
ï»¿

Internet Engineering Task Force (IETF) W. Kumari
Request for Comments: 8886 Google
Category: Informational C. Doyle
ISSN: 2070-1721 Juniper Networks
 September 2020

 Secure Device Install

Abstract

 Deploying a new network device in a location where the operator has
 no staff of its own often requires that an employee physically travel
 to the location to perform the initial install and configuration,
 even in shared facilities with "remote-hands" (or similar) support.
 In many cases, this could be avoided if there were an easy way to
 transfer the initial configuration to a new device while still
 maintaining confidentiality of the configuration.

 This document extends existing vendor proprietary auto-install to
 provide limited confidentiality to initial configuration during
 bootstrapping of the device.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8886.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 2. Overview
 2.1. Example Scenario
 3. Vendor Role
 3.1. Device Key Generation
 3.2. Directory Server
 4. Operator Role
 4.1. Administrative
 4.2. Technical
 4.3. Example Initial Customer Boot
 5. Additional Considerations

 5.1. Key Storage
 5.2. Key Replacement
 5.3. Device Reinstall
 6. IANA Considerations
 7. Security Considerations
 8. Informative References
 Appendix A. Proof of Concept
 A.1. Step 1: Generating the Certificate
 A.1.1. Step 1.1: Generate the Private Key
 A.1.2. Step 1.2: Generate the Certificate Signing Request
 A.1.3. Step 1.3: Generate the (Self-Signed) Certificate Itself
 A.2. Step 2: Generating the Encrypted Configuration
 A.2.1. Step 2.1: Fetch the Certificate
 A.2.2. Step 2.2: Encrypt the Configuration File
 A.2.3. Step 2.3: Copy Configuration to the Configuration
 Server
 A.3. Step 3: Decrypting and Using the Configuration
 A.3.1. Step 3.1: Fetch Encrypted Configuration File from
 Configuration Server
 A.3.2. Step 3.2: Decrypt and Use the Configuration
 Acknowledgments
 Authors’ Addresses

1. Introduction

 In a growing, global network, significant amounts of time and money
 are spent deploying new devices and "forklift" upgrading existing
 devices. In many cases, these devices are in shared facilities (for
 example, Internet Exchange Points (IXP) or "carrier-neutral data
 centers"), which have staff on hand that can be contracted to perform
 tasks including physical installs, device reboots, loading initial
 configurations, etc. There are also a number of (often proprietary)
 protocols to perform initial device installs and configurations. For
 example, many network devices will attempt to use DHCP [RFC2131] or
 DHCPv6 [RFC8415] to get an IP address and configuration server and
 then fetch and install a configuration when they are first powered
 on.

 The configurations of network devices contain a significant amount of
 security-related and proprietary information (for example, RADIUS
 [RFC2865] or TACACS+ [TACACS] secrets). Exposing these to a third
 party to load onto a new device (or using an auto-install technique
 that fetches an unencrypted configuration file via TFTP [RFC1350]) or
 something similar is an unacceptable security risk for many
 operators, and so they send employees to remote locations to perform
 the initial configuration work; this costs time and money.

 There are some workarounds to this, such as asking the vendor to
 preconfigure the device before shipping it; asking the remote support
 to install a terminal server; providing a minimal, unsecured
 configuration and using that to bootstrap to a complete
 configuration; etc. However, these are often clumsy and have
 security issues. As an example, in the terminal server case, the
 console port connection could be easily snooped.

 An ideal solution in this space would protect both the
 confidentiality of device configuration in transit and the
 authenticity (and authorization status) of configuration to be used
 by the device. The mechanism described in this document only
 addresses the former and makes no effort to do the latter, with the
 device accepting any configuration file that comes its way and is
 encrypted to the device’s key (or not encrypted, as the case may be).
 Other solutions (such as Secure Zero Touch Provisioning (SZTP)
 [RFC8572], Bootstrapping Remote Secure Key Infrastructures (BRSKI)
 [BRSKI], and other voucher-based methods) are more fully featured but
 also require more complicated machinery. This document describes
 something much simpler, at the cost of only providing limited
 protection.

