
Network Working Group M. Rose
Request for Comments: 1155 Performance Systems International
Obsoletes: RFC 1065 K. McCloghrie
 Hughes LAN Systems
 May 1990

 Structure and Identification of Management Information
 for TCP/IP-based Internets

 Table of Contents

1. Status of this Memo ... 1
2. Introduction .. 2
3. Structure and Identification of Management Information........... 4
3.1 Names .. 4
3.1.1 Directory .. 5
3.1.2 Mgmt ... 6
3.1.3 Experimental ... 6
3.1.4 Private .. 7
3.2 Syntax ... 7
3.2.1 Primitive Types .. 7
3.2.1.1 Guidelines for Enumerated INTEGERs 7
3.2.2 Constructor Types .. 8
3.2.3 Defined Types .. 8
3.2.3.1 NetworkAddress ... 8
3.2.3.2 IpAddress .. 8
3.2.3.3 Counter .. 8
3.2.3.4 Gauge .. 9
3.2.3.5 TimeTicks .. 9
3.2.3.6 Opaque ... 9
3.3 Encodings .. 9
4. Managed Objects ... 10
4.1 Guidelines for Object Names 10
4.2 Object Types and Instances 10
4.3 Macros for Managed Objects 14
5. Extensions to the MIB ... 16
6. Definitions ... 17
7. Acknowledgements .. 20
8. References .. 21
9. Security Considerations.. 21
10. Authors’ Addresses.. 22

1. Status of this Memo

 This RFC is a re-release of RFC 1065, with a changed "Status of this
 Memo", plus a few minor typographical corrections. The technical

Rose & McCloghrie [Page 1]

RFC 1155 SMI May 1990

 content of the document is unchanged from RFC 1065.

 This memo provides the common definitions for the structure and
 identification of management information for TCP/IP-based internets.
 In particular, together with its companion memos which describe the
 management information base along with the network management
 protocol, these documents provide a simple, workable architecture and
 system for managing TCP/IP-based internets and in particular, the
 Internet.

 This memo specifies a Standard Protocol for the Internet community.
 Its status is "Recommended". TCP/IP implementations in the Internet
 which are network manageable are expected to adopt and implement this
 specification.

 The Internet Activities Board recommends that all IP and TCP
 implementations be network manageable. This implies implementation
 of the Internet MIB (RFC-1156) and at least one of the two
 recommended management protocols SNMP (RFC-1157) or CMOT (RFC-1095).
 It should be noted that, at this time, SNMP is a full Internet
 standard and CMOT is a draft standard. See also the Host and Gateway
 Requirements RFCs for more specific information on the applicability
 of this standard.

 Please refer to the latest edition of the "IAB Official Protocol
 Standards" RFC for current information on the state and status of
 standard Internet protocols.

 Distribution of this memo is unlimited.

2. Introduction

 This memo describes the common structures and identification scheme
 for the definition of management information used in managing
 TCP/IP-based internets. Included are descriptions of an object
 information model for network management along with a set of generic
 types used to describe management information. Formal descriptions
 of the structure are given using Abstract Syntax Notation One (ASN.1)
 [1].

 This memo is largely concerned with organizational concerns and
 administrative policy: it neither specifies the objects which are
 managed, nor the protocols used to manage those objects. These
 concerns are addressed by two companion memos: one describing the
 Management Information Base (MIB) [2], and the other describing the
 Simple Network Management Protocol (SNMP) [3].

 This memo is based in part on the work of the Internet Engineering

Rose & McCloghrie [Page 2]

RFC 1155 SMI May 1990

 Task Force, particularly the working note titled "Structure and
 Identification of Management Information for the Internet" [4]. This
 memo uses a skeletal structure derived from that note, but differs in
 one very significant way: that note focuses entirely on the use of
 OSI-style network management. As such, it is not suitable for use
 with SNMP.

 This memo attempts to achieve two goals: simplicity and
 extensibility. Both are motivated by a common concern: although the
 management of TCP/IP-based internets has been a topic of study for
 some time, the authors do not feel that the depth and breadth of such
 understanding is complete. More bluntly, we feel that previous
 experiences, while giving the community insight, are hardly
 conclusive. By fostering a simple SMI, the minimal number of
 constraints are imposed on future potential approaches; further, by
 fostering an extensible SMI, the maximal number of potential
 approaches are available for experimentation.

 It is believed that this memo and its two companions comply with the
 guidelines set forth in RFC 1052, "IAB Recommendations for the
 Development of Internet Network Management Standards" [5] and RFC
 1109, "Report of the Second Ad Hoc Network Management Review Group"
 [6]. In particular, we feel that this memo, along with the memo
 describing the management information base, provide a solid basis for
 network management of the Internet.

Rose & McCloghrie [Page 3]

RFC 1155 SMI May 1990

3. Structure and Identification of Management Information

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. Objects in the MIB are
 defined using Abstract Syntax Notation One (ASN.1) [1].

 Each type of object (termed an object type) has a name, a syntax, and
 an encoding. The name is represented uniquely as an OBJECT
 IDENTIFIER. An OBJECT IDENTIFIER is an administratively assigned
 name. The administrative policies used for assigning names are
 discussed later in this memo.

 The syntax for an object type defines the abstract data structure
 corresponding to that object type. For example, the structure of a
 given object type might be an INTEGER or OCTET STRING. Although in
 general, we should permit any ASN.1 construct to be available for use
 in defining the syntax of an object type, this memo purposely
 restricts the ASN.1 constructs which may be used. These restrictions
 are made solely for the sake of simplicity.

 The encoding of an object type is simply how instances of that object
 type are represented using the object’s type syntax. Implicitly tied
 to the notion of an object’s syntax and encoding is how the object is
 represented when being transmitted on the network. This memo
 specifies the use of the basic encoding rules of ASN.1 [7].

 It is beyond the scope of this memo to define either the MIB used for
 network management or the network management protocol. As mentioned
 earlier, these tasks are left to companion memos. This memo attempts
 to minimize the restrictions placed upon its companions so as to
 maximize generality. However, in some cases, restrictions have been
 made (e.g., the syntax which may be used when defining object types
 in the MIB) in order to encourage a particular style of management.
 Future editions of this memo may remove these restrictions.

3.1. Names

 Names are used to identify managed objects. This memo specifies
 names which are hierarchical in nature. The OBJECT IDENTIFIER
 concept is used to model this notion. An OBJECT IDENTIFIER can be
 used for purposes other than naming managed object types; for
 example, each international standard has an OBJECT IDENTIFIER
 assigned to it for the purposes of identification. In short, OBJECT
 IDENTIFIERs are a means for identifying some object, regardless of
 the semantics associated with the object (e.g., a network object, a
 standards document, etc.)

 An OBJECT IDENTIFIER is a sequence of integers which traverse a

Rose & McCloghrie [Page 4]

RFC 1155 SMI May 1990

 global tree. The tree consists of a root connected to a number of
 labeled nodes via edges. Each node may, in turn, have children of
 its own which are labeled. In this case, we may term the node a
 subtree. This process may continue to an arbitrary level of depth.
 Central to the notion of the OBJECT IDENTIFIER is the understanding
 that administrative control of the meanings assigned to the nodes may
 be delegated as one traverses the tree. A label is a pairing of a
 brief textual description and an integer.

 The root node itself is unlabeled, but has at least three children
 directly under it: one node is administered by the International
 Organization for Standardization, with label iso(1); another is
 administrated by the International Telegraph and Telephone
 Consultative Committee, with label ccitt(0); and the third is jointly
 administered by the ISO and the CCITT, joint-iso-ccitt(2).

 Under the iso(1) node, the ISO has designated one subtree for use by
 other (inter)national organizations, org(3). Of the children nodes
 present, two have been assigned to the U.S. National Institutes of
 Standards and Technology. One of these subtrees has been transferred
 by the NIST to the U.S. Department of Defense, dod(6).

