
ï»¿

Internet Engineering Task Force (IETF) D. Noveck, Ed.
Request for Comments: 8881 NetApp
Obsoletes: 5661 C. Lever
Category: Standards Track ORACLE
ISSN: 2070-1721 August 2020

 Network File System (NFS) Version 4 Minor Version 1 Protocol

Abstract

 This document describes the Network File System (NFS) version 4 minor
 version 1, including features retained from the base protocol (NFS
 version 4 minor version 0, which is specified in RFC 7530) and
 protocol extensions made subsequently. The later minor version has
 no dependencies on NFS version 4 minor version 0, and is considered a
 separate protocol.

 This document obsoletes RFC 5661. It substantially revises the
 treatment of features relating to multi-server namespace, superseding
 the description of those features appearing in RFC 5661.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8881.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction
 1.1. Introduction to This Update

 1.2. The NFS Version 4 Minor Version 1 Protocol
 1.3. Requirements Language
 1.4. Scope of This Document
 1.5. NFSv4 Goals
 1.6. NFSv4.1 Goals
 1.7. General Definitions
 1.8. Overview of NFSv4.1 Features
 1.9. Differences from NFSv4.0
 2. Core Infrastructure
 2.1. Introduction
 2.2. RPC and XDR
 2.3. COMPOUND and CB_COMPOUND
 2.4. Client Identifiers and Client Owners
 2.5. Server Owners
 2.6. Security Service Negotiation
 2.7. Minor Versioning
 2.8. Non-RPC-Based Security Services
 2.9. Transport Layers
 2.10. Session
 3. Protocol Constants and Data Types
 3.1. Basic Constants
 3.2. Basic Data Types
 3.3. Structured Data Types
 4. Filehandles
 4.1. Obtaining the First Filehandle
 4.2. Filehandle Types
 4.3. One Method of Constructing a Volatile Filehandle
 4.4. Client Recovery from Filehandle Expiration
 5. File Attributes
 5.1. REQUIRED Attributes
 5.2. RECOMMENDED Attributes
 5.3. Named Attributes
 5.4. Classification of Attributes
 5.5. Set-Only and Get-Only Attributes
 5.6. REQUIRED Attributes - List and Definition References
 5.7. RECOMMENDED Attributes - List and Definition References
 5.8. Attribute Definitions
 5.9. Interpreting owner and owner_group
 5.10. Character Case Attributes
 5.11. Directory Notification Attributes
 5.12. pNFS Attribute Definitions
 5.13. Retention Attributes
 6. Access Control Attributes
 6.1. Goals
 6.2. File Attributes Discussion
 6.3. Common Methods
 6.4. Requirements
 7. Single-Server Namespace
 7.1. Server Exports
 7.2. Browsing Exports
 7.3. Server Pseudo File System
 7.4. Multiple Roots
 7.5. Filehandle Volatility
 7.6. Exported Root
 7.7. Mount Point Crossing
 7.8. Security Policy and Namespace Presentation
 8. State Management
 8.1. Client and Session ID
 8.2. Stateid Definition
 8.3. Lease Renewal
 8.4. Crash Recovery
 8.5. Server Revocation of Locks
 8.6. Short and Long Leases
 8.7. Clocks, Propagation Delay, and Calculating Lease Expiration
 8.8. Obsolete Locking Infrastructure from NFSv4.0
 9. File Locking and Share Reservations
 9.1. Opens and Byte-Range Locks
 9.2. Lock Ranges
 9.3. Upgrading and Downgrading Locks
 9.4. Stateid Seqid Values and Byte-Range Locks
 9.5. Issues with Multiple Open-Owners

 9.6. Blocking Locks
 9.7. Share Reservations
 9.8. OPEN/CLOSE Operations
 9.9. Open Upgrade and Downgrade
 9.10. Parallel OPENs
 9.11. Reclaim of Open and Byte-Range Locks
 10. Client-Side Caching
 10.1. Performance Challenges for Client-Side Caching
 10.2. Delegation and Callbacks
 10.3. Data Caching
 10.4. Open Delegation
 10.5. Data Caching and Revocation
 10.6. Attribute Caching
 10.7. Data and Metadata Caching and Memory Mapped Files
 10.8. Name and Directory Caching without Directory Delegations
 10.9. Directory Delegations
 11. Multi-Server Namespace
 11.1. Terminology
 11.2. File System Location Attributes
 11.3. File System Presence or Absence
 11.4. Getting Attributes for an Absent File System
 11.5. Uses of File System Location Information
 11.6. Trunking without File System Location Information
 11.7. Users and Groups in a Multi-Server Namespace
 11.8. Additional Client-Side Considerations
 11.9. Overview of File Access Transitions
 11.10. Effecting Network Endpoint Transitions
 11.11. Effecting File System Transitions
 11.12. Transferring State upon Migration
 11.13. Client Responsibilities When Access Is Transitioned
 11.14. Server Responsibilities Upon Migration
 11.15. Effecting File System Referrals
 11.16. The Attribute fs_locations
 11.17. The Attribute fs_locations_info
 11.18. The Attribute fs_status
 12. Parallel NFS (pNFS)
 12.1. Introduction
 12.2. pNFS Definitions
 12.3. pNFS Operations
 12.4. pNFS Attributes
 12.5. Layout Semantics
 12.6. pNFS Mechanics
 12.7. Recovery
 12.8. Metadata and Storage Device Roles
 12.9. Security Considerations for pNFS
 13. NFSv4.1 as a Storage Protocol in pNFS: the File Layout Type
 13.1. Client ID and Session Considerations
 13.2. File Layout Definitions
 13.3. File Layout Data Types
 13.4. Interpreting the File Layout
 13.5. Data Server Multipathing
 13.6. Operations Sent to NFSv4.1 Data Servers
 13.7. COMMIT through Metadata Server
 13.8. The Layout Iomode
 13.9. Metadata and Data Server State Coordination
 13.10. Data Server Component File Size
 13.11. Layout Revocation and Fencing
 13.12. Security Considerations for the File Layout Type
 14. Internationalization
 14.1. Stringprep Profile for the utf8str_cs Type
 14.2. Stringprep Profile for the utf8str_cis Type
 14.3. Stringprep Profile for the utf8str_mixed Type
 14.4. UTF-8 Capabilities
 14.5. UTF-8 Related Errors
 15. Error Values
 15.1. Error Definitions
 15.2. Operations and Their Valid Errors
 15.3. Callback Operations and Their Valid Errors
 15.4. Errors and the Operations That Use Them
 16. NFSv4.1 Procedures
 16.1. Procedure 0: NULL - No Operation

 16.2. Procedure 1: COMPOUND - Compound Operations
 17. Operations: REQUIRED, RECOMMENDED, or OPTIONAL
 18. NFSv4.1 Operations
 18.1. Operation 3: ACCESS - Check Access Rights
 18.2. Operation 4: CLOSE - Close File
 18.3. Operation 5: COMMIT - Commit Cached Data
 18.4. Operation 6: CREATE - Create a Non-Regular File Object
 18.5. Operation 7: DELEGPURGE - Purge Delegations Awaiting
 Recovery
 18.6. Operation 8: DELEGRETURN - Return Delegation
 18.7. Operation 9: GETATTR - Get Attributes
 18.8. Operation 10: GETFH - Get Current Filehandle
 18.9. Operation 11: LINK - Create Link to a File
 18.10. Operation 12: LOCK - Create Lock
 18.11. Operation 13: LOCKT - Test for Lock
 18.12. Operation 14: LOCKU - Unlock File
 18.13. Operation 15: LOOKUP - Lookup Filename
 18.14. Operation 16: LOOKUPP - Lookup Parent Directory
 18.15. Operation 17: NVERIFY - Verify Difference in Attributes
 18.16. Operation 18: OPEN - Open a Regular File
 18.17. Operation 19: OPENATTR - Open Named Attribute Directory
 18.18. Operation 21: OPEN_DOWNGRADE - Reduce Open File Access
 18.19. Operation 22: PUTFH - Set Current Filehandle
 18.20. Operation 23: PUTPUBFH - Set Public Filehandle
 18.21. Operation 24: PUTROOTFH - Set Root Filehandle
 18.22. Operation 25: READ - Read from File
 18.23. Operation 26: READDIR - Read Directory
 18.24. Operation 27: READLINK - Read Symbolic Link
 18.25. Operation 28: REMOVE - Remove File System Object
 18.26. Operation 29: RENAME - Rename Directory Entry
 18.27. Operation 31: RESTOREFH - Restore Saved Filehandle
 18.28. Operation 32: SAVEFH - Save Current Filehandle
 18.29. Operation 33: SECINFO - Obtain Available Security
 18.30. Operation 34: SETATTR - Set Attributes
 18.31. Operation 37: VERIFY - Verify Same Attributes
 18.32. Operation 38: WRITE - Write to File
 18.33. Operation 40: BACKCHANNEL_CTL - Backchannel Control
 18.34. Operation 41: BIND_CONN_TO_SESSION - Associate Connection
 with Session
 18.35. Operation 42: EXCHANGE_ID - Instantiate Client ID
 18.36. Operation 43: CREATE_SESSION - Create New Session and
 Confirm Client ID
 18.37. Operation 44: DESTROY_SESSION - Destroy a Session
 18.38. Operation 45: FREE_STATEID - Free Stateid with No Locks
 18.39. Operation 46: GET_DIR_DELEGATION - Get a Directory
 Delegation
 18.40. Operation 47: GETDEVICEINFO - Get Device Information
 18.41. Operation 48: GETDEVICELIST - Get All Device Mappings for
 a File System
 18.42. Operation 49: LAYOUTCOMMIT - Commit Writes Made Using a
 Layout
 18.43. Operation 50: LAYOUTGET - Get Layout Information
 18.44. Operation 51: LAYOUTRETURN - Release Layout Information
 18.45. Operation 52: SECINFO_NO_NAME - Get Security on Unnamed
 Object
 18.46. Operation 53: SEQUENCE - Supply Per-Procedure Sequencing
 and Control
 18.47. Operation 54: SET_SSV - Update SSV for a Client ID
 18.48. Operation 55: TEST_STATEID - Test Stateids for Validity
 18.49. Operation 56: WANT_DELEGATION - Request Delegation
 18.50. Operation 57: DESTROY_CLIENTID - Destroy a Client ID
 18.51. Operation 58: RECLAIM_COMPLETE - Indicates Reclaims
 Finished
 18.52. Operation 10044: ILLEGAL - Illegal Operation
 19. NFSv4.1 Callback Procedures
 19.1. Procedure 0: CB_NULL - No Operation
 19.2. Procedure 1: CB_COMPOUND - Compound Operations
 20. NFSv4.1 Callback Operations
 20.1. Operation 3: CB_GETATTR - Get Attributes
 20.2. Operation 4: CB_RECALL - Recall a Delegation
 20.3. Operation 5: CB_LAYOUTRECALL - Recall Layout from Client

 20.4. Operation 6: CB_NOTIFY - Notify Client of Directory
 Changes
 20.5. Operation 7: CB_PUSH_DELEG - Offer Previously Requested
 Delegation to Client
 20.6. Operation 8: CB_RECALL_ANY - Keep Any N Recallable Objects
 20.7. Operation 9: CB_RECALLABLE_OBJ_AVAIL - Signal Resources
 for Recallable Objects
 20.8. Operation 10: CB_RECALL_SLOT - Change Flow Control Limits
 20.9. Operation 11: CB_SEQUENCE - Supply Backchannel Sequencing
 and Control
 20.10. Operation 12: CB_WANTS_CANCELLED - Cancel Pending
 Delegation Wants
 20.11. Operation 13: CB_NOTIFY_LOCK - Notify Client of Possible
 Lock Availability
 20.12. Operation 14: CB_NOTIFY_DEVICEID - Notify Client of Device
 ID Changes
 20.13. Operation 10044: CB_ILLEGAL - Illegal Callback Operation
 21. Security Considerations
 22. IANA Considerations
 22.1. IANA Actions
 22.2. Named Attribute Definitions
 22.3. Device ID Notifications
 22.4. Object Recall Types
 22.5. Layout Types
 22.6. Path Variable Definitions
 23. References
 23.1. Normative References
 23.2. Informative References
 Appendix A. The Need for This Update
 Appendix B. Changes in This Update
 B.1. Revisions Made to Section 11 of RFC 5661
 B.2. Revisions Made to Operations in RFC 5661
 B.3. Revisions Made to Error Definitions in RFC 5661
 B.4. Other Revisions Made to RFC 5661
 Appendix C. Security Issues That Need to Be Addressed
 Acknowledgments
 Authors’ Addresses

1. Introduction

1.1. Introduction to This Update

 Two important features previously defined in minor version 0 but
 never fully addressed in minor version 1 are trunking, which is the
 simultaneous use of multiple connections between a client and server,
 potentially to different network addresses, and Transparent State
 Migration, which allows a file system to be transferred between
 servers in a way that provides to the client the ability to maintain
 its existing locking state across the transfer.

 The revised description of the NFS version 4 minor version 1
 (NFSv4.1) protocol presented in this update is necessary to enable
 full use of these features together with other multi-server namespace
 features. This document is in the form of an updated description of
 the NFSv4.1 protocol previously defined in RFC 5661 [66]. RFC 5661
 is obsoleted by this document. However, the update has a limited
 scope and is focused on enabling full use of trunking and Transparent
 State Migration. The need for these changes is discussed in
 Appendix A. Appendix B describes the specific changes made to arrive
 at the current text.

 This limited-scope update replaces the current NFSv4.1 RFC with the
 intention of providing an authoritative and complete specification,
 the motivation for which is discussed in [36], addressing the issues
 within the scope of the update. However, it will not address issues
 that are known but outside of this limited scope as could be expected
 by a full update of the protocol. Below are some areas that are
 known to need addressing in a future update of the protocol:

 * Work needs to be done with regard to RFC 8178 [67], which
 establishes NFSv4-wide versioning rules. As RFC 5661 is currently

 inconsistent with that document, changes are needed in order to
 arrive at a situation in which there would be no need for RFC 8178
 to update the NFSv4.1 specification.

 * Work needs to be done with regard to RFC 8434 [70], which
 establishes the requirements for parallel NFS (pNFS) layout types,
 which are not clearly defined in RFC 5661. When that work is done
 and the resulting documents approved, the new NFSv4.1
 specification document will provide a clear set of requirements
 for layout types and a description of the file layout type that
 conforms to those requirements. Other layout types will have
 their own specification documents that conform to those
 requirements as well.

 * Work needs to be done to address many errata reports relevant to
 RFC 5661, other than errata report 2006 [64], which is addressed
 in this document. Addressing that report was not deferrable
 because of the interaction of the changes suggested there and the
 newly described handling of state and session migration.

 The errata reports that have been deferred and that will need to
 be addressed in a later document include reports currently
 assigned a range of statuses in the errata reporting system,
 including reports marked Accepted and those marked Hold For
 Document Update because the change was too minor to address
 immediately.

 In addition, there is a set of other reports, including at least
 one in state Rejected, that will need to be addressed in a later
 document. This will involve making changes to consensus decisions
 reflected in RFC 5661, in situations in which the working group
 has decided that the treatment in RFC 5661 is incorrect and needs
 to be revised to reflect the working group’s new consensus and to
 ensure compatibility with existing implementations that do not
 follow the handling described in RFC 5661.

 Note that it is expected that all such errata reports will remain
 relevant to implementors and the authors of an eventual
 rfc5661bis, despite the fact that this document obsoletes RFC 5661
 [66].

 * There is a need for a new approach to the description of
 internationalization since the current internationalization
 section (Section 14) has never been implemented and does not meet
 the needs of the NFSv4 protocol. Possible solutions are to create
 a new internationalization section modeled on that in [68] or to
 create a new document describing internationalization for all
 NFSv4 minor versions and reference that document in the RFCs
 defining both NFSv4.0 and NFSv4.1.

 * There is a need for a revised treatment of security in NFSv4.1.
 The issues with the existing treatment are discussed in
 Appendix C.

 Until the above work is done, there will not be a consistent set of
 documents that provides a description of the NFSv4.1 protocol, and
 any full description would involve documents updating other documents
 within the specification. The updates applied by RFC 8434 [70] and
 RFC 8178 [67] to RFC 5661 also apply to this specification, and will
 apply to any subsequent v4.1 specification until that work is done.

1.2. The NFS Version 4 Minor Version 1 Protocol

 The NFS version 4 minor version 1 (NFSv4.1) protocol is the second
 minor version of the NFS version 4 (NFSv4) protocol. The first minor
 version, NFSv4.0, is now described in RFC 7530 [68]. It generally
 follows the guidelines for minor versioning that are listed in
 Section 10 of RFC 3530 [37]. However, it diverges from guidelines 11
 ("a client and server that support minor version X must support minor
 versions 0 through X-1") and 12 ("no new features may be introduced
 as mandatory in a minor version"). These divergences are due to the

 introduction of the sessions model for managing non-idempotent
 operations and the RECLAIM_COMPLETE operation. These two new
 features are infrastructural in nature and simplify implementation of
 existing and other new features. Making them anything but REQUIRED
 would add undue complexity to protocol definition and implementation.
 NFSv4.1 accordingly updates the minor versioning guidelines
 (Section 2.7).

 As a minor version, NFSv4.1 is consistent with the overall goals for
 NFSv4, but extends the protocol so as to better meet those goals,
 based on experiences with NFSv4.0. In addition, NFSv4.1 has adopted
 some additional goals, which motivate some of the major extensions in
 NFSv4.1.

1.3. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

1.4. Scope of This Document

 This document describes the NFSv4.1 protocol. With respect to
 NFSv4.0, this document does not:

 * describe the NFSv4.0 protocol, except where needed to contrast
 with NFSv4.1.

