
ï»¿

Internet Engineering Task Force (IETF) T. Enghardt
Request for Comments: 8922 TU Berlin
Category: Informational T. Pauly
ISSN: 2070-1721 Apple Inc.
 C. Perkins
 University of Glasgow
 K. Rose
 Akamai Technologies, Inc.
 C. Wood
 Cloudflare
 October 2020

 A Survey of the Interaction between Security Protocols and Transport
 Services

Abstract

 This document provides a survey of commonly used or notable network
 security protocols, with a focus on how they interact and integrate
 with applications and transport protocols. Its goal is to supplement
 efforts to define and catalog Transport Services by describing the
 interfaces required to add security protocols. This survey is not
 limited to protocols developed within the scope or context of the
 IETF, and those included represent a superset of features a Transport
 Services system may need to support.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8922.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 1.1. Goals
 1.2. Non-goals
 2. Terminology
 3. Transport Security Protocol Descriptions
 3.1. Application Payload Security Protocols
 3.1.1. TLS

 3.1.2. DTLS
 3.2. Application-Specific Security Protocols
 3.2.1. Secure RTP
 3.3. Transport-Layer Security Protocols
 3.3.1. IETF QUIC
 3.3.2. Google QUIC
 3.3.3. tcpcrypt
 3.3.4. MinimaLT
 3.3.5. CurveCP
 3.4. Packet Security Protocols
 3.4.1. IPsec
 3.4.2. WireGuard
 3.4.3. OpenVPN
 4. Transport Dependencies
 4.1. Reliable Byte-Stream Transports
 4.2. Unreliable Datagram Transports
 4.2.1. Datagram Protocols with Defined Byte-Stream Mappings
 4.3. Transport-Specific Dependencies
 5. Application Interface
 5.1. Pre-connection Interfaces
 5.2. Connection Interfaces
 5.3. Post-connection Interfaces
 5.4. Summary of Interfaces Exposed by Protocols
 6. IANA Considerations
 7. Security Considerations
 8. Privacy Considerations
 9. Informative References
 Acknowledgments
 Authors’ Addresses

1. Introduction

 Services and features provided by transport protocols have been
 cataloged in [RFC8095]. This document supplements that work by
 surveying commonly used and notable network security protocols, and
 identifying the interfaces between these protocols and both transport
 protocols and applications. It examines Transport Layer Security
 (TLS), Datagram Transport Layer Security (DTLS), IETF QUIC, Google
 QUIC (gQUIC), tcpcrypt, Internet Protocol Security (IPsec), Secure
 Real-time Transport Protocol (SRTP) with DTLS, WireGuard, CurveCP,
 and MinimaLT. For each protocol, this document provides a brief
 description. Then, it describes the interfaces between these
 protocols and transports in Section 4 and the interfaces between
 these protocols and applications in Section 5.

 A Transport Services system exposes an interface for applications to
 access various (secure) transport protocol features. The security
 protocols included in this survey represent a superset of
 functionality and features a Transport Services system may need to
 support both internally and externally (via an API) for applications
 [TAPS-ARCH]. Ubiquitous IETF protocols such as (D)TLS, as well as
 non-standard protocols such as gQUIC, are included despite
 overlapping features. As such, this survey is not limited to
 protocols developed within the scope or context of the IETF. Outside
 of this candidate set, protocols that do not offer new features are
 omitted. For example, newer protocols such as WireGuard make unique
 design choices that have implications for and limitations on
 application usage. In contrast, protocols such as secure shell (SSH)
 [RFC4253], GRE [RFC2890], the Layer 2 Tunneling Protocol (L2TP)
 [RFC5641], and Application Layer Transport Security (ALTS) [ALTS] are
 omitted since they do not provide interfaces deemed unique.

 Authentication-only protocols such as the TCP Authentication Option
 (TCP-AO) [RFC5925] and the IPsec Authentication Header (AH) [RFC4302]
 are excluded from this survey. TCP-AO adds authentication to long-
 lived TCP connections, e.g., replay protection with per-packet
 Message Authentication Codes. (TCP-AO obsoletes TCP MD5 "signature"
 options specified in [RFC2385].) One primary use case of TCP-AO is
 for protecting BGP connections. Similarly, AH adds per-datagram
 authentication and integrity, along with replay protection. Despite
 these improvements, neither protocol sees general use and both lack

 critical properties important for emergent transport security
 protocols, such as confidentiality and privacy protections. Such
 protocols are thus omitted from this survey.

