
ï»¿

Independent Submission J. Snijders
Request for Comments: 9225 Fastly
Category: Informational C. Morrow
ISSN: 2070-1721 Google
 R. van Mook
 Asteroid
 1 April 2022

 Software Defects Considered Harmful

Abstract

 This document discourages the practice of introducing software
 defects in general and in network protocol implementations
 specifically. Software defects are one of the largest cost drivers
 for the networking industry. This document is intended to clarify
 the best current practice in this regard.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This is a contribution to the RFC Series, independently of any other
 RFC stream. The RFC Editor has chosen to publish this document at
 its discretion and makes no statement about its value for
 implementation or deployment. Documents approved for publication by
 the RFC Editor are not candidates for any level of Internet Standard;
 see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9225.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

 1. Introduction
 2. Requirements Language
 3. Examples of High-Impact Software Defects
 4. Best Current Practises
 5. Security Considerations
 6. IANA Considerations
 7. References
 7.1. Normative References
 7.2. Informative References
 Appendix A. Future Research
 Acknowledgements
 Authors’ Addresses

1. Introduction

 Software defects (informally known as "bugs") have been the cause and
 effect of innumerable system degradations and failures over the
 years. Bugs are errors, flaws, or faults in a computer program that

 cause the program to produce an incorrect or unexpected result.

 (Please note: unexpected results caused by bugs are not a valid
 substitute for high-quality random number generators, though high-
 quality random number generators are generally not considered to be
 bugs.)

 Endeavoring to reduce the number of degradations in the future,
 implementers MUST NOT introduce bugs when writing software. This
 document outlines why bugs are considered harmful and proposes a set
 of recommendations.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Examples of High-Impact Software Defects

 In June 1996, the European Space Agency [ARIANE] launched an unmanned
 rocket -- costing several billion dollars in development -- only to
 see it go [KABOOM] 40 seconds after takeoff. A software exception
 had occurred during the execution of a data conversion from 64-bit
 floating point to 16-bit signed integer value. The floating point
 number that was converted had a value greater than what could be
 represented by a 16-bit signed integer. The vehicle probably would
 not have disintegrated if the defect had not been written into the
 software.

 As an example of the detrimental effects of bugs in physically hard
 to reach systems: the [NASA] Deep Impact spacecraft [DEEPIMPACT] was
 rendered inoperable due to a fault in the fault-protection software,
 which in turn triggered endless computer reboots. Mission control
 was unable to recover the system from this error condition because no
 engineers were available on-site. The commute was deemed infeasible
 due to a lack of reasonably priced commercial transport options in
 that region of the solar system.

 In 1983, the Soviet Union’s Early Warning Satellite System
 [Serpukhov] announced it had detected a possible missile launch
 originating in the US; fortunately, a human operator recognized this
 as a likely system failure. Indeed, a retrospective analysis
 suggested the software had misclassified reflections from cloud cover
 as missile launch blooms. With this bug, the software held the
 potential to trigger a cascading sequence of events that could’ve led
 to the start of a planetary-scale war. Seemingly innocuous software
 defects can have outsized impact, and sometimes it pays off to simply
 do nothing and wait.

 The US Department of Commerce’s National Institute of Standards and
 Technology [NIST] commissioned a study to develop a deeper
 understanding of the prevalence of software defects and their cost to
 society. The study estimated about 0.6 percent of the gross domestic
 product is squandered due to programming bugs. Each person works
 approximately one hour a week to compensate for this debt -- an hour
 that could’ve been spent in leisure -- in addition to any time spent
 on the direct consequences of buggy software.

 The universal deployment of IP networks on Avian Carriers [RFC1149]
 is facing a multi-decade delay. After operators discovered that
 birds are not real (now [confirmed] by the US Government), work began
 to first understand the many [quirks] of the drones’ firmware before
 proceeding with wider-scale deployment. No clear timelines exist at
 this point in time.

 For more examples, consult the RISKS Digest [RISKS]: it documents a
 multitude of examples of defects in technological infrastructure and
 their risk to society. Unsupervised study of the Digest archive may

 induce a sense of panic.

4. Best Current Practises

 1. Authors MUST NOT implement bugs.

 2. If bugs are introduced in code, they MUST be clearly documented.

 3. When implementing specifications that are broken by design, it is
 RECOMMENDED to aggregate multiple smaller bugs into one larger
 bug. This will be easier to document: rather than having a lot
 of hard-to-track inconsequential bugs, there will be only a few
 easy-to-recognise significant bugs.

 4. The aphorism "It’s not a bug, it’s a feature" is considered rude.

 5. Assume all external input is the result of (a series of) bugs.
 (Especially in machine-to-machine applications such as
 implementations of network protocols.)

