]

RFC1122 INTRODUCTION October 1989

1. INTRODUCTION

 This document is one of a pair that defines and discusses the
 requirements for host system implementations of the Internet protocol
 suite. This RFC covers the communication protocol layers: link
 layer, IP layer, and transport layer. Its companion RFC,
 "Requirements for Internet Hosts -- Application and Support"
 [INTRO:1], covers the application layer protocols. This document
 should also be read in conjunction with "Requirements for Internet
 Gateways" [INTRO:2].

 These documents are intended to provide guidance for vendors,
 implementors, and users of Internet communication software. They
 represent the consensus of a large body of technical experience and
 wisdom, contributed by the members of the Internet research and
 vendor communities.

 This RFC enumerates standard protocols that a host connected to the
 Internet must use, and it incorporates by reference the RFCs and
 other documents describing the current specifications for these
 protocols. It corrects errors in the referenced documents and adds
 additional discussion and guidance for an implementor.

 For each protocol, this document also contains an explicit set of
 requirements, recommendations, and options. The reader must
 understand that the list of requirements in this document is
 incomplete by itself; the complete set of requirements for an
 Internet host is primarily defined in the standard protocol
 specification documents, with the corrections, amendments, and
 supplements contained in this RFC.

 A good-faith implementation of the protocols that was produced after
 careful reading of the RFC’s and with some interaction with the
 Internet technical community, and that followed good communications
 software engineering practices, should differ from the requirements
 of this document in only minor ways. Thus, in many cases, the
 "requirements" in this RFC are already stated or implied in the
 standard protocol documents, so that their inclusion here is, in a
 sense, redundant. However, they were included because some past
 implementation has made the wrong choice, causing problems of
 interoperability, performance, and/or robustness.

 This document includes discussion and explanation of many of the
 requirements and recommendations. A simple list of requirements
 would be dangerous, because:

 o Some required features are more important than others, and some
 features are optional.

Internet Engineering Task Force [Page 5]

RFC1122 INTRODUCTION October 1989

 o There may be valid reasons why particular vendor products that
 are designed for restricted contexts might choose to use
 different specifications.

 However, the specifications of this document must be followed to meet
 the general goal of arbitrary host interoperation across the
 diversity and complexity of the Internet system. Although most
 current implementations fail to meet these requirements in various
 ways, some minor and some major, this specification is the ideal
 towards which we need to move.

 These requirements are based on the current level of Internet
 architecture. This document will be updated as required to provide
 additional clarifications or to include additional information in
 those areas in which specifications are still evolving.

 This introductory section begins with a brief overview of the
 Internet architecture as it relates to hosts, and then gives some
 general advice to host software vendors. Finally, there is some
 guidance on reading the rest of the document and some terminology.

 1.1 The Internet Architecture

 General background and discussion on the Internet architecture and
 supporting protocol suite can be found in the DDN Protocol
 Handbook [INTRO:3]; for background see for example [INTRO:9],
 [INTRO:10], and [INTRO:11]. Reference [INTRO:5] describes the
 procedure for obtaining Internet protocol documents, while
 [INTRO:6] contains a list of the numbers assigned within Internet
 protocols.

 1.1.1 Internet Hosts

 A host computer, or simply "host," is the ultimate consumer of
 communication services. A host generally executes application
 programs on behalf of user(s), employing network and/or
 Internet communication services in support of this function.
 An Internet host corresponds to the concept of an "End-System"
 used in the OSI protocol suite [INTRO:13].

 An Internet communication system consists of interconnected
 packet networks supporting communication among host computers
 using the Internet protocols. The networks are interconnected
 using packet-switching computers called "gateways" or "IP
 routers" by the Internet community, and "Intermediate Systems"
 by the OSI world [INTRO:13]. The RFC "Requirements for
 Internet Gateways" [INTRO:2] contains the official
 specifications for Internet gateways. That RFC together with

Internet Engineering Task Force [Page 6]

RFC1122 INTRODUCTION October 1989

 the present document and its companion [INTRO:1] define the
 rules for the current realization of the Internet architecture.

 Internet hosts span a wide range of size, speed, and function.
 They range in size from small microprocessors through
 workstations to mainframes and supercomputers. In function,
 they range from single-purpose hosts (such as terminal servers)
 to full-service hosts that support a variety of online network
 services, typically including remote login, file transfer, and
 electronic mail.

 A host is generally said to be multihomed if it has more than
 one interface to the same or to different networks. See
 Section 1.1.3 on "Terminology".

 1.1.2 Architectural Assumptions

 The current Internet architecture is based on a set of
 assumptions about the communication system. The assumptions
 most relevant to hosts are as follows:

 (a) The Internet is a network of networks.

 Each host is directly connected to some particular
 network(s); its connection to the Internet is only
 conceptual. Two hosts on the same network communicate
 with each other using the same set of protocols that they
 would use to communicate with hosts on distant networks.

 (b) Gateways don’t keep connection state information.

 To improve robustness of the communication system,
 gateways are designed to be stateless, forwarding each IP
 datagram independently of other datagrams. As a result,
 redundant paths can be exploited to provide robust service
 in spite of failures of intervening gateways and networks.

 All state information required for end-to-end flow control
 and reliability is implemented in the hosts, in the
 transport layer or in application programs. All
 connection control information is thus co-located with the
 end points of the communication, so it will be lost only
 if an end point fails.

 (c) Routing complexity should be in the gateways.

 Routing is a complex and difficult problem, and ought to
 be performed by the gateways, not the hosts. An important

Internet Engineering Task Force [Page 7]

RFC1122 INTRODUCTION October 1989

 objective is to insulate host software from changes caused
 by the inevitable evolution of the Internet routing
 architecture.

 (d) The System must tolerate wide network variation.

 A basic objective of the Internet design is to tolerate a
 wide range of network characteristics -- e.g., bandwidth,
 delay, packet loss, packet reordering, and maximum packet
 size. Another objective is robustness against failure of
 individual networks, gateways, and hosts, using whatever
 bandwidth is still available. Finally, the goal is full
 "open system interconnection": an Internet host must be
 able to interoperate robustly and effectively with any
 other Internet host, across diverse Internet paths.

 Sometimes host implementors have designed for less
 ambitious goals. For example, the LAN environment is
 typically much more benign than the Internet as a whole;
 LANs have low packet loss and delay and do not reorder
 packets. Some vendors have fielded host implementations
 that are adequate for a simple LAN environment, but work
 badly for general interoperation. The vendor justifies
 such a product as being economical within the restricted
 LAN market. However, isolated LANs seldom stay isolated
 for long; they are soon gatewayed to each other, to
 organization-wide internets, and eventually to the global
 Internet system. In the end, neither the customer nor the
 vendor is served by incomplete or substandard Internet
 host software.

 The requirements spelled out in this document are designed
 for a full-function Internet host, capable of full
 interoperation over an arbitrary Internet path.

 1.1.3 Internet Protocol Suite

 To communicate using the Internet system, a host must implement
 the layered set of protocols comprising the Internet protocol
 suite. A host typically must implement at least one protocol
 from each layer.

 The protocol layers used in the Internet architecture are as
 follows [INTRO:4]:

 o Application Layer

Internet Engineering Task Force [Page 8]

RFC1122 INTRODUCTION October 1989

 The application layer is the top layer of the Internet
 protocol suite. The Internet suite does not further
 subdivide the application layer, although some of the
 Internet application layer protocols do contain some
 internal sub-layering. The application layer of the
 Internet suite essentially combines the functions of the
 top two layers -- Presentation and Application -- of the
 OSI reference model.

 We distinguish two categories of application layer
 protocols: user protocols that provide service directly
 to users, and support protocols that provide common system
 functions. Requirements for user and support protocols
 will be found in the companion RFC [INTRO:1].

 The most common Internet user protocols are:

 o Telnet (remote login)
 o FTP (file transfer)
 o SMTP (electronic mail delivery)

 There are a number of other standardized user protocols
 [INTRO:4] and many private user protocols.

 Support protocols, used for host name mapping, booting,
 and management, include SNMP, BOOTP, RARP, and the Domain
 Name System (DNS) protocols.

 o Transport Layer

 The transport layer provides end-to-end communication
 services for applications. There are two primary
 transport layer protocols at present:

 o Transmission Control Protocol (TCP)
 o User Datagram Protocol (UDP)

 TCP is a reliable connection-oriented transport service
 that provides end-to-end reliability, resequencing, and
 flow control. UDP is a connectionless ("datagram")
 transport service.

 Other transport protocols have been developed by the
 research community, and the set of official Internet
 transport protocols may be expanded in the future.

 Transport layer protocols are discussed in Chapter 4.

Internet Engineering Task Force [Page 9]

RFC1122 INTRODUCTION October 1989

 o Internet Layer

 All Internet transport protocols use the Internet Protocol
 (IP) to carry data from source host to destination host.
 IP is a connectionless or datagram internetwork service,
 providing no end-to-end delivery guarantees. Thus, IP
 datagrams may arrive at the destination host damaged,
 duplicated, out of order, or not at all. The layers above
 IP are responsible for reliable delivery service when it
 is required. The IP protocol includes provision for
 addressing, type-of-service specification, fragmentation
 and reassembly, and security information.

 The datagram or connectionless nature of the IP protocol
 is a fundamental and characteristic feature of the
 Internet architecture. Internet IP was the model for the
 OSI Connectionless Network Protocol [INTRO:12].

 ICMP is a control protocol that is considered to be an
 integral part of IP, although it is architecturally
 layered upon IP, i.e., it uses IP to carry its data end-
 to-end just as a transport protocol like TCP or UDP does.
 ICMP provides error reporting, congestion reporting, and
 first-hop gateway redirection.

 IGMP is an Internet layer protocol used for establishing
 dynamic host groups for IP multicasting.

 The Internet layer protocols IP, ICMP, and IGMP are
 discussed in Chapter 3.

 o Link Layer

 To communicate on its directly-connected network, a host
 must implement the communication protocol used to
 interface to that network. We call this a link layer or
 media-access layer protocol.

 There is a wide variety of link layer protocols,
 corresponding to the many different types of networks.
 See Chapter 2.

 1.1.4 Embedded Gateway Code

 Some Internet host software includes embedded gateway
 functionality, so that these hosts can forward packets as a

Internet Engineering Task Force [Page 10]

RFC1122 INTRODUCTION October 1989

 gateway would, while still performing the application layer
 functions of a host.

 Such dual-purpose systems must follow the Gateway Requirements
 RFC [INTRO:2] with respect to their gateway functions, and
 must follow the present document with respect to their host
 functions. In all overlapping cases, the two specifications
 should be in agreement.

 There are varying opinions in the Internet community about
 embedded gateway functionality. The main arguments are as
 follows:

 o Pro: in a local network environment where networking is
 informal, or in isolated internets, it may be convenient
 and economical to use existing host systems as gateways.

 There is also an architectural argument for embedded
 gateway functionality: multihoming is much more common
 than originally foreseen, and multihoming forces a host to
 make routing decisions as if it were a gateway. If the
 multihomed host contains an embedded gateway, it will
 have full routing knowledge and as a result will be able
 to make more optimal routing decisions.

 o Con: Gateway algorithms and protocols are still changing,
 and they will continue to change as the Internet system
 grows larger. Attempting to include a general gateway
 function within the host IP layer will force host system
 maintainers to track these (more frequent) changes. Also,
 a larger pool of gateway implementations will make
 coordinating the changes more difficult. Finally, the
 complexity of a gateway IP layer is somewhat greater than
 that of a host, making the implementation and operation
 tasks more complex.

 In addition, the style of operation of some hosts is not
 appropriate for providing stable and robust gateway
 service.

 There is considerable merit in both of these viewpoints. One
 conclusion can be drawn: an host administrator must have
 conscious control over whether or not a given host acts as a
 gateway. See Section 3.1 for the detailed requirements.

Internet Engineering Task Force [Page 11]

RFC1122 INTRODUCTION October 1989

 1.2 General Considerations

 There are two important lessons that vendors of Internet host
 software have learned and which a new vendor should consider
 seriously.

 1.2.1 Continuing Internet Evolution

 The enormous growth of the Internet has revealed problems of
 management and scaling in a large datagram-based packet
 communication system. These problems are being addressed, and
 as a result there will be continuing evolution of the
 specifications described in this document. These changes will
 be carefully planned and controlled, since there is extensive
 participation in this planning by the vendors and by the
 organizations responsible for operations of the networks.

 Development, evolution, and revision are characteristic of
 computer network protocols today, and this situation will
 persist for some years. A vendor who develops computer
 communication software for the Internet protocol suite (or any
 other protocol suite!) and then fails to maintain and update
 that software for changing specifications is going to leave a
 trail of unhappy customers. The Internet is a large
 communication network, and the users are in constant contact
 through it. Experience has shown that knowledge of
 deficiencies in vendor software propagates quickly through the
 Internet technical community.

 1.2.2 Robustness Principle

 At every layer of the protocols, there is a general rule whose
 application can lead to enormous benefits in robustness and
 interoperability [IP:1]:

 "Be liberal in what you accept, and
 conservative in what you send"

 Software should be written to deal with every conceivable
 error, no matter how unlikely; sooner or later a packet will
 come in with that particular combination of errors and
 attributes, and unless the software is prepared, chaos can
 ensue. In general, it is best to assume that the network is
 filled with malevolent entities that will send in packets
 designed to have the worst possible effect. This assumption
 will lead to suitable protective design, although the most
 serious problems in the Internet have been caused by
 unenvisaged mechanisms triggered by low-probability events;

Internet Engineering Task Force [Page 12]

RFC1122 INTRODUCTION October 1989

 mere human malice would never have taken so devious a course!

 Adaptability to change must be designed into all levels of
 Internet host software. As a simple example, consider a
 protocol specification that contains an enumeration of values
 for a particular header field -- e.g., a type field, a port
 number, or an error code; this enumeration must be assumed to
 be incomplete. Thus, if a protocol specification defines four
 possible error codes, the software must not break when a fifth
 code shows up. An undefined code might be logged (see below),
 but it must not cause a failure.

 The second part of the principle is almost as important:
 software on other hosts may contain deficiencies that make it
 unwise to exploit legal but obscure protocol features. It is
 unwise to stray far from the obvious and simple, lest untoward
 effects result elsewhere. A corollary of this is "watch out
 for misbehaving hosts"; host software should be prepared, not
 just to survive other misbehaving hosts, but also to cooperate
 to limit the amount of disruption such hosts can cause to the
 shared communication facility.

 1.2.3 Error Logging

 The Internet includes a great variety of host and gateway
 systems, each implementing many protocols and protocol layers,
 and some of these contain bugs and mis-features in their
 Internet protocol software. As a result of complexity,
 diversity, and distribution of function, the diagnosis of
 Internet problems is often very difficult.

 Problem diagnosis will be aided if host implementations include
 a carefully designed facility for logging erroneous or
 "strange" protocol events. It is important to include as much
 diagnostic information as possible when an error is logged. In
 particular, it is often useful to record the header(s) of a
 packet that caused an error. However, care must be taken to
 ensure that error logging does not consume prohibitive amounts
 of resources or otherwise interfere with the operation of the
 host.

 There is a tendency for abnormal but harmless protocol events
 to overflow error logging files; this can be avoided by using a
 "circular" log, or by enabling logging only while diagnosing a
 known failure. It may be useful to filter and count duplicate
 successive messages. One strategy that seems to work well is:
 (1) always count abnormalities and make such counts accessible
 through the management protocol (see [INTRO:1]); and (2) allow

Internet Engineering Task Force [Page 13]

RFC1122 INTRODUCTION October 1989

 the logging of a great variety of events to be selectively
 enabled. For example, it might useful to be able to "log
 everything" or to "log everything for host X".

 Note that different managements may have differing policies
 about the amount of error logging that they want normally
 enabled in a host. Some will say, "if it doesn’t hurt me, I
 don’t want to know about it", while others will want to take a
 more watchful and aggressive attitude about detecting and
 removing protocol abnormalities.

 1.2.4 Configuration

 It would be ideal if a host implementation of the Internet
 protocol suite could be entirely self-configuring. This would
 allow the whole suite to be implemented in ROM or cast into
 silicon, it would simplify diskless workstations, and it would
 be an immense boon to harried LAN administrators as well as
 system vendors. We have not reached this ideal; in fact, we
 are not even close.

 At many points in this document, you will find a requirement
 that a parameter be a configurable option. There are several
 different reasons behind such requirements. In a few cases,
 there is current uncertainty or disagreement about the best
 value, and it may be necessary to update the recommended value
 in the future. In other cases, the value really depends on
 external factors -- e.g., the size of the host and the
 distribution of its communication load, or the speeds and
 topology of nearby networks -- and self-tuning algorithms are
 unavailable and may be insufficient. In some cases,
 configurability is needed because of administrative
 requirements.

 Finally, some configuration options are required to communicate
 with obsolete or incorrect implementations of the protocols,
 distributed without sources, that unfortunately persist in many
 parts of the Internet. To make correct systems coexist with
 these faulty systems, administrators often have to "mis-
 configure" the correct systems. This problem will correct
 itself gradually as the faulty systems are retired, but it
 cannot be ignored by vendors.

 When we say that a parameter must be configurable, we do not
 intend to require that its value be explicitly read from a
 configuration file at every boot time. We recommend that
 implementors set up a default for each parameter, so a
 configuration file is only necessary to override those defaults

Internet Engineering Task Force [Page 14]

RFC1122 INTRODUCTION October 1989

 that are inappropriate in a particular installation. Thus, the
 configurability requirement is an assurance that it will be
 POSSIBLE to override the default when necessary, even in a
 binary-only or ROM-based product.

 This document requires a particular value for such defaults in
 some cases. The choice of default is a sensitive issue when
 the configuration item controls the accommodation to existing
 faulty systems. If the Internet is to converge successfully to
 complete interoperability, the default values built into
 implementations must implement the official protocol, not
 "mis-configurations" to accommodate faulty implementations.
 Although marketing considerations have led some vendors to
 choose mis-configuration defaults, we urge vendors to choose
 defaults that will conform to the standard.

 Finally, we note that a vendor needs to provide adequate
 documentation on all configuration parameters, their limits and
 effects.

 1.3 Reading this Document

 1.3.1 Organization

 Protocol layering, which is generally used as an organizing
 principle in implementing network software, has also been used
 to organize this document. In describing the rules, we assume
 that an implementation does strictly mirror the layering of the
 protocols. Thus, the following three major sections specify
 the requirements for the link layer, the internet layer, and
 the transport layer, respectively. A companion RFC [INTRO:1]
 covers application level software. This layerist organization
 was chosen for simplicity and clarity.

 However, strict layering is an imperfect model, both for the
 protocol suite and for recommended implementation approaches.
 Protocols in different layers interact in complex and sometimes
 subtle ways, and particular functions often involve multiple
 layers. There are many design choices in an implementation,
 many of which involve creative "breaking" of strict layering.
 Every implementor is urged to read references [INTRO:7] and
 [INTRO:8].

 This document describes the conceptual service interface
 between layers using a functional ("procedure call") notation,
 like that used in the TCP specification [TCP:1]. A host
 implementation must support the logical information flow

Internet Engineering Task Force [Page 15]

RFC1122 INTRODUCTION October 1989

 implied by these calls, but need not literally implement the
 calls themselves. For example, many implementations reflect
 the coupling between the transport layer and the IP layer by
 giving them shared access to common data structures. These
 data structures, rather than explicit procedure calls, are then
 the agency for passing much of the information that is
 required.

 In general, each major section of this document is organized
 into the following subsections:

 (1) Introduction

 (2) Protocol Walk-Through -- considers the protocol
 specification documents section-by-section, correcting
 errors, stating requirements that may be ambiguous or
 ill-defined, and providing further clarification or
 explanation.

 (3) Specific Issues -- discusses protocol design and
 implementation issues that were not included in the walk-
 through.

 (4) Interfaces -- discusses the service interface to the next
 higher layer.

 (5) Summary -- contains a summary of the requirements of the
 section.

 Under many of the individual topics in this document, there is
 parenthetical material labeled "DISCUSSION" or
 "IMPLEMENTATION". This material is intended to give
 clarification and explanation of the preceding requirements
 text. It also includes some suggestions on possible future
 directions or developments. The implementation material
 contains suggested approaches that an implementor may want to
 consider.

 The summary sections are intended to be guides and indexes to
 the text, but are necessarily cryptic and incomplete. The
 summaries should never be used or referenced separately from
 the complete RFC.

 1.3.2 Requirements

 In this document, the words that are used to define the
 significance of each particular requirement are capitalized.

Internet Engineering Task Force [Page 16]

RFC1122 INTRODUCTION October 1989

 These words are:

 * "MUST"

 This word or the adjective "REQUIRED" means that the item
 is an absolute requirement of the specification.

 * "SHOULD"

 This word or the adjective "RECOMMENDED" means that there
 may exist valid reasons in particular circumstances to
 ignore this item, but the full implications should be
 understood and the case carefully weighed before choosing
 a different course.

 * "MAY"

 This word or the adjective "OPTIONAL" means that this item
 is truly optional. One vendor may choose to include the
 item because a particular marketplace requires it or
 because it enhances the product, for example; another
 vendor may omit the same item.

 An implementation is not compliant if it fails to satisfy one
 or more of the MUST requirements for the protocols it
 implements. An implementation that satisfies all the MUST and
 all the SHOULD requirements for its protocols is said to be
 "unconditionally compliant"; one that satisfies all the MUST
 requirements but not all the SHOULD requirements for its
 protocols is said to be "conditionally compliant".

 1.3.3 Terminology

 This document uses the following technical terms:

 Segment
 A segment is the unit of end-to-end transmission in the
 TCP protocol. A segment consists of a TCP header followed
 by application data. A segment is transmitted by
 encapsulation inside an IP datagram.

 Message
 In this description of the lower-layer protocols, a
 message is the unit of transmission in a transport layer
 protocol. In particular, a TCP segment is a message. A
 message consists of a transport protocol header followed
 by application protocol data. To be transmitted end-to-

Internet Engineering Task Force [Page 17]

RFC1122 INTRODUCTION October 1989

 end through the Internet, a message must be encapsulated
 inside a datagram.

 IP Datagram
 An IP datagram is the unit of end-to-end transmission in
 the IP protocol. An IP datagram consists of an IP header
 followed by transport layer data, i.e., of an IP header
 followed by a message.

 In the description of the internet layer (Section 3), the
 unqualified term "datagram" should be understood to refer
 to an IP datagram.

 Packet
 A packet is the unit of data passed across the interface
 between the internet layer and the link layer. It
 includes an IP header and data. A packet may be a
 complete IP datagram or a fragment of an IP datagram.

 Frame
 A frame is the unit of transmission in a link layer
 protocol, and consists of a link-layer header followed by
 a packet.

 Connected Network
 A network to which a host is interfaced is often known as
 the "local network" or the "subnetwork" relative to that
 host. However, these terms can cause confusion, and
 therefore we use the term "connected network" in this
 document.

 Multihomed
 A host is said to be multihomed if it has multiple IP
 addresses. For a discussion of multihoming, see Section
 3.3.4 below.

 Physical network interface
 This is a physical interface to a connected network and
 has a (possibly unique) link-layer address. Multiple
 physical network interfaces on a single host may share the
 same link-layer address, but the address must be unique
 for different hosts on the same physical network.

 Logical [network] interface
 We define a logical [network] interface to be a logical
 path, distinguished by a unique IP address, to a connected
 network. See Section 3.3.4.

Internet Engineering Task Force [Page 18]

RFC1122 INTRODUCTION October 1989

 Specific-destination address
 This is the effective destination address of a datagram,
 even if it is broadcast or multicast; see Section 3.2.1.3.

 Path
 At a given moment, all the IP datagrams from a particular
 source host to a particular destination host will
 typically traverse the same sequence of gateways. We use
 the term "path" for this sequence. Note that a path is
 uni-directional; it is not unusual to have different paths
 in the two directions between a given host pair.

 MTU
 The maximum transmission unit, i.e., the size of the
 largest packet that can be transmitted.

 The terms frame, packet, datagram, message, and segment are
 illustrated by the following schematic diagrams:

 A. Transmission on connected network:

 | LL hdr | IP hdr | (data) |
 |________|________|_____________________________|

 <---------- Frame ----------------------------->
 <----------Packet -------------------->

 B. Before IP fragmentation or after IP reassembly:

 | IP hdr | transport| Application Data |
 |________|____hdr___|__________________|

 <-------- Datagram ------------------>
 <-------- Message ----------->
 or, for TCP:

 | IP hdr | TCP hdr | Application Data |
 |________|__________|__________________|

 <-------- Datagram ------------------>
 <-------- Segment ----------->

Internet Engineering Task Force [Page 19]

RFC1122 INTRODUCTION October 1989

 1.4 Acknowledgments

 This document incorporates contributions and comments from a large
 group of Internet protocol experts, including representatives of
 university and research labs, vendors, and government agencies.
 It was assembled primarily by the Host Requirements Working Group
 of the Internet Engineering Task Force (IETF).

 The Editor would especially like to acknowledge the tireless
 dedication of the following people, who attended many long
 meetings and generated 3 million bytes of electronic mail over the
 past 18 months in pursuit of this document: Philip Almquist, Dave
 Borman (Cray Research), Noel Chiappa, Dave Crocker (DEC), Steve
 Deering (Stanford), Mike Karels (Berkeley), Phil Karn (Bellcore),
 John Lekashman (NASA), Charles Lynn (BBN), Keith McCloghrie (TWG),
 Paul Mockapetris (ISI), Thomas Narten (Purdue), Craig Partridge
 (BBN), Drew Perkins (CMU), and James Van Bokkelen (FTP Software).

 In addition, the following people made major contributions to the
 effort: Bill Barns (Mitre), Steve Bellovin (AT&T), Mike Brescia
 (BBN), Ed Cain (DCA), Annette DeSchon (ISI), Martin Gross (DCA),
 Phill Gross (NRI), Charles Hedrick (Rutgers), Van Jacobson (LBL),
 John Klensin (MIT), Mark Lottor (SRI), Milo Medin (NASA), Bill
 Melohn (Sun Microsystems), Greg Minshall (Kinetics), Jeff Mogul
 (DEC), John Mullen (CMC), Jon Postel (ISI), John Romkey (Epilogue
 Technology), and Mike StJohns (DCA). The following also made
 significant contributions to particular areas: Eric Allman
 (Berkeley), Rob Austein (MIT), Art Berggreen (ACC), Keith Bostic
 (Berkeley), Vint Cerf (NRI), Wayne Hathaway (NASA), Matt Korn
 (IBM), Erik Naggum (Naggum Software, Norway), Robert Ullmann
 (Prime Computer), David Waitzman (BBN), Frank Wancho (USA), Arun
 Welch (Ohio State), Bill Westfield (Cisco), and Rayan Zachariassen
 (Toronto).

 We are grateful to all, including any contributors who may have
 been inadvertently omitted from this list.

Internet Engineering Task Force [Page 20]

RFC1122 LINK LAYER October 1989

2. LINK LAYER

 2.1 INTRODUCTION

 All Internet systems, both hosts and gateways, have the same
 requirements for link layer protocols. These requirements are
 given in Chapter 3 of "Requirements for Internet Gateways"
 [INTRO:2], augmented with the material in this section.

 2.2 PROTOCOL WALK-THROUGH

 None.

 2.3 SPECIFIC ISSUES

 2.3.1 Trailer Protocol Negotiation

 The trailer protocol [LINK:1] for link-layer encapsulation MAY
 be used, but only when it has been verified that both systems
 (host or gateway) involved in the link-layer communication
 implement trailers. If the system does not dynamically
 negotiate use of the trailer protocol on a per-destination
 basis, the default configuration MUST disable the protocol.

 DISCUSSION:
 The trailer protocol is a link-layer encapsulation
 technique that rearranges the data contents of packets
 sent on the physical network. In some cases, trailers
 improve the throughput of higher layer protocols by
 reducing the amount of data copying within the operating
 system. Higher layer protocols are unaware of trailer
 use, but both the sending and receiving host MUST
 understand the protocol if it is used.

 Improper use of trailers can result in very confusing
 symptoms. Only packets with specific size attributes are
 encapsulated using trailers, and typically only a small
 fraction of the packets being exchanged have these
 attributes. Thus, if a system using trailers exchanges
 packets with a system that does not, some packets
 disappear into a black hole while others are delivered
 successfully.

 IMPLEMENTATION:
 On an Ethernet, packets encapsulated with trailers use a
 distinct Ethernet type [LINK:1], and trailer negotiation
 is performed at the time that ARP is used to discover the
 link-layer address of a destination system.

Internet Engineering Task Force [Page 21]

RFC1122 LINK LAYER October 1989

 Specifically, the ARP exchange is completed in the usual
 manner using the normal IP protocol type, but a host that
 wants to speak trailers will send an additional "trailer
 ARP reply" packet, i.e., an ARP reply that specifies the
 trailer encapsulation protocol type but otherwise has the
 format of a normal ARP reply. If a host configured to use
 trailers receives a trailer ARP reply message from a
 remote machine, it can add that machine to the list of
 machines that understand trailers, e.g., by marking the
 corresponding entry in the ARP cache.

 Hosts wishing to receive trailer encapsulations send
 trailer ARP replies whenever they complete exchanges of
 normal ARP messages for IP. Thus, a host that received an
 ARP request for its IP protocol address would send a
 trailer ARP reply in addition to the normal IP ARP reply;
 a host that sent the IP ARP request would send a trailer
 ARP reply when it received the corresponding IP ARP reply.
 In this way, either the requesting or responding host in
 an IP ARP exchange may request that it receive trailer
 encapsulations.

 This scheme, using extra trailer ARP reply packets rather
 than sending an ARP request for the trailer protocol type,
 was designed to avoid a continuous exchange of ARP packets
 with a misbehaving host that, contrary to any
 specification or common sense, responded to an ARP reply
 for trailers with another ARP reply for IP. This problem
 is avoided by sending a trailer ARP reply in response to
 an IP ARP reply only when the IP ARP reply answers an
 outstanding request; this is true when the hardware
 address for the host is still unknown when the IP ARP
 reply is received. A trailer ARP reply may always be sent
 along with an IP ARP reply responding to an IP ARP
 request.

 2.3.2 Address Resolution Protocol -- ARP

 2.3.2.1 ARP Cache Validation

 An implementation of the Address Resolution Protocol (ARP)
 [LINK:2] MUST provide a mechanism to flush out-of-date cache
 entries. If this mechanism involves a timeout, it SHOULD be
 possible to configure the timeout value.

 A mechanism to prevent ARP flooding (repeatedly sending an
 ARP Request for the same IP address, at a high rate) MUST be
 included. The recommended maximum rate is 1 per second per

Internet Engineering Task Force [Page 22]

RFC1122 LINK LAYER October 1989

 destination.

 DISCUSSION:
 The ARP specification [LINK:2] suggests but does not
 require a timeout mechanism to invalidate cache entries
 when hosts change their Ethernet addresses. The
 prevalence of proxy ARP (see Section 2.4 of [INTRO:2])
 has significantly increased the likelihood that cache
 entries in hosts will become invalid, and therefore
 some ARP-cache invalidation mechanism is now required
 for hosts. Even in the absence of proxy ARP, a long-
 period cache timeout is useful in order to
 automatically correct any bad ARP data that might have
 been cached.

 IMPLEMENTATION:
 Four mechanisms have been used, sometimes in
 combination, to flush out-of-date cache entries.

 (1) Timeout -- Periodically time out cache entries,
 even if they are in use. Note that this timeout
 should be restarted when the cache entry is
 "refreshed" (by observing the source fields,
 regardless of target address, of an ARP broadcast
 from the system in question). For proxy ARP
 situations, the timeout needs to be on the order
 of a minute.

 (2) Unicast Poll -- Actively poll the remote host by
 periodically sending a point-to-point ARP Request
 to it, and delete the entry if no ARP Reply is
 received from N successive polls. Again, the
 timeout should be on the order of a minute, and
 typically N is 2.

 (3) Link-Layer Advice -- If the link-layer driver
 detects a delivery problem, flush the
 corresponding ARP cache entry.

 (4) Higher-layer Advice -- Provide a call from the
 Internet layer to the link layer to indicate a
 delivery problem. The effect of this call would
 be to invalidate the corresponding cache entry.
 This call would be analogous to the
 "ADVISE_DELIVPROB()" call from the transport layer
 to the Internet layer (see Section 3.4), and in
 fact the ADVISE_DELIVPROB routine might in turn
 call the link-layer advice routine to invalidate

Internet Engineering Task Force [Page 23]

RFC1122 LINK LAYER October 1989

 the ARP cache entry.

 Approaches (1) and (2) involve ARP cache timeouts on
 the order of a minute or less. In the absence of proxy
 ARP, a timeout this short could create noticeable
 overhead traffic on a very large Ethernet. Therefore,
 it may be necessary to configure a host to lengthen the
 ARP cache timeout.

 2.3.2.2 ARP Packet Queue

 The link layer SHOULD save (rather than discard) at least
 one (the latest) packet of each set of packets destined to
 the same unresolved IP address, and transmit the saved
 packet when the address has been resolved.

 DISCUSSION:
 Failure to follow this recommendation causes the first
 packet of every exchange to be lost. Although higher-
 layer protocols can generally cope with packet loss by
 retransmission, packet loss does impact performance.
 For example, loss of a TCP open request causes the
 initial round-trip time estimate to be inflated. UDP-
 based applications such as the Domain Name System are
 more seriously affected.

 2.3.3 Ethernet and IEEE 802 Encapsulation

 The IP encapsulation for Ethernets is described in RFC-894
 [LINK:3], while RFC-1042 [LINK:4] describes the IP
 encapsulation for IEEE 802 networks. RFC-1042 elaborates and
 replaces the discussion in Section 3.4 of [INTRO:2].

 Every Internet host connected to a 10Mbps Ethernet cable:

 o MUST be able to send and receive packets using RFC-894
 encapsulation;

 o SHOULD be able to receive RFC-1042 packets, intermixed
 with RFC-894 packets; and

 o MAY be able to send packets using RFC-1042 encapsulation.

 An Internet host that implements sending both the RFC-894 and
 the RFC-1042 encapsulations MUST provide a configuration switch
 to select which is sent, and this switch MUST default to RFC-
 894.

Internet Engineering Task Force [Page 24]

RFC1122 LINK LAYER October 1989

 Note that the standard IP encapsulation in RFC-1042 does not
 use the protocol id value (K1=6) that IEEE reserved for IP;
 instead, it uses a value (K1=170) that implies an extension
 (the "SNAP") which can be used to hold the Ether-Type field.
 An Internet system MUST NOT send 802 packets using K1=6.

 Address translation from Internet addresses to link-layer
 addresses on Ethernet and IEEE 802 networks MUST be managed by
 the Address Resolution Protocol (ARP).

 The MTU for an Ethernet is 1500 and for 802.3 is 1492.

 DISCUSSION:
 The IEEE 802.3 specification provides for operation over a
 10Mbps Ethernet cable, in which case Ethernet and IEEE
 802.3 frames can be physically intermixed. A receiver can
 distinguish Ethernet and 802.3 frames by the value of the
 802.3 Length field; this two-octet field coincides in the
 header with the Ether-Type field of an Ethernet frame. In
 particular, the 802.3 Length field must be less than or
 equal to 1500, while all valid Ether-Type values are
 greater than 1500.

 Another compatibility problem arises with link-layer
 broadcasts. A broadcast sent with one framing will not be
 seen by hosts that can receive only the other framing.

 The provisions of this section were designed to provide
 direct interoperation between 894-capable and 1042-capable
 systems on the same cable, to the maximum extent possible.
 It is intended to support the present situation where
 894-only systems predominate, while providing an easy
 transition to a possible future in which 1042-capable
 systems become common.

 Note that 894-only systems cannot interoperate directly
 with 1042-only systems. If the two system types are set
 up as two different logical networks on the same cable,
 they can communicate only through an IP gateway.
 Furthermore, it is not useful or even possible for a
 dual-format host to discover automatically which format to
 send, because of the problem of link-layer broadcasts.

 2.4 LINK/INTERNET LAYER INTERFACE

 The packet receive interface between the IP layer and the link
 layer MUST include a flag to indicate whether the incoming packet
 was addressed to a link-layer broadcast address.

Internet Engineering Task Force [Page 25]

RFC1122 LINK LAYER October 1989

 DISCUSSION
 Although the IP layer does not generally know link layer
 addresses (since every different network medium typically has
 a different address format), the broadcast address on a
 broadcast-capable medium is an important special case. See
 Section 3.2.2, especially the DISCUSSION concerning broadcast
 storms.

 The packet send interface between the IP and link layers MUST
 include the 5-bit TOS field (see Section 3.2.1.6).

 The link layer MUST NOT report a Destination Unreachable error to
 IP solely because there is no ARP cache entry for a destination.

 2.5 LINK LAYER REQUIREMENTS SUMMARY

 | | | | |S| |
 | | | | |H| |F
 | | | | |O|M|o
 | | |S| |U|U|o
 | | |H| |L|S|t
 | |M|O| |D|T|n
 | |U|U|M| | |o
 | |S|L|A|N|N|t
 | |T|D|Y|O|O|t
FEATURE	SECTION				T	T	e
 | | | | | | |
Trailer encapsulation |2.3.1 | | |x| | |
Send Trailers by default without negotiation |2.3.1 | | | | |x|
ARP |2.3.2 | | | | | |
 Flush out-of-date ARP cache entries |2.3.2.1|x| | | | |
 Prevent ARP floods |2.3.2.1|x| | | | |
 Cache timeout configurable |2.3.2.1| |x| | | |
 Save at least one (latest) unresolved pkt |2.3.2.2| |x| | | |
Ethernet and IEEE 802 Encapsulation |2.3.3 | | | | | |
 Host able to: |2.3.3 | | | | | |
 Send & receive RFC-894 encapsulation |2.3.3 |x| | | | |
 Receive RFC-1042 encapsulation |2.3.3 | |x| | | |
 Send RFC-1042 encapsulation |2.3.3 | | |x| | |
 Then config. sw. to select, RFC-894 dflt |2.3.3 |x| | | | |
 Send K1=6 encapsulation |2.3.3 | | | | |x|
 Use ARP on Ethernet and IEEE 802 nets |2.3.3 |x| | | | |
Link layer report b’casts to IP layer |2.4 |x| | | | |
IP layer pass TOS to link layer |2.4 |x| | | | |
No ARP cache entry treated as Dest. Unreach. |2.4 | | | | |x|

Internet Engineering Task Force [Page 26]

RFC1122 INTERNET LAYER October 1989

3. INTERNET LAYER PROTOCOLS

 3.1 INTRODUCTION

 The Robustness Principle: "Be liberal in what you accept, and
 conservative in what you send" is particularly important in the
 Internet layer, where one misbehaving host can deny Internet
 service to many other hosts.

 The protocol standards used in the Internet layer are:

 o RFC-791 [IP:1] defines the IP protocol and gives an
 introduction to the architecture of the Internet.

 o RFC-792 [IP:2] defines ICMP, which provides routing,
 diagnostic and error functionality for IP. Although ICMP
 messages are encapsulated within IP datagrams, ICMP
 processing is considered to be (and is typically implemented
 as) part of the IP layer. See Section 3.2.2.

 o RFC-950 [IP:3] defines the mandatory subnet extension to the
 addressing architecture.

 o RFC-1112 [IP:4] defines the Internet Group Management
 Protocol IGMP, as part of a recommended extension to hosts
 and to the host-gateway interface to support Internet-wide
 multicasting at the IP level. See Section 3.2.3.

 The target of an IP multicast may be an arbitrary group of
 Internet hosts. IP multicasting is designed as a natural
 extension of the link-layer multicasting facilities of some
 networks, and it provides a standard means for local access
 to such link-layer multicasting facilities.

 Other important references are listed in Section 5 of this
 document.

 The Internet layer of host software MUST implement both IP and
 ICMP. See Section 3.3.7 for the requirements on support of IGMP.

 The host IP layer has two basic functions: (1) choose the "next
 hop" gateway or host for outgoing IP datagrams and (2) reassemble
 incoming IP datagrams. The IP layer may also (3) implement
 intentional fragmentation of outgoing datagrams. Finally, the IP
 layer must (4) provide diagnostic and error functionality. We
 expect that IP layer functions may increase somewhat in the
 future, as further Internet control and management facilities are
 developed.

Internet Engineering Task Force [Page 27]

RFC1122 INTERNET LAYER October 1989

 For normal datagrams, the processing is straightforward. For
 incoming datagrams, the IP layer:

 (1) verifies that the datagram is correctly formatted;

 (2) verifies that it is destined to the local host;

 (3) processes options;

 (4) reassembles the datagram if necessary; and

 (5) passes the encapsulated message to the appropriate
 transport-layer protocol module.

 For outgoing datagrams, the IP layer:

 (1) sets any fields not set by the transport layer;

 (2) selects the correct first hop on the connected network (a
 process called "routing");

 (3) fragments the datagram if necessary and if intentional
 fragmentation is implemented (see Section 3.3.3); and

 (4) passes the packet(s) to the appropriate link-layer driver.

 A host is said to be multihomed if it has multiple IP addresses.
 Multihoming introduces considerable confusion and complexity into
 the protocol suite, and it is an area in which the Internet
 architecture falls seriously short of solving all problems. There
 are two distinct problem areas in multihoming:

 (1) Local multihoming -- the host itself is multihomed; or

 (2) Remote multihoming -- the local host needs to communicate
 with a remote multihomed host.

 At present, remote multihoming MUST be handled at the application
 layer, as discussed in the companion RFC [INTRO:1]. A host MAY
 support local multihoming, which is discussed in this document,
 and in particular in Section 3.3.4.

 Any host that forwards datagrams generated by another host is
 acting as a gateway and MUST also meet the specifications laid out
 in the gateway requirements RFC [INTRO:2]. An Internet host that
 includes embedded gateway code MUST have a configuration switch to
 disable the gateway function, and this switch MUST default to the

Internet Engineering Task Force [Page 28]

RFC1122 INTERNET LAYER October 1989

 non-gateway mode. In this mode, a datagram arriving through one
 interface will not be forwarded to another host or gateway (unless
 it is source-routed), regardless of whether the host is single-
 homed or multihomed. The host software MUST NOT automatically
 move into gateway mode if the host has more than one interface, as
 the operator of the machine may neither want to provide that
 service nor be competent to do so.

 In the following, the action specified in certain cases is to
 "silently discard" a received datagram. This means that the
 datagram will be discarded without further processing and that the
 host will not send any ICMP error message (see Section 3.2.2) as a
 result. However, for diagnosis of problems a host SHOULD provide
 the capability of logging the error (see Section 1.2.3), including
 the contents of the silently-discarded datagram, and SHOULD record
 the event in a statistics counter.

 DISCUSSION:
 Silent discard of erroneous datagrams is generally intended
 to prevent "broadcast storms".

 3.2 PROTOCOL WALK-THROUGH

 3.2.1 Internet Protocol -- IP

 3.2.1.1 Version Number: RFC-791 Section 3.1

 A datagram whose version number is not 4 MUST be silently
 discarded.

 3.2.1.2 Checksum: RFC-791 Section 3.1

 A host MUST verify the IP header checksum on every received
 datagram and silently discard every datagram that has a bad
 checksum.

 3.2.1.3 Addressing: RFC-791 Section 3.2

 There are now five classes of IP addresses: Class A through
 Class E. Class D addresses are used for IP multicasting
 [IP:4], while Class E addresses are reserved for
 experimental use.

 A multicast (Class D) address is a 28-bit logical address
 that stands for a group of hosts, and may be either
 permanent or transient. Permanent multicast addresses are
 allocated by the Internet Assigned Number Authority
 [INTRO:6], while transient addresses may be allocated

Internet Engineering Task Force [Page 29]

RFC1122 INTERNET LAYER October 1989

 dynamically to transient groups. Group membership is
 determined dynamically using IGMP [IP:4].

 We now summarize the important special cases for Class A, B,
 and C IP addresses, using the following notation for an IP
 address:

 { <Network-number>, <Host-number> }

 or
 { <Network-number>, <Subnet-number>, <Host-number> }

 and the notation "-1" for a field that contains all 1 bits.
 This notation is not intended to imply that the 1-bits in an
 address mask need be contiguous.

 (a) { 0, 0 }

 This host on this network. MUST NOT be sent, except as
 a source address as part of an initialization procedure
 by which the host learns its own IP address.

 See also Section 3.3.6 for a non-standard use of {0,0}.

 (b) { 0, <Host-number> }

 Specified host on this network. It MUST NOT be sent,
 except as a source address as part of an initialization
 procedure by which the host learns its full IP address.

 (c) { -1, -1 }

 Limited broadcast. It MUST NOT be used as a source
 address.

 A datagram with this destination address will be
 received by every host on the connected physical
 network but will not be forwarded outside that network.

 (d) { <Network-number>, -1 }

 Directed broadcast to the specified network. It MUST
 NOT be used as a source address.

 (e) { <Network-number>, <Subnet-number>, -1 }

 Directed broadcast to the specified subnet. It MUST
 NOT be used as a source address.

Internet Engineering Task Force [Page 30]

RFC1122 INTERNET LAYER October 1989

 (f) { <Network-number>, -1, -1 }

 Directed broadcast to all subnets of the specified
 subnetted network. It MUST NOT be used as a source
 address.

 (g) { 127, <any> }

 Internal host loopback address. Addresses of this form
 MUST NOT appear outside a host.

 The <Network-number> is administratively assigned so that
 its value will be unique in the entire world.

 IP addresses are not permitted to have the value 0 or -1 for
 any of the <Host-number>, <Network-number>, or <Subnet-
 number> fields (except in the special cases listed above).
 This implies that each of these fields will be at least two
 bits long.