 This document only surveys point-to-point protocols; multicast
 protocols are out of scope.

1.1. Goals

 This survey is intended to help identify the most common interface
 surfaces between security protocols and transport protocols, and
 between security protocols and applications.

 One of the goals of the Transport Services effort is to define a
 common interface for using transport protocols that allows software
 using transport protocols to easily adopt new protocols that provide
 similar feature sets. The survey of the dependencies security
 protocols have upon transport protocols can guide implementations in
 determining which transport protocols are appropriate to be able to
 use beneath a given security protocol. For example, a security
 protocol that expects to run over a reliable stream of bytes, like
 TLS, restricts the set of transport protocols that can be used to
 those that offer a reliable stream of bytes.

 Defining the common interfaces that security protocols provide to
 applications also allows interfaces to be designed in a way that
 common functionality can use the same APIs. For example, many
 security protocols that provide authentication let the application be
 involved in peer identity validation. Any interface to use a secure
 transport protocol stack thus needs to allow applications to perform
 this action during connection establishment.

1.2. Non-goals

 While this survey provides similar analysis to that which was
 performed for transport protocols in [RFC8095], it is important to
 distinguish that the use of security protocols requires more
 consideration.

 It is not a goal to allow software implementations to automatically
 switch between different security protocols, even where their
 interfaces to transport and applications are equivalent. Even
 between versions, security protocols have subtly different guarantees
 and vulnerabilities. Thus, any implementation needs to only use the
 set of protocols and algorithms that are requested by applications or
 by a system policy.

 Different security protocols also can use incompatible notions of
 peer identity and authentication, and cryptographic options. It is
 not a goal to identify a common set of representations for these
 concepts.

 The protocols surveyed in this document represent a superset of
 functionality and features a Transport Services system may need to
 support. It does not list all transport protocols that a Transport
 Services system may need to implement, nor does it mandate that a
 Transport Service system implement any particular protocol.

 A Transport Services system may implement any secure transport
 protocol that provides the described features. In doing so, it may
 need to expose an interface to the application to configure these
 features.

2. Terminology

 The following terms are used throughout this document to describe the
 roles and interactions of transport security protocols (some of which
 are also defined in [RFC8095]):

 Transport Feature: a specific end-to-end feature that the transport
 layer provides to an application. Examples include

 confidentiality, reliable delivery, ordered delivery, and message-
 versus-stream orientation.

 Transport Service: a set of Transport Features, without an
 association to any given framing protocol, that provides
 functionality to an application.

 Transport Services system: a software component that exposes an
 interface to different Transport Services to an application.

 Transport Protocol: an implementation that provides one or more
 different Transport Services using a specific framing and header
 format on the wire. A Transport Protocol services an application,
 whether directly or in conjunction with a security protocol.

 Application: an entity that uses a transport protocol for end-to-end
 delivery of data across the network. This may also be an upper
 layer protocol or tunnel encapsulation.

 Security Protocol: a defined network protocol that implements one or
 more security features, such as authentication, encryption, key
 generation, session resumption, and privacy. Security protocols
 may be used alongside transport protocols, and in combination with
 other security protocols when appropriate.

 Handshake Protocol: a protocol that enables peers to validate each
 other and to securely establish shared cryptographic context.

 Record: framed protocol messages.

 Record Protocol: a security protocol that allows data to be divided
 into manageable blocks and protected using shared cryptographic
 context.

 Session: an ephemeral security association between applications.

 Connection: the shared state of two or more endpoints that persists
 across messages that are transmitted between these endpoints. A
 connection is a transient participant of a session, and a session
 generally lasts between connection instances.

 Peer: an endpoint application party to a session.

 Client: the peer responsible for initiating a session.

 Server: the peer responsible for responding to a session initiation.

3. Transport Security Protocol Descriptions

 This section contains brief transport and security descriptions of
 various security protocols currently used to protect data being sent
 over a network. These protocols are grouped based on where in the
 protocol stack they are implemented, which influences which parts of
 a packet they protect: Generic application payload, application
 payload for specific application-layer protocols, both application
 payload and transport headers, or entire IP packets.