 * modify the specification of the NFSv4.0 protocol.

 * clarify the NFSv4.0 protocol.

1.5. NFSv4 Goals

 The NFSv4 protocol is a further revision of the NFS protocol defined
 already by NFSv3 [38]. It retains the essential characteristics of
 previous versions: easy recovery; independence of transport
 protocols, operating systems, and file systems; simplicity; and good
 performance. NFSv4 has the following goals:

 * Improved access and good performance on the Internet

 The protocol is designed to transit firewalls easily, perform well
 where latency is high and bandwidth is low, and scale to very
 large numbers of clients per server.

 * Strong security with negotiation built into the protocol

 The protocol builds on the work of the ONCRPC working group in
 supporting the RPCSEC_GSS protocol. Additionally, the NFSv4.1
 protocol provides a mechanism to allow clients and servers the
 ability to negotiate security and require clients and servers to
 support a minimal set of security schemes.

 * Good cross-platform interoperability

 The protocol features a file system model that provides a useful,
 common set of features that does not unduly favor one file system
 or operating system over another.

 * Designed for protocol extensions

 The protocol is designed to accept standard extensions within a
 framework that enables and encourages backward compatibility.

1.6. NFSv4.1 Goals

 NFSv4.1 has the following goals, within the framework established by
 the overall NFSv4 goals.

 * To correct significant structural weaknesses and oversights

 discovered in the base protocol.

 * To add clarity and specificity to areas left unaddressed or not
 addressed in sufficient detail in the base protocol. However, as
 stated in Section 1.4, it is not a goal to clarify the NFSv4.0
 protocol in the NFSv4.1 specification.

 * To add specific features based on experience with the existing
 protocol and recent industry developments.

 * To provide protocol support to take advantage of clustered server
 deployments including the ability to provide scalable parallel
 access to files distributed among multiple servers.

1.7. General Definitions

 The following definitions provide an appropriate context for the
 reader.

 Byte: In this document, a byte is an octet, i.e., a datum exactly 8
 bits in length.

 Client: The client is the entity that accesses the NFS server’s
 resources. The client may be an application that contains the
 logic to access the NFS server directly. The client may also be
 the traditional operating system client that provides remote file
 system services for a set of applications.

 A client is uniquely identified by a client owner.

 With reference to byte-range locking, the client is also the
 entity that maintains a set of locks on behalf of one or more
 applications. This client is responsible for crash or failure
 recovery for those locks it manages.

 Note that multiple clients may share the same transport and
 connection and multiple clients may exist on the same network
 node.

 Client ID: The client ID is a 64-bit quantity used as a unique,
 short-hand reference to a client-supplied verifier and client
 owner. The server is responsible for supplying the client ID.

 Client Owner: The client owner is a unique string, opaque to the
 server, that identifies a client. Multiple network connections
 and source network addresses originating from those connections
 may share a client owner. The server is expected to treat
 requests from connections with the same client owner as coming
 from the same client.

 File System: The file system is the collection of objects on a
 server (as identified by the major identifier of a server owner,
 which is defined later in this section) that share the same fsid
 attribute (see Section 5.8.1.9).

 Lease: A lease is an interval of time defined by the server for
 which the client is irrevocably granted locks. At the end of a
 lease period, locks may be revoked if the lease has not been
 extended. A lock must be revoked if a conflicting lock has been
 granted after the lease interval.

 A server grants a client a single lease for all state.

 Lock: The term "lock" is used to refer to byte-range (in UNIX
 environments, also known as record) locks, share reservations,
 delegations, or layouts unless specifically stated otherwise.

 Secret State Verifier (SSV): The SSV is a unique secret key shared
 between a client and server. The SSV serves as the secret key for
 an internal (that is, internal to NFSv4.1) Generic Security
 Services (GSS) mechanism (the SSV GSS mechanism; see

 Section 2.10.9). The SSV GSS mechanism uses the SSV to compute
 message integrity code (MIC) and Wrap tokens. See
 Section 2.10.8.3 for more details on how NFSv4.1 uses the SSV and
 the SSV GSS mechanism.

 Server: The Server is the entity responsible for coordinating client
 access to a set of file systems and is identified by a server
 owner. A server can span multiple network addresses.

 Server Owner: The server owner identifies the server to the client.
 The server owner consists of a major identifier and a minor
 identifier. When the client has two connections each to a peer
 with the same major identifier, the client assumes that both peers
 are the same server (the server namespace is the same via each
 connection) and that lock state is shareable across both
 connections. When each peer has both the same major and minor
 identifiers, the client assumes that each connection might be
 associable with the same session.

 Stable Storage: Stable storage is storage from which data stored by
 an NFSv4.1 server can be recovered without data loss from multiple
 power failures (including cascading power failures, that is,
 several power failures in quick succession), operating system
 failures, and/or hardware failure of components other than the
 storage medium itself (such as disk, nonvolatile RAM, flash
 memory, etc.).

 Some examples of stable storage that are allowable for an NFS
 server include:

 1. Media commit of data; that is, the modified data has been
 successfully written to the disk media, for example, the disk
 platter.

 2. An immediate reply disk drive with battery-backed, on-drive
 intermediate storage or uninterruptible power system (UPS).

 3. Server commit of data with battery-backed intermediate storage
 and recovery software.

 4. Cache commit with uninterruptible power system (UPS) and
 recovery software.

 Stateid: A stateid is a 128-bit quantity returned by a server that
 uniquely defines the open and locking states provided by the
 server for a specific open-owner or lock-owner/open-owner pair for
 a specific file and type of lock.

 Verifier: A verifier is a 64-bit quantity generated by the client
 that the server can use to determine if the client has restarted
 and lost all previous lock state.

1.8. Overview of NFSv4.1 Features

 The major features of the NFSv4.1 protocol will be reviewed in brief.
 This will be done to provide an appropriate context for both the
 reader who is familiar with the previous versions of the NFS protocol
 and the reader who is new to the NFS protocols. For the reader new
 to the NFS protocols, there is still a set of fundamental knowledge
 that is expected. The reader should be familiar with the External
 Data Representation (XDR) and Remote Procedure Call (RPC) protocols
 as described in [2] and [3]. A basic knowledge of file systems and
 distributed file systems is expected as well.

 In general, this specification of NFSv4.1 will not distinguish those
 features added in minor version 1 from those present in the base
 protocol but will treat NFSv4.1 as a unified whole. See Section 1.9
 for a summary of the differences between NFSv4.0 and NFSv4.1.

1.8.1. RPC and Security

 As with previous versions of NFS, the External Data Representation
 (XDR) and Remote Procedure Call (RPC) mechanisms used for the NFSv4.1
 protocol are those defined in [2] and [3]. To meet end-to-end
 security requirements, the RPCSEC_GSS framework [4] is used to extend
 the basic RPC security. With the use of RPCSEC_GSS, various
 mechanisms can be provided to offer authentication, integrity, and
 privacy to the NFSv4 protocol. Kerberos V5 is used as described in
 [5] to provide one security framework. With the use of RPCSEC_GSS,
 other mechanisms may also be specified and used for NFSv4.1 security.

 To enable in-band security negotiation, the NFSv4.1 protocol has
 operations that provide the client a method of querying the server
 about its policies regarding which security mechanisms must be used
 for access to the server’s file system resources. With this, the
 client can securely match the security mechanism that meets the
 policies specified at both the client and server.

 NFSv4.1 introduces parallel access (see Section 1.8.2.2), which is
 called pNFS. The security framework described in this section is
 significantly modified by the introduction of pNFS (see
 Section 12.9), because data access is sometimes not over RPC. The
 level of significance varies with the storage protocol (see
 Section 12.2.5) and can be as low as zero impact (see Section 13.12).

1.8.2. Protocol Structure

1.8.2.1. Core Protocol

 Unlike NFSv3, which used a series of ancillary protocols (e.g., NLM,
 NSM (Network Status Monitor), MOUNT), within all minor versions of
 NFSv4 a single RPC protocol is used to make requests to the server.
 Facilities that had been separate protocols, such as locking, are now
 integrated within a single unified protocol.

1.8.2.2. Parallel Access

 Minor version 1 supports high-performance data access to a clustered
 server implementation by enabling a separation of metadata access and
 data access, with the latter done to multiple servers in parallel.

 Such parallel data access is controlled by recallable objects known
 as "layouts", which are integrated into the protocol locking model.
 Clients direct requests for data access to a set of data servers
 specified by the layout via a data storage protocol which may be
 NFSv4.1 or may be another protocol.

 Because the protocols used for parallel data access are not
 necessarily RPC-based, the RPC-based security model (Section 1.8.1)
 is obviously impacted (see Section 12.9). The degree of impact
 varies with the storage protocol (see Section 12.2.5) used for data
 access, and can be as low as zero (see Section 13.12).

1.8.3. File System Model

 The general file system model used for the NFSv4.1 protocol is the
 same as previous versions. The server file system is hierarchical
 with the regular files contained within being treated as opaque byte
 streams. In a slight departure, file and directory names are encoded
 with UTF-8 to deal with the basics of internationalization.

 The NFSv4.1 protocol does not require a separate protocol to provide
 for the initial mapping between path name and filehandle. All file
 systems exported by a server are presented as a tree so that all file
 systems are reachable from a special per-server global root
 filehandle. This allows LOOKUP operations to be used to perform
 functions previously provided by the MOUNT protocol. The server
 provides any necessary pseudo file systems to bridge any gaps that
 arise due to unexported gaps between exported file systems.

1.8.3.1. Filehandles

 As in previous versions of the NFS protocol, opaque filehandles are
 used to identify individual files and directories. Lookup-type and
 create operations translate file and directory names to filehandles,
 which are then used to identify objects in subsequent operations.

 The NFSv4.1 protocol provides support for persistent filehandles,
 guaranteed to be valid for the lifetime of the file system object
 designated. In addition, it provides support to servers to provide
 filehandles with more limited validity guarantees, called volatile
 filehandles.

1.8.3.2. File Attributes

 The NFSv4.1 protocol has a rich and extensible file object attribute
 structure, which is divided into REQUIRED, RECOMMENDED, and named
 attributes (see Section 5).

 Several (but not all) of the REQUIRED attributes are derived from the
 attributes of NFSv3 (see the definition of the fattr3 data type in
 [38]). An example of a REQUIRED attribute is the file object’s type
 (Section 5.8.1.2) so that regular files can be distinguished from
 directories (also known as folders in some operating environments)
 and other types of objects. REQUIRED attributes are discussed in
 Section 5.1.

 An example of three RECOMMENDED attributes are acl, sacl, and dacl.
 These attributes define an Access Control List (ACL) on a file object
 (Section 6). An ACL provides directory and file access control
 beyond the model used in NFSv3. The ACL definition allows for
 specification of specific sets of permissions for individual users
 and groups. In addition, ACL inheritance allows propagation of
 access permissions and restrictions down a directory tree as file
 system objects are created. RECOMMENDED attributes are discussed in
 Section 5.2.

 A named attribute is an opaque byte stream that is associated with a
 directory or file and referred to by a string name. Named attributes
 are meant to be used by client applications as a method to associate
 application-specific data with a regular file or directory. NFSv4.1
 modifies named attributes relative to NFSv4.0 by tightening the
 allowed operations in order to prevent the development of non-
 interoperable implementations. Named attributes are discussed in
 Section 5.3.

1.8.3.3. Multi-Server Namespace

 NFSv4.1 contains a number of features to allow implementation of
 namespaces that cross server boundaries and that allow and facilitate
 a nondisruptive transfer of support for individual file systems
 between servers. They are all based upon attributes that allow one
 file system to specify alternate, additional, and new location
 information that specifies how the client may access that file
 system.

 These attributes can be used to provide for individual active file
 systems:

 * Alternate network addresses to access the current file system
 instance.

 * The locations of alternate file system instances or replicas to be
 used in the event that the current file system instance becomes
 unavailable.

 These file system location attributes may be used together with the
 concept of absent file systems, in which a position in the server
 namespace is associated with locations on other servers without there
 being any corresponding file system instance on the current server.
 For example,

 * These attributes may be used with absent file systems to implement

 referrals whereby one server may direct the client to a file
 system provided by another server. This allows extensive multi-
 server namespaces to be constructed.

 * These attributes may be provided when a previously present file
 system becomes absent. This allows nondisruptive migration of
 file systems to alternate servers.

1.8.4. Locking Facilities

 As mentioned previously, NFSv4.1 is a single protocol that includes
 locking facilities. These locking facilities include support for
 many types of locks including a number of sorts of recallable locks.
 Recallable locks such as delegations allow the client to be assured
 that certain events will not occur so long as that lock is held.
 When circumstances change, the lock is recalled via a callback
 request. The assurances provided by delegations allow more extensive
 caching to be done safely when circumstances allow it.

 The types of locks are:

 * Share reservations as established by OPEN operations.

 * Byte-range locks.

 * File delegations, which are recallable locks that assure the
 holder that inconsistent opens and file changes cannot occur so
 long as the delegation is held.

 * Directory delegations, which are recallable locks that assure the
 holder that inconsistent directory modifications cannot occur so
 long as the delegation is held.

 * Layouts, which are recallable objects that assure the holder that
 direct access to the file data may be performed directly by the
 client and that no change to the data’s location that is
 inconsistent with that access may be made so long as the layout is
 held.

 All locks for a given client are tied together under a single client-
 wide lease. All requests made on sessions associated with the client
 renew that lease. When the client’s lease is not promptly renewed,
 the client’s locks are subject to revocation. In the event of server
 restart, clients have the opportunity to safely reclaim their locks
 within a special grace period.

1.9. Differences from NFSv4.0

 The following summarizes the major differences between minor version
 1 and the base protocol:

 * Implementation of the sessions model (Section 2.10).

 * Parallel access to data (Section 12).

 * Addition of the RECLAIM_COMPLETE operation to better structure the
 lock reclamation process (Section 18.51).

 * Enhanced delegation support as follows.

 - Delegations on directories and other file types in addition to
 regular files (Section 18.39, Section 18.49).

 - Operations to optimize acquisition of recalled or denied
 delegations (Section 18.49, Section 20.5, Section 20.7).

 - Notifications of changes to files and directories
 (Section 18.39, Section 20.4).

 - A method to allow a server to indicate that it is recalling one
 or more delegations for resource management reasons, and thus a

 method to allow the client to pick which delegations to return
 (Section 20.6).

 * Attributes can be set atomically during exclusive file create via
 the OPEN operation (see the new EXCLUSIVE4_1 creation method in
 Section 18.16).

 * Open files can be preserved if removed and the hard link count
 ("hard link" is defined in an Open Group [6] standard) goes to
 zero, thus obviating the need for clients to rename deleted files
 to partially hidden names -- colloquially called "silly rename"
 (see the new OPEN4_RESULT_PRESERVE_UNLINKED reply flag in
 Section 18.16).

 * Improved compatibility with Microsoft Windows for Access Control
 Lists (Section 6.2.3, Section 6.2.2, Section 6.4.3.2).

 * Data retention (Section 5.13).

 * Identification of the implementation of the NFS client and server
 (Section 18.35).

 * Support for notification of the availability of byte-range locks
 (see the new OPEN4_RESULT_MAY_NOTIFY_LOCK reply flag in
 Section 18.16 and see Section 20.11).

 * In NFSv4.1, LIPKEY and SPKM-3 are not required security mechanisms
 [39].

2. Core Infrastructure

2.1. Introduction

 NFSv4.1 relies on core infrastructure common to nearly every
 operation. This core infrastructure is described in the remainder of
 this section.

2.2. RPC and XDR

 The NFSv4.1 protocol is a Remote Procedure Call (RPC) application
 that uses RPC version 2 and the corresponding eXternal Data
 Representation (XDR) as defined in [3] and [2].

2.2.1. RPC-Based Security

 Previous NFS versions have been thought of as having a host-based
 authentication model, where the NFS server authenticates the NFS
 client, and trusts the client to authenticate all users. Actually,
 NFS has always depended on RPC for authentication. One of the first
 forms of RPC authentication, AUTH_SYS, had no strong authentication
 and required a host-based authentication approach. NFSv4.1 also
 depends on RPC for basic security services and mandates RPC support
 for a user-based authentication model. The user-based authentication
 model has user principals authenticated by a server, and in turn the
 server authenticated by user principals. RPC provides some basic
 security services that are used by NFSv4.1.

2.2.1.1. RPC Security Flavors

 As described in "Authentication", Section 7 of [3], RPC security is
 encapsulated in the RPC header, via a security or authentication
 flavor, and information specific to the specified security flavor.
 Every RPC header conveys information used to identify and
 authenticate a client and server. As discussed in Section 2.2.1.1.1,
 some security flavors provide additional security services.

 NFSv4.1 clients and servers MUST implement RPCSEC_GSS. (This
 requirement to implement is not a requirement to use.) Other
 flavors, such as AUTH_NONE and AUTH_SYS, MAY be implemented as well.

2.2.1.1.1. RPCSEC_GSS and Security Services

 RPCSEC_GSS [4] uses the functionality of GSS-API [7]. This allows
 for the use of various security mechanisms by the RPC layer without
 the additional implementation overhead of adding RPC security
 flavors.

2.2.1.1.1.1. Identification, Authentication, Integrity, Privacy

 Via the GSS-API, RPCSEC_GSS can be used to identify and authenticate
 users on clients to servers, and servers to users. It can also
 perform integrity checking on the entire RPC message, including the
 RPC header, and on the arguments or results. Finally, privacy,
 usually via encryption, is a service available with RPCSEC_GSS.
 Privacy is performed on the arguments and results. Note that if
 privacy is selected, integrity, authentication, and identification
 are enabled. If privacy is not selected, but integrity is selected,
 authentication and identification are enabled. If integrity and
 privacy are not selected, but authentication is enabled,
 identification is enabled. RPCSEC_GSS does not provide
 identification as a separate service.