 For further discussion of broadcast addresses, see Section
 3.3.6.

 A host MUST support the subnet extensions to IP [IP:3]. As
 a result, there will be an address mask of the form:
 {-1, -1, 0} associated with each of the host’s local IP
 addresses; see Sections 3.2.2.9 and 3.3.1.1.

 When a host sends any datagram, the IP source address MUST
 be one of its own IP addresses (but not a broadcast or
 multicast address).

 A host MUST silently discard an incoming datagram that is
 not destined for the host. An incoming datagram is destined
 for the host if the datagram’s destination address field is:

 (1) (one of) the host’s IP address(es); or

 (2) an IP broadcast address valid for the connected
 network; or

 (3) the address for a multicast group of which the host is
 a member on the incoming physical interface.

 For most purposes, a datagram addressed to a broadcast or
 multicast destination is processed as if it had been
 addressed to one of the host’s IP addresses; we use the term
 "specific-destination address" for the equivalent local IP

Internet Engineering Task Force [Page 31]

RFC1122 INTERNET LAYER October 1989

 address of the host. The specific-destination address is
 defined to be the destination address in the IP header
 unless the header contains a broadcast or multicast address,
 in which case the specific-destination is an IP address
 assigned to the physical interface on which the datagram
 arrived.

 A host MUST silently discard an incoming datagram containing
 an IP source address that is invalid by the rules of this
 section. This validation could be done in either the IP
 layer or by each protocol in the transport layer.

 DISCUSSION:
 A mis-addressed datagram might be caused by a link-
 layer broadcast of a unicast datagram or by a gateway
 or host that is confused or mis-configured.

 An architectural goal for Internet hosts was to allow
 IP addresses to be featureless 32-bit numbers, avoiding
 algorithms that required a knowledge of the IP address
 format. Otherwise, any future change in the format or
 interpretation of IP addresses will require host
 software changes. However, validation of broadcast and
 multicast addresses violates this goal; a few other
 violations are described elsewhere in this document.

 Implementers should be aware that applications
 depending upon the all-subnets directed broadcast
 address (f) may be unusable on some networks. All-
 subnets broadcast is not widely implemented in vendor
 gateways at present, and even when it is implemented, a
 particular network administration may disable it in the
 gateway configuration.

 3.2.1.4 Fragmentation and Reassembly: RFC-791 Section 3.2

 The Internet model requires that every host support
 reassembly. See Sections 3.3.2 and 3.3.3 for the
 requirements on fragmentation and reassembly.

 3.2.1.5 Identification: RFC-791 Section 3.2

 When sending an identical copy of an earlier datagram, a
 host MAY optionally retain the same Identification field in
 the copy.

Internet Engineering Task Force [Page 32]

RFC1122 INTERNET LAYER October 1989

 DISCUSSION:
 Some Internet protocol experts have maintained that
 when a host sends an identical copy of an earlier
 datagram, the new copy should contain the same
 Identification value as the original. There are two
 suggested advantages: (1) if the datagrams are
 fragmented and some of the fragments are lost, the
 receiver may be able to reconstruct a complete datagram
 from fragments of the original and the copies; (2) a
 congested gateway might use the IP Identification field
 (and Fragment Offset) to discard duplicate datagrams
 from the queue.

 However, the observed patterns of datagram loss in the
 Internet do not favor the probability of retransmitted
 fragments filling reassembly gaps, while other
 mechanisms (e.g., TCP repacketizing upon
 retransmission) tend to prevent retransmission of an
 identical datagram [IP:9]. Therefore, we believe that
 retransmitting the same Identification field is not
 useful. Also, a connectionless transport protocol like
 UDP would require the cooperation of the application
 programs to retain the same Identification value in
 identical datagrams.

 3.2.1.6 Type-of-Service: RFC-791 Section 3.2

 The "Type-of-Service" byte in the IP header is divided into
 two sections: the Precedence field (high-order 3 bits), and
 a field that is customarily called "Type-of-Service" or
 "TOS" (low-order 5 bits). In this document, all references
 to "TOS" or the "TOS field" refer to the low-order 5 bits
 only.

 The Precedence field is intended for Department of Defense
 applications of the Internet protocols. The use of non-zero
 values in this field is outside the scope of this document
 and the IP standard specification. Vendors should consult
 the Defense Communication Agency (DCA) for guidance on the
 IP Precedence field and its implications for other protocol
 layers. However, vendors should note that the use of
 precedence will most likely require that its value be passed
 between protocol layers in just the same way as the TOS
 field is passed.

 The IP layer MUST provide a means for the transport layer to
 set the TOS field of every datagram that is sent; the
 default is all zero bits. The IP layer SHOULD pass received

Internet Engineering Task Force [Page 33]

RFC1122 INTERNET LAYER October 1989

 TOS values up to the transport layer.

 The particular link-layer mappings of TOS contained in RFC-
 795 SHOULD NOT be implemented.

 DISCUSSION:
 While the TOS field has been little used in the past,
 it is expected to play an increasing role in the near
 future. The TOS field is expected to be used to
 control two aspects of gateway operations: routing and
 queueing algorithms. See Section 2 of [INTRO:1] for
 the requirements on application programs to specify TOS
 values.

 The TOS field may also be mapped into link-layer
 service selectors. This has been applied to provide
 effective sharing of serial lines by different classes
 of TCP traffic, for example. However, the mappings
 suggested in RFC-795 for networks that were included in
 the Internet as of 1981 are now obsolete.

 3.2.1.7 Time-to-Live: RFC-791 Section 3.2

 A host MUST NOT send a datagram with a Time-to-Live (TTL)
 value of zero.

 A host MUST NOT discard a datagram just because it was
 received with TTL less than 2.

 The IP layer MUST provide a means for the transport layer to
 set the TTL field of every datagram that is sent. When a
 fixed TTL value is used, it MUST be configurable. The
 current suggested value will be published in the "Assigned
 Numbers" RFC.

 DISCUSSION:
 The TTL field has two functions: limit the lifetime of
 TCP segments (see RFC-793 [TCP:1], p. 28), and
 terminate Internet routing loops. Although TTL is a
 time in seconds, it also has some attributes of a hop-
 count, since each gateway is required to reduce the TTL
 field by at least one.

 The intent is that TTL expiration will cause a datagram
 to be discarded by a gateway but not by the destination
 host; however, hosts that act as gateways by forwarding
 datagrams must follow the gateway rules for TTL.

Internet Engineering Task Force [Page 34]

RFC1122 INTERNET LAYER October 1989

 A higher-layer protocol may want to set the TTL in
 order to implement an "expanding scope" search for some
 Internet resource. This is used by some diagnostic
 tools, and is expected to be useful for locating the
 "nearest" server of a given class using IP
 multicasting, for example. A particular transport
 protocol may also want to specify its own TTL bound on
 maximum datagram lifetime.

 A fixed value must be at least big enough for the
 Internet "diameter," i.e., the longest possible path.
 A reasonable value is about twice the diameter, to
 allow for continued Internet growth.

 3.2.1.8 Options: RFC-791 Section 3.2

 There MUST be a means for the transport layer to specify IP
 options to be included in transmitted IP datagrams (see
 Section 3.4).

 All IP options (except NOP or END-OF-LIST) received in
 datagrams MUST be passed to the transport layer (or to ICMP
 processing when the datagram is an ICMP message). The IP
 and transport layer MUST each interpret those IP options
 that they understand and silently ignore the others.

 Later sections of this document discuss specific IP option
 support required by each of ICMP, TCP, and UDP.

 DISCUSSION:
 Passing all received IP options to the transport layer
 is a deliberate "violation of strict layering" that is
 designed to ease the introduction of new transport-
 relevant IP options in the future. Each layer must
 pick out any options that are relevant to its own
 processing and ignore the rest. For this purpose,
 every IP option except NOP and END-OF-LIST will include
 a specification of its own length.

 This document does not define the order in which a
 receiver must process multiple options in the same IP
 header. Hosts sending multiple options must be aware
 that this introduces an ambiguity in the meaning of
 certain options when combined with a source-route
 option.

 IMPLEMENTATION:
 The IP layer must not crash as the result of an option

Internet Engineering Task Force [Page 35]

RFC1122 INTERNET LAYER October 1989

 length that is outside the possible range. For
 example, erroneous option lengths have been observed to
 put some IP implementations into infinite loops.

 Here are the requirements for specific IP options:

 (a) Security Option

 Some environments require the Security option in every
 datagram; such a requirement is outside the scope of
 this document and the IP standard specification. Note,
 however, that the security options described in RFC-791
 and RFC-1038 are obsolete. For DoD applications,
 vendors should consult [IP:8] for guidance.

 (b) Stream Identifier Option

 This option is obsolete; it SHOULD NOT be sent, and it
 MUST be silently ignored if received.

 (c) Source Route Options

 A host MUST support originating a source route and MUST
 be able to act as the final destination of a source
 route.

 If host receives a datagram containing a completed
 source route (i.e., the pointer points beyond the last
 field), the datagram has reached its final destination;
 the option as received (the recorded route) MUST be
 passed up to the transport layer (or to ICMP message
 processing). This recorded route will be reversed and
 used to form a return source route for reply datagrams
 (see discussion of IP Options in Section 4). When a
 return source route is built, it MUST be correctly
 formed even if the recorded route included the source
 host (see case (B) in the discussion below).

 An IP header containing more than one Source Route
 option MUST NOT be sent; the effect on routing of
 multiple Source Route options is implementation-
 specific.

 Section 3.3.5 presents the rules for a host acting as
 an intermediate hop in a source route, i.e., forwarding

Internet Engineering Task Force [Page 36]

RFC1122 INTERNET LAYER October 1989

 a source-routed datagram.

 DISCUSSION:
 If a source-routed datagram is fragmented, each
 fragment will contain a copy of the source route.
 Since the processing of IP options (including a
 source route) must precede reassembly, the
 original datagram will not be reassembled until
 the final destination is reached.

 Suppose a source routed datagram is to be routed
 from host S to host D via gateways G1, G2, ... Gn.
 There was an ambiguity in the specification over
 whether the source route option in a datagram sent
 out by S should be (A) or (B):

 (A): {>>G2, G3, ... Gn, D} <--- CORRECT

 (B): {S, >>G2, G3, ... Gn, D} <---- WRONG

 (where >> represents the pointer). If (A) is
 sent, the datagram received at D will contain the
 option: {G1, G2, ... Gn >>}, with S and D as the
 IP source and destination addresses. If (B) were
 sent, the datagram received at D would again
 contain S and D as the same IP source and
 destination addresses, but the option would be:
 {S, G1, ...Gn >>}; i.e., the originating host
 would be the first hop in the route.

 (d) Record Route Option

 Implementation of originating and processing the Record
 Route option is OPTIONAL.

 (e) Timestamp Option

 Implementation of originating and processing the
 Timestamp option is OPTIONAL. If it is implemented,
 the following rules apply:

 o The originating host MUST record a timestamp in a
 Timestamp option whose Internet address fields are
 not pre-specified or whose first pre-specified
 address is the host’s interface address.

Internet Engineering Task Force [Page 37]

RFC1122 INTERNET LAYER October 1989

 o The destination host MUST (if possible) add the
 current timestamp to a Timestamp option before
 passing the option to the transport layer or to
 ICMP for processing.

 o A timestamp value MUST follow the rules given in
 Section 3.2.2.8 for the ICMP Timestamp message.

 3.2.2 Internet Control Message Protocol -- ICMP

 ICMP messages are grouped into two classes.

 *
 ICMP error messages:

 Destination Unreachable (see Section 3.2.2.1)
 Redirect (see Section 3.2.2.2)
 Source Quench (see Section 3.2.2.3)
 Time Exceeded (see Section 3.2.2.4)
 Parameter Problem (see Section 3.2.2.5)

 *
 ICMP query messages:

 Echo (see Section 3.2.2.6)
 Information (see Section 3.2.2.7)
 Timestamp (see Section 3.2.2.8)
 Address Mask (see Section 3.2.2.9)

 If an ICMP message of unknown type is received, it MUST be
 silently discarded.

 Every ICMP error message includes the Internet header and at
 least the first 8 data octets of the datagram that triggered
 the error; more than 8 octets MAY be sent; this header and data
 MUST be unchanged from the received datagram.

 In those cases where the Internet layer is required to pass an
 ICMP error message to the transport layer, the IP protocol
 number MUST be extracted from the original header and used to
 select the appropriate transport protocol entity to handle the
 error.

 An ICMP error message SHOULD be sent with normal (i.e., zero)
 TOS bits.

Internet Engineering Task Force [Page 38]

RFC1122 INTERNET LAYER October 1989

 An ICMP error message MUST NOT be sent as the result of
 receiving:

 * an ICMP error message, or

 * a datagram destined to an IP broadcast or IP multicast
 address, or

 * a datagram sent as a link-layer broadcast, or

 * a non-initial fragment, or

 * a datagram whose source address does not define a single
 host -- e.g., a zero address, a loopback address, a
 broadcast address, a multicast address, or a Class E
 address.

 NOTE: THESE RESTRICTIONS TAKE PRECEDENCE OVER ANY REQUIREMENT
 ELSEWHERE IN THIS DOCUMENT FOR SENDING ICMP ERROR MESSAGES.

 DISCUSSION:
 These rules will prevent the "broadcast storms" that have
 resulted from hosts returning ICMP error messages in
 response to broadcast datagrams. For example, a broadcast
 UDP segment to a non-existent port could trigger a flood
 of ICMP Destination Unreachable datagrams from all
 machines that do not have a client for that destination
 port. On a large Ethernet, the resulting collisions can
 render the network useless for a second or more.

 Every datagram that is broadcast on the connected network
 should have a valid IP broadcast address as its IP
 destination (see Section 3.3.6). However, some hosts
 violate this rule. To be certain to detect broadcast
 datagrams, therefore, hosts are required to check for a
 link-layer broadcast as well as an IP-layer broadcast
 address.

 IMPLEMENTATION:
 This requires that the link layer inform the IP layer when
 a link-layer broadcast datagram has been received; see
 Section 2.4.

 3.2.2.1 Destination Unreachable: RFC-792

 The following additional codes are hereby defined:

 6 = destination network unknown

Internet Engineering Task Force [Page 39]

RFC1122 INTERNET LAYER October 1989

 7 = destination host unknown

 8 = source host isolated

 9 = communication with destination network
 administratively prohibited

 10 = communication with destination host
 administratively prohibited

 11 = network unreachable for type of service

 12 = host unreachable for type of service

 A host SHOULD generate Destination Unreachable messages with
 code:

 2 (Protocol Unreachable), when the designated transport
 protocol is not supported; or

 3 (Port Unreachable), when the designated transport
 protocol (e.g., UDP) is unable to demultiplex the
 datagram but has no protocol mechanism to inform the
 sender.

 A Destination Unreachable message that is received MUST be
 reported to the transport layer. The transport layer SHOULD
 use the information appropriately; for example, see Sections
 4.1.3.3, 4.2.3.9, and 4.2.4 below. A transport protocol
 that has its own mechanism for notifying the sender that a
 port is unreachable (e.g., TCP, which sends RST segments)
 MUST nevertheless accept an ICMP Port Unreachable for the
 same purpose.

 A Destination Unreachable message that is received with code
 0 (Net), 1 (Host), or 5 (Bad Source Route) may result from a
 routing transient and MUST therefore be interpreted as only
 a hint, not proof, that the specified destination is
 unreachable [IP:11]. For example, it MUST NOT be used as
 proof of a dead gateway (see Section 3.3.1).

 3.2.2.2 Redirect: RFC-792

 A host SHOULD NOT send an ICMP Redirect message; Redirects
 are to be sent only by gateways.

 A host receiving a Redirect message MUST update its routing
 information accordingly. Every host MUST be prepared to

Internet Engineering Task Force [Page 40]

RFC1122 INTERNET LAYER October 1989

 accept both Host and Network Redirects and to process them
 as described in Section 3.3.1.2 below.

 A Redirect message SHOULD be silently discarded if the new
 gateway address it specifies is not on the same connected
 (sub-) net through which the Redirect arrived [INTRO:2,
 Appendix A], or if the source of the Redirect is not the
 current first-hop gateway for the specified destination (see
 Section 3.3.1).

 3.2.2.3 Source Quench: RFC-792

 A host MAY send a Source Quench message if it is
 approaching, or has reached, the point at which it is forced
 to discard incoming datagrams due to a shortage of
 reassembly buffers or other resources. See Section 2.2.3 of
 [INTRO:2] for suggestions on when to send Source Quench.

 If a Source Quench message is received, the IP layer MUST
 report it to the transport layer (or ICMP processing). In
 general, the transport or application layer SHOULD implement
 a mechanism to respond to Source Quench for any protocol
 that can send a sequence of datagrams to the same
 destination and which can reasonably be expected to maintain
 enough state information to make this feasible. See Section
 4 for the handling of Source Quench by TCP and UDP.

 DISCUSSION:
 A Source Quench may be generated by the target host or
 by some gateway in the path of a datagram. The host
 receiving a Source Quench should throttle itself back
 for a period of time, then gradually increase the
 transmission rate again. The mechanism to respond to
 Source Quench may be in the transport layer (for
 connection-oriented protocols like TCP) or in the
 application layer (for protocols that are built on top
 of UDP).

 A mechanism has been proposed [IP:14] to make the IP
 layer respond directly to Source Quench by controlling
 the rate at which datagrams are sent, however, this
 proposal is currently experimental and not currently
 recommended.

 3.2.2.4 Time Exceeded: RFC-792

 An incoming Time Exceeded message MUST be passed to the
 transport layer.

Internet Engineering Task Force [Page 41]

RFC1122 INTERNET LAYER October 1989

 DISCUSSION:
 A gateway will send a Time Exceeded Code 0 (In Transit)
 message when it discards a datagram due to an expired
 TTL field. This indicates either a gateway routing
 loop or too small an initial TTL value.

 A host may receive a Time Exceeded Code 1 (Reassembly
 Timeout) message from a destination host that has timed
 out and discarded an incomplete datagram; see Section
 3.3.2 below. In the future, receipt of this message
 might be part of some "MTU discovery" procedure, to
 discover the maximum datagram size that can be sent on
 the path without fragmentation.

 3.2.2.5 Parameter Problem: RFC-792

 A host SHOULD generate Parameter Problem messages. An
 incoming Parameter Problem message MUST be passed to the
 transport layer, and it MAY be reported to the user.

 DISCUSSION:
 The ICMP Parameter Problem message is sent to the
 source host for any problem not specifically covered by
 another ICMP message. Receipt of a Parameter Problem
 message generally indicates some local or remote
 implementation error.

 A new variant on the Parameter Problem message is hereby
 defined:
 Code 1 = required option is missing.

 DISCUSSION:
 This variant is currently in use in the military
 community for a missing security option.

 3.2.2.6 Echo Request/Reply: RFC-792

 Every host MUST implement an ICMP Echo server function that
 receives Echo Requests and sends corresponding Echo Replies.
 A host SHOULD also implement an application-layer interface
 for sending an Echo Request and receiving an Echo Reply, for
 diagnostic purposes.

 An ICMP Echo Request destined to an IP broadcast or IP
 multicast address MAY be silently discarded.

Internet Engineering Task Force [Page 42]

RFC1122 INTERNET LAYER October 1989

 DISCUSSION:
 This neutral provision results from a passionate debate
 between those who feel that ICMP Echo to a broadcast
 address provides a valuable diagnostic capability and
 those who feel that misuse of this feature can too
 easily create packet storms.

 The IP source address in an ICMP Echo Reply MUST be the same
 as the specific-destination address (defined in Section
 3.2.1.3) of the corresponding ICMP Echo Request message.

 Data received in an ICMP Echo Request MUST be entirely
 included in the resulting Echo Reply. However, if sending
 the Echo Reply requires intentional fragmentation that is
 not implemented, the datagram MUST be truncated to maximum
 transmission size (see Section 3.3.3) and sent.

 Echo Reply messages MUST be passed to the ICMP user
 interface, unless the corresponding Echo Request originated
 in the IP layer.

 If a Record Route and/or Time Stamp option is received in an
 ICMP Echo Request, this option (these options) SHOULD be
 updated to include the current host and included in the IP
 header of the Echo Reply message, without "truncation".
 Thus, the recorded route will be for the entire round trip.

 If a Source Route option is received in an ICMP Echo
 Request, the return route MUST be reversed and used as a
 Source Route option for the Echo Reply message.

 3.2.2.7 Information Request/Reply: RFC-792

 A host SHOULD NOT implement these messages.

 DISCUSSION:
 The Information Request/Reply pair was intended to
 support self-configuring systems such as diskless
 workstations, to allow them to discover their IP
 network numbers at boot time. However, the RARP and
 BOOTP protocols provide better mechanisms for a host to
 discover its own IP address.

 3.2.2.8 Timestamp and Timestamp Reply: RFC-792

 A host MAY implement Timestamp and Timestamp Reply. If they
 are implemented, the following rules MUST be followed.

Internet Engineering Task Force [Page 43]

RFC1122 INTERNET LAYER October 1989

 o The ICMP Timestamp server function returns a Timestamp
 Reply to every Timestamp message that is received. If
 this function is implemented, it SHOULD be designed for
 minimum variability in delay (e.g., implemented in the
 kernel to avoid delay in scheduling a user process).

 The following cases for Timestamp are to be handled
 according to the corresponding rules for ICMP Echo:

 o An ICMP Timestamp Request message to an IP broadcast or
 IP multicast address MAY be silently discarded.

 o The IP source address in an ICMP Timestamp Reply MUST
 be the same as the specific-destination address of the
 corresponding Timestamp Request message.

 o If a Source-route option is received in an ICMP Echo
 Request, the return route MUST be reversed and used as
 a Source Route option for the Timestamp Reply message.

 o If a Record Route and/or Timestamp option is received
 in a Timestamp Request, this (these) option(s) SHOULD
 be updated to include the current host and included in
 the IP header of the Timestamp Reply message.

 o Incoming Timestamp Reply messages MUST be passed up to
 the ICMP user interface.

 The preferred form for a timestamp value (the "standard
 value") is in units of milliseconds since midnight Universal
 Time. However, it may be difficult to provide this value
 with millisecond resolution. For example, many systems use
 clocks that update only at line frequency, 50 or 60 times
 per second. Therefore, some latitude is allowed in a
 "standard value":

 (a) A "standard value" MUST be updated at least 15 times
 per second (i.e., at most the six low-order bits of the
 value may be undefined).

 (b) The accuracy of a "standard value" MUST approximate
 that of operator-set CPU clocks, i.e., correct within a
 few minutes.

Internet Engineering Task Force [Page 44]

RFC1122 INTERNET LAYER October 1989

 3.2.2.9 Address Mask Request/Reply: RFC-950

 A host MUST support the first, and MAY implement all three,
 of the following methods for determining the address mask(s)
 corresponding to its IP address(es):

 (1) static configuration information;

 (2) obtaining the address mask(s) dynamically as a side-
 effect of the system initialization process (see
 [INTRO:1]); and

 (3) sending ICMP Address Mask Request(s) and receiving ICMP
 Address Mask Reply(s).

 The choice of method to be used in a particular host MUST be
 configurable.

 When method (3), the use of Address Mask messages, is
 enabled, then:

 (a) When it initializes, the host MUST broadcast an Address
 Mask Request message on the connected network
 corresponding to the IP address. It MUST retransmit
 this message a small number of times if it does not
 receive an immediate Address Mask Reply.

 (b) Until it has received an Address Mask Reply, the host
 SHOULD assume a mask appropriate for the address class
 of the IP address, i.e., assume that the connected
 network is not subnetted.

 (c) The first Address Mask Reply message received MUST be
 used to set the address mask corresponding to the
 particular local IP address. This is true even if the
 first Address Mask Reply message is "unsolicited", in
 which case it will have been broadcast and may arrive
 after the host has ceased to retransmit Address Mask
 Requests. Once the mask has been set by an Address
 Mask Reply, later Address Mask Reply messages MUST be
 (silently) ignored.

 Conversely, if Address Mask messages are disabled, then no
 ICMP Address Mask Requests will be sent, and any ICMP
 Address Mask Replies received for that local IP address MUST
 be (silently) ignored.

 A host SHOULD make some reasonableness check on any address

Internet Engineering Task Force [Page 45]

RFC1122 INTERNET LAYER October 1989

 mask it installs; see IMPLEMENTATION section below.

 A system MUST NOT send an Address Mask Reply unless it is an
 authoritative agent for address masks. An authoritative
 agent may be a host or a gateway, but it MUST be explicitly
 configured as a address mask agent. Receiving an address
 mask via an Address Mask Reply does not give the receiver
 authority and MUST NOT be used as the basis for issuing
 Address Mask Replies.

 With a statically configured address mask, there SHOULD be
 an additional configuration flag that determines whether the
 host is to act as an authoritative agent for this mask,
 i.e., whether it will answer Address Mask Request messages
 using this mask.

 If it is configured as an agent, the host MUST broadcast an
 Address Mask Reply for the mask on the appropriate interface
 when it initializes.

 See "System Initialization" in [INTRO:1] for more
 information about the use of Address Mask Request/Reply
 messages.

 DISCUSSION
 Hosts that casually send Address Mask Replies with
 invalid address masks have often been a serious
 nuisance. To prevent this, Address Mask Replies ought
 to be sent only by authoritative agents that have been
 selected by explicit administrative action.

 When an authoritative agent receives an Address Mask
 Request message, it will send a unicast Address Mask
 Reply to the source IP address. If the network part of
 this address is zero (see (a) and (b) in 3.2.1.3), the
 Reply will be broadcast.

 Getting no reply to its Address Mask Request messages,
 a host will assume there is no agent and use an
 unsubnetted mask, but the agent may be only temporarily
 unreachable. An agent will broadcast an unsolicited
 Address Mask Reply whenever it initializes, in order to
 update the masks of all hosts that have initialized in
 the meantime.

 IMPLEMENTATION:
 The following reasonableness check on an address mask
 is suggested: the mask is not all 1 bits, and it is

Internet Engineering Task Force [Page 46]

RFC1122 INTERNET LAYER October 1989

 either zero or else the 8 highest-order bits are on.

 3.2.3 Internet Group Management Protocol IGMP

 IGMP [IP:4] is a protocol used between hosts and gateways on a
 single network to establish hosts’ membership in particular
 multicast groups. The gateways use this information, in
 conjunction with a multicast routing protocol, to support IP
 multicasting across the Internet.

 At this time, implementation of IGMP is OPTIONAL; see Section
 3.3.7 for more information. Without IGMP, a host can still
 participate in multicasting local to its connected networks.

 3.3 SPECIFIC ISSUES

 3.3.1 Routing Outbound Datagrams

 The IP layer chooses the correct next hop for each datagram it
 sends. If the destination is on a connected network, the
 datagram is sent directly to the destination host; otherwise,
 it has to be routed to a gateway on a connected network.

 3.3.1.1 Local/Remote Decision

 To decide if the destination is on a connected network, the
 following algorithm MUST be used [see IP:3]:

 (a) The address mask (particular to a local IP address for
 a multihomed host) is a 32-bit mask that selects the
 network number and subnet number fields of the
 corresponding IP address.

 (b) If the IP destination address bits extracted by the
 address mask match the IP source address bits extracted
 by the same mask, then the destination is on the
 corresponding connected network, and the datagram is to
 be transmitted directly to the destination host.

 (c) If not, then the destination is accessible only through
 a gateway. Selection of a gateway is described below
 (3.3.1.2).

 A special-case destination address is handled as follows:

 * For a limited broadcast or a multicast address, simply
 pass the datagram to the link layer for the appropriate
 interface.

Internet Engineering Task Force [Page 47]

RFC1122 INTERNET LAYER October 1989

 * For a (network or subnet) directed broadcast, the
 datagram can use the standard routing algorithms.

 The host IP layer MUST operate correctly in a minimal
 network environment, and in particular, when there are no
 gateways. For example, if the IP layer of a host insists on
 finding at least one gateway to initialize, the host will be
 unable to operate on a single isolated broadcast net.

 3.3.1.2 Gateway Selection

 To efficiently route a series of datagrams to the same
 destination, the source host MUST keep a "route cache" of
 mappings to next-hop gateways. A host uses the following
 basic algorithm on this cache to route a datagram; this
 algorithm is designed to put the primary routing burden on
 the gateways [IP:11].

 (a) If the route cache contains no information for a
 particular destination, the host chooses a "default"
 gateway and sends the datagram to it. It also builds a
 corresponding Route Cache entry.

 (b) If that gateway is not the best next hop to the
 destination, the gateway will forward the datagram to
 the best next-hop gateway and return an ICMP Redirect
 message to the source host.

 (c) When it receives a Redirect, the host updates the
 next-hop gateway in the appropriate route cache entry,
 so later datagrams to the same destination will go
 directly to the best gateway.

 Since the subnet mask appropriate to the destination address
 is generally not known, a Network Redirect message SHOULD be
 treated identically to a Host Redirect message; i.e., the
 cache entry for the destination host (only) would be updated
 (or created, if an entry for that host did not exist) for
 the new gateway.

 DISCUSSION:
 This recommendation is to protect against gateways that
 erroneously send Network Redirects for a subnetted
 network, in violation of the gateway requirements
 [INTRO:2].

 When there is no route cache entry for the destination host
 address (and the destination is not on the connected

Internet Engineering Task Force [Page 48]

RFC1122 INTERNET LAYER October 1989

 network), the IP layer MUST pick a gateway from its list of
 "default" gateways. The IP layer MUST support multiple
 default gateways.

 As an extra feature, a host IP layer MAY implement a table
 of "static routes". Each such static route MAY include a
 flag specifying whether it may be overridden by ICMP
 Redirects.

 DISCUSSION:
 A host generally needs to know at least one default
 gateway to get started. This information can be
 obtained from a configuration file or else from the
 host startup sequence, e.g., the BOOTP protocol (see
 [INTRO:1]).

 It has been suggested that a host can augment its list
 of default gateways by recording any new gateways it
 learns about. For example, it can record every gateway
 to which it is ever redirected. Such a feature, while
 possibly useful in some circumstances, may cause
 problems in other cases (e.g., gateways are not all
 equal), and it is not recommended.

 A static route is typically a particular preset mapping
 from destination host or network into a particular
 next-hop gateway; it might also depend on the Type-of-
 Service (see next section). Static routes would be set
 up by system administrators to override the normal
 automatic routing mechanism, to handle exceptional
 situations. However, any static routing information is
 a potential source of failure as configurations change
 or equipment fails.

 3.3.1.3 Route Cache

 Each route cache entry needs to include the following
 fields:

 (1) Local IP address (for a multihomed host)

 (2) Destination IP address

 (3) Type(s)-of-Service

 (4) Next-hop gateway IP address

 Field (2) MAY be the full IP address of the destination

Internet Engineering Task Force [Page 49]

RFC1122 INTERNET LAYER October 1989

 host, or only the destination network number. Field (3),
 the TOS, SHOULD be included.

 See Section 3.3.4.2 for a discussion of the implications of
 multihoming for the lookup procedure in this cache.

 DISCUSSION:
 Including the Type-of-Service field in the route cache
 and considering it in the host route algorithm will
 provide the necessary mechanism for the future when
 Type-of-Service routing is commonly used in the
 Internet. See Section 3.2.1.6.

 Each route cache entry defines the endpoints of an
 Internet path. Although the connecting path may change
 dynamically in an arbitrary way, the transmission
 characteristics of the path tend to remain
 approximately constant over a time period longer than a
 single typical host-host transport connection.
 Therefore, a route cache entry is a natural place to
 cache data on the properties of the path. Examples of
 such properties might be the maximum unfragmented
 datagram size (see Section 3.3.3), or the average
 round-trip delay measured by a transport protocol.
 This data will generally be both gathered and used by a
 higher layer protocol, e.g., by TCP, or by an
 application using UDP. Experiments are currently in
 progress on caching path properties in this manner.

 There is no consensus on whether the route cache should
 be keyed on destination host addresses alone, or allow
 both host and network addresses. Those who favor the
 use of only host addresses argue that:

 (1) As required in Section 3.3.1.2, Redirect messages
 will generally result in entries keyed on
 destination host addresses; the simplest and most
 general scheme would be to use host addresses
 always.

 (2) The IP layer may not always know the address mask
 for a network address in a complex subnetted
 environment.

 (3) The use of only host addresses allows the
 destination address to be used as a pure 32-bit
 number, which may allow the Internet architecture
 to be more easily extended in the future without

Internet Engineering Task Force [Page 50]

RFC1122 INTERNET LAYER October 1989

 any change to the hosts.

 The opposing view is that allowing a mixture of
 destination hosts and networks in the route cache:

 (1) Saves memory space.

 (2) Leads to a simpler data structure, easily
 combining the cache with the tables of default and
 static routes (see below).

 (3) Provides a more useful place to cache path
 properties, as discussed earlier.

 IMPLEMENTATION:
 The cache needs to be large enough to include entries
 for the maximum number of destination hosts that may be
 in use at one time.

 A route cache entry may also include control
 information used to choose an entry for replacement.
 This might take the form of a "recently used" bit, a
 use count, or a last-used timestamp, for example. It
 is recommended that it include the time of last
 modification of the entry, for diagnostic purposes.

 An implementation may wish to reduce the overhead of
 scanning the route cache for every datagram to be
 transmitted. This may be accomplished with a hash
 table to speed the lookup, or by giving a connection-
 oriented transport protocol a "hint" or temporary
 handle on the appropriate cache entry, to be passed to
 the IP layer with each subsequent datagram.

 Although we have described the route cache, the lists
 of default gateways, and a table of static routes as
 conceptually distinct, in practice they may be combined
 into a single "routing table" data structure.

 3.3.1.4 Dead Gateway Detection

 The IP layer MUST be able to detect the failure of a "next-
 hop" gateway that is listed in its route cache and to choose
 an alternate gateway (see Section 3.3.1.5).

 Dead gateway detection is covered in some detail in RFC-816
 [IP:11]. Experience to date has not produced a complete

Internet Engineering Task Force [Page 51]

RFC1122 INTERNET LAYER October 1989

 algorithm which is totally satisfactory, though it has
 identified several forbidden paths and promising techniques.

 * A particular gateway SHOULD NOT be used indefinitely in
 the absence of positive indications that it is
 functioning.

 * Active probes such as "pinging" (i.e., using an ICMP
 Echo Request/Reply exchange) are expensive and scale
 poorly. In particular, hosts MUST NOT actively check
 the status of a first-hop gateway by simply pinging the
 gateway continuously.

 * Even when it is the only effective way to verify a
 gateway’s status, pinging MUST be used only when
 traffic is being sent to the gateway and when there is
 no other positive indication to suggest that the
 gateway is functioning.

 * To avoid pinging, the layers above and/or below the
 Internet layer SHOULD be able to give "advice" on the
 status of route cache entries when either positive
 (gateway OK) or negative (gateway dead) information is
 available.

 DISCUSSION:
 If an implementation does not include an adequate
 mechanism for detecting a dead gateway and re-routing,
 a gateway failure may cause datagrams to apparently
 vanish into a "black hole". This failure can be
 extremely confusing for users and difficult for network
 personnel to debug.

 The dead-gateway detection mechanism must not cause
 unacceptable load on the host, on connected networks,
 or on first-hop gateway(s). The exact constraints on
 the timeliness of dead gateway detection and on
 acceptable load may vary somewhat depending on the
 nature of the host’s mission, but a host generally
 needs to detect a failed first-hop gateway quickly
 enough that transport-layer connections will not break
 before an alternate gateway can be selected.

 Passing advice from other layers of the protocol stack
 complicates the interfaces between the layers, but it
 is the preferred approach to dead gateway detection.
 Advice can come from almost any part of the IP/TCP

Internet Engineering Task Force [Page 52]

RFC1122 INTERNET LAYER October 1989

 architecture, but it is expected to come primarily from
 the transport and link layers. Here are some possible
 sources for gateway advice:

 o TCP or any connection-oriented transport protocol
 should be able to give negative advice, e.g.,
 triggered by excessive retransmissions.

 o TCP may give positive advice when (new) data is
 acknowledged. Even though the route may be
 asymmetric, an ACK for new data proves that the
 acknowleged data must have been transmitted
 successfully.

 o An ICMP Redirect message from a particular gateway
 should be used as positive advice about that
 gateway.

 o Link-layer information that reliably detects and
 reports host failures (e.g., ARPANET Destination
 Dead messages) should be used as negative advice.

 o Failure to ARP or to re-validate ARP mappings may
 be used as negative advice for the corresponding
 IP address.

 o Packets arriving from a particular link-layer
 address are evidence that the system at this
 address is alive. However, turning this
 information into advice about gateways requires
 mapping the link-layer address into an IP address,
 and then checking that IP address against the
 gateways pointed to by the route cache. This is
 probably prohibitively inefficient.

 Note that positive advice that is given for every
 datagram received may cause unacceptable overhead in
 the implementation.

 While advice might be passed using required arguments
 in all interfaces to the IP layer, some transport and
 application layer protocols cannot deduce the correct
 advice. These interfaces must therefore allow a
 neutral value for advice, since either always-positive
 or always-negative advice leads to incorrect behavior.

 There is another technique for dead gateway detection
 that has been commonly used but is not recommended.

Internet Engineering Task Force [Page 53]

RFC1122 INTERNET LAYER October 1989

 This technique depends upon the host passively
 receiving ("wiretapping") the Interior Gateway Protocol
 (IGP) datagrams that the gateways are broadcasting to
 each other. This approach has the drawback that a host
 needs to recognize all the interior gateway protocols
 that gateways may use (see [INTRO:2]). In addition, it
 only works on a broadcast network.

 At present, pinging (i.e., using ICMP Echo messages) is
 the mechanism for gateway probing when absolutely
 required. A successful ping guarantees that the
 addressed interface and its associated machine are up,
 but it does not guarantee that the machine is a gateway
 as opposed to a host. The normal inference is that if
 a Redirect or other evidence indicates that a machine
 was a gateway, successful pings will indicate that the
 machine is still up and hence still a gateway.
 However, since a host silently discards packets that a
 gateway would forward or redirect, this assumption
 could sometimes fail. To avoid this problem, a new
 ICMP message under development will ask "are you a
 gateway?"

 IMPLEMENTATION:
 The following specific algorithm has been suggested:

 o Associate a "reroute timer" with each gateway
 pointed to by the route cache. Initialize the
 timer to a value Tr, which must be small enough to
 allow detection of a dead gateway before transport
 connections time out.

 o Positive advice would reset the reroute timer to
 Tr. Negative advice would reduce or zero the
 reroute timer.

 o Whenever the IP layer used a particular gateway to
 route a datagram, it would check the corresponding
 reroute timer. If the timer had expired (reached
 zero), the IP layer would send a ping to the
 gateway, followed immediately by the datagram.

 o The ping (ICMP Echo) would be sent again if
 necessary, up to N times. If no ping reply was
 received in N tries, the gateway would be assumed
 to have failed, and a new first-hop gateway would
 be chosen for all cache entries pointing to the
 failed gateway.

Internet Engineering Task Force [Page 54]

RFC1122 INTERNET LAYER October 1989

 Note that the size of Tr is inversely related to the
 amount of advice available. Tr should be large enough
 to insure that:

 * Any pinging will be at a low level (e.g., <10%) of
 all packets sent to a gateway from the host, AND

 * pinging is infrequent (e.g., every 3 minutes)

 Since the recommended algorithm is concerned with the
 gateways pointed to by route cache entries, rather than
 the cache entries themselves, a two level data
 structure (perhaps coordinated with ARP or similar
 caches) may be desirable for implementing a route
 cache.

 3.3.1.5 New Gateway Selection

 If the failed gateway is not the current default, the IP
 layer can immediately switch to a default gateway. If it is
 the current default that failed, the IP layer MUST select a
 different default gateway (assuming more than one default is
 known) for the failed route and for establishing new routes.

 DISCUSSION:
 When a gateway does fail, the other gateways on the
 connected network will learn of the failure through
 some inter-gateway routing protocol. However, this
 will not happen instantaneously, since gateway routing
 protocols typically have a settling time of 30-60
 seconds. If the host switches to an alternative
 gateway before the gateways have agreed on the failure,
 the new target gateway will probably forward the
 datagram to the failed gateway and send a Redirect back
 to the host pointing to the failed gateway (!). The
 result is likely to be a rapid oscillation in the
 contents of the host’s route cache during the gateway
 settling period. It has been proposed that the dead-
 gateway logic should include some hysteresis mechanism
 to prevent such oscillations. However, experience has
 not shown any harm from such oscillations, since
 service cannot be restored to the host until the
 gateways’ routing information does settle down.

 IMPLEMENTATION:
 One implementation technique for choosing a new default
 gateway is to simply round-robin among the default
 gateways in the host’s list. Another is to rank the

Internet Engineering Task Force [Page 55]

RFC1122 INTERNET LAYER October 1989

 gateways in priority order, and when the current
 default gateway is not the highest priority one, to
 "ping" the higher-priority gateways slowly to detect
 when they return to service. This pinging can be at a
 very low rate, e.g., 0.005 per second.

 3.3.1.6 Initialization

 The following information MUST be configurable:

 (1) IP address(es).

 (2) Address mask(s).

 (3) A list of default gateways, with a preference level.

 A manual method of entering this configuration data MUST be
 provided. In addition, a variety of methods can be used to
 determine this information dynamically; see the section on
 "Host Initialization" in [INTRO:1].

 DISCUSSION:
 Some host implementations use "wiretapping" of gateway
 protocols on a broadcast network to learn what gateways
 exist. A standard method for default gateway discovery
 is under development.

 3.3.2 Reassembly

 The IP layer MUST implement reassembly of IP datagrams.

 We designate the largest datagram size that can be reassembled
 by EMTU_R ("Effective MTU to receive"); this is sometimes
 called the "reassembly buffer size". EMTU_R MUST be greater
 than or equal to 576, SHOULD be either configurable or
 indefinite, and SHOULD be greater than or equal to the MTU of
 the connected network(s).

 DISCUSSION:
 A fixed EMTU_R limit should not be built into the code
 because some application layer protocols require EMTU_R
 values larger than 576.

 IMPLEMENTATION:
 An implementation may use a contiguous reassembly buffer
 for each datagram, or it may use a more complex data
 structure that places no definite limit on the reassembled
 datagram size; in the latter case, EMTU_R is said to be

Internet Engineering Task Force [Page 56]

RFC1122 INTERNET LAYER October 1989

 "indefinite".

 Logically, reassembly is performed by simply copying each
 fragment into the packet buffer at the proper offset.
 Note that fragments may overlap if successive
 retransmissions use different packetizing but the same
 reassembly Id.

 The tricky part of reassembly is the bookkeeping to
 determine when all bytes of the datagram have been
 reassembled. We recommend Clark’s algorithm [IP:10] that
 requires no additional data space for the bookkeeping.
 However, note that, contrary to [IP:10], the first
 fragment header needs to be saved for inclusion in a
 possible ICMP Time Exceeded (Reassembly Timeout) message.

 There MUST be a mechanism by which the transport layer can
 learn MMS_R, the maximum message size that can be received and
 reassembled in an IP datagram (see GET_MAXSIZES calls in
 Section 3.4). If EMTU_R is not indefinite, then the value of
 MMS_R is given by:

 MMS_R = EMTU_R - 20

 since 20 is the minimum size of an IP header.

 There MUST be a reassembly timeout. The reassembly timeout
 value SHOULD be a fixed value, not set from the remaining TTL.
 It is recommended that the value lie between 60 seconds and 120
 seconds. If this timeout expires, the partially-reassembled
 datagram MUST be discarded and an ICMP Time Exceeded message
 sent to the source host (if fragment zero has been received).

 DISCUSSION:
 The IP specification says that the reassembly timeout
 should be the remaining TTL from the IP header, but this
 does not work well because gateways generally treat TTL as
 a simple hop count rather than an elapsed time. If the
 reassembly timeout is too small, datagrams will be
 discarded unnecessarily, and communication may fail. The
 timeout needs to be at least as large as the typical
 maximum delay across the Internet. A realistic minimum
 reassembly timeout would be 60 seconds.

 It has been suggested that a cache might be kept of
 round-trip times measured by transport protocols for
 various destinations, and that these values might be used
 to dynamically determine a reasonable reassembly timeout

Internet Engineering Task Force [Page 57]

RFC1122 INTERNET LAYER October 1989

 value. Further investigation of this approach is
 required.

 If the reassembly timeout is set too high, buffer
 resources in the receiving host will be tied up too long,
 and the MSL (Maximum Segment Lifetime) [TCP:1] will be
 larger than necessary. The MSL controls the maximum rate
 at which fragmented datagrams can be sent using distinct
 values of the 16-bit Ident field; a larger MSL lowers the
 maximum rate. The TCP specification [TCP:1] arbitrarily
 assumes a value of 2 minutes for MSL. This sets an upper
 limit on a reasonable reassembly timeout value.

 3.3.3 Fragmentation

 Optionally, the IP layer MAY implement a mechanism to fragment
 outgoing datagrams intentionally.

 We designate by EMTU_S ("Effective MTU for sending") the
 maximum IP datagram size that may be sent, for a particular
 combination of IP source and destination addresses and perhaps
 TOS.

 A host MUST implement a mechanism to allow the transport layer
 to learn MMS_S, the maximum transport-layer message size that
 may be sent for a given {source, destination, TOS} triplet (see
 GET_MAXSIZES call in Section 3.4). If no local fragmentation
 is performed, the value of MMS_S will be:

 MMS_S = EMTU_S - <IP header size>

 and EMTU_S must be less than or equal to the MTU of the network
 interface corresponding to the source address of the datagram.
 Note that <IP header size> in this equation will be 20, unless
 the IP reserves space to insert IP options for its own purposes
 in addition to any options inserted by the transport layer.