 This document layers security onto existing auto-install solutions
 (one example of which is [Cisco_AutoInstall]) to provide a method to

 initially configure new devices while maintaining (limited)
 confidentiality of the initial configuration. It is optimized for
 simplicity, for both the implementor and the operator. It is
 explicitly not intended to be a fully featured system for managing
 installed devices nor is it intended to solve all use cases; rather,
 it is a simple targeted solution to solve a common operational issue
 where the network device has been delivered, fiber has been laid (as
 appropriate), and there is no trusted member of the operator’s staff
 to perform the initial configuration. This solution is only intended
 to increase confidentiality of the information in the configuration
 file and does not protect the device itself from loading a malicious
 configuration.

 This document describes a concept and some example ways of
 implementing this concept. As devices have different capabilities
 and use different configuration paradigms, one method will not suit
 all, and so it is expected that vendors will differ in exactly how
 they implement this.

 This solution is specifically designed to be a simple method on top
 of exiting device functionality. If devices do not support this new
 method, they can continue to use the existing functionality. In
 addition, operators can choose to use this to protect their
 configuration information or can continue to use the existing
 functionality.

 The issue of securely installing devices is in no way a new issue nor
 is it limited to network devices; it occurs when deploying servers,
 PCs, Internet of Things (IoT) devices, and in many other situations.
 While the solution described in this document is obvious (encrypt the
 config, then decrypt it with a device key), this document only
 discusses the use for network devices, such as routers and switches.

2. Overview

 Most network devices already include some sort of initial
 bootstrapping logic (sometimes called ’autoboot’ or ’autoinstall’).
 This generally works by having a newly installed, unconfigured device
 obtain an IP address for itself and discover the address of a
 configuration server (often called ’next-server’, ’siaddr’, or ’tftp-
 server-name’) using DHCP or DHCPv6 (see [RFC2131] and [RFC8415]).
 The device then contacts this configuration server to download its
 initial configuration, which is often identified using the device’s
 serial number, Media Access Control (MAC) address, or similar. This
 document extends this (vendor-specific) paradigm by allowing the
 configuration file to be encrypted.

 This document uses the serial number of the device as a unique device
 identifier for simplicity; some vendors may not want to implement the
 system using the serial number as the identifier for business reasons
 (a competitor or similar could enumerate the serial numbers and
 determine how many devices have been manufactured). Implementors are
 free to choose some other way of generating identifiers (e.g., a
 Universally Unique Identifier (UUID) [RFC4122]), but this will likely
 make it somewhat harder for operators to use (the serial number is
 usually easy to find on a device).

2.1. Example Scenario

 Operator_A needs another peering router, and so they order another
 router from Vendor_B to be drop-shipped to the facility. Vendor_B
 begins assembling the new device and tells Operator_A what the new
 device’s serial number will be (SN:17894321). When Vendor_B first
 installs the firmware on the device and boots it, the device
 generates a public-private key pair, and Vendor_B publishes the
 public key on its key server (in a public key certificate, for ease
 of use).

 While the device is being shipped, Operator_A generates the initial
 device configuration and fetches the certificate from Vendor_B key
 servers by providing the serial number of the new device. Operator_A

 then encrypts the device configuration and puts this encrypted
 configuration on a (local) TFTP server.

 When the device arrives at the Point of Presence (POP), it gets
 installed in Operator_A’s rack and cabled as instructed. The new
 device powers up and discovers that it has not yet been configured.
 It enters its autoboot state and begins the DHCP process.
 Operator_A’s DHCP server provides it with an IP address and the
 address of the configuration server. The router uses TFTP to fetch
 its configuration file. Note that all of this is existing
 functionality. The device attempts to load the configuration file.
 As an added step, if the configuration file cannot be parsed, the
 device tries to use its private key to decrypt the file and, assuming
 it validates, proceeds to install the new, decrypted configuration.

 Only the "correct" device will have the required private key and be
 able to decrypt and use the configuration file (see Security
 Considerations (Section 7)). An attacker would be able to connect to
 the network and get an IP address. They would also be able to
 retrieve (encrypted) configuration files by guessing serial numbers
 (or perhaps the server would allow directory listing), but without
 the private keys, an attacker will not be able to decrypt the files.

3. Vendor Role

 This section describes the vendor’s roles and provides an overview of
 what the device needs to do.

3.1. Device Key Generation

 Each device requires a public-private key pair and for the public
 part to be published and retrievable by the operator. The
 cryptographic algorithm and key lengths to be used are out of the
 scope of this document. This section illustrates one method, but, as
 with much of this document, the exact mechanism may vary by vendor.
 Enrollment over Secure Transport [RFC7030] and possibly the Simple
 Certificate Enrollment Protocol [RFC8894] are methods that vendors
 may want to consider.