 Note that not all security protocols can be easily categorized, e.g.,
 as some protocols can be used in different ways or in combination
 with other protocols. One major reason for this is that channel
 security protocols often consist of two components:

 * A handshake protocol, which is responsible for negotiating
 parameters, authenticating the endpoints, and establishing shared
 keys.

 * A record protocol, which is used to encrypt traffic using keys and
 parameters provided by the handshake protocol.

 For some protocols, such as tcpcrypt, these two components are
 tightly integrated. In contrast, for IPsec, these components are

 implemented in separate protocols: AH and the Encapsulating Security
 Payload (ESP) are record protocols, which can use keys supplied by
 the handshake protocol Internet Key Exchange Protocol Version 2
 (IKEv2), by other handshake protocols, or by manual configuration.
 Moreover, some protocols can be used in different ways: While the
 base TLS protocol as defined in [RFC8446] has an integrated handshake
 and record protocol, TLS or DTLS can also be used to negotiate keys
 for other protocols, as in DTLS-SRTP, or the handshake protocol can
 be used with a separate record layer, as in QUIC [QUIC-TRANSPORT].

3.1. Application Payload Security Protocols

 The following protocols provide security that protects application
 payloads sent over a transport. They do not specifically protect any
 headers used for transport-layer functionality.

3.1.1. TLS

 TLS (Transport Layer Security) [RFC8446] is a common protocol used to
 establish a secure session between two endpoints. Communication over
 this session prevents "eavesdropping, tampering, and message
 forgery." TLS consists of a tightly coupled handshake and record
 protocol. The handshake protocol is used to authenticate peers,
 negotiate protocol options such as cryptographic algorithms, and
 derive session-specific keying material. The record protocol is used
 to marshal and, once the handshake has sufficiently progressed,
 encrypt data from one peer to the other. This data may contain
 handshake messages or raw application data.

3.1.2. DTLS

 DTLS (Datagram Transport Layer Security) [RFC6347] [DTLS-1.3] is
 based on TLS, but differs in that it is designed to run over
 unreliable datagram protocols like UDP instead of TCP. DTLS modifies
 the protocol to make sure it can still provide equivalent security
 guarantees to TLS with the exception of order protection/non-
 replayability. DTLS was designed to be as similar to TLS as
 possible, so this document assumes that all properties from TLS are
 carried over except where specified.

3.2. Application-Specific Security Protocols

 The following protocols provide application-specific security by
 protecting application payloads used for specific use cases. Unlike
 the protocols above, these are not intended for generic application
 use.

3.2.1. Secure RTP

 Secure RTP (SRTP) is a profile for RTP that provides confidentiality,
 message authentication, and replay protection for RTP data packets
 and RTP control protocol (RTCP) packets [RFC3711]. SRTP provides a
 record layer only, and requires a separate handshake protocol to
 provide key agreement and identity management.

 The commonly used handshake protocol for SRTP is DTLS, in the form of
 DTLS-SRTP [RFC5764]. This is an extension to DTLS that negotiates
 the use of SRTP as the record layer and describes how to export keys
 for use with SRTP.

 ZRTP [RFC6189] is an alternative key agreement and identity
 management protocol for SRTP. ZRTP Key agreement is performed using
 a Diffie-Hellman key exchange that runs on the media path. This
 generates a shared secret that is then used to generate the master
 key and salt for SRTP.

3.3. Transport-Layer Security Protocols

 The following security protocols provide protection for both
 application payloads and headers that are used for Transport
 Services.

3.3.1. IETF QUIC

 QUIC is a new standards-track transport protocol that runs over UDP,
 loosely based on Google’s original proprietary gQUIC protocol
 [QUIC-TRANSPORT] (See Section 3.3.2 for more details). The QUIC
 transport layer itself provides support for data confidentiality and
 integrity. This requires keys to be derived with a separate
 handshake protocol. A mapping for QUIC of TLS 1.3 [QUIC-TLS] has
 been specified to provide this handshake.