 6. In fact, assume all internal inputs also are the result of bugs.

5. Security Considerations

 With the production of fewer bugs, there will necessarily be fewer
 security impacts. To improve the collective security posture, a
 thorough review of ALL existing software to find any remaining bugs
 is RECOMMENDED.

 As it is assumed that there is an even distribution of bugs through
 all software, it is safe to consider any piece of software to be bug
 free once a certain number of bugs have been found.

 Some philosophers argue in defense of an obviously wrong contrary
 view that bugs introduce a certain amount of unpredictable variance
 in behaviour, which in turn could serve to increase security. Such
 heretics might even go one step further and celebrate the existence
 of bugs, shielding issues from public scrutiny. However, it
 [ostensibly] is in society’s best interest to fully disclose any and
 all bugs as soon as they are discovered.

6. IANA Considerations

 IANA is assumed to operate flawlessly.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [ARIANE] Arnold, D. N., "The Explosion of the Ariane 5", August
 2000, <https://www-users.cse.umn.edu/˜arnold/disasters/
 ariane.html>.

 [confirmed]
 US Consumer Product Safety Commission (@USCPSC), "Birds
 are real.", Twitter, 5 January 2022,
 <https://twitter.com/USCPSC/status/1478794691634155523>.

 [DEEPIMPACT]
 Wallace, M., "Subject: Re: [tz] Deep Impact: wrong time

 zone?", message to the tz@iana.org mailing list, 23
 September 2013, <https://mm.icann.org/pipermail/
 tz/2013-September/020357.html>.

 [incomplete]
 Raatikainen, P., "GÃ¶del’s Incompleteness Theorems",
 Stanford Encyclopedia of Philosophy, November 2013,
 <https://plato.stanford.edu/entries/goedel-
 incompleteness/>.

 [IRTF] IRTF, "Internet Research Task Force",
 <https://www.irtf.org/>.

 [KABOOM] Jure, V. A., "Kapow! Zap! Splat! How comics make sound on
 the page", The Conversation, 10 June 2021,
 <https://theconversation.com/kapow-zap-splat-how-comics-
 make-sound-on-the-page-160455>.

 [NASA] NASA, "NASA’s Deep Space Comet Hunter Mission Comes to an
 End", September 2013,
 <https://www.nasa.gov/mission_pages/deepimpact/media/
 deepimpact20130920.html>.

 [NIST] NIST, "Software Errors Cost U.S. Economy $59.5 Billion
 Annually", Wayback Machine archive, June 2002,
 <https://web.archive.org/web/20090610052743/
 http://www.nist.gov/public_affairs/releases/n02-10.htm>.

 [ostensibly]
 Swire, P., "A Model for When Disclosure Helps Security:
 What Is Different About Computer and Network Security?", 3
 Journal on Telecommunications and High Technology Law 163,
 August 2004, <http://dx.doi.org/10.2139/ssrn.531782>.

 [quirks] Stockton, N., "What’s Up With That: Birds Bob Their Heads
 When They Walk", WIRED, January 2015,
 <https://www.wired.com/2015/01/whats-birds-bob-heads-
 walk/>.

 [RFC1149] Waitzman, D., "Standard for the transmission of IP
 datagrams on avian carriers", RFC 1149,
 DOI 10.17487/RFC1149, April 1990,
 <https://www.rfc-editor.org/info/rfc1149>.

 [RISKS] ACM Committee on Computers and Public Policy, "The RISKS
 Digest", <https://catless.ncl.ac.uk/Risks/>.

 [Serpukhov]
 Long, T., "Sept. 26, 1983: The Man Who Saved the World by
 Doing ... Nothing", WIRED, September 2007,
 <https://www.wired.com/2007/09/dayintech-0926-2/>.

Appendix A. Future Research

 The existence of this very document of course begs the question: what
 are software defects, truly? Do bugs happen for a purpose? Is what
 we perceive as the concept of bugs an indication for a wider issue in
 the natural world? Do mistakes happen in other domains? Are they
 evidence of a superior software architect?

 An interdisciplinary approach to understand mistakes might be an area
 of further study for the [IRTF]. It may very well turn out that
 mistakes are provably detrimental in all domains; however, the
 authors do not feel qualified to make any statements in this regard.
 Once made aware of the above thesis, research-oriented interest
 groups could perhaps take on the task of disproving Goedel’s
 incompleteness theorem [incomplete], and in doing so, put an end to
 all bugs.

Acknowledgements

 The authors wish to thank Bert Hubert, Peter van Dijk, and Saku Ytti
 for pointing out the many errors Job introduced during the
 preparation of this document.

Authors’ Addresses

 Job Snijders
 Fastly
 Amsterdam
 Netherlands
 Email: job@fastly.com

 Chris Morrow
 Google
 Reston, Virginia
 United States of America
 Email: morrowc@ops-netman.net

 Remco van Mook
 Asteroid
 Deventer
 Netherlands
 Email: remco@asteroidhq.com