 During the manufacturing stage, when the device is initially powered
 on, it will generate a public-private key pair. It will send its
 unique device identifier and the public key to the vendor’s directory
 server [RFC5280] to be published. The vendor’s directory server
 should only accept certificates that are from the manufacturing
 facility and that match vendor-defined policies (for example,
 extended key usage and extensions). Note that some devices may be
 constrained and so may send the raw public key and unique device
 identifier to the certificate publication server, while more capable
 devices may generate and send self-signed certificates. This
 communication with the directory server should be integrity protected
 and should occur in a controlled environment.

 This reference architecture needs a serialization format for the key
 material. Due to the prevalence of tooling support for it on network
 devices, X.509 certificates are a convenient format to exchange
 public keys. However, most of the metadata that would be used for
 revocation and aging will not be used and should be ignored by both
 the client and server. In such cases, the signature on the
 certificate conveys no value, and the consumer of the certificate is
 expected to pin the end-entity key fingerprint (versus using a PKI
 and signature chain).

3.2. Directory Server

 The directory server contains a database of certificates. If newly
 manufactured devices upload certificates, the directory server can
 simply publish these; if the devices provide the raw public keys and
 unique device identifier, the directory server will need to wrap
 these in a certificate.

 The customers (e.g., Operator_A) query this server with the serial

 number (or other provided unique identifier) of a device and retrieve
 the associated certificate. It is expected that operators will
 receive the unique device identifier (serial number) of devices when
 they purchase them and will download and store the certificate. This
 means that there is not a hard requirement on the reachability of the
 directory server.

 +------------+
 +------+ | |
 |Device| | Directory |
 +------+ | Server |
 +------------+
 +----------------+ +--------------+
+---------+				
	Initial			
	boot?			
+----+----+				
+------v-----+				
	Generate			
	Self-signed			
	Certificate			
+------------+				
			+-------+	
+-------	---	-->	Receive	
		+---+---+		
		+---v---+		
			Publish	
		+-------+		
 +----------------+ +--------------+

 Figure 1: Initial Certificate Generation and Publication

4. Operator Role

4.1. Administrative

 When purchasing a new device, the accounting department will need to
 get the unique device identifier (e.g., serial number) of the new
 device and communicate it to the operations group.

4.2. Technical

 The operator will contact the vendor’s publication server and
 download the certificate (by providing the unique device identifier
 of the device). The operator fetches the certificate using a secure
 transport that authenticates the source of the certificate, such as
 HTTPS (confidentiality protection can provide some privacy and
 metadata-leakage benefit but is not key to the primary mechanism of
 this document). The operator will then encrypt the initial
 configuration (for example, using S/MIME [RFC8551]) using the key in
 the certificate and place it on their configuration server.

 See Appendix A for examples.

 +------------+
 +--------+ | |
 |Operator| | Directory |
 +--------+ | Server |
 +------------+
 +----------------+ +----------------+
+-----------+		+-----------+				
	Fetch					
	Device	<------>	Certificate			
	Certificate					
+-----+-----+		+-----------+				
+-----v------+						
	Encrypt					

	Device			
	Config			
+-----+------+				
+-----v------+				
	Publish			
	TFTP			
	Server			
+------------+				
 +----------------+ +----------------+

 Figure 2: Fetching the Certificate, Encrypting the Configuration, and
 Publishing the Encrypted Configuration

4.3. Example Initial Customer Boot

 When the device is first booted by the customer (and on subsequent
 boots), if the device does not have a valid configuration, it will
 use existing auto-install functionality. As an example, it performs
 DHCP Discovery until it gets a DHCP offer including DHCP option 66
 (Server-Name) or 150 (TFTP server address), contacts the server
 listed in these DHCP options, and downloads its configuration file.
 Note that this is existing functionality (for example, Cisco devices
 fetch the config file named by the Bootfile-Name DHCP option (67)).

 After retrieving the configuration file, the device needs to
 determine if it is encrypted or not. If it is not encrypted, the
 existing behavior is used. If the configuration is encrypted, the
 process continues as described in this document. If the device has
 been configured to only support encrypted configuration and
 determines that the configuration file is not encrypted, it should
 abort. The method used to determine if the configuration is
 encrypted or not is implementation dependent; there are a number of
 (obvious) options, including having a magic string in the file
 header, using a file name extension (e.g., config.enc), or using
 specific DHCP options.