3.3.2. Google QUIC

 Google QUIC (gQUIC) is a UDP-based multiplexed streaming protocol
 designed and deployed by Google following experience from deploying
 SPDY, the proprietary predecessor to HTTP/2. gQUIC was originally
 known as "QUIC"; this document uses gQUIC to unambiguously
 distinguish it from the standards-track IETF QUIC. The proprietary
 technical forebear of IETF QUIC, gQUIC was originally designed with
 tightly integrated security and application data transport protocols.

3.3.3. tcpcrypt

 Tcpcrypt [RFC8548] is a lightweight extension to the TCP protocol for
 opportunistic encryption. Applications may use tcpcrypt’s unique
 session ID for further application-level authentication. Absent this
 authentication, tcpcrypt is vulnerable to active attacks.

3.3.4. MinimaLT

 MinimaLT [MinimaLT] is a UDP-based transport security protocol
 designed to offer confidentiality, mutual authentication, DoS
 prevention, and connection mobility. One major goal of the protocol
 is to leverage existing protocols to obtain server-side configuration
 information used to more quickly bootstrap a connection. MinimaLT
 uses a variant of TCP’s congestion control algorithm.

3.3.5. CurveCP

 CurveCP [CurveCP] is a UDP-based transport security that, unlike many
 other security protocols, is based entirely upon public key
 algorithms. CurveCP provides its own reliability for application
 data as part of its protocol.

3.4. Packet Security Protocols

 The following protocols provide protection for IP packets. These are
 generally used as tunnels, such as for Virtual Private Networks
 (VPNs). Often, applications will not interact directly with these
 protocols. However, applications that implement tunnels will
 interact directly with these protocols.

3.4.1. IPsec

 IKEv2 [RFC7296] and ESP [RFC4303] together form the modern IPsec
 protocol suite that encrypts and authenticates IP packets, either for
 creating tunnels (tunnel-mode) or for direct transport connections
 (transport-mode). This suite of protocols separates out the key
 generation protocol (IKEv2) from the transport encryption protocol
 (ESP). Each protocol can be used independently, but this document
 considers them together, since that is the most common pattern.

3.4.2. WireGuard

 WireGuard [WireGuard] is an IP-layer protocol designed as an
 alternative to IPsec for certain use cases. It uses UDP to
 encapsulate IP datagrams between peers. Unlike most transport
 security protocols, which rely on Public Key Infrastructure (PKI) for
 peer authentication, WireGuard authenticates peers using pre-shared
 public keys delivered out of band, each of which is bound to one or
 more IP addresses. Moreover, as a protocol suited for VPNs,

 WireGuard offers no extensibility, negotiation, or cryptographic
 agility.

3.4.3. OpenVPN

 OpenVPN [OpenVPN] is a commonly used protocol designed as an
 alternative to IPsec. A major goal of this protocol is to provide a
 VPN that is simple to configure and works over a variety of
 transports. OpenVPN encapsulates either IP packets or Ethernet
 frames within a secure tunnel and can run over either UDP or TCP.
 For key establishment, OpenVPN can either use TLS as a handshake
 protocol or use pre-shared keys.

4. Transport Dependencies

 Across the different security protocols listed above, the primary
 dependency on transport protocols is the presentation of data: either
 an unbounded stream of bytes, or framed messages. Within protocols
 that rely on the transport for message framing, most are built to run
 over transports that inherently provide framing, like UDP, but some
 also define how their messages can be framed over byte-stream
 transports.

4.1. Reliable Byte-Stream Transports

 The following protocols all depend upon running on a transport
 protocol that provides a reliable, in-order stream of bytes. This is
 typically TCP.

 Application Payload Security Protocols:

 * TLS

 Transport-Layer Security Protocols:

 * tcpcrypt

4.2. Unreliable Datagram Transports

 The following protocols all depend on the transport protocol to
 provide message framing to encapsulate their data. These protocols
 are built to run using UDP, and thus do not have any requirement for
 reliability. Running these protocols over a protocol that does
 provide reliability will not break functionality but may lead to
 multiple layers of reliability if the security protocol is
 encapsulating other transport protocol traffic.