 As of this writing, the DoD has not indicated how it will manage its
 subtree of OBJECT IDENTIFIERs. This memo assumes that DoD will
 allocate a node to the Internet community, to be administered by the
 Internet Activities Board (IAB) as follows:

 internet OBJECT IDENTIFIER ::= { iso org(3) dod(6) 1 }

 That is, the Internet subtree of OBJECT IDENTIFIERs starts with the
 prefix:

 1.3.6.1.

 This memo, as a standard approved by the IAB, now specifies the
 policy under which this subtree of OBJECT IDENTIFIERs is
 administered. Initially, four nodes are present:

 directory OBJECT IDENTIFIER ::= { internet 1 }
 mgmt OBJECT IDENTIFIER ::= { internet 2 }
 experimental OBJECT IDENTIFIER ::= { internet 3 }
 private OBJECT IDENTIFIER ::= { internet 4 }

3.1.1. Directory

 The directory(1) subtree is reserved for use with a future memo that
 discusses how the OSI Directory may be used in the Internet.

Rose & McCloghrie [Page 5]

RFC 1155 SMI May 1990

3.1.2. Mgmt

 The mgmt(2) subtree is used to identify objects which are defined in
 IAB-approved documents. Administration of the mgmt(2) subtree is
 delegated by the IAB to the Internet Assigned Numbers Authority for
 the Internet. As RFCs which define new versions of the Internet-
 standard Management Information Base are approved, they are assigned
 an OBJECT IDENTIFIER by the Internet Assigned Numbers Authority for
 identifying the objects defined by that memo.

 For example, the RFC which defines the initial Internet standard MIB
 would be assigned management document number 1. This RFC would use
 the OBJECT IDENTIFIER

 { mgmt 1 }

 or

 1.3.6.1.2.1

 in defining the Internet-standard MIB.

 The generation of new versions of the Internet-standard MIB is a
 rigorous process. Section 5 of this memo describes the rules used
 when a new version is defined.

3.1.3. Experimental

 The experimental(3) subtree is used to identify objects used in
 Internet experiments. Administration of the experimental(3) subtree
 is delegated by the IAB to the Internet Assigned Numbers Authority of
 the Internet.

 For example, an experimenter might received number 17, and would have
 available the OBJECT IDENTIFIER

 { experimental 17 }

 or

 1.3.6.1.3.17

 for use.

 As a part of the assignment process, the Internet Assigned Numbers
 Authority may make requirements as to how that subtree is used.

Rose & McCloghrie [Page 6]

RFC 1155 SMI May 1990

3.1.4. Private

 The private(4) subtree is used to identify objects defined
 unilaterally. Administration of the private(4) subtree is delegated
 by the IAB to the Internet Assigned Numbers Authority for the
 Internet. Initially, this subtree has at least one child:

 enterprises OBJECT IDENTIFIER ::= { private 1 }

 The enterprises(1) subtree is used, among other things, to permit
 parties providing networking subsystems to register models of their
 products.

 Upon receiving a subtree, the enterprise may, for example, define new
 MIB objects in this subtree. In addition, it is strongly recommended
 that the enterprise will also register its networking subsystems
 under this subtree, in order to provide an unambiguous identification
 mechanism for use in management protocols. For example, if the
 "Flintstones, Inc." enterprise produced networking subsystems, then
 they could request a node under the enterprises subtree from the
 Internet Assigned Numbers Authority. Such a node might be numbered:

 1.3.6.1.4.1.42

 The "Flintstones, Inc." enterprise might then register their "Fred
 Router" under the name of:

 1.3.6.1.4.1.42.1.1

3.2. Syntax

 Syntax is used to define the structure corresponding to object types.
 ASN.1 constructs are used to define this structure, although the full
 generality of ASN.1 is not permitted.

 The ASN.1 type ObjectSyntax defines the different syntaxes which may
 be used in defining an object type.

3.2.1. Primitive Types

 Only the ASN.1 primitive types INTEGER, OCTET STRING, OBJECT
 IDENTIFIER, and NULL are permitted. These are sometimes referred to
 as non-aggregate types.

3.2.1.1. Guidelines for Enumerated INTEGERs

 If an enumerated INTEGER is listed as an object type, then a named-
 number having the value 0 shall not be present in the list of

Rose & McCloghrie [Page 7]

RFC 1155 SMI May 1990

 enumerations. Use of this value is prohibited.

3.2.2. Constructor Types

 The ASN.1 constructor type SEQUENCE is permitted, providing that it
 is used to generate either lists or tables.

 For lists, the syntax takes the form:

 SEQUENCE { <type1>, ..., <typeN> }

 where each <type> resolves to one of the ASN.1 primitive types listed
 above. Further, these ASN.1 types are always present (the DEFAULT
 and OPTIONAL clauses do not appear in the SEQUENCE definition).

 For tables, the syntax takes the form:

 SEQUENCE OF <entry>

 where <entry> resolves to a list constructor.

 Lists and tables are sometimes referred to as aggregate types.

3.2.3. Defined Types

 In addition, new application-wide types may be defined, so long as
 they resolve into an IMPLICITly defined ASN.1 primitive type, list,
 table, or some other application-wide type. Initially, few
 application-wide types are defined. Future memos will no doubt
 define others once a consensus is reached.

3.2.3.1. NetworkAddress

 This CHOICE represents an address from one of possibly several
 protocol families. Currently, only one protocol family, the Internet
 family, is present in this CHOICE.

3.2.3.2. IpAddress

 This application-wide type represents a 32-bit internet address. It
 is represented as an OCTET STRING of length 4, in network byte-order.

 When this ASN.1 type is encoded using the ASN.1 basic encoding rules,
 only the primitive encoding form shall be used.

3.2.3.3. Counter

 This application-wide type represents a non-negative integer which

Rose & McCloghrie [Page 8]

RFC 1155 SMI May 1990

 monotonically increases until it reaches a maximum value, when it
 wraps around and starts increasing again from zero. This memo
 specifies a maximum value of 2^32-1 (4294967295 decimal) for
 counters.

3.2.3.4. Gauge

 This application-wide type represents a non-negative integer, which
 may increase or decrease, but which latches at a maximum value. This
 memo specifies a maximum value of 2^32-1 (4294967295 decimal) for
 gauges.

3.2.3.5. TimeTicks

 This application-wide type represents a non-negative integer which
 counts the time in hundredths of a second since some epoch. When
 object types are defined in the MIB which use this ASN.1 type, the
 description of the object type identifies the reference epoch.

3.2.3.6. Opaque

 This application-wide type supports the capability to pass arbitrary
 ASN.1 syntax. A value is encoded using the ASN.1 basic rules into a
 string of octets. This, in turn, is encoded as an OCTET STRING, in
 effect "double-wrapping" the original ASN.1 value.

 Note that a conforming implementation need only be able to accept and
 recognize opaquely-encoded data. It need not be able to unwrap the
 data and then interpret its contents.

 Further note that by use of the ASN.1 EXTERNAL type, encodings other
 than ASN.1 may be used in opaquely-encoded data.

3.3. Encodings

 Once an instance of an object type has been identified, its value may
 be transmitted by applying the basic encoding rules of ASN.1 to the
 syntax for the object type.

Rose & McCloghrie [Page 9]

RFC 1155 SMI May 1990

4. Managed Objects

 Although it is not the purpose of this memo to define objects in the
 MIB, this memo specifies a format to be used by other memos which
 define these objects.

 An object type definition consists of five fields:

 OBJECT:

 A textual name, termed the OBJECT DESCRIPTOR, for the object type,
 along with its corresponding OBJECT IDENTIFIER.

 Syntax:
 The abstract syntax for the object type. This must resolve to an
 instance of the ASN.1 type ObjectSyntax (defined below).

 Definition:
 A textual description of the semantics of the object type.
 Implementations should ensure that their instance of the object
 fulfills this definition since this MIB is intended for use in
 multi-vendor environments. As such it is vital that objects have
 consistent meaning across all machines.