 Although GSS-API has an authentication service distinct from its
 privacy and integrity services, GSS-API’s authentication service is
 not used for RPCSEC_GSS’s authentication service. Instead, each RPC
 request and response header is integrity protected with the GSS-API
 integrity service, and this allows RPCSEC_GSS to offer per-RPC
 authentication and identity. See [4] for more information.

 NFSv4.1 client and servers MUST support RPCSEC_GSS’s integrity and
 authentication service. NFSv4.1 servers MUST support RPCSEC_GSS’s
 privacy service. NFSv4.1 clients SHOULD support RPCSEC_GSS’s privacy
 service.

2.2.1.1.1.2. Security Mechanisms for NFSv4.1

 RPCSEC_GSS, via GSS-API, normalizes access to mechanisms that provide
 security services. Therefore, NFSv4.1 clients and servers MUST
 support the Kerberos V5 security mechanism.

 The use of RPCSEC_GSS requires selection of mechanism, quality of
 protection (QOP), and service (authentication, integrity, privacy).
 For the mandated security mechanisms, NFSv4.1 specifies that a QOP of
 zero is used, leaving it up to the mechanism or the mechanism’s
 configuration to map QOP zero to an appropriate level of protection.
 Each mandated mechanism specifies a minimum set of cryptographic
 algorithms for implementing integrity and privacy. NFSv4.1 clients
 and servers MUST be implemented on operating environments that comply
 with the REQUIRED cryptographic algorithms of each REQUIRED
 mechanism.

2.2.1.1.1.2.1. Kerberos V5

 The Kerberos V5 GSS-API mechanism as described in [5] MUST be
 implemented with the RPCSEC_GSS services as specified in the
 following table:

 column descriptions:
 1 == number of pseudo flavor
 2 == name of pseudo flavor
 3 == mechanism’s OID
 4 == RPCSEC_GSS service
 5 == NFSv4.1 clients MUST support
 6 == NFSv4.1 servers MUST support

 1 2 3 4 5 6
 --
 390003 krb5 1.2.840.113554.1.2.2 rpc_gss_svc_none yes yes
 390004 krb5i 1.2.840.113554.1.2.2 rpc_gss_svc_integrity yes yes
 390005 krb5p 1.2.840.113554.1.2.2 rpc_gss_svc_privacy no yes

 Note that the number and name of the pseudo flavor are presented here

 as a mapping aid to the implementor. Because the NFSv4.1 protocol
 includes a method to negotiate security and it understands the GSS-
 API mechanism, the pseudo flavor is not needed. The pseudo flavor is
 needed for the NFSv3 since the security negotiation is done via the
 MOUNT protocol as described in [40].

 At the time NFSv4.1 was specified, the Advanced Encryption Standard
 (AES) with HMAC-SHA1 was a REQUIRED algorithm set for Kerberos V5.
 In contrast, when NFSv4.0 was specified, weaker algorithm sets were
 REQUIRED for Kerberos V5, and were REQUIRED in the NFSv4.0
 specification, because the Kerberos V5 specification at the time did
 not specify stronger algorithms. The NFSv4.1 specification does not
 specify REQUIRED algorithms for Kerberos V5, and instead, the
 implementor is expected to track the evolution of the Kerberos V5
 standard if and when stronger algorithms are specified.

2.2.1.1.1.2.1.1. Security Considerations for Cryptographic Algorithms
 in Kerberos V5

 When deploying NFSv4.1, the strength of the security achieved depends
 on the existing Kerberos V5 infrastructure. The algorithms of
 Kerberos V5 are not directly exposed to or selectable by the client
 or server, so there is some due diligence required by the user of
 NFSv4.1 to ensure that security is acceptable where needed.

2.2.1.1.1.3. GSS Server Principal

 Regardless of what security mechanism under RPCSEC_GSS is being used,
 the NFS server MUST identify itself in GSS-API via a
 GSS_C_NT_HOSTBASED_SERVICE name type. GSS_C_NT_HOSTBASED_SERVICE
 names are of the form:

 service@hostname

 For NFS, the "service" element is

 nfs

 Implementations of security mechanisms will convert nfs@hostname to
 various different forms. For Kerberos V5, the following form is
 RECOMMENDED:

 nfs/hostname

2.3. COMPOUND and CB_COMPOUND

 A significant departure from the versions of the NFS protocol before
 NFSv4 is the introduction of the COMPOUND procedure. For the NFSv4
 protocol, in all minor versions, there are exactly two RPC
 procedures, NULL and COMPOUND. The COMPOUND procedure is defined as
 a series of individual operations and these operations perform the
 sorts of functions performed by traditional NFS procedures.

 The operations combined within a COMPOUND request are evaluated in
 order by the server, without any atomicity guarantees. A limited set
 of facilities exist to pass results from one operation to another.
 Once an operation returns a failing result, the evaluation ends and
 the results of all evaluated operations are returned to the client.

 With the use of the COMPOUND procedure, the client is able to build
 simple or complex requests. These COMPOUND requests allow for a
 reduction in the number of RPCs needed for logical file system
 operations. For example, multi-component look up requests can be
 constructed by combining multiple LOOKUP operations. Those can be
 further combined with operations such as GETATTR, READDIR, or OPEN
 plus READ to do more complicated sets of operation without incurring
 additional latency.

 NFSv4.1 also contains a considerable set of callback operations in
 which the server makes an RPC directed at the client. Callback RPCs
 have a similar structure to that of the normal server requests. In

 all minor versions of the NFSv4 protocol, there are two callback RPC
 procedures: CB_NULL and CB_COMPOUND. The CB_COMPOUND procedure is
 defined in an analogous fashion to that of COMPOUND with its own set
 of callback operations.

 The addition of new server and callback operations within the
 COMPOUND and CB_COMPOUND request framework provides a means of
 extending the protocol in subsequent minor versions.

 Except for a small number of operations needed for session creation,
 server requests and callback requests are performed within the
 context of a session. Sessions provide a client context for every
 request and support robust replay protection for non-idempotent
 requests.

2.4. Client Identifiers and Client Owners

 For each operation that obtains or depends on locking state, the
 specific client needs to be identifiable by the server.

 Each distinct client instance is represented by a client ID. A
 client ID is a 64-bit identifier representing a specific client at a
 given time. The client ID is changed whenever the client re-
 initializes, and may change when the server re-initializes. Client
 IDs are used to support lock identification and crash recovery.

 During steady state operation, the client ID associated with each
 operation is derived from the session (see Section 2.10) on which the
 operation is sent. A session is associated with a client ID when the
 session is created.

 Unlike NFSv4.0, the only NFSv4.1 operations possible before a client
 ID is established are those needed to establish the client ID.

 A sequence of an EXCHANGE_ID operation followed by a CREATE_SESSION
 operation using that client ID (eir_clientid as returned from
 EXCHANGE_ID) is required to establish and confirm the client ID on
 the server. Establishment of identification by a new incarnation of
 the client also has the effect of immediately releasing any locking
 state that a previous incarnation of that same client might have had
 on the server. Such released state would include all byte-range
 lock, share reservation, layout state, and -- where the server
 supports neither the CLAIM_DELEGATE_PREV nor CLAIM_DELEG_CUR_FH claim
 types -- all delegation state associated with the same client with
 the same identity. For discussion of delegation state recovery, see
 Section 10.2.1. For discussion of layout state recovery, see
 Section 12.7.1.

 Releasing such state requires that the server be able to determine
 that one client instance is the successor of another. Where this
 cannot be done, for any of a number of reasons, the locking state
 will remain for a time subject to lease expiration (see Section 8.3)
 and the new client will need to wait for such state to be removed, if
 it makes conflicting lock requests.

 Client identification is encapsulated in the following client owner
 data type:

 struct client_owner4 {
 verifier4 co_verifier;
 opaque co_ownerid<NFS4_OPAQUE_LIMIT>;
 };

 The first field, co_verifier, is a client incarnation verifier,
 allowing the server to distinguish successive incarnations (e.g.,
 reboots) of the same client. The server will start the process of
 canceling the client’s leased state if co_verifier is different than
 what the server has previously recorded for the identified client (as
 specified in the co_ownerid field).

 The second field, co_ownerid, is a variable length string that

 uniquely defines the client so that subsequent instances of the same
 client bear the same co_ownerid with a different verifier.

 There are several considerations for how the client generates the
 co_ownerid string:

 * The string should be unique so that multiple clients do not
 present the same string. The consequences of two clients
 presenting the same string range from one client getting an error
 to one client having its leased state abruptly and unexpectedly
 cancelled.

 * The string should be selected so that subsequent incarnations
 (e.g., restarts) of the same client cause the client to present
 the same string. The implementor is cautioned from an approach
 that requires the string to be recorded in a local file because
 this precludes the use of the implementation in an environment
 where there is no local disk and all file access is from an
 NFSv4.1 server.

 * The string should be the same for each server network address that
 the client accesses. This way, if a server has multiple
 interfaces, the client can trunk traffic over multiple network
 paths as described in Section 2.10.5. (Note: the precise opposite
 was advised in the NFSv4.0 specification [37].)

 * The algorithm for generating the string should not assume that the
 client’s network address will not change, unless the client
 implementation knows it is using statically assigned network
 addresses. This includes changes between client incarnations and
 even changes while the client is still running in its current
 incarnation. Thus, with dynamic address assignment, if the client
 includes just the client’s network address in the co_ownerid
 string, there is a real risk that after the client gives up the
 network address, another client, using a similar algorithm for
 generating the co_ownerid string, would generate a conflicting
 co_ownerid string.

 Given the above considerations, an example of a well-generated
 co_ownerid string is one that includes:

 * If applicable, the client’s statically assigned network address.

 * Additional information that tends to be unique, such as one or
 more of:

 - The client machine’s serial number (for privacy reasons, it is
 best to perform some one-way function on the serial number).

 - A Media Access Control (MAC) address (again, a one-way function
 should be performed).

 - The timestamp of when the NFSv4.1 software was first installed
 on the client (though this is subject to the previously
 mentioned caution about using information that is stored in a
 file, because the file might only be accessible over NFSv4.1).

 - A true random number. However, since this number ought to be
 the same between client incarnations, this shares the same
 problem as that of using the timestamp of the software
 installation.

 * For a user-level NFSv4.1 client, it should contain additional
 information to distinguish the client from other user-level
 clients running on the same host, such as a process identifier or
 other unique sequence.

 The client ID is assigned by the server (the eir_clientid result from
 EXCHANGE_ID) and should be chosen so that it will not conflict with a
 client ID previously assigned by the server. This applies across
 server restarts.

 In the event of a server restart, a client may find out that its
 current client ID is no longer valid when it receives an
 NFS4ERR_STALE_CLIENTID error. The precise circumstances depend on
 the characteristics of the sessions involved, specifically whether
 the session is persistent (see Section 2.10.6.5), but in each case
 the client will receive this error when it attempts to establish a
 new session with the existing client ID and receives the error
 NFS4ERR_STALE_CLIENTID, indicating that a new client ID needs to be
 obtained via EXCHANGE_ID and the new session established with that
 client ID.

 When a session is not persistent, the client will find out that it
 needs to create a new session as a result of getting an
 NFS4ERR_BADSESSION, since the session in question was lost as part of
 a server restart. When the existing client ID is presented to a
 server as part of creating a session and that client ID is not
 recognized, as would happen after a server restart, the server will
 reject the request with the error NFS4ERR_STALE_CLIENTID.

 In the case of the session being persistent, the client will re-
 establish communication using the existing session after the restart.
 This session will be associated with the existing client ID but may
 only be used to retransmit operations that the client previously
 transmitted and did not see replies to. Replies to operations that
 the server previously performed will come from the reply cache;
 otherwise, NFS4ERR_DEADSESSION will be returned. Hence, such a
 session is referred to as "dead". In this situation, in order to
 perform new operations, the client needs to establish a new session.
 If an attempt is made to establish this new session with the existing
 client ID, the server will reject the request with
 NFS4ERR_STALE_CLIENTID.

 When NFS4ERR_STALE_CLIENTID is received in either of these
 situations, the client needs to obtain a new client ID by use of the
 EXCHANGE_ID operation, then use that client ID as the basis of a new
 session, and then proceed to any other necessary recovery for the
 server restart case (see Section 8.4.2).

 See the descriptions of EXCHANGE_ID (Section 18.35) and
 CREATE_SESSION (Section 18.36) for a complete specification of these
 operations.

2.4.1. Upgrade from NFSv4.0 to NFSv4.1

 To facilitate upgrade from NFSv4.0 to NFSv4.1, a server may compare a
 value of data type client_owner4 in an EXCHANGE_ID with a value of
 data type nfs_client_id4 that was established using the SETCLIENTID
 operation of NFSv4.0. A server that does so will allow an upgraded
 client to avoid waiting until the lease (i.e., the lease established
 by the NFSv4.0 instance client) expires. This requires that the
 value of data type client_owner4 be constructed the same way as the
 value of data type nfs_client_id4. If the latter’s contents included
 the server’s network address (per the recommendations of the NFSv4.0
 specification [37]), and the NFSv4.1 client does not wish to use a
 client ID that prevents trunking, it should send two EXCHANGE_ID
 operations. The first EXCHANGE_ID will have a client_owner4 equal to
 the nfs_client_id4. This will clear the state created by the NFSv4.0
 client. The second EXCHANGE_ID will not have the server’s network
 address. The state created for the second EXCHANGE_ID will not have
 to wait for lease expiration, because there will be no state to
 expire.

2.4.2. Server Release of Client ID

 NFSv4.1 introduces a new operation called DESTROY_CLIENTID
 (Section 18.50), which the client SHOULD use to destroy a client ID
 it no longer needs. This permits graceful, bilateral release of a
 client ID. The operation cannot be used if there are sessions
 associated with the client ID, or state with an unexpired lease.

 If the server determines that the client holds no associated state
 for its client ID (associated state includes unrevoked sessions,
 opens, locks, delegations, layouts, and wants), the server MAY choose
 to unilaterally release the client ID in order to conserve resources.
 If the client contacts the server after this release, the server MUST
 ensure that the client receives the appropriate error so that it will
 use the EXCHANGE_ID/CREATE_SESSION sequence to establish a new client
 ID. The server ought to be very hesitant to release a client ID
 since the resulting work on the client to recover from such an event
 will be the same burden as if the server had failed and restarted.
 Typically, a server would not release a client ID unless there had
 been no activity from that client for many minutes. As long as there
 are sessions, opens, locks, delegations, layouts, or wants, the
 server MUST NOT release the client ID. See Section 2.10.13.1.4 for
 discussion on releasing inactive sessions.

2.4.3. Resolving Client Owner Conflicts

 When the server gets an EXCHANGE_ID for a client owner that currently
 has no state, or that has state but the lease has expired, the server
 MUST allow the EXCHANGE_ID and confirm the new client ID if followed
 by the appropriate CREATE_SESSION.

 When the server gets an EXCHANGE_ID for a new incarnation of a client
 owner that currently has an old incarnation with state and an
 unexpired lease, the server is allowed to dispose of the state of the
 previous incarnation of the client owner if one of the following is
 true:

 * The principal that created the client ID for the client owner is
 the same as the principal that is sending the EXCHANGE_ID
 operation. Note that if the client ID was created with
 SP4_MACH_CRED state protection (Section 18.35), the principal MUST
 be based on RPCSEC_GSS authentication, the RPCSEC_GSS service used
 MUST be integrity or privacy, and the same GSS mechanism and
 principal MUST be used as that used when the client ID was
 created.

 * The client ID was established with SP4_SSV protection
 (Section 18.35, Section 2.10.8.3) and the client sends the
 EXCHANGE_ID with the security flavor set to RPCSEC_GSS using the
 GSS SSV mechanism (Section 2.10.9).

 * The client ID was established with SP4_SSV protection, and under
 the conditions described herein, the EXCHANGE_ID was sent with
 SP4_MACH_CRED state protection. Because the SSV might not persist
 across client and server restart, and because the first time a
 client sends EXCHANGE_ID to a server it does not have an SSV, the
 client MAY send the subsequent EXCHANGE_ID without an SSV
 RPCSEC_GSS handle. Instead, as with SP4_MACH_CRED protection, the
 principal MUST be based on RPCSEC_GSS authentication, the
 RPCSEC_GSS service used MUST be integrity or privacy, and the same
 GSS mechanism and principal MUST be used as that used when the
 client ID was created.

 If none of the above situations apply, the server MUST return
 NFS4ERR_CLID_INUSE.

 If the server accepts the principal and co_ownerid as matching that
 which created the client ID, and the co_verifier in the EXCHANGE_ID
 differs from the co_verifier used when the client ID was created,
 then after the server receives a CREATE_SESSION that confirms the
 client ID, the server deletes state. If the co_verifier values are
 the same (e.g., the client either is updating properties of the
 client ID (Section 18.35) or is attempting trunking (Section 2.10.5),
 the server MUST NOT delete state.

2.5. Server Owners

 The server owner is similar to a client owner (Section 2.4), but
 unlike the client owner, there is no shorthand server ID. The server

 owner is defined in the following data type:

 struct server_owner4 {
 uint64_t so_minor_id;
 opaque so_major_id<NFS4_OPAQUE_LIMIT>;
 };

 The server owner is returned from EXCHANGE_ID. When the so_major_id
 fields are the same in two EXCHANGE_ID results, the connections that
 each EXCHANGE_ID were sent over can be assumed to address the same
 server (as defined in Section 1.7). If the so_minor_id fields are
 also the same, then not only do both connections connect to the same
 server, but the session can be shared across both connections. The
 reader is cautioned that multiple servers may deliberately or
 accidentally claim to have the same so_major_id or so_major_id/
 so_minor_id; the reader should examine Sections 2.10.5 and 18.35 in
 order to avoid acting on falsely matching server owner values.