 Application Payload Security Protocols:

 * DTLS

 * ZRTP

 * SRTP

 Transport-Layer Security Protocols:

 * QUIC

 * MinimaLT

 * CurveCP

 Packet Security Protocols:

 * IPsec

 * WireGuard

 * OpenVPN

4.2.1. Datagram Protocols with Defined Byte-Stream Mappings

 Of the protocols listed above that depend on the transport for
 message framing, some do have well-defined mappings for sending their
 messages over byte-stream transports like TCP.

 Application Payload Security Protocols:

 * DTLS when used as a handshake protocol for SRTP [RFC7850]

 * ZRTP [RFC6189]

 * SRTP [RFC4571][RFC3711]

 Packet Security Protocols:

 * IPsec [RFC8229]

4.3. Transport-Specific Dependencies

 One protocol surveyed, tcpcrypt, has a direct dependency on a feature
 in the transport that is needed for its functionality. Specifically,
 tcpcrypt is designed to run on top of TCP and uses the TCP Encryption
 Negotiation Option (TCP-ENO) [RFC8547] to negotiate its protocol
 support.

 QUIC, CurveCP, and MinimaLT provide both transport functionality and
 security functionality. They depend on running over a framed
 protocol like UDP, but they add their own layers of reliability and
 other Transport Services. Thus, an application that uses one of
 these protocols cannot decouple the security from transport
 functionality.

5. Application Interface

 This section describes the interface exposed by the security
 protocols described above. We partition these interfaces into pre-
 connection (configuration), connection, and post-connection
 interfaces, following conventions in [TAPS-INTERFACE] and
 [TAPS-ARCH].

 Note that not all protocols support each interface. The table in
 Section 5.4 summarizes which protocol exposes which of the
 interfaces. In the following sections, we provide abbreviations of
 the interface names to use in the summary table.

5.1. Pre-connection Interfaces

 Configuration interfaces are used to configure the security protocols
 before a handshake begins or keys are negotiated.

 Identities and Private Keys (IPK): The application can provide its
 identity, credentials (e.g., certificates), and private keys, or
 mechanisms to access these, to the security protocol to use during
 handshakes.

 * TLS

 * DTLS

 * ZRTP

 * QUIC

 * MinimaLT

 * CurveCP

 * IPsec

 * WireGuard

 * OpenVPN

 Supported Algorithms (Key Exchange, Signatures, and Ciphersuites)
 (ALG): The application can choose the algorithms that are supported
 for key exchange, signatures, and ciphersuites.

 * TLS

 * DTLS

 * ZRTP

 * QUIC

 * tcpcrypt

 * MinimaLT

 * IPsec

 * OpenVPN

 Extensions (EXT): The application enables or configures extensions
 that are to be negotiated by the security protocol, such as
 Application-Layer Protocol Negotiation (ALPN) [RFC7301].

 * TLS

 * DTLS

 * QUIC

 Session Cache Management (CM): The application provides the ability
 to save and retrieve session state (such as tickets, keying
 material, and server parameters) that may be used to resume the
 security session.

 * TLS

 * DTLS

 * ZRTP

 * QUIC

 * tcpcrypt

 * MinimaLT

 Authentication Delegation (AD): The application provides access to a
 separate module that will provide authentication, using the
 Extensible Authentication Protocol (EAP) [RFC3748] for example.

 * IPsec

 * tcpcrypt

 Pre-Shared Key Import (PSKI): Either the handshake protocol or the
 application directly can supply pre-shared keys for use in
 encrypting (and authenticating) communication with a peer.

 * TLS

 * DTLS

 * ZRTP

 * QUIC

 * tcpcrypt

 * MinimaLT

 * IPsec

 * WireGuard

 * OpenVPN

5.2. Connection Interfaces

 Identity Validation (IV): During a handshake, the security protocol
 will conduct identity validation of the peer. This can offload
 validation or occur transparently to the application.

 * TLS

 * DTLS

 * ZRTP

 * QUIC

 * MinimaLT

 * CurveCP

 * IPsec

 * WireGuard

 * OpenVPN

 Source Address Validation (SAV): The handshake protocol may interact
 with the transport protocol or application to validate the address
 of the remote peer that has sent data. This involves sending a
 cookie exchange to avoid DoS attacks. (This list omits protocols
 that depend on TCP and therefore implicitly perform SAV.)