 Access:
 One of read-only, read-write, write-only, or not-accessible.

 Status:
 One of mandatory, optional, or obsolete.

 Future memos may also specify other fields for the objects which they
 define.

4.1. Guidelines for Object Names

 No object type in the Internet-Standard MIB shall use a sub-
 identifier of 0 in its name. This value is reserved for use with
 future extensions.

 Each OBJECT DESCRIPTOR corresponding to an object type in the
 internet-standard MIB shall be a unique, but mnemonic, printable
 string. This promotes a common language for humans to use when
 discussing the MIB and also facilitates simple table mappings for
 user interfaces.

4.2. Object Types and Instances

 An object type is a definition of a kind of managed object; it is

Rose & McCloghrie [Page 10]

RFC 1155 SMI May 1990

 declarative in nature. In contrast, an object instance is an
 instantiation of an object type which has been bound to a value. For
 example, the notion of an entry in a routing table might be defined
 in the MIB. Such a notion corresponds to an object type; individual
 entries in a particular routing table which exist at some time are
 object instances of that object type.

 A collection of object types is defined in the MIB. Each such
 subject type is uniquely named by its OBJECT IDENTIFIER and also has
 a textual name, which is its OBJECT DESCRIPTOR. The means whereby
 object instances are referenced is not defined in the MIB. Reference
 to object instances is achieved by a protocol-specific mechanism: it
 is the responsibility of each management protocol adhering to the SMI
 to define this mechanism.

 An object type may be defined in the MIB such that an instance of
 that object type represents an aggregation of information also
 represented by instances of some number of "subordinate" object
 types. For example, suppose the following object types are defined
 in the MIB:

 OBJECT:

 atIndex { atEntry 1 }

 Syntax:
 INTEGER

 Definition:
 The interface number for the physical address.

 Access:
 read-write.

 Status:
 mandatory.

 OBJECT:

 atPhysAddress { atEntry 2 }

 Syntax:
 OCTET STRING

 Definition:
 The media-dependent physical address.

Rose & McCloghrie [Page 11]

RFC 1155 SMI May 1990

 Access:
 read-write.

 Status:
 mandatory.

 OBJECT:

 atNetAddress { atEntry 3 }

 Syntax:
 NetworkAddress

 Definition:
 The network address corresponding to the media-dependent physical
 address.

 Access:
 read-write.

 Status:
 mandatory.

 Then, a fourth object type might also be defined in the MIB:

 OBJECT:

 atEntry { atTable 1 }

 Syntax:

 AtEntry ::= SEQUENCE {
 atIndex
 INTEGER,
 atPhysAddress
 OCTET STRING,
 atNetAddress
 NetworkAddress
 }

 Definition:
 An entry in the address translation table.

 Access:
 read-write.

Rose & McCloghrie [Page 12]

RFC 1155 SMI May 1990

 Status:
 mandatory.

 Each instance of this object type comprises information represented
 by instances of the former three object types. An object type
 defined in this way is called a list.

 Similarly, tables can be formed by aggregations of a list type. For
 example, a fifth object type might also be defined in the MIB:

 OBJECT:

 atTable { at 1 }

 Syntax:
 SEQUENCE OF AtEntry

 Definition:
 The address translation table.

 Access:
 read-write.

 Status:
 mandatory.

 such that each instance of the atTable object comprises information
 represented by the set of atEntry object types that collectively
 constitute a given atTable object instance, that is, a given address
 translation table.

 Consider how one might refer to a simple object within a table.
 Continuing with the previous example, one might name the object type

 { atPhysAddress }

 and specify, using a protocol-specific mechanism, the object instance

 { atNetAddress } = { internet "10.0.0.52" }

 This pairing of object type and object instance would refer to all
 instances of atPhysAddress which are part of any entry in some
 address translation table for which the associated atNetAddress value
 is { internet "10.0.0.52" }.

 To continue with this example, consider how one might refer to an
 aggregate object (list) within a table. Naming the object type

Rose & McCloghrie [Page 13]

RFC 1155 SMI May 1990

 { atEntry }

 and specifying, using a protocol-specific mechanism, the object
 instance

 { atNetAddress } = { internet "10.0.0.52" }

 refers to all instances of entries in the table for which the
 associated atNetAddress value is { internet "10.0.0.52" }.

 Each management protocol must provide a mechanism for accessing
 simple (non-aggregate) object types. Each management protocol
 specifies whether or not it supports access to aggregate object
 types. Further, the protocol must specify which instances are
 "returned" when an object type/instance pairing refers to more than
 one instance of a type.

 To afford support for a variety of management protocols, all
 information by which instances of a given object type may be usefully
 distinguished, one from another, is represented by instances of
 object types defined in the MIB.

4.3. Macros for Managed Objects

 In order to facilitate the use of tools for processing the definition
 of the MIB, the OBJECT-TYPE macro may be used. This macro permits
 the key aspects of an object type to be represented in a formal way.

 OBJECT-TYPE MACRO ::=
 BEGIN
 TYPE NOTATION ::= "SYNTAX" type (TYPE ObjectSyntax)
 "ACCESS" Access
 "STATUS" Status
 VALUE NOTATION ::= value (VALUE ObjectName)

 Access ::= "read-only"
 | "read-write"
 | "write-only"
 | "not-accessible"
 Status ::= "mandatory"
 | "optional"
 | "obsolete"
 END

 Given the object types defined earlier, we might imagine the
 following definitions being present in the MIB:

 atIndex OBJECT-TYPE

Rose & McCloghrie [Page 14]

RFC 1155 SMI May 1990

 SYNTAX INTEGER
 ACCESS read-write
 STATUS mandatory
 ::= { atEntry 1 }

 atPhysAddress OBJECT-TYPE
 SYNTAX OCTET STRING
 ACCESS read-write
 STATUS mandatory
 ::= { atEntry 2 }

 atNetAddress OBJECT-TYPE
 SYNTAX NetworkAddress
 ACCESS read-write
 STATUS mandatory
 ::= { atEntry 3 }

 atEntry OBJECT-TYPE
 SYNTAX AtEntry
 ACCESS read-write
 STATUS mandatory
 ::= { atTable 1 }

 atTable OBJECT-TYPE
 SYNTAX SEQUENCE OF AtEntry
 ACCESS read-write
 STATUS mandatory
 ::= { at 1 }

 AtEntry ::= SEQUENCE {
 atIndex
 INTEGER,
 atPhysAddress
 OCTET STRING,
 atNetAddress
 NetworkAddress
 }

 The first five definitions describe object types, relating, for
 example, the OBJECT DESCRIPTOR atIndex to the OBJECT IDENTIFIER {
 atEntry 1 }. In addition, the syntax of this object is defined
 (INTEGER) along with the access permitted (read-write) and status
 (mandatory). The sixth definition describes an ASN.1 type called
 AtEntry.

Rose & McCloghrie [Page 15]

RFC 1155 SMI May 1990

5. Extensions to the MIB

 Every Internet-standard MIB document obsoletes all previous such
 documents. The portion of a name, termed the tail, following the
 OBJECT IDENTIFIER

 { mgmt version-number }

 used to name objects shall remain unchanged between versions. New
 versions may:

 (1) declare old object types obsolete (if necessary), but not
 delete their names;

 (2) augment the definition of an object type corresponding to a
 list by appending non-aggregate object types to the object types
 in the list; or,

 (3) define entirely new object types.

 New versions may not:

 (1) change the semantics of any previously defined object without
 changing the name of that object.

 These rules are important because they admit easier support for
 multiple versions of the Internet-standard MIB. In particular, the
 semantics associated with the tail of a name remain constant
 throughout different versions of the MIB. Because multiple versions
 of the MIB may thus coincide in "tail-space," implementations
 supporting multiple versions of the MIB can be vastly simplified.