 The considerations for generating an so_major_id are similar to that
 for generating a co_ownerid string (see Section 2.4). The
 consequences of two servers generating conflicting so_major_id values
 are less dire than they are for co_ownerid conflicts because the
 client can use RPCSEC_GSS to compare the authenticity of each server
 (see Section 2.10.5).

2.6. Security Service Negotiation

 With the NFSv4.1 server potentially offering multiple security
 mechanisms, the client needs a method to determine or negotiate which
 mechanism is to be used for its communication with the server. The
 NFS server may have multiple points within its file system namespace
 that are available for use by NFS clients. These points can be
 considered security policy boundaries, and, in some NFS
 implementations, are tied to NFS export points. In turn, the NFS
 server may be configured such that each of these security policy
 boundaries may have different or multiple security mechanisms in use.

 The security negotiation between client and server SHOULD be done
 with a secure channel to eliminate the possibility of a third party
 intercepting the negotiation sequence and forcing the client and
 server to choose a lower level of security than required or desired.
 See Section 21 for further discussion.

2.6.1. NFSv4.1 Security Tuples

 An NFS server can assign one or more "security tuples" to each
 security policy boundary in its namespace. Each security tuple
 consists of a security flavor (see Section 2.2.1.1) and, if the
 flavor is RPCSEC_GSS, a GSS-API mechanism Object Identifier (OID), a
 GSS-API quality of protection, and an RPCSEC_GSS service.

2.6.2. SECINFO and SECINFO_NO_NAME

 The SECINFO and SECINFO_NO_NAME operations allow the client to
 determine, on a per-filehandle basis, what security tuple is to be
 used for server access. In general, the client will not have to use
 either operation except during initial communication with the server
 or when the client crosses security policy boundaries at the server.
 However, the server’s policies may also change at any time and force
 the client to negotiate a new security tuple.

 Where the use of different security tuples would affect the type of
 access that would be allowed if a request was sent over the same
 connection used for the SECINFO or SECINFO_NO_NAME operation (e.g.,
 read-only vs. read-write) access, security tuples that allow greater
 access should be presented first. Where the general level of access
 is the same and different security flavors limit the range of
 principals whose privileges are recognized (e.g., allowing or
 disallowing root access), flavors supporting the greatest range of
 principals should be listed first.

2.6.3. Security Error

 Based on the assumption that each NFSv4.1 client and server MUST
 support a minimum set of security (i.e., Kerberos V5 under
 RPCSEC_GSS), the NFS client will initiate file access to the server
 with one of the minimal security tuples. During communication with
 the server, the client may receive an NFS error of NFS4ERR_WRONGSEC.
 This error allows the server to notify the client that the security
 tuple currently being used contravenes the server’s security policy.
 The client is then responsible for determining (see Section 2.6.3.1)
 what security tuples are available at the server and choosing one
 that is appropriate for the client.

2.6.3.1. Using NFS4ERR_WRONGSEC, SECINFO, and SECINFO_NO_NAME

 This section explains the mechanics of NFSv4.1 security negotiation.

2.6.3.1.1. Put Filehandle Operations

 The term "put filehandle operation" refers to PUTROOTFH, PUTPUBFH,
 PUTFH, and RESTOREFH. Each of the subsections herein describes how
 the server handles a subseries of operations that starts with a put
 filehandle operation.

2.6.3.1.1.1. Put Filehandle Operation + SAVEFH

 The client is saving a filehandle for a future RESTOREFH, LINK, or
 RENAME. SAVEFH MUST NOT return NFS4ERR_WRONGSEC. To determine
 whether or not the put filehandle operation returns NFS4ERR_WRONGSEC,
 the server implementation pretends SAVEFH is not in the series of
 operations and examines which of the situations described in the
 other subsections of Section 2.6.3.1.1 apply.

2.6.3.1.1.2. Two or More Put Filehandle Operations

 For a series of N put filehandle operations, the server MUST NOT
 return NFS4ERR_WRONGSEC to the first N-1 put filehandle operations.
 The Nth put filehandle operation is handled as if it is the first in
 a subseries of operations. For example, if the server received a
 COMPOUND request with this series of operations -- PUTFH, PUTROOTFH,
 LOOKUP -- then the PUTFH operation is ignored for NFS4ERR_WRONGSEC
 purposes, and the PUTROOTFH, LOOKUP subseries is processed as
 according to Section 2.6.3.1.1.3.

2.6.3.1.1.3. Put Filehandle Operation + LOOKUP (or OPEN of an Existing
 Name)

 This situation also applies to a put filehandle operation followed by
 a LOOKUP or an OPEN operation that specifies an existing component
 name.

 In this situation, the client is potentially crossing a security
 policy boundary, and the set of security tuples the parent directory
 supports may differ from those of the child. The server
 implementation may decide whether to impose any restrictions on
 security policy administration. There are at least three approaches
 (sec_policy_child is the tuple set of the child export,
 sec_policy_parent is that of the parent).

 (a) sec_policy_child <= sec_policy_parent (<= for subset). This
 means that the set of security tuples specified on the security
 policy of a child directory is always a subset of its parent
 directory.

 (b) sec_policy_child ^ sec_policy_parent != {} (^ for intersection,
 {} for the empty set). This means that the set of security
 tuples specified on the security policy of a child directory
 always has a non-empty intersection with that of the parent.

 (c) sec_policy_child ^ sec_policy_parent == {}. This means that the
 set of security tuples specified on the security policy of a

 child directory may not intersect with that of the parent. In
 other words, there are no restrictions on how the system
 administrator may set up these tuples.

 In order for a server to support approaches (b) (for the case when a
 client chooses a flavor that is not a member of sec_policy_parent)
 and (c), the put filehandle operation cannot return NFS4ERR_WRONGSEC
 when there is a security tuple mismatch. Instead, it should be
 returned from the LOOKUP (or OPEN by existing component name) that
 follows.

 Since the above guideline does not contradict approach (a), it should
 be followed in general. Even if approach (a) is implemented, it is
 possible for the security tuple used to be acceptable for the target
 of LOOKUP but not for the filehandles used in the put filehandle
 operation. The put filehandle operation could be a PUTROOTFH or
 PUTPUBFH, where the client cannot know the security tuples for the
 root or public filehandle. Or the security policy for the filehandle
 used by the put filehandle operation could have changed since the
 time the filehandle was obtained.

 Therefore, an NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC in
 response to the put filehandle operation if the operation is
 immediately followed by a LOOKUP or an OPEN by component name.

2.6.3.1.1.4. Put Filehandle Operation + LOOKUPP

 Since SECINFO only works its way down, there is no way LOOKUPP can
 return NFS4ERR_WRONGSEC without SECINFO_NO_NAME. SECINFO_NO_NAME
 solves this issue via style SECINFO_STYLE4_PARENT, which works in the
 opposite direction as SECINFO. As with Section 2.6.3.1.1.3, a put
 filehandle operation that is followed by a LOOKUPP MUST NOT return
 NFS4ERR_WRONGSEC. If the server does not support SECINFO_NO_NAME,
 the client’s only recourse is to send the put filehandle operation,
 LOOKUPP, GETFH sequence of operations with every security tuple it
 supports.

 Regardless of whether SECINFO_NO_NAME is supported, an NFSv4.1 server
 MUST NOT return NFS4ERR_WRONGSEC in response to a put filehandle
 operation if the operation is immediately followed by a LOOKUPP.

2.6.3.1.1.5. Put Filehandle Operation + SECINFO/SECINFO_NO_NAME

 A security-sensitive client is allowed to choose a strong security
 tuple when querying a server to determine a file object’s permitted
 security tuples. The security tuple chosen by the client does not
 have to be included in the tuple list of the security policy of
 either the parent directory indicated in the put filehandle operation
 or the child file object indicated in SECINFO (or any parent
 directory indicated in SECINFO_NO_NAME). Of course, the server has
 to be configured for whatever security tuple the client selects;
 otherwise, the request will fail at the RPC layer with an appropriate
 authentication error.

 In theory, there is no connection between the security flavor used by
 SECINFO or SECINFO_NO_NAME and those supported by the security
 policy. But in practice, the client may start looking for strong
 flavors from those supported by the security policy, followed by
 those in the REQUIRED set.

 The NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC to a put
 filehandle operation that is immediately followed by SECINFO or
 SECINFO_NO_NAME. The NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC
 from SECINFO or SECINFO_NO_NAME.

2.6.3.1.1.6. Put Filehandle Operation + Nothing

 The NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC.

2.6.3.1.1.7. Put Filehandle Operation + Anything Else

 "Anything Else" includes OPEN by filehandle.

 The security policy enforcement applies to the filehandle specified
 in the put filehandle operation. Therefore, the put filehandle
 operation MUST return NFS4ERR_WRONGSEC when there is a security tuple
 mismatch. This avoids the complexity of adding NFS4ERR_WRONGSEC as
 an allowable error to every other operation.

 A COMPOUND containing the series put filehandle operation +
 SECINFO_NO_NAME (style SECINFO_STYLE4_CURRENT_FH) is an efficient way
 for the client to recover from NFS4ERR_WRONGSEC.

 The NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC to any operation
 other than a put filehandle operation, LOOKUP, LOOKUPP, and OPEN (by
 component name).

2.6.3.1.1.8. Operations after SECINFO and SECINFO_NO_NAME

 Suppose a client sends a COMPOUND procedure containing the series
 SEQUENCE, PUTFH, SECINFO_NONAME, READ, and suppose the security tuple
 used does not match that required for the target file. By rule (see
 Section 2.6.3.1.1.5), neither PUTFH nor SECINFO_NO_NAME can return
 NFS4ERR_WRONGSEC. By rule (see Section 2.6.3.1.1.7), READ cannot
 return NFS4ERR_WRONGSEC. The issue is resolved by the fact that
 SECINFO and SECINFO_NO_NAME consume the current filehandle (note that
 this is a change from NFSv4.0). This leaves no current filehandle
 for READ to use, and READ returns NFS4ERR_NOFILEHANDLE.

2.6.3.1.2. LINK and RENAME

 The LINK and RENAME operations use both the current and saved
 filehandles. Technically, the server MAY return NFS4ERR_WRONGSEC
 from LINK or RENAME if the security policy of the saved filehandle
 rejects the security flavor used in the COMPOUND request’s
 credentials. If the server does so, then if there is no intersection
 between the security policies of saved and current filehandles, this
 means that it will be impossible for the client to perform the
 intended LINK or RENAME operation.

 For example, suppose the client sends this COMPOUND request:
 SEQUENCE, PUTFH bFH, SAVEFH, PUTFH aFH, RENAME "c" "d", where
 filehandles bFH and aFH refer to different directories. Suppose no
 common security tuple exists between the security policies of aFH and
 bFH. If the client sends the request using credentials acceptable to
 bFH’s security policy but not aFH’s policy, then the PUTFH aFH
 operation will fail with NFS4ERR_WRONGSEC. After a SECINFO_NO_NAME
 request, the client sends SEQUENCE, PUTFH bFH, SAVEFH, PUTFH aFH,
 RENAME "c" "d", using credentials acceptable to aFH’s security policy
 but not bFH’s policy. The server returns NFS4ERR_WRONGSEC on the
 RENAME operation.

 To prevent a client from an endless sequence of a request containing
 LINK or RENAME, followed by a request containing SECINFO_NO_NAME or
 SECINFO, the server MUST detect when the security policies of the
 current and saved filehandles have no mutually acceptable security
 tuple, and MUST NOT return NFS4ERR_WRONGSEC from LINK or RENAME in
 that situation. Instead the server MUST do one of two things:

 * The server can return NFS4ERR_XDEV.

 * The server can allow the security policy of the current filehandle
 to override that of the saved filehandle, and so return NFS4_OK.

2.7. Minor Versioning

 To address the requirement of an NFS protocol that can evolve as the
 need arises, the NFSv4.1 protocol contains the rules and framework to
 allow for future minor changes or versioning.

 The base assumption with respect to minor versioning is that any
 future accepted minor version will be documented in one or more

 Standards Track RFCs. Minor version 0 of the NFSv4 protocol is
 represented by [37], and minor version 1 is represented by this RFC.
 The COMPOUND and CB_COMPOUND procedures support the encoding of the
 minor version being requested by the client.

 The following items represent the basic rules for the development of
 minor versions. Note that a future minor version may modify or add
 to the following rules as part of the minor version definition.

 1. Procedures are not added or deleted.

 To maintain the general RPC model, NFSv4 minor versions will not
 add to or delete procedures from the NFS program.

 2. Minor versions may add operations to the COMPOUND and
 CB_COMPOUND procedures.

 The addition of operations to the COMPOUND and CB_COMPOUND
 procedures does not affect the RPC model.

 * Minor versions may append attributes to the bitmap4 that
 represents sets of attributes and to the fattr4 that
 represents sets of attribute values.

 This allows for the expansion of the attribute model to allow
 for future growth or adaptation.

 * Minor version X must append any new attributes after the last
 documented attribute.

 Since attribute results are specified as an opaque array of
 per-attribute, XDR-encoded results, the complexity of adding
 new attributes in the midst of the current definitions would
 be too burdensome.

 3. Minor versions must not modify the structure of an existing
 operation’s arguments or results.

 Again, the complexity of handling multiple structure definitions
 for a single operation is too burdensome. New operations should
 be added instead of modifying existing structures for a minor
 version.

 This rule does not preclude the following adaptations in a minor
 version:

 * adding bits to flag fields, such as new attributes to
 GETATTR’s bitmap4 data type, and providing corresponding
 variants of opaque arrays, such as a notify4 used together
 with such bitmaps

 * adding bits to existing attributes like ACLs that have flag
 words

 * extending enumerated types (including NFS4ERR_*) with new
 values

 * adding cases to a switched union

 4. Minor versions must not modify the structure of existing
 attributes.

 5. Minor versions must not delete operations.

 This prevents the potential reuse of a particular operation
 "slot" in a future minor version.

 6. Minor versions must not delete attributes.

 7. Minor versions must not delete flag bits or enumeration values.

 8. Minor versions may declare an operation MUST NOT be implemented.

 Specifying that an operation MUST NOT be implemented is
 equivalent to obsoleting an operation. For the client, it means
 that the operation MUST NOT be sent to the server. For the
 server, an NFS error can be returned as opposed to "dropping"
 the request as an XDR decode error. This approach allows for
 the obsolescence of an operation while maintaining its structure
 so that a future minor version can reintroduce the operation.

 1. Minor versions may declare that an attribute MUST NOT be
 implemented.

 2. Minor versions may declare that a flag bit or enumeration
 value MUST NOT be implemented.

 9. Minor versions may downgrade features from REQUIRED to
 RECOMMENDED, or RECOMMENDED to OPTIONAL.

 10. Minor versions may upgrade features from OPTIONAL to
 RECOMMENDED, or RECOMMENDED to REQUIRED.

 11. A client and server that support minor version X SHOULD support
 minor versions zero through X-1 as well.

 12. Except for infrastructural changes, a minor version must not
 introduce REQUIRED new features.

 This rule allows for the introduction of new functionality and
 forces the use of implementation experience before designating a
 feature as REQUIRED. On the other hand, some classes of
 features are infrastructural and have broad effects. Allowing
 infrastructural features to be RECOMMENDED or OPTIONAL
 complicates implementation of the minor version.

 13. A client MUST NOT attempt to use a stateid, filehandle, or
 similar returned object from the COMPOUND procedure with minor
 version X for another COMPOUND procedure with minor version Y,
 where X != Y.

2.8. Non-RPC-Based Security Services

 As described in Section 2.2.1.1.1.1, NFSv4.1 relies on RPC for
 identification, authentication, integrity, and privacy. NFSv4.1
 itself provides or enables additional security services as described
 in the next several subsections.

2.8.1. Authorization

 Authorization to access a file object via an NFSv4.1 operation is
 ultimately determined by the NFSv4.1 server. A client can
 predetermine its access to a file object via the OPEN (Section 18.16)
 and the ACCESS (Section 18.1) operations.

 Principals with appropriate access rights can modify the
 authorization on a file object via the SETATTR (Section 18.30)
 operation. Attributes that affect access rights include mode, owner,
 owner_group, acl, dacl, and sacl. See Section 5.

2.8.2. Auditing

 NFSv4.1 provides auditing on a per-file object basis, via the acl and
 sacl attributes as described in Section 6. It is outside the scope
 of this specification to specify audit log formats or management
 policies.

2.8.3. Intrusion Detection

 NFSv4.1 provides alarm control on a per-file object basis, via the
 acl and sacl attributes as described in Section 6. Alarms may serve
 as the basis for intrusion detection. It is outside the scope of

 this specification to specify heuristics for detecting intrusion via
 alarms.

2.9. Transport Layers

2.9.1. REQUIRED and RECOMMENDED Properties of Transports

 NFSv4.1 works over Remote Direct Memory Access (RDMA) and non-RDMA-
 based transports with the following attributes:

 * The transport supports reliable delivery of data, which NFSv4.1
 requires but neither NFSv4.1 nor RPC has facilities for ensuring
 [41].

 * The transport delivers data in the order it was sent. Ordered
 delivery simplifies detection of transmit errors, and simplifies
 the sending of arbitrary sized requests and responses via the
 record marking protocol [3].

 Where an NFSv4.1 implementation supports operation over the IP
 network protocol, any transport used between NFS and IP MUST be among
 the IETF-approved congestion control transport protocols. At the
 time this document was written, the only two transports that had the
 above attributes were TCP and the Stream Control Transmission
 Protocol (SCTP). To enhance the possibilities for interoperability,
 an NFSv4.1 implementation MUST support operation over the TCP
 transport protocol.