 A host that does not implement local fragmentation MUST ensure
 that the transport layer (for TCP) or the application layer
 (for UDP) obtains MMS_S from the IP layer and does not send a
 datagram exceeding MMS_S in size.

 It is generally desirable to avoid local fragmentation and to
 choose EMTU_S low enough to avoid fragmentation in any gateway
 along the path. In the absence of actual knowledge of the
 minimum MTU along the path, the IP layer SHOULD use
 EMTU_S <= 576 whenever the destination address is not on a
 connected network, and otherwise use the connected network’s

Internet Engineering Task Force [Page 58]

RFC1122 INTERNET LAYER October 1989

 MTU.

 The MTU of each physical interface MUST be configurable.

 A host IP layer implementation MAY have a configuration flag
 "All-Subnets-MTU", indicating that the MTU of the connected
 network is to be used for destinations on different subnets
 within the same network, but not for other networks. Thus,
 this flag causes the network class mask, rather than the subnet
 address mask, to be used to choose an EMTU_S. For a multihomed
 host, an "All-Subnets-MTU" flag is needed for each network
 interface.

 DISCUSSION:
 Picking the correct datagram size to use when sending data
 is a complex topic [IP:9].

 (a) In general, no host is required to accept an IP
 datagram larger than 576 bytes (including header and
 data), so a host must not send a larger datagram
 without explicit knowledge or prior arrangement with
 the destination host. Thus, MMS_S is only an upper
 bound on the datagram size that a transport protocol
 may send; even when MMS_S exceeds 556, the transport
 layer must limit its messages to 556 bytes in the
 absence of other knowledge about the destination
 host.

 (b) Some transport protocols (e.g., TCP) provide a way to
 explicitly inform the sender about the largest
 datagram the other end can receive and reassemble
 [IP:7]. There is no corresponding mechanism in the
 IP layer.

 A transport protocol that assumes an EMTU_R larger
 than 576 (see Section 3.3.2), can send a datagram of
 this larger size to another host that implements the
 same protocol.

 (c) Hosts should ideally limit their EMTU_S for a given
 destination to the minimum MTU of all the networks
 along the path, to avoid any fragmentation. IP
 fragmentation, while formally correct, can create a
 serious transport protocol performance problem,
 because loss of a single fragment means all the
 fragments in the segment must be retransmitted
 [IP:9].

Internet Engineering Task Force [Page 59]

RFC1122 INTERNET LAYER October 1989

 Since nearly all networks in the Internet currently
 support an MTU of 576 or greater, we strongly recommend
 the use of 576 for datagrams sent to non-local networks.

 It has been suggested that a host could determine the MTU
 over a given path by sending a zero-offset datagram
 fragment and waiting for the receiver to time out the
 reassembly (which cannot complete!) and return an ICMP
 Time Exceeded message. This message would include the
 largest remaining fragment header in its body. More
 direct mechanisms are being experimented with, but have
 not yet been adopted (see e.g., RFC-1063).

 3.3.4 Local Multihoming

 3.3.4.1 Introduction

 A multihomed host has multiple IP addresses, which we may
 think of as "logical interfaces". These logical interfaces
 may be associated with one or more physical interfaces, and
 these physical interfaces may be connected to the same or
 different networks.

 Here are some important cases of multihoming:

 (a) Multiple Logical Networks

 The Internet architects envisioned that each physical
 network would have a single unique IP network (or
 subnet) number. However, LAN administrators have
 sometimes found it useful to violate this assumption,
 operating a LAN with multiple logical networks per
 physical connected network.

 If a host connected to such a physical network is
 configured to handle traffic for each of N different
 logical networks, then the host will have N logical
 interfaces. These could share a single physical
 interface, or might use N physical interfaces to the
 same network.

 (b) Multiple Logical Hosts

 When a host has multiple IP addresses that all have the
 same <Network-number> part (and the same <Subnet-
 number> part, if any), the logical interfaces are known
 as "logical hosts". These logical interfaces might
 share a single physical interface or might use separate

Internet Engineering Task Force [Page 60]

RFC1122 INTERNET LAYER October 1989

 physical interfaces to the same physical network.

 (c) Simple Multihoming

 In this case, each logical interface is mapped into a
 separate physical interface and each physical interface
 is connected to a different physical network. The term
 "multihoming" was originally applied only to this case,
 but it is now applied more generally.

 A host with embedded gateway functionality will
 typically fall into the simple multihoming case. Note,
 however, that a host may be simply multihomed without
 containing an embedded gateway, i.e., without
 forwarding datagrams from one connected network to
 another.

 This case presents the most difficult routing problems.
 The choice of interface (i.e., the choice of first-hop
 network) may significantly affect performance or even
 reachability of remote parts of the Internet.

 Finally, we note another possibility that is NOT
 multihoming: one logical interface may be bound to multiple
 physical interfaces, in order to increase the reliability or
 throughput between directly connected machines by providing
 alternative physical paths between them. For instance, two
 systems might be connected by multiple point-to-point links.
 We call this "link-layer multiplexing". With link-layer
 multiplexing, the protocols above the link layer are unaware
 that multiple physical interfaces are present; the link-
 layer device driver is responsible for multiplexing and
 routing packets across the physical interfaces.

 In the Internet protocol architecture, a transport protocol
 instance ("entity") has no address of its own, but instead
 uses a single Internet Protocol (IP) address. This has
 implications for the IP, transport, and application layers,
 and for the interfaces between them. In particular, the
 application software may have to be aware of the multiple IP
 addresses of a multihomed host; in other cases, the choice
 can be made within the network software.

 3.3.4.2 Multihoming Requirements

 The following general rules apply to the selection of an IP
 source address for sending a datagram from a multihomed

Internet Engineering Task Force [Page 61]

RFC1122 INTERNET LAYER October 1989

 host.

 (1) If the datagram is sent in response to a received
 datagram, the source address for the response SHOULD be
 the specific-destination address of the request. See
 Sections 4.1.3.5 and 4.2.3.7 and the "General Issues"
 section of [INTRO:1] for more specific requirements on
 higher layers.

 Otherwise, a source address must be selected.

 (2) An application MUST be able to explicitly specify the
 source address for initiating a connection or a
 request.

 (3) In the absence of such a specification, the networking
 software MUST choose a source address. Rules for this
 choice are described below.

 There are two key requirement issues related to multihoming:

 (A) A host MAY silently discard an incoming datagram whose
 destination address does not correspond to the physical
 interface through which it is received.

 (B) A host MAY restrict itself to sending (non-source-
 routed) IP datagrams only through the physical
 interface that corresponds to the IP source address of
 the datagrams.

 DISCUSSION:
 Internet host implementors have used two different
 conceptual models for multihoming, briefly summarized
 in the following discussion. This document takes no
 stand on which model is preferred; each seems to have a
 place. This ambivalence is reflected in the issues (A)
 and (B) being optional.

 o Strong ES Model

 The Strong ES (End System, i.e., host) model
 emphasizes the host/gateway (ES/IS) distinction,
 and would therefore substitute MUST for MAY in
 issues (A) and (B) above. It tends to model a
 multihomed host as a set of logical hosts within
 the same physical host.

Internet Engineering Task Force [Page 62]

RFC1122 INTERNET LAYER October 1989

 With respect to (A), proponents of the Strong ES
 model note that automatic Internet routing
 mechanisms could not route a datagram to a
 physical interface that did not correspond to the
 destination address.

 Under the Strong ES model, the route computation
 for an outgoing datagram is the mapping:

 route(src IP addr, dest IP addr, TOS)
 -> gateway

 Here the source address is included as a parameter
 in order to select a gateway that is directly
 reachable on the corresponding physical interface.
 Note that this model logically requires that in
 general there be at least one default gateway, and
 preferably multiple defaults, for each IP source
 address.

 o Weak ES Model

 This view de-emphasizes the ES/IS distinction, and
 would therefore substitute MUST NOT for MAY in
 issues (A) and (B). This model may be the more
 natural one for hosts that wiretap gateway routing
 protocols, and is necessary for hosts that have
 embedded gateway functionality.

 The Weak ES Model may cause the Redirect mechanism
 to fail. If a datagram is sent out a physical
 interface that does not correspond to the
 destination address, the first-hop gateway will
 not realize when it needs to send a Redirect. On
 the other hand, if the host has embedded gateway
 functionality, then it has routing information
 without listening to Redirects.

 In the Weak ES model, the route computation for an
 outgoing datagram is the mapping:

 route(dest IP addr, TOS) -> gateway, interface

Internet Engineering Task Force [Page 63]

RFC1122 INTERNET LAYER October 1989

 3.3.4.3 Choosing a Source Address

 DISCUSSION:
 When it sends an initial connection request (e.g., a
 TCP "SYN" segment) or a datagram service request (e.g.,
 a UDP-based query), the transport layer on a multihomed
 host needs to know which source address to use. If the
 application does not specify it, the transport layer
 must ask the IP layer to perform the conceptual
 mapping:

 GET_SRCADDR(remote IP addr, TOS)
 -> local IP address

 Here TOS is the Type-of-Service value (see Section
 3.2.1.6), and the result is the desired source address.
 The following rules are suggested for implementing this
 mapping:

 (a) If the remote Internet address lies on one of the
 (sub-) nets to which the host is directly
 connected, a corresponding source address may be
 chosen, unless the corresponding interface is
 known to be down.

 (b) The route cache may be consulted, to see if there
 is an active route to the specified destination
 network through any network interface; if so, a
 local IP address corresponding to that interface
 may be chosen.

 (c) The table of static routes, if any (see Section
 3.3.1.2) may be similarly consulted.

 (d) The default gateways may be consulted. If these
 gateways are assigned to different interfaces, the
 interface corresponding to the gateway with the
 highest preference may be chosen.

 In the future, there may be a defined way for a
 multihomed host to ask the gateways on all connected
 networks for advice about the best network to use for a
 given destination.

 IMPLEMENTATION:
 It will be noted that this process is essentially the
 same as datagram routing (see Section 3.3.1), and
 therefore hosts may be able to combine the

Internet Engineering Task Force [Page 64]

RFC1122 INTERNET LAYER October 1989

 implementation of the two functions.

 3.3.5 Source Route Forwarding

 Subject to restrictions given below, a host MAY be able to act
 as an intermediate hop in a source route, forwarding a source-
 routed datagram to the next specified hop.

 However, in performing this gateway-like function, the host
 MUST obey all the relevant rules for a gateway forwarding
 source-routed datagrams [INTRO:2]. This includes the following
 specific provisions, which override the corresponding host
 provisions given earlier in this document:

 (A) TTL (ref. Section 3.2.1.7)

 The TTL field MUST be decremented and the datagram perhaps
 discarded as specified for a gateway in [INTRO:2].

 (B) ICMP Destination Unreachable (ref. Section 3.2.2.1)

 A host MUST be able to generate Destination Unreachable
 messages with the following codes:

 4 (Fragmentation Required but DF Set) when a source-
 routed datagram cannot be fragmented to fit into the
 target network;

 5 (Source Route Failed) when a source-routed datagram
 cannot be forwarded, e.g., because of a routing
 problem or because the next hop of a strict source
 route is not on a connected network.

 (C) IP Source Address (ref. Section 3.2.1.3)

 A source-routed datagram being forwarded MAY (and normally
 will) have a source address that is not one of the IP
 addresses of the forwarding host.

 (D) Record Route Option (ref. Section 3.2.1.8d)

 A host that is forwarding a source-routed datagram
 containing a Record Route option MUST update that option,
 if it has room.

 (E) Timestamp Option (ref. Section 3.2.1.8e)

 A host that is forwarding a source-routed datagram

Internet Engineering Task Force [Page 65]

RFC1122 INTERNET LAYER October 1989

 containing a Timestamp Option MUST add the current
 timestamp to that option, according to the rules for this
 option.

 To define the rules restricting host forwarding of source-
 routed datagrams, we use the term "local source-routing" if the
 next hop will be through the same physical interface through
 which the datagram arrived; otherwise, it is "non-local
 source-routing".

 o A host is permitted to perform local source-routing
 without restriction.

 o A host that supports non-local source-routing MUST have a
 configurable switch to disable forwarding, and this switch
 MUST default to disabled.

 o The host MUST satisfy all gateway requirements for
 configurable policy filters [INTRO:2] restricting non-
 local forwarding.

 If a host receives a datagram with an incomplete source route
 but does not forward it for some reason, the host SHOULD return
 an ICMP Destination Unreachable (code 5, Source Route Failed)
 message, unless the datagram was itself an ICMP error message.

 3.3.6 Broadcasts

 Section 3.2.1.3 defined the four standard IP broadcast address
 forms:

 Limited Broadcast: {-1, -1}

 Directed Broadcast: {<Network-number>,-1}

 Subnet Directed Broadcast:
 {<Network-number>,<Subnet-number>,-1}

 All-Subnets Directed Broadcast: {<Network-number>,-1,-1}

 A host MUST recognize any of these forms in the destination
 address of an incoming datagram.

 There is a class of hosts* that use non-standard broadcast
 address forms, substituting 0 for -1. All hosts SHOULD

*4.2BSD Unix and its derivatives, but not 4.3BSD.

Internet Engineering Task Force [Page 66]

RFC1122 INTERNET LAYER October 1989

 recognize and accept any of these non-standard broadcast
 addresses as the destination address of an incoming datagram.
 A host MAY optionally have a configuration option to choose the
 0 or the -1 form of broadcast address, for each physical
 interface, but this option SHOULD default to the standard (-1)
 form.

 When a host sends a datagram to a link-layer broadcast address,
 the IP destination address MUST be a legal IP broadcast or IP
 multicast address.

 A host SHOULD silently discard a datagram that is received via
 a link-layer broadcast (see Section 2.4) but does not specify
 an IP multicast or broadcast destination address.

 Hosts SHOULD use the Limited Broadcast address to broadcast to
 a connected network.

 DISCUSSION:
 Using the Limited Broadcast address instead of a Directed
 Broadcast address may improve system robustness. Problems
 are often caused by machines that do not understand the
 plethora of broadcast addresses (see Section 3.2.1.3), or
 that may have different ideas about which broadcast
 addresses are in use. The prime example of the latter is
 machines that do not understand subnetting but are
 attached to a subnetted net. Sending a Subnet Broadcast
 for the connected network will confuse those machines,
 which will see it as a message to some other host.

 There has been discussion on whether a datagram addressed
 to the Limited Broadcast address ought to be sent from all
 the interfaces of a multihomed host. This specification
 takes no stand on the issue.

 3.3.7 IP Multicasting

 A host SHOULD support local IP multicasting on all connected
 networks for which a mapping from Class D IP addresses to
 link-layer addresses has been specified (see below). Support
 for local IP multicasting includes sending multicast datagrams,
 joining multicast groups and receiving multicast datagrams, and
 leaving multicast groups. This implies support for all of
 [IP:4] except the IGMP protocol itself, which is OPTIONAL.

Internet Engineering Task Force [Page 67]

RFC1122 INTERNET LAYER October 1989

 DISCUSSION:
 IGMP provides gateways that are capable of multicast
 routing with the information required to support IP
 multicasting across multiple networks. At this time,
 multicast-routing gateways are in the experimental stage
 and are not widely available. For hosts that are not
 connected to networks with multicast-routing gateways or
 that do not need to receive multicast datagrams
 originating on other networks, IGMP serves no purpose and
 is therefore optional for now. However, the rest of
 [IP:4] is currently recommended for the purpose of
 providing IP-layer access to local network multicast
 addressing, as a preferable alternative to local broadcast
 addressing. It is expected that IGMP will become
 recommended at some future date, when multicast-routing
 gateways have become more widely available.

 If IGMP is not implemented, a host SHOULD still join the "all-
 hosts" group (224.0.0.1) when the IP layer is initialized and
 remain a member for as long as the IP layer is active.

 DISCUSSION:
 Joining the "all-hosts" group will support strictly local
 uses of multicasting, e.g., a gateway discovery protocol,
 even if IGMP is not implemented.

 The mapping of IP Class D addresses to local addresses is
 currently specified for the following types of networks:

 o Ethernet/IEEE 802.3, as defined in [IP:4].

 o Any network that supports broadcast but not multicast,
 addressing: all IP Class D addresses map to the local
 broadcast address.

 o Any type of point-to-point link (e.g., SLIP or HDLC
 links): no mapping required. All IP multicast datagrams
 are sent as-is, inside the local framing.

 Mappings for other types of networks will be specified in the
 future.

 A host SHOULD provide a way for higher-layer protocols or
 applications to determine which of the host’s connected
 network(s) support IP multicast addressing.

Internet Engineering Task Force [Page 68]

RFC1122 INTERNET LAYER October 1989

 3.3.8 Error Reporting

 Wherever practical, hosts MUST return ICMP error datagrams on
 detection of an error, except in those cases where returning an
 ICMP error message is specifically prohibited.

 DISCUSSION:
 A common phenomenon in datagram networks is the "black
 hole disease": datagrams are sent out, but nothing comes
 back. Without any error datagrams, it is difficult for
 the user to figure out what the problem is.

 3.4 INTERNET/TRANSPORT LAYER INTERFACE

 The interface between the IP layer and the transport layer MUST
 provide full access to all the mechanisms of the IP layer,
 including options, Type-of-Service, and Time-to-Live. The
 transport layer MUST either have mechanisms to set these interface
 parameters, or provide a path to pass them through from an
 application, or both.

 DISCUSSION:
 Applications are urged to make use of these mechanisms where
 applicable, even when the mechanisms are not currently
 effective in the Internet (e.g., TOS). This will allow these
 mechanisms to be immediately useful when they do become
 effective, without a large amount of retrofitting of host
 software.

 We now describe a conceptual interface between the transport layer
 and the IP layer, as a set of procedure calls. This is an
 extension of the information in Section 3.3 of RFC-791 [IP:1].

 * Send Datagram

 SEND(src, dst, prot, TOS, TTL, BufPTR, len, Id, DF, opt
 => result)

 where the parameters are defined in RFC-791. Passing an Id
 parameter is optional; see Section 3.2.1.5.

 * Receive Datagram

 RECV(BufPTR, prot
 => result, src, dst, SpecDest, TOS, len, opt)

Internet Engineering Task Force [Page 69]

RFC1122 INTERNET LAYER October 1989

 All the parameters are defined in RFC-791, except for:

 SpecDest = specific-destination address of datagram
 (defined in Section 3.2.1.3)

 The result parameter dst contains the datagram’s destination
 address. Since this may be a broadcast or multicast address,
 the SpecDest parameter (not shown in RFC-791) MUST be passed.
 The parameter opt contains all the IP options received in the
 datagram; these MUST also be passed to the transport layer.

 * Select Source Address

 GET_SRCADDR(remote, TOS) -> local

 remote = remote IP address
 TOS = Type-of-Service
 local = local IP address

 See Section 3.3.4.3.

 * Find Maximum Datagram Sizes

 GET_MAXSIZES(local, remote, TOS) -> MMS_R, MMS_S

 MMS_R = maximum receive transport-message size.
 MMS_S = maximum send transport-message size.
 (local, remote, TOS defined above)

 See Sections 3.3.2 and 3.3.3.

 * Advice on Delivery Success

 ADVISE_DELIVPROB(sense, local, remote, TOS)

 Here the parameter sense is a 1-bit flag indicating whether
 positive or negative advice is being given; see the
 discussion in Section 3.3.1.4. The other parameters were
 defined earlier.

 * Send ICMP Message

 SEND_ICMP(src, dst, TOS, TTL, BufPTR, len, Id, DF, opt)
 -> result

Internet Engineering Task Force [Page 70]

RFC1122 INTERNET LAYER October 1989

 (Parameters defined in RFC-791).

 Passing an Id parameter is optional; see Section 3.2.1.5.
 The transport layer MUST be able to send certain ICMP
 messages: Port Unreachable or any of the query-type
 messages. This function could be considered to be a special
 case of the SEND() call, of course; we describe it separately
 for clarity.

 * Receive ICMP Message

 RECV_ICMP(BufPTR) -> result, src, dst, len, opt

 (Parameters defined in RFC-791).

 The IP layer MUST pass certain ICMP messages up to the
 appropriate transport-layer routine. This function could be
 considered to be a special case of the RECV() call, of
 course; we describe it separately for clarity.

 For an ICMP error message, the data that is passed up MUST
 include the original Internet header plus all the octets of
 the original message that are included in the ICMP message.
 This data will be used by the transport layer to locate the
 connection state information, if any.

 In particular, the following ICMP messages are to be passed
 up:

 o Destination Unreachable

 o Source Quench

 o Echo Reply (to ICMP user interface, unless the Echo
 Request originated in the IP layer)

 o Timestamp Reply (to ICMP user interface)

 o Time Exceeded

 DISCUSSION:
 In the future, there may be additions to this interface to
 pass path data (see Section 3.3.1.3) between the IP and
 transport layers.

Internet Engineering Task Force [Page 71]

RFC1122 INTERNET LAYER October 1989

 3.5 INTERNET LAYER REQUIREMENTS SUMMARY

 | | | | |S| |
 | | | | |H| |F
 | | | | |O|M|o
 | | |S| |U|U|o
 | | |H| |L|S|t
 | |M|O| |D|T|n
 | |U|U|M| | |o
 | |S|L|A|N|N|t
 | |T|D|Y|O|O|t
FEATURE	SECTION				T	T	e
 | | | | | | |
Implement IP and ICMP |3.1 |x| | | | |
Handle remote multihoming in application layer |3.1 |x| | | | |
Support local multihoming |3.1 | | |x| | |
Meet gateway specs if forward datagrams |3.1 |x| | | | |
Configuration switch for embedded gateway |3.1 |x| | | | |1
 Config switch default to non-gateway |3.1 |x| | | | |1
 Auto-config based on number of interfaces |3.1 | | | | |x|1
Able to log discarded datagrams |3.1 | |x| | | |
 Record in counter |3.1 | |x| | | |
 | | | | | | |
Silently discard Version != 4 |3.2.1.1 |x| | | | |
Verify IP checksum, silently discard bad dgram |3.2.1.2 |x| | | | |
Addressing: | | | | | | |
 Subnet addressing (RFC-950) |3.2.1.3 |x| | | | |
 Src address must be host’s own IP address |3.2.1.3 |x| | | | |
 Silently discard datagram with bad dest addr |3.2.1.3 |x| | | | |
 Silently discard datagram with bad src addr |3.2.1.3 |x| | | | |
Support reassembly |3.2.1.4 |x| | | | |
Retain same Id field in identical datagram |3.2.1.5 | | |x| | |
 | | | | | | |
TOS: | | | | | | |
 Allow transport layer to set TOS |3.2.1.6 |x| | | | |
 Pass received TOS up to transport layer |3.2.1.6 | |x| | | |
 Use RFC-795 link-layer mappings for TOS |3.2.1.6 | | | |x| |
TTL: | | | | | | |
 Send packet with TTL of 0 |3.2.1.7 | | | | |x|
 Discard received packets with TTL < 2 |3.2.1.7 | | | | |x|
 Allow transport layer to set TTL |3.2.1.7 |x| | | | |
 Fixed TTL is configurable |3.2.1.7 |x| | | | |
 | | | | | | |
IP Options: | | | | | | |
 Allow transport layer to send IP options |3.2.1.8 |x| | | | |
 Pass all IP options rcvd to higher layer |3.2.1.8 |x| | | | |

Internet Engineering Task Force [Page 72]

RFC1122 INTERNET LAYER October 1989

 IP layer silently ignore unknown options |3.2.1.8 |x| | | | |
 Security option |3.2.1.8a| | |x| | |
 Send Stream Identifier option |3.2.1.8b| | | |x| |
 Silently ignore Stream Identifer option |3.2.1.8b|x| | | | |
 Record Route option |3.2.1.8d| | |x| | |
 Timestamp option |3.2.1.8e| | |x| | |
Source Route Option: | | | | | | |
 Originate & terminate Source Route options |3.2.1.8c|x| | | | |
 Datagram with completed SR passed up to TL |3.2.1.8c|x| | | | |
 Build correct (non-redundant) return route |3.2.1.8c|x| | | | |
 Send multiple SR options in one header |3.2.1.8c| | | | |x|
 | | | | | | |
ICMP: | | | | | | |
 Silently discard ICMP msg with unknown type |3.2.2 |x| | | | |
 Include more than 8 octets of orig datagram |3.2.2 | | |x| | |
 Included octets same as received |3.2.2 |x| | | | |
 Demux ICMP Error to transport protocol |3.2.2 |x| | | | |
 Send ICMP error message with TOS=0 |3.2.2 | |x| | | |
 Send ICMP error message for: | | | | | | |
 - ICMP error msg |3.2.2 | | | | |x|
 - IP b’cast or IP m’cast |3.2.2 | | | | |x|
 - Link-layer b’cast |3.2.2 | | | | |x|
 - Non-initial fragment |3.2.2 | | | | |x|
 - Datagram with non-unique src address |3.2.2 | | | | |x|
 Return ICMP error msgs (when not prohibited) |3.3.8 |x| | | | |
 | | | | | | |
 Dest Unreachable: | | | | | | |
 Generate Dest Unreachable (code 2/3) |3.2.2.1 | |x| | | |
 Pass ICMP Dest Unreachable to higher layer |3.2.2.1 |x| | | | |
 Higher layer act on Dest Unreach |3.2.2.1 | |x| | | |
 Interpret Dest Unreach as only hint |3.2.2.1 |x| | | | |
 Redirect: | | | | | | |
 Host send Redirect |3.2.2.2 | | | |x| |
 Update route cache when recv Redirect |3.2.2.2 |x| | | | |
 Handle both Host and Net Redirects |3.2.2.2 |x| | | | |
 Discard illegal Redirect |3.2.2.2 | |x| | | |
 Source Quench: | | | | | | |
 Send Source Quench if buffering exceeded |3.2.2.3 | | |x| | |
 Pass Source Quench to higher layer |3.2.2.3 |x| | | | |
 Higher layer act on Source Quench |3.2.2.3 | |x| | | |
 Time Exceeded: pass to higher layer |3.2.2.4 |x| | | | |
 Parameter Problem: | | | | | | |
 Send Parameter Problem messages |3.2.2.5 | |x| | | |
 Pass Parameter Problem to higher layer |3.2.2.5 |x| | | | |
 Report Parameter Problem to user |3.2.2.5 | | |x| | |
 | | | | | | |
 ICMP Echo Request or Reply: | | | | | | |
 Echo server and Echo client |3.2.2.6 |x| | | | |

Internet Engineering Task Force [Page 73]

RFC1122 INTERNET LAYER October 1989

 Echo client |3.2.2.6 | |x| | | |
 Discard Echo Request to broadcast address |3.2.2.6 | | |x| | |
 Discard Echo Request to multicast address |3.2.2.6 | | |x| | |
 Use specific-dest addr as Echo Reply src |3.2.2.6 |x| | | | |
 Send same data in Echo Reply |3.2.2.6 |x| | | | |
 Pass Echo Reply to higher layer |3.2.2.6 |x| | | | |
 Reflect Record Route, Time Stamp options |3.2.2.6 | |x| | | |
 Reverse and reflect Source Route option |3.2.2.6 |x| | | | |
 | | | | | | |
 ICMP Information Request or Reply: |3.2.2.7 | | | |x| |
 ICMP Timestamp and Timestamp Reply: |3.2.2.8 | | |x| | |
 Minimize delay variability |3.2.2.8 | |x| | | |1
 Silently discard b’cast Timestamp |3.2.2.8 | | |x| | |1
 Silently discard m’cast Timestamp |3.2.2.8 | | |x| | |1
 Use specific-dest addr as TS Reply src |3.2.2.8 |x| | | | |1
 Reflect Record Route, Time Stamp options |3.2.2.6 | |x| | | |1
 Reverse and reflect Source Route option |3.2.2.8 |x| | | | |1
 Pass Timestamp Reply to higher layer |3.2.2.8 |x| | | | |1
 Obey rules for "standard value" |3.2.2.8 |x| | | | |1
 | | | | | | |
 ICMP Address Mask Request and Reply: | | | | | | |
 Addr Mask source configurable |3.2.2.9 |x| | | | |
 Support static configuration of addr mask |3.2.2.9 |x| | | | |
 Get addr mask dynamically during booting |3.2.2.9 | | |x| | |
 Get addr via ICMP Addr Mask Request/Reply |3.2.2.9 | | |x| | |
 Retransmit Addr Mask Req if no Reply |3.2.2.9 |x| | | | |3
 Assume default mask if no Reply |3.2.2.9 | |x| | | |3
 Update address mask from first Reply only |3.2.2.9 |x| | | | |3
 Reasonableness check on Addr Mask |3.2.2.9 | |x| | | |
 Send unauthorized Addr Mask Reply msgs |3.2.2.9 | | | | |x|
 Explicitly configured to be agent |3.2.2.9 |x| | | | |
 Static config=> Addr-Mask-Authoritative flag |3.2.2.9 | |x| | | |
 Broadcast Addr Mask Reply when init. |3.2.2.9 |x| | | | |3
 | | | | | | |
ROUTING OUTBOUND DATAGRAMS: | | | | | | |
 Use address mask in local/remote decision |3.3.1.1 |x| | | | |
 Operate with no gateways on conn network |3.3.1.1 |x| | | | |
 Maintain "route cache" of next-hop gateways |3.3.1.2 |x| | | | |
 Treat Host and Net Redirect the same |3.3.1.2 | |x| | | |
 If no cache entry, use default gateway |3.3.1.2 |x| | | | |
 Support multiple default gateways |3.3.1.2 |x| | | | |
 Provide table of static routes |3.3.1.2 | | |x| | |
 Flag: route overridable by Redirects |3.3.1.2 | | |x| | |
 Key route cache on host, not net address |3.3.1.3 | | |x| | |
 Include TOS in route cache |3.3.1.3 | |x| | | |
 | | | | | | |
 Able to detect failure of next-hop gateway |3.3.1.4 |x| | | | |
 Assume route is good forever |3.3.1.4 | | | |x| |

Internet Engineering Task Force [Page 74]

RFC1122 INTERNET LAYER October 1989

 Ping gateways continuously |3.3.1.4 | | | | |x|
 Ping only when traffic being sent |3.3.1.4 |x| | | | |
 Ping only when no positive indication |3.3.1.4 |x| | | | |
 Higher and lower layers give advice |3.3.1.4 | |x| | | |
 Switch from failed default g’way to another |3.3.1.5 |x| | | | |
 Manual method of entering config info |3.3.1.6 |x| | | | |
 | | | | | | |
REASSEMBLY and FRAGMENTATION: | | | | | | |
 Able to reassemble incoming datagrams |3.3.2 |x| | | | |
 At least 576 byte datagrams |3.3.2 |x| | | | |
 EMTU_R configurable or indefinite |3.3.2 | |x| | | |
 Transport layer able to learn MMS_R |3.3.2 |x| | | | |
 Send ICMP Time Exceeded on reassembly timeout |3.3.2 |x| | | | |
 Fixed reassembly timeout value |3.3.2 | |x| | | |
 | | | | | | |
 Pass MMS_S to higher layers |3.3.3 |x| | | | |
 Local fragmentation of outgoing packets |3.3.3 | | |x| | |
 Else don’t send bigger than MMS_S |3.3.3 |x| | | | |
 Send max 576 to off-net destination |3.3.3 | |x| | | |
 All-Subnets-MTU configuration flag |3.3.3 | | |x| | |
 | | | | | | |
MULTIHOMING: | | | | | | |
 Reply with same addr as spec-dest addr |3.3.4.2 | |x| | | |
 Allow application to choose local IP addr |3.3.4.2 |x| | | | |
 Silently discard d’gram in "wrong" interface |3.3.4.2 | | |x| | |
 Only send d’gram through "right" interface |3.3.4.2 | | |x| | |4
 | | | | | | |
SOURCE-ROUTE FORWARDING: | | | | | | |
 Forward datagram with Source Route option |3.3.5 | | |x| | |1
 Obey corresponding gateway rules |3.3.5 |x| | | | |1
 Update TTL by gateway rules |3.3.5 |x| | | | |1
 Able to generate ICMP err code 4, 5 |3.3.5 |x| | | | |1
 IP src addr not local host |3.3.5 | | |x| | |1
 Update Timestamp, Record Route options |3.3.5 |x| | | | |1
 Configurable switch for non-local SRing |3.3.5 |x| | | | |1
 Defaults to OFF |3.3.5 |x| | | | |1
 Satisfy gwy access rules for non-local SRing |3.3.5 |x| | | | |1
 If not forward, send Dest Unreach (cd 5) |3.3.5 | |x| | | |2
 | | | | | | |
BROADCAST: | | | | | | |
 Broadcast addr as IP source addr |3.2.1.3 | | | | |x|
 Receive 0 or -1 broadcast formats OK |3.3.6 | |x| | | |
 Config’ble option to send 0 or -1 b’cast |3.3.6 | | |x| | |
 Default to -1 broadcast |3.3.6 | |x| | | |
 Recognize all broadcast address formats |3.3.6 |x| | | | |
 Use IP b’cast/m’cast addr in link-layer b’cast |3.3.6 |x| | | | |
 Silently discard link-layer-only b’cast dg’s |3.3.6 | |x| | | |
 Use Limited Broadcast addr for connected net |3.3.6 | |x| | | |

Internet Engineering Task Force [Page 75]

RFC1122 INTERNET LAYER October 1989

 | | | | | | |
MULTICAST: | | | | | | |
 Support local IP multicasting (RFC-1112) |3.3.7 | |x| | | |
 Support IGMP (RFC-1112) |3.3.7 | | |x| | |
 Join all-hosts group at startup |3.3.7 | |x| | | |
 Higher layers learn i’face m’cast capability |3.3.7 | |x| | | |
 | | | | | | |
INTERFACE: | | | | | | |
 Allow transport layer to use all IP mechanisms |3.4 |x| | | | |
 Pass interface ident up to transport layer |3.4 |x| | | | |
 Pass all IP options up to transport layer |3.4 |x| | | | |
 Transport layer can send certain ICMP messages |3.4 |x| | | | |
 Pass spec’d ICMP messages up to transp. layer |3.4 |x| | | | |
 Include IP hdr+8 octets or more from orig. |3.4 |x| | | | |
 Able to leap tall buildings at a single bound |3.5 | |x| | | |

Footnotes:

(1) Only if feature is implemented.

(2) This requirement is overruled if datagram is an ICMP error message.

(3) Only if feature is implemented and is configured "on".

(4) Unless has embedded gateway functionality or is source routed.

Internet Engineering Task Force [Page 76]

RFC1122 TRANSPORT LAYER -- UDP October 1989

4. TRANSPORT PROTOCOLS

 4.1 USER DATAGRAM PROTOCOL -- UDP

 4.1.1 INTRODUCTION

 The User Datagram Protocol UDP [UDP:1] offers only a minimal
 transport service -- non-guaranteed datagram delivery -- and
 gives applications direct access to the datagram service of the
 IP layer. UDP is used by applications that do not require the
 level of service of TCP or that wish to use communications
 services (e.g., multicast or broadcast delivery) not available
 from TCP.

 UDP is almost a null protocol; the only services it provides
 over IP are checksumming of data and multiplexing by port
 number. Therefore, an application program running over UDP
 must deal directly with end-to-end communication problems that
 a connection-oriented protocol would have handled -- e.g.,
 retransmission for reliable delivery, packetization and
 reassembly, flow control, congestion avoidance, etc., when
 these are required. The fairly complex coupling between IP and
 TCP will be mirrored in the coupling between UDP and many
 applications using UDP.

 4.1.2 PROTOCOL WALK-THROUGH

 There are no known errors in the specification of UDP.

 4.1.3 SPECIFIC ISSUES

 4.1.3.1 Ports

 UDP well-known ports follow the same rules as TCP well-known
 ports; see Section 4.2.2.1 below.

 If a datagram arrives addressed to a UDP port for which
 there is no pending LISTEN call, UDP SHOULD send an ICMP
 Port Unreachable message.

 4.1.3.2 IP Options

 UDP MUST pass any IP option that it receives from the IP
 layer transparently to the application layer.

 An application MUST be able to specify IP options to be sent
 in its UDP datagrams, and UDP MUST pass these options to the
 IP layer.

Internet Engineering Task Force [Page 77]

RFC1122 TRANSPORT LAYER -- UDP October 1989

 DISCUSSION:
 At present, the only options that need be passed
 through UDP are Source Route, Record Route, and Time
 Stamp. However, new options may be defined in the
 future, and UDP need not and should not make any
 assumptions about the format or content of options it
 passes to or from the application; an exception to this
 might be an IP-layer security option.

 An application based on UDP will need to obtain a
 source route from a request datagram and supply a
 reversed route for sending the corresponding reply.

 4.1.3.3 ICMP Messages

 UDP MUST pass to the application layer all ICMP error
 messages that it receives from the IP layer. Conceptually
 at least, this may be accomplished with an upcall to the
 ERROR_REPORT routine (see Section 4.2.4.1).

 DISCUSSION:
 Note that ICMP error messages resulting from sending a
 UDP datagram are received asynchronously. A UDP-based
 application that wants to receive ICMP error messages
 is responsible for maintaining the state necessary to
 demultiplex these messages when they arrive; for
 example, the application may keep a pending receive
 operation for this purpose. The application is also
 responsible to avoid confusion from a delayed ICMP
 error message resulting from an earlier use of the same
 port(s).

 4.1.3.4 UDP Checksums

 A host MUST implement the facility to generate and validate
 UDP checksums. An application MAY optionally be able to
 control whether a UDP checksum will be generated, but it
 MUST default to checksumming on.

 If a UDP datagram is received with a checksum that is non-
 zero and invalid, UDP MUST silently discard the datagram.
 An application MAY optionally be able to control whether UDP
 datagrams without checksums should be discarded or passed to
 the application.

 DISCUSSION:
 Some applications that normally run only across local
 area networks have chosen to turn off UDP checksums for

Internet Engineering Task Force [Page 78]

RFC1122 TRANSPORT LAYER -- UDP October 1989

 efficiency. As a result, numerous cases of undetected
 errors have been reported. The advisability of ever
 turning off UDP checksumming is very controversial.

 IMPLEMENTATION:
 There is a common implementation error in UDP
 checksums. Unlike the TCP checksum, the UDP checksum
 is optional; the value zero is transmitted in the
 checksum field of a UDP header to indicate the absence
 of a checksum. If the transmitter really calculates a
 UDP checksum of zero, it must transmit the checksum as
 all 1’s (65535). No special action is required at the
 receiver, since zero and 65535 are equivalent in 1’s
 complement arithmetic.

 4.1.3.5 UDP Multihoming

 When a UDP datagram is received, its specific-destination
 address MUST be passed up to the application layer.

 An application program MUST be able to specify the IP source
 address to be used for sending a UDP datagram or to leave it
 unspecified (in which case the networking software will
 choose an appropriate source address). There SHOULD be a
 way to communicate the chosen source address up to the
 application layer (e.g, so that the application can later
 receive a reply datagram only from the corresponding
 interface).

 DISCUSSION:
 A request/response application that uses UDP should use
 a source address for the response that is the same as
 the specific destination address of the request. See
 the "General Issues" section of [INTRO:1].

 4.1.3.6 Invalid Addresses

 A UDP datagram received with an invalid IP source address
 (e.g., a broadcast or multicast address) must be discarded
 by UDP or by the IP layer (see Section 3.2.1.3).

 When a host sends a UDP datagram, the source address MUST be
 (one of) the IP address(es) of the host.

 4.1.4 UDP/APPLICATION LAYER INTERFACE

 The application interface to UDP MUST provide the full services
 of the IP/transport interface described in Section 3.4 of this

Internet Engineering Task Force [Page 79]

RFC1122 TRANSPORT LAYER -- UDP October 1989

 document. Thus, an application using UDP needs the functions
 of the GET_SRCADDR(), GET_MAXSIZES(), ADVISE_DELIVPROB(), and
 RECV_ICMP() calls described in Section 3.4. For example,
 GET_MAXSIZES() can be used to learn the effective maximum UDP
 maximum datagram size for a particular {interface,remote
 host,TOS} triplet.

 An application-layer program MUST be able to set the TTL and
 TOS values as well as IP options for sending a UDP datagram,
 and these values must be passed transparently to the IP layer.
 UDP MAY pass the received TOS up to the application layer.

 4.1.5 UDP REQUIREMENTS SUMMARY

 | | | | |S| |
 | | | | |H| |F
 | | | | |O|M|o
 | | |S| |U|U|o
 | | |H| |L|S|t
 | |M|O| |D|T|n
 | |U|U|M| | |o
 | |S|L|A|N|N|t
 | |T|D|Y|O|O|t
FEATURE	SECTION				T	T	e
 | | | | | | |
 UDP | | | | | | |
---|--------|-|-|-|-|-|--
 | | | | | | |
UDP send Port Unreachable |4.1.3.1 | |x| | | |
 | | | | | | |
IP Options in UDP | | | | | | |
 - Pass rcv’d IP options to applic layer |4.1.3.2 |x| | | | |
 - Applic layer can specify IP options in Send |4.1.3.2 |x| | | | |
 - UDP passes IP options down to IP layer |4.1.3.2 |x| | | | |
 | | | | | | |
Pass ICMP msgs up to applic layer |4.1.3.3 |x| | | | |
 | | | | | | |
UDP checksums: | | | | | | |
 - Able to generate/check checksum |4.1.3.4 |x| | | | |
 - Silently discard bad checksum |4.1.3.4 |x| | | | |
 - Sender Option to not generate checksum |4.1.3.4 | | |x| | |
 - Default is to checksum |4.1.3.4 |x| | | | |
 - Receiver Option to require checksum |4.1.3.4 | | |x| | |
 | | | | | | |
UDP Multihoming | | | | | | |
 - Pass spec-dest addr to application |4.1.3.5 |x| | | | |

Internet Engineering Task Force [Page 80]

RFC1122 TRANSPORT LAYER -- UDP October 1989

 - Applic layer can specify Local IP addr |4.1.3.5 |x| | | | |
 - Applic layer specify wild Local IP addr |4.1.3.5 |x| | | | |
 - Applic layer notified of Local IP addr used |4.1.3.5 | |x| | | |
 | | | | | | |
Bad IP src addr silently discarded by UDP/IP |4.1.3.6 |x| | | | |
Only send valid IP source address |4.1.3.6 |x| | | | |
UDP Application Interface Services | | | | | | |
Full IP interface of 3.4 for application |4.1.4 |x| | | | |
 - Able to spec TTL, TOS, IP opts when send dg |4.1.4 |x| | | | |
 - Pass received TOS up to applic layer |4.1.4 | | |x| | |

Internet Engineering Task Force [Page 81]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 4.2 TRANSMISSION CONTROL PROTOCOL -- TCP

 4.2.1 INTRODUCTION

 The Transmission Control Protocol TCP [TCP:1] is the primary
 virtual-circuit transport protocol for the Internet suite. TCP
 provides reliable, in-sequence delivery of a full-duplex stream
 of octets (8-bit bytes). TCP is used by those applications
 needing reliable, connection-oriented transport service, e.g.,
 mail (SMTP), file transfer (FTP), and virtual terminal service
 (Telnet); requirements for these application-layer protocols
 are described in [INTRO:1].

 4.2.2 PROTOCOL WALK-THROUGH

 4.2.2.1 Well-Known Ports: RFC-793 Section 2.7

 DISCUSSION:
 TCP reserves port numbers in the range 0-255 for
 "well-known" ports, used to access services that are
 standardized across the Internet. The remainder of the
 port space can be freely allocated to application
 processes. Current well-known port definitions are
 listed in the RFC entitled "Assigned Numbers"
 [INTRO:6]. A prerequisite for defining a new well-
 known port is an RFC documenting the proposed service
 in enough detail to allow new implementations.

 Some systems extend this notion by adding a third
 subdivision of the TCP port space: reserved ports,
 which are generally used for operating-system-specific
 services. For example, reserved ports might fall
 between 256 and some system-dependent upper limit.
 Some systems further choose to protect well-known and
 reserved ports by permitting only privileged users to
 open TCP connections with those port values. This is
 perfectly reasonable as long as the host does not
 assume that all hosts protect their low-numbered ports
 in this manner.

 4.2.2.2 Use of Push: RFC-793 Section 2.8

 When an application issues a series of SEND calls without
 setting the PUSH flag, the TCP MAY aggregate the data
 internally without sending it. Similarly, when a series of
 segments is received without the PSH bit, a TCP MAY queue
 the data internally without passing it to the receiving
 application.

Internet Engineering Task Force [Page 82]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 The PSH bit is not a record marker and is independent of
 segment boundaries. The transmitter SHOULD collapse
 successive PSH bits when it packetizes data, to send the
 largest possible segment.

 A TCP MAY implement PUSH flags on SEND calls. If PUSH flags
 are not implemented, then the sending TCP: (1) must not
 buffer data indefinitely, and (2) MUST set the PSH bit in
 the last buffered segment (i.e., when there is no more
 queued data to be sent).

 The discussion in RFC-793 on pages 48, 50, and 74
 erroneously implies that a received PSH flag must be passed
 to the application layer. Passing a received PSH flag to
 the application layer is now OPTIONAL.

 An application program is logically required to set the PUSH
 flag in a SEND call whenever it needs to force delivery of
 the data to avoid a communication deadlock. However, a TCP
 SHOULD send a maximum-sized segment whenever possible, to
 improve performance (see Section 4.2.3.4).

 DISCUSSION:
 When the PUSH flag is not implemented on SEND calls,
 i.e., when the application/TCP interface uses a pure
 streaming model, responsibility for aggregating any
 tiny data fragments to form reasonable sized segments
 is partially borne by the application layer.

 Generally, an interactive application protocol must set
 the PUSH flag at least in the last SEND call in each
 command or response sequence. A bulk transfer protocol
 like FTP should set the PUSH flag on the last segment
 of a file or when necessary to prevent buffer deadlock.