 However, as a consequence, a management agent might return an
 instance corresponding to a superset of the expected object type.
 Following the principle of robustness, in this exceptional case, a
 manager should ignore any additional information beyond the
 definition of the expected object type. However, the robustness
 principle requires that one exercise care with respect to control
 actions: if an instance does not have the same syntax as its
 expected object type, then those control actions must fail. In both
 the monitoring and control cases, the name of an object returned by
 an operation must be identical to the name requested by an operation.

Rose & McCloghrie [Page 16]

RFC 1155 SMI May 1990

6. Definitions

 RFC1155-SMI DEFINITIONS ::= BEGIN

 EXPORTS -- EVERYTHING
 internet, directory, mgmt,
 experimental, private, enterprises,
 OBJECT-TYPE, ObjectName, ObjectSyntax, SimpleSyntax,
 ApplicationSyntax, NetworkAddress, IpAddress,
 Counter, Gauge, TimeTicks, Opaque;

 -- the path to the root

 internet OBJECT IDENTIFIER ::= { iso org(3) dod(6) 1 }

 directory OBJECT IDENTIFIER ::= { internet 1 }

 mgmt OBJECT IDENTIFIER ::= { internet 2 }

 experimental OBJECT IDENTIFIER ::= { internet 3 }

 private OBJECT IDENTIFIER ::= { internet 4 }
 enterprises OBJECT IDENTIFIER ::= { private 1 }

 -- definition of object types

 OBJECT-TYPE MACRO ::=
 BEGIN
 TYPE NOTATION ::= "SYNTAX" type (TYPE ObjectSyntax)
 "ACCESS" Access
 "STATUS" Status
 VALUE NOTATION ::= value (VALUE ObjectName)

 Access ::= "read-only"
 | "read-write"
 | "write-only"
 | "not-accessible"
 Status ::= "mandatory"
 | "optional"
 | "obsolete"
 END

 -- names of objects in the MIB

 ObjectName ::=
 OBJECT IDENTIFIER

Rose & McCloghrie [Page 17]

RFC 1155 SMI May 1990

 -- syntax of objects in the MIB

 ObjectSyntax ::=
 CHOICE {
 simple
 SimpleSyntax,

 -- note that simple SEQUENCEs are not directly
 -- mentioned here to keep things simple (i.e.,
 -- prevent mis-use). However, application-wide
 -- types which are IMPLICITly encoded simple
 -- SEQUENCEs may appear in the following CHOICE

 application-wide
 ApplicationSyntax
 }

 SimpleSyntax ::=
 CHOICE {
 number
 INTEGER,

 string
 OCTET STRING,

 object
 OBJECT IDENTIFIER,

 empty
 NULL
 }

 ApplicationSyntax ::=
 CHOICE {
 address
 NetworkAddress,

 counter
 Counter,

 gauge
 Gauge,

 ticks
 TimeTicks,

 arbitrary
 Opaque

Rose & McCloghrie [Page 18]

RFC 1155 SMI May 1990

 -- other application-wide types, as they are
 -- defined, will be added here
 }

 -- application-wide types

 NetworkAddress ::=
 CHOICE {
 internet
 IpAddress
 }

 IpAddress ::=
 [APPLICATION 0] -- in network-byte order
 IMPLICIT OCTET STRING (SIZE (4))

 Counter ::=
 [APPLICATION 1]
 IMPLICIT INTEGER (0..4294967295)

 Gauge ::=
 [APPLICATION 2]
 IMPLICIT INTEGER (0..4294967295)

 TimeTicks ::=
 [APPLICATION 3]
 IMPLICIT INTEGER (0..4294967295)

 Opaque ::=
 [APPLICATION 4] -- arbitrary ASN.1 value,
 IMPLICIT OCTET STRING -- "double-wrapped"

 END

Rose & McCloghrie [Page 19]

RFC 1155 SMI May 1990

7. Acknowledgements

 This memo was influenced by three sets of contributors to earlier
 drafts:

 First, Lee Labarre of the MITRE Corporation, who as author of the
 NETMAN SMI [4], presented the basic roadmap for the SMI.

 Second, several individuals who provided valuable comments on this
 memo prior to its initial distribution:

 James R. Davin, Proteon
 Mark S. Fedor, NYSERNet
 Craig Partridge, BBN Laboratories
 Martin Lee Schoffstall, Rensselaer Polytechnic Institute
 Wengyik Yeong, NYSERNet

 Third, the IETF MIB working group:

 Karl Auerbach, Epilogue Technology
 K. Ramesh Babu, Excelan
 Lawrence Besaw, Hewlett-Packard
 Jeffrey D. Case, University of Tennessee at Knoxville
 James R. Davin, Proteon
 Mark S. Fedor, NYSERNet
 Robb Foster, BBN
 Phill Gross, The MITRE Corporation
 Bent Torp Jensen, Convergent Technology
 Lee Labarre, The MITRE Corporation
 Dan Lynch, Advanced Computing Environments
 Keith McCloghrie, The Wollongong Group
 Dave Mackie, 3Com/Bridge
 Craig Partridge, BBN (chair)
 Jim Robertson, 3Com/Bridge
 Marshall T. Rose, The Wollongong Group
 Greg Satz, cisco
 Martin Lee Schoffstall, Rensselaer Polytechnic Institute
 Lou Steinberg, IBM
 Dean Throop, Data General
 Unni Warrier, Unisys

Rose & McCloghrie [Page 20]

RFC 1155 SMI May 1990

8. References

 [1] Information processing systems - Open Systems Interconnection,
 "Specification of Abstract Syntax Notation One (ASN.1)",
 International Organization for Standardization, International
 Standard 8824, December 1987.

 [2] McCloghrie K., and M. Rose, "Management Information Base for
 Network Management of TCP/IP-based Internets", RFC 1156,
 Performance Systems International and Hughes LAN Systems, May
 1990.

 [3] Case, J., M. Fedor, M. Schoffstall, and J. Davin, The Simple
 Network Management Protocol", RFC 1157, University of Tennessee
 at Knoxville, Performance Systems International, Performance
 Systems International, and the MIT Laboratory for Computer
 Science, May 1990.

 [4] LaBarre, L., "Structure and Identification of Management
 Information for the Internet", Internet Engineering Task Force
 working note, Network Information Center, SRI International,
 Menlo Park, California, April 1988.

 [5] Cerf, V., "IAB Recommendations for the Development of Internet
 Network Management Standards", RFC 1052, IAB, April 1988.

 [6] Cerf, V., "Report of the Second Ad Hoc Network Management Review
 Group", RFC 1109, IAB, August 1989.

 [7] Information processing systems - Open Systems Interconnection,
 "Specification of Basic Encoding Rules for Abstract Notation One
 (ASN.1)", International Organization for Standardization,
 International Standard 8825, December 1987.

Security Considerations

 Security issues are not discussed in this memo.

Rose & McCloghrie [Page 21]

RFC 1155 SMI May 1990

Authors’ Addresses

 Marshall T. Rose
 PSI, Inc.
 PSI California Office
 P.O. Box 391776
 Mountain View, CA 94039

 Phone: (415) 961-3380

 EMail: mrose@PSI.COM

 Keith McCloghrie
 The Wollongong Group
 1129 San Antonio Road
 Palo Alto, CA 04303

 Phone: (415) 962-7160

 EMail: sytek!kzm@HPLABS.HP.COM

Rose & McCloghrie [Page 22]

===

Network Working Group M. Rose
Request for Comments: 1212 Performance Systems International
 K. McCloghrie
 Hughes LAN Systems
 Editors
 March 1991

 Concise MIB Definitions
Status of this Memo

 This memo defines a format for producing MIB modules. This RFC
 specifies an IAB standards track document for the Internet community,
 and requests discussion and suggestions for improvements. Please
 refer to the current edition of the "IAB Official Protocol Standards"
 for the standardization state and status of this protocol.
 Distribution of this memo is unlimited.