 Even if NFSv4.1 is used over a non-IP network protocol, it is
 RECOMMENDED that the transport support congestion control.

 It is permissible for a connectionless transport to be used under
 NFSv4.1; however, reliable and in-order delivery of data combined
 with congestion control by the connectionless transport is REQUIRED.
 As a consequence, UDP by itself MUST NOT be used as an NFSv4.1
 transport. NFSv4.1 assumes that a client transport address and
 server transport address used to send data over a transport together
 constitute a connection, even if the underlying transport eschews the
 concept of a connection.

2.9.2. Client and Server Transport Behavior

 If a connection-oriented transport (e.g., TCP) is used, the client
 and server SHOULD use long-lived connections for at least three
 reasons:

 1. This will prevent the weakening of the transport’s congestion
 control mechanisms via short-lived connections.

 2. This will improve performance for the WAN environment by
 eliminating the need for connection setup handshakes.

 3. The NFSv4.1 callback model differs from NFSv4.0, and requires the
 client and server to maintain a client-created backchannel (see
 Section 2.10.3.1) for the server to use.

 In order to reduce congestion, if a connection-oriented transport is
 used, and the request is not the NULL procedure:

 * A requester MUST NOT retry a request unless the connection the
 request was sent over was lost before the reply was received.

 * A replier MUST NOT silently drop a request, even if the request is
 a retry. (The silent drop behavior of RPCSEC_GSS [4] does not
 apply because this behavior happens at the RPCSEC_GSS layer, a
 lower layer in the request processing.) Instead, the replier
 SHOULD return an appropriate error (see Section 2.10.6.1), or it
 MAY disconnect the connection.

 When sending a reply, the replier MUST send the reply to the same
 full network address (e.g., if using an IP-based transport, the

 source port of the requester is part of the full network address)
 from which the requester sent the request. If using a connection-
 oriented transport, replies MUST be sent on the same connection from
 which the request was received.

 If a connection is dropped after the replier receives the request but
 before the replier sends the reply, the replier might have a pending
 reply. If a connection is established with the same source and
 destination full network address as the dropped connection, then the
 replier MUST NOT send the reply until the requester retries the
 request. The reason for this prohibition is that the requester MAY
 retry a request over a different connection (provided that connection
 is associated with the original request’s session).

 When using RDMA transports, there are other reasons for not
 tolerating retries over the same connection:

 * RDMA transports use "credits" to enforce flow control, where a
 credit is a right to a peer to transmit a message. If one peer
 were to retransmit a request (or reply), it would consume an
 additional credit. If the replier retransmitted a reply, it would
 certainly result in an RDMA connection loss, since the requester
 would typically only post a single receive buffer for each
 request. If the requester retransmitted a request, the additional
 credit consumed on the server might lead to RDMA connection
 failure unless the client accounted for it and decreased its
 available credit, leading to wasted resources.

 * RDMA credits present a new issue to the reply cache in NFSv4.1.
 The reply cache may be used when a connection within a session is
 lost, such as after the client reconnects. Credit information is
 a dynamic property of the RDMA connection, and stale values must
 not be replayed from the cache. This implies that the reply cache
 contents must not be blindly used when replies are sent from it,
 and credit information appropriate to the channel must be
 refreshed by the RPC layer.

 In addition, as described in Section 2.10.6.2, while a session is
 active, the NFSv4.1 requester MUST NOT stop waiting for a reply.

2.9.3. Ports

 Historically, NFSv3 servers have listened over TCP port 2049. The
 registered port 2049 [42] for the NFS protocol should be the default
 configuration. NFSv4.1 clients SHOULD NOT use the RPC binding
 protocols as described in [43].

2.10. Session

 NFSv4.1 clients and servers MUST support and MUST use the session
 feature as described in this section.

2.10.1. Motivation and Overview

 Previous versions and minor versions of NFS have suffered from the
 following:

 * Lack of support for Exactly Once Semantics (EOS). This includes
 lack of support for EOS through server failure and recovery.

 * Limited callback support, including no support for sending
 callbacks through firewalls, and races between replies to normal
 requests and callbacks.

 * Limited trunking over multiple network paths.

 * Requiring machine credentials for fully secure operation.

 Through the introduction of a session, NFSv4.1 addresses the above
 shortfalls with practical solutions:

 * EOS is enabled by a reply cache with a bounded size, making it
 feasible to keep the cache in persistent storage and enable EOS
 through server failure and recovery. One reason that previous
 revisions of NFS did not support EOS was because some EOS
 approaches often limited parallelism. As will be explained in
 Section 2.10.6, NFSv4.1 supports both EOS and unlimited
 parallelism.

 * The NFSv4.1 client (defined in Section 1.7) creates transport
 connections and provides them to the server to use for sending
 callback requests, thus solving the firewall issue
 (Section 18.34). Races between responses from client requests and
 callbacks caused by the requests are detected via the session’s
 sequencing properties that are a consequence of EOS
 (Section 2.10.6.3).

 * The NFSv4.1 client can associate an arbitrary number of
 connections with the session, and thus provide trunking
 (Section 2.10.5).

 * The NFSv4.1 client and server produce a session key independent of
 client and server machine credentials which can be used to compute
 a digest for protecting critical session management operations
 (Section 2.10.8.3).

 * The NFSv4.1 client can also create secure RPCSEC_GSS contexts for
 use by the session’s backchannel that do not require the server to
 authenticate to a client machine principal (Section 2.10.8.2).

 A session is a dynamically created, long-lived server object created
 by a client and used over time from one or more transport
 connections. Its function is to maintain the server’s state relative
 to the connection(s) belonging to a client instance. This state is
 entirely independent of the connection itself, and indeed the state
 exists whether or not the connection exists. A client may have one
 or more sessions associated with it so that client-associated state
 may be accessed using any of the sessions associated with that
 client’s client ID, when connections are associated with those
 sessions. When no connections are associated with any of a client
 ID’s sessions for an extended time, such objects as locks, opens,
 delegations, layouts, etc. are subject to expiration. The session
 serves as an object representing a means of access by a client to the
 associated client state on the server, independent of the physical
 means of access to that state.

 A single client may create multiple sessions. A single session MUST
 NOT serve multiple clients.

2.10.2. NFSv4 Integration

 Sessions are part of NFSv4.1 and not NFSv4.0. Normally, a major
 infrastructure change such as sessions would require a new major
 version number to an Open Network Computing (ONC) RPC program like
 NFS. However, because NFSv4 encapsulates its functionality in a
 single procedure, COMPOUND, and because COMPOUND can support an
 arbitrary number of operations, sessions have been added to NFSv4.1
 with little difficulty. COMPOUND includes a minor version number
 field, and for NFSv4.1 this minor version is set to 1. When the
 NFSv4 server processes a COMPOUND with the minor version set to 1, it
 expects a different set of operations than it does for NFSv4.0.
 NFSv4.1 defines the SEQUENCE operation, which is required for every
 COMPOUND that operates over an established session, with the
 exception of some session administration operations, such as
 DESTROY_SESSION (Section 18.37).

2.10.2.1. SEQUENCE and CB_SEQUENCE

 In NFSv4.1, when the SEQUENCE operation is present, it MUST be the
 first operation in the COMPOUND procedure. The primary purpose of
 SEQUENCE is to carry the session identifier. The session identifier
 associates all other operations in the COMPOUND procedure with a

 particular session. SEQUENCE also contains required information for
 maintaining EOS (see Section 2.10.6). Session-enabled NFSv4.1
 COMPOUND requests thus have the form:

 +-----+--------------+-----------+------------+-----------+----
 | tag | minorversion | numops |SEQUENCE op | op + args | ...
 | | (== 1) | (limited) | + args | |
 +-----+--------------+-----------+------------+-----------+----

 and the replies have the form:

 +------------+-----+--------+-------------------------------+--//
 |last status | tag | numres |status + SEQUENCE op + results | //
 +------------+-----+--------+-------------------------------+--//
 //-----------------------+----
 // status + op + results | ...
 //-----------------------+----

 A CB_COMPOUND procedure request and reply has a similar form to
 COMPOUND, but instead of a SEQUENCE operation, there is a CB_SEQUENCE
 operation. CB_COMPOUND also has an additional field called
 "callback_ident", which is superfluous in NFSv4.1 and MUST be ignored
 by the client. CB_SEQUENCE has the same information as SEQUENCE, and
 also includes other information needed to resolve callback races
 (Section 2.10.6.3).

2.10.2.2. Client ID and Session Association

 Each client ID (Section 2.4) can have zero or more active sessions.
 A client ID and associated session are required to perform file
 access in NFSv4.1. Each time a session is used (whether by a client
 sending a request to the server or the client replying to a callback
 request from the server), the state leased to its associated client
 ID is automatically renewed.

 State (which can consist of share reservations, locks, delegations,
 and layouts (Section 1.8.4)) is tied to the client ID. Client state
 is not tied to any individual session. Successive state changing
 operations from a given state owner MAY go over different sessions,
 provided the session is associated with the same client ID. A
 callback MAY arrive over a different session than that of the request
 that originally acquired the state pertaining to the callback. For
 example, if session A is used to acquire a delegation, a request to
 recall the delegation MAY arrive over session B if both sessions are
 associated with the same client ID. Sections 2.10.8.1 and 2.10.8.2
 discuss the security considerations around callbacks.

2.10.3. Channels

 A channel is not a connection. A channel represents the direction
 ONC RPC requests are sent.

 Each session has one or two channels: the fore channel and the
 backchannel. Because there are at most two channels per session, and
 because each channel has a distinct purpose, channels are not
 assigned identifiers.

 The fore channel is used for ordinary requests from the client to the
 server, and carries COMPOUND requests and responses. A session
 always has a fore channel.

 The backchannel is used for callback requests from server to client,
 and carries CB_COMPOUND requests and responses. Whether or not there
 is a backchannel is decided by the client; however, many features of
 NFSv4.1 require a backchannel. NFSv4.1 servers MUST support
 backchannels.

 Each session has resources for each channel, including separate reply
 caches (see Section 2.10.6.1). Note that even the backchannel
 requires a reply cache (or, at least, a slot table in order to detect
 retries) because some callback operations are non-idempotent.

2.10.3.1. Association of Connections, Channels, and Sessions

 Each channel is associated with zero or more transport connections
 (whether of the same transport protocol or different transport
 protocols). A connection can be associated with one channel or both
 channels of a session; the client and server negotiate whether a
 connection will carry traffic for one channel or both channels via
 the CREATE_SESSION (Section 18.36) and the BIND_CONN_TO_SESSION
 (Section 18.34) operations. When a session is created via
 CREATE_SESSION, the connection that transported the CREATE_SESSION
 request is automatically associated with the fore channel, and
 optionally the backchannel. If the client specifies no state
 protection (Section 18.35) when the session is created, then when
 SEQUENCE is transmitted on a different connection, the connection is
 automatically associated with the fore channel of the session
 specified in the SEQUENCE operation.

 A connection’s association with a session is not exclusive. A
 connection associated with the channel(s) of one session may be
 simultaneously associated with the channel(s) of other sessions
 including sessions associated with other client IDs.

 It is permissible for connections of multiple transport types to be
 associated with the same channel. For example, both TCP and RDMA
 connections can be associated with the fore channel. In the event an
 RDMA and non-RDMA connection are associated with the same channel,
 the maximum number of slots SHOULD be at least one more than the
 total number of RDMA credits (Section 2.10.6.1). This way, if all
 RDMA credits are used, the non-RDMA connection can have at least one
 outstanding request. If a server supports multiple transport types,
 it MUST allow a client to associate connections from each transport
 to a channel.

 It is permissible for a connection of one type of transport to be
 associated with the fore channel, and a connection of a different
 type to be associated with the backchannel.

2.10.4. Server Scope

 Servers each specify a server scope value in the form of an opaque
 string eir_server_scope returned as part of the results of an
 EXCHANGE_ID operation. The purpose of the server scope is to allow a
 group of servers to indicate to clients that a set of servers sharing
 the same server scope value has arranged to use distinct values of
 opaque identifiers so that the two servers never assign the same
 value to two distinct objects. Thus, the identifiers generated by
 two servers within that set can be assumed compatible so that, in
 certain important cases, identifiers generated by one server in that
 set may be presented to another server of the same scope.

 The use of such compatible values does not imply that a value
 generated by one server will always be accepted by another. In most
 cases, it will not. However, a server will not inadvertently accept
 a value generated by another server. When it does accept it, it will
 be because it is recognized as valid and carrying the same meaning as
 on another server of the same scope.

 When servers are of the same server scope, this compatibility of
 values applies to the following identifiers:

 * Filehandle values. A filehandle value accepted by two servers of
 the same server scope denotes the same object. A WRITE operation
 sent to one server is reflected immediately in a READ sent to the
 other.

 * Server owner values. When the server scope values are the same,
 server owner value may be validly compared. In cases where the
 server scope values are different, server owner values are treated
 as different even if they contain identical strings of bytes.

 The coordination among servers required to provide such compatibility
 can be quite minimal, and limited to a simple partition of the ID
 space. The recognition of common values requires additional
 implementation, but this can be tailored to the specific situations
 in which that recognition is desired.

 Clients will have occasion to compare the server scope values of
 multiple servers under a number of circumstances, each of which will
 be discussed under the appropriate functional section:

 * When server owner values received in response to EXCHANGE_ID
 operations sent to multiple network addresses are compared for the
 purpose of determining the validity of various forms of trunking,
 as described in Section 11.5.2.

 * When network or server reconfiguration causes the same network
 address to possibly be directed to different servers, with the
 necessity for the client to determine when lock reclaim should be
 attempted, as described in Section 8.4.2.1.

 When two replies from EXCHANGE_ID, each from two different server
 network addresses, have the same server scope, there are a number of
 ways a client can validate that the common server scope is due to two
 servers cooperating in a group.

 * If both EXCHANGE_ID requests were sent with RPCSEC_GSS ([4], [9],
 [27]) authentication and the server principal is the same for both
 targets, the equality of server scope is validated. It is
 RECOMMENDED that two servers intending to share the same server
 scope and server_owner major_id also share the same principal
 name. In some cases, this simplifies the client’s task of
 validating server scope.

 * The client may accept the appearance of the second server in the
 fs_locations or fs_locations_info attribute for a relevant file
 system. For example, if there is a migration event for a
 particular file system or there are locks to be reclaimed on a
 particular file system, the attributes for that particular file
 system may be used. The client sends the GETATTR request to the
 first server for the fs_locations or fs_locations_info attribute
 with RPCSEC_GSS authentication. It may need to do this in advance
 of the need to verify the common server scope. If the client
 successfully authenticates the reply to GETATTR, and the GETATTR
 request and reply containing the fs_locations or fs_locations_info
 attribute refers to the second server, then the equality of server
 scope is supported. A client may choose to limit the use of this
 form of support to information relevant to the specific file
 system involved (e.g. a file system being migrated).

2.10.5. Trunking

 Trunking is the use of multiple connections between a client and
 server in order to increase the speed of data transfer. NFSv4.1
 supports two types of trunking: session trunking and client ID
 trunking.

 In the context of a single server network address, it can be assumed
 that all connections are accessing the same server, and NFSv4.1
 servers MUST support both forms of trunking. When multiple
 connections use a set of network addresses to access the same server,
 the server MUST support both forms of trunking. NFSv4.1 servers in a
 clustered configuration MAY allow network addresses for different
 servers to use client ID trunking.

 Clients may use either form of trunking as long as they do not, when
 trunking between different server network addresses, violate the
 servers’ mandates as to the kinds of trunking to be allowed (see
 below). With regard to callback channels, the client MUST allow the
 server to choose among all callback channels valid for a given client
 ID and MUST support trunking when the connections supporting the
 backchannel allow session or client ID trunking to be used for

 callbacks.

 Session trunking is essentially the association of multiple
 connections, each with potentially different target and/or source
 network addresses, to the same session. When the target network
 addresses (server addresses) of the two connections are the same, the
 server MUST support such session trunking. When the target network
 addresses are different, the server MAY indicate such support using
 the data returned by the EXCHANGE_ID operation (see below).

 Client ID trunking is the association of multiple sessions to the
 same client ID. Servers MUST support client ID trunking for two
 target network addresses whenever they allow session trunking for
 those same two network addresses. In addition, a server MAY, by
 presenting the same major server owner ID (Section 2.5) and server
 scope (Section 2.10.4), allow an additional case of client ID
 trunking. When two servers return the same major server owner and
 server scope, it means that the two servers are cooperating on
 locking state management, which is a prerequisite for client ID
 trunking.

 Distinguishing when the client is allowed to use session and client
 ID trunking requires understanding how the results of the EXCHANGE_ID
 (Section 18.35) operation identify a server. Suppose a client sends
 EXCHANGE_IDs over two different connections, each with a possibly
 different target network address, but each EXCHANGE_ID operation has
 the same value in the eia_clientowner field. If the same NFSv4.1
 server is listening over each connection, then each EXCHANGE_ID
 result MUST return the same values of eir_clientid,
 eir_server_owner.so_major_id, and eir_server_scope. The client can
 then treat each connection as referring to the same server (subject
 to verification; see Section 2.10.5.1 below), and it can use each
 connection to trunk requests and replies. The client’s choice is
 whether session trunking or client ID trunking applies.

 Session Trunking. If the eia_clientowner argument is the same in two
 different EXCHANGE_ID requests, and the eir_clientid,
 eir_server_owner.so_major_id, eir_server_owner.so_minor_id, and
 eir_server_scope results match in both EXCHANGE_ID results, then
 the client is permitted to perform session trunking. If the
 client has no session mapping to the tuple of eir_clientid,
 eir_server_owner.so_major_id, eir_server_scope, and
 eir_server_owner.so_minor_id, then it creates the session via a
 CREATE_SESSION operation over one of the connections, which
 associates the connection to the session. If there is a session
 for the tuple, the client can send BIND_CONN_TO_SESSION to
 associate the connection to the session.