 If the file is encrypted, the device will attempt to decrypt and
 parse the file. If able, it will install the configuration and start
 using it. If it cannot decrypt the file or if parsing the
 configuration fails, the device will either abort the auto-install
 process or repeat this process until it succeeds. When retrying,
 care should be taken to not overwhelm the server hosting the
 encrypted configuration files. It is suggested that the device retry
 every 5 minutes for the first hour and then every hour after that.
 As it is expected that devices may be installed well before the
 configuration file is ready, a maximum number of retries is not
 specified.

 Note that the device only needs to be able to download the
 configuration file; after the initial power on in the factory, it
 never needs to access the Internet, vendor, or directory server. The
 device (and only the device) has the private key and so has the
 ability to decrypt the configuration file.

 +--------+ +--------------+
 | Device | |Config server |
 +--------+ |(e.g., TFTP) |
 +--------------+
 +---------------------------+ +------------------+
+-----------+						
	DHCP					
+-----+-----+						
+-----v------+		+-----------+				
					Encrypted	
	Fetch config	<------------------>	config			
					file	

+-----+------+		+-----------+				
X						
/ \						
/ \ N +--------+						
	Enc?	---->	Install,			
\ /	Boot					
\ / +--------+						
V						
	Y					
+-----v------+						
	Decrypt with					
	private key					
+-----+------+						
v						
/ \						
/ \ Y +--------+						
	Sane?	---->	Install,			
\ /	Boot					
\ / +--------+						
V						
	N					
+----v---+						
	Retry or					
	abort					
+--------+						
 +---------------------------+ +------------------+

 Figure 3: Device Boot, Fetch, and Install Configuration File

5. Additional Considerations

5.1. Key Storage

 Ideally, the key pair would be stored in a Trusted Platform Module
 (TPM) on something that is identified as the "router" -- for example,
 the chassis/backplane. This is so that a key pair is bound to what
 humans think of as the "device" and not, for example, (redundant)
 routing engines. Devices that implement IEEE 802.1AR [IEEE802-1AR]
 could choose to use the Initial Device Identifier (IDevID) for this
 purpose.

5.2. Key Replacement

 It is anticipated that some operator may want to replace the (vendor-
 provided) keys after installing the device. There are two options
 when implementing this: a vendor could allow the operator’s key to
 completely replace the initial device-generated key (which means
 that, if the device is ever sold, the new owner couldn’t use this
 technique to install the device), or the device could prefer the
 operator’s installed key. This is an implementation decision left to
 the vendor.

5.3. Device Reinstall

 Increasingly, operations are moving towards an automated model of
 device management, whereby portions of the configuration (or the
 entire configuration) are programmatically generated. This means
 that operators may want to generate an entire configuration after the
 device has been initially installed and ask the device to load and
 use this new configuration. It is expected (but not defined in this
 document, as it is vendor specific) that vendors will allow the
 operator to copy a new, encrypted configuration (or part of a
 configuration) onto a device and then request that the device decrypt
 and install it (e.g., ’load replace <filename> encrypted’). The
 operator could also choose to reset the device to factory defaults
 and allow the device to act as though it were the initial boot (see

 Section 4.3).

6. IANA Considerations

 This document has no IANA actions.

7. Security Considerations

 This reference architecture is intended to incrementally improve upon
 commonly accepted "auto-install" practices used today that may
 transmit configurations unencrypted (e.g., unencrypted configuration
 files that can be downloaded connecting to unprotected ports in data
 centers, mailing initial configuration files on flash drives, or
 emailing configuration files and asking a third party to copy and
 paste them over a serial terminal) or allow unrestricted access to
 these configurations.

 This document describes an object-level security design to provide
 confidentiality assurances for the configuration stored at rest on
 the configuration server and for configuration while it is in transit
 between the configuration server and the unprovisioned device, even
 if the underlying transport does not provide this security service.

 The architecture provides no assurances about the source of the
 encrypted configuration or protect against theft and reuse of
 devices.