Table of Contents

 1. Abstract.. 2
 2. Historical Perspective 2
 3. Columnar Objects 3
 3.1 Row Deletion .. 4
 3.2 Row Addition .. 4
 4. Defining Objects 5
 4.1 Mapping of the OBJECT-TYPE macro 7
 4.1.1 Mapping of the SYNTAX clause 7
 4.1.2 Mapping of the ACCESS clause 8
 4.1.3 Mapping of the STATUS clause 8
 4.1.4 Mapping of the DESCRIPTION clause 8
 4.1.5 Mapping of the REFERENCE clause 8
 4.1.6 Mapping of the INDEX clause 8
 4.1.7 Mapping of the DEFVAL clause 10
 4.1.8 Mapping of the OBJECT-TYPE value 11
 4.2 Usage Example 11
 5. Appendix: DE-osifying MIBs 13
 5.1 Managed Object Mapping 14
 5.1.1 Mapping to the SYNTAX clause 15
 5.1.2 Mapping to the ACCESS clause 15
 5.1.3 Mapping to the STATUS clause 15
 5.1.4 Mapping to the DESCRIPTION clause 15
 5.1.5 Mapping to the REFERENCE clause 16
 5.1.6 Mapping to the INDEX clause 16
 5.1.7 Mapping to the DEFVAL clause 16
 5.2 Action Mapping 16
 5.2.1 Mapping to the SYNTAX clause 16
 5.2.2 Mapping to the ACCESS clause 16

SNMP Working Group [Page 1]

RFC 1212 Concise MIB Definitions March 1991

 5.2.3 Mapping to the STATUS clause 16
 5.2.4 Mapping to the DESCRIPTION clause 16
 5.2.5 Mapping to the REFERENCE clause 16
 6. Acknowledgements 17
 7. References ... 18
 8. Security Considerations............................... 19
 9. Authors’ Addresses.................................... 19

1. Abstract

 This memo describes a straight-forward approach toward producing
 concise, yet descriptive, MIB modules. It is intended that all
 future MIB modules be written in this format.

2. Historical Perspective

 As reported in RFC 1052, IAB Recommendations for the Development of
 Internet Network Management Standards [1], a two-prong strategy for
 network management of TCP/IP-based internets was undertaken. In the
 short-term, the Simple Network Management Protocol (SNMP), defined in
 RFC 1067, was to be used to manage nodes in the Internet community.
 In the long-term, the use of the OSI network management framework was
 to be examined. Two documents were produced to define the management
 information: RFC 1065, which defined the Structure of Management
 Information (SMI), and RFC 1066, which defined the Management
 Information Base (MIB). Both of these documents were designed so as
 to be compatible with both the SNMP and the OSI network management
 framework.

 This strategy was quite successful in the short-term: Internet-based
 network management technology was fielded, by both the research and
 commercial communities, within a few months. As a result of this,
 portions of the Internet community became network manageable in a
 timely fashion.

 As reported in RFC 1109, Report of the Second Ad Hoc Network
 Management Review Group [2], the requirements of the SNMP and the OSI
 network management frameworks were more different than anticipated.
 As such, the requirement for compatibility between the SMI/MIB and
 both frameworks was suspended. This action permitted the operational
 network management framework, based on the SNMP, to respond to new
 operational needs in the Internet community by producing MIB-II.

 In May of 1990, the core documents were elevated to "Standard
 Protocols" with "Recommended" status. As such, the Internet-standard
 network management framework consists of: Structure and
 Identification of Management Information for TCP/IP-based internets,
 RFC 1155 [3], which describes how managed objects contained in the

SNMP Working Group [Page 2]

RFC 1212 Concise MIB Definitions March 1991

 MIB are defined; Management Information Base for Network Management
 of TCP/IP-based internets, which describes the managed objects
 contained in the MIB, RFC 1156 [4]; and, the Simple Network
 Management Protocol, RFC 1157 [5], which defines the protocol used to
 manage these objects. Consistent with the IAB directive to produce
 simple, workable systems in the short-term, the list of managed
 objects defined in the Internet-standard MIB was derived by taking
 only those elements which are considered essential. However, the SMI
 defined three extensibility mechanisms: one, the addition of new
 standard objects through the definitions of new versions of the MIB;
 two, the addition of widely-available but non-standard objects
 through the experimental subtree; and three, the addition of private
 objects through the enterprises subtree. Such additional objects can
 not only be used for vendor-specific elements, but also for
 experimentation as required to further the knowledge of which other
 objects are essential.

 As more objects are defined using the second method, experience has
 shown that the resulting MIB descriptions contain redundant
 information. In order to provide for MIB descriptions which are more
 concise, and yet as informative, an enhancement is suggested. This
 enhancement allows the author of a MIB to remove the redundant
 information, while retaining the important descriptive text.

 Before presenting the approach, a brief presentation of columnar
 object handling by the SNMP is necessary. This explains and further
 motivates the value of the enhancement.

3. Columnar Objects

 The SNMP supports operations on MIB objects whose syntax is
 ObjectSyntax as defined in the SMI. Informally stated, SNMP
 operations apply exclusively to scalar objects. However, it is
 convenient for developers of management applications to impose
 imaginary, tabular structures on the ordered collection of objects
 that constitute the MIB. Each such conceptual table contains zero or
 more rows, and each row may contain one or more scalar objects,
 termed columnar objects. Historically, this conceptualization has
 been formalized by using the OBJECT-TYPE macro to define both an
 object which corresponds to a table and an object which corresponds
 to a row in that table. (The ACCESS clause for such objects is
 "not-accessible", of course.) However, it must be emphasized that, at
 the protocol level, relationships among columnar objects in the same
 row is a matter of convention, not of protocol.

 Note that there are good reasons why the tabular structure is not a
 matter of protocol. Consider the operation of the SNMP Get-Next-PDU
 acting on the last columnar object of an instance of a conceptual

SNMP Working Group [Page 3]

RFC 1212 Concise MIB Definitions March 1991

 row; it returns the next column of the first conceptual row or the
 first object instance occurring after the table. In contrast, if the
 rows were a matter of protocol, then it would instead return an
 error. By not returning an error, a single PDU exchange informs the
 manager that not only has the end of the conceptual row/table been
 reached, but also provides information on the next object instance,
 thereby increasing the information density of the PDU exchange.

3.1. Row Deletion

 Nonetheless, it is highly useful to provide a means whereby a
 conceptual row may be removed from a table. In MIB-II, this was
 achieved by defining, for each conceptual row, an integer-valued
 columnar object. If a management station sets the value of this
 object to some value, usually termed "invalid", then the effect is
 one of invalidating the corresponding row in the table. However, it
 is an implementation-specific matter as to whether an agent removes
 an invalidated entry from the table. Accordingly, management
 stations must be prepared to receive tabular information from agents
 that corresponds to entries not currently in use. Proper
 interpretation of such entries requires examination of the columnar
 object indicating the in-use status.

3.2. Row Addition

 It is also highly useful to have a clear understanding of how a
 conceptual row may be added to a table. In the SNMP, at the protocol
 level, a management station issues an SNMP set operation containing
 an arbitrary set of variable bindings. In the case that an agent
 detects that one or more of those variable bindings refers to an
 object instance not currently available in that agent, it may,
 according to the rules of the SNMP, behave according to any of the
 following paradigms:

 (1) It may reject the SNMP set operation as referring to
 non-existent object instances by returning a response
 with the error-status field set to "noSuchName" and the
 error-index field set to refer to the first vacuous
 reference.

 (2) It may accept the SNMP set operation as requesting the
 creation of new object instances corresponding to each
 of the object instances named in the variable bindings.
 The value of each (potentially) newly created object
 instance is specified by the "value" component of the
 relevant variable binding. In this case, if the request
 specifies a value for a newly (or previously) created
 object that it deems inappropriate by reason of value or

SNMP Working Group [Page 4]

RFC 1212 Concise MIB Definitions March 1991

 syntax, then it rejects the SNMP set operation by
 responding with the error-status field set to badValue
 and the error-index field set to refer to the first
 offending variable binding.