 * DTLS

 * QUIC

 * IPsec

 * WireGuard

5.3. Post-connection Interfaces

 Connection Termination (CT): The security protocol may be instructed
 to tear down its connection and session information. This is
 needed by some protocols, e.g., to prevent application data
 truncation attacks in which an attacker terminates an underlying
 insecure connection-oriented protocol to terminate the session.

 * TLS

 * DTLS

 * ZRTP

 * QUIC

 * tcpcrypt

 * MinimaLT

 * IPsec

 * OpenVPN

 Key Update (KU): The handshake protocol may be instructed to update
 its keying material, either by the application directly or by the
 record protocol sending a key expiration event.

 * TLS

 * DTLS

 * QUIC

 * tcpcrypt

 * MinimaLT

 * IPsec

 Shared Secret Key Export (SSKE): The handshake protocol may provide
 an interface for producing shared secrets for application-specific
 uses.

 * TLS

 * DTLS

 * tcpcrypt

 * IPsec

 * OpenVPN

 * MinimaLT

 Key Expiration (KE): The record protocol can signal that its keys
 are expiring due to reaching a time-based deadline or a use-based
 deadline (number of bytes that have been encrypted with the key).
 This interaction is often limited to signaling between the record
 layer and the handshake layer.

 * IPsec

 Mobility Events (ME): The record protocol can be signaled that it is
 being migrated to another transport or interface due to connection
 mobility, which may reset address and state validation and induce
 state changes such as use of a new Connection Identifier (CID).

 * DTLS (version 1.3 only [DTLS-1.3])

 * QUIC

 * MinimaLT

 * CurveCP

 * IPsec [RFC4555]

 * WireGuard

5.4. Summary of Interfaces Exposed by Protocols

 The following table summarizes which protocol exposes which
 interface.

 +===========+===+====+=====+==+==+======+==+=====+==+==+======+==+==+
 | Protocol |IPK|ALG | EXT |CM|AD| PSKI |IV| SAV |CT|KU| SSKE |KE|ME|
 +===========+===+====+=====+==+==+======+==+=====+==+==+======+==+==+
 | TLS | x | x | x |x | | x |x | |x |x | x | | |
 +-----------+---+----+-----+--+--+------+--+-----+--+--+------+--+--+
 | DTLS | x | x | x |x | | x |x | x |x |x | x | |x |
 +-----------+---+----+-----+--+--+------+--+-----+--+--+------+--+--+
 | ZRTP | x | x | |x | | x |x | |x | | | | |
 +-----------+---+----+-----+--+--+------+--+-----+--+--+------+--+--+

 | QUIC | x | x | x |x | | x |x | x |x |x | | |x |
 +-----------+---+----+-----+--+--+------+--+-----+--+--+------+--+--+
 | tcpcrypt | | x | |x |x | x | | |x |x | x | | |
 +-----------+---+----+-----+--+--+------+--+-----+--+--+------+--+--+
 | MinimaLT | x | x | |x | | x |x | |x |x | x | |x |
 +-----------+---+----+-----+--+--+------+--+-----+--+--+------+--+--+
 | CurveCP | x | | | | | |x | | | | | |x |
 +-----------+---+----+-----+--+--+------+--+-----+--+--+------+--+--+
 | IPsec | x | x | | |x | x |x | x |x |x | x |x |x |
 +-----------+---+----+-----+--+--+------+--+-----+--+--+------+--+--+
 | WireGuard | x | | | | | x |x | x | | | | |x |
 +-----------+---+----+-----+--+--+------+--+-----+--+--+------+--+--+
 | OpenVPN | x | x | | | | x |x | |x | | x | | |
 +-----------+---+----+-----+--+--+------+--+-----+--+--+------+--+--+

 Table 1

 x = Interface is exposed
 (blank) = Interface is not exposed

6. IANA Considerations

 This document has no IANA actions.

7. Security Considerations

 This document summarizes existing transport security protocols and
 their interfaces. It does not propose changes to or recommend usage
 of reference protocols. Moreover, no claims of security and privacy
 properties beyond those guaranteed by the protocols discussed are
 made. For example, metadata leakage via timing side channels and
 traffic analysis may compromise any protocol discussed in this
 survey. Applications using Security Interfaces should take such
 limitations into consideration when using a particular protocol
 implementation.