 Of course, if the client does not desire to use session trunking,
 it is not required to do so. It can invoke CREATE_SESSION on the
 connection. This will result in client ID trunking as described
 below. It can also decide to drop the connection if it does not
 choose to use trunking.

 Client ID Trunking. If the eia_clientowner argument is the same in
 two different EXCHANGE_ID requests, and the eir_clientid,
 eir_server_owner.so_major_id, and eir_server_scope results match
 in both EXCHANGE_ID results, then the client is permitted to
 perform client ID trunking (regardless of whether the
 eir_server_owner.so_minor_id results match). The client can
 associate each connection with different sessions, where each
 session is associated with the same server.

 The client completes the act of client ID trunking by invoking
 CREATE_SESSION on each connection, using the same client ID that
 was returned in eir_clientid. These invocations create two
 sessions and also associate each connection with its respective
 session. The client is free to decline to use client ID trunking
 by simply dropping the connection at this point.

 When doing client ID trunking, locking state is shared across

 sessions associated with that same client ID. This requires the
 server to coordinate state across sessions and the client to be
 able to associate the same locking state with multiple sessions.

 It is always possible that, as a result of various sorts of
 reconfiguration events, eir_server_scope and eir_server_owner values
 may be different on subsequent EXCHANGE_ID requests made to the same
 network address.

 In most cases, such reconfiguration events will be disruptive and
 indicate that an IP address formerly connected to one server is now
 connected to an entirely different one.

 Some guidelines on client handling of such situations follow:

 * When eir_server_scope changes, the client has no assurance that
 any IDs that it obtained previously (e.g., filehandles) can be
 validly used on the new server, and, even if the new server
 accepts them, there is no assurance that this is not due to
 accident. Thus, it is best to treat all such state as lost or
 stale, although a client may assume that the probability of
 inadvertent acceptance is low and treat this situation as within
 the next case.

 * When eir_server_scope remains the same and
 eir_server_owner.so_major_id changes, the client can use the
 filehandles it has, consider its locking state lost, and attempt
 to reclaim or otherwise re-obtain its locks. It might find that
 its filehandle is now stale. However, if NFS4ERR_STALE is not
 returned, it can proceed to reclaim or otherwise re-obtain its
 open locking state.

 * When eir_server_scope and eir_server_owner.so_major_id remain the
 same, the client has to use the now-current values of
 eir_server_owner.so_minor_id in deciding on appropriate forms of
 trunking. This may result in connections being dropped or new
 sessions being created.

2.10.5.1. Verifying Claims of Matching Server Identity

 When the server responds using two different connections that claim
 matching or partially matching eir_server_owner, eir_server_scope,
 and eir_clientid values, the client does not have to trust the
 servers’ claims. The client may verify these claims before trunking
 traffic in the following ways:

 * For session trunking, clients SHOULD reliably verify if
 connections between different network paths are in fact associated
 with the same NFSv4.1 server and usable on the same session, and
 servers MUST allow clients to perform reliable verification. When
 a client ID is created, the client SHOULD specify that
 BIND_CONN_TO_SESSION is to be verified according to the SP4_SSV or
 SP4_MACH_CRED (Section 18.35) state protection options. For
 SP4_SSV, reliable verification depends on a shared secret (the
 SSV) that is established via the SET_SSV (see Section 18.47)
 operation.

 When a new connection is associated with the session (via the
 BIND_CONN_TO_SESSION operation, see Section 18.34), if the client
 specified SP4_SSV state protection for the BIND_CONN_TO_SESSION
 operation, the client MUST send the BIND_CONN_TO_SESSION with
 RPCSEC_GSS protection, using integrity or privacy, and an
 RPCSEC_GSS handle created with the GSS SSV mechanism (see
 Section 2.10.9).

 If the client mistakenly tries to associate a connection to a
 session of a wrong server, the server will either reject the
 attempt because it is not aware of the session identifier of the
 BIND_CONN_TO_SESSION arguments, or it will reject the attempt
 because the RPCSEC_GSS authentication fails. Even if the server
 mistakenly or maliciously accepts the connection association

 attempt, the RPCSEC_GSS verifier it computes in the response will
 not be verified by the client, so the client will know it cannot
 use the connection for trunking the specified session.

 If the client specified SP4_MACH_CRED state protection, the
 BIND_CONN_TO_SESSION operation will use RPCSEC_GSS integrity or
 privacy, using the same credential that was used when the client
 ID was created. Mutual authentication via RPCSEC_GSS assures the
 client that the connection is associated with the correct session
 of the correct server.

 * For client ID trunking, the client has at least two options for
 verifying that the same client ID obtained from two different
 EXCHANGE_ID operations came from the same server. The first
 option is to use RPCSEC_GSS authentication when sending each
 EXCHANGE_ID operation. Each time an EXCHANGE_ID is sent with
 RPCSEC_GSS authentication, the client notes the principal name of
 the GSS target. If the EXCHANGE_ID results indicate that client
 ID trunking is possible, and the GSS targets’ principal names are
 the same, the servers are the same and client ID trunking is
 allowed.

 The second option for verification is to use SP4_SSV protection.
 When the client sends EXCHANGE_ID, it specifies SP4_SSV
 protection. The first EXCHANGE_ID the client sends always has to
 be confirmed by a CREATE_SESSION call. The client then sends
 SET_SSV. Later, the client sends EXCHANGE_ID to a second
 destination network address different from the one the first
 EXCHANGE_ID was sent to. The client checks that each EXCHANGE_ID
 reply has the same eir_clientid, eir_server_owner.so_major_id, and
 eir_server_scope. If so, the client verifies the claim by sending
 a CREATE_SESSION operation to the second destination address,
 protected with RPCSEC_GSS integrity using an RPCSEC_GSS handle
 returned by the second EXCHANGE_ID. If the server accepts the
 CREATE_SESSION request, and if the client verifies the RPCSEC_GSS
 verifier and integrity codes, then the client has proof the second
 server knows the SSV, and thus the two servers are cooperating for
 the purposes of specifying server scope and client ID trunking.

2.10.6. Exactly Once Semantics

 Via the session, NFSv4.1 offers exactly once semantics (EOS) for
 requests sent over a channel. EOS is supported on both the fore
 channel and backchannel.

 Each COMPOUND or CB_COMPOUND request that is sent with a leading
 SEQUENCE or CB_SEQUENCE operation MUST be executed by the receiver
 exactly once. This requirement holds regardless of whether the
 request is sent with reply caching specified (see
 Section 2.10.6.1.3). The requirement holds even if the requester is
 sending the request over a session created between a pNFS data client
 and pNFS data server. To understand the rationale for this
 requirement, divide the requests into three classifications:

 * Non-idempotent requests.

 * Idempotent modifying requests.

 * Idempotent non-modifying requests.

 An example of a non-idempotent request is RENAME. Obviously, if a
 replier executes the same RENAME request twice, and the first
 execution succeeds, the re-execution will fail. If the replier
 returns the result from the re-execution, this result is incorrect.
 Therefore, EOS is required for non-idempotent requests.

 An example of an idempotent modifying request is a COMPOUND request
 containing a WRITE operation. Repeated execution of the same WRITE
 has the same effect as execution of that WRITE a single time.
 Nevertheless, enforcing EOS for WRITEs and other idempotent modifying
 requests is necessary to avoid data corruption.

 Suppose a client sends WRITE A to a noncompliant server that does not
 enforce EOS, and receives no response, perhaps due to a network
 partition. The client reconnects to the server and re-sends WRITE A.
 Now, the server has outstanding two instances of A. The server can
 be in a situation in which it executes and replies to the retry of A,
 while the first A is still waiting in the server’s internal I/O
 system for some resource. Upon receiving the reply to the second
 attempt of WRITE A, the client believes its WRITE is done so it is
 free to send WRITE B, which overlaps the byte-range of A. When the
 original A is dispatched from the server’s I/O system and executed
 (thus the second time A will have been written), then what has been
 written by B can be overwritten and thus corrupted.

 An example of an idempotent non-modifying request is a COMPOUND
 containing SEQUENCE, PUTFH, READLINK, and nothing else. The re-
 execution of such a request will not cause data corruption or produce
 an incorrect result. Nonetheless, to keep the implementation simple,
 the replier MUST enforce EOS for all requests, whether or not
 idempotent and non-modifying.

 Note that true and complete EOS is not possible unless the server
 persists the reply cache in stable storage, and unless the server is
 somehow implemented to never require a restart (indeed, if such a
 server exists, the distinction between a reply cache kept in stable
 storage versus one that is not is one without meaning). See
 Section 2.10.6.5 for a discussion of persistence in the reply cache.
 Regardless, even if the server does not persist the reply cache, EOS
 improves robustness and correctness over previous versions of NFS
 because the legacy duplicate request/reply caches were based on the
 ONC RPC transaction identifier (XID). Section 2.10.6.1 explains the
 shortcomings of the XID as a basis for a reply cache and describes
 how NFSv4.1 sessions improve upon the XID.

2.10.6.1. Slot Identifiers and Reply Cache

 The RPC layer provides a transaction ID (XID), which, while required
 to be unique, is not convenient for tracking requests for two
 reasons. First, the XID is only meaningful to the requester; it
 cannot be interpreted by the replier except to test for equality with
 previously sent requests. When consulting an RPC-based duplicate
 request cache, the opaqueness of the XID requires a computationally
 expensive look up (often via a hash that includes XID and source
 address). NFSv4.1 requests use a non-opaque slot ID, which is an
 index into a slot table, which is far more efficient. Second,
 because RPC requests can be executed by the replier in any order,
 there is no bound on the number of requests that may be outstanding
 at any time. To achieve perfect EOS, using ONC RPC would require
 storing all replies in the reply cache. XIDs are 32 bits; storing
 over four billion (2^(32)) replies in the reply cache is not
 practical. In practice, previous versions of NFS have chosen to
 store a fixed number of replies in the cache, and to use a least
 recently used (LRU) approach to replacing cache entries with new
 entries when the cache is full. In NFSv4.1, the number of
 outstanding requests is bounded by the size of the slot table, and a
 sequence ID per slot is used to tell the replier when it is safe to
 delete a cached reply.

 In the NFSv4.1 reply cache, when the requester sends a new request,
 it selects a slot ID in the range 0..N, where N is the replier’s
 current maximum slot ID granted to the requester on the session over
 which the request is to be sent. The value of N starts out as equal
 to ca_maxrequests - 1 (Section 18.36), but can be adjusted by the
 response to SEQUENCE or CB_SEQUENCE as described later in this
 section. The slot ID must be unused by any of the requests that the
 requester has already active on the session. "Unused" here means the
 requester has no outstanding request for that slot ID.

 A slot contains a sequence ID and the cached reply corresponding to
 the request sent with that sequence ID. The sequence ID is a 32-bit
 unsigned value, and is therefore in the range 0..0xFFFFFFFF (2^(32) -

 1). The first time a slot is used, the requester MUST specify a
 sequence ID of one (Section 18.36). Each time a slot is reused, the
 request MUST specify a sequence ID that is one greater than that of
 the previous request on the slot. If the previous sequence ID was
 0xFFFFFFFF, then the next request for the slot MUST have the sequence
 ID set to zero (i.e., (2^(32) - 1) + 1 mod 2^(32)).

 The sequence ID accompanies the slot ID in each request. It is for
 the critical check at the replier: it used to efficiently determine
 whether a request using a certain slot ID is a retransmit or a new,
 never-before-seen request. It is not feasible for the requester to
 assert that it is retransmitting to implement this, because for any
 given request the requester cannot know whether the replier has seen
 it unless the replier actually replies. Of course, if the requester
 has seen the reply, the requester would not retransmit.

 The replier compares each received request’s sequence ID with the
 last one previously received for that slot ID, to see if the new
 request is:

 * A new request, in which the sequence ID is one greater than that
 previously seen in the slot (accounting for sequence wraparound).
 The replier proceeds to execute the new request, and the replier
 MUST increase the slot’s sequence ID by one.

 * A retransmitted request, in which the sequence ID is equal to that
 currently recorded in the slot. If the original request has
 executed to completion, the replier returns the cached reply. See
 Section 2.10.6.2 for direction on how the replier deals with
 retries of requests that are still in progress.

 * A misordered retry, in which the sequence ID is less than
 (accounting for sequence wraparound) that previously seen in the
 slot. The replier MUST return NFS4ERR_SEQ_MISORDERED (as the
 result from SEQUENCE or CB_SEQUENCE).

 * A misordered new request, in which the sequence ID is two or more
 than (accounting for sequence wraparound) that previously seen in
 the slot. Note that because the sequence ID MUST wrap around to
 zero once it reaches 0xFFFFFFFF, a misordered new request and a
 misordered retry cannot be distinguished. Thus, the replier MUST
 return NFS4ERR_SEQ_MISORDERED (as the result from SEQUENCE or
 CB_SEQUENCE).

 Unlike the XID, the slot ID is always within a specific range; this
 has two implications. The first implication is that for a given
 session, the replier need only cache the results of a limited number
 of COMPOUND requests. The second implication derives from the first,
 which is that unlike XID-indexed reply caches (also known as
 duplicate request caches - DRCs), the slot ID-based reply cache
 cannot be overflowed. Through use of the sequence ID to identify
 retransmitted requests, the replier does not need to actually cache
 the request itself, reducing the storage requirements of the reply
 cache further. These facilities make it practical to maintain all
 the required entries for an effective reply cache.

 The slot ID, sequence ID, and session ID therefore take over the
 traditional role of the XID and source network address in the
 replier’s reply cache implementation. This approach is considerably
 more portable and completely robust -- it is not subject to the
 reassignment of ports as clients reconnect over IP networks. In
 addition, the RPC XID is not used in the reply cache, enhancing
 robustness of the cache in the face of any rapid reuse of XIDs by the
 requester. While the replier does not care about the XID for the
 purposes of reply cache management (but the replier MUST return the
 same XID that was in the request), nonetheless there are
 considerations for the XID in NFSv4.1 that are the same as all other
 previous versions of NFS. The RPC XID remains in each message and
 needs to be formulated in NFSv4.1 requests as in any other ONC RPC
 request. The reasons include:

 * The RPC layer retains its existing semantics and implementation.

 * The requester and replier must be able to interoperate at the RPC
 layer, prior to the NFSv4.1 decoding of the SEQUENCE or
 CB_SEQUENCE operation.

 * If an operation is being used that does not start with SEQUENCE or
 CB_SEQUENCE (e.g., BIND_CONN_TO_SESSION), then the RPC XID is
 needed for correct operation to match the reply to the request.

 * The SEQUENCE or CB_SEQUENCE operation may generate an error. If
 so, the embedded slot ID, sequence ID, and session ID (if present)
 in the request will not be in the reply, and the requester has
 only the XID to match the reply to the request.

 Given that well-formulated XIDs continue to be required, this raises
 the question: why do SEQUENCE and CB_SEQUENCE replies have a session
 ID, slot ID, and sequence ID? Having the session ID in the reply
 means that the requester does not have to use the XID to look up the
 session ID, which would be necessary if the connection were
 associated with multiple sessions. Having the slot ID and sequence
 ID in the reply means that the requester does not have to use the XID
 to look up the slot ID and sequence ID. Furthermore, since the XID
 is only 32 bits, it is too small to guarantee the re-association of a
 reply with its request [44]; having session ID, slot ID, and sequence
 ID in the reply allows the client to validate that the reply in fact
 belongs to the matched request.

 The SEQUENCE (and CB_SEQUENCE) operation also carries a
 "highest_slotid" value, which carries additional requester slot usage
 information. The requester MUST always indicate the slot ID
 representing the outstanding request with the highest-numbered slot
 value. The requester should in all cases provide the most
 conservative value possible, although it can be increased somewhat
 above the actual instantaneous usage to maintain some minimum or
 optimal level. This provides a way for the requester to yield unused
 request slots back to the replier, which in turn can use the
 information to reallocate resources.

 The replier responds with both a new target highest_slotid and an
 enforced highest_slotid, described as follows:

 * The target highest_slotid is an indication to the requester of the
 highest_slotid the replier wishes the requester to be using. This
 permits the replier to withdraw (or add) resources from a
 requester that has been found to not be using them, in order to
 more fairly share resources among a varying level of demand from
 other requesters. The requester must always comply with the
 replier’s value updates, since they indicate newly established
 hard limits on the requester’s access to session resources.
 However, because of request pipelining, the requester may have
 active requests in flight reflecting prior values; therefore, the
 replier must not immediately require the requester to comply.

 * The enforced highest_slotid indicates the highest slot ID the
 requester is permitted to use on a subsequent SEQUENCE or
 CB_SEQUENCE operation. The replier’s enforced highest_slotid
 SHOULD be no less than the highest_slotid the requester indicated
 in the SEQUENCE or CB_SEQUENCE arguments.

 A requester can be intransigent with respect to lowering its
 highest_slotid argument to a Sequence operation, i.e. the
 requester continues to ignore the target highest_slotid in the
 response to a Sequence operation, and continues to set its
 highest_slotid argument to be higher than the target
 highest_slotid. This can be considered particularly egregious
 behavior when the replier knows there are no outstanding requests
 with slot IDs higher than its target highest_slotid. When faced
 with such intransigence, the replier is free to take more forceful
 action, and MAY reply with a new enforced highest_slotid that is
 less than its previous enforced highest_slotid. Thereafter, if

 the requester continues to send requests with a highest_slotid
 that is greater than the replier’s new enforced highest_slotid,
 the server MAY return NFS4ERR_BAD_HIGH_SLOT, unless the slot ID in
 the request is greater than the new enforced highest_slotid and
 the request is a retry.