 (3) It may accept the SNMP set operation and create new
 object instances as described in (2) above and, in
 addition, at its discretion, create supplemental object
 instances to complete a row in a conceptual table of
 which the new object instances specified in the request
 may be a part.

 It should be emphasized that all three of the above behaviors are
 fully conformant to the SNMP specification and are fully acceptable,
 subject to any restrictions which may be imposed by access control
 and/or the definitions of the MIB objects themselves.

4. Defining Objects

 The Internet-standard SMI employs a two-level approach towards object
 definition. A MIB definition consists of two parts: a textual part,
 in which objects are placed into groups, and a MIB module, in which
 objects are described solely in terms of the ASN.1 macro OBJECT-TYPE,
 which is defined by the SMI.

 An example of the former definition might be:

 OBJECT:

 sysLocation { system 6 }

 Syntax:
 DisplayString (SIZE (0..255))

 Definition:
 The physical location of this node (e.g., "telephone
 closet, 3rd floor").

 Access:
 read-only.

 Status:
 mandatory.

 An example of the latter definition might be:

 sysLocation OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))

SNMP Working Group [Page 5]

RFC 1212 Concise MIB Definitions March 1991

 ACCESS read-only
 STATUS mandatory
 ::= { system 6 }

 In the interests of brevity and to reduce the chance of
 editing errors, it would seem useful to combine the two
 definitions. This can be accomplished by defining an
 extension to the OBJECT-TYPE macro:

 IMPORTS
 ObjectName
 FROM RFC1155-SMI
 DisplayString
 FROM RFC1158-MIB;

 OBJECT-TYPE MACRO ::=
 BEGIN
 TYPE NOTATION ::=
 -- must conform to
 -- RFC1155’s ObjectSyntax
 "SYNTAX" type(ObjectSyntax)
 "ACCESS" Access
 "STATUS" Status
 DescrPart
 ReferPart
 IndexPart
 DefValPart
 VALUE NOTATION ::= value (VALUE ObjectName)

 Access ::= "read-only"
 | "read-write"
 | "write-only"
 | "not-accessible"
 Status ::= "mandatory"
 | "optional"
 | "obsolete"
 | "deprecated"

 DescrPart ::=
 "DESCRIPTION" value (description DisplayString)
 | empty

 ReferPart ::=
 "REFERENCE" value (reference DisplayString)
 | empty

 IndexPart ::=
 "INDEX" "{" IndexTypes "}"

SNMP Working Group [Page 6]

RFC 1212 Concise MIB Definitions March 1991

 | empty
 IndexTypes ::=
 IndexType | IndexTypes "," IndexType
 IndexType ::=
 -- if indexobject, use the SYNTAX
 -- value of the correspondent
 -- OBJECT-TYPE invocation
 value (indexobject ObjectName)
 -- otherwise use named SMI type
 -- must conform to IndexSyntax below
 | type (indextype)

 DefValPart ::=
 "DEFVAL" "{" value (defvalue ObjectSyntax) "}"
 | empty

 END

 IndexSyntax ::=
 CHOICE {
 number
 INTEGER (0..MAX),
 string
 OCTET STRING,
 object
 OBJECT IDENTIFIER,
 address
 NetworkAddress,
 ipAddress
 IpAddress
 }

4.1. Mapping of the OBJECT-TYPE macro

 It should be noted that the expansion of the OBJECT-TYPE macro is
 something which conceptually happens during implementation and not
 during run-time.

4.1.1. Mapping of the SYNTAX clause

 The SYNTAX clause, which must be present, defines the abstract data
 structure corresponding to that object type. The ASN.1 language [6]
 is used for this purpose. However, the SMI purposely restricts the
 ASN.1 constructs which may be used. These restrictions are made
 expressly for simplicity.

SNMP Working Group [Page 7]

RFC 1212 Concise MIB Definitions March 1991

4.1.2. Mapping of the ACCESS clause

 The ACCESS clause, which must be present, defines the minimum level
 of support required for that object type. As a local matter,
 implementations may support other access types (e.g., an
 implementation may elect to permitting writing a variable marked as
 read-only). Further, protocol-specific "views" (e.g., those
 indirectly implied by an SNMP community) may make further
 restrictions on access to a variable.

4.1.3. Mapping of the STATUS clause

 The STATUS clause, which must be present, defines the implementation
 support required for that object type.

4.1.4. Mapping of the DESCRIPTION clause

 The DESCRIPTION clause, which need not be present, contains a textual
 definition of that object type which provides all semantic
 definitions necessary for implementation, and should embody any
 information which would otherwise be communicated in any ASN.1
 commentary annotations associated with the object. Note that, in
 order to conform to the ASN.1 syntax, the entire value of this clause
 must be enclosed in double quotation marks, although the value may be
 multi-line.

 Further, note that if the MIB module does not contain a textual
 description of the object type elsewhere then the DESCRIPTION clause
 must be present.

4.1.5. Mapping of the REFERENCE clause

 The REFERENCE clause, which need not be present, contains a textual
 cross-reference to an object defined in some other MIB module. This
 is useful when de-osifying a MIB produced by some other organization.

4.1.6. Mapping of the INDEX clause

 The INDEX clause, which may be present only if that object type
 corresponds to a conceptual row, defines instance identification
 information for that object type. (Historically, each MIB definition
 contained a section entitled "Identification of OBJECT instances for
 use with the SNMP". By using the INDEX clause, this section need no
 longer occur as this clause concisely captures the precise semantics
 needed for instance identification.)

 If the INDEX clause is not present, and the object type corresponds
 to a non-columnar object, then instances of the object are identified

SNMP Working Group [Page 8]

RFC 1212 Concise MIB Definitions March 1991

 by appending a sub-identifier of zero to the name of that object.
 Further, note that if the MIB module does not contain a textual
 description of how instance identification information is derived for
 columnar objects, then the INDEX clause must be present.

 To define the instance identification information, determine which
 object value(s) will unambiguously distinguish a conceptual row. The
 syntax of those objects indicate how to form the instance-identifier:

 (1) integer-valued: a single sub-identifier taking the
 integer value (this works only for non-negative
 integers);

 (2) string-valued, fixed-length strings: ‘n’ sub-identifiers,
 where ‘n’ is the length of the string (each octet of the
 string is encoded in a separate sub-identifier);

 (3) string-valued, variable-length strings: ‘n+1’ sub-
 identifiers, where ‘n’ is the length of the string (the
 first sub-identifier is ‘n’ itself, following this, each
 octet of the string is encoded in a separate sub-
 identifier);

 (4) object identifier-valued: ‘n+1’ sub-identifiers, where
 ‘n’ is the number of sub-identifiers in the value (the
 first sub-identifier is ‘n’ itself, following this, each
 sub-identifier in the value is copied);

 (5) NetworkAddress-valued: ‘n+1’ sub-identifiers, where ‘n’
 depends on the kind of address being encoded (the first
 sub-identifier indicates the kind of address, value 1
 indicates an IpAddress); or,

 (6) IpAddress-valued: 4 sub-identifiers, in the familiar
 a.b.c.d notation.

 Note that if an "indextype" value is present (e.g., INTEGER rather
 than ifIndex), then a DESCRIPTION clause must be present; the text
 contained therein indicates the semantics of the "indextype" value.

SNMP Working Group [Page 9]

RFC 1212 Concise MIB Definitions March 1991

 By way of example, in the context of MIB-II [7], the following INDEX
 clauses might be present:

 objects under INDEX clause
 ----------------- ------------
 ifEntry { ifIndex }
 atEntry { atNetIfIndex,
 atNetAddress }
 ipAddrEntry { ipAdEntAddr }
 ipRouteEntry { ipRouteDest }
 ipNetToMediaEntry { ipNetToMediaIfIndex,
 ipNetToMediaNetAddress }
 tcpConnEntry { tcpConnLocalAddress,
 tcpConnLocalPort,
 tcpConnRemoteAddress,
 tcpConnRemotePort }
 udpEntry { udpLocalAddress,
 udpLocalPort }
 egpNeighEntry { egpNeighAddr }

4.1.7. Mapping of the DEFVAL clause

 The DEFVAL clause, which need not be present, defines an acceptable
 default value which may be used when an object instance is created at
 the discretion of the agent acting in conformance with the third
 paradigm described in Section 4.2 above.