8. Privacy Considerations

 Analysis of how features improve or degrade privacy is intentionally
 omitted from this survey. All security protocols surveyed generally
 improve privacy by using encryption to reduce information leakage.
 However, varying amounts of metadata remain in the clear across each
 protocol. For example, client and server certificates are sent in
 cleartext in TLS 1.2 [RFC5246], whereas they are encrypted in TLS 1.3
 [RFC8446]. A survey of privacy features, or lack thereof, for
 various security protocols could be addressed in a separate document.

9. Informative References

 [ALTS] Ghali, C., Stubblefield, A., Knapp, E., Li, J., Schmidt,
 B., and J. Boeuf, "Application Layer Transport Security",
 <https://cloud.google.com/security/encryption-in-transit/
 application-layer-transport-security/>.

 [CurveCP] Bernstein, D., "CurveCP: Usable security for the
 Internet", <https://curvecp.org/>.

 [DTLS-1.3] Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", Work in Progress, Internet-Draft, draft-ietf-tls-
 dtls13-38, 29 May 2020,
 <https://tools.ietf.org/html/draft-ietf-tls-dtls13-38>.

 [MinimaLT] Petullo, W., Zhang, X., Solworth, J., Bernstein, D., and
 T. Lange, "MinimaLT: minimal-latency networking through
 better security", DOI 10.1145/2508859.2516737,
 <https://dl.acm.org/citation.cfm?id=2516737>.

 [OpenVPN] OpenVPN, "OpenVPN cryptographic layer",
 <https://openvpn.net/community-resources/openvpn-
 cryptographic-layer/>.

 [QUIC-TLS] Thomson, M. and S. Turner, "Using TLS to Secure QUIC",
 Work in Progress, Internet-Draft, draft-ietf-quic-tls-31,
 24 September 2020,
 <https://tools.ietf.org/html/draft-ietf-quic-tls-31>.

 [QUIC-TRANSPORT]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", Work in Progress, Internet-Draft,
 draft-ietf-quic-transport-31, 24 September 2020,
 <https://tools.ietf.org/html/draft-ietf-quic-transport-
 31>.

 [RFC2385] Heffernan, A., "Protection of BGP Sessions via the TCP MD5
 Signature Option", RFC 2385, DOI 10.17487/RFC2385, August
 1998, <https://www.rfc-editor.org/info/rfc2385>.

 [RFC2890] Dommety, G., "Key and Sequence Number Extensions to GRE",
 RFC 2890, DOI 10.17487/RFC2890, September 2000,
 <https://www.rfc-editor.org/info/rfc2890>.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",
 RFC 3711, DOI 10.17487/RFC3711, March 2004,
 <https://www.rfc-editor.org/info/rfc3711>.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol
 (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
 <https://www.rfc-editor.org/info/rfc3748>.

 [RFC4253] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
 January 2006, <https://www.rfc-editor.org/info/rfc4253>.

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302,
 DOI 10.17487/RFC4302, December 2005,
 <https://www.rfc-editor.org/info/rfc4302>.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
 RFC 4303, DOI 10.17487/RFC4303, December 2005,
 <https://www.rfc-editor.org/info/rfc4303>.

 [RFC4555] Eronen, P., "IKEv2 Mobility and Multihoming Protocol
 (MOBIKE)", RFC 4555, DOI 10.17487/RFC4555, June 2006,
 <https://www.rfc-editor.org/info/rfc4555>.

 [RFC4571] Lazzaro, J., "Framing Real-time Transport Protocol (RTP)
 and RTP Control Protocol (RTCP) Packets over Connection-
 Oriented Transport", RFC 4571, DOI 10.17487/RFC4571, July
 2006, <https://www.rfc-editor.org/info/rfc4571>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5641] McGill, N. and C. Pignataro, "Layer 2 Tunneling Protocol
 Version 3 (L2TPv3) Extended Circuit Status Values",
 RFC 5641, DOI 10.17487/RFC5641, August 2009,
 <https://www.rfc-editor.org/info/rfc5641>.