 An attacker (e.g., a malicious data center employee, person in the
 supply chain, etc.) who has physical access to the device before it
 is connected to the network or who manages to exploit it once
 installed may be able to extract the device private key (especially
 if it is not stored in a TPM), pretend to be the device when
 connecting to the network, and download and extract the (encrypted)
 configuration file.

 An attacker with access to the configuration server (or the ability
 to route traffic to configuration server under their control) and the
 device’s public key could return a configuration of the attacker’s
 choosing to the unprovisioned device.

 This mechanism does not protect against a malicious vendor. While
 the key pair should be generated on the device and the private key
 should be securely stored, the mechanism cannot detect or protect
 against a vendor who claims to do this but instead generates the key
 pair off device and keeps a copy of the private key. It is largely
 understood in the operator community that a malicious vendor or
 attacker with physical access to the device is largely a "Game Over"
 situation.

 Even when using a secure bootstrap mechanism, security-conscious
 operators may wish to bootstrap devices with a minimal or less-
 sensitive configuration and then replace this with a more complete
 one after install.

8. Informative References

 [BRSKI] Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,
 and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", Work in Progress, Internet-
 Draft, draft-ietf-anima-bootstrapping-keyinfra-44, 21
 September 2020, <https://tools.ietf.org/html/draft-ietf-
 anima-bootstrapping-keyinfra-44>.

 [Cisco_AutoInstall]
 Cisco Systems, Inc., "Using AutoInstall to Remotely
 Configure Cisco Networking Devices", Configuration
 Fundamentals Configuration Guide, Cisco IOS Release 15M&T,
 January 2018, <https://www.cisco.com/c/en/us/td/docs/ios-
 xml/ios/fundamentals/configuration/15mt/fundamentals-15-
 mt-book/cf-autoinstall.html>.

 [IEEE802-1AR]
 IEEE, "IEEE Standard for Local and Metropolitan Area
 Networks - Secure Device Identity", IEEE Std 802-1AR, June
 2018,
 <https://standards.ieee.org/standard/802_1AR-2018.html>.

 [RFC1350] Sollins, K., "The TFTP Protocol (Revision 2)", STD 33,
 RFC 1350, DOI 10.17487/RFC1350, July 1992,
 <https://www.rfc-editor.org/info/rfc1350>.

 [RFC2131] Droms, R., "Dynamic Host Configuration Protocol",
 RFC 2131, DOI 10.17487/RFC2131, March 1997,
 <https://www.rfc-editor.org/info/rfc2131>.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <https://www.rfc-editor.org/info/rfc2865>.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/info/rfc4122>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC7030] Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
 "Enrollment over Secure Transport", RFC 7030,
 DOI 10.17487/RFC7030, October 2013,
 <https://www.rfc-editor.org/info/rfc7030>.

 [RFC8415] Mrugalski, T., Siodelski, M., Volz, B., Yourtchenko, A.,
 Richardson, M., Jiang, S., Lemon, T., and T. Winters,
 "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)",
 RFC 8415, DOI 10.17487/RFC8415, November 2018,
 <https://www.rfc-editor.org/info/rfc8415>.

 [RFC8551] Schaad, J., Ramsdell, B., and S. Turner, "Secure/
 Multipurpose Internet Mail Extensions (S/MIME) Version 4.0
 Message Specification", RFC 8551, DOI 10.17487/RFC8551,
 April 2019, <https://www.rfc-editor.org/info/rfc8551>.

 [RFC8572] Watsen, K., Farrer, I., and M. Abrahamsson, "Secure Zero
 Touch Provisioning (SZTP)", RFC 8572,
 DOI 10.17487/RFC8572, April 2019,
 <https://www.rfc-editor.org/info/rfc8572>.

 [RFC8894] Gutmann, P., "Simple Certificate Enrolment Protocol",
 RFC 8894, DOI 10.17487/RFC8894, September 2020,
 <https://www.rfc-editor.org/info/rfc8894>.

 [TACACS] Dahm, T., Ota, A., Medway Gash, D., Carrel, D., and L.
 Grant, "The TACACS+ Protocol", Work in Progress, Internet-
 Draft, draft-ietf-opsawg-tacacs-18, 20 March 2020,
 <https://tools.ietf.org/html/draft-ietf-opsawg-tacacs-18>.

Appendix A. Proof of Concept

 This section contains a proof of concept of the system. It is only
 intended for illustration and is not intended to be used in
 production.