 The replier SHOULD retain the slots it wants to retire until the
 requester sends a request with a highest_slotid less than or equal
 to the replier’s new enforced highest_slotid.

 The requester can also be intransigent with respect to sending
 non-retry requests that have a slot ID that exceeds the replier’s
 highest_slotid. Once the replier has forcibly lowered the
 enforced highest_slotid, the requester is only allowed to send
 retries on slots that exceed the replier’s highest_slotid. If a
 request is received with a slot ID that is higher than the new
 enforced highest_slotid, and the sequence ID is one higher than
 what is in the slot’s reply cache, then the server can both retire
 the slot and return NFS4ERR_BADSLOT (however, the server MUST NOT
 do one and not the other). The reason it is safe to retire the
 slot is because by using the next sequence ID, the requester is
 indicating it has received the previous reply for the slot.

 * The requester SHOULD use the lowest available slot when sending a
 new request. This way, the replier may be able to retire slot
 entries faster. However, where the replier is actively adjusting
 its granted highest_slotid, it will not be able to use only the
 receipt of the slot ID and highest_slotid in the request. Neither
 the slot ID nor the highest_slotid used in a request may reflect
 the replier’s current idea of the requester’s session limit,
 because the request may have been sent from the requester before
 the update was received. Therefore, in the downward adjustment
 case, the replier may have to retain a number of reply cache
 entries at least as large as the old value of maximum requests
 outstanding, until it can infer that the requester has seen a
 reply containing the new granted highest_slotid. The replier can
 infer that the requester has seen such a reply when it receives a
 new request with the same slot ID as the request replied to and
 the next higher sequence ID.

2.10.6.1.1. Caching of SEQUENCE and CB_SEQUENCE Replies

 When a SEQUENCE or CB_SEQUENCE operation is successfully executed,
 its reply MUST always be cached. Specifically, session ID, sequence
 ID, and slot ID MUST be cached in the reply cache. The reply from
 SEQUENCE also includes the highest slot ID, target highest slot ID,
 and status flags. Instead of caching these values, the server MAY
 re-compute the values from the current state of the fore channel,
 session, and/or client ID as appropriate. Similarly, the reply from
 CB_SEQUENCE includes a highest slot ID and target highest slot ID.
 The client MAY re-compute the values from the current state of the
 session as appropriate.

 Regardless of whether or not a replier is re-computing highest slot
 ID, target slot ID, and status on replies to retries, the requester
 MUST NOT assume that the values are being re-computed whenever it
 receives a reply after a retry is sent, since it has no way of
 knowing whether the reply it has received was sent by the replier in
 response to the retry or is a delayed response to the original
 request. Therefore, it may be the case that highest slot ID, target
 slot ID, or status bits may reflect the state of affairs when the
 request was first executed. Although acting based on such delayed
 information is valid, it may cause the receiver of the reply to do
 unneeded work. Requesters MAY choose to send additional requests to
 get the current state of affairs or use the state of affairs reported
 by subsequent requests, in preference to acting immediately on data
 that might be out of date.

2.10.6.1.2. Errors from SEQUENCE and CB_SEQUENCE

 Any time SEQUENCE or CB_SEQUENCE returns an error, the sequence ID of

 the slot MUST NOT change. The replier MUST NOT modify the reply
 cache entry for the slot whenever an error is returned from SEQUENCE
 or CB_SEQUENCE.

2.10.6.1.3. Optional Reply Caching

 On a per-request basis, the requester can choose to direct the
 replier to cache the reply to all operations after the first
 operation (SEQUENCE or CB_SEQUENCE) via the sa_cachethis or
 csa_cachethis fields of the arguments to SEQUENCE or CB_SEQUENCE.
 The reason it would not direct the replier to cache the entire reply
 is that the request is composed of all idempotent operations [41].
 Caching the reply may offer little benefit. If the reply is too
 large (see Section 2.10.6.4), it may not be cacheable anyway. Even
 if the reply to idempotent request is small enough to cache,
 unnecessarily caching the reply slows down the server and increases
 RPC latency.

 Whether or not the requester requests the reply to be cached has no
 effect on the slot processing. If the result of SEQUENCE or
 CB_SEQUENCE is NFS4_OK, then the slot’s sequence ID MUST be
 incremented by one. If a requester does not direct the replier to
 cache the reply, the replier MUST do one of following:

 * The replier can cache the entire original reply. Even though
 sa_cachethis or csa_cachethis is FALSE, the replier is always free
 to cache. It may choose this approach in order to simplify
 implementation.

 * The replier enters into its reply cache a reply consisting of the
 original results to the SEQUENCE or CB_SEQUENCE operation, and
 with the next operation in COMPOUND or CB_COMPOUND having the
 error NFS4ERR_RETRY_UNCACHED_REP. Thus, if the requester later
 retries the request, it will get NFS4ERR_RETRY_UNCACHED_REP. If a
 replier receives a retried Sequence operation where the reply to
 the COMPOUND or CB_COMPOUND was not cached, then the replier,

 - MAY return NFS4ERR_RETRY_UNCACHED_REP in reply to a Sequence
 operation if the Sequence operation is not the first operation
 (granted, a requester that does so is in violation of the
 NFSv4.1 protocol).

 - MUST NOT return NFS4ERR_RETRY_UNCACHED_REP in reply to a
 Sequence operation if the Sequence operation is the first
 operation.

 * If the second operation is an illegal operation, or an operation
 that was legal in a previous minor version of NFSv4 and MUST NOT
 be supported in the current minor version (e.g., SETCLIENTID), the
 replier MUST NOT ever return NFS4ERR_RETRY_UNCACHED_REP. Instead
 the replier MUST return NFS4ERR_OP_ILLEGAL or NFS4ERR_BADXDR or
 NFS4ERR_NOTSUPP as appropriate.

 * If the second operation can result in another error status, the
 replier MAY return a status other than NFS4ERR_RETRY_UNCACHED_REP,
 provided the operation is not executed in such a way that the
 state of the replier is changed. Examples of such an error status
 include: NFS4ERR_NOTSUPP returned for an operation that is legal
 but not REQUIRED in the current minor versions, and thus not
 supported by the replier; NFS4ERR_SEQUENCE_POS; and
 NFS4ERR_REQ_TOO_BIG.

 The discussion above assumes that the retried request matches the
 original one. Section 2.10.6.1.3.1 discusses what the replier might
 do, and MUST do when original and retried requests do not match.
 Since the replier may only cache a small amount of the information
 that would be required to determine whether this is a case of a false
 retry, the replier may send to the client any of the following
 responses:

 * The cached reply to the original request (if the replier has

 cached it in its entirety and the users of the original request
 and retry match).

 * A reply that consists only of the Sequence operation with the
 error NFS4ERR_SEQ_FALSE_RETRY.

 * A reply consisting of the response to Sequence with the status
 NFS4_OK, together with the second operation as it appeared in the
 retried request with an error of NFS4ERR_RETRY_UNCACHED_REP or
 other error as described above.

 * A reply that consists of the response to Sequence with the status
 NFS4_OK, together with the second operation as it appeared in the
 original request with an error of NFS4ERR_RETRY_UNCACHED_REP or
 other error as described above.

2.10.6.1.3.1. False Retry

 If a requester sent a Sequence operation with a slot ID and sequence
 ID that are in the reply cache but the replier detected that the
 retried request is not the same as the original request, including a
 retry that has different operations or different arguments in the
 operations from the original and a retry that uses a different
 principal in the RPC request’s credential field that translates to a
 different user, then this is a false retry. When the replier detects
 a false retry, it is permitted (but not always obligated) to return
 NFS4ERR_SEQ_FALSE_RETRY in response to the Sequence operation when it
 detects a false retry.

 Translations of particularly privileged user values to other users
 due to the lack of appropriately secure credentials, as configured on
 the replier, should be applied before determining whether the users
 are the same or different. If the replier determines the users are
 different between the original request and a retry, then the replier
 MUST return NFS4ERR_SEQ_FALSE_RETRY.

 If an operation of the retry is an illegal operation, or an operation
 that was legal in a previous minor version of NFSv4 and MUST NOT be
 supported in the current minor version (e.g., SETCLIENTID), the
 replier MAY return NFS4ERR_SEQ_FALSE_RETRY (and MUST do so if the
 users of the original request and retry differ). Otherwise, the
 replier MAY return NFS4ERR_OP_ILLEGAL or NFS4ERR_BADXDR or
 NFS4ERR_NOTSUPP as appropriate. Note that the handling is in
 contrast for how the replier deals with retries requests with no
 cached reply. The difference is due to NFS4ERR_SEQ_FALSE_RETRY being
 a valid error for only Sequence operations, whereas
 NFS4ERR_RETRY_UNCACHED_REP is a valid error for all operations except
 illegal operations and operations that MUST NOT be supported in the
 current minor version of NFSv4.

2.10.6.2. Retry and Replay of Reply

 A requester MUST NOT retry a request, unless the connection it used
 to send the request disconnects. The requester can then reconnect
 and re-send the request, or it can re-send the request over a
 different connection that is associated with the same session.

 If the requester is a server wanting to re-send a callback operation
 over the backchannel of a session, the requester of course cannot
 reconnect because only the client can associate connections with the
 backchannel. The server can re-send the request over another
 connection that is bound to the same session’s backchannel. If there
 is no such connection, the server MUST indicate that the session has
 no backchannel by setting the SEQ4_STATUS_CB_PATH_DOWN_SESSION flag
 bit in the response to the next SEQUENCE operation from the client.
 The client MUST then associate a connection with the session (or
 destroy the session).

 Note that it is not fatal for a requester to retry without a
 disconnect between the request and retry. However, the retry does
 consume resources, especially with RDMA, where each request, retry or

 not, consumes a credit. Retries for no reason, especially retries
 sent shortly after the previous attempt, are a poor use of network
 bandwidth and defeat the purpose of a transport’s inherent congestion
 control system.

 A requester MUST wait for a reply to a request before using the slot
 for another request. If it does not wait for a reply, then the
 requester does not know what sequence ID to use for the slot on its
 next request. For example, suppose a requester sends a request with
 sequence ID 1, and does not wait for the response. The next time it
 uses the slot, it sends the new request with sequence ID 2. If the
 replier has not seen the request with sequence ID 1, then the replier
 is not expecting sequence ID 2, and rejects the requester’s new
 request with NFS4ERR_SEQ_MISORDERED (as the result from SEQUENCE or
 CB_SEQUENCE).

 RDMA fabrics do not guarantee that the memory handles (Steering Tags)
 within each RPC/RDMA "chunk" [32] are valid on a scope outside that
 of a single connection. Therefore, handles used by the direct
 operations become invalid after connection loss. The server must
 ensure that any RDMA operations that must be replayed from the reply
 cache use the newly provided handle(s) from the most recent request.

 A retry might be sent while the original request is still in progress
 on the replier. The replier SHOULD deal with the issue by returning
 NFS4ERR_DELAY as the reply to SEQUENCE or CB_SEQUENCE operation, but
 implementations MAY return NFS4ERR_MISORDERED. Since errors from
 SEQUENCE and CB_SEQUENCE are never recorded in the reply cache, this
 approach allows the results of the execution of the original request
 to be properly recorded in the reply cache (assuming that the
 requester specified the reply to be cached).

2.10.6.3. Resolving Server Callback Races

 It is possible for server callbacks to arrive at the client before
 the reply from related fore channel operations. For example, a
 client may have been granted a delegation to a file it has opened,
 but the reply to the OPEN (informing the client of the granting of
 the delegation) may be delayed in the network. If a conflicting
 operation arrives at the server, it will recall the delegation using
 the backchannel, which may be on a different transport connection,
 perhaps even a different network, or even a different session
 associated with the same client ID.

 The presence of a session between the client and server alleviates
 this issue. When a session is in place, each client request is
 uniquely identified by its { session ID, slot ID, sequence ID }
 triple. By the rules under which slot entries (reply cache entries)
 are retired, the server has knowledge whether the client has "seen"
 each of the server’s replies. The server can therefore provide
 sufficient information to the client to allow it to disambiguate
 between an erroneous or conflicting callback race condition.

 For each client operation that might result in some sort of server
 callback, the server SHOULD "remember" the { session ID, slot ID,
 sequence ID } triple of the client request until the slot ID
 retirement rules allow the server to determine that the client has,
 in fact, seen the server’s reply. Until the time the { session ID,
 slot ID, sequence ID } request triple can be retired, any recalls of
 the associated object MUST carry an array of these referring
 identifiers (in the CB_SEQUENCE operation’s arguments), for the
 benefit of the client. After this time, it is not necessary for the
 server to provide this information in related callbacks, since it is
 certain that a race condition can no longer occur.

 The CB_SEQUENCE operation that begins each server callback carries a
 list of "referring" { session ID, slot ID, sequence ID } triples. If
 the client finds the request corresponding to the referring session
 ID, slot ID, and sequence ID to be currently outstanding (i.e., the
 server’s reply has not been seen by the client), it can determine
 that the callback has raced the reply, and act accordingly. If the

 client does not find the request corresponding to the referring
 triple to be outstanding (including the case of a session ID
 referring to a destroyed session), then there is no race with respect
 to this triple. The server SHOULD limit the referring triples to
 requests that refer to just those that apply to the objects referred
 to in the CB_COMPOUND procedure.

 The client must not simply wait forever for the expected server reply
 to arrive before responding to the CB_COMPOUND that won the race,
 because it is possible that it will be delayed indefinitely. The
 client should assume the likely case that the reply will arrive
 within the average round-trip time for COMPOUND requests to the
 server, and wait that period of time. If that period of time
 expires, it can respond to the CB_COMPOUND with NFS4ERR_DELAY. There
 are other scenarios under which callbacks may race replies. Among
 them are pNFS layout recalls as described in Section 12.5.5.2.

2.10.6.4. COMPOUND and CB_COMPOUND Construction Issues

 Very large requests and replies may pose both buffer management
 issues (especially with RDMA) and reply cache issues. When the
 session is created (Section 18.36), for each channel (fore and back),
 the client and server negotiate the maximum-sized request they will
 send or process (ca_maxrequestsize), the maximum-sized reply they
 will return or process (ca_maxresponsesize), and the maximum-sized
 reply they will store in the reply cache (ca_maxresponsesize_cached).

 If a request exceeds ca_maxrequestsize, the reply will have the
 status NFS4ERR_REQ_TOO_BIG. A replier MAY return NFS4ERR_REQ_TOO_BIG
 as the status for the first operation (SEQUENCE or CB_SEQUENCE) in
 the request (which means that no operations in the request executed
 and that the state of the slot in the reply cache is unchanged), or
 it MAY opt to return it on a subsequent operation in the same
 COMPOUND or CB_COMPOUND request (which means that at least one
 operation did execute and that the state of the slot in the reply
 cache does change). The replier SHOULD set NFS4ERR_REQ_TOO_BIG on
 the operation that exceeds ca_maxrequestsize.

 If a reply exceeds ca_maxresponsesize, the reply will have the status
 NFS4ERR_REP_TOO_BIG. A replier MAY return NFS4ERR_REP_TOO_BIG as the
 status for the first operation (SEQUENCE or CB_SEQUENCE) in the
 request, or it MAY opt to return it on a subsequent operation (in the
 same COMPOUND or CB_COMPOUND reply). A replier MAY return
 NFS4ERR_REP_TOO_BIG in the reply to SEQUENCE or CB_SEQUENCE, even if
 the response would still exceed ca_maxresponsesize.

 If sa_cachethis or csa_cachethis is TRUE, then the replier MUST cache
 a reply except if an error is returned by the SEQUENCE or CB_SEQUENCE
 operation (see Section 2.10.6.1.2). If the reply exceeds
 ca_maxresponsesize_cached (and sa_cachethis or csa_cachethis is
 TRUE), then the server MUST return NFS4ERR_REP_TOO_BIG_TO_CACHE.
 Even if NFS4ERR_REP_TOO_BIG_TO_CACHE (or any other error for that
 matter) is returned on an operation other than the first operation
 (SEQUENCE or CB_SEQUENCE), then the reply MUST be cached if
 sa_cachethis or csa_cachethis is TRUE. For example, if a COMPOUND
 has eleven operations, including SEQUENCE, the fifth operation is a
 RENAME, and the tenth operation is a READ for one million bytes, the
 server may return NFS4ERR_REP_TOO_BIG_TO_CACHE on the tenth
 operation. Since the server executed several operations, especially
 the non-idempotent RENAME, the client’s request to cache the reply
 needs to be honored in order for the correct operation of exactly
 once semantics. If the client retries the request, the server will
 have cached a reply that contains results for ten of the eleven
 requested operations, with the tenth operation having a status of
 NFS4ERR_REP_TOO_BIG_TO_CACHE.

 A client needs to take care that, when sending operations that change
 the current filehandle (except for PUTFH, PUTPUBFH, PUTROOTFH, and
 RESTOREFH), it does not exceed the maximum reply buffer before the
 GETFH operation. Otherwise, the client will have to retry the
 operation that changed the current filehandle, in order to obtain the

 desired filehandle. For the OPEN operation (see Section 18.16),
 retry is not always available as an option. The following guidelines
 for the handling of filehandle-changing operations are advised:

 * Within the same COMPOUND procedure, a client SHOULD send GETFH
 immediately after a current filehandle-changing operation. A
 client MUST send GETFH after a current filehandle-changing
 operation that is also non-idempotent (e.g., the OPEN operation),
 unless the operation is RESTOREFH. RESTOREFH is an exception,
 because even though it is non-idempotent, the filehandle RESTOREFH
 produced originated from an operation that is either idempotent
 (e.g., PUTFH, LOOKUP), or non-idempotent (e.g., OPEN, CREATE). If
 the origin is non-idempotent, then because the client MUST send
 GETFH after the origin operation, the client can recover if
 RESTOREFH returns an error.