 At the receiver, the PSH bit forces buffered data to be
 delivered to the application (even if less than a full
 buffer has been received). Conversely, the lack of a
 PSH bit can be used to avoid unnecessary wakeup calls
 to the application process; this can be an important
 performance optimization for large timesharing hosts.
 Passing the PSH bit to the receiving application allows
 an analogous optimization within the application.

 4.2.2.3 Window Size: RFC-793 Section 3.1

 The window size MUST be treated as an unsigned number, or
 else large window sizes will appear like negative windows

Internet Engineering Task Force [Page 83]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 and TCP will not work. It is RECOMMENDED that
 implementations reserve 32-bit fields for the send and
 receive window sizes in the connection record and do all
 window computations with 32 bits.

 DISCUSSION:
 It is known that the window field in the TCP header is
 too small for high-speed, long-delay paths.
 Experimental TCP options have been defined to extend
 the window size; see for example [TCP:11]. In
 anticipation of the adoption of such an extension, TCP
 implementors should treat windows as 32 bits.

 4.2.2.4 Urgent Pointer: RFC-793 Section 3.1

 The second sentence is in error: the urgent pointer points
 to the sequence number of the LAST octet (not LAST+1) in a
 sequence of urgent data. The description on page 56 (last
 sentence) is correct.

 A TCP MUST support a sequence of urgent data of any length.

 A TCP MUST inform the application layer asynchronously
 whenever it receives an Urgent pointer and there was
 previously no pending urgent data, or whenever the Urgent
 pointer advances in the data stream. There MUST be a way
 for the application to learn how much urgent data remains to
 be read from the connection, or at least to determine
 whether or not more urgent data remains to be read.

 DISCUSSION:
 Although the Urgent mechanism may be used for any
 application, it is normally used to send "interrupt"-
 type commands to a Telnet program (see "Using Telnet
 Synch Sequence" section in [INTRO:1]).

 The asynchronous or "out-of-band" notification will
 allow the application to go into "urgent mode", reading
 data from the TCP connection. This allows control
 commands to be sent to an application whose normal
 input buffers are full of unprocessed data.

 IMPLEMENTATION:
 The generic ERROR-REPORT() upcall described in Section
 4.2.4.1 is a possible mechanism for informing the
 application of the arrival of urgent data.

Internet Engineering Task Force [Page 84]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 4.2.2.5 TCP Options: RFC-793 Section 3.1

 A TCP MUST be able to receive a TCP option in any segment.
 A TCP MUST ignore without error any TCP option it does not
 implement, assuming that the option has a length field (all
 TCP options defined in the future will have length fields).
 TCP MUST be prepared to handle an illegal option length
 (e.g., zero) without crashing; a suggested procedure is to
 reset the connection and log the reason.

 4.2.2.6 Maximum Segment Size Option: RFC-793 Section 3.1

 TCP MUST implement both sending and receiving the Maximum
 Segment Size option [TCP:4].

 TCP SHOULD send an MSS (Maximum Segment Size) option in
 every SYN segment when its receive MSS differs from the
 default 536, and MAY send it always.

 If an MSS option is not received at connection setup, TCP
 MUST assume a default send MSS of 536 (576-40) [TCP:4].

 The maximum size of a segment that TCP really sends, the
 "effective send MSS," MUST be the smaller of the send MSS
 (which reflects the available reassembly buffer size at the
 remote host) and the largest size permitted by the IP layer:

 Eff.snd.MSS =

 min(SendMSS+20, MMS_S) - TCPhdrsize - IPoptionsize

 where:

 * SendMSS is the MSS value received from the remote host,
 or the default 536 if no MSS option is received.

 * MMS_S is the maximum size for a transport-layer message
 that TCP may send.

 * TCPhdrsize is the size of the TCP header; this is
 normally 20, but may be larger if TCP options are to be
 sent.

 * IPoptionsize is the size of any IP options that TCP
 will pass to the IP layer with the current message.

 The MSS value to be sent in an MSS option must be less than

Internet Engineering Task Force [Page 85]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 or equal to:

 MMS_R - 20

 where MMS_R is the maximum size for a transport-layer
 message that can be received (and reassembled). TCP obtains
 MMS_R and MMS_S from the IP layer; see the generic call
 GET_MAXSIZES in Section 3.4.

 DISCUSSION:
 The choice of TCP segment size has a strong effect on
 performance. Larger segments increase throughput by
 amortizing header size and per-datagram processing
 overhead over more data bytes; however, if the packet
 is so large that it causes IP fragmentation, efficiency
 drops sharply if any fragments are lost [IP:9].

 Some TCP implementations send an MSS option only if the
 destination host is on a non-connected network.
 However, in general the TCP layer may not have the
 appropriate information to make this decision, so it is
 preferable to leave to the IP layer the task of
 determining a suitable MTU for the Internet path. We
 therefore recommend that TCP always send the option (if
 not 536) and that the IP layer determine MMS_R as
 specified in 3.3.3 and 3.4. A proposed IP-layer
 mechanism to measure the MTU would then modify the IP
 layer without changing TCP.

 4.2.2.7 TCP Checksum: RFC-793 Section 3.1

 Unlike the UDP checksum (see Section 4.1.3.4), the TCP
 checksum is never optional. The sender MUST generate it and
 the receiver MUST check it.

 4.2.2.8 TCP Connection State Diagram: RFC-793 Section 3.2,
 page 23

 There are several problems with this diagram:

 (a) The arrow from SYN-SENT to SYN-RCVD should be labeled
 with "snd SYN,ACK", to agree with the text on page 68
 and with Figure 8.

 (b) There could be an arrow from SYN-RCVD state to LISTEN
 state, conditioned on receiving a RST after a passive
 open (see text page 70).

Internet Engineering Task Force [Page 86]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 (c) It is possible to go directly from FIN-WAIT-1 to the
 TIME-WAIT state (see page 75 of the spec).

 4.2.2.9 Initial Sequence Number Selection: RFC-793 Section
 3.3, page 27

 A TCP MUST use the specified clock-driven selection of
 initial sequence numbers.

 4.2.2.10 Simultaneous Open Attempts: RFC-793 Section 3.4, page
 32

 There is an error in Figure 8: the packet on line 7 should
 be identical to the packet on line 5.

 A TCP MUST support simultaneous open attempts.

 DISCUSSION:
 It sometimes surprises implementors that if two
 applications attempt to simultaneously connect to each
 other, only one connection is generated instead of two.
 This was an intentional design decision; don’t try to
 "fix" it.

 4.2.2.11 Recovery from Old Duplicate SYN: RFC-793 Section 3.4,
 page 33

 Note that a TCP implementation MUST keep track of whether a
 connection has reached SYN_RCVD state as the result of a
 passive OPEN or an active OPEN.

 4.2.2.12 RST Segment: RFC-793 Section 3.4

 A TCP SHOULD allow a received RST segment to include data.

 DISCUSSION
 It has been suggested that a RST segment could contain
 ASCII text that encoded and explained the cause of the
 RST. No standard has yet been established for such
 data.

 4.2.2.13 Closing a Connection: RFC-793 Section 3.5

 A TCP connection may terminate in two ways: (1) the normal
 TCP close sequence using a FIN handshake, and (2) an "abort"
 in which one or more RST segments are sent and the
 connection state is immediately discarded. If a TCP

Internet Engineering Task Force [Page 87]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 connection is closed by the remote site, the local
 application MUST be informed whether it closed normally or
 was aborted.

 The normal TCP close sequence delivers buffered data
 reliably in both directions. Since the two directions of a
 TCP connection are closed independently, it is possible for
 a connection to be "half closed," i.e., closed in only one
 direction, and a host is permitted to continue sending data
 in the open direction on a half-closed connection.

 A host MAY implement a "half-duplex" TCP close sequence, so
 that an application that has called CLOSE cannot continue to
 read data from the connection. If such a host issues a
 CLOSE call while received data is still pending in TCP, or
 if new data is received after CLOSE is called, its TCP
 SHOULD send a RST to show that data was lost.

 When a connection is closed actively, it MUST linger in
 TIME-WAIT state for a time 2xMSL (Maximum Segment Lifetime).
 However, it MAY accept a new SYN from the remote TCP to
 reopen the connection directly from TIME-WAIT state, if it:

 (1) assigns its initial sequence number for the new
 connection to be larger than the largest sequence
 number it used on the previous connection incarnation,
 and

 (2) returns to TIME-WAIT state if the SYN turns out to be
 an old duplicate.

 DISCUSSION:
 TCP’s full-duplex data-preserving close is a feature
 that is not included in the analogous ISO transport
 protocol TP4.

 Some systems have not implemented half-closed
 connections, presumably because they do not fit into
 the I/O model of their particular operating system. On
 these systems, once an application has called CLOSE, it
 can no longer read input data from the connection; this
 is referred to as a "half-duplex" TCP close sequence.

 The graceful close algorithm of TCP requires that the
 connection state remain defined on (at least) one end
 of the connection, for a timeout period of 2xMSL, i.e.,
 4 minutes. During this period, the (remote socket,

Internet Engineering Task Force [Page 88]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 local socket) pair that defines the connection is busy
 and cannot be reused. To shorten the time that a given
 port pair is tied up, some TCPs allow a new SYN to be
 accepted in TIME-WAIT state.

 4.2.2.14 Data Communication: RFC-793 Section 3.7, page 40

 Since RFC-793 was written, there has been extensive work on
 TCP algorithms to achieve efficient data communication.
 Later sections of the present document describe required and
 recommended TCP algorithms to determine when to send data
 (Section 4.2.3.4), when to send an acknowledgment (Section
 4.2.3.2), and when to update the window (Section 4.2.3.3).

 DISCUSSION:
 One important performance issue is "Silly Window
 Syndrome" or "SWS" [TCP:5], a stable pattern of small
 incremental window movements resulting in extremely
 poor TCP performance. Algorithms to avoid SWS are
 described below for both the sending side (Section
 4.2.3.4) and the receiving side (Section 4.2.3.3).

 In brief, SWS is caused by the receiver advancing the
 right window edge whenever it has any new buffer space
 available to receive data and by the sender using any
 incremental window, no matter how small, to send more
 data [TCP:5]. The result can be a stable pattern of
 sending tiny data segments, even though both sender and
 receiver have a large total buffer space for the
 connection. SWS can only occur during the transmission
 of a large amount of data; if the connection goes
 quiescent, the problem will disappear. It is caused by
 typical straightforward implementation of window
 management, but the sender and receiver algorithms
 given below will avoid it.

 Another important TCP performance issue is that some
 applications, especially remote login to character-at-
 a-time hosts, tend to send streams of one-octet data
 segments. To avoid deadlocks, every TCP SEND call from
 such applications must be "pushed", either explicitly
 by the application or else implicitly by TCP. The
 result may be a stream of TCP segments that contain one
 data octet each, which makes very inefficient use of
 the Internet and contributes to Internet congestion.
 The Nagle Algorithm described in Section 4.2.3.4
 provides a simple and effective solution to this
 problem. It does have the effect of clumping

Internet Engineering Task Force [Page 89]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 characters over Telnet connections; this may initially
 surprise users accustomed to single-character echo, but
 user acceptance has not been a problem.

 Note that the Nagle algorithm and the send SWS
 avoidance algorithm play complementary roles in
 improving performance. The Nagle algorithm discourages
 sending tiny segments when the data to be sent
 increases in small increments, while the SWS avoidance
 algorithm discourages small segments resulting from the
 right window edge advancing in small increments.

 A careless implementation can send two or more
 acknowledgment segments per data segment received. For
 example, suppose the receiver acknowledges every data
 segment immediately. When the application program
 subsequently consumes the data and increases the
 available receive buffer space again, the receiver may
 send a second acknowledgment segment to update the
 window at the sender. The extreme case occurs with
 single-character segments on TCP connections using the
 Telnet protocol for remote login service. Some
 implementations have been observed in which each
 incoming 1-character segment generates three return
 segments: (1) the acknowledgment, (2) a one byte
 increase in the window, and (3) the echoed character,
 respectively.

 4.2.2.15 Retransmission Timeout: RFC-793 Section 3.7, page 41

 The algorithm suggested in RFC-793 for calculating the
 retransmission timeout is now known to be inadequate; see
 Section 4.2.3.1 below.

 Recent work by Jacobson [TCP:7] on Internet congestion and
 TCP retransmission stability has produced a transmission
 algorithm combining "slow start" with "congestion
 avoidance". A TCP MUST implement this algorithm.

 If a retransmitted packet is identical to the original
 packet (which implies not only that the data boundaries have
 not changed, but also that the window and acknowledgment
 fields of the header have not changed), then the same IP
 Identification field MAY be used (see Section 3.2.1.5).

 IMPLEMENTATION:
 Some TCP implementors have chosen to "packetize" the
 data stream, i.e., to pick segment boundaries when

Internet Engineering Task Force [Page 90]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 segments are originally sent and to queue these
 segments in a "retransmission queue" until they are
 acknowledged. Another design (which may be simpler) is
 to defer packetizing until each time data is
 transmitted or retransmitted, so there will be no
 segment retransmission queue.

 In an implementation with a segment retransmission
 queue, TCP performance may be enhanced by repacketizing
 the segments awaiting acknowledgment when the first
 retransmission timeout occurs. That is, the
 outstanding segments that fitted would be combined into
 one maximum-sized segment, with a new IP Identification
 value. The TCP would then retain this combined segment
 in the retransmit queue until it was acknowledged.
 However, if the first two segments in the
 retransmission queue totalled more than one maximum-
 sized segment, the TCP would retransmit only the first
 segment using the original IP Identification field.

 4.2.2.16 Managing the Window: RFC-793 Section 3.7, page 41

 A TCP receiver SHOULD NOT shrink the window, i.e., move the
 right window edge to the left. However, a sending TCP MUST
 be robust against window shrinking, which may cause the
 "useable window" (see Section 4.2.3.4) to become negative.

 If this happens, the sender SHOULD NOT send new data, but
 SHOULD retransmit normally the old unacknowledged data
 between SND.UNA and SND.UNA+SND.WND. The sender MAY also
 retransmit old data beyond SND.UNA+SND.WND, but SHOULD NOT
 time out the connection if data beyond the right window edge
 is not acknowledged. If the window shrinks to zero, the TCP
 MUST probe it in the standard way (see next Section).

 DISCUSSION:
 Many TCP implementations become confused if the window
 shrinks from the right after data has been sent into a
 larger window. Note that TCP has a heuristic to select
 the latest window update despite possible datagram
 reordering; as a result, it may ignore a window update
 with a smaller window than previously offered if
 neither the sequence number nor the acknowledgment
 number is increased.

Internet Engineering Task Force [Page 91]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 4.2.2.17 Probing Zero Windows: RFC-793 Section 3.7, page 42

 Probing of zero (offered) windows MUST be supported.

 A TCP MAY keep its offered receive window closed
 indefinitely. As long as the receiving TCP continues to
 send acknowledgments in response to the probe segments, the
 sending TCP MUST allow the connection to stay open.

 DISCUSSION:
 It is extremely important to remember that ACK
 (acknowledgment) segments that contain no data are not
 reliably transmitted by TCP. If zero window probing is
 not supported, a connection may hang forever when an
 ACK segment that re-opens the window is lost.

 The delay in opening a zero window generally occurs
 when the receiving application stops taking data from
 its TCP. For example, consider a printer daemon
 application, stopped because the printer ran out of
 paper.

 The transmitting host SHOULD send the first zero-window
 probe when a zero window has existed for the retransmission
 timeout period (see Section 4.2.2.15), and SHOULD increase
 exponentially the interval between successive probes.

 DISCUSSION:
 This procedure minimizes delay if the zero-window
 condition is due to a lost ACK segment containing a
 window-opening update. Exponential backoff is
 recommended, possibly with some maximum interval not
 specified here. This procedure is similar to that of
 the retransmission algorithm, and it may be possible to
 combine the two procedures in the implementation.

 4.2.2.18 Passive OPEN Calls: RFC-793 Section 3.8

 Every passive OPEN call either creates a new connection
 record in LISTEN state, or it returns an error; it MUST NOT
 affect any previously created connection record.

 A TCP that supports multiple concurrent users MUST provide
 an OPEN call that will functionally allow an application to
 LISTEN on a port while a connection block with the same
 local port is in SYN-SENT or SYN-RECEIVED state.

 DISCUSSION:

Internet Engineering Task Force [Page 92]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 Some applications (e.g., SMTP servers) may need to
 handle multiple connection attempts at about the same
 time. The probability of a connection attempt failing
 is reduced by giving the application some means of
 listening for a new connection at the same time that an
 earlier connection attempt is going through the three-
 way handshake.

 IMPLEMENTATION:
 Acceptable implementations of concurrent opens may
 permit multiple passive OPEN calls, or they may allow
 "cloning" of LISTEN-state connections from a single
 passive OPEN call.

 4.2.2.19 Time to Live: RFC-793 Section 3.9, page 52

 RFC-793 specified that TCP was to request the IP layer to
 send TCP segments with TTL = 60. This is obsolete; the TTL
 value used to send TCP segments MUST be configurable. See
 Section 3.2.1.7 for discussion.

 4.2.2.20 Event Processing: RFC-793 Section 3.9

 While it is not strictly required, a TCP SHOULD be capable
 of queueing out-of-order TCP segments. Change the "may" in
 the last sentence of the first paragraph on page 70 to
 "should".

 DISCUSSION:
 Some small-host implementations have omitted segment
 queueing because of limited buffer space. This
 omission may be expected to adversely affect TCP
 throughput, since loss of a single segment causes all
 later segments to appear to be "out of sequence".

 In general, the processing of received segments MUST be
 implemented to aggregate ACK segments whenever possible.
 For example, if the TCP is processing a series of queued
 segments, it MUST process them all before sending any ACK
 segments.

 Here are some detailed error corrections and notes on the
 Event Processing section of RFC-793.

 (a) CLOSE Call, CLOSE-WAIT state, p. 61: enter LAST-ACK
 state, not CLOSING.

 (b) LISTEN state, check for SYN (pp. 65, 66): With a SYN

Internet Engineering Task Force [Page 93]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 bit, if the security/compartment or the precedence is
 wrong for the segment, a reset is sent. The wrong form
 of reset is shown in the text; it should be:

 <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

 (c) SYN-SENT state, Check for SYN, p. 68: When the
 connection enters ESTABLISHED state, the following
 variables must be set:
 SND.WND <- SEG.WND
 SND.WL1 <- SEG.SEQ
 SND.WL2 <- SEG.ACK

 (d) Check security and precedence, p. 71: The first heading
 "ESTABLISHED STATE" should really be a list of all
 states other than SYN-RECEIVED: ESTABLISHED, FIN-WAIT-
 1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, and
 TIME-WAIT.

 (e) Check SYN bit, p. 71: "In SYN-RECEIVED state and if
 the connection was initiated with a passive OPEN, then
 return this connection to the LISTEN state and return.
 Otherwise...".

 (f) Check ACK field, SYN-RECEIVED state, p. 72: When the
 connection enters ESTABLISHED state, the variables
 listed in (c) must be set.

 (g) Check ACK field, ESTABLISHED state, p. 72: The ACK is a
 duplicate if SEG.ACK =< SND.UNA (the = was omitted).
 Similarly, the window should be updated if: SND.UNA =<
 SEG.ACK =< SND.NXT.

 (h) USER TIMEOUT, p. 77:

 It would be better to notify the application of the
 timeout rather than letting TCP force the connection
 closed. However, see also Section 4.2.3.5.

 4.2.2.21 Acknowledging Queued Segments: RFC-793 Section 3.9

 A TCP MAY send an ACK segment acknowledging RCV.NXT when a
 valid segment arrives that is in the window but not at the
 left window edge.

Internet Engineering Task Force [Page 94]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 DISCUSSION:
 RFC-793 (see page 74) was ambiguous about whether or
 not an ACK segment should be sent when an out-of-order
 segment was received, i.e., when SEG.SEQ was unequal to
 RCV.NXT.

 One reason for ACKing out-of-order segments might be to
 support an experimental algorithm known as "fast
 retransmit". With this algorithm, the sender uses the
 "redundant" ACK’s to deduce that a segment has been
 lost before the retransmission timer has expired. It
 counts the number of times an ACK has been received
 with the same value of SEG.ACK and with the same right
 window edge. If more than a threshold number of such
 ACK’s is received, then the segment containing the
 octets starting at SEG.ACK is assumed to have been lost
 and is retransmitted, without awaiting a timeout. The
 threshold is chosen to compensate for the maximum
 likely segment reordering in the Internet. There is
 not yet enough experience with the fast retransmit
 algorithm to determine how useful it is.

 4.2.3 SPECIFIC ISSUES

 4.2.3.1 Retransmission Timeout Calculation

 A host TCP MUST implement Karn’s algorithm and Jacobson’s
 algorithm for computing the retransmission timeout ("RTO").

 o Jacobson’s algorithm for computing the smoothed round-
 trip ("RTT") time incorporates a simple measure of the
 variance [TCP:7].

 o Karn’s algorithm for selecting RTT measurements ensures
 that ambiguous round-trip times will not corrupt the
 calculation of the smoothed round-trip time [TCP:6].

 This implementation also MUST include "exponential backoff"
 for successive RTO values for the same segment.
 Retransmission of SYN segments SHOULD use the same algorithm
 as data segments.

 DISCUSSION:
 There were two known problems with the RTO calculations
 specified in RFC-793. First, the accurate measurement
 of RTTs is difficult when there are retransmissions.
 Second, the algorithm to compute the smoothed round-
 trip time is inadequate [TCP:7], because it incorrectly

Internet Engineering Task Force [Page 95]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 assumed that the variance in RTT values would be small
 and constant. These problems were solved by Karn’s and
 Jacobson’s algorithm, respectively.

 The performance increase resulting from the use of
 these improvements varies from noticeable to dramatic.
 Jacobson’s algorithm for incorporating the measured RTT
 variance is especially important on a low-speed link,
 where the natural variation of packet sizes causes a
 large variation in RTT. One vendor found link
 utilization on a 9.6kb line went from 10% to 90% as a
 result of implementing Jacobson’s variance algorithm in
 TCP.

 The following values SHOULD be used to initialize the
 estimation parameters for a new connection:

 (a) RTT = 0 seconds.

 (b) RTO = 3 seconds. (The smoothed variance is to be
 initialized to the value that will result in this RTO).

 The recommended upper and lower bounds on the RTO are known
 to be inadequate on large internets. The lower bound SHOULD
 be measured in fractions of a second (to accommodate high
 speed LANs) and the upper bound should be 2*MSL, i.e., 240
 seconds.

 DISCUSSION:
 Experience has shown that these initialization values
 are reasonable, and that in any case the Karn and
 Jacobson algorithms make TCP behavior reasonably
 insensitive to the initial parameter choices.

 4.2.3.2 When to Send an ACK Segment

 A host that is receiving a stream of TCP data segments can
 increase efficiency in both the Internet and the hosts by
 sending fewer than one ACK (acknowledgment) segment per data
 segment received; this is known as a "delayed ACK" [TCP:5].

 A TCP SHOULD implement a delayed ACK, but an ACK should not
 be excessively delayed; in particular, the delay MUST be
 less than 0.5 seconds, and in a stream of full-sized
 segments there SHOULD be an ACK for at least every second
 segment.

 DISCUSSION:

Internet Engineering Task Force [Page 96]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 A delayed ACK gives the application an opportunity to
 update the window and perhaps to send an immediate
 response. In particular, in the case of character-mode
 remote login, a delayed ACK can reduce the number of
 segments sent by the server by a factor of 3 (ACK,
 window update, and echo character all combined in one
 segment).

 In addition, on some large multi-user hosts, a delayed
 ACK can substantially reduce protocol processing
 overhead by reducing the total number of packets to be
 processed [TCP:5]. However, excessive delays on ACK’s
 can disturb the round-trip timing and packet "clocking"
 algorithms [TCP:7].

 4.2.3.3 When to Send a Window Update

 A TCP MUST include a SWS avoidance algorithm in the receiver
 [TCP:5].

 IMPLEMENTATION:
 The receiver’s SWS avoidance algorithm determines when
 the right window edge may be advanced; this is
 customarily known as "updating the window". This
 algorithm combines with the delayed ACK algorithm (see
 Section 4.2.3.2) to determine when an ACK segment
 containing the current window will really be sent to
 the receiver. We use the notation of RFC-793; see
 Figures 4 and 5 in that document.

 The solution to receiver SWS is to avoid advancing the
 right window edge RCV.NXT+RCV.WND in small increments,
 even if data is received from the network in small
 segments.

 Suppose the total receive buffer space is RCV.BUFF. At
 any given moment, RCV.USER octets of this total may be
 tied up with data that has been received and
 acknowledged but which the user process has not yet
 consumed. When the connection is quiescent, RCV.WND =
 RCV.BUFF and RCV.USER = 0.

 Keeping the right window edge fixed as data arrives and
 is acknowledged requires that the receiver offer less
 than its full buffer space, i.e., the receiver must
 specify a RCV.WND that keeps RCV.NXT+RCV.WND constant
 as RCV.NXT increases. Thus, the total buffer space
 RCV.BUFF is generally divided into three parts:

Internet Engineering Task Force [Page 97]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 |<------- RCV.BUFF ---------------->|
 1 2 3
 ----|---------|------------------|------|----
 RCV.NXT ^
 (Fixed)

 1 - RCV.USER = data received but not yet consumed;
 2 - RCV.WND = space advertised to sender;
 3 - Reduction = space available but not yet
 advertised.

 The suggested SWS avoidance algorithm for the receiver
 is to keep RCV.NXT+RCV.WND fixed until the reduction
 satisfies:

 RCV.BUFF - RCV.USER - RCV.WND >=

 min(Fr * RCV.BUFF, Eff.snd.MSS)

 where Fr is a fraction whose recommended value is 1/2,
 and Eff.snd.MSS is the effective send MSS for the
 connection (see Section 4.2.2.6). When the inequality
 is satisfied, RCV.WND is set to RCV.BUFF-RCV.USER.

 Note that the general effect of this algorithm is to
 advance RCV.WND in increments of Eff.snd.MSS (for
 realistic receive buffers: Eff.snd.MSS < RCV.BUFF/2).
 Note also that the receiver must use its own
 Eff.snd.MSS, assuming it is the same as the sender’s.

 4.2.3.4 When to Send Data

 A TCP MUST include a SWS avoidance algorithm in the sender.

 A TCP SHOULD implement the Nagle Algorithm [TCP:9] to
 coalesce short segments. However, there MUST be a way for
 an application to disable the Nagle algorithm on an
 individual connection. In all cases, sending data is also
 subject to the limitation imposed by the Slow Start
 algorithm (Section 4.2.2.15).

 DISCUSSION:
 The Nagle algorithm is generally as follows:

 If there is unacknowledged data (i.e., SND.NXT >
 SND.UNA), then the sending TCP buffers all user

Internet Engineering Task Force [Page 98]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 data (regardless of the PSH bit), until the
 outstanding data has been acknowledged or until
 the TCP can send a full-sized segment (Eff.snd.MSS
 bytes; see Section 4.2.2.6).

 Some applications (e.g., real-time display window
 updates) require that the Nagle algorithm be turned
 off, so small data segments can be streamed out at the
 maximum rate.

 IMPLEMENTATION:
 The sender’s SWS avoidance algorithm is more difficult
 than the receivers’s, because the sender does not know
 (directly) the receiver’s total buffer space RCV.BUFF.
 An approach which has been found to work well is for
 the sender to calculate Max(SND.WND), the maximum send
 window it has seen so far on the connection, and to use
 this value as an estimate of RCV.BUFF. Unfortunately,
 this can only be an estimate; the receiver may at any
 time reduce the size of RCV.BUFF. To avoid a resulting
 deadlock, it is necessary to have a timeout to force
 transmission of data, overriding the SWS avoidance
 algorithm. In practice, this timeout should seldom
 occur.

 The "useable window" [TCP:5] is:

 U = SND.UNA + SND.WND - SND.NXT

 i.e., the offered window less the amount of data sent
 but not acknowledged. If D is the amount of data
 queued in the sending TCP but not yet sent, then the
 following set of rules is recommended.

 Send data:

 (1) if a maximum-sized segment can be sent, i.e, if:

 min(D,U) >= Eff.snd.MSS;

 (2) or if the data is pushed and all queued data can
 be sent now, i.e., if:

 [SND.NXT = SND.UNA and] PUSHED and D <= U

 (the bracketed condition is imposed by the Nagle
 algorithm);

Internet Engineering Task Force [Page 99]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 (3) or if at least a fraction Fs of the maximum window
 can be sent, i.e., if:

 [SND.NXT = SND.UNA and]

 min(D.U) >= Fs * Max(SND.WND);

 (4) or if data is PUSHed and the override timeout
 occurs.

 Here Fs is a fraction whose recommended value is 1/2.
 The override timeout should be in the range 0.1 - 1.0
 seconds. It may be convenient to combine this timer
 with the timer used to probe zero windows (Section
 4.2.2.17).

 Finally, note that the SWS avoidance algorithm just
 specified is to be used instead of the sender-side
 algorithm contained in [TCP:5].

 4.2.3.5 TCP Connection Failures

 Excessive retransmission of the same segment by TCP
 indicates some failure of the remote host or the Internet
 path. This failure may be of short or long duration. The
 following procedure MUST be used to handle excessive
 retransmissions of data segments [IP:11]:

 (a) There are two thresholds R1 and R2 measuring the amount
 of retransmission that has occurred for the same
 segment. R1 and R2 might be measured in time units or
 as a count of retransmissions.

 (b) When the number of transmissions of the same segment
 reaches or exceeds threshold R1, pass negative advice
 (see Section 3.3.1.4) to the IP layer, to trigger
 dead-gateway diagnosis.

 (c) When the number of transmissions of the same segment
 reaches a threshold R2 greater than R1, close the
 connection.

 (d) An application MUST be able to set the value for R2 for
 a particular connection. For example, an interactive
 application might set R2 to "infinity," giving the user
 control over when to disconnect.

Internet Engineering Task Force [Page 100]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 (d) TCP SHOULD inform the application of the delivery
 problem (unless such information has been disabled by
 the application; see Section 4.2.4.1), when R1 is
 reached and before R2. This will allow a remote login
 (User Telnet) application program to inform the user,
 for example.

 The value of R1 SHOULD correspond to at least 3
 retransmissions, at the current RTO. The value of R2 SHOULD
 correspond to at least 100 seconds.

 An attempt to open a TCP connection could fail with
 excessive retransmissions of the SYN segment or by receipt
 of a RST segment or an ICMP Port Unreachable. SYN
 retransmissions MUST be handled in the general way just
 described for data retransmissions, including notification
 of the application layer.

 However, the values of R1 and R2 may be different for SYN
 and data segments. In particular, R2 for a SYN segment MUST
 be set large enough to provide retransmission of the segment
 for at least 3 minutes. The application can close the
 connection (i.e., give up on the open attempt) sooner, of
 course.

 DISCUSSION:
 Some Internet paths have significant setup times, and
 the number of such paths is likely to increase in the
 future.

 4.2.3.6 TCP Keep-Alives

 Implementors MAY include "keep-alives" in their TCP
 implementations, although this practice is not universally
 accepted. If keep-alives are included, the application MUST
 be able to turn them on or off for each TCP connection, and
 they MUST default to off.

 Keep-alive packets MUST only be sent when no data or
 acknowledgement packets have been received for the
 connection within an interval. This interval MUST be
 configurable and MUST default to no less than two hours.

 It is extremely important to remember that ACK segments that
 contain no data are not reliably transmitted by TCP.
 Consequently, if a keep-alive mechanism is implemented it
 MUST NOT interpret failure to respond to any specific probe
 as a dead connection.

Internet Engineering Task Force [Page 101]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 An implementation SHOULD send a keep-alive segment with no
 data; however, it MAY be configurable to send a keep-alive
 segment containing one garbage octet, for compatibility with
 erroneous TCP implementations.

 DISCUSSION:
 A "keep-alive" mechanism periodically probes the other
 end of a connection when the connection is otherwise
 idle, even when there is no data to be sent. The TCP
 specification does not include a keep-alive mechanism
 because it could: (1) cause perfectly good connections
 to break during transient Internet failures; (2)
 consume unnecessary bandwidth ("if no one is using the
 connection, who cares if it is still good?"); and (3)
 cost money for an Internet path that charges for
 packets.

 Some TCP implementations, however, have included a
 keep-alive mechanism. To confirm that an idle
 connection is still active, these implementations send
 a probe segment designed to elicit a response from the
 peer TCP. Such a segment generally contains SEG.SEQ =
 SND.NXT-1 and may or may not contain one garbage octet
 of data. Note that on a quiet connection SND.NXT =
 RCV.NXT, so that this SEG.SEQ will be outside the
 window. Therefore, the probe causes the receiver to
 return an acknowledgment segment, confirming that the
 connection is still live. If the peer has dropped the
 connection due to a network partition or a crash, it
 will respond with a RST instead of an acknowledgment
 segment.

 Unfortunately, some misbehaved TCP implementations fail
 to respond to a segment with SEG.SEQ = SND.NXT-1 unless
 the segment contains data. Alternatively, an
 implementation could determine whether a peer responded
 correctly to keep-alive packets with no garbage data
 octet.

 A TCP keep-alive mechanism should only be invoked in
 server applications that might otherwise hang
 indefinitely and consume resources unnecessarily if a
 client crashes or aborts a connection during a network
 failure.

Internet Engineering Task Force [Page 102]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 4.2.3.7 TCP Multihoming

 If an application on a multihomed host does not specify the
 local IP address when actively opening a TCP connection,
 then the TCP MUST ask the IP layer to select a local IP
 address before sending the (first) SYN. See the function
 GET_SRCADDR() in Section 3.4.

 At all other times, a previous segment has either been sent
 or received on this connection, and TCP MUST use the same
 local address is used that was used in those previous
 segments.

 4.2.3.8 IP Options

 When received options are passed up to TCP from the IP
 layer, TCP MUST ignore options that it does not understand.

 A TCP MAY support the Time Stamp and Record Route options.

 An application MUST be able to specify a source route when
 it actively opens a TCP connection, and this MUST take
 precedence over a source route received in a datagram.

 When a TCP connection is OPENed passively and a packet
 arrives with a completed IP Source Route option (containing
 a return route), TCP MUST save the return route and use it
 for all segments sent on this connection. If a different
 source route arrives in a later segment, the later
 definition SHOULD override the earlier one.

 4.2.3.9 ICMP Messages

 TCP MUST act on an ICMP error message passed up from the IP
 layer, directing it to the connection that created the
 error. The necessary demultiplexing information can be
 found in the IP header contained within the ICMP message.

 o Source Quench

 TCP MUST react to a Source Quench by slowing
 transmission on the connection. The RECOMMENDED
 procedure is for a Source Quench to trigger a "slow
 start," as if a retransmission timeout had occurred.

 o Destination Unreachable -- codes 0, 1, 5

 Since these Unreachable messages indicate soft error

Internet Engineering Task Force [Page 103]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 conditions, TCP MUST NOT abort the connection, and it
 SHOULD make the information available to the
 application.

 DISCUSSION:
 TCP could report the soft error condition directly
 to the application layer with an upcall to the
 ERROR_REPORT routine, or it could merely note the
 message and report it to the application only when
 and if the TCP connection times out.

 o Destination Unreachable -- codes 2-4

 These are hard error conditions, so TCP SHOULD abort
 the connection.

 o Time Exceeded -- codes 0, 1

 This should be handled the same way as Destination
 Unreachable codes 0, 1, 5 (see above).

 o Parameter Problem

 This should be handled the same way as Destination
 Unreachable codes 0, 1, 5 (see above).

 4.2.3.10 Remote Address Validation

 A TCP implementation MUST reject as an error a local OPEN
 call for an invalid remote IP address (e.g., a broadcast or
 multicast address).

 An incoming SYN with an invalid source address must be
 ignored either by TCP or by the IP layer (see Section
 3.2.1.3).

 A TCP implementation MUST silently discard an incoming SYN
 segment that is addressed to a broadcast or multicast
 address.

 4.2.3.11 TCP Traffic Patterns

 IMPLEMENTATION:
 The TCP protocol specification [TCP:1] gives the
 implementor much freedom in designing the algorithms
 that control the message flow over the connection --
 packetizing, managing the window, sending

Internet Engineering Task Force [Page 104]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 acknowledgments, etc. These design decisions are
 difficult because a TCP must adapt to a wide range of
 traffic patterns. Experience has shown that a TCP
 implementor needs to verify the design on two extreme
 traffic patterns:

 o Single-character Segments

 Even if the sender is using the Nagle Algorithm,
 when a TCP connection carries remote login traffic
 across a low-delay LAN the receiver will generally
 get a stream of single-character segments. If
 remote terminal echo mode is in effect, the
 receiver’s system will generally echo each
 character as it is received.

 o Bulk Transfer

 When TCP is used for bulk transfer, the data
 stream should be made up (almost) entirely of
 segments of the size of the effective MSS.
 Although TCP uses a sequence number space with
 byte (octet) granularity, in bulk-transfer mode
 its operation should be as if TCP used a sequence
 space that counted only segments.

 Experience has furthermore shown that a single TCP can
 effectively and efficiently handle these two extremes.

 The most important tool for verifying a new TCP
 implementation is a packet trace program. There is a
 large volume of experience showing the importance of
 tracing a variety of traffic patterns with other TCP
 implementations and studying the results carefully.

 4.2.3.12 Efficiency

 IMPLEMENTATION:
 Extensive experience has led to the following
 suggestions for efficient implementation of TCP:

 (a) Don’t Copy Data

 In bulk data transfer, the primary CPU-intensive
 tasks are copying data from one place to another
 and checksumming the data. It is vital to
 minimize the number of copies of TCP data. Since

Internet Engineering Task Force [Page 105]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 the ultimate speed limitation may be fetching data
 across the memory bus, it may be useful to combine
 the copy with checksumming, doing both with a
 single memory fetch.

 (b) Hand-Craft the Checksum Routine

 A good TCP checksumming routine is typically two
 to five times faster than a simple and direct
 implementation of the definition. Great care and
 clever coding are often required and advisable to
 make the checksumming code "blazing fast". See
 [TCP:10].

 (c) Code for the Common Case

 TCP protocol processing can be complicated, but
 for most segments there are only a few simple
 decisions to be made. Per-segment processing will
 be greatly speeded up by coding the main line to
 minimize the number of decisions in the most
 common case.

 4.2.4 TCP/APPLICATION LAYER INTERFACE

 4.2.4.1 Asynchronous Reports

 There MUST be a mechanism for reporting soft TCP error
 conditions to the application. Generically, we assume this
 takes the form of an application-supplied ERROR_REPORT
 routine that may be upcalled [INTRO:7] asynchronously from
 the transport layer:

 ERROR_REPORT(local connection name, reason, subreason)

 The precise encoding of the reason and subreason parameters
 is not specified here. However, the conditions that are
 reported asynchronously to the application MUST include:

 * ICMP error message arrived (see 4.2.3.9)

 * Excessive retransmissions (see 4.2.3.5)

 * Urgent pointer advance (see 4.2.2.4).

 However, an application program that does not want to
 receive such ERROR_REPORT calls SHOULD be able to

Internet Engineering Task Force [Page 106]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 effectively disable these calls.

 DISCUSSION:
 These error reports generally reflect soft errors that
 can be ignored without harm by many applications. It
 has been suggested that these error report calls should
 default to "disabled," but this is not required.

 4.2.4.2 Type-of-Service

 The application layer MUST be able to specify the Type-of-
 Service (TOS) for segments that are sent on a connection.
 It not required, but the application SHOULD be able to
 change the TOS during the connection lifetime. TCP SHOULD
 pass the current TOS value without change to the IP layer,
 when it sends segments on the connection.

 The TOS will be specified independently in each direction on
 the connection, so that the receiver application will
 specify the TOS used for ACK segments.

 TCP MAY pass the most recently received TOS up to the
 application.

 DISCUSSION
 Some applications (e.g., SMTP) change the nature of
 their communication during the lifetime of a
 connection, and therefore would like to change the TOS
 specification.

 Note also that the OPEN call specified in RFC-793
 includes a parameter ("options") in which the caller
 can specify IP options such as source route, record
 route, or timestamp.

 4.2.4.3 Flush Call

 Some TCP implementations have included a FLUSH call, which
 will empty the TCP send queue of any data for which the user
 has issued SEND calls but which is still to the right of the
 current send window. That is, it flushes as much queued
 send data as possible without losing sequence number
 synchronization. This is useful for implementing the "abort
 output" function of Telnet.

Internet Engineering Task Force [Page 107]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 4.2.4.4 Multihoming

 The user interface outlined in sections 2.7 and 3.8 of RFC-
 793 needs to be extended for multihoming. The OPEN call
 MUST have an optional parameter:

 OPEN(... [local IP address,] ...)

 to allow the specification of the local IP address.

 DISCUSSION:
 Some TCP-based applications need to specify the local
 IP address to be used to open a particular connection;
 FTP is an example.

 IMPLEMENTATION:
 A passive OPEN call with a specified "local IP address"
 parameter will await an incoming connection request to
 that address. If the parameter is unspecified, a
 passive OPEN will await an incoming connection request
 to any local IP address, and then bind the local IP
 address of the connection to the particular address
 that is used.