 It uses OpenSSL from the command line. In production, something more
 automated would be used. In this example, the unique device
 identifier is the serial number of the router, SN19842256.

A.1. Step 1: Generating the Certificate

 This step is performed by the router. It generates a key, then a
 Certificate Signing Request (CSR), and then a self-signed
 certificate.

A.1.1. Step 1.1: Generate the Private Key

 $ openssl ecparam -out privatekey.key -name prime256v1 -genkey
 $

A.1.2. Step 1.2: Generate the Certificate Signing Request

 $ openssl req -new -key key.pem -out SN19842256.csr
 Common Name (e.g., server FQDN or YOUR name) []:SN19842256

A.1.3. Step 1.3: Generate the (Self-Signed) Certificate Itself

 $ openssl req -x509 -days 36500 -key key.pem -in SN19842256.csr
 -out SN19842256.crt

 The router then sends the key to the vendor’s key server for
 publication (not shown).

A.2. Step 2: Generating the Encrypted Configuration

 The operator now wants to deploy the new router.

 They generate the initial configuration (using whatever magic tool
 generates router configs!), fetch the router’s certificate, and
 encrypt the configuration file to that key. This is done by the
 operator.

A.2.1. Step 2.1: Fetch the Certificate

 $ wget http://keyserv.example.net/certificates/SN19842256.crt

A.2.2. Step 2.2: Encrypt the Configuration File

 S/MIME is used here because it is simple to demonstrate. This is
 almost definitely not the best way to do this.

 $ openssl smime -encrypt -aes-256-cbc -in SN19842256.cfg\
 -out SN19842256.enc -outform PEM SN19842256.crt
 $ more SN19842256.enc
 -----BEGIN PKCS7-----
 MIICigYJKoZIhvcNAQcDoIICezCCAncCAQAxggE+MIIBOgIBADAiMBUxEzARBgNV
 BAMMClNOMTk4NDIyNTYCCQDJVuBlaTOb1DANBgkqhkiG9w0BAQEFAASCAQBABvM3
 ...
 LZoq08jqlWhZZWhTKs4XPGHUdmnZRYIP8KXyEtHt
 -----END PKCS7-----

A.2.3. Step 2.3: Copy Configuration to the Configuration Server

 $ scp SN19842256.enc config.example.com:/tftpboot

A.3. Step 3: Decrypting and Using the Configuration

 When the router connects to the operator’s network, it will detect
 that it does not have a valid configuration file and will start the
 "autoboot" process. This is a well-documented process, but the high-
 level overview is that it will use DHCP to obtain an IP address and
 configuration server. It will then use TFTP to download a
 configuration file, based upon its serial number (this document
 modifies the solution to fetch an encrypted configuration file
 (ending in .enc)). It will then decrypt the configuration file and
 install it.

A.3.1. Step 3.1: Fetch Encrypted Configuration File from Configuration
 Server

 $ tftp 2001:0db8::23 -c get SN19842256.enc

A.3.2. Step 3.2: Decrypt and Use the Configuration

 $ openssl smime -decrypt -in SN19842256.enc -inform pkcs7\
 -out config.cfg -inkey key.pem

 If an attacker does not have the correct key, they will not be able
 to decrypt the configuration file:

 $ openssl smime -decrypt -in SN19842256.enc -inform pkcs7\
 -out config.cfg -inkey wrongkey.pem
 Error decrypting PKCS#7 structure
 140352450692760:error:06065064:digital envelope
 routines:EVP_DecryptFinal_ex:bad decrypt:evp_enc.c:592:
 $ echo $?
 4

Acknowledgments

 The authors wish to thank everyone who contributed, including Benoit
 Claise, Francis Dupont, Mirja Kuehlewind, Sam Ribeiro, Michael
 Richardson, Sean Turner, and Kent Watsen. Joe Clarke also provided
 significant comments and review, and Tom Petch provided significant
 editorial contributions to better describe the use cases and clarify
 the scope.

 Roman Danyliw and Benjamin Kaduk also provided helpful text,
 especially around the certificate usage and security considerations.

Authors’ Addresses

 Warren Kumari
 Google
 1600 Amphitheatre Parkway
 Mountain View, CA 94043
 United States of America

 Email: warren@kumari.net

 Colin Doyle
 Juniper Networks
 1133 Innovation Way
 Sunnyvale, CA 94089
 United States of America

 Email: cdoyle@juniper.net