 [RFC5764] McGrew, D. and E. Rescorla, "Datagram Transport Layer
 Security (DTLS) Extension to Establish Keys for the Secure
 Real-time Transport Protocol (SRTP)", RFC 5764,
 DOI 10.17487/RFC5764, May 2010,
 <https://www.rfc-editor.org/info/rfc5764>.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <https://www.rfc-editor.org/info/rfc5925>.

 [RFC6189] Zimmermann, P., Johnston, A., Ed., and J. Callas, "ZRTP:
 Media Path Key Agreement for Unicast Secure RTP",
 RFC 6189, DOI 10.17487/RFC6189, April 2011,
 <https://www.rfc-editor.org/info/rfc6189>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <https://www.rfc-editor.org/info/rfc7296>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC7850] Nandakumar, S., "Registering Values of the SDP ’proto’
 Field for Transporting RTP Media over TCP under Various
 RTP Profiles", RFC 7850, DOI 10.17487/RFC7850, April 2016,
 <https://www.rfc-editor.org/info/rfc7850>.

 [RFC8095] Fairhurst, G., Ed., Trammell, B., Ed., and M. Kuehlewind,
 Ed., "Services Provided by IETF Transport Protocols and
 Congestion Control Mechanisms", RFC 8095,
 DOI 10.17487/RFC8095, March 2017,
 <https://www.rfc-editor.org/info/rfc8095>.

 [RFC8229] Pauly, T., Touati, S., and R. Mantha, "TCP Encapsulation
 of IKE and IPsec Packets", RFC 8229, DOI 10.17487/RFC8229,
 August 2017, <https://www.rfc-editor.org/info/rfc8229>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8547] Bittau, A., Giffin, D., Handley, M., Mazieres, D., and E.
 Smith, "TCP-ENO: Encryption Negotiation Option", RFC 8547,
 DOI 10.17487/RFC8547, May 2019,
 <https://www.rfc-editor.org/info/rfc8547>.

 [RFC8548] Bittau, A., Giffin, D., Handley, M., Mazieres, D., Slack,
 Q., and E. Smith, "Cryptographic Protection of TCP Streams
 (tcpcrypt)", RFC 8548, DOI 10.17487/RFC8548, May 2019,
 <https://www.rfc-editor.org/info/rfc8548>.

 [TAPS-ARCH]
 Pauly, T., Trammell, B., Brunstrom, A., Fairhurst, G.,
 Perkins, C., Tiesel, P. S., and C. A. Wood, "An
 Architecture for Transport Services", Work in Progress,
 Internet-Draft, draft-ietf-taps-arch-08, 13 July 2020,
 <https://tools.ietf.org/html/draft-ietf-taps-arch-08>.

 [TAPS-INTERFACE]
 Trammell, B., Welzl, M., Enghardt, T., Fairhurst, G.,
 Kuehlewind, M., Perkins, C., Tiesel, P. S., Wood, C. A.,
 and T. Pauly, "An Abstract Application Layer Interface to
 Transport Services", Work in Progress, Internet-Draft,
 draft-ietf-taps-interface-09, 27 July 2020,
 <https://tools.ietf.org/html/draft-ietf-taps-interface-
 09>.

 [WireGuard]
 Donenfeld, J., "WireGuard: Next Generation Kernel Network
 Tunnel", <https://www.wireguard.com/papers/wireguard.pdf>.

Acknowledgments

 The authors would like to thank Bob Bradley, Frederic Jacobs, Mirja
 KÃ¼hlewind, Yannick Sierra, Brian Trammell, and Magnus Westerlund for
 their input and feedback on this document.

Authors’ Addresses

 Theresa Enghardt
 TU Berlin
 Marchstr. 23
 10587 Berlin
 Germany

 Email: ietf@tenghardt.net

 Tommy Pauly
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Email: tpauly@apple.com

 Colin Perkins
 University of Glasgow
 School of Computing Science
 Glasgow
 G12 8QQ
 United Kingdom

 Email: csp@csperkins.org

 Kyle Rose
 Akamai Technologies, Inc.
 150 Broadway
 Cambridge, MA 02144
 United States of America

 Email: krose@krose.org

 Christopher A. Wood
 Cloudflare
 101 Townsend St
 San Francisco,
 United States of America

 Email: caw@heapingbits.net