 For an active OPEN call, a specified "local IP address"
 parameter will be used for opening the connection. If
 the parameter is unspecified, the networking software
 will choose an appropriate local IP address (see
 Section 3.3.4.2) for the connection

 4.2.5 TCP REQUIREMENT SUMMARY

 | | | | |S| |
 | | | | |H| |F
 | | | | |O|M|o
 | | |S| |U|U|o
 | | |H| |L|S|t
 | |M|O| |D|T|n
 | |U|U|M| | |o
 | |S|L|A|N|N|t
 | |T|D|Y|O|O|t
FEATURE	SECTION				T	T	e
 | | | | | | |
Push flag | | | | | | |
 Aggregate or queue un-pushed data |4.2.2.2 | | |x| | |
 Sender collapse successive PSH flags |4.2.2.2 | |x| | | |
 SEND call can specify PUSH |4.2.2.2 | | |x| | |

Internet Engineering Task Force [Page 108]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 If cannot: sender buffer indefinitely |4.2.2.2 | | | | |x|
 If cannot: PSH last segment |4.2.2.2 |x| | | | |
 Notify receiving ALP of PSH |4.2.2.2 | | |x| | |1
 Send max size segment when possible |4.2.2.2 | |x| | | |
 | | | | | | |
Window | | | | | | |
 Treat as unsigned number |4.2.2.3 |x| | | | |
 Handle as 32-bit number |4.2.2.3 | |x| | | |
 Shrink window from right |4.2.2.16| | | |x| |
 Robust against shrinking window |4.2.2.16|x| | | | |
 Receiver’s window closed indefinitely |4.2.2.17| | |x| | |
 Sender probe zero window |4.2.2.17|x| | | | |
 First probe after RTO |4.2.2.17| |x| | | |
 Exponential backoff |4.2.2.17| |x| | | |
 Allow window stay zero indefinitely |4.2.2.17|x| | | | |
 Sender timeout OK conn with zero wind |4.2.2.17| | | | |x|
 | | | | | | |
Urgent Data | | | | | | |
 Pointer points to last octet |4.2.2.4 |x| | | | |
 Arbitrary length urgent data sequence |4.2.2.4 |x| | | | |
 Inform ALP asynchronously of urgent data |4.2.2.4 |x| | | | |1
 ALP can learn if/how much urgent data Q’d |4.2.2.4 |x| | | | |1
 | | | | | | |
TCP Options | | | | | | |
 Receive TCP option in any segment |4.2.2.5 |x| | | | |
 Ignore unsupported options |4.2.2.5 |x| | | | |
 Cope with illegal option length |4.2.2.5 |x| | | | |
 Implement sending & receiving MSS option |4.2.2.6 |x| | | | |
 Send MSS option unless 536 |4.2.2.6 | |x| | | |
 Send MSS option always |4.2.2.6 | | |x| | |
 Send-MSS default is 536 |4.2.2.6 |x| | | | |
 Calculate effective send seg size |4.2.2.6 |x| | | | |
 | | | | | | |
TCP Checksums | | | | | | |
 Sender compute checksum |4.2.2.7 |x| | | | |
 Receiver check checksum |4.2.2.7 |x| | | | |
 | | | | | | |
Use clock-driven ISN selection |4.2.2.9 |x| | | | |
 | | | | | | |
Opening Connections | | | | | | |
 Support simultaneous open attempts |4.2.2.10|x| | | | |
 SYN-RCVD remembers last state |4.2.2.11|x| | | | |
 Passive Open call interfere with others |4.2.2.18| | | | |x|
 Function: simultan. LISTENs for same port |4.2.2.18|x| | | | |
 Ask IP for src address for SYN if necc. |4.2.3.7 |x| | | | |
 Otherwise, use local addr of conn. |4.2.3.7 |x| | | | |
 OPEN to broadcast/multicast IP Address |4.2.3.14| | | | |x|
 Silently discard seg to bcast/mcast addr |4.2.3.14|x| | | | |

Internet Engineering Task Force [Page 109]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 | | | | | | |
Closing Connections | | | | | | |
 RST can contain data |4.2.2.12| |x| | | |
 Inform application of aborted conn |4.2.2.13|x| | | | |
 Half-duplex close connections |4.2.2.13| | |x| | |
 Send RST to indicate data lost |4.2.2.13| |x| | | |
 In TIME-WAIT state for 2xMSL seconds |4.2.2.13|x| | | | |
 Accept SYN from TIME-WAIT state |4.2.2.13| | |x| | |
 | | | | | | |
Retransmissions | | | | | | |
 Jacobson Slow Start algorithm |4.2.2.15|x| | | | |
 Jacobson Congestion-Avoidance algorithm |4.2.2.15|x| | | | |
 Retransmit with same IP ident |4.2.2.15| | |x| | |
 Karn’s algorithm |4.2.3.1 |x| | | | |
 Jacobson’s RTO estimation alg. |4.2.3.1 |x| | | | |
 Exponential backoff |4.2.3.1 |x| | | | |
 SYN RTO calc same as data |4.2.3.1 | |x| | | |
 Recommended initial values and bounds |4.2.3.1 | |x| | | |
 | | | | | | |
Generating ACK’s: | | | | | | |
 Queue out-of-order segments |4.2.2.20| |x| | | |
 Process all Q’d before send ACK |4.2.2.20|x| | | | |
 Send ACK for out-of-order segment |4.2.2.21| | |x| | |
 Delayed ACK’s |4.2.3.2 | |x| | | |
 Delay < 0.5 seconds |4.2.3.2 |x| | | | |
 Every 2nd full-sized segment ACK’d |4.2.3.2 |x| | | | |
 Receiver SWS-Avoidance Algorithm |4.2.3.3 |x| | | | |
 | | | | | | |
Sending data | | | | | | |
 Configurable TTL |4.2.2.19|x| | | | |
 Sender SWS-Avoidance Algorithm |4.2.3.4 |x| | | | |
 Nagle algorithm |4.2.3.4 | |x| | | |
 Application can disable Nagle algorithm |4.2.3.4 |x| | | | |
 | | | | | | |
Connection Failures: | | | | | | |
 Negative advice to IP on R1 retxs |4.2.3.5 |x| | | | |
 Close connection on R2 retxs |4.2.3.5 |x| | | | |
 ALP can set R2 |4.2.3.5 |x| | | | |1
 Inform ALP of R1<=retxs<R2 |4.2.3.5 | |x| | | |1
 Recommended values for R1, R2 |4.2.3.5 | |x| | | |
 Same mechanism for SYNs |4.2.3.5 |x| | | | |
 R2 at least 3 minutes for SYN |4.2.3.5 |x| | | | |
 | | | | | | |
Send Keep-alive Packets: |4.2.3.6 | | |x| | |
 - Application can request |4.2.3.6 |x| | | | |
 - Default is "off" |4.2.3.6 |x| | | | |
 - Only send if idle for interval |4.2.3.6 |x| | | | |
 - Interval configurable |4.2.3.6 |x| | | | |

Internet Engineering Task Force [Page 110]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 - Default at least 2 hrs. |4.2.3.6 |x| | | | |
 - Tolerant of lost ACK’s |4.2.3.6 |x| | | | |
 | | | | | | |
IP Options | | | | | | |
 Ignore options TCP doesn’t understand |4.2.3.8 |x| | | | |
 Time Stamp support |4.2.3.8 | | |x| | |
 Record Route support |4.2.3.8 | | |x| | |
 Source Route: | | | | | | |
 ALP can specify |4.2.3.8 |x| | | | |1
 Overrides src rt in datagram |4.2.3.8 |x| | | | |
 Build return route from src rt |4.2.3.8 |x| | | | |
 Later src route overrides |4.2.3.8 | |x| | | |
 | | | | | | |
Receiving ICMP Messages from IP |4.2.3.9 |x| | | | |
 Dest. Unreach (0,1,5) => inform ALP |4.2.3.9 | |x| | | |
 Dest. Unreach (0,1,5) => abort conn |4.2.3.9 | | | | |x|
 Dest. Unreach (2-4) => abort conn |4.2.3.9 | |x| | | |
 Source Quench => slow start |4.2.3.9 | |x| | | |
 Time Exceeded => tell ALP, don’t abort |4.2.3.9 | |x| | | |
 Param Problem => tell ALP, don’t abort |4.2.3.9 | |x| | | |
 | | | | | | |
Address Validation | | | | | | |
 Reject OPEN call to invalid IP address |4.2.3.10|x| | | | |
 Reject SYN from invalid IP address |4.2.3.10|x| | | | |
 Silently discard SYN to bcast/mcast addr |4.2.3.10|x| | | | |
 | | | | | | |
TCP/ALP Interface Services | | | | | | |
 Error Report mechanism |4.2.4.1 |x| | | | |
 ALP can disable Error Report Routine |4.2.4.1 | |x| | | |
 ALP can specify TOS for sending |4.2.4.2 |x| | | | |
 Passed unchanged to IP |4.2.4.2 | |x| | | |
 ALP can change TOS during connection |4.2.4.2 | |x| | | |
 Pass received TOS up to ALP |4.2.4.2 | | |x| | |
 FLUSH call |4.2.4.3 | | |x| | |
 Optional local IP addr parm. in OPEN |4.2.4.4 |x| | | | |
---|--------|-|-|-|-|-|--
---|--------|-|-|-|-|-|--

FOOTNOTES:

(1) "ALP" means Application-Layer program.

Internet Engineering Task Force [Page 111]

RFC1122 TRANSPORT LAYER -- TCP October 1989

5. REFERENCES

INTRODUCTORY REFERENCES

[INTRO:1] "Requirements for Internet Hosts -- Application and Support,"
 IETF Host Requirements Working Group, R. Braden, Ed., RFC-1123,
 October 1989.

[INTRO:2] "Requirements for Internet Gateways," R. Braden and J.
 Postel, RFC-1009, June 1987.

[INTRO:3] "DDN Protocol Handbook," NIC-50004, NIC-50005, NIC-50006,
 (three volumes), SRI International, December 1985.

[INTRO:4] "Official Internet Protocols," J. Reynolds and J. Postel,
 RFC-1011, May 1987.

 This document is republished periodically with new RFC numbers; the
 latest version must be used.

[INTRO:5] "Protocol Document Order Information," O. Jacobsen and J.
 Postel, RFC-980, March 1986.

[INTRO:6] "Assigned Numbers," J. Reynolds and J. Postel, RFC-1010, May
 1987.

 This document is republished periodically with new RFC numbers; the
 latest version must be used.

[INTRO:7] "Modularity and Efficiency in Protocol Implementations," D.
 Clark, RFC-817, July 1982.

[INTRO:8] "The Structuring of Systems Using Upcalls," D. Clark, 10th ACM
 SOSP, Orcas Island, Washington, December 1985.

Secondary References:

[INTRO:9] "A Protocol for Packet Network Intercommunication," V. Cerf
 and R. Kahn, IEEE Transactions on Communication, May 1974.

[INTRO:10] "The ARPA Internet Protocol," J. Postel, C. Sunshine, and D.
 Cohen, Computer Networks, Vol. 5, No. 4, July 1981.

[INTRO:11] "The DARPA Internet Protocol Suite," B. Leiner, J. Postel,
 R. Cole and D. Mills, Proceedings INFOCOM 85, IEEE, Washington DC,

Internet Engineering Task Force [Page 112]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 March 1985. Also in: IEEE Communications Magazine, March 1985.
 Also available as ISI-RS-85-153.

[INTRO:12] "Final Text of DIS8473, Protocol for Providing the
 Connectionless Mode Network Service," ANSI, published as RFC-994,
 March 1986.

[INTRO:13] "End System to Intermediate System Routing Exchange
 Protocol," ANSI X3S3.3, published as RFC-995, April 1986.

LINK LAYER REFERENCES

[LINK:1] "Trailer Encapsulations," S. Leffler and M. Karels, RFC-893,
 April 1984.

[LINK:2] "An Ethernet Address Resolution Protocol," D. Plummer, RFC-826,
 November 1982.

[LINK:3] "A Standard for the Transmission of IP Datagrams over Ethernet
 Networks," C. Hornig, RFC-894, April 1984.

[LINK:4] "A Standard for the Transmission of IP Datagrams over IEEE 802
 "Networks," J. Postel and J. Reynolds, RFC-1042, February 1988.

 This RFC contains a great deal of information of importance to
 Internet implementers planning to use IEEE 802 networks.

IP LAYER REFERENCES

[IP:1] "Internet Protocol (IP)," J. Postel, RFC-791, September 1981.

[IP:2] "Internet Control Message Protocol (ICMP)," J. Postel, RFC-792,
 September 1981.

[IP:3] "Internet Standard Subnetting Procedure," J. Mogul and J. Postel,
 RFC-950, August 1985.

[IP:4] "Host Extensions for IP Multicasting," S. Deering, RFC-1112,
 August 1989.

[IP:5] "Military Standard Internet Protocol," MIL-STD-1777, Department
 of Defense, August 1983.

 This specification, as amended by RFC-963, is intended to describe

Internet Engineering Task Force [Page 113]

RFC1122 TRANSPORT LAYER -- TCP October 1989

 the Internet Protocol but has some serious omissions (e.g., the
 mandatory subnet extension [IP:3] and the optional multicasting
 extension [IP:4]). It is also out of date. If there is a
 conflict, RFC-791, RFC-792, and RFC-950 must be taken as
 authoritative, while the present document is authoritative over
 all.

[IP:6] "Some Problems with the Specification of the Military Standard
 Internet Protocol," D. Sidhu, RFC-963, November 1985.

[IP:7] "The TCP Maximum Segment Size and Related Topics," J. Postel,
 RFC-879, November 1983.

 Discusses and clarifies the relationship between the TCP Maximum
 Segment Size option and the IP datagram size.

[IP:8] "Internet Protocol Security Options," B. Schofield, RFC-1108,
 October 1989.

[IP:9] "Fragmentation Considered Harmful," C. Kent and J. Mogul, ACM
 SIGCOMM-87, August 1987. Published as ACM Comp Comm Review, Vol.
 17, no. 5.

 This useful paper discusses the problems created by Internet
 fragmentation and presents alternative solutions.

[IP:10] "IP Datagram Reassembly Algorithms," D. Clark, RFC-815, July
 1982.

 This and the following paper should be read by every implementor.

[IP:11] "Fault Isolation and Recovery," D. Clark, RFC-816, July 1982.

SECONDARY IP REFERENCES:

[IP:12] "Broadcasting Internet Datagrams in the Presence of Subnets," J.
 Mogul, RFC-922, October 1984.

[IP:13] "Name, Addresses, Ports, and Routes," D. Clark, RFC-814, July
 1982.

[IP:14] "Something a Host Could Do with Source Quench: The Source Quench
 Introduced Delay (SQUID)," W. Prue and J. Postel, RFC-1016, July
 1987.

 This RFC first described directed broadcast addresses. However,
 the bulk of the RFC is concerned with gateways, not hosts.

Internet Engineering Task Force [Page 114]

RFC1122 TRANSPORT LAYER -- TCP October 1989

UDP REFERENCES:

[UDP:1] "User Datagram Protocol," J. Postel, RFC-768, August 1980.

TCP REFERENCES:

[TCP:1] "Transmission Control Protocol," J. Postel, RFC-793, September
 1981.

[TCP:2] "Transmission Control Protocol," MIL-STD-1778, US Department of
 Defense, August 1984.

 This specification as amended by RFC-964 is intended to describe
 the same protocol as RFC-793 [TCP:1]. If there is a conflict,
 RFC-793 takes precedence, and the present document is authoritative
 over both.

[TCP:3] "Some Problems with the Specification of the Military Standard
 Transmission Control Protocol," D. Sidhu and T. Blumer, RFC-964,
 November 1985.

[TCP:4] "The TCP Maximum Segment Size and Related Topics," J. Postel,
 RFC-879, November 1983.

[TCP:5] "Window and Acknowledgment Strategy in TCP," D. Clark, RFC-813,
 July 1982.

[TCP:6] "Round Trip Time Estimation," P. Karn & C. Partridge, ACM
 SIGCOMM-87, August 1987.

[TCP:7] "Congestion Avoidance and Control," V. Jacobson, ACM SIGCOMM-88,
 August 1988.

SECONDARY TCP REFERENCES:

[TCP:8] "Modularity and Efficiency in Protocol Implementation," D.
 Clark, RFC-817, July 1982.

Internet Engineering Task Force [Page 115]

RFC1122 TRANSPORT LAYER -- TCP October 1989

[TCP:9] "Congestion Control in IP/TCP," J. Nagle, RFC-896, January 1984.

[TCP:10] "Computing the Internet Checksum," R. Braden, D. Borman, and C.
 Partridge, RFC-1071, September 1988.

[TCP:11] "TCP Extensions for Long-Delay Paths," V. Jacobson & R. Braden,
 RFC-1072, October 1988.

Security Considerations

 There are many security issues in the communication layers of host
 software, but a full discussion is beyond the scope of this RFC.

 The Internet architecture generally provides little protection
 against spoofing of IP source addresses, so any security mechanism
 that is based upon verifying the IP source address of a datagram
 should be treated with suspicion. However, in restricted
 environments some source-address checking may be possible. For
 example, there might be a secure LAN whose gateway to the rest of the
 Internet discarded any incoming datagram with a source address that
 spoofed the LAN address. In this case, a host on the LAN could use
 the source address to test for local vs. remote source. This problem
 is complicated by source routing, and some have suggested that
 source-routed datagram forwarding by hosts (see Section 3.3.5) should
 be outlawed for security reasons.

 Security-related issues are mentioned in sections concerning the IP
 Security option (Section 3.2.1.8), the ICMP Parameter Problem message
 (Section 3.2.2.5), IP options in UDP datagrams (Section 4.1.3.2), and
 reserved TCP ports (Section 4.2.2.1).

Author’s Address

 Robert Braden
 USC/Information Sciences Institute
 4676 Admiralty Way
 Marina del Rey, CA 90292-6695

 Phone: (213) 822 1511

 EMail: Braden@ISI.EDU

Internet Engineering Task Force [Page 116]

==

Network Working Group Internet Engineering Task Force
Request for Comments: 1123 R. Braden, Editor
 October 1989

 Requirements for Internet Hosts -- Application and Support

Status of This Memo

 This RFC is an official specification for the Internet community. It
 incorporates by reference, amends, corrects, and supplements the
 primary protocol standards documents relating to hosts. Distribution
 of this document is unlimited.

Summary

 This RFC is one of a pair that defines and discusses the requirements
 for Internet host software. This RFC covers the application and
 support protocols; its companion RFC-1122 covers the communication
 protocol layers: link layer, IP layer, and transport layer.

 Table of Contents

 1. INTRODUCTION ... 5
 1.1 The Internet Architecture 6
 1.2 General Considerations 6
 1.2.1 Continuing Internet Evolution 6
 1.2.2 Robustness Principle 7
 1.2.3 Error Logging 8
 1.2.4 Configuration 8
 1.3 Reading this Document 10
 1.3.1 Organization 10
 1.3.2 Requirements 10
 1.3.3 Terminology 11
 1.4 Acknowledgments .. 12

 2. GENERAL ISSUES ... 13
 2.1 Host Names and Numbers 13
 2.2 Using Domain Name Service 13
 2.3 Applications on Multihomed hosts 14
 2.4 Type-of-Service .. 14
 2.5 GENERAL APPLICATION REQUIREMENTS SUMMARY 15

Internet Engineering Task Force [Page 1]

RFC1123 INTRODUCTION October 1989

 3. REMOTE LOGIN -- TELNET PROTOCOL 16
 3.1 INTRODUCTION ... 16
 3.2 PROTOCOL WALK-THROUGH 16
 3.2.1 Option Negotiation 16
 3.2.2 Telnet Go-Ahead Function 16
 3.2.3 Control Functions 17
 3.2.4 Telnet "Synch" Signal 18
 3.2.5 NVT Printer and Keyboard 19
 3.2.6 Telnet Command Structure 20
 3.2.7 Telnet Binary Option 20
 3.2.8 Telnet Terminal-Type Option 20
 3.3 SPECIFIC ISSUES .. 21
 3.3.1 Telnet End-of-Line Convention 21
 3.3.2 Data Entry Terminals 23
 3.3.3 Option Requirements 24
 3.3.4 Option Initiation 24
 3.3.5 Telnet Linemode Option 25
 3.4 TELNET/USER INTERFACE 25
 3.4.1 Character Set Transparency 25
 3.4.2 Telnet Commands 26
 3.4.3 TCP Connection Errors 26
 3.4.4 Non-Default Telnet Contact Port 26
 3.4.5 Flushing Output 26
 3.5. TELNET REQUIREMENTS SUMMARY 27

 4. FILE TRANSFER .. 29
 4.1 FILE TRANSFER PROTOCOL -- FTP 29
 4.1.1 INTRODUCTION 29
 4.1.2. PROTOCOL WALK-THROUGH 29
 4.1.2.1 LOCAL Type 29
 4.1.2.2 Telnet Format Control 30
 4.1.2.3 Page Structure 30
 4.1.2.4 Data Structure Transformations 30
 4.1.2.5 Data Connection Management 31
 4.1.2.6 PASV Command 31
 4.1.2.7 LIST and NLST Commands 31
 4.1.2.8 SITE Command 32
 4.1.2.9 STOU Command 32
 4.1.2.10 Telnet End-of-line Code 32
 4.1.2.11 FTP Replies 33
 4.1.2.12 Connections 34
 4.1.2.13 Minimum Implementation; RFC-959 Section 34
 4.1.3 SPECIFIC ISSUES 35
 4.1.3.1 Non-standard Command Verbs 35
 4.1.3.2 Idle Timeout 36
 4.1.3.3 Concurrency of Data and Control 36
 4.1.3.4 FTP Restart Mechanism 36
 4.1.4 FTP/USER INTERFACE 39

Internet Engineering Task Force [Page 2]

RFC1123 INTRODUCTION October 1989

 4.1.4.1 Pathname Specification 39
 4.1.4.2 "QUOTE" Command 40
 4.1.4.3 Displaying Replies to User 40
 4.1.4.4 Maintaining Synchronization 40
 4.1.5 FTP REQUIREMENTS SUMMARY 41
 4.2 TRIVIAL FILE TRANSFER PROTOCOL -- TFTP 44
 4.2.1 INTRODUCTION 44
 4.2.2 PROTOCOL WALK-THROUGH 44
 4.2.2.1 Transfer Modes 44
 4.2.2.2 UDP Header 44
 4.2.3 SPECIFIC ISSUES 44
 4.2.3.1 Sorcerer’s Apprentice Syndrome 44
 4.2.3.2 Timeout Algorithms 46
 4.2.3.3 Extensions 46
 4.2.3.4 Access Control 46
 4.2.3.5 Broadcast Request 46
 4.2.4 TFTP REQUIREMENTS SUMMARY 47

 5. ELECTRONIC MAIL -- SMTP and RFC-822 48
 5.1 INTRODUCTION ... 48
 5.2 PROTOCOL WALK-THROUGH 48
 5.2.1 The SMTP Model 48
 5.2.2 Canonicalization 49
 5.2.3 VRFY and EXPN Commands 50
 5.2.4 SEND, SOML, and SAML Commands 50
 5.2.5 HELO Command 50
 5.2.6 Mail Relay .. 51
 5.2.7 RCPT Command 52
 5.2.8 DATA Command 53
 5.2.9 Command Syntax 54
 5.2.10 SMTP Replies 54
 5.2.11 Transparency 55
 5.2.12 WKS Use in MX Processing 55
 5.2.13 RFC-822 Message Specification 55
 5.2.14 RFC-822 Date and Time Specification 55
 5.2.15 RFC-822 Syntax Change 56
 5.2.16 RFC-822 Local-part 56
 5.2.17 Domain Literals 57
 5.2.18 Common Address Formatting Errors 58
 5.2.19 Explicit Source Routes 58
 5.3 SPECIFIC ISSUES .. 59
 5.3.1 SMTP Queueing Strategies 59
 5.3.1.1 Sending Strategy 59
 5.3.1.2 Receiving strategy 61
 5.3.2 Timeouts in SMTP 61
 5.3.3 Reliable Mail Receipt 63
 5.3.4 Reliable Mail Transmission 63
 5.3.5 Domain Name Support 65

Internet Engineering Task Force [Page 3]

RFC1123 INTRODUCTION October 1989

 5.3.6 Mailing Lists and Aliases 65
 5.3.7 Mail Gatewaying 66
 5.3.8 Maximum Message Size 68
 5.4 SMTP REQUIREMENTS SUMMARY 69

 6. SUPPORT SERVICES .. 72
 6.1 DOMAIN NAME TRANSLATION 72
 6.1.1 INTRODUCTION 72
 6.1.2 PROTOCOL WALK-THROUGH 72
 6.1.2.1 Resource Records with Zero TTL 73
 6.1.2.2 QCLASS Values 73
 6.1.2.3 Unused Fields 73
 6.1.2.4 Compression 73
 6.1.2.5 Misusing Configuration Info 73
 6.1.3 SPECIFIC ISSUES 74
 6.1.3.1 Resolver Implementation 74
 6.1.3.2 Transport Protocols 75
 6.1.3.3 Efficient Resource Usage 77
 6.1.3.4 Multihomed Hosts 78
 6.1.3.5 Extensibility 79
 6.1.3.6 Status of RR Types 79
 6.1.3.7 Robustness 80
 6.1.3.8 Local Host Table 80
 6.1.4 DNS USER INTERFACE 81
 6.1.4.1 DNS Administration 81
 6.1.4.2 DNS User Interface 81
 6.1.4.3 Interface Abbreviation Facilities 82
 6.1.5 DOMAIN NAME SYSTEM REQUIREMENTS SUMMARY 84
 6.2 HOST INITIALIZATION 87
 6.2.1 INTRODUCTION 87
 6.2.2 REQUIREMENTS 87
 6.2.2.1 Dynamic Configuration 87
 6.2.2.2 Loading Phase 89
 6.3 REMOTE MANAGEMENT 90
 6.3.1 INTRODUCTION 90
 6.3.2 PROTOCOL WALK-THROUGH 90
 6.3.3 MANAGEMENT REQUIREMENTS SUMMARY 92

 7. REFERENCES ... 93

Internet Engineering Task Force [Page 4]

RFC1123 INTRODUCTION October 1989

1. INTRODUCTION

 This document is one of a pair that defines and discusses the
 requirements for host system implementations of the Internet protocol
 suite. This RFC covers the applications layer and support protocols.
 Its companion RFC, "Requirements for Internet Hosts -- Communications
 Layers" [INTRO:1] covers the lower layer protocols: transport layer,
 IP layer, and link layer.

 These documents are intended to provide guidance for vendors,
 implementors, and users of Internet communication software. They
 represent the consensus of a large body of technical experience and
 wisdom, contributed by members of the Internet research and vendor
 communities.

 This RFC enumerates standard protocols that a host connected to the
 Internet must use, and it incorporates by reference the RFCs and
 other documents describing the current specifications for these
 protocols. It corrects errors in the referenced documents and adds
 additional discussion and guidance for an implementor.

 For each protocol, this document also contains an explicit set of
 requirements, recommendations, and options. The reader must
 understand that the list of requirements in this document is
 incomplete by itself; the complete set of requirements for an
 Internet host is primarily defined in the standard protocol
 specification documents, with the corrections, amendments, and
 supplements contained in this RFC.

 A good-faith implementation of the protocols that was produced after
 careful reading of the RFC’s and with some interaction with the
 Internet technical community, and that followed good communications
 software engineering practices, should differ from the requirements
 of this document in only minor ways. Thus, in many cases, the
 "requirements" in this RFC are already stated or implied in the
 standard protocol documents, so that their inclusion here is, in a
 sense, redundant. However, they were included because some past
 implementation has made the wrong choice, causing problems of
 interoperability, performance, and/or robustness.

 This document includes discussion and explanation of many of the
 requirements and recommendations. A simple list of requirements
 would be dangerous, because:

 o Some required features are more important than others, and some
 features are optional.

 o There may be valid reasons why particular vendor products that

Internet Engineering Task Force [Page 5]

RFC1123 INTRODUCTION October 1989

 are designed for restricted contexts might choose to use
 different specifications.

 However, the specifications of this document must be followed to meet
 the general goal of arbitrary host interoperation across the
 diversity and complexity of the Internet system. Although most
 current implementations fail to meet these requirements in various
 ways, some minor and some major, this specification is the ideal
 towards which we need to move.

 These requirements are based on the current level of Internet
 architecture. This document will be updated as required to provide
 additional clarifications or to include additional information in
 those areas in which specifications are still evolving.

 This introductory section begins with general advice to host software
 vendors, and then gives some guidance on reading the rest of the
 document. Section 2 contains general requirements that may be
 applicable to all application and support protocols. Sections 3, 4,
 and 5 contain the requirements on protocols for the three major
 applications: Telnet, file transfer, and electronic mail,
 respectively. Section 6 covers the support applications: the domain
 name system, system initialization, and management. Finally, all
 references will be found in Section 7.

 1.1 The Internet Architecture

 For a brief introduction to the Internet architecture from a host
 viewpoint, see Section 1.1 of [INTRO:1]. That section also
 contains recommended references for general background on the
 Internet architecture.

 1.2 General Considerations

 There are two important lessons that vendors of Internet host
 software have learned and which a new vendor should consider
 seriously.

 1.2.1 Continuing Internet Evolution

 The enormous growth of the Internet has revealed problems of
 management and scaling in a large datagram-based packet
 communication system. These problems are being addressed, and
 as a result there will be continuing evolution of the
 specifications described in this document. These changes will
 be carefully planned and controlled, since there is extensive
 participation in this planning by the vendors and by the
 organizations responsible for operations of the networks.

Internet Engineering Task Force [Page 6]

RFC1123 INTRODUCTION October 1989

 Development, evolution, and revision are characteristic of
 computer network protocols today, and this situation will
 persist for some years. A vendor who develops computer
 communication software for the Internet protocol suite (or any
 other protocol suite!) and then fails to maintain and update
 that software for changing specifications is going to leave a
 trail of unhappy customers. The Internet is a large
 communication network, and the users are in constant contact
 through it. Experience has shown that knowledge of
 deficiencies in vendor software propagates quickly through the
 Internet technical community.

 1.2.2 Robustness Principle

 At every layer of the protocols, there is a general rule whose
 application can lead to enormous benefits in robustness and
 interoperability:

 "Be liberal in what you accept, and
 conservative in what you send"

 Software should be written to deal with every conceivable
 error, no matter how unlikely; sooner or later a packet will
 come in with that particular combination of errors and
 attributes, and unless the software is prepared, chaos can
 ensue. In general, it is best to assume that the network is
 filled with malevolent entities that will send in packets
 designed to have the worst possible effect. This assumption
 will lead to suitable protective design, although the most
 serious problems in the Internet have been caused by
 unenvisaged mechanisms triggered by low-probability events;
 mere human malice would never have taken so devious a course!

 Adaptability to change must be designed into all levels of
 Internet host software. As a simple example, consider a
 protocol specification that contains an enumeration of values
 for a particular header field -- e.g., a type field, a port
 number, or an error code; this enumeration must be assumed to
 be incomplete. Thus, if a protocol specification defines four
 possible error codes, the software must not break when a fifth
 code shows up. An undefined code might be logged (see below),
 but it must not cause a failure.

 The second part of the principle is almost as important:
 software on other hosts may contain deficiencies that make it
 unwise to exploit legal but obscure protocol features. It is
 unwise to stray far from the obvious and simple, lest untoward
 effects result elsewhere. A corollary of this is "watch out

Internet Engineering Task Force [Page 7]

RFC1123 INTRODUCTION October 1989

 for misbehaving hosts"; host software should be prepared, not
 just to survive other misbehaving hosts, but also to cooperate
 to limit the amount of disruption such hosts can cause to the
 shared communication facility.

 1.2.3 Error Logging

 The Internet includes a great variety of host and gateway
 systems, each implementing many protocols and protocol layers,
 and some of these contain bugs and mis-features in their
 Internet protocol software. As a result of complexity,
 diversity, and distribution of function, the diagnosis of user
 problems is often very difficult.

 Problem diagnosis will be aided if host implementations include
 a carefully designed facility for logging erroneous or
 "strange" protocol events. It is important to include as much
 diagnostic information as possible when an error is logged. In
 particular, it is often useful to record the header(s) of a
 packet that caused an error. However, care must be taken to
 ensure that error logging does not consume prohibitive amounts
 of resources or otherwise interfere with the operation of the
 host.

 There is a tendency for abnormal but harmless protocol events
 to overflow error logging files; this can be avoided by using a
 "circular" log, or by enabling logging only while diagnosing a
 known failure. It may be useful to filter and count duplicate
 successive messages. One strategy that seems to work well is:
 (1) always count abnormalities and make such counts accessible
 through the management protocol (see Section 6.3); and (2)
 allow the logging of a great variety of events to be
 selectively enabled. For example, it might useful to be able
 to "log everything" or to "log everything for host X".

 Note that different managements may have differing policies
 about the amount of error logging that they want normally
 enabled in a host. Some will say, "if it doesn’t hurt me, I
 don’t want to know about it", while others will want to take a
 more watchful and aggressive attitude about detecting and
 removing protocol abnormalities.

 1.2.4 Configuration

 It would be ideal if a host implementation of the Internet
 protocol suite could be entirely self-configuring. This would
 allow the whole suite to be implemented in ROM or cast into
 silicon, it would simplify diskless workstations, and it would

Internet Engineering Task Force [Page 8]

RFC1123 INTRODUCTION October 1989

 be an immense boon to harried LAN administrators as well as
 system vendors. We have not reached this ideal; in fact, we
 are not even close.

 At many points in this document, you will find a requirement
 that a parameter be a configurable option. There are several
 different reasons behind such requirements. In a few cases,
 there is current uncertainty or disagreement about the best
 value, and it may be necessary to update the recommended value
 in the future. In other cases, the value really depends on
 external factors -- e.g., the size of the host and the
 distribution of its communication load, or the speeds and
 topology of nearby networks -- and self-tuning algorithms are
 unavailable and may be insufficient. In some cases,
 configurability is needed because of administrative
 requirements.

 Finally, some configuration options are required to communicate
 with obsolete or incorrect implementations of the protocols,
 distributed without sources, that unfortunately persist in many
 parts of the Internet. To make correct systems coexist with
 these faulty systems, administrators often have to "mis-
 configure" the correct systems. This problem will correct
 itself gradually as the faulty systems are retired, but it
 cannot be ignored by vendors.

 When we say that a parameter must be configurable, we do not
 intend to require that its value be explicitly read from a
 configuration file at every boot time. We recommend that
 implementors set up a default for each parameter, so a
 configuration file is only necessary to override those defaults
 that are inappropriate in a particular installation. Thus, the
 configurability requirement is an assurance that it will be
 POSSIBLE to override the default when necessary, even in a
 binary-only or ROM-based product.

 This document requires a particular value for such defaults in
 some cases. The choice of default is a sensitive issue when
 the configuration item controls the accommodation to existing
 faulty systems. If the Internet is to converge successfully to
 complete interoperability, the default values built into
 implementations must implement the official protocol, not
 "mis-configurations" to accommodate faulty implementations.
 Although marketing considerations have led some vendors to
 choose mis-configuration defaults, we urge vendors to choose
 defaults that will conform to the standard.

 Finally, we note that a vendor needs to provide adequate

Internet Engineering Task Force [Page 9]

RFC1123 INTRODUCTION October 1989

 documentation on all configuration parameters, their limits and
 effects.

 1.3 Reading this Document

 1.3.1 Organization

 In general, each major section is organized into the following
 subsections:

 (1) Introduction

 (2) Protocol Walk-Through -- considers the protocol
 specification documents section-by-section, correcting
 errors, stating requirements that may be ambiguous or
 ill-defined, and providing further clarification or
 explanation.

 (3) Specific Issues -- discusses protocol design and
 implementation issues that were not included in the walk-
 through.

 (4) Interfaces -- discusses the service interface to the next
 higher layer.

 (5) Summary -- contains a summary of the requirements of the
 section.

 Under many of the individual topics in this document, there is
 parenthetical material labeled "DISCUSSION" or
 "IMPLEMENTATION". This material is intended to give
 clarification and explanation of the preceding requirements
 text. It also includes some suggestions on possible future
 directions or developments. The implementation material
 contains suggested approaches that an implementor may want to
 consider.

 The summary sections are intended to be guides and indexes to
 the text, but are necessarily cryptic and incomplete. The
 summaries should never be used or referenced separately from
 the complete RFC.

 1.3.2 Requirements

 In this document, the words that are used to define the
 significance of each particular requirement are capitalized.
 These words are:

Internet Engineering Task Force [Page 10]

RFC1123 INTRODUCTION October 1989

 * "MUST"

 This word or the adjective "REQUIRED" means that the item
 is an absolute requirement of the specification.

 * "SHOULD"

 This word or the adjective "RECOMMENDED" means that there
 may exist valid reasons in particular circumstances to
 ignore this item, but the full implications should be
 understood and the case carefully weighed before choosing
 a different course.

 * "MAY"

 This word or the adjective "OPTIONAL" means that this item
 is truly optional. One vendor may choose to include the
 item because a particular marketplace requires it or
 because it enhances the product, for example; another
 vendor may omit the same item.

 An implementation is not compliant if it fails to satisfy one
 or more of the MUST requirements for the protocols it
 implements. An implementation that satisfies all the MUST and
 all the SHOULD requirements for its protocols is said to be
 "unconditionally compliant"; one that satisfies all the MUST
 requirements but not all the SHOULD requirements for its
 protocols is said to be "conditionally compliant".

 1.3.3 Terminology

 This document uses the following technical terms:

 Segment
 A segment is the unit of end-to-end transmission in the
 TCP protocol. A segment consists of a TCP header followed
 by application data. A segment is transmitted by
 encapsulation in an IP datagram.

 Message
 This term is used by some application layer protocols
 (particularly SMTP) for an application data unit.

 Datagram
 A [UDP] datagram is the unit of end-to-end transmission in
 the UDP protocol.

Internet Engineering Task Force [Page 11]

RFC1123 INTRODUCTION October 1989

 Multihomed
 A host is said to be multihomed if it has multiple IP
 addresses to connected networks.

 1.4 Acknowledgments

 This document incorporates contributions and comments from a large
 group of Internet protocol experts, including representatives of
 university and research labs, vendors, and government agencies.
 It was assembled primarily by the Host Requirements Working Group
 of the Internet Engineering Task Force (IETF).

 The Editor would especially like to acknowledge the tireless
 dedication of the following people, who attended many long
 meetings and generated 3 million bytes of electronic mail over the
 past 18 months in pursuit of this document: Philip Almquist, Dave
 Borman (Cray Research), Noel Chiappa, Dave Crocker (DEC), Steve
 Deering (Stanford), Mike Karels (Berkeley), Phil Karn (Bellcore),
 John Lekashman (NASA), Charles Lynn (BBN), Keith McCloghrie (TWG),
 Paul Mockapetris (ISI), Thomas Narten (Purdue), Craig Partridge
 (BBN), Drew Perkins (CMU), and James Van Bokkelen (FTP Software).

 In addition, the following people made major contributions to the
 effort: Bill Barns (Mitre), Steve Bellovin (AT&T), Mike Brescia
 (BBN), Ed Cain (DCA), Annette DeSchon (ISI), Martin Gross (DCA),
 Phill Gross (NRI), Charles Hedrick (Rutgers), Van Jacobson (LBL),
 John Klensin (MIT), Mark Lottor (SRI), Milo Medin (NASA), Bill
 Melohn (Sun Microsystems), Greg Minshall (Kinetics), Jeff Mogul
 (DEC), John Mullen (CMC), Jon Postel (ISI), John Romkey (Epilogue
 Technology), and Mike StJohns (DCA). The following also made
 significant contributions to particular areas: Eric Allman
 (Berkeley), Rob Austein (MIT), Art Berggreen (ACC), Keith Bostic
 (Berkeley), Vint Cerf (NRI), Wayne Hathaway (NASA), Matt Korn
 (IBM), Erik Naggum (Naggum Software, Norway), Robert Ullmann
 (Prime Computer), David Waitzman (BBN), Frank Wancho (USA), Arun
 Welch (Ohio State), Bill Westfield (Cisco), and Rayan Zachariassen
 (Toronto).

 We are grateful to all, including any contributors who may have
 been inadvertently omitted from this list.

Internet Engineering Task Force [Page 12]

RFC1123 APPLICATIONS LAYER -- GENERAL October 1989

2. GENERAL ISSUES

 This section contains general requirements that may be applicable to
 all application-layer protocols.

 2.1 Host Names and Numbers

 The syntax of a legal Internet host name was specified in RFC-952
 [DNS:4]. One aspect of host name syntax is hereby changed: the
 restriction on the first character is relaxed to allow either a
 letter or a digit. Host software MUST support this more liberal
 syntax.

 Host software MUST handle host names of up to 63 characters and
 SHOULD handle host names of up to 255 characters.

 Whenever a user inputs the identity of an Internet host, it SHOULD
 be possible to enter either (1) a host domain name or (2) an IP
 address in dotted-decimal ("#.#.#.#") form. The host SHOULD check
 the string syntactically for a dotted-decimal number before
 looking it up in the Domain Name System.

 DISCUSSION:
 This last requirement is not intended to specify the complete
 syntactic form for entering a dotted-decimal host number;
 that is considered to be a user-interface issue. For
 example, a dotted-decimal number must be enclosed within
 "[]" brackets for SMTP mail (see Section 5.2.17). This
 notation could be made universal within a host system,
 simplifying the syntactic checking for a dotted-decimal
 number.

 If a dotted-decimal number can be entered without such
 identifying delimiters, then a full syntactic check must be
 made, because a segment of a host domain name is now allowed
 to begin with a digit and could legally be entirely numeric
 (see Section 6.1.2.4). However, a valid host name can never
 have the dotted-decimal form #.#.#.#, since at least the
 highest-level component label will be alphabetic.

 2.2 Using Domain Name Service

 Host domain names MUST be translated to IP addresses as described
 in Section 6.1.

 Applications using domain name services MUST be able to cope with
 soft error conditions. Applications MUST wait a reasonable
 interval between successive retries due to a soft error, and MUST

Internet Engineering Task Force [Page 13]

RFC1123 APPLICATIONS LAYER -- GENERAL October 1989

 allow for the possibility that network problems may deny service
 for hours or even days.

 An application SHOULD NOT rely on the ability to locate a WKS
 record containing an accurate listing of all services at a
 particular host address, since the WKS RR type is not often used
 by Internet sites. To confirm that a service is present, simply
 attempt to use it.

 2.3 Applications on Multihomed hosts

 When the remote host is multihomed, the name-to-address
 translation will return a list of alternative IP addresses. As
 specified in Section 6.1.3.4, this list should be in order of
 decreasing preference. Application protocol implementations
 SHOULD be prepared to try multiple addresses from the list until
 success is obtained. More specific requirements for SMTP are
 given in Section 5.3.4.

 When the local host is multihomed, a UDP-based request/response
 application SHOULD send the response with an IP source address
 that is the same as the specific destination address of the UDP
 request datagram. The "specific destination address" is defined
 in the "IP Addressing" section of the companion RFC [INTRO:1].

 Similarly, a server application that opens multiple TCP
 connections to the same client SHOULD use the same local IP
 address for all.

 2.4 Type-of-Service

 Applications MUST select appropriate TOS values when they invoke
 transport layer services, and these values MUST be configurable.
 Note that a TOS value contains 5 bits, of which only the most-
 significant 3 bits are currently defined; the other two bits MUST
 be zero.

 DISCUSSION:
 As gateway algorithms are developed to implement Type-of-
 Service, the recommended values for various application
 protocols may change. In addition, it is likely that
 particular combinations of users and Internet paths will want
 non-standard TOS values. For these reasons, the TOS values
 must be configurable.

 See the latest version of the "Assigned Numbers" RFC
 [INTRO:5] for the recommended TOS values for the major
 application protocols.

Internet Engineering Task Force [Page 14]

RFC1123 APPLICATIONS LAYER -- GENERAL October 1989

 2.5 GENERAL APPLICATION REQUIREMENTS SUMMARY

 | | | | |S| |
 | | | | |H| |F
 | | | | |O|M|o
 | | |S| |U|U|o
 | | |H| |L|S|t
 | |M|O| |D|T|n
 | |U|U|M| | |o
 | |S|L|A|N|N|t
 | |T|D|Y|O|O|t
FEATURE	SECTION				T	T	e
 | | | | | | |
User interfaces: | | | | | | |
 Allow host name to begin with digit |2.1 |x| | | | |
 Host names of up to 635 characters |2.1 |x| | | | |
 Host names of up to 255 characters |2.1 | |x| | | |
 Support dotted-decimal host numbers |2.1 | |x| | | |
 Check syntactically for dotted-dec first |2.1 | |x| | | |
 | | | | | | |
Map domain names per Section 6.1 |2.2 |x| | | | |
Cope with soft DNS errors |2.2 |x| | | | |
 Reasonable interval between retries |2.2 |x| | | | |
 Allow for long outages |2.2 |x| | | | |
Expect WKS records to be available |2.2 | | | |x| |
 | | | | | | |
Try multiple addr’s for remote multihomed host |2.3 | |x| | | |
UDP reply src addr is specific dest of request |2.3 | |x| | | |
Use same IP addr for related TCP connections |2.3 | |x| | | |
Specify appropriate TOS values |2.4 |x| | | | |
 TOS values configurable |2.4 |x| | | | |
 Unused TOS bits zero |2.4 |x| | | | |
 | | | | | | |
 | | | | | | |

Internet Engineering Task Force [Page 15]

RFC1123 REMOTE LOGIN -- TELNET October 1989

3. REMOTE LOGIN -- TELNET PROTOCOL

 3.1 INTRODUCTION

 Telnet is the standard Internet application protocol for remote
 login. It provides the encoding rules to link a user’s
 keyboard/display on a client ("user") system with a command
 interpreter on a remote server system. A subset of the Telnet
 protocol is also incorporated within other application protocols,
 e.g., FTP and SMTP.

 Telnet uses a single TCP connection, and its normal data stream
 ("Network Virtual Terminal" or "NVT" mode) is 7-bit ASCII with
 escape sequences to embed control functions. Telnet also allows
 the negotiation of many optional modes and functions.

 The primary Telnet specification is to be found in RFC-854
 [TELNET:1], while the options are defined in many other RFCs; see
 Section 7 for references.

 3.2 PROTOCOL WALK-THROUGH

 3.2.1 Option Negotiation: RFC-854, pp. 2-3

 Every Telnet implementation MUST include option negotiation and
 subnegotiation machinery [TELNET:2].

 A host MUST carefully follow the rules of RFC-854 to avoid
 option-negotiation loops. A host MUST refuse (i.e, reply
 WONT/DONT to a DO/WILL) an unsupported option. Option
 negotiation SHOULD continue to function (even if all requests
 are refused) throughout the lifetime of a Telnet connection.

 If all option negotiations fail, a Telnet implementation MUST
 default to, and support, an NVT.

 DISCUSSION:
 Even though more sophisticated "terminals" and supporting
 option negotiations are becoming the norm, all
 implementations must be prepared to support an NVT for any
 user-server communication.

 3.2.2 Telnet Go-Ahead Function: RFC-854, p. 5, and RFC-858

 On a host that never sends the Telnet command Go Ahead (GA),
 the Telnet Server MUST attempt to negotiate the Suppress Go
 Ahead option (i.e., send "WILL Suppress Go Ahead"). A User or
 Server Telnet MUST always accept negotiation of the Suppress Go

Internet Engineering Task Force [Page 16]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 Ahead option.

 When it is driving a full-duplex terminal for which GA has no
 meaning, a User Telnet implementation MAY ignore GA commands.

 DISCUSSION:
 Half-duplex ("locked-keyboard") line-at-a-time terminals
 for which the Go-Ahead mechanism was designed have largely
 disappeared from the scene. It turned out to be difficult
 to implement sending the Go-Ahead signal in many operating
 systems, even some systems that support native half-duplex
 terminals. The difficulty is typically that the Telnet
 server code does not have access to information about
 whether the user process is blocked awaiting input from
 the Telnet connection, i.e., it cannot reliably determine
 when to send a GA command. Therefore, most Telnet Server
 hosts do not send GA commands.

 The effect of the rules in this section is to allow either
 end of a Telnet connection to veto the use of GA commands.

 There is a class of half-duplex terminals that is still
 commercially important: "data entry terminals," which
 interact in a full-screen manner. However, supporting
 data entry terminals using the Telnet protocol does not
 require the Go Ahead signal; see Section 3.3.2.

 3.2.3 Control Functions: RFC-854, pp. 7-8

 The list of Telnet commands has been extended to include EOR
 (End-of-Record), with code 239 [TELNET:9].

 Both User and Server Telnets MAY support the control functions
 EOR, EC, EL, and Break, and MUST support AO, AYT, DM, IP, NOP,
 SB, and SE.

 A host MUST be able to receive and ignore any Telnet control
 functions that it does not support.

 DISCUSSION:
 Note that a Server Telnet is required to support the
 Telnet IP (Interrupt Process) function, even if the server
 host has an equivalent in-stream function (e.g., Control-C
 in many systems). The Telnet IP function may be stronger
 than an in-stream interrupt command, because of the out-
 of-band effect of TCP urgent data.

 The EOR control function may be used to delimit the

Internet Engineering Task Force [Page 17]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 stream. An important application is data entry terminal
 support (see Section 3.3.2). There was concern that since
 EOR had not been defined in RFC-854, a host that was not
 prepared to correctly ignore unknown Telnet commands might
 crash if it received an EOR. To protect such hosts, the
 End-of-Record option [TELNET:9] was introduced; however, a
 properly implemented Telnet program will not require this
 protection.

 3.2.4 Telnet "Synch" Signal: RFC-854, pp. 8-10

 When it receives "urgent" TCP data, a User or Server Telnet
 MUST discard all data except Telnet commands until the DM (and
 end of urgent) is reached.

 When it sends Telnet IP (Interrupt Process), a User Telnet
 SHOULD follow it by the Telnet "Synch" sequence, i.e., send as
 TCP urgent data the sequence "IAC IP IAC DM". The TCP urgent
 pointer points to the DM octet.