 During conceptual row creation, if an instance of a columnar object
 is not present as one of the operands in the correspondent SNMP set
 operation, then the value of the DEFVAL clause, if present, indicates
 an acceptable default value that the agent might use.

 The value of the DEFVAL clause must, of course, correspond to the
 SYNTAX clause for the object. Note that if an operand to the SNMP
 set operation is an instance of a read-only object, then the error
 noSuchName will be returned. As such, the DEFVAL clause can be used
 to provide an acceptable default value that the agent might use.

 It is possible that no acceptable default value may exist for any of
 the columnar objects in a conceptual row for which the creation of
 new object instances is allowed. In this case, the objects specified
 in the INDEX clause must have a corresponding ACCESS clause value of
 read-write.

SNMP Working Group [Page 10]

RFC 1212 Concise MIB Definitions March 1991

 By way of example, consider the following possible DEFVAL clauses:

 ObjectSyntax DEFVAL clause
 ----------------- ------------
 INTEGER 1 -- same for Counter, Gauge, TimeTicks
 OCTET STRING ’ffffffffffff’h
 DisplayString "any NVT ASCII string"
 OBJECT IDENTIFIER sysDescr
 OBJECT IDENTIFIER { system 2 }
 NULL NULL
 NetworkAddress { internet ’c0210415’h }
 IpAddress ’c0210415’h -- 192.33.4.21

4.1.8. Mapping of the OBJECT-TYPE value

 The value of an invocation of the OBJECT-TYPE macro is the name of
 the object, which is an object identifier.

4.2. Usage Example

 Consider how the ipNetToMediaTable from MIB-II might be fully
 described:

 -- the IP Address Translation tables

 -- The Address Translation tables contain IpAddress to
 -- "physical" address equivalences. Some interfaces do not
 -- use translation tables for determining address equivalences
 -- (e.g., DDN-X.25 has an algorithmic method); if all
 -- interfaces are of this type, then the Address Translation
 -- table is empty, i.e., has zero entries.

 ipNetToMediaTable OBJECT-TYPE
 SYNTAX SEQUENCE OF IpNetToMediaEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "The IP Address Translation table used for mapping
 from IP addresses to physical addresses."
 ::= { ip 22 }

 ipNetToMediaEntry OBJECT-TYPE
 SYNTAX IpNetToMediaEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "Each entry contains one IpAddress to ’physical’

SNMP Working Group [Page 11]

RFC 1212 Concise MIB Definitions March 1991

 address equivalence."
 INDEX { ipNetToMediaIfIndex,
 ipNetToMediaNetAddress }
 ::= { ipNetToMediaTable 1 }

 IpNetToMediaEntry ::=
 SEQUENCE {
 ipNetToMediaIfIndex
 INTEGER,
 ipNetToMediaPhysAddress
 OCTET STRING,
 ipNetToMediaNetAddress
 IpAddress,
 ipNetoToMediaType
 INTEGER
 }

 ipNetToMediaIfIndex OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The interface on which this entry’s equivalence
 is effective. The interface identified by a
 particular value of this index is the same
 interface as identified by the same value of
 ifIndex."
 ::= { ipNetToMediaEntry 1 }

 ipNetToMediaPhysAddress OBJECT-TYPE
 SYNTAX OCTET STRING
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The media-dependent ’physical’ address."
 ::= { ipNetToMediaEntry 2 }

 ipNetToMediaNetAddress OBJECT-TYPE
 SYNTAX IpAddress
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The IpAddress corresponding to the media-
 dependent ’physical’ address."
 ::= { ipNetToMediaEntry 3 }

 ipNetToMediaType OBJECT-TYPE
 SYNTAX INTEGER {

SNMP Working Group [Page 12]

RFC 1212 Concise MIB Definitions March 1991

 other(1), -- none of the following
 invalid(2), -- an invalidated mapping
 dynamic(3),
 static(4)
 }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The type of mapping.

 Setting this object to the value invalid(2) has
 the effect of invalidating the corresponding entry
 in the ipNetToMediaTable. That is, it effectively
 disassociates the interface identified with said
 entry from the mapping identified with said entry.
 It is an implementation-specific matter as to
 whether the agent removes an invalidated entry
 from the table. Accordingly, management stations
 must be prepared to receive tabular information
 from agents that corresponds to entries not
 currently in use. Proper interpretation of such
 entries requires examination of the relevant
 ipNetToMediaType object."
 ::= { ipNetToMediaEntry 4 }

5. Appendix: DE-osifying MIBs

 There has been an increasing amount of work recently on taking MIBs
 defined by other organizations (e.g., the IEEE) and de-osifying them
 for use with the Internet-standard network management framework. The
 steps to achieve this are straight-forward, though tedious. Of
 course, it is helpful to already be experienced in writing MIB
 modules for use with the Internet-standard network management
 framework.

 The first step is to construct a skeletal MIB module, e.g.,

 RFC1213-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 experimental, OBJECT-TYPE, Counter
 FROM RFC1155-SMI;

 -- contact IANA for actual number
 root OBJECT IDENTIFIER ::= { experimental xx }

 END

SNMP Working Group [Page 13]

RFC 1212 Concise MIB Definitions March 1991

 The next step is to categorize the objects into groups. For
 experimental MIBs, optional objects are permitted. However, when a
 MIB module is placed in the Internet-standard space, these optional
 objects are either removed, or placed in a optional group, which, if
 implemented, all objects in the group must be implemented. For the
 first pass, it is wisest to simply ignore any optional objects in the
 original MIB: experience shows it is better to define a core MIB
 module first, containing only essential objects; later, if experience
 demands, other objects can be added.

 It must be emphasized that groups are "units of conformance" within a
 MIB: everything in a group is "mandatory" and implementations do
 either whole groups or none.

5.1. Managed Object Mapping

 Next for each managed object class, determine whether there can exist
 multiple instances of that managed object class. If not, then for
 each of its attributes, use the OBJECT-TYPE macro to make an
 equivalent definition.

 Otherwise, if multiple instances of the managed object class can
 exist, then define a conceptual table having conceptual rows each
 containing a columnar object for each of the managed object class’s
 attributes. If the managed object class is contained within the
 containment tree of another managed object class, then the assignment
 of an object type is normally required for each of the "distinguished
 attributes" of the containing managed object class. If they do not
 already exist within the MIB module, then they can be added via the
 definition of additional columnar objects in the conceptual row
 corresponding to the contained managed object class.

 In defining a conceptual row, it is useful to consider the
 optimization of network management operations which will act upon its
 columnar objects. In particular, it is wisest to avoid defining more
 columnar objects within a conceptual row, than can fit in a single
 PDU. As a rule of thumb, a conceptual row should contain no more
 than approximately 20 objects. Similarly, or as a way to abide by
 the "20 object guideline", columnar objects should be grouped into
 tables according to the expected grouping of network management
 operations upon them. As such, the content of conceptual rows should
 reflect typical access scenarios, e.g., they should be organized
 along functional lines such as one row for statistics and another row
 for parameters, or along usage lines such as commonly-needed objects
 versus rarely-needed objects.

 On the other hand, the definition of conceptual rows where the number
 of columnar objects used as indexes outnumbers the number used to

SNMP Working Group [Page 14]

RFC 1212 Concise MIB Definitions March 1991

 hold information, should also be avoided. In particular, the
 splitting of a managed object class’s attributes into many conceptual
 tables should not be used as a way to obtain the same degree of
 flexibility/complexity as is often found in MIB’s with a myriad of
 optionals.