 When it receives a Telnet IP command, a Server Telnet MAY send
 a Telnet "Synch" sequence back to the user, to flush the output
 stream. The choice ought to be consistent with the way the
 server operating system behaves when a local user interrupts a
 process.

 When it receives a Telnet AO command, a Server Telnet MUST send
 a Telnet "Synch" sequence back to the user, to flush the output
 stream.

 A User Telnet SHOULD have the capability of flushing output
 when it sends a Telnet IP; see also Section 3.4.5.

 DISCUSSION:
 There are three possible ways for a User Telnet to flush
 the stream of server output data:

 (1) Send AO after IP.

 This will cause the server host to send a "flush-
 buffered-output" signal to its operating system.
 However, the AO may not take effect locally, i.e.,
 stop terminal output at the User Telnet end, until
 the Server Telnet has received and processed the AO
 and has sent back a "Synch".

 (2) Send DO TIMING-MARK [TELNET:7] after IP, and discard
 all output locally until a WILL/WONT TIMING-MARK is

Internet Engineering Task Force [Page 18]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 received from the Server Telnet.

 Since the DO TIMING-MARK will be processed after the
 IP at the server, the reply to it should be in the
 right place in the output data stream. However, the
 TIMING-MARK will not send a "flush buffered output"
 signal to the server operating system. Whether or
 not this is needed is dependent upon the server
 system.

 (3) Do both.

 The best method is not entirely clear, since it must
 accommodate a number of existing server hosts that do not
 follow the Telnet standards in various ways. The safest
 approach is probably to provide a user-controllable option
 to select (1), (2), or (3).

 3.2.5 NVT Printer and Keyboard: RFC-854, p. 11

 In NVT mode, a Telnet SHOULD NOT send characters with the
 high-order bit 1, and MUST NOT send it as a parity bit.
 Implementations that pass the high-order bit to applications
 SHOULD negotiate binary mode (see Section 3.2.6).

 DISCUSSION:
 Implementors should be aware that a strict reading of
 RFC-854 allows a client or server expecting NVT ASCII to
 ignore characters with the high-order bit set. In
 general, binary mode is expected to be used for
 transmission of an extended (beyond 7-bit) character set
 with Telnet.

 However, there exist applications that really need an 8-
 bit NVT mode, which is currently not defined, and these
 existing applications do set the high-order bit during
 part or all of the life of a Telnet connection. Note that
 binary mode is not the same as 8-bit NVT mode, since
 binary mode turns off end-of-line processing. For this
 reason, the requirements on the high-order bit are stated
 as SHOULD, not MUST.

 RFC-854 defines a minimal set of properties of a "network
 virtual terminal" or NVT; this is not meant to preclude
 additional features in a real terminal. A Telnet
 connection is fully transparent to all 7-bit ASCII
 characters, including arbitrary ASCII control characters.

Internet Engineering Task Force [Page 19]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 For example, a terminal might support full-screen commands
 coded as ASCII escape sequences; a Telnet implementation
 would pass these sequences as uninterpreted data. Thus,
 an NVT should not be conceived as a terminal type of a
 highly-restricted device.

 3.2.6 Telnet Command Structure: RFC-854, p. 13

 Since options may appear at any point in the data stream, a
 Telnet escape character (known as IAC, with the value 255) to
 be sent as data MUST be doubled.

 3.2.7 Telnet Binary Option: RFC-856

 When the Binary option has been successfully negotiated,
 arbitrary 8-bit characters are allowed. However, the data
 stream MUST still be scanned for IAC characters, any embedded
 Telnet commands MUST be obeyed, and data bytes equal to IAC
 MUST be doubled. Other character processing (e.g., replacing
 CR by CR NUL or by CR LF) MUST NOT be done. In particular,
 there is no end-of-line convention (see Section 3.3.1) in
 binary mode.

 DISCUSSION:
 The Binary option is normally negotiated in both
 directions, to change the Telnet connection from NVT mode
 to "binary mode".

 The sequence IAC EOR can be used to delimit blocks of data
 within a binary-mode Telnet stream.

 3.2.8 Telnet Terminal-Type Option: RFC-1091

 The Terminal-Type option MUST use the terminal type names
 officially defined in the Assigned Numbers RFC [INTRO:5], when
 they are available for the particular terminal. However, the
 receiver of a Terminal-Type option MUST accept any name.

 DISCUSSION:
 RFC-1091 [TELNET:10] updates an earlier version of the
 Terminal-Type option defined in RFC-930. The earlier
 version allowed a server host capable of supporting
 multiple terminal types to learn the type of a particular
 client’s terminal, assuming that each physical terminal
 had an intrinsic type. However, today a "terminal" is
 often really a terminal emulator program running in a PC,
 perhaps capable of emulating a range of terminal types.
 Therefore, RFC-1091 extends the specification to allow a

Internet Engineering Task Force [Page 20]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 more general terminal-type negotiation between User and
 Server Telnets.

 3.3 SPECIFIC ISSUES

 3.3.1 Telnet End-of-Line Convention

 The Telnet protocol defines the sequence CR LF to mean "end-
 of-line". For terminal input, this corresponds to a command-
 completion or "end-of-line" key being pressed on a user
 terminal; on an ASCII terminal, this is the CR key, but it may
 also be labelled "Return" or "Enter".

 When a Server Telnet receives the Telnet end-of-line sequence
 CR LF as input from a remote terminal, the effect MUST be the
 same as if the user had pressed the "end-of-line" key on a
 local terminal. On server hosts that use ASCII, in particular,
 receipt of the Telnet sequence CR LF must cause the same effect
 as a local user pressing the CR key on a local terminal. Thus,
 CR LF and CR NUL MUST have the same effect on an ASCII server
 host when received as input over a Telnet connection.

 A User Telnet MUST be able to send any of the forms: CR LF, CR
 NUL, and LF. A User Telnet on an ASCII host SHOULD have a
 user-controllable mode to send either CR LF or CR NUL when the
 user presses the "end-of-line" key, and CR LF SHOULD be the
 default.

 The Telnet end-of-line sequence CR LF MUST be used to send
 Telnet data that is not terminal-to-computer (e.g., for Server
 Telnet sending output, or the Telnet protocol incorporated
 another application protocol).

 DISCUSSION:
 To allow interoperability between arbitrary Telnet clients
 and servers, the Telnet protocol defined a standard
 representation for a line terminator. Since the ASCII
 character set includes no explicit end-of-line character,
 systems have chosen various representations, e.g., CR, LF,
 and the sequence CR LF. The Telnet protocol chose the CR
 LF sequence as the standard for network transmission.

 Unfortunately, the Telnet protocol specification in RFC-
 854 [TELNET:1] has turned out to be somewhat ambiguous on
 what character(s) should be sent from client to server for
 the "end-of-line" key. The result has been a massive and
 continuing interoperability headache, made worse by
 various faulty implementations of both User and Server

Internet Engineering Task Force [Page 21]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 Telnets.

 Although the Telnet protocol is based on a perfectly
 symmetric model, in a remote login session the role of the
 user at a terminal differs from the role of the server
 host. For example, RFC-854 defines the meaning of CR, LF,
 and CR LF as output from the server, but does not specify
 what the User Telnet should send when the user presses the
 "end-of-line" key on the terminal; this turns out to be
 the point at issue.

 When a user presses the "end-of-line" key, some User
 Telnet implementations send CR LF, while others send CR
 NUL (based on a different interpretation of the same
 sentence in RFC-854). These will be equivalent for a
 correctly-implemented ASCII server host, as discussed
 above. For other servers, a mode in the User Telnet is
 needed.

 The existence of User Telnets that send only CR NUL when
 CR is pressed creates a dilemma for non-ASCII hosts: they
 can either treat CR NUL as equivalent to CR LF in input,
 thus precluding the possibility of entering a "bare" CR,
 or else lose complete interworking.

 Suppose a user on host A uses Telnet to log into a server
 host B, and then execute B’s User Telnet program to log
 into server host C. It is desirable for the Server/User
 Telnet combination on B to be as transparent as possible,
 i.e., to appear as if A were connected directly to C. In
 particular, correct implementation will make B transparent
 to Telnet end-of-line sequences, except that CR LF may be
 translated to CR NUL or vice versa.

 IMPLEMENTATION:
 To understand Telnet end-of-line issues, one must have at
 least a general model of the relationship of Telnet to the
 local operating system. The Server Telnet process is
 typically coupled into the terminal driver software of the
 operating system as a pseudo-terminal. A Telnet end-of-
 line sequence received by the Server Telnet must have the
 same effect as pressing the end-of-line key on a real
 locally-connected terminal.

 Operating systems that support interactive character-at-
 a-time applications (e.g., editors) typically have two
 internal modes for their terminal I/O: a formatted mode,
 in which local conventions for end-of-line and other

Internet Engineering Task Force [Page 22]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 formatting rules have been applied to the data stream, and
 a "raw" mode, in which the application has direct access
 to every character as it was entered. A Server Telnet
 must be implemented in such a way that these modes have
 the same effect for remote as for local terminals. For
 example, suppose a CR LF or CR NUL is received by the
 Server Telnet on an ASCII host. In raw mode, a CR
 character is passed to the application; in formatted mode,
 the local system’s end-of-line convention is used.

 3.3.2 Data Entry Terminals

 DISCUSSION:
 In addition to the line-oriented and character-oriented
 ASCII terminals for which Telnet was designed, there are
 several families of video display terminals that are
 sometimes known as "data entry terminals" or DETs. The
 IBM 3270 family is a well-known example.

 Two Internet protocols have been designed to support
 generic DETs: SUPDUP [TELNET:16, TELNET:17], and the DET
 option [TELNET:18, TELNET:19]. The DET option drives a
 data entry terminal over a Telnet connection using (sub-)
 negotiation. SUPDUP is a completely separate terminal
 protocol, which can be entered from Telnet by negotiation.
 Although both SUPDUP and the DET option have been used
 successfully in particular environments, neither has
 gained general acceptance or wide implementation.

 A different approach to DET interaction has been developed
 for supporting the IBM 3270 family through Telnet,
 although the same approach would be applicable to any DET.
 The idea is to enter a "native DET" mode, in which the
 native DET input/output stream is sent as binary data.
 The Telnet EOR command is used to delimit logical records
 (e.g., "screens") within this binary stream.

 IMPLEMENTATION:
 The rules for entering and leaving native DET mode are as
 follows:

 o The Server uses the Terminal-Type option [TELNET:10]
 to learn that the client is a DET.

 o It is conventional, but not required, that both ends
 negotiate the EOR option [TELNET:9].

 o Both ends negotiate the Binary option [TELNET:3] to

Internet Engineering Task Force [Page 23]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 enter native DET mode.

 o When either end negotiates out of binary mode, the
 other end does too, and the mode then reverts to
 normal NVT.

 3.3.3 Option Requirements

 Every Telnet implementation MUST support the Binary option
 [TELNET:3] and the Suppress Go Ahead option [TELNET:5], and
 SHOULD support the Echo [TELNET:4], Status [TELNET:6], End-of-
 Record [TELNET:9], and Extended Options List [TELNET:8]
 options.

 A User or Server Telnet SHOULD support the Window Size Option
 [TELNET:12] if the local operating system provides the
 corresponding capability.

 DISCUSSION:
 Note that the End-of-Record option only signifies that a
 Telnet can receive a Telnet EOR without crashing;
 therefore, every Telnet ought to be willing to accept
 negotiation of the End-of-Record option. See also the
 discussion in Section 3.2.3.

 3.3.4 Option Initiation

 When the Telnet protocol is used in a client/server situation,
 the server SHOULD initiate negotiation of the terminal
 interaction mode it expects.

 DISCUSSION:
 The Telnet protocol was defined to be perfectly
 symmetrical, but its application is generally asymmetric.
 Remote login has been known to fail because NEITHER side
 initiated negotiation of the required non-default terminal
 modes. It is generally the server that determines the
 preferred mode, so the server needs to initiate the
 negotiation; since the negotiation is symmetric, the user
 can also initiate it.

 A client (User Telnet) SHOULD provide a means for users to
 enable and disable the initiation of option negotiation.

 DISCUSSION:
 A user sometimes needs to connect to an application
 service (e.g., FTP or SMTP) that uses Telnet for its

Internet Engineering Task Force [Page 24]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 control stream but does not support Telnet options. User
 Telnet may be used for this purpose if initiation of
 option negotiation is disabled.

 3.3.5 Telnet Linemode Option

 DISCUSSION:
 An important new Telnet option, LINEMODE [TELNET:12], has
 been proposed. The LINEMODE option provides a standard
 way for a User Telnet and a Server Telnet to agree that
 the client rather than the server will perform terminal
 character processing. When the client has prepared a
 complete line of text, it will send it to the server in
 (usually) one TCP packet. This option will greatly
 decrease the packet cost of Telnet sessions and will also
 give much better user response over congested or long-
 delay networks.

 The LINEMODE option allows dynamic switching between local
 and remote character processing. For example, the Telnet
 connection will automatically negotiate into single-
 character mode while a full screen editor is running, and
 then return to linemode when the editor is finished.

 We expect that when this RFC is released, hosts should
 implement the client side of this option, and may
 implement the server side of this option. To properly
 implement the server side, the server needs to be able to
 tell the local system not to do any input character
 processing, but to remember its current terminal state and
 notify the Server Telnet process whenever the state
 changes. This will allow password echoing and full screen
 editors to be handled properly, for example.

 3.4 TELNET/USER INTERFACE

 3.4.1 Character Set Transparency

 User Telnet implementations SHOULD be able to send or receive
 any 7-bit ASCII character. Where possible, any special
 character interpretations by the user host’s operating system
 SHOULD be bypassed so that these characters can conveniently be
 sent and received on the connection.

 Some character value MUST be reserved as "escape to command
 mode"; conventionally, doubling this character allows it to be
 entered as data. The specific character used SHOULD be user
 selectable.

Internet Engineering Task Force [Page 25]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 On binary-mode connections, a User Telnet program MAY provide
 an escape mechanism for entering arbitrary 8-bit values, if the
 host operating system doesn’t allow them to be entered directly
 from the keyboard.

 IMPLEMENTATION:
 The transparency issues are less pressing on servers, but
 implementors should take care in dealing with issues like:
 masking off parity bits (sent by an older, non-conforming
 client) before they reach programs that expect only NVT
 ASCII, and properly handling programs that request 8-bit
 data streams.

 3.4.2 Telnet Commands

 A User Telnet program MUST provide a user the capability of
 entering any of the Telnet control functions IP, AO, or AYT,
 and SHOULD provide the capability of entering EC, EL, and
 Break.

 3.4.3 TCP Connection Errors

 A User Telnet program SHOULD report to the user any TCP errors
 that are reported by the transport layer (see "TCP/Application
 Layer Interface" section in [INTRO:1]).

 3.4.4 Non-Default Telnet Contact Port

 A User Telnet program SHOULD allow the user to optionally
 specify a non-standard contact port number at the Server Telnet
 host.

 3.4.5 Flushing Output

 A User Telnet program SHOULD provide the user the ability to
 specify whether or not output should be flushed when an IP is
 sent; see Section 3.2.4.

 For any output flushing scheme that causes the User Telnet to
 flush output locally until a Telnet signal is received from the
 Server, there SHOULD be a way for the user to manually restore
 normal output, in case the Server fails to send the expected
 signal.

Internet Engineering Task Force [Page 26]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 3.5. TELNET REQUIREMENTS SUMMARY

 | | | | |S| |
 | | | | |H| |F
 | | | | |O|M|o
 | | |S| |U|U|o
 | | |H| |L|S|t
 | |M|O| |D|T|n
 | |U|U|M| | |o
 | |S|L|A|N|N|t
 | |T|D|Y|O|O|t
FEATURE	SECTION				T	T	e
 | | | | | | |
Option Negotiation |3.2.1 |x| | | | |
 Avoid negotiation loops |3.2.1 |x| | | | |
 Refuse unsupported options |3.2.1 |x| | | | |
 Negotiation OK anytime on connection |3.2.1 | |x| | | |
 Default to NVT |3.2.1 |x| | | | |
 Send official name in Term-Type option |3.2.8 |x| | | | |
 Accept any name in Term-Type option |3.2.8 |x| | | | |
 Implement Binary, Suppress-GA options |3.3.3 |x| | | | |
 Echo, Status, EOL, Ext-Opt-List options |3.3.3 | |x| | | |
 Implement Window-Size option if appropriate |3.3.3 | |x| | | |
 Server initiate mode negotiations |3.3.4 | |x| | | |
 User can enable/disable init negotiations |3.3.4 | |x| | | |
 | | | | | | |
Go-Aheads | | | | | | |
 Non-GA server negotiate SUPPRESS-GA option |3.2.2 |x| | | | |
 User or Server accept SUPPRESS-GA option |3.2.2 |x| | | | |
 User Telnet ignore GA’s |3.2.2 | | |x| | |
 | | | | | | |
Control Functions | | | | | | |
 Support SE NOP DM IP AO AYT SB |3.2.3 |x| | | | |
 Support EOR EC EL Break |3.2.3 | | |x| | |
 Ignore unsupported control functions |3.2.3 |x| | | | |
 User, Server discard urgent data up to DM |3.2.4 |x| | | | |
 User Telnet send "Synch" after IP, AO, AYT |3.2.4 | |x| | | |
 Server Telnet reply Synch to IP |3.2.4 | | |x| | |
 Server Telnet reply Synch to AO |3.2.4 |x| | | | |
 User Telnet can flush output when send IP |3.2.4 | |x| | | |
 | | | | | | |
Encoding | | | | | | |
 Send high-order bit in NVT mode |3.2.5 | | | |x| |
 Send high-order bit as parity bit |3.2.5 | | | | |x|
 Negot. BINARY if pass high-ord. bit to applic |3.2.5 | |x| | | |
 Always double IAC data byte |3.2.6 |x| | | | |

Internet Engineering Task Force [Page 27]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 Double IAC data byte in binary mode |3.2.7 |x| | | | |
 Obey Telnet cmds in binary mode |3.2.7 |x| | | | |
 End-of-line, CR NUL in binary mode |3.2.7 | | | | |x|
 | | | | | | |
End-of-Line | | | | | | |
 EOL at Server same as local end-of-line |3.3.1 |x| | | | |
 ASCII Server accept CR LF or CR NUL for EOL |3.3.1 |x| | | | |
 User Telnet able to send CR LF, CR NUL, or LF |3.3.1 |x| | | | |
 ASCII user able to select CR LF/CR NUL |3.3.1 | |x| | | |
 User Telnet default mode is CR LF |3.3.1 | |x| | | |
 Non-interactive uses CR LF for EOL |3.3.1 |x| | | | |
 | | | | | | |
User Telnet interface | | | | | | |
 Input & output all 7-bit characters |3.4.1 | |x| | | |
 Bypass local op sys interpretation |3.4.1 | |x| | | |
 Escape character |3.4.1 |x| | | | |
 User-settable escape character |3.4.1 | |x| | | |
 Escape to enter 8-bit values |3.4.1 | | |x| | |
 Can input IP, AO, AYT |3.4.2 |x| | | | |
 Can input EC, EL, Break |3.4.2 | |x| | | |
 Report TCP connection errors to user |3.4.3 | |x| | | |
 Optional non-default contact port |3.4.4 | |x| | | |
 Can spec: output flushed when IP sent |3.4.5 | |x| | | |
 Can manually restore output mode |3.4.5 | |x| | | |
 | | | | | | |

Internet Engineering Task Force [Page 28]

RFC1123 FILE TRANSFER -- FTP October 1989

4. FILE TRANSFER

 4.1 FILE TRANSFER PROTOCOL -- FTP

 4.1.1 INTRODUCTION

 The File Transfer Protocol FTP is the primary Internet standard
 for file transfer. The current specification is contained in
 RFC-959 [FTP:1].

 FTP uses separate simultaneous TCP connections for control and
 for data transfer. The FTP protocol includes many features,
 some of which are not commonly implemented. However, for every
 feature in FTP, there exists at least one implementation. The
 minimum implementation defined in RFC-959 was too small, so a
 somewhat larger minimum implementation is defined here.

 Internet users have been unnecessarily burdened for years by
 deficient FTP implementations. Protocol implementors have
 suffered from the erroneous opinion that implementing FTP ought
 to be a small and trivial task. This is wrong, because FTP has
 a user interface, because it has to deal (correctly) with the
 whole variety of communication and operating system errors that
 may occur, and because it has to handle the great diversity of
 real file systems in the world.

 4.1.2. PROTOCOL WALK-THROUGH

 4.1.2.1 LOCAL Type: RFC-959 Section 3.1.1.4

 An FTP program MUST support TYPE I ("IMAGE" or binary type)
 as well as TYPE L 8 ("LOCAL" type with logical byte size 8).
 A machine whose memory is organized into m-bit words, where
 m is not a multiple of 8, MAY also support TYPE L m.

 DISCUSSION:
 The command "TYPE L 8" is often required to transfer
 binary data between a machine whose memory is organized
 into (e.g.) 36-bit words and a machine with an 8-bit
 byte organization. For an 8-bit byte machine, TYPE L 8
 is equivalent to IMAGE.

 "TYPE L m" is sometimes specified to the FTP programs
 on two m-bit word machines to ensure the correct
 transfer of a native-mode binary file from one machine
 to the other. However, this command should have the
 same effect on these machines as "TYPE I".

Internet Engineering Task Force [Page 29]

RFC1123 FILE TRANSFER -- FTP October 1989

 4.1.2.2 Telnet Format Control: RFC-959 Section 3.1.1.5.2

 A host that makes no distinction between TYPE N and TYPE T
 SHOULD implement TYPE T to be identical to TYPE N.

 DISCUSSION:
 This provision should ease interoperation with hosts
 that do make this distinction.

 Many hosts represent text files internally as strings
 of ASCII characters, using the embedded ASCII format
 effector characters (LF, BS, FF, ...) to control the
 format when a file is printed. For such hosts, there
 is no distinction between "print" files and other
 files. However, systems that use record structured
 files typically need a special format for printable
 files (e.g., ASA carriage control). For the latter
 hosts, FTP allows a choice of TYPE N or TYPE T.

 4.1.2.3 Page Structure: RFC-959 Section 3.1.2.3 and Appendix I

 Implementation of page structure is NOT RECOMMENDED in
 general. However, if a host system does need to implement
 FTP for "random access" or "holey" files, it MUST use the
 defined page structure format rather than define a new
 private FTP format.

 4.1.2.4 Data Structure Transformations: RFC-959 Section 3.1.2

 An FTP transformation between record-structure and file-
 structure SHOULD be invertible, to the extent possible while
 making the result useful on the target host.

 DISCUSSION:
 RFC-959 required strict invertibility between record-
 structure and file-structure, but in practice,
 efficiency and convenience often preclude it.
 Therefore, the requirement is being relaxed. There are
 two different objectives for transferring a file:
 processing it on the target host, or just storage. For
 storage, strict invertibility is important. For
 processing, the file created on the target host needs
 to be in the format expected by application programs on
 that host.

 As an example of the conflict, imagine a record-
 oriented operating system that requires some data files
 to have exactly 80 bytes in each record. While STORing

Internet Engineering Task Force [Page 30]

RFC1123 FILE TRANSFER -- FTP October 1989

 a file on such a host, an FTP Server must be able to
 pad each line or record to 80 bytes; a later retrieval
 of such a file cannot be strictly invertible.

 4.1.2.5 Data Connection Management: RFC-959 Section 3.3

 A User-FTP that uses STREAM mode SHOULD send a PORT command
 to assign a non-default data port before each transfer
 command is issued.

 DISCUSSION:
 This is required because of the long delay after a TCP
 connection is closed until its socket pair can be
 reused, to allow multiple transfers during a single FTP
 session. Sending a port command can avoided if a
 transfer mode other than stream is used, by leaving the
 data transfer connection open between transfers.

 4.1.2.6 PASV Command: RFC-959 Section 4.1.2

 A server-FTP MUST implement the PASV command.

 If multiple third-party transfers are to be executed during
 the same session, a new PASV command MUST be issued before
 each transfer command, to obtain a unique port pair.

 IMPLEMENTATION:
 The format of the 227 reply to a PASV command is not
 well standardized. In particular, an FTP client cannot
 assume that the parentheses shown on page 40 of RFC-959
 will be present (and in fact, Figure 3 on page 43 omits
 them). Therefore, a User-FTP program that interprets
 the PASV reply must scan the reply for the first digit
 of the host and port numbers.

 Note that the host number h1,h2,h3,h4 is the IP address
 of the server host that is sending the reply, and that
 p1,p2 is a non-default data transfer port that PASV has
 assigned.

 4.1.2.7 LIST and NLST Commands: RFC-959 Section 4.1.3

 The data returned by an NLST command MUST contain only a
 simple list of legal pathnames, such that the server can use
 them directly as the arguments of subsequent data transfer
 commands for the individual files.

 The data returned by a LIST or NLST command SHOULD use an

Internet Engineering Task Force [Page 31]

RFC1123 FILE TRANSFER -- FTP October 1989

 implied TYPE AN, unless the current type is EBCDIC, in which
 case an implied TYPE EN SHOULD be used.

 DISCUSSION:
 Many FTP clients support macro-commands that will get
 or put files matching a wildcard specification, using
 NLST to obtain a list of pathnames. The expansion of
 "multiple-put" is local to the client, but "multiple-
 get" requires cooperation by the server.

 The implied type for LIST and NLST is designed to
 provide compatibility with existing User-FTPs, and in
 particular with multiple-get commands.

 4.1.2.8 SITE Command: RFC-959 Section 4.1.3

 A Server-FTP SHOULD use the SITE command for non-standard
 features, rather than invent new private commands or
 unstandardized extensions to existing commands.

 4.1.2.9 STOU Command: RFC-959 Section 4.1.3

 The STOU command stores into a uniquely named file. When it
 receives an STOU command, a Server-FTP MUST return the
 actual file name in the "125 Transfer Starting" or the "150
 Opening Data Connection" message that precedes the transfer
 (the 250 reply code mentioned in RFC-959 is incorrect). The
 exact format of these messages is hereby defined to be as
 follows:

 125 FILE: pppp
 150 FILE: pppp

 where pppp represents the unique pathname of the file that
 will be written.

 4.1.2.10 Telnet End-of-line Code: RFC-959, Page 34

 Implementors MUST NOT assume any correspondence between READ
 boundaries on the control connection and the Telnet EOL
 sequences (CR LF).

 DISCUSSION:
 Thus, a server-FTP (or User-FTP) must continue reading
 characters from the control connection until a complete
 Telnet EOL sequence is encountered, before processing
 the command (or response, respectively). Conversely, a
 single READ from the control connection may include

Internet Engineering Task Force [Page 32]

RFC1123 FILE TRANSFER -- FTP October 1989

 more than one FTP command.

 4.1.2.11 FTP Replies: RFC-959 Section 4.2, Page 35

 A Server-FTP MUST send only correctly formatted replies on
 the control connection. Note that RFC-959 (unlike earlier
 versions of the FTP spec) contains no provision for a
 "spontaneous" reply message.

 A Server-FTP SHOULD use the reply codes defined in RFC-959
 whenever they apply. However, a server-FTP MAY use a
 different reply code when needed, as long as the general
 rules of Section 4.2 are followed. When the implementor has
 a choice between a 4xx and 5xx reply code, a Server-FTP
 SHOULD send a 4xx (temporary failure) code when there is any
 reasonable possibility that a failed FTP will succeed a few
 hours later.

 A User-FTP SHOULD generally use only the highest-order digit
 of a 3-digit reply code for making a procedural decision, to
 prevent difficulties when a Server-FTP uses non-standard
 reply codes.

 A User-FTP MUST be able to handle multi-line replies. If
 the implementation imposes a limit on the number of lines
 and if this limit is exceeded, the User-FTP MUST recover,
 e.g., by ignoring the excess lines until the end of the
 multi-line reply is reached.

 A User-FTP SHOULD NOT interpret a 421 reply code ("Service
 not available, closing control connection") specially, but
 SHOULD detect closing of the control connection by the
 server.

 DISCUSSION:
 Server implementations that fail to strictly follow the
 reply rules often cause FTP user programs to hang.
 Note that RFC-959 resolved ambiguities in the reply
 rules found in earlier FTP specifications and must be
 followed.

 It is important to choose FTP reply codes that properly
 distinguish between temporary and permanent failures,
 to allow the successful use of file transfer client
 daemons. These programs depend on the reply codes to
 decide whether or not to retry a failed transfer; using
 a permanent failure code (5xx) for a temporary error
 will cause these programs to give up unnecessarily.

Internet Engineering Task Force [Page 33]

RFC1123 FILE TRANSFER -- FTP October 1989

 When the meaning of a reply matches exactly the text
 shown in RFC-959, uniformity will be enhanced by using
 the RFC-959 text verbatim. However, a Server-FTP
 implementor is encouraged to choose reply text that
 conveys specific system-dependent information, when
 appropriate.

 4.1.2.12 Connections: RFC-959 Section 5.2

 The words "and the port used" in the second paragraph of
 this section of RFC-959 are erroneous (historical), and they
 should be ignored.

 On a multihomed server host, the default data transfer port
 (L-1) MUST be associated with the same local IP address as
 the corresponding control connection to port L.

 A user-FTP MUST NOT send any Telnet controls other than
 SYNCH and IP on an FTP control connection. In particular, it
 MUST NOT attempt to negotiate Telnet options on the control
 connection. However, a server-FTP MUST be capable of
 accepting and refusing Telnet negotiations (i.e., sending
 DONT/WONT).

 DISCUSSION:
 Although the RFC says: "Server- and User- processes
 should follow the conventions for the Telnet
 protocol...[on the control connection]", it is not the
 intent that Telnet option negotiation is to be
 employed.

 4.1.2.13 Minimum Implementation; RFC-959 Section 5.1

 The following commands and options MUST be supported by
 every server-FTP and user-FTP, except in cases where the
 underlying file system or operating system does not allow or
 support a particular command.

 Type: ASCII Non-print, IMAGE, LOCAL 8
 Mode: Stream
 Structure: File, Record*
 Commands:
 USER, PASS, ACCT,
 PORT, PASV,
 TYPE, MODE, STRU,
 RETR, STOR, APPE,
 RNFR, RNTO, DELE,
 CWD, CDUP, RMD, MKD, PWD,

Internet Engineering Task Force [Page 34]

RFC1123 FILE TRANSFER -- FTP October 1989

 LIST, NLST,
 SYST, STAT,
 HELP, NOOP, QUIT.

 *Record structure is REQUIRED only for hosts whose file
 systems support record structure.

 DISCUSSION:
 Vendors are encouraged to implement a larger subset of
 the protocol. For example, there are important
 robustness features in the protocol (e.g., Restart,
 ABOR, block mode) that would be an aid to some Internet
 users but are not widely implemented.

 A host that does not have record structures in its file
 system may still accept files with STRU R, recording
 the byte stream literally.

 4.1.3 SPECIFIC ISSUES

 4.1.3.1 Non-standard Command Verbs

 FTP allows "experimental" commands, whose names begin with
 "X". If these commands are subsequently adopted as
 standards, there may still be existing implementations using
 the "X" form. At present, this is true for the directory
 commands:

 RFC-959 "Experimental"

 MKD XMKD
 RMD XRMD
 PWD XPWD
 CDUP XCUP
 CWD XCWD

 All FTP implementations SHOULD recognize both forms of these
 commands, by simply equating them with extra entries in the
 command lookup table.

 IMPLEMENTATION:
 A User-FTP can access a server that supports only the
 "X" forms by implementing a mode switch, or
 automatically using the following procedure: if the
 RFC-959 form of one of the above commands is rejected
 with a 500 or 502 response code, then try the
 experimental form; any other response would be passed
 to the user.

Internet Engineering Task Force [Page 35]

RFC1123 FILE TRANSFER -- FTP October 1989

 4.1.3.2 Idle Timeout

 A Server-FTP process SHOULD have an idle timeout, which will
 terminate the process and close the control connection if
 the server is inactive (i.e., no command or data transfer in
 progress) for a long period of time. The idle timeout time
 SHOULD be configurable, and the default should be at least 5
 minutes.

 A client FTP process ("User-PI" in RFC-959) will need
 timeouts on responses only if it is invoked from a program.

 DISCUSSION:
 Without a timeout, a Server-FTP process may be left
 pending indefinitely if the corresponding client
 crashes without closing the control connection.

 4.1.3.3 Concurrency of Data and Control

 DISCUSSION:
 The intent of the designers of FTP was that a user
 should be able to send a STAT command at any time while
 data transfer was in progress and that the server-FTP
 would reply immediately with status -- e.g., the number
 of bytes transferred so far. Similarly, an ABOR
 command should be possible at any time during a data
 transfer.

 Unfortunately, some small-machine operating systems
 make such concurrent programming difficult, and some
 other implementers seek minimal solutions, so some FTP
 implementations do not allow concurrent use of the data
 and control connections. Even such a minimal server
 must be prepared to accept and defer a STAT or ABOR
 command that arrives during data transfer.

 4.1.3.4 FTP Restart Mechanism

 The description of the 110 reply on pp. 40-41 of RFC-959 is
 incorrect; the correct description is as follows. A restart
 reply message, sent over the control connection from the
 receiving FTP to the User-FTP, has the format:

 110 MARK ssss = rrrr

 Here:

 * ssss is a text string that appeared in a Restart Marker

Internet Engineering Task Force [Page 36]

RFC1123 FILE TRANSFER -- FTP October 1989

 in the data stream and encodes a position in the
 sender’s file system;

 * rrrr encodes the corresponding position in the
 receiver’s file system.

 The encoding, which is specific to a particular file system
 and network implementation, is always generated and
 interpreted by the same system, either sender or receiver.

 When an FTP that implements restart receives a Restart
 Marker in the data stream, it SHOULD force the data to that
 point to be written to stable storage before encoding the
 corresponding position rrrr. An FTP sending Restart Markers
 MUST NOT assume that 110 replies will be returned
 synchronously with the data, i.e., it must not await a 110
 reply before sending more data.

 Two new reply codes are hereby defined for errors
 encountered in restarting a transfer:

 554 Requested action not taken: invalid REST parameter.

 A 554 reply may result from a FTP service command that
 follows a REST command. The reply indicates that the
 existing file at the Server-FTP cannot be repositioned
 as specified in the REST.

 555 Requested action not taken: type or stru mismatch.

 A 555 reply may result from an APPE command or from any
 FTP service command following a REST command. The
 reply indicates that there is some mismatch between the
 current transfer parameters (type and stru) and the
 attributes of the existing file.

 DISCUSSION:
 Note that the FTP Restart mechanism requires that Block
 or Compressed mode be used for data transfer, to allow
 the Restart Markers to be included within the data
 stream. The frequency of Restart Markers can be low.

 Restart Markers mark a place in the data stream, but
 the receiver may be performing some transformation on
 the data as it is stored into stable storage. In
 general, the receiver’s encoding must include any state
 information necessary to restart this transformation at
 any point of the FTP data stream. For example, in TYPE

Internet Engineering Task Force [Page 37]

RFC1123 FILE TRANSFER -- FTP October 1989

 A transfers, some receiver hosts transform CR LF
 sequences into a single LF character on disk. If a
 Restart Marker happens to fall between CR and LF, the
 receiver must encode in rrrr that the transfer must be
 restarted in a "CR has been seen and discarded" state.

 Note that the Restart Marker is required to be encoded
 as a string of printable ASCII characters, regardless
 of the type of the data.

 RFC-959 says that restart information is to be returned
 "to the user". This should not be taken literally. In
 general, the User-FTP should save the restart
 information (ssss,rrrr) in stable storage, e.g., append
 it to a restart control file. An empty restart control
 file should be created when the transfer first starts
 and deleted automatically when the transfer completes
 successfully. It is suggested that this file have a
 name derived in an easily-identifiable manner from the
 name of the file being transferred and the remote host
 name; this is analogous to the means used by many text
 editors for naming "backup" files.

 There are three cases for FTP restart.

 (1) User-to-Server Transfer

 The User-FTP puts Restart Markers <ssss> at
 convenient places in the data stream. When the
 Server-FTP receives a Marker, it writes all prior
 data to disk, encodes its file system position and
 transformation state as rrrr, and returns a "110
 MARK ssss = rrrr" reply over the control
 connection. The User-FTP appends the pair
 (ssss,rrrr) to its restart control file.

 To restart the transfer, the User-FTP fetches the
 last (ssss,rrrr) pair from the restart control
 file, repositions its local file system and
 transformation state using ssss, and sends the
 command "REST rrrr" to the Server-FTP.

 (2) Server-to-User Transfer

 The Server-FTP puts Restart Markers <ssss> at
 convenient places in the data stream. When the
 User-FTP receives a Marker, it writes all prior
 data to disk, encodes its file system position and

Internet Engineering Task Force [Page 38]

RFC1123 FILE TRANSFER -- FTP October 1989

 transformation state as rrrr, and appends the pair
 (rrrr,ssss) to its restart control file.

 To restart the transfer, the User-FTP fetches the
 last (rrrr,ssss) pair from the restart control
 file, repositions its local file system and
 transformation state using rrrr, and sends the
 command "REST ssss" to the Server-FTP.

 (3) Server-to-Server ("Third-Party") Transfer

 The sending Server-FTP puts Restart Markers <ssss>
 at convenient places in the data stream. When it
 receives a Marker, the receiving Server-FTP writes
 all prior data to disk, encodes its file system
 position and transformation state as rrrr, and
 sends a "110 MARK ssss = rrrr" reply over the
 control connection to the User. The User-FTP
 appends the pair (ssss,rrrr) to its restart
 control file.

 To restart the transfer, the User-FTP fetches the
 last (ssss,rrrr) pair from the restart control
 file, sends "REST ssss" to the sending Server-FTP,
 and sends "REST rrrr" to the receiving Server-FTP.

 4.1.4 FTP/USER INTERFACE

 This section discusses the user interface for a User-FTP
 program.

 4.1.4.1 Pathname Specification

 Since FTP is intended for use in a heterogeneous
 environment, User-FTP implementations MUST support remote
 pathnames as arbitrary character strings, so that their form
 and content are not limited by the conventions of the local
 operating system.

 DISCUSSION:
 In particular, remote pathnames can be of arbitrary
 length, and all the printing ASCII characters as well
 as space (0x20) must be allowed. RFC-959 allows a
 pathname to contain any 7-bit ASCII character except CR
 or LF.

Internet Engineering Task Force [Page 39]

RFC1123 FILE TRANSFER -- FTP October 1989

 4.1.4.2 "QUOTE" Command

 A User-FTP program MUST implement a "QUOTE" command that
 will pass an arbitrary character string to the server and
 display all resulting response messages to the user.

 To make the "QUOTE" command useful, a User-FTP SHOULD send
 transfer control commands to the server as the user enters
 them, rather than saving all the commands and sending them
 to the server only when a data transfer is started.

 DISCUSSION:
 The "QUOTE" command is essential to allow the user to
 access servers that require system-specific commands
 (e.g., SITE or ALLO), or to invoke new or optional
 features that are not implemented by the User-FTP. For
 example, "QUOTE" may be used to specify "TYPE A T" to
 send a print file to hosts that require the
 distinction, even if the User-FTP does not recognize
 that TYPE.

 4.1.4.3 Displaying Replies to User

 A User-FTP SHOULD display to the user the full text of all
 error reply messages it receives. It SHOULD have a
 "verbose" mode in which all commands it sends and the full
 text and reply codes it receives are displayed, for
 diagnosis of problems.

 4.1.4.4 Maintaining Synchronization

 The state machine in a User-FTP SHOULD be forgiving of
 missing and unexpected reply messages, in order to maintain
 command synchronization with the server.

Internet Engineering Task Force [Page 40]

RFC1123 FILE TRANSFER -- FTP October 1989

 4.1.5 FTP REQUIREMENTS SUMMARY

 | | | | |S| |
 | | | | |H| |F
 | | | | |O|M|o
 | | |S| |U|U|o
 | | |H| |L|S|t
 | |M|O| |D|T|n
 | |U|U|M| | |o
 | |S|L|A|N|N|t
 | |T|D|Y|O|O|t
FEATURE	SECTION				T	T	e
Implement TYPE T if same as TYPE N |4.1.2.2 | |x| | | |
File/Record transform invertible if poss. |4.1.2.4 | |x| | | |
User-FTP send PORT cmd for stream mode |4.1.2.5 | |x| | | |
Server-FTP implement PASV |4.1.2.6 |x| | | | |
 PASV is per-transfer |4.1.2.6 |x| | | | |
NLST reply usable in RETR cmds |4.1.2.7 |x| | | | |
Implied type for LIST and NLST |4.1.2.7 | |x| | | |
SITE cmd for non-standard features |4.1.2.8 | |x| | | |
STOU cmd return pathname as specified |4.1.2.9 |x| | | | |
Use TCP READ boundaries on control conn. |4.1.2.10 | | | | |x|
 | | | | | | |
Server-FTP send only correct reply format |4.1.2.11 |x| | | | |
Server-FTP use defined reply code if poss. |4.1.2.11 | |x| | | |
 New reply code following Section 4.2 |4.1.2.11 | | |x| | |
User-FTP use only high digit of reply |4.1.2.11 | |x| | | |
User-FTP handle multi-line reply lines |4.1.2.11 |x| | | | |
User-FTP handle 421 reply specially |4.1.2.11 | | | |x| |
 | | | | | | |
Default data port same IP addr as ctl conn |4.1.2.12 |x| | | | |
User-FTP send Telnet cmds exc. SYNCH, IP |4.1.2.12 | | | | |x|
User-FTP negotiate Telnet options |4.1.2.12 | | | | |x|
Server-FTP handle Telnet options |4.1.2.12 |x| | | | |
Handle "Experimental" directory cmds |4.1.3.1 | |x| | | |
Idle timeout in server-FTP |4.1.3.2 | |x| | | |
 Configurable idle timeout |4.1.3.2 | |x| | | |
Receiver checkpoint data at Restart Marker |4.1.3.4 | |x| | | |
Sender assume 110 replies are synchronous |4.1.3.4 | | | | |x|
 | | | | | | |
Support TYPE: | | | | | | |
 ASCII - Non-Print (AN) |4.1.2.13 |x| | | | |
 ASCII - Telnet (AT) -- if same as AN |4.1.2.2 | |x| | | |
 ASCII - Carriage Control (AC) |959 3.1.1.5.2 | | |x| | |
 EBCDIC - (any form) |959 3.1.1.2 | | |x| | |
 IMAGE |4.1.2.1 |x| | | | |
 LOCAL 8 |4.1.2.1 |x| | | | |

Internet Engineering Task Force [Page 41]

RFC1123 FILE TRANSFER -- FTP October 1989

 LOCAL m |4.1.2.1 | | |x| | |2
 | | | | | | |
Support MODE: | | | | | | |
 Stream |4.1.2.13 |x| | | | |
 Block |959 3.4.2 | | |x| | |
 | | | | | | |
Support STRUCTURE: | | | | | | |
 File |4.1.2.13 |x| | | | |
 Record |4.1.2.13 |x| | | | |3
 Page |4.1.2.3 | | | |x| |
 | | | | | | |
Support commands: | | | | | | |
 USER |4.1.2.13 |x| | | | |
 PASS |4.1.2.13 |x| | | | |
 ACCT |4.1.2.13 |x| | | | |
 CWD |4.1.2.13 |x| | | | |
 CDUP |4.1.2.13 |x| | | | |
 SMNT |959 5.3.1 | | |x| | |
 REIN |959 5.3.1 | | |x| | |
 QUIT |4.1.2.13 |x| | | | |
 | | | | | | |
 PORT |4.1.2.13 |x| | | | |
 PASV |4.1.2.6 |x| | | | |
 TYPE |4.1.2.13 |x| | | | |1
 STRU |4.1.2.13 |x| | | | |1
 MODE |4.1.2.13 |x| | | | |1
 | | | | | | |
 RETR |4.1.2.13 |x| | | | |
 STOR |4.1.2.13 |x| | | | |
 STOU |959 5.3.1 | | |x| | |
 APPE |4.1.2.13 |x| | | | |
 ALLO |959 5.3.1 | | |x| | |
 REST |959 5.3.1 | | |x| | |
 RNFR |4.1.2.13 |x| | | | |
 RNTO |4.1.2.13 |x| | | | |
 ABOR |959 5.3.1 | | |x| | |
 DELE |4.1.2.13 |x| | | | |
 RMD |4.1.2.13 |x| | | | |
 MKD |4.1.2.13 |x| | | | |
 PWD |4.1.2.13 |x| | | | |
 LIST |4.1.2.13 |x| | | | |
 NLST |4.1.2.13 |x| | | | |
 SITE |4.1.2.8 | | |x| | |
 STAT |4.1.2.13 |x| | | | |
 SYST |4.1.2.13 |x| | | | |
 HELP |4.1.2.13 |x| | | | |
 NOOP |4.1.2.13 |x| | | | |
 | | | | | | |

Internet Engineering Task Force [Page 42]

RFC1123 FILE TRANSFER -- FTP October 1989

User Interface: | | | | | | |
 Arbitrary pathnames |4.1.4.1 |x| | | | |
 Implement "QUOTE" command |4.1.4.2 |x| | | | |
 Transfer control commands immediately |4.1.4.2 | |x| | | |
 Display error messages to user |4.1.4.3 | |x| | | |
 Verbose mode |4.1.4.3 | |x| | | |
 Maintain synchronization with server |4.1.4.4 | |x| | | |

Footnotes:

(1) For the values shown earlier.

(2) Here m is number of bits in a memory word.

(3) Required for host with record-structured file system, optional
 otherwise.

Internet Engineering Task Force [Page 43]

RFC1123 FILE TRANSFER -- TFTP October 1989

 4.2 TRIVIAL FILE TRANSFER PROTOCOL -- TFTP

 4.2.1 INTRODUCTION

 The Trivial File Transfer Protocol TFTP is defined in RFC-783
 [TFTP:1].

 TFTP provides its own reliable delivery with UDP as its
 transport protocol, using a simple stop-and-wait acknowledgment
 system. Since TFTP has an effective window of only one 512
 octet segment, it can provide good performance only over paths
 that have a small delay*bandwidth product. The TFTP file
 interface is very simple, providing no access control or
 security.

 TFTP’s most important application is bootstrapping a host over
 a local network, since it is simple and small enough to be
 easily implemented in EPROM [BOOT:1, BOOT:2]. Vendors are
 urged to support TFTP for booting.

 4.2.2 PROTOCOL WALK-THROUGH

 The TFTP specification [TFTP:1] is written in an open style,
 and does not fully specify many parts of the protocol.

 4.2.2.1 Transfer Modes: RFC-783, Page 3

 The transfer mode "mail" SHOULD NOT be supported.

 4.2.2.2 UDP Header: RFC-783, Page 17

 The Length field of a UDP header is incorrectly defined; it
 includes the UDP header length (8).

 4.2.3 SPECIFIC ISSUES

 4.2.3.1 Sorcerer’s Apprentice Syndrome

 There is a serious bug, known as the "Sorcerer’s Apprentice
 Syndrome," in the protocol specification. While it does not
 cause incorrect operation of the transfer (the file will
 always be transferred correctly if the transfer completes),
 this bug may cause excessive retransmission, which may cause
 the transfer to time out.

 Implementations MUST contain the fix for this problem: the
 sender (i.e., the side originating the DATA packets) must
 never resend the current DATA packet on receipt of a

Internet Engineering Task Force [Page 44]

RFC1123 FILE TRANSFER -- TFTP October 1989

 duplicate ACK.

 DISCUSSION:
 The bug is caused by the protocol rule that either
 side, on receiving an old duplicate datagram, may
 resend the current datagram. If a packet is delayed in
 the network but later successfully delivered after
 either side has timed out and retransmitted a packet, a
 duplicate copy of the response may be generated. If
 the other side responds to this duplicate with a
 duplicate of its own, then every datagram will be sent
 in duplicate for the remainder of the transfer (unless
 a datagram is lost, breaking the repetition). Worse
 yet, since the delay is often caused by congestion,
 this duplicate transmission will usually causes more
 congestion, leading to more delayed packets, etc.

 The following example may help to clarify this problem.

 TFTP A TFTP B

 (1) Receive ACK X-1
 Send DATA X
 (2) Receive DATA X
 Send ACK X
 (ACK X is delayed in network,
 and A times out):
 (3) Retransmit DATA X

 (4) Receive DATA X again
 Send ACK X again
 (5) Receive (delayed) ACK X
 Send DATA X+1
 (6) Receive DATA X+1
 Send ACK X+1
 (7) Receive ACK X again
 Send DATA X+1 again
 (8) Receive DATA X+1 again
 Send ACK X+1 again
 (9) Receive ACK X+1
 Send DATA X+2
 (10) Receive DATA X+2
 Send ACK X+3
 (11) Receive ACK X+1 again
 Send DATA X+2 again
 (12) Receive DATA X+2 again
 Send ACK X+3 again

Internet Engineering Task Force [Page 45]

RFC1123 FILE TRANSFER -- TFTP October 1989

 Notice that once the delayed ACK arrives, the protocol
 settles down to duplicate all further packets
 (sequences 5-8 and 9-12). The problem is caused not by
 either side timing out, but by both sides
 retransmitting the current packet when they receive a
 duplicate.

 The fix is to break the retransmission loop, as
 indicated above. This is analogous to the behavior of
 TCP. It is then possible to remove the retransmission
 timer on the receiver, since the resent ACK will never
 cause any action; this is a useful simplification where
 TFTP is used in a bootstrap program. It is OK to allow
 the timer to remain, and it may be helpful if the
 retransmitted ACK replaces one that was genuinely lost
 in the network. The sender still requires a retransmit
 timer, of course.

 4.2.3.2 Timeout Algorithms

 A TFTP implementation MUST use an adaptive timeout.

 IMPLEMENTATION:
 TCP retransmission algorithms provide a useful base to
 work from. At least an exponential backoff of
 retransmission timeout is necessary.

 4.2.3.3 Extensions

 A variety of non-standard extensions have been made to TFTP,
 including additional transfer modes and a secure operation
 mode (with passwords). None of these have been
 standardized.

 4.2.3.4 Access Control

 A server TFTP implementation SHOULD include some
 configurable access control over what pathnames are allowed
 in TFTP operations.

 4.2.3.5 Broadcast Request

 A TFTP request directed to a broadcast address SHOULD be
 silently ignored.

 DISCUSSION:
 Due to the weak access control capability of TFTP,
 directed broadcasts of TFTP requests to random networks

Internet Engineering Task Force [Page 46]

RFC1123 FILE TRANSFER -- TFTP October 1989

 could create a significant security hole.

 4.2.4 TFTP REQUIREMENTS SUMMARY

 | | | | |S| |
 | | | | |H| |F
 | | | | |O|M|o
 | | |S| |U|U|o
 | | |H| |L|S|t
 | |M|O| |D|T|n
 | |U|U|M| | |o
 | |S|L|A|N|N|t
 | |T|D|Y|O|O|t
FEATURE	SECTION				T	T	e
Fix Sorcerer’s Apprentice Syndrome |4.2.3.1 |x| | | | |
Transfer modes: | | | | | | |
 netascii |RFC-783 |x| | | | |
 octet |RFC-783 |x| | | | |
 mail |4.2.2.1 | | | |x| |
 extensions |4.2.3.3 | | |x| | |
Use adaptive timeout |4.2.3.2 |x| | | | |
Configurable access control |4.2.3.4 | |x| | | |
Silently ignore broadcast request |4.2.3.5 | |x| | | |
---|--------|-|-|-|-|-|--
---|--------|-|-|-|-|-|--

Internet Engineering Task Force [Page 47]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

5. ELECTRONIC MAIL -- SMTP and RFC-822

 5.1 INTRODUCTION

 In the TCP/IP protocol suite, electronic mail in a format
 specified in RFC-822 [SMTP:2] is transmitted using the Simple Mail
 Transfer Protocol (SMTP) defined in RFC-821 [SMTP:1].

 While SMTP has remained unchanged over the years, the Internet
 community has made several changes in the way SMTP is used. In
 particular, the conversion to the Domain Name System (DNS) has
 caused changes in address formats and in mail routing. In this
 section, we assume familiarity with the concepts and terminology
 of the DNS, whose requirements are given in Section 6.1.

 RFC-822 specifies the Internet standard format for electronic mail
 messages. RFC-822 supercedes an older standard, RFC-733, that may
 still be in use in a few places, although it is obsolete. The two
 formats are sometimes referred to simply by number ("822" and
 "733").

 RFC-822 is used in some non-Internet mail environments with
 different mail transfer protocols than SMTP, and SMTP has also
 been adapted for use in some non-Internet environments. Note that
 this document presents the rules for the use of SMTP and RFC-822
 for the Internet environment only; other mail environments that
 use these protocols may be expected to have their own rules.

 5.2 PROTOCOL WALK-THROUGH

 This section covers both RFC-821 and RFC-822.

 The SMTP specification in RFC-821 is clear and contains numerous
 examples, so implementors should not find it difficult to
 understand. This section simply updates or annotates portions of
 RFC-821 to conform with current usage.

 RFC-822 is a long and dense document, defining a rich syntax.
 Unfortunately, incomplete or defective implementations of RFC-822
 are common. In fact, nearly all of the many formats of RFC-822
 are actually used, so an implementation generally needs to
 recognize and correctly interpret all of the RFC-822 syntax.

 5.2.1 The SMTP Model: RFC-821 Section 2

 DISCUSSION:
 Mail is sent by a series of request/response transactions
 between a client, the "sender-SMTP," and a server, the

Internet Engineering Task Force [Page 48]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 "receiver-SMTP". These transactions pass (1) the message
 proper, which is composed of header and body, and (2) SMTP
 source and destination addresses, referred to as the
 "envelope".

 The SMTP programs are analogous to Message Transfer Agents
 (MTAs) of X.400. There will be another level of protocol
 software, closer to the end user, that is responsible for
 composing and analyzing RFC-822 message headers; this
 component is known as the "User Agent" in X.400, and we
 use that term in this document. There is a clear logical
 distinction between the User Agent and the SMTP
 implementation, since they operate on different levels of
 protocol. Note, however, that this distinction is may not
 be exactly reflected the structure of typical
 implementations of Internet mail. Often there is a
 program known as the "mailer" that implements SMTP and
 also some of the User Agent functions; the rest of the
 User Agent functions are included in a user interface used
 for entering and reading mail.

 The SMTP envelope is constructed at the originating site,
 typically by the User Agent when the message is first
 queued for the Sender-SMTP program. The envelope
 addresses may be derived from information in the message
 header, supplied by the user interface (e.g., to implement
 a bcc: request), or derived from local configuration
 information (e.g., expansion of a mailing list). The SMTP
 envelope cannot in general be re-derived from the header
 at a later stage in message delivery, so the envelope is
 transmitted separately from the message itself using the
 MAIL and RCPT commands of SMTP.

 The text of RFC-821 suggests that mail is to be delivered
 to an individual user at a host. With the advent of the
 domain system and of mail routing using mail-exchange (MX)
 resource records, implementors should now think of
 delivering mail to a user at a domain, which may or may
 not be a particular host. This DOES NOT change the fact
 that SMTP is a host-to-host mail exchange protocol.

 5.2.2 Canonicalization: RFC-821 Section 3.1

 The domain names that a Sender-SMTP sends in MAIL and RCPT
 commands MUST have been "canonicalized," i.e., they must be
 fully-qualified principal names or domain literals, not
 nicknames or domain abbreviations. A canonicalized name either
 identifies a host directly or is an MX name; it cannot be a

Internet Engineering Task Force [Page 49]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 CNAME.

 5.2.3 VRFY and EXPN Commands: RFC-821 Section 3.3

 A receiver-SMTP MUST implement VRFY and SHOULD implement EXPN
 (this requirement overrides RFC-821). However, there MAY be
 configuration information to disable VRFY and EXPN in a
 particular installation; this might even allow EXPN to be
 disabled for selected lists.

 A new reply code is defined for the VRFY command:

 252 Cannot VRFY user (e.g., info is not local), but will
 take message for this user and attempt delivery.

 DISCUSSION:
 SMTP users and administrators make regular use of these
 commands for diagnosing mail delivery problems. With the
 increasing use of multi-level mailing list expansion
 (sometimes more than two levels), EXPN has been
 increasingly important for diagnosing inadvertent mail
 loops. On the other hand, some feel that EXPN represents
 a significant privacy, and perhaps even a security,
 exposure.

 5.2.4 SEND, SOML, and SAML Commands: RFC-821 Section 3.4

 An SMTP MAY implement the commands to send a message to a
 user’s terminal: SEND, SOML, and SAML.

 DISCUSSION:
 It has been suggested that the use of mail relaying
 through an MX record is inconsistent with the intent of
 SEND to deliver a message immediately and directly to a
 user’s terminal. However, an SMTP receiver that is unable
 to write directly to the user terminal can return a "251
 User Not Local" reply to the RCPT following a SEND, to
 inform the originator of possibly deferred delivery.

 5.2.5 HELO Command: RFC-821 Section 3.5

 The sender-SMTP MUST ensure that the <domain> parameter in a
 HELO command is a valid principal host domain name for the
 client host. As a result, the receiver-SMTP will not have to
 perform MX resolution on this name in order to validate the
 HELO parameter.

 The HELO receiver MAY verify that the HELO parameter really

Internet Engineering Task Force [Page 50]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 corresponds to the IP address of the sender. However, the
 receiver MUST NOT refuse to accept a message, even if the
 sender’s HELO command fails verification.

 DISCUSSION:
 Verifying the HELO parameter requires a domain name lookup
 and may therefore take considerable time. An alternative
 tool for tracking bogus mail sources is suggested below
 (see "DATA Command").

 Note also that the HELO argument is still required to have
 valid <domain> syntax, since it will appear in a Received:
 line; otherwise, a 501 error is to be sent.

 IMPLEMENTATION:
 When HELO parameter validation fails, a suggested
 procedure is to insert a note about the unknown
 authenticity of the sender into the message header (e.g.,
 in the "Received:" line).

 5.2.6 Mail Relay: RFC-821 Section 3.6

 We distinguish three types of mail (store-and-) forwarding:

 (1) A simple forwarder or "mail exchanger" forwards a message
 using private knowledge about the recipient; see section
 3.2 of RFC-821.

 (2) An SMTP mail "relay" forwards a message within an SMTP
 mail environment as the result of an explicit source route
 (as defined in section 3.6 of RFC-821). The SMTP relay
 function uses the "@...:" form of source route from RFC-
 822 (see Section 5.2.19 below).

 (3) A mail "gateway" passes a message between different
 environments. The rules for mail gateways are discussed
 below in Section 5.3.7.

 An Internet host that is forwarding a message but is not a
 gateway to a different mail environment (i.e., it falls under
 (1) or (2)) SHOULD NOT alter any existing header fields,
 although the host will add an appropriate Received: line as
 required in Section 5.2.8.

 A Sender-SMTP SHOULD NOT send a RCPT TO: command containing an
 explicit source route using the "@...:" address form. Thus,
 the relay function defined in section 3.6 of RFC-821 should
 not be used.

Internet Engineering Task Force [Page 51]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 DISCUSSION:
 The intent is to discourage all source routing and to
 abolish explicit source routing for mail delivery within
 the Internet environment. Source-routing is unnecessary;
 the simple target address "user@domain" should always
 suffice. This is the result of an explicit architectural
 decision to use universal naming rather than source
 routing for mail. Thus, SMTP provides end-to-end
 connectivity, and the DNS provides globally-unique,
 location-independent names. MX records handle the major
 case where source routing might otherwise be needed.

 A receiver-SMTP MUST accept the explicit source route syntax in
 the envelope, but it MAY implement the relay function as
 defined in section 3.6 of RFC-821. If it does not implement
 the relay function, it SHOULD attempt to deliver the message
 directly to the host to the right of the right-most "@" sign.

 DISCUSSION:
 For example, suppose a host that does not implement the
 relay function receives a message with the SMTP command:
 "RCPT TO:<@ALPHA,@BETA:joe@GAMMA>", where ALPHA, BETA, and
 GAMMA represent domain names. Rather than immediately
 refusing the message with a 550 error reply as suggested
 on page 20 of RFC-821, the host should try to forward the
 message to GAMMA directly, using: "RCPT TO:<joe@GAMMA>".
 Since this host does not support relaying, it is not
 required to update the reverse path.

 Some have suggested that source routing may be needed
 occasionally for manually routing mail around failures;
 however, the reality and importance of this need is
 controversial. The use of explicit SMTP mail relaying for
 this purpose is discouraged, and in fact it may not be
 successful, as many host systems do not support it. Some
 have used the "%-hack" (see Section 5.2.16) for this
 purpose.

 5.2.7 RCPT Command: RFC-821 Section 4.1.1

 A host that supports a receiver-SMTP MUST support the reserved
 mailbox "Postmaster".

 The receiver-SMTP MAY verify RCPT parameters as they arrive;
 however, RCPT responses MUST NOT be delayed beyond a reasonable
 time (see Section 5.3.2).

 Therefore, a "250 OK" response to a RCPT does not necessarily

Internet Engineering Task Force [Page 52]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 imply that the delivery address(es) are valid. Errors found
 after message acceptance will be reported by mailing a
 notification message to an appropriate address (see Section
 5.3.3).

 DISCUSSION:
 The set of conditions under which a RCPT parameter can be
 validated immediately is an engineering design choice.
 Reporting destination mailbox errors to the Sender-SMTP
 before mail is transferred is generally desirable to save
 time and network bandwidth, but this advantage is lost if
 RCPT verification is lengthy.

 For example, the receiver can verify immediately any
 simple local reference, such as a single locally-
 registered mailbox. On the other hand, the "reasonable
 time" limitation generally implies deferring verification
 of a mailing list until after the message has been
 transferred and accepted, since verifying a large mailing
 list can take a very long time. An implementation might
 or might not choose to defer validation of addresses that
 are non-local and therefore require a DNS lookup. If a
 DNS lookup is performed but a soft domain system error
 (e.g., timeout) occurs, validity must be assumed.

 5.2.8 DATA Command: RFC-821 Section 4.1.1

 Every receiver-SMTP (not just one that "accepts a message for
 relaying or for final delivery" [SMTP:1]) MUST insert a
 "Received:" line at the beginning of a message. In this line,
 called a "time stamp line" in RFC-821:

 * The FROM field SHOULD contain both (1) the name of the
 source host as presented in the HELO command and (2) a
 domain literal containing the IP address of the source,
 determined from the TCP connection.

 * The ID field MAY contain an "@" as suggested in RFC-822,
 but this is not required.

 * The FOR field MAY contain a list of <path> entries when
 multiple RCPT commands have been given.

 An Internet mail program MUST NOT change a Received: line that
 was previously added to the message header.

Internet Engineering Task Force [Page 53]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 DISCUSSION:
 Including both the source host and the IP source address
 in the Received: line may provide enough information for
 tracking illicit mail sources and eliminate a need to
 explicitly verify the HELO parameter.

 Received: lines are primarily intended for humans tracing
 mail routes, primarily of diagnosis of faults. See also
 the discussion under 5.3.7.

 When the receiver-SMTP makes "final delivery" of a message,
 then it MUST pass the MAIL FROM: address from the SMTP envelope
 with the message, for use if an error notification message must
 be sent later (see Section 5.3.3). There is an analogous
 requirement when gatewaying from the Internet into a different
 mail environment; see Section 5.3.7.

 DISCUSSION:
 Note that the final reply to the DATA command depends only
 upon the successful transfer and storage of the message.
 Any problem with the destination address(es) must either
 (1) have been reported in an SMTP error reply to the RCPT
 command(s), or (2) be reported in a later error message
 mailed to the originator.

 IMPLEMENTATION:
 The MAIL FROM: information may be passed as a parameter or
 in a Return-Path: line inserted at the beginning of the
 message.

 5.2.9 Command Syntax: RFC-821 Section 4.1.2

 The syntax shown in RFC-821 for the MAIL FROM: command omits
 the case of an empty path: "MAIL FROM: <>" (see RFC-821 Page
 15). An empty reverse path MUST be supported.

 5.2.10 SMTP Replies: RFC-821 Section 4.2

 A receiver-SMTP SHOULD send only the reply codes listed in
 section 4.2.2 of RFC-821 or in this document. A receiver-SMTP
 SHOULD use the text shown in examples in RFC-821 whenever
 appropriate.

 A sender-SMTP MUST determine its actions only by the reply
 code, not by the text (except for 251 and 551 replies); any
 text, including no text at all, must be acceptable. The space
 (blank) following the reply code is considered part of the
 text. Whenever possible, a sender-SMTP SHOULD test only the

Internet Engineering Task Force [Page 54]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 first digit of the reply code, as specified in Appendix E of
 RFC-821.

 DISCUSSION:
 Interoperability problems have arisen with SMTP systems
 using reply codes that are not listed explicitly in RFC-
 821 Section 4.3 but are legal according to the theory of
 reply codes explained in Appendix E.

 5.2.11 Transparency: RFC-821 Section 4.5.2

 Implementors MUST be sure that their mail systems always add
 and delete periods to ensure message transparency.

 5.2.12 WKS Use in MX Processing: RFC-974, p. 5

 RFC-974 [SMTP:3] recommended that the domain system be queried
 for WKS ("Well-Known Service") records, to verify that each
 proposed mail target does support SMTP. Later experience has
 shown that WKS is not widely supported, so the WKS step in MX
 processing SHOULD NOT be used.

 The following are notes on RFC-822, organized by section of that
 document.

 5.2.13 RFC-822 Message Specification: RFC-822 Section 4

 The syntax shown for the Return-path line omits the possibility
 of a null return path, which is used to prevent looping of
 error notifications (see Section 5.3.3). The complete syntax
 is:

 return = "Return-path" ":" route-addr
 / "Return-path" ":" "<" ">"

 The set of optional header fields is hereby expanded to include
 the Content-Type field defined in RFC-1049 [SMTP:7]. This
 field "allows mail reading systems to automatically identify
 the type of a structured message body and to process it for
 display accordingly". [SMTP:7] A User Agent MAY support this
 field.

 5.2.14 RFC-822 Date and Time Specification: RFC-822 Section 5

 The syntax for the date is hereby changed to:

 date = 1*2DIGIT month 2*4DIGIT

Internet Engineering Task Force [Page 55]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 All mail software SHOULD use 4-digit years in dates, to ease
 the transition to the next century.

 There is a strong trend towards the use of numeric timezone
 indicators, and implementations SHOULD use numeric timezones
 instead of timezone names. However, all implementations MUST
 accept either notation. If timezone names are used, they MUST
 be exactly as defined in RFC-822.

 The military time zones are specified incorrectly in RFC-822:
 they count the wrong way from UT (the signs are reversed). As
 a result, military time zones in RFC-822 headers carry no
 information.

 Finally, note that there is a typo in the definition of "zone"
 in the syntax summary of appendix D; the correct definition
 occurs in Section 3 of RFC-822.

 5.2.15 RFC-822 Syntax Change: RFC-822 Section 6.1

 The syntactic definition of "mailbox" in RFC-822 is hereby
 changed to:

 mailbox = addr-spec ; simple address
 / [phrase] route-addr ; name & addr-spec

 That is, the phrase preceding a route address is now OPTIONAL.
 This change makes the following header field legal, for
 example:

 From: <craig@nnsc.nsf.net>

 5.2.16 RFC-822 Local-part: RFC-822 Section 6.2

 The basic mailbox address specification has the form: "local-
 part@domain". Here "local-part", sometimes called the "left-
 hand side" of the address, is domain-dependent.

 A host that is forwarding the message but is not the
 destination host implied by the right-hand side "domain" MUST
 NOT interpret or modify the "local-part" of the address.

 When mail is to be gatewayed from the Internet mail environment
 into a foreign mail environment (see Section 5.3.7), routing
 information for that foreign environment MAY be embedded within
 the "local-part" of the address. The gateway will then
 interpret this local part appropriately for the foreign mail
 environment.

Internet Engineering Task Force [Page 56]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 DISCUSSION:
 Although source routes are discouraged within the Internet
 (see Section 5.2.6), there are non-Internet mail
 environments whose delivery mechanisms do depend upon
 source routes. Source routes for extra-Internet
 environments can generally be buried in the "local-part"
 of the address (see Section 5.2.16) while mail traverses
 the Internet. When the mail reaches the appropriate
 Internet mail gateway, the gateway will interpret the
 local-part and build the necessary address or route for
 the target mail environment.

 For example, an Internet host might send mail to:
 "a!b!c!user@gateway-domain". The complex local part
 "a!b!c!user" would be uninterpreted within the Internet
 domain, but could be parsed and understood by the
 specified mail gateway.

 An embedded source route is sometimes encoded in the
 "local-part" using "%" as a right-binding routing
 operator. For example, in:

 user%domain%relay3%relay2@relay1

 the "%" convention implies that the mail is to be routed
 from "relay1" through "relay2", "relay3", and finally to
 "user" at "domain". This is commonly known as the "%-
 hack". It is suggested that "%" have lower precedence
 than any other routing operator (e.g., "!") hidden in the
 local-part; for example, "a!b%c" would be interpreted as
 "(a!b)%c".

 Only the target host (in this case, "relay1") is permitted
 to analyze the local-part "user%domain%relay3%relay2".

 5.2.17 Domain Literals: RFC-822 Section 6.2.3

 A mailer MUST be able to accept and parse an Internet domain
 literal whose content ("dtext"; see RFC-822) is a dotted-
 decimal host address. This satisfies the requirement of
 Section 2.1 for the case of mail.

 An SMTP MUST accept and recognize a domain literal for any of
 its own IP addresses.

Internet Engineering Task Force [Page 57]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 5.2.18 Common Address Formatting Errors: RFC-822 Section 6.1

 Errors in formatting or parsing 822 addresses are unfortunately
 common. This section mentions only the most common errors. A
 User Agent MUST accept all valid RFC-822 address formats, and
 MUST NOT generate illegal address syntax.

 o A common error is to leave out the semicolon after a group
 identifier.

 o Some systems fail to fully-qualify domain names in
 messages they generate. The right-hand side of an "@"
 sign in a header address field MUST be a fully-qualified
 domain name.

 For example, some systems fail to fully-qualify the From:
 address; this prevents a "reply" command in the user
 interface from automatically constructing a return
 address.

 DISCUSSION:
 Although RFC-822 allows the local use of abbreviated
 domain names within a domain, the application of
 RFC-822 in Internet mail does not allow this. The
 intent is that an Internet host must not send an SMTP
 message header containing an abbreviated domain name
 in an address field. This allows the address fields
 of the header to be passed without alteration across
 the Internet, as required in Section 5.2.6.

 o Some systems mis-parse multiple-hop explicit source routes
 such as:

 @relay1,@relay2,@relay3:user@domain.

 o Some systems over-qualify domain names by adding a
 trailing dot to some or all domain names in addresses or
 message-ids. This violates RFC-822 syntax.

 5.2.19 Explicit Source Routes: RFC-822 Section 6.2.7

 Internet host software SHOULD NOT create an RFC-822 header
 containing an address with an explicit source route, but MUST
 accept such headers for compatibility with earlier systems.

 DISCUSSION:

Internet Engineering Task Force [Page 58]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 In an understatement, RFC-822 says "The use of explicit
 source routing is discouraged". Many hosts implemented
 RFC-822 source routes incorrectly, so the syntax cannot be
 used unambiguously in practice. Many users feel the
 syntax is ugly. Explicit source routes are not needed in
 the mail envelope for delivery; see Section 5.2.6. For
 all these reasons, explicit source routes using the RFC-
 822 notations are not to be used in Internet mail headers.

 As stated in Section 5.2.16, it is necessary to allow an
 explicit source route to be buried in the local-part of an
 address, e.g., using the "%-hack", in order to allow mail
 to be gatewayed into another environment in which explicit
 source routing is necessary. The vigilant will observe
 that there is no way for a User Agent to detect and
 prevent the use of such implicit source routing when the
 destination is within the Internet. We can only
 discourage source routing of any kind within the Internet,
 as unnecessary and undesirable.

 5.3 SPECIFIC ISSUES

 5.3.1 SMTP Queueing Strategies

 The common structure of a host SMTP implementation includes
 user mailboxes, one or more areas for queueing messages in
 transit, and one or more daemon processes for sending and
 receiving mail. The exact structure will vary depending on the
 needs of the users on the host and the number and size of
 mailing lists supported by the host. We describe several
 optimizations that have proved helpful, particularly for
 mailers supporting high traffic levels.

 Any queueing strategy MUST include:

 o Timeouts on all activities. See Section 5.3.2.

 o Never sending error messages in response to error
 messages.

 5.3.1.1 Sending Strategy

 The general model of a sender-SMTP is one or more processes
 that periodically attempt to transmit outgoing mail. In a
 typical system, the program that composes a message has some
 method for requesting immediate attention for a new piece of
 outgoing mail, while mail that cannot be transmitted

Internet Engineering Task Force [Page 59]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 immediately MUST be queued and periodically retried by the
 sender. A mail queue entry will include not only the
 message itself but also the envelope information.

 The sender MUST delay retrying a particular destination
 after one attempt has failed. In general, the retry
 interval SHOULD be at least 30 minutes; however, more
 sophisticated and variable strategies will be beneficial
 when the sender-SMTP can determine the reason for non-
 delivery.

 Retries continue until the message is transmitted or the
 sender gives up; the give-up time generally needs to be at
 least 4-5 days. The parameters to the retry algorithm MUST
 be configurable.

 A sender SHOULD keep a list of hosts it cannot reach and
 corresponding timeouts, rather than just retrying queued
 mail items.

 DISCUSSION:
 Experience suggests that failures are typically
 transient (the target system has crashed), favoring a
 policy of two connection attempts in the first hour the
 message is in the queue, and then backing off to once
 every two or three hours.

 The sender-SMTP can shorten the queueing delay by
 cooperation with the receiver-SMTP. In particular, if
 mail is received from a particular address, it is good
 evidence that any mail queued for that host can now be
 sent.

 The strategy may be further modified as a result of
 multiple addresses per host (see Section 5.3.4), to
 optimize delivery time vs. resource usage.

 A sender-SMTP may have a large queue of messages for
 each unavailable destination host, and if it retried
 all these messages in every retry cycle, there would be
 excessive Internet overhead and the daemon would be
 blocked for a long period. Note that an SMTP can
 generally determine that a delivery attempt has failed
 only after a timeout of a minute or more; a one minute
 timeout per connection will result in a very large
 delay if it is repeated for dozens or even hundreds of
 queued messages.

Internet Engineering Task Force [Page 60]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 When the same message is to be delivered to several users on
 the same host, only one copy of the message SHOULD be
 transmitted. That is, the sender-SMTP should use the
 command sequence: RCPT, RCPT,... RCPT, DATA instead of the
 sequence: RCPT, DATA, RCPT, DATA,... RCPT, DATA.
 Implementation of this efficiency feature is strongly urged.

 Similarly, the sender-SMTP MAY support multiple concurrent
 outgoing mail transactions to achieve timely delivery.
 However, some limit SHOULD be imposed to protect the host
 from devoting all its resources to mail.

 The use of the different addresses of a multihomed host is
 discussed below.

 5.3.1.2 Receiving strategy

 The receiver-SMTP SHOULD attempt to keep a pending listen on
 the SMTP port at all times. This will require the support
 of multiple incoming TCP connections for SMTP. Some limit
 MAY be imposed.

 IMPLEMENTATION:
 When the receiver-SMTP receives mail from a particular
 host address, it could notify the sender-SMTP to retry
 any mail pending for that host address.

 5.3.2 Timeouts in SMTP

 There are two approaches to timeouts in the sender-SMTP: (a)
 limit the time for each SMTP command separately, or (b) limit
 the time for the entire SMTP dialogue for a single mail
 message. A sender-SMTP SHOULD use option (a), per-command
 timeouts. Timeouts SHOULD be easily reconfigurable, preferably
 without recompiling the SMTP code.

 DISCUSSION:
 Timeouts are an essential feature of an SMTP
 implementation. If the timeouts are too long (or worse,
 there are no timeouts), Internet communication failures or
 software bugs in receiver-SMTP programs can tie up SMTP
 processes indefinitely. If the timeouts are too short,
 resources will be wasted with attempts that time out part
 way through message delivery.

 If option (b) is used, the timeout has to be very large,
 e.g., an hour, to allow time to expand very large mailing
 lists. The timeout may also need to increase linearly

Internet Engineering Task Force [Page 61]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 with the size of the message, to account for the time to
 transmit a very large message. A large fixed timeout
 leads to two problems: a failure can still tie up the
 sender for a very long time, and very large messages may
 still spuriously time out (which is a wasteful failure!).

 Using the recommended option (a), a timer is set for each
 SMTP command and for each buffer of the data transfer.
 The latter means that the overall timeout is inherently
 proportional to the size of the message.

 Based on extensive experience with busy mail-relay hosts, the
 minimum per-command timeout values SHOULD be as follows:

 o Initial 220 Message: 5 minutes

 A Sender-SMTP process needs to distinguish between a
 failed TCP connection and a delay in receiving the initial
 220 greeting message. Many receiver-SMTPs will accept a
 TCP connection but delay delivery of the 220 message until
 their system load will permit more mail to be processed.

 o MAIL Command: 5 minutes

 o RCPT Command: 5 minutes

 A longer timeout would be required if processing of
 mailing lists and aliases were not deferred until after
 the message was accepted.

 o DATA Initiation: 2 minutes

 This is while awaiting the "354 Start Input" reply to a
 DATA command.

 o Data Block: 3 minutes

 This is while awaiting the completion of each TCP SEND
 call transmitting a chunk of data.

 o DATA Termination: 10 minutes.

 This is while awaiting the "250 OK" reply. When the
 receiver gets the final period terminating the message
 data, it typically performs processing to deliver the
 message to a user mailbox. A spurious timeout at this
 point would be very wasteful, since the message has been

Internet Engineering Task Force [Page 62]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 successfully sent.

 A receiver-SMTP SHOULD have a timeout of at least 5 minutes
 while it is awaiting the next command from the sender.

 5.3.3 Reliable Mail Receipt

 When the receiver-SMTP accepts a piece of mail (by sending a
 "250 OK" message in response to DATA), it is accepting
 responsibility for delivering or relaying the message. It must
 take this responsibility seriously, i.e., it MUST NOT lose the
 message for frivolous reasons, e.g., because the host later
 crashes or because of a predictable resource shortage.

 If there is a delivery failure after acceptance of a message,
 the receiver-SMTP MUST formulate and mail a notification
 message. This notification MUST be sent using a null ("<>")
 reverse path in the envelope; see Section 3.6 of RFC-821. The
 recipient of this notification SHOULD be the address from the
 envelope return path (or the Return-Path: line). However, if
 this address is null ("<>"), the receiver-SMTP MUST NOT send a
 notification. If the address is an explicit source route, it
 SHOULD be stripped down to its final hop.

 DISCUSSION:
 For example, suppose that an error notification must be
 sent for a message that arrived with:
 "MAIL FROM:<@a,@b:user@d>". The notification message
 should be sent to: "RCPT TO:<user@d>".

 Some delivery failures after the message is accepted by
 SMTP will be unavoidable. For example, it may be
 impossible for the receiver-SMTP to validate all the
 delivery addresses in RCPT command(s) due to a "soft"
 domain system error or because the target is a mailing
 list (see earlier discussion of RCPT).

 To avoid receiving duplicate messages as the result of
 timeouts, a receiver-SMTP MUST seek to minimize the time
 required to respond to the final "." that ends a message
 transfer. See RFC-1047 [SMTP:4] for a discussion of this
 problem.

 5.3.4 Reliable Mail Transmission

 To transmit a message, a sender-SMTP determines the IP address
 of the target host from the destination address in the
 envelope. Specifically, it maps the string to the right of the

Internet Engineering Task Force [Page 63]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 "@" sign into an IP address. This mapping or the transfer
 itself may fail with a soft error, in which case the sender-
 SMTP will requeue the outgoing mail for a later retry, as
 required in Section 5.3.1.1.

 When it succeeds, the mapping can result in a list of
 alternative delivery addresses rather than a single address,
 because of (a) multiple MX records, (b) multihoming, or both.
 To provide reliable mail transmission, the sender-SMTP MUST be
 able to try (and retry) each of the addresses in this list in
 order, until a delivery attempt succeeds. However, there MAY
 also be a configurable limit on the number of alternate
 addresses that can be tried. In any case, a host SHOULD try at
 least two addresses.

 The following information is to be used to rank the host
 addresses:

 (1) Multiple MX Records -- these contain a preference
 indication that should be used in sorting. If there are
 multiple destinations with the same preference and there
 is no clear reason to favor one (e.g., by address
 preference), then the sender-SMTP SHOULD pick one at
 random to spread the load across multiple mail exchanges
 for a specific organization; note that this is a
 refinement of the procedure in [DNS:3].

 (2) Multihomed host -- The destination host (perhaps taken
 from the preferred MX record) may be multihomed, in which
 case the domain name resolver will return a list of
 alternative IP addresses. It is the responsibility of the
 domain name resolver interface (see Section 6.1.3.4 below)
 to have ordered this list by decreasing preference, and
 SMTP MUST try them in the order presented.

 DISCUSSION:
 Although the capability to try multiple alternative
 addresses is required, there may be circumstances where
 specific installations want to limit or disable the use of
 alternative addresses. The question of whether a sender
 should attempt retries using the different addresses of a
 multihomed host has been controversial. The main argument
 for using the multiple addresses is that it maximizes the
 probability of timely delivery, and indeed sometimes the
 probability of any delivery; the counter argument is that
 it may result in unnecessary resource use.

 Note that resource use is also strongly determined by the

Internet Engineering Task Force [Page 64]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 sending strategy discussed in Section 5.3.1.

 5.3.5 Domain Name Support

 SMTP implementations MUST use the mechanism defined in Section
 6.1 for mapping between domain names and IP addresses. This
 means that every Internet SMTP MUST include support for the
 Internet DNS.

 In particular, a sender-SMTP MUST support the MX record scheme
 [SMTP:3]. See also Section 7.4 of [DNS:2] for information on
 domain name support for SMTP.

 5.3.6 Mailing Lists and Aliases

 An SMTP-capable host SHOULD support both the alias and the list
 form of address expansion for multiple delivery. When a
 message is delivered or forwarded to each address of an
 expanded list form, the return address in the envelope
 ("MAIL FROM:") MUST be changed to be the address of a person
 who administers the list, but the message header MUST be left
 unchanged; in particular, the "From" field of the message is
 unaffected.

 DISCUSSION:
 An important mail facility is a mechanism for multi-
 destination delivery of a single message, by transforming
 or "expanding" a pseudo-mailbox address into a list of
 destination mailbox addresses. When a message is sent to
 such a pseudo-mailbox (sometimes called an "exploder"),
 copies are forwarded or redistributed to each mailbox in
 the expanded list. We classify such a pseudo-mailbox as
 an "alias" or a "list", depending upon the expansion
 rules:

 (a) Alias

 To expand an alias, the recipient mailer simply
 replaces the pseudo-mailbox address in the envelope
 with each of the expanded addresses in turn; the rest
 of the envelope and the message body are left
 unchanged. The message is then delivered or
 forwarded to each expanded address.

 (b) List

 A mailing list may be said to operate by
 "redistribution" rather than by "forwarding". To

Internet Engineering Task Force [Page 65]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 expand a list, the recipient mailer replaces the
 pseudo-mailbox address in the envelope with each of
 the expanded addresses in turn. The return address in
 the envelope is changed so that all error messages
 generated by the final deliveries will be returned to
 a list administrator, not to the message originator,
 who generally has no control over the contents of the
 list and will typically find error messages annoying.

 5.3.7 Mail Gatewaying

 Gatewaying mail between different mail environments, i.e.,
 different mail formats and protocols, is complex and does not
 easily yield to standardization. See for example [SMTP:5a],
 [SMTP:5b]. However, some general requirements may be given for
 a gateway between the Internet and another mail environment.

 (A) Header fields MAY be rewritten when necessary as messages
 are gatewayed across mail environment boundaries.

 DISCUSSION:
 This may involve interpreting the local-part of the
 destination address, as suggested in Section 5.2.16.

 The other mail systems gatewayed to the Internet
 generally use a subset of RFC-822 headers, but some
 of them do not have an equivalent to the SMTP
 envelope. Therefore, when a message leaves the
 Internet environment, it may be necessary to fold the
 SMTP envelope information into the message header. A
 possible solution would be to create new header
 fields to carry the envelope information (e.g., "X-
 SMTP-MAIL:" and "X-SMTP-RCPT:"); however, this would
 require changes in mail programs in the foreign
 environment.

 (B) When forwarding a message into or out of the Internet
 environment, a gateway MUST prepend a Received: line, but
 it MUST NOT alter in any way a Received: line that is
 already in the header.

 DISCUSSION:
 This requirement is a subset of the general
 "Received:" line requirement of Section 5.2.8; it is
 restated here for emphasis.

 Received: fields of messages originating from other

Internet Engineering Task Force [Page 66]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 environments may not conform exactly to RFC822.
 However, the most important use of Received: lines is
 for debugging mail faults, and this debugging can be
 severely hampered by well-meaning gateways that try
 to "fix" a Received: line.

 The gateway is strongly encouraged to indicate the
 environment and protocol in the "via" clauses of
 Received field(s) that it supplies.

 (C) From the Internet side, the gateway SHOULD accept all
 valid address formats in SMTP commands and in RFC-822
 headers, and all valid RFC-822 messages. Although a
 gateway must accept an RFC-822 explicit source route
 ("@...:" format) in either the RFC-822 header or in the
 envelope, it MAY or may not act on the source route; see
 Sections 5.2.6 and 5.2.19.

 DISCUSSION:
 It is often tempting to restrict the range of
 addresses accepted at the mail gateway to simplify
 the translation into addresses for the remote
 environment. This practice is based on the
 assumption that mail users have control over the
 addresses their mailers send to the mail gateway. In
 practice, however, users have little control over the
 addresses that are finally sent; their mailers are
 free to change addresses into any legal RFC-822
 format.

 (D) The gateway MUST ensure that all header fields of a
 message that it forwards into the Internet meet the
 requirements for Internet mail. In particular, all
 addresses in "From:", "To:", "Cc:", etc., fields must be
 transformed (if necessary) to satisfy RFC-822 syntax, and
 they must be effective and useful for sending replies.

 (E) The translation algorithm used to convert mail from the
 Internet protocols to another environment’s protocol
 SHOULD try to ensure that error messages from the foreign
 mail environment are delivered to the return path from the
 SMTP envelope, not to the sender listed in the "From:"
 field of the RFC-822 message.

 DISCUSSION:
 Internet mail lists usually place the address of the
 mail list maintainer in the envelope but leave the

Internet Engineering Task Force [Page 67]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 original message header intact (with the "From:"
 field containing the original sender). This yields
 the behavior the average recipient expects: a reply
 to the header gets sent to the original sender, not
 to a mail list maintainer; however, errors get sent
 to the maintainer (who can fix the problem) and not
 the sender (who probably cannot).

 (F) Similarly, when forwarding a message from another
 environment into the Internet, the gateway SHOULD set the
 envelope return path in accordance with an error message
 return address, if any, supplied by the foreign
 environment.

 5.3.8 Maximum Message Size

 Mailer software MUST be able to send and receive messages of at
 least 64K bytes in length (including header), and a much larger
 maximum size is highly desirable.

 DISCUSSION:
 Although SMTP does not define the maximum size of a
 message, many systems impose implementation limits.

 The current de facto minimum limit in the Internet is 64K
 bytes. However, electronic mail is used for a variety of
 purposes that create much larger messages. For example,
 mail is often used instead of FTP for transmitting ASCII
 files, and in particular to transmit entire documents. As
 a result, messages can be 1 megabyte or even larger. We
 note that the present document together with its lower-
 layer companion contains 0.5 megabytes.