5.1.1. Mapping to the SYNTAX clause

 When mapping to the SYNTAX clause of the OBJECT-type macro:

 (1) An object with BOOLEAN syntax becomes an INTEGER taking
 either of values true(1) or false(2).

 (2) An object with ENUMERATED syntax becomes an INTEGER,
 taking any of the values given.

 (3) An object with BIT STRING syntax containing no more than
 32 bits becomes an INTEGER defined as a sum; otherwise if
 more than 32 bits are present, the object becomes an
 OCTET STRING, with the bits numbered from left-to-right,
 in which the least significant bits of the last octet may
 be "reserved for future use".

 (4) An object with a character string syntax becomes either
 an OCTET STRING or a DisplayString, depending on the
 repertoire of the character string.

 (5) An non-tabular object with a complex syntax, such as REAL
 or EXTERNAL, must be decomposed, usually into an OCTET
 STRING (if sensible). As a rule, any object with a
 complicated syntax should be avoided.

 (6) Tabular objects must be decomposed into rows of columnar
 objects.

5.1.2. Mapping to the ACCESS clause

 This is straight-forward.

5.1.3. Mapping to the STATUS clause

 This is usually straight-forward; however, some osified-MIBs use the
 term "recommended". In this case, a choice must be made between
 "mandatory" and "optional".

5.1.4. Mapping to the DESCRIPTION clause

 This is straight-forward: simply copy the text, making sure that any

SNMP Working Group [Page 15]

RFC 1212 Concise MIB Definitions March 1991

 embedded double quotation marks are sanitized (i.e., replaced with
 single-quotes or removed).

5.1.5. Mapping to the REFERENCE clause

 This is straight-forward: simply include a textual reference to the
 object being mapped, the document which defines the object, and
 perhaps a page number in the document.

5.1.6. Mapping to the INDEX clause

 Decide how instance-identifiers for columnar objects are to be formed
 and define this clause accordingly.

5.1.7. Mapping to the DEFVAL clause

 Decide if a meaningful default value can be assigned to the object
 being mapped, and if so, define the DEFVAL clause accordingly.

5.2. Action Mapping

 Actions are modeled as read-write objects, in which writing a
 particular value results in the action taking place.

5.2.1. Mapping to the SYNTAX clause

 Usually an INTEGER syntax is used with a distinguished value provided
 for each action that the object provides access to. In addition,
 there is usually one other distinguished value, which is the one
 returned when the object is read.

5.2.2. Mapping to the ACCESS clause

 Always use read-write.

5.2.3. Mapping to the STATUS clause

 This is straight-forward.

5.2.4. Mapping to the DESCRIPTION clause

 This is straight-forward: simply copy the text, making sure that any
 embedded double quotation marks are sanitized (i.e., replaced with
 single-quotes or removed).

5.2.5. Mapping to the REFERENCE clause

 This is straight-forward: simply include a textual reference to the

SNMP Working Group [Page 16]

RFC 1212 Concise MIB Definitions March 1991

 action being mapped, the document which defines the action, and
 perhaps a page number in the document.

6. Acknowledgements

 This document was produced by the SNMP Working Group:

 Anne Ambler, Spider
 Karl Auerbach, Sun
 Fred Baker, ACC
 Ken Brinkerhoff
 Ron Broersma, NOSC
 Jack Brown, US Army
 Theodore Brunner, Bellcore
 Jeffrey Buffum, HP
 John Burress, Wellfleet
 Jeffrey D. Case, University of Tennessee at Knoxville
 Chris Chiptasso, Spartacus
 Paul Ciarfella, DEC
 Bob Collet
 John Cook, Chipcom
 Tracy Cox, Bellcore
 James R. Davin, MIT-LCS
 Eric Decker, cisco
 Kurt Dobbins, Cabletron
 Nadya El-Afandi, Network Systems
 Gary Ellis, HP
 Fred Engle
 Mike Erlinger
 Mark S. Fedor, PSI
 Richard Fox, Synoptics
 Karen Frisa, CMU
 Chris Gunner, DEC
 Fred Harris, University of Tennessee at Knoxville
 Ken Hibbard, Xylogics
 Ole Jacobsen, Interop
 Ken Jones
 Satish Joshi, Synoptics
 Frank Kastenholz, Racal-Interlan
 Shimshon Kaufman, Spartacus
 Ken Key, University of Tennessee at Knoxville
 Jim Kinder, Fibercom
 Alex Koifman, BBN
 Christopher Kolb, PSI
 Cheryl Krupczak, NCR
 Paul Langille, DEC
 Peter Lin, Vitalink
 John Lunny, TWG

SNMP Working Group [Page 17]

RFC 1212 Concise MIB Definitions March 1991

 Carl Malamud
 Randy Mayhew, University of Tennessee at Knoxville
 Keith McCloghrie, Hughes LAN Systems
 Donna McMaster, David Systems
 Lynn Monsanto, Sun
 Dave Perkins, 3COM
 Jim Reinstedler, Ungerman Bass
 Anil Rijsinghani, DEC
 Kathy Rinehart, Arnold AFB
 Kary Robertson
 Marshall T. Rose, PSI (chair)
 L. Michael Sabo, NCSC
 Jon Saperia, DEC
 Greg Satz, cisco
 Martin Schoffstall, PSI
 John Seligson
 Steve Sherry, Xyplex
 Fei Shu, NEC
 Sam Sjogren, TGV
 Mark Sleeper, Sparta
 Lance Sprung
 Mike St.Johns
 Bob Stewart, Xyplex
 Emil Sturniold
 Kaj Tesink, Bellcore
 Dean Throop, Data General
 Bill Townsend, Xylogics
 Maurice Turcotte, Racal-Milgo
 Kannan Varadhou
 Sudhanshu Verma, HP
 Bill Versteeg, Network Research Corporation
 Warren Vik, Interactive Systems
 David Waitzman, BBN
 Steve Waldbusser, CMU
 Dan Wintringhan
 David Wood
 Wengyik Yeong, PSI
 Jeff Young, Cray Research

7. References

 [1] Cerf, V., "IAB Recommendations for the Development of Internet
 Network Management Standards", RFC 1052, NRI, April 1988.

 [2] Cerf, V., "Report of the Second Ad Hoc Network Management Review
 Group", RFC 1109, NRI, August 1989.

 [3] Rose M., and K. McCloghrie, "Structure and Identification of

SNMP Working Group [Page 18]

RFC 1212 Concise MIB Definitions March 1991

 Management Information for TCP/IP-based internets", RFC 1155,
 Performance Systems International, Hughes LAN Systems, May 1990.

 [4] McCloghrie K., and M. Rose, "Management Information Base for
 Network Management of TCP/IP-based internets", RFC 1156, Hughes
 LAN Systems, Performance Systems International, May 1990.

 [5] Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple
 Network Management Protocol", RFC 1157, SNMP Research,
 Performance Systems International, Performance Systems
 International, MIT Laboratory for Computer Science, May 1990.

 [6] Information processing systems - Open Systems Interconnection -
 Specification of Abstract Syntax Notation One (ASN.1),
 International Organization for Standardization International
 Standard 8824, December 1987.

 [7] Rose M., Editor, "Management Information Base for Network
 Management of TCP/IP-based internets: MIB-II", RFC 1213,
 Performance Systems International, March 1991.

8. Security Considerations

 Security issues are not discussed in this memo.

9. Authors’ Addresses

 Marshall T. Rose
 Performance Systems International
 5201 Great America Parkway
 Suite 3106
 Santa Clara, CA 95054

 Phone: +1 408 562 6222
 EMail: mrose@psi.com
 X.500: rose, psi, us

 Keith McCloghrie
 Hughes LAN Systems
 1225 Charleston Road
 Mountain View, CA 94043
 1225 Charleston Road
 Mountain View, CA 94043

 Phone: (415) 966-7934
 EMail: kzm@hls.com

SNMP Working Group [Page 19]