Internet Engineering Task Force [Page 68]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 5.4 SMTP REQUIREMENTS SUMMARY

 | | | | |S| |
 | | | | |H| |F
 | | | | |O|M|o
 | | |S| |U|U|o
 | | |H| |L|S|t
 | |M|O| |D|T|n
 | |U|U|M| | |o
 | |S|L|A|N|N|t
 | |T|D|Y|O|O|t
FEATURE	SECTION				T	T	e
 | | | | | | |
RECEIVER-SMTP: | | | | | | |
 Implement VRFY |5.2.3 |x| | | | |
 Implement EXPN |5.2.3 | |x| | | |
 EXPN, VRFY configurable |5.2.3 | | |x| | |
 Implement SEND, SOML, SAML |5.2.4 | | |x| | |
 Verify HELO parameter |5.2.5 | | |x| | |
 Refuse message with bad HELO |5.2.5 | | | | |x|
 Accept explicit src-route syntax in env. |5.2.6 |x| | | | |
 Support "postmaster" |5.2.7 |x| | | | |
 Process RCPT when received (except lists) |5.2.7 | | |x| | |
 Long delay of RCPT responses |5.2.7 | | | | |x|
 | | | | | | |
 Add Received: line |5.2.8 |x| | | | |
 Received: line include domain literal |5.2.8 | |x| | | |
 Change previous Received: line |5.2.8 | | | | |x|
 Pass Return-Path info (final deliv/gwy) |5.2.8 |x| | | | |
 Support empty reverse path |5.2.9 |x| | | | |
 Send only official reply codes |5.2.10 | |x| | | |
 Send text from RFC-821 when appropriate |5.2.10 | |x| | | |
 Delete "." for transparency |5.2.11 |x| | | | |
 Accept and recognize self domain literal(s) |5.2.17 |x| | | | |
 | | | | | | |
 Error message about error message |5.3.1 | | | | |x|
 Keep pending listen on SMTP port |5.3.1.2 | |x| | | |
 Provide limit on recv concurrency |5.3.1.2 | | |x| | |
 Wait at least 5 mins for next sender cmd |5.3.2 | |x| | | |
 Avoidable delivery failure after "250 OK" |5.3.3 | | | | |x|
 Send error notification msg after accept |5.3.3 |x| | | | |
 Send using null return path |5.3.3 |x| | | | |
 Send to envelope return path |5.3.3 | |x| | | |
 Send to null address |5.3.3 | | | | |x|
 Strip off explicit src route |5.3.3 | |x| | | |
 Minimize acceptance delay (RFC-1047) |5.3.3 |x| | | | |
---|----------|-|-|-|-|-|--

Internet Engineering Task Force [Page 69]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 | | | | | | |
SENDER-SMTP: | | | | | | |
 Canonicalized domain names in MAIL, RCPT |5.2.2 |x| | | | |
 Implement SEND, SOML, SAML |5.2.4 | | |x| | |
 Send valid principal host name in HELO |5.2.5 |x| | | | |
 Send explicit source route in RCPT TO: |5.2.6 | | | |x| |
 Use only reply code to determine action |5.2.10 |x| | | | |
 Use only high digit of reply code when poss. |5.2.10 | |x| | | |
 Add "." for transparency |5.2.11 |x| | | | |
 | | | | | | |
 Retry messages after soft failure |5.3.1.1 |x| | | | |
 Delay before retry |5.3.1.1 |x| | | | |
 Configurable retry parameters |5.3.1.1 |x| | | | |
 Retry once per each queued dest host |5.3.1.1 | |x| | | |
 Multiple RCPT’s for same DATA |5.3.1.1 | |x| | | |
 Support multiple concurrent transactions |5.3.1.1 | | |x| | |
 Provide limit on concurrency |5.3.1.1 | |x| | | |
 | | | | | | |
 Timeouts on all activities |5.3.1 |x| | | | |
 Per-command timeouts |5.3.2 | |x| | | |
 Timeouts easily reconfigurable |5.3.2 | |x| | | |
 Recommended times |5.3.2 | |x| | | |
 Try alternate addr’s in order |5.3.4 |x| | | | |
 Configurable limit on alternate tries |5.3.4 | | |x| | |
 Try at least two alternates |5.3.4 | |x| | | |
 Load-split across equal MX alternates |5.3.4 | |x| | | |
 Use the Domain Name System |5.3.5 |x| | | | |
 Support MX records |5.3.5 |x| | | | |
 Use WKS records in MX processing |5.2.12 | | | |x| |
---|----------|-|-|-|-|-|--
 | | | | | | |
MAIL FORWARDING: | | | | | | |
 Alter existing header field(s) |5.2.6 | | | |x| |
 Implement relay function: 821/section 3.6 |5.2.6 | | |x| | |
 If not, deliver to RHS domain |5.2.6 | |x| | | |
 Interpret ’local-part’ of addr |5.2.16 | | | | |x|
 | | | | | | |
MAILING LISTS AND ALIASES | | | | | | |
 Support both |5.3.6 | |x| | | |
 Report mail list error to local admin. |5.3.6 |x| | | | |
 | | | | | | |
MAIL GATEWAYS: | | | | | | |
 Embed foreign mail route in local-part |5.2.16 | | |x| | |
 Rewrite header fields when necessary |5.3.7 | | |x| | |
 Prepend Received: line |5.3.7 |x| | | | |
 Change existing Received: line |5.3.7 | | | | |x|
 Accept full RFC-822 on Internet side |5.3.7 | |x| | | |
 Act on RFC-822 explicit source route |5.3.7 | | |x| | |

Internet Engineering Task Force [Page 70]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 Send only valid RFC-822 on Internet side |5.3.7 |x| | | | |
 Deliver error msgs to envelope addr |5.3.7 | |x| | | |
 Set env return path from err return addr |5.3.7 | |x| | | |
 | | | | | | |
USER AGENT -- RFC-822 | | | | | | |
 Allow user to enter <route> address |5.2.6 | | | |x| |
 Support RFC-1049 Content Type field |5.2.13 | | |x| | |
 Use 4-digit years |5.2.14 | |x| | | |
 Generate numeric timezones |5.2.14 | |x| | | |
 Accept all timezones |5.2.14 |x| | | | |
 Use non-num timezones from RFC-822 |5.2.14 |x| | | | |
 Omit phrase before route-addr |5.2.15 | | |x| | |
 Accept and parse dot.dec. domain literals |5.2.17 |x| | | | |
 Accept all RFC-822 address formats |5.2.18 |x| | | | |
 Generate invalid RFC-822 address format |5.2.18 | | | | |x|
 Fully-qualified domain names in header |5.2.18 |x| | | | |
 Create explicit src route in header |5.2.19 | | | |x| |
 Accept explicit src route in header |5.2.19 |x| | | | |
 | | | | | | |
Send/recv at least 64KB messages |5.3.8 |x| | | | |

Internet Engineering Task Force [Page 71]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

6. SUPPORT SERVICES

 6.1 DOMAIN NAME TRANSLATION

 6.1.1 INTRODUCTION

 Every host MUST implement a resolver for the Domain Name System
 (DNS), and it MUST implement a mechanism using this DNS
 resolver to convert host names to IP addresses and vice-versa
 [DNS:1, DNS:2].

 In addition to the DNS, a host MAY also implement a host name
 translation mechanism that searches a local Internet host
 table. See Section 6.1.3.8 for more information on this
 option.

 DISCUSSION:
 Internet host name translation was originally performed by
 searching local copies of a table of all hosts. This
 table became too large to update and distribute in a
 timely manner and too large to fit into many hosts, so the
 DNS was invented.

 The DNS creates a distributed database used primarily for
 the translation between host names and host addresses.
 Implementation of DNS software is required. The DNS
 consists of two logically distinct parts: name servers and
 resolvers (although implementations often combine these
 two logical parts in the interest of efficiency) [DNS:2].

 Domain name servers store authoritative data about certain
 sections of the database and answer queries about the
 data. Domain resolvers query domain name servers for data
 on behalf of user processes. Every host therefore needs a
 DNS resolver; some host machines will also need to run
 domain name servers. Since no name server has complete
 information, in general it is necessary to obtain
 information from more than one name server to resolve a
 query.

 6.1.2 PROTOCOL WALK-THROUGH

 An implementor must study references [DNS:1] and [DNS:2]
 carefully. They provide a thorough description of the theory,
 protocol, and implementation of the domain name system, and
 reflect several years of experience.

Internet Engineering Task Force [Page 72]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 6.1.2.1 Resource Records with Zero TTL: RFC-1035 Section 3.2.1

 All DNS name servers and resolvers MUST properly handle RRs
 with a zero TTL: return the RR to the client but do not
 cache it.

 DISCUSSION:
 Zero TTL values are interpreted to mean that the RR can
 only be used for the transaction in progress, and
 should not be cached; they are useful for extremely
 volatile data.

 6.1.2.2 QCLASS Values: RFC-1035 Section 3.2.5

 A query with "QCLASS=*" SHOULD NOT be used unless the
 requestor is seeking data from more than one class. In
 particular, if the requestor is only interested in Internet
 data types, QCLASS=IN MUST be used.

 6.1.2.3 Unused Fields: RFC-1035 Section 4.1.1

 Unused fields in a query or response message MUST be zero.

 6.1.2.4 Compression: RFC-1035 Section 4.1.4

 Name servers MUST use compression in responses.

 DISCUSSION:
 Compression is essential to avoid overflowing UDP
 datagrams; see Section 6.1.3.2.

 6.1.2.5 Misusing Configuration Info: RFC-1035 Section 6.1.2

 Recursive name servers and full-service resolvers generally
 have some configuration information containing hints about
 the location of root or local name servers. An
 implementation MUST NOT include any of these hints in a
 response.

 DISCUSSION:
 Many implementors have found it convenient to store
 these hints as if they were cached data, but some
 neglected to ensure that this "cached data" was not
 included in responses. This has caused serious
 problems in the Internet when the hints were obsolete
 or incorrect.

Internet Engineering Task Force [Page 73]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 6.1.3 SPECIFIC ISSUES

 6.1.3.1 Resolver Implementation

 A name resolver SHOULD be able to multiplex concurrent
 requests if the host supports concurrent processes.

 In implementing a DNS resolver, one of two different models
 MAY optionally be chosen: a full-service resolver, or a stub
 resolver.

 (A) Full-Service Resolver

 A full-service resolver is a complete implementation of
 the resolver service, and is capable of dealing with
 communication failures, failure of individual name
 servers, location of the proper name server for a given
 name, etc. It must satisfy the following requirements:

 o The resolver MUST implement a local caching
 function to avoid repeated remote access for
 identical requests, and MUST time out information
 in the cache.

 o The resolver SHOULD be configurable with start-up
 information pointing to multiple root name servers
 and multiple name servers for the local domain.
 This insures that the resolver will be able to
 access the whole name space in normal cases, and
 will be able to access local domain information
 should the local network become disconnected from
 the rest of the Internet.

 (B) Stub Resolver

 A "stub resolver" relies on the services of a recursive
 name server on the connected network or a "nearby"
 network. This scheme allows the host to pass on the
 burden of the resolver function to a name server on
 another host. This model is often essential for less
 capable hosts, such as PCs, and is also recommended
 when the host is one of several workstations on a local
 network, because it allows all of the workstations to
 share the cache of the recursive name server and hence
 reduce the number of domain requests exported by the
 local network.

Internet Engineering Task Force [Page 74]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 At a minimum, the stub resolver MUST be capable of
 directing its requests to redundant recursive name
 servers. Note that recursive name servers are allowed
 to restrict the sources of requests that they will
 honor, so the host administrator must verify that the
 service will be provided. Stub resolvers MAY implement
 caching if they choose, but if so, MUST timeout cached
 information.

 6.1.3.2 Transport Protocols

 DNS resolvers and recursive servers MUST support UDP, and
 SHOULD support TCP, for sending (non-zone-transfer) queries.
 Specifically, a DNS resolver or server that is sending a
 non-zone-transfer query MUST send a UDP query first. If the
 Answer section of the response is truncated and if the
 requester supports TCP, it SHOULD try the query again using
 TCP.

 DNS servers MUST be able to service UDP queries and SHOULD
 be able to service TCP queries. A name server MAY limit the
 resources it devotes to TCP queries, but it SHOULD NOT
 refuse to service a TCP query just because it would have
 succeeded with UDP.

 Truncated responses MUST NOT be saved (cached) and later
 used in such a way that the fact that they are truncated is
 lost.

 DISCUSSION:
 UDP is preferred over TCP for queries because UDP
 queries have much lower overhead, both in packet count
 and in connection state. The use of UDP is essential
 for heavily-loaded servers, especially the root
 servers. UDP also offers additional robustness, since
 a resolver can attempt several UDP queries to different
 servers for the cost of a single TCP query.

 It is possible for a DNS response to be truncated,
 although this is a very rare occurrence in the present
 Internet DNS. Practically speaking, truncation cannot
 be predicted, since it is data-dependent. The
 dependencies include the number of RRs in the answer,
 the size of each RR, and the savings in space realized
 by the name compression algorithm. As a rule of thumb,
 truncation in NS and MX lists should not occur for
 answers containing 15 or fewer RRs.

Internet Engineering Task Force [Page 75]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 Whether it is possible to use a truncated answer
 depends on the application. A mailer must not use a
 truncated MX response, since this could lead to mail
 loops.

 Responsible practices can make UDP suffice in the vast
 majority of cases. Name servers must use compression
 in responses. Resolvers must differentiate truncation
 of the Additional section of a response (which only
 loses extra information) from truncation of the Answer
 section (which for MX records renders the response
 unusable by mailers). Database administrators should
 list only a reasonable number of primary names in lists
 of name servers, MX alternatives, etc.

 However, it is also clear that some new DNS record
 types defined in the future will contain information
 exceeding the 512 byte limit that applies to UDP, and
 hence will require TCP. Thus, resolvers and name
 servers should implement TCP services as a backup to
 UDP today, with the knowledge that they will require
 the TCP service in the future.

 By private agreement, name servers and resolvers MAY arrange
 to use TCP for all traffic between themselves. TCP MUST be
 used for zone transfers.

 A DNS server MUST have sufficient internal concurrency that
 it can continue to process UDP queries while awaiting a
 response or performing a zone transfer on an open TCP
 connection [DNS:2].

 A server MAY support a UDP query that is delivered using an
 IP broadcast or multicast address. However, the Recursion
 Desired bit MUST NOT be set in a query that is multicast,
 and MUST be ignored by name servers receiving queries via a
 broadcast or multicast address. A host that sends broadcast
 or multicast DNS queries SHOULD send them only as occasional
 probes, caching the IP address(es) it obtains from the
 response(s) so it can normally send unicast queries.

 DISCUSSION:
 Broadcast or (especially) IP multicast can provide a
 way to locate nearby name servers without knowing their
 IP addresses in advance. However, general broadcasting
 of recursive queries can result in excessive and
 unnecessary load on both network and servers.

Internet Engineering Task Force [Page 76]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 6.1.3.3 Efficient Resource Usage

 The following requirements on servers and resolvers are very
 important to the health of the Internet as a whole,
 particularly when DNS services are invoked repeatedly by
 higher level automatic servers, such as mailers.

 (1) The resolver MUST implement retransmission controls to
 insure that it does not waste communication bandwidth,
 and MUST impose finite bounds on the resources consumed
 to respond to a single request. See [DNS:2] pages 43-
 44 for specific recommendations.

 (2) After a query has been retransmitted several times
 without a response, an implementation MUST give up and
 return a soft error to the application.

 (3) All DNS name servers and resolvers SHOULD cache
 temporary failures, with a timeout period of the order
 of minutes.

 DISCUSSION:
 This will prevent applications that immediately
 retry soft failures (in violation of Section 2.2
 of this document) from generating excessive DNS
 traffic.

 (4) All DNS name servers and resolvers SHOULD cache
 negative responses that indicate the specified name, or
 data of the specified type, does not exist, as
 described in [DNS:2].

 (5) When a DNS server or resolver retries a UDP query, the
 retry interval SHOULD be constrained by an exponential
 backoff algorithm, and SHOULD also have upper and lower
 bounds.

 IMPLEMENTATION:
 A measured RTT and variance (if available) should
 be used to calculate an initial retransmission
 interval. If this information is not available, a
 default of no less than 5 seconds should be used.
 Implementations may limit the retransmission
 interval, but this limit must exceed twice the
 Internet maximum segment lifetime plus service
 delay at the name server.

 (6) When a resolver or server receives a Source Quench for

Internet Engineering Task Force [Page 77]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 a query it has issued, it SHOULD take steps to reduce
 the rate of querying that server in the near future. A
 server MAY ignore a Source Quench that it receives as
 the result of sending a response datagram.

 IMPLEMENTATION:
 One recommended action to reduce the rate is to
 send the next query attempt to an alternate
 server, if there is one available. Another is to
 backoff the retry interval for the same server.

 6.1.3.4 Multihomed Hosts

 When the host name-to-address function encounters a host
 with multiple addresses, it SHOULD rank or sort the
 addresses using knowledge of the immediately connected
 network number(s) and any other applicable performance or
 history information.

 DISCUSSION:
 The different addresses of a multihomed host generally
 imply different Internet paths, and some paths may be
 preferable to others in performance, reliability, or
 administrative restrictions. There is no general way
 for the domain system to determine the best path. A
 recommended approach is to base this decision on local
 configuration information set by the system
 administrator.

 IMPLEMENTATION:
 The following scheme has been used successfully:

 (a) Incorporate into the host configuration data a
 Network-Preference List, that is simply a list of
 networks in preferred order. This list may be
 empty if there is no preference.

 (b) When a host name is mapped into a list of IP
 addresses, these addresses should be sorted by
 network number, into the same order as the
 corresponding networks in the Network-Preference
 List. IP addresses whose networks do not appear
 in the Network-Preference List should be placed at
 the end of the list.

Internet Engineering Task Force [Page 78]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 6.1.3.5 Extensibility

 DNS software MUST support all well-known, class-independent
 formats [DNS:2], and SHOULD be written to minimize the
 trauma associated with the introduction of new well-known
 types and local experimentation with non-standard types.

 DISCUSSION:
 The data types and classes used by the DNS are
 extensible, and thus new types will be added and old
 types deleted or redefined. Introduction of new data
 types ought to be dependent only upon the rules for
 compression of domain names inside DNS messages, and
 the translation between printable (i.e., master file)
 and internal formats for Resource Records (RRs).

 Compression relies on knowledge of the format of data
 inside a particular RR. Hence compression must only be
 used for the contents of well-known, class-independent
 RRs, and must never be used for class-specific RRs or
 RR types that are not well-known. The owner name of an
 RR is always eligible for compression.

 A name server may acquire, via zone transfer, RRs that
 the server doesn’t know how to convert to printable
 format. A resolver can receive similar information as
 the result of queries. For proper operation, this data
 must be preserved, and hence the implication is that
 DNS software cannot use textual formats for internal
 storage.

 The DNS defines domain name syntax very generally -- a
 string of labels each containing up to 63 8-bit octets,
 separated by dots, and with a maximum total of 255
 octets. Particular applications of the DNS are
 permitted to further constrain the syntax of the domain
 names they use, although the DNS deployment has led to
 some applications allowing more general names. In
 particular, Section 2.1 of this document liberalizes
 slightly the syntax of a legal Internet host name that
 was defined in RFC-952 [DNS:4].

 6.1.3.6 Status of RR Types

 Name servers MUST be able to load all RR types except MD and
 MF from configuration files. The MD and MF types are
 obsolete and MUST NOT be implemented; in particular, name
 servers MUST NOT load these types from configuration files.

Internet Engineering Task Force [Page 79]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 DISCUSSION:
 The RR types MB, MG, MR, NULL, MINFO and RP are
 considered experimental, and applications that use the
 DNS cannot expect these RR types to be supported by
 most domains. Furthermore these types are subject to
 redefinition.

 The TXT and WKS RR types have not been widely used by
 Internet sites; as a result, an application cannot rely
 on the the existence of a TXT or WKS RR in most
 domains.

 6.1.3.7 Robustness

 DNS software may need to operate in environments where the
 root servers or other servers are unavailable due to network
 connectivity or other problems. In this situation, DNS name
 servers and resolvers MUST continue to provide service for
 the reachable part of the name space, while giving temporary
 failures for the rest.

 DISCUSSION:
 Although the DNS is meant to be used primarily in the
 connected Internet, it should be possible to use the
 system in networks which are unconnected to the
 Internet. Hence implementations must not depend on
 access to root servers before providing service for
 local names.

 6.1.3.8 Local Host Table

 DISCUSSION:
 A host may use a local host table as a backup or
 supplement to the DNS. This raises the question of
 which takes precedence, the DNS or the host table; the
 most flexible approach would make this a configuration
 option.

 Typically, the contents of such a supplementary host
 table will be determined locally by the site. However,
 a publically-available table of Internet hosts is
 maintained by the DDN Network Information Center (DDN
 NIC), with a format documented in [DNS:4]. This table
 can be retrieved from the DDN NIC using a protocol
 described in [DNS:5]. It must be noted that this table
 contains only a small fraction of all Internet hosts.
 Hosts using this protocol to retrieve the DDN NIC host
 table should use the VERSION command to check if the

Internet Engineering Task Force [Page 80]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 table has changed before requesting the entire table
 with the ALL command. The VERSION identifier should be
 treated as an arbitrary string and tested only for
 equality; no numerical sequence may be assumed.

 The DDN NIC host table includes administrative
 information that is not needed for host operation and
 is therefore not currently included in the DNS
 database; examples include network and gateway entries.
 However, much of this additional information will be
 added to the DNS in the future. Conversely, the DNS
 provides essential services (in particular, MX records)
 that are not available from the DDN NIC host table.

 6.1.4 DNS USER INTERFACE

 6.1.4.1 DNS Administration

 This document is concerned with design and implementation
 issues in host software, not with administrative or
 operational issues. However, administrative issues are of
 particular importance in the DNS, since errors in particular
 segments of this large distributed database can cause poor
 or erroneous performance for many sites. These issues are
 discussed in [DNS:6] and [DNS:7].

 6.1.4.2 DNS User Interface

 Hosts MUST provide an interface to the DNS for all
 application programs running on the host. This interface
 will typically direct requests to a system process to
 perform the resolver function [DNS:1, 6.1:2].

 At a minimum, the basic interface MUST support a request for
 all information of a specific type and class associated with
 a specific name, and it MUST return either all of the
 requested information, a hard error code, or a soft error
 indication. When there is no error, the basic interface
 returns the complete response information without
 modification, deletion, or ordering, so that the basic
 interface will not need to be changed to accommodate new
 data types.

 DISCUSSION:
 The soft error indication is an essential part of the
 interface, since it may not always be possible to
 access particular information from the DNS; see Section
 6.1.3.3.

Internet Engineering Task Force [Page 81]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 A host MAY provide other DNS interfaces tailored to
 particular functions, transforming the raw domain data into
 formats more suited to these functions. In particular, a
 host MUST provide a DNS interface to facilitate translation
 between host addresses and host names.

 6.1.4.3 Interface Abbreviation Facilities

 User interfaces MAY provide a method for users to enter
 abbreviations for commonly-used names. Although the
 definition of such methods is outside of the scope of the
 DNS specification, certain rules are necessary to insure
 that these methods allow access to the entire DNS name space
 and to prevent excessive use of Internet resources.

 If an abbreviation method is provided, then:

 (a) There MUST be some convention for denoting that a name
 is already complete, so that the abbreviation method(s)
 are suppressed. A trailing dot is the usual method.

 (b) Abbreviation expansion MUST be done exactly once, and
 MUST be done in the context in which the name was
 entered.

 DISCUSSION:
 For example, if an abbreviation is used in a mail
 program for a destination, the abbreviation should be
 expanded into a full domain name and stored in the
 queued message with an indication that it is already
 complete. Otherwise, the abbreviation might be
 expanded with a mail system search list, not the
 user’s, or a name could grow due to repeated
 canonicalizations attempts interacting with wildcards.

 The two most common abbreviation methods are:

 (1) Interface-level aliases

 Interface-level aliases are conceptually implemented as
 a list of alias/domain name pairs. The list can be
 per-user or per-host, and separate lists can be
 associated with different functions, e.g. one list for
 host name-to-address translation, and a different list
 for mail domains. When the user enters a name, the
 interface attempts to match the name to the alias
 component of a list entry, and if a matching entry can

Internet Engineering Task Force [Page 82]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 be found, the name is replaced by the domain name found
 in the pair.

 Note that interface-level aliases and CNAMEs are
 completely separate mechanisms; interface-level aliases
 are a local matter while CNAMEs are an Internet-wide
 aliasing mechanism which is a required part of any DNS
 implementation.

 (2) Search Lists

 A search list is conceptually implemented as an ordered
 list of domain names. When the user enters a name, the
 domain names in the search list are used as suffixes to
 the user-supplied name, one by one, until a domain name
 with the desired associated data is found, or the
 search list is exhausted. Search lists often contain
 the name of the local host’s parent domain or other
 ancestor domains. Search lists are often per-user or
 per-process.

 It SHOULD be possible for an administrator to disable a
 DNS search-list facility. Administrative denial may be
 warranted in some cases, to prevent abuse of the DNS.

 There is danger that a search-list mechanism will
 generate excessive queries to the root servers while
 testing whether user input is a complete domain name,
 lacking a final period to mark it as complete. A
 search-list mechanism MUST have one of, and SHOULD have
 both of, the following two provisions to prevent this:

 (a) The local resolver/name server can implement
 caching of negative responses (see Section
 6.1.3.3).

 (b) The search list expander can require two or more
 interior dots in a generated domain name before it
 tries using the name in a query to non-local
 domain servers, such as the root.

 DISCUSSION:
 The intent of this requirement is to avoid
 excessive delay for the user as the search list is
 tested, and more importantly to prevent excessive
 traffic to the root and other high-level servers.
 For example, if the user supplied a name "X" and
 the search list contained the root as a component,

Internet Engineering Task Force [Page 83]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 a query would have to consult a root server before
 the next search list alternative could be tried.
 The resulting load seen by the root servers and
 gateways near the root would be multiplied by the
 number of hosts in the Internet.

 The negative caching alternative limits the effect
 to the first time a name is used. The interior
 dot rule is simpler to implement but can prevent
 easy use of some top-level names.

 6.1.5 DOMAIN NAME SYSTEM REQUIREMENTS SUMMARY

 | | | | |S| |
 | | | | |H| |F
 | | | | |O|M|o
 | | |S| |U|U|o
 | | |H| |L|S|t
 | |M|O| |D|T|n
 | |U|U|M| | |o
 | |S|L|A|N|N|t
 | |T|D|Y|O|O|t
FEATURE	SECTION				T	T	e
GENERAL ISSUES | | | | | | |
 | | | | | | |
Implement DNS name-to-address conversion |6.1.1 |x| | | | |
Implement DNS address-to-name conversion |6.1.1 |x| | | | |
Support conversions using host table |6.1.1 | | |x| | |
Properly handle RR with zero TTL |6.1.2.1 |x| | | | |
Use QCLASS=* unnecessarily |6.1.2.2 | |x| | | |
 Use QCLASS=IN for Internet class |6.1.2.2 |x| | | | |
Unused fields zero |6.1.2.3 |x| | | | |
Use compression in responses |6.1.2.4 |x| | | | |
 | | | | | | |
Include config info in responses |6.1.2.5 | | | | |x|
Support all well-known, class-indep. types |6.1.3.5 |x| | | | |
Easily expand type list |6.1.3.5 | |x| | | |
Load all RR types (except MD and MF) |6.1.3.6 |x| | | | |
Load MD or MF type |6.1.3.6 | | | | |x|
Operate when root servers, etc. unavailable |6.1.3.7 |x| | | | |
---|-----------|-|-|-|-|-|--
RESOLVER ISSUES: | | | | | | |
 | | | | | | |
Resolver support multiple concurrent requests |6.1.3.1 | |x| | | |
Full-service resolver: |6.1.3.1 | | |x| | |
 Local caching |6.1.3.1 |x| | | | |

Internet Engineering Task Force [Page 84]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 Information in local cache times out |6.1.3.1 |x| | | | |
 Configurable with starting info |6.1.3.1 | |x| | | |
Stub resolver: |6.1.3.1 | | |x| | |
 Use redundant recursive name servers |6.1.3.1 |x| | | | |
 Local caching |6.1.3.1 | | |x| | |
 Information in local cache times out |6.1.3.1 |x| | | | |
Support for remote multi-homed hosts: | | | | | | |
 Sort multiple addresses by preference list |6.1.3.4 | |x| | | |
 | | | | | | |
---|-----------|-|-|-|-|-|--
TRANSPORT PROTOCOLS: | | | | | | |
 | | | | | | |
Support UDP queries |6.1.3.2 |x| | | | |
Support TCP queries |6.1.3.2 | |x| | | |
 Send query using UDP first |6.1.3.2 |x| | | | |1
 Try TCP if UDP answers are truncated |6.1.3.2 | |x| | | |
Name server limit TCP query resources |6.1.3.2 | | |x| | |
 Punish unnecessary TCP query |6.1.3.2 | | | |x| |
Use truncated data as if it were not |6.1.3.2 | | | | |x|
Private agreement to use only TCP |6.1.3.2 | | |x| | |
Use TCP for zone transfers |6.1.3.2 |x| | | | |
TCP usage not block UDP queries |6.1.3.2 |x| | | | |
Support broadcast or multicast queries |6.1.3.2 | | |x| | |
 RD bit set in query |6.1.3.2 | | | | |x|
 RD bit ignored by server is b’cast/m’cast |6.1.3.2 |x| | | | |
 Send only as occasional probe for addr’s |6.1.3.2 | |x| | | |
---|-----------|-|-|-|-|-|--
RESOURCE USAGE: | | | | | | |
 | | | | | | |
Transmission controls, per [DNS:2] |6.1.3.3 |x| | | | |
 Finite bounds per request |6.1.3.3 |x| | | | |
Failure after retries => soft error |6.1.3.3 |x| | | | |
Cache temporary failures |6.1.3.3 | |x| | | |
Cache negative responses |6.1.3.3 | |x| | | |
Retries use exponential backoff |6.1.3.3 | |x| | | |
 Upper, lower bounds |6.1.3.3 | |x| | | |
Client handle Source Quench |6.1.3.3 | |x| | | |
Server ignore Source Quench |6.1.3.3 | | |x| | |
---|-----------|-|-|-|-|-|--
USER INTERFACE: | | | | | | |
 | | | | | | |
All programs have access to DNS interface |6.1.4.2 |x| | | | |
Able to request all info for given name |6.1.4.2 |x| | | | |
Returns complete info or error |6.1.4.2 |x| | | | |
Special interfaces |6.1.4.2 | | |x| | |
 Name<->Address translation |6.1.4.2 |x| | | | |
 | | | | | | |
Abbreviation Facilities: |6.1.4.3 | | |x| | |

Internet Engineering Task Force [Page 85]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 Convention for complete names |6.1.4.3 |x| | | | |
 Conversion exactly once |6.1.4.3 |x| | | | |
 Conversion in proper context |6.1.4.3 |x| | | | |
 Search list: |6.1.4.3 | | |x| | |
 Administrator can disable |6.1.4.3 | |x| | | |
 Prevention of excessive root queries |6.1.4.3 |x| | | | |
 Both methods |6.1.4.3 | |x| | | |
---	-----------	-	-	-	-	-	--

1. Unless there is private agreement between particular resolver and
 particular server.

Internet Engineering Task Force [Page 86]

RFC1123 SUPPORT SERVICES -- INITIALIZATION October 1989

 6.2 HOST INITIALIZATION

 6.2.1 INTRODUCTION

 This section discusses the initialization of host software
 across a connected network, or more generally across an
 Internet path. This is necessary for a diskless host, and may
 optionally be used for a host with disk drives. For a diskless
 host, the initialization process is called "network booting"
 and is controlled by a bootstrap program located in a boot ROM.

 To initialize a diskless host across the network, there are two
 distinct phases:

 (1) Configure the IP layer.

 Diskless machines often have no permanent storage in which
 to store network configuration information, so that
 sufficient configuration information must be obtained
 dynamically to support the loading phase that follows.
 This information must include at least the IP addresses of
 the host and of the boot server. To support booting
 across a gateway, the address mask and a list of default
 gateways are also required.

 (2) Load the host system code.

 During the loading phase, an appropriate file transfer
 protocol is used to copy the system code across the
 network from the boot server.

 A host with a disk may perform the first step, dynamic
 configuration. This is important for microcomputers, whose
 floppy disks allow network configuration information to be
 mistakenly duplicated on more than one host. Also,
 installation of new hosts is much simpler if they automatically
 obtain their configuration information from a central server,
 saving administrator time and decreasing the probability of
 mistakes.

 6.2.2 REQUIREMENTS

 6.2.2.1 Dynamic Configuration

 A number of protocol provisions have been made for dynamic
 configuration.

 o ICMP Information Request/Reply messages

Internet Engineering Task Force [Page 87]

RFC1123 SUPPORT SERVICES -- INITIALIZATION October 1989

 This obsolete message pair was designed to allow a host
 to find the number of the network it is on.
 Unfortunately, it was useful only if the host already
 knew the host number part of its IP address,
 information that hosts requiring dynamic configuration
 seldom had.

 o Reverse Address Resolution Protocol (RARP) [BOOT:4]

 RARP is a link-layer protocol for a broadcast medium
 that allows a host to find its IP address given its
 link layer address. Unfortunately, RARP does not work
 across IP gateways and therefore requires a RARP server
 on every network. In addition, RARP does not provide
 any other configuration information.

 o ICMP Address Mask Request/Reply messages

 These ICMP messages allow a host to learn the address
 mask for a particular network interface.

 o BOOTP Protocol [BOOT:2]

 This protocol allows a host to determine the IP
 addresses of the local host and the boot server, the
 name of an appropriate boot file, and optionally the
 address mask and list of default gateways. To locate a
 BOOTP server, the host broadcasts a BOOTP request using
 UDP. Ad hoc gateway extensions have been used to
 transmit the BOOTP broadcast through gateways, and in
 the future the IP Multicasting facility will provide a
 standard mechanism for this purpose.

 The suggested approach to dynamic configuration is to use
 the BOOTP protocol with the extensions defined in "BOOTP
 Vendor Information Extensions" RFC-1084 [BOOT:3]. RFC-1084
 defines some important general (not vendor-specific)
 extensions. In particular, these extensions allow the
 address mask to be supplied in BOOTP; we RECOMMEND that the
 address mask be supplied in this manner.

 DISCUSSION:
 Historically, subnetting was defined long after IP, and
 so a separate mechanism (ICMP Address Mask messages)
 was designed to supply the address mask to a host.
 However, the IP address mask and the corresponding IP
 address conceptually form a pair, and for operational

Internet Engineering Task Force [Page 88]

RFC1123 SUPPORT SERVICES -- INITIALIZATION October 1989

 simplicity they ought to be defined at the same time
 and by the same mechanism, whether a configuration file
 or a dynamic mechanism like BOOTP.

 Note that BOOTP is not sufficiently general to specify
 the configurations of all interfaces of a multihomed
 host. A multihomed host must either use BOOTP
 separately for each interface, or configure one
 interface using BOOTP to perform the loading, and
 perform the complete initialization from a file later.

 Application layer configuration information is expected
 to be obtained from files after loading of the system
 code.

 6.2.2.2 Loading Phase

 A suggested approach for the loading phase is to use TFTP
 [BOOT:1] between the IP addresses established by BOOTP.

 TFTP to a broadcast address SHOULD NOT be used, for reasons
 explained in Section 4.2.3.4.

Internet Engineering Task Force [Page 89]

RFC1123 SUPPORT SERVICES -- MANAGEMENT October 1989

 6.3 REMOTE MANAGEMENT

 6.3.1 INTRODUCTION

 The Internet community has recently put considerable effort
 into the development of network management protocols. The
 result has been a two-pronged approach [MGT:1, MGT:6]: the
 Simple Network Management Protocol (SNMP) [MGT:4] and the
 Common Management Information Protocol over TCP (CMOT) [MGT:5].

 In order to be managed using SNMP or CMOT, a host will need to
 implement an appropriate management agent. An Internet host
 SHOULD include an agent for either SNMP or CMOT.

 Both SNMP and CMOT operate on a Management Information Base
 (MIB) that defines a collection of management values. By
 reading and setting these values, a remote application may
 query and change the state of the managed system.

 A standard MIB [MGT:3] has been defined for use by both
 management protocols, using data types defined by the Structure
 of Management Information (SMI) defined in [MGT:2]. Additional
 MIB variables can be introduced under the "enterprises" and
 "experimental" subtrees of the MIB naming space [MGT:2].

 Every protocol module in the host SHOULD implement the relevant
 MIB variables. A host SHOULD implement the MIB variables as
 defined in the most recent standard MIB, and MAY implement
 other MIB variables when appropriate and useful.

 6.3.2 PROTOCOL WALK-THROUGH

 The MIB is intended to cover both hosts and gateways, although
 there may be detailed differences in MIB application to the two
 cases. This section contains the appropriate interpretation of
 the MIB for hosts. It is likely that later versions of the MIB
 will include more entries for host management.

 A managed host must implement the following groups of MIB
 object definitions: System, Interfaces, Address Translation,
 IP, ICMP, TCP, and UDP.

 The following specific interpretations apply to hosts:

 o ipInHdrErrors

 Note that the error "time-to-live exceeded" can occur in a
 host only when it is forwarding a source-routed datagram.

Internet Engineering Task Force [Page 90]

RFC1123 SUPPORT SERVICES -- MANAGEMENT October 1989

 o ipOutNoRoutes

 This object counts datagrams discarded because no route
 can be found. This may happen in a host if all the
 default gateways in the host’s configuration are down.

 o ipFragOKs, ipFragFails, ipFragCreates

 A host that does not implement intentional fragmentation
 (see "Fragmentation" section of [INTRO:1]) MUST return the
 value zero for these three objects.

 o icmpOutRedirects

 For a host, this object MUST always be zero, since hosts
 do not send Redirects.

 o icmpOutAddrMaskReps

 For a host, this object MUST always be zero, unless the
 host is an authoritative source of address mask
 information.

 o ipAddrTable

 For a host, the "IP Address Table" object is effectively a
 table of logical interfaces.

 o ipRoutingTable

 For a host, the "IP Routing Table" object is effectively a
 combination of the host’s Routing Cache and the static
 route table described in "Routing Outbound Datagrams"
 section of [INTRO:1].

 Within each ipRouteEntry, ipRouteMetric1...4 normally will
 have no meaning for a host and SHOULD always be -1, while
 ipRouteType will normally have the value "remote".

 If destinations on the connected network do not appear in
 the Route Cache (see "Routing Outbound Datagrams section
 of [INTRO:1]), there will be no entries with ipRouteType
 of "direct".

 DISCUSSION:
 The current MIB does not include Type-of-Service in an
 ipRouteEntry, but a future revision is expected to make

Internet Engineering Task Force [Page 91]

RFC1123 SUPPORT SERVICES -- MANAGEMENT October 1989

 this addition.

 We also expect the MIB to be expanded to allow the remote
 management of applications (e.g., the ability to partially
 reconfigure mail systems). Network service applications
 such as mail systems should therefore be written with the
 "hooks" for remote management.

 6.3.3 MANAGEMENT REQUIREMENTS SUMMARY

 | | | | |S| |
 | | | | |H| |F
 | | | | |O|M|o
 | | |S| |U|U|o
 | | |H| |L|S|t
 | |M|O| |D|T|n
 | |U|U|M| | |o
 | |S|L|A|N|N|t
 | |T|D|Y|O|O|t
FEATURE	SECTION				T	T	e
Support SNMP or CMOT agent |6.3.1 | |x| | | |
Implement specified objects in standard MIB |6.3.1 | |x| | | |

Internet Engineering Task Force [Page 92]

RFC1123 SUPPORT SERVICES -- MANAGEMENT October 1989

7. REFERENCES

 This section lists the primary references with which every
 implementer must be thoroughly familiar. It also lists some
 secondary references that are suggested additional reading.

 INTRODUCTORY REFERENCES:

 [INTRO:1] "Requirements for Internet Hosts -- Communication Layers,"
 IETF Host Requirements Working Group, R. Braden, Ed., RFC-1122,
 October 1989.

 [INTRO:2] "DDN Protocol Handbook," NIC-50004, NIC-50005, NIC-50006,
 (three volumes), SRI International, December 1985.

 [INTRO:3] "Official Internet Protocols," J. Reynolds and J. Postel,
 RFC-1011, May 1987.

 This document is republished periodically with new RFC numbers;
 the latest version must be used.

 [INTRO:4] "Protocol Document Order Information," O. Jacobsen and J.
 Postel, RFC-980, March 1986.

 [INTRO:5] "Assigned Numbers," J. Reynolds and J. Postel, RFC-1010,
 May 1987.

 This document is republished periodically with new RFC numbers;
 the latest version must be used.

 TELNET REFERENCES:

 [TELNET:1] "Telnet Protocol Specification," J. Postel and J.
 Reynolds, RFC-854, May 1983.

 [TELNET:2] "Telnet Option Specification," J. Postel and J. Reynolds,
 RFC-855, May 1983.

 [TELNET:3] "Telnet Binary Transmission," J. Postel and J. Reynolds,
 RFC-856, May 1983.

 [TELNET:4] "Telnet Echo Option," J. Postel and J. Reynolds, RFC-857,
 May 1983.

 [TELNET:5] "Telnet Suppress Go Ahead Option," J. Postel and J.

Internet Engineering Task Force [Page 93]

RFC1123 SUPPORT SERVICES -- MANAGEMENT October 1989

 Reynolds, RFC-858, May 1983.

 [TELNET:6] "Telnet Status Option," J. Postel and J. Reynolds, RFC-
 859, May 1983.

 [TELNET:7] "Telnet Timing Mark Option," J. Postel and J. Reynolds,
 RFC-860, May 1983.

 [TELNET:8] "Telnet Extended Options List," J. Postel and J.
 Reynolds, RFC-861, May 1983.

 [TELNET:9] "Telnet End-Of-Record Option," J. Postel, RFC-855,
 December 1983.

 [TELNET:10] "Telnet Terminal-Type Option," J. VanBokkelen, RFC-1091,
 February 1989.

 This document supercedes RFC-930.

 [TELNET:11] "Telnet Window Size Option," D. Waitzman, RFC-1073,
 October 1988.

 [TELNET:12] "Telnet Linemode Option," D. Borman, RFC-1116, August
 1989.

 [TELNET:13] "Telnet Terminal Speed Option," C. Hedrick, RFC-1079,
 December 1988.

 [TELNET:14] "Telnet Remote Flow Control Option," C. Hedrick, RFC-
 1080, November 1988.

 SECONDARY TELNET REFERENCES:

 [TELNET:15] "Telnet Protocol," MIL-STD-1782, U.S. Department of
 Defense, May 1984.

 This document is intended to describe the same protocol as RFC-
 854. In case of conflict, RFC-854 takes precedence, and the
 present document takes precedence over both.

 [TELNET:16] "SUPDUP Protocol," M. Crispin, RFC-734, October 1977.

 [TELNET:17] "Telnet SUPDUP Option," M. Crispin, RFC-736, October
 1977.

 [TELNET:18] "Data Entry Terminal Option," J. Day, RFC-732, June 1977.

Internet Engineering Task Force [Page 94]

RFC1123 SUPPORT SERVICES -- MANAGEMENT October 1989

 [TELNET:19] "TELNET Data Entry Terminal option -- DODIIS
 Implementation," A. Yasuda and T. Thompson, RFC-1043, February
 1988.

 FTP REFERENCES:

 [FTP:1] "File Transfer Protocol," J. Postel and J. Reynolds, RFC-
 959, October 1985.

 [FTP:2] "Document File Format Standards," J. Postel, RFC-678,
 December 1974.

 [FTP:3] "File Transfer Protocol," MIL-STD-1780, U.S. Department of
 Defense, May 1984.

 This document is based on an earlier version of the FTP
 specification (RFC-765) and is obsolete.

 TFTP REFERENCES:

 [TFTP:1] "The TFTP Protocol Revision 2," K. Sollins, RFC-783, June
 1981.

 MAIL REFERENCES:

 [SMTP:1] "Simple Mail Transfer Protocol," J. Postel, RFC-821, August
 1982.

 [SMTP:2] "Standard For The Format of ARPA Internet Text Messages,"
 D. Crocker, RFC-822, August 1982.

 This document obsoleted an earlier specification, RFC-733.

 [SMTP:3] "Mail Routing and the Domain System," C. Partridge, RFC-
 974, January 1986.

 This RFC describes the use of MX records, a mandatory extension
 to the mail delivery process.

 [SMTP:4] "Duplicate Messages and SMTP," C. Partridge, RFC-1047,
 February 1988.

Internet Engineering Task Force [Page 95]

RFC1123 SUPPORT SERVICES -- MANAGEMENT October 1989

 [SMTP:5a] "Mapping between X.400 and RFC 822," S. Kille, RFC-987,
 June 1986.

 [SMTP:5b] "Addendum to RFC-987," S. Kille, RFC-???, September 1987.

 The two preceding RFC’s define a proposed standard for
 gatewaying mail between the Internet and the X.400 environments.

 [SMTP:6] "Simple Mail Transfer Protocol," MIL-STD-1781, U.S.
 Department of Defense, May 1984.

 This specification is intended to describe the same protocol as
 does RFC-821. However, MIL-STD-1781 is incomplete; in
 particular, it does not include MX records [SMTP:3].

 [SMTP:7] "A Content-Type Field for Internet Messages," M. Sirbu,
 RFC-1049, March 1988.

 DOMAIN NAME SYSTEM REFERENCES:

 [DNS:1] "Domain Names - Concepts and Facilities," P. Mockapetris,
 RFC-1034, November 1987.

 This document and the following one obsolete RFC-882, RFC-883,
 and RFC-973.

 [DNS:2] "Domain Names - Implementation and Specification," RFC-1035,
 P. Mockapetris, November 1987.

 [DNS:3] "Mail Routing and the Domain System," C. Partridge, RFC-974,
 January 1986.

 [DNS:4] "DoD Internet Host Table Specification," K. Harrenstein,
 RFC-952, M. Stahl, E. Feinler, October 1985.

 SECONDARY DNS REFERENCES:

 [DNS:5] "Hostname Server," K. Harrenstein, M. Stahl, E. Feinler,
 RFC-953, October 1985.

 [DNS:6] "Domain Administrators Guide," M. Stahl, RFC-1032, November
 1987.

Internet Engineering Task Force [Page 96]

RFC1123 SUPPORT SERVICES -- MANAGEMENT October 1989

 [DNS:7] "Domain Administrators Operations Guide," M. Lottor, RFC-
 1033, November 1987.

 [DNS:8] "The Domain Name System Handbook," Vol. 4 of Internet
 Protocol Handbook, NIC 50007, SRI Network Information Center,
 August 1989.

 SYSTEM INITIALIZATION REFERENCES:

 [BOOT:1] "Bootstrap Loading Using TFTP," R. Finlayson, RFC-906, June
 1984.

 [BOOT:2] "Bootstrap Protocol (BOOTP)," W. Croft and J. Gilmore, RFC-
 951, September 1985.

 [BOOT:3] "BOOTP Vendor Information Extensions," J. Reynolds, RFC-
 1084, December 1988.

 Note: this RFC revised and obsoleted RFC-1048.

 [BOOT:4] "A Reverse Address Resolution Protocol," R. Finlayson, T.
 Mann, J. Mogul, and M. Theimer, RFC-903, June 1984.

 MANAGEMENT REFERENCES:

 [MGT:1] "IAB Recommendations for the Development of Internet Network
 Management Standards," V. Cerf, RFC-1052, April 1988.

 [MGT:2] "Structure and Identification of Management Information for
 TCP/IP-based internets," M. Rose and K. McCloghrie, RFC-1065,
 August 1988.

 [MGT:3] "Management Information Base for Network Management of
 TCP/IP-based internets," M. Rose and K. McCloghrie, RFC-1066,
 August 1988.

 [MGT:4] "A Simple Network Management Protocol," J. Case, M. Fedor,
 M. Schoffstall, and C. Davin, RFC-1098, April 1989.

 [MGT:5] "The Common Management Information Services and Protocol
 over TCP/IP," U. Warrier and L. Besaw, RFC-1095, April 1989.

 [MGT:6] "Report of the Second Ad Hoc Network Management Review
 Group," V. Cerf, RFC-1109, August 1989.

Internet Engineering Task Force [Page 97]

RFC1123 SUPPORT SERVICES -- MANAGEMENT October 1989

Security Considerations

 There are many security issues in the application and support
 programs of host software, but a full discussion is beyond the scope
 of this RFC. Security-related issues are mentioned in sections
 concerning TFTP (Sections 4.2.1, 4.2.3.4, 4.2.3.5), the SMTP VRFY and
 EXPN commands (Section 5.2.3), the SMTP HELO command (5.2.5), and the
 SMTP DATA command (Section 5.2.8).

Author’s Address

 Robert Braden
 USC/Information Sciences Institute
 4676 Admiralty Way
 Marina del Rey, CA 90292-6695

 Phone: (213) 822 1511

 EMail: Braden@ISI.EDU

Internet Engineering Task Force [Page 98]