 * A server MAY return NFS4ERR_REP_TOO_BIG or
 NFS4ERR_REP_TOO_BIG_TO_CACHE (if sa_cachethis is TRUE) on a
 filehandle-changing operation if the reply would be too large on
 the next operation.

 * A server SHOULD return NFS4ERR_REP_TOO_BIG or
 NFS4ERR_REP_TOO_BIG_TO_CACHE (if sa_cachethis is TRUE) on a
 filehandle-changing, non-idempotent operation if the reply would
 be too large on the next operation, especially if the operation is
 OPEN.

 * A server MAY return NFS4ERR_UNSAFE_COMPOUND to a non-idempotent
 current filehandle-changing operation, if it looks at the next
 operation (in the same COMPOUND procedure) and finds it is not
 GETFH. The server SHOULD do this if it is unable to determine in
 advance whether the total response size would exceed
 ca_maxresponsesize_cached or ca_maxresponsesize.

2.10.6.5. Persistence

 Since the reply cache is bounded, it is practical for the reply cache
 to persist across server restarts. The replier MUST persist the
 following information if it agreed to persist the session (when the
 session was created; see Section 18.36):

 * The session ID.

 * The slot table including the sequence ID and cached reply for each
 slot.

 The above are sufficient for a replier to provide EOS semantics for
 any requests that were sent and executed before the server restarted.
 If the replier is a client, then there is no need for it to persist
 any more information, unless the client will be persisting all other
 state across client restart, in which case, the server will never see
 any NFSv4.1-level protocol manifestation of a client restart. If the
 replier is a server, with just the slot table and session ID
 persisting, any requests the client retries after the server restart
 will return the results that are cached in the reply cache, and any
 new requests (i.e., the sequence ID is one greater than the slot’s
 sequence ID) MUST be rejected with NFS4ERR_DEADSESSION (returned by
 SEQUENCE). Such a session is considered dead. A server MAY re-
 animate a session after a server restart so that the session will
 accept new requests as well as retries. To re-animate a session, the
 server needs to persist additional information through server
 restart:

 * The client ID. This is a prerequisite to let the client create
 more sessions associated with the same client ID as the re-
 animated session.

 * The client ID’s sequence ID that is used for creating sessions
 (see Sections 18.35 and 18.36). This is a prerequisite to let the
 client create more sessions.

 * The principal that created the client ID. This allows the server
 to authenticate the client when it sends EXCHANGE_ID.

 * The SSV, if SP4_SSV state protection was specified when the client
 ID was created (see Section 18.35). This lets the client create
 new sessions, and associate connections with the new and existing
 sessions.

 * The properties of the client ID as defined in Section 18.35.

 A persistent reply cache places certain demands on the server. The
 execution of the sequence of operations (starting with SEQUENCE) and
 placement of its results in the persistent cache MUST be atomic. If
 a client retries a sequence of operations that was previously
 executed on the server, the only acceptable outcomes are either the
 original cached reply or an indication that the client ID or session
 has been lost (indicating a catastrophic loss of the reply cache or a
 session that has been deleted because the client failed to use the
 session for an extended period of time).

 A server could fail and restart in the middle of a COMPOUND procedure
 that contains one or more non-idempotent or idempotent-but-modifying
 operations. This creates an even higher challenge for atomic
 execution and placement of results in the reply cache. One way to
 view the problem is as a single transaction consisting of each
 operation in the COMPOUND followed by storing the result in
 persistent storage, then finally a transaction commit. If there is a
 failure before the transaction is committed, then the server rolls
 back the transaction. If the server itself fails, then when it
 restarts, its recovery logic could roll back the transaction before
 starting the NFSv4.1 server.

 While the description of the implementation for atomic execution of
 the request and caching of the reply is beyond the scope of this
 document, an example implementation for NFSv2 [45] is described in
 [46].

2.10.7. RDMA Considerations

 A complete discussion of the operation of RPC-based protocols over
 RDMA transports is in [32]. A discussion of the operation of NFSv4,
 including NFSv4.1, over RDMA is in [33]. Where RDMA is considered,
 this specification assumes the use of such a layering; it addresses
 only the upper-layer issues relevant to making best use of RPC/RDMA.

2.10.7.1. RDMA Connection Resources

 RDMA requires its consumers to register memory and post buffers of a
 specific size and number for receive operations.

 Registration of memory can be a relatively high-overhead operation,
 since it requires pinning of buffers, assignment of attributes (e.g.,
 readable/writable), and initialization of hardware translation.
 Preregistration is desirable to reduce overhead. These registrations
 are specific to hardware interfaces and even to RDMA connection
 endpoints; therefore, negotiation of their limits is desirable to
 manage resources effectively.

 Following basic registration, these buffers must be posted by the RPC
 layer to handle receives. These buffers remain in use by the RPC/
 NFSv4.1 implementation; the size and number of them must be known to
 the remote peer in order to avoid RDMA errors that would cause a
 fatal error on the RDMA connection.

 NFSv4.1 manages slots as resources on a per-session basis (see
 Section 2.10), while RDMA connections manage credits on a per-
 connection basis. This means that in order for a peer to send data
 over RDMA to a remote buffer, it has to have both an NFSv4.1 slot and
 an RDMA credit. If multiple RDMA connections are associated with a
 session, then if the total number of credits across all RDMA
 connections associated with the session is X, and the number of slots

 in the session is Y, then the maximum number of outstanding requests
 is the lesser of X and Y.

2.10.7.2. Flow Control

 Previous versions of NFS do not provide flow control; instead, they
 rely on the windowing provided by transports like TCP to throttle
 requests. This does not work with RDMA, which provides no operation
 flow control and will terminate a connection in error when limits are
 exceeded. Limits such as maximum number of requests outstanding are
 therefore negotiated when a session is created (see the
 ca_maxrequests field in Section 18.36). These limits then provide
 the maxima within which each connection associated with the session’s
 channel(s) must remain. RDMA connections are managed within these
 limits as described in Section 3.3 of [32]; if there are multiple
 RDMA connections, then the maximum number of requests for a channel
 will be divided among the RDMA connections. Put a different way, the
 onus is on the replier to ensure that the total number of RDMA
 credits across all connections associated with the replier’s channel
 does exceed the channel’s maximum number of outstanding requests.

 The limits may also be modified dynamically at the replier’s choosing
 by manipulating certain parameters present in each NFSv4.1 reply. In
 addition, the CB_RECALL_SLOT callback operation (see Section 20.8)
 can be sent by a server to a client to return RDMA credits to the
 server, thereby lowering the maximum number of requests a client can
 have outstanding to the server.

2.10.7.3. Padding

 Header padding is requested by each peer at session initiation (see
 the ca_headerpadsize argument to CREATE_SESSION in Section 18.36),
 and subsequently used by the RPC RDMA layer, as described in [32].
 Zero padding is permitted.

 Padding leverages the useful property that RDMA preserve alignment of
 data, even when they are placed into anonymous (untagged) buffers.
 If requested, client inline writes will insert appropriate pad bytes
 within the request header to align the data payload on the specified
 boundary. The client is encouraged to add sufficient padding (up to
 the negotiated size) so that the "data" field of the WRITE operation
 is aligned. Most servers can make good use of such padding, which
 allows them to chain receive buffers in such a way that any data
 carried by client requests will be placed into appropriate buffers at
 the server, ready for file system processing. The receiver’s RPC
 layer encounters no overhead from skipping over pad bytes, and the
 RDMA layer’s high performance makes the insertion and transmission of
 padding on the sender a significant optimization. In this way, the
 need for servers to perform RDMA Read to satisfy all but the largest
 client writes is obviated. An added benefit is the reduction of
 message round trips on the network -- a potentially good trade, where
 latency is present.

 The value to choose for padding is subject to a number of criteria.
 A primary source of variable-length data in the RPC header is the
 authentication information, the form of which is client-determined,
 possibly in response to server specification. The contents of
 COMPOUNDs, sizes of strings such as those passed to RENAME, etc. all
 go into the determination of a maximal NFSv4.1 request size and
 therefore minimal buffer size. The client must select its offered
 value carefully, so as to avoid overburdening the server, and vice
 versa. The benefit of an appropriate padding value is higher
 performance.

 Sender gather:
 |RPC Request|Pad bytes|Length| -> |User data...|
 \------+----------------------/ \
 \ \
 \ Receiver scatter: \-----------+- ...
 /-----+----------------\ \ \
 |RPC Request|Pad|Length| -> |FS buffer|->|FS buffer|->...

 In the above case, the server may recycle unused buffers to the next
 posted receive if unused by the actual received request, or may pass
 the now-complete buffers by reference for normal write processing.
 For a server that can make use of it, this removes any need for data
 copies of incoming data, without resorting to complicated end-to-end
 buffer advertisement and management. This includes most kernel-based
 and integrated server designs, among many others. The client may
 perform similar optimizations, if desired.

2.10.7.4. Dual RDMA and Non-RDMA Transports

 Some RDMA transports (e.g., RFC 5040 [8]) permit a "streaming" (non-
 RDMA) phase, where ordinary traffic might flow before "stepping up"
 to RDMA mode, commencing RDMA traffic. Some RDMA transports start
 connections always in RDMA mode. NFSv4.1 allows, but does not
 assume, a streaming phase before RDMA mode. When a connection is
 associated with a session, the client and server negotiate whether
 the connection is used in RDMA or non-RDMA mode (see Sections 18.36
 and 18.34).

2.10.8. Session Security

2.10.8.1. Session Callback Security

 Via session/connection association, NFSv4.1 improves security over
 that provided by NFSv4.0 for the backchannel. The connection is
 client-initiated (see Section 18.34) and subject to the same firewall
 and routing checks as the fore channel. At the client’s option (see
 Section 18.35), connection association is fully authenticated before
 being activated (see Section 18.34). Traffic from the server over
 the backchannel is authenticated exactly as the client specifies (see
 Section 2.10.8.2).

2.10.8.2. Backchannel RPC Security

 When the NFSv4.1 client establishes the backchannel, it informs the
 server of the security flavors and principals to use when sending
 requests. If the security flavor is RPCSEC_GSS, the client expresses
 the principal in the form of an established RPCSEC_GSS context. The
 server is free to use any of the flavor/principal combinations the
 client offers, but it MUST NOT use unoffered combinations. This way,
 the client need not provide a target GSS principal for the
 backchannel as it did with NFSv4.0, nor does the server have to
 implement an RPCSEC_GSS initiator as it did with NFSv4.0 [37].

 The CREATE_SESSION (Section 18.36) and BACKCHANNEL_CTL
 (Section 18.33) operations allow the client to specify flavor/
 principal combinations.

 Also note that the SP4_SSV state protection mode (see Sections 18.35
 and 2.10.8.3) has the side benefit of providing SSV-derived
 RPCSEC_GSS contexts (Section 2.10.9).

2.10.8.3. Protection from Unauthorized State Changes

 As described to this point in the specification, the state model of
 NFSv4.1 is vulnerable to an attacker that sends a SEQUENCE operation
 with a forged session ID and with a slot ID that it expects the
 legitimate client to use next. When the legitimate client uses the
 slot ID with the same sequence number, the server returns the
 attacker’s result from the reply cache, which disrupts the legitimate
 client and thus denies service to it. Similarly, an attacker could
 send a CREATE_SESSION with a forged client ID to create a new session
 associated with the client ID. The attacker could send requests
 using the new session that change locking state, such as LOCKU
 operations to release locks the legitimate client has acquired.
 Setting a security policy on the file that requires RPCSEC_GSS
 credentials when manipulating the file’s state is one potential work
 around, but has the disadvantage of preventing a legitimate client
 from releasing state when RPCSEC_GSS is required to do so, but a GSS

 context cannot be obtained (possibly because the user has logged off
 the client).

 NFSv4.1 provides three options to a client for state protection,
 which are specified when a client creates a client ID via EXCHANGE_ID
 (Section 18.35).

 The first (SP4_NONE) is to simply waive state protection.

 The other two options (SP4_MACH_CRED and SP4_SSV) share several
 traits:

 * An RPCSEC_GSS-based credential is used to authenticate client ID
 and session maintenance operations, including creating and
 destroying a session, associating a connection with the session,
 and destroying the client ID.

 * Because RPCSEC_GSS is used to authenticate client ID and session
 maintenance, the attacker cannot associate a rogue connection with
 a legitimate session, or associate a rogue session with a
 legitimate client ID in order to maliciously alter the client ID’s
 lock state via CLOSE, LOCKU, DELEGRETURN, LAYOUTRETURN, etc.

 * In cases where the server’s security policies on a portion of its
 namespace require RPCSEC_GSS authentication, a client may have to
 use an RPCSEC_GSS credential to remove per-file state (e.g.,
 LOCKU, CLOSE, etc.). The server may require that the principal
 that removes the state match certain criteria (e.g., the principal
 might have to be the same as the one that acquired the state).
 However, the client might not have an RPCSEC_GSS context for such
 a principal, and might not be able to create such a context
 (perhaps because the user has logged off). When the client
 establishes SP4_MACH_CRED or SP4_SSV protection, it can specify a
 list of operations that the server MUST allow using the machine
 credential (if SP4_MACH_CRED is used) or the SSV credential (if
 SP4_SSV is used).

 The SP4_MACH_CRED state protection option uses a machine credential
 where the principal that creates the client ID MUST also be the
 principal that performs client ID and session maintenance operations.
 The security of the machine credential state protection approach
 depends entirely on safeguarding the per-machine credential.
 Assuming a proper safeguard using the per-machine credential for
 operations like CREATE_SESSION, BIND_CONN_TO_SESSION,
 DESTROY_SESSION, and DESTROY_CLIENTID will prevent an attacker from
 associating a rogue connection with a session, or associating a rogue
 session with a client ID.

 There are at least three scenarios for the SP4_MACH_CRED option:

 1. The system administrator configures a unique, permanent per-
 machine credential for one of the mandated GSS mechanisms (e.g.,
 if Kerberos V5 is used, a "keytab" containing a principal derived
 from a client host name could be used).

 2. The client is used by a single user, and so the client ID and its
 sessions are used by just that user. If the user’s credential
 expires, then session and client ID maintenance cannot occur, but
 since the client has a single user, only that user is
 inconvenienced.

 3. The physical client has multiple users, but the client
 implementation has a unique client ID for each user. This is
 effectively the same as the second scenario, but a disadvantage
 is that each user needs to be allocated at least one session
 each, so the approach suffers from lack of economy.

 The SP4_SSV protection option uses the SSV (Section 1.7), via
 RPCSEC_GSS and the SSV GSS mechanism (Section 2.10.9), to protect
 state from attack. The SP4_SSV protection option is intended for the
 situation comprised of a client that has multiple active users and a

 system administrator who wants to avoid the burden of installing a
 permanent machine credential on each client. The SSV is established
 and updated on the server via SET_SSV (see Section 18.47). To
 prevent eavesdropping, a client SHOULD send SET_SSV via RPCSEC_GSS
 with the privacy service. Several aspects of the SSV make it
 intractable for an attacker to guess the SSV, and thus associate
 rogue connections with a session, and rogue sessions with a client
 ID:

 * The arguments to and results of SET_SSV include digests of the old
 and new SSV, respectively.

 * Because the initial value of the SSV is zero, therefore known, the
 client that opts for SP4_SSV protection and opts to apply SP4_SSV
 protection to BIND_CONN_TO_SESSION and CREATE_SESSION MUST send at
 least one SET_SSV operation before the first BIND_CONN_TO_SESSION
 operation or before the second CREATE_SESSION operation on a
 client ID. If it does not, the SSV mechanism will not generate
 tokens (Section 2.10.9). A client SHOULD send SET_SSV as soon as
 a session is created.

 * A SET_SSV request does not replace the SSV with the argument to
 SET_SSV. Instead, the current SSV on the server is logically
 exclusive ORed (XORed) with the argument to SET_SSV. Each time a
 new principal uses a client ID for the first time, the client
 SHOULD send a SET_SSV with that principal’s RPCSEC_GSS
 credentials, with RPCSEC_GSS service set to RPC_GSS_SVC_PRIVACY.

 Here are the types of attacks that can be attempted by an attacker
 named Eve on a victim named Bob, and how SP4_SSV protection foils
 each attack:

 * Suppose Eve is the first user to log into a legitimate client.
 Eve’s use of an NFSv4.1 file system will cause the legitimate
 client to create a client ID with SP4_SSV protection, specifying
 that the BIND_CONN_TO_SESSION operation MUST use the SSV
 credential. Eve’s use of the file system also causes an SSV to be
 created. The SET_SSV operation that creates the SSV will be
 protected by the RPCSEC_GSS context created by the legitimate
 client, which uses Eve’s GSS principal and credentials. Eve can
 eavesdrop on the network while her RPCSEC_GSS context is created
 and the SET_SSV using her context is sent. Even if the legitimate
 client sends the SET_SSV with RPC_GSS_SVC_PRIVACY, because Eve
 knows her own credentials, she can decrypt the SSV. Eve can
 compute an RPCSEC_GSS credential that BIND_CONN_TO_SESSION will
 accept, and so associate a new connection with the legitimate
 session. Eve can change the slot ID and sequence state of a
 legitimate session, and/or the SSV state, in such a way that when
 Bob accesses the server via the same legitimate client, the
 legitimate client will be unable to use the session.

 The client’s only recourse is to create a new client ID for Bob to
 use, and establish a new SSV for the client ID. The client will
 be unable to delete the old client ID, and will let the lease on
 the old client ID expire.

 Once the legitimate client establishes an SSV over the new session
 using Bob’s RPCSEC_GSS context, Eve can use the new session via
 the legitimate client, but she cannot disrupt Bob. Moreover,
 because the client SHOULD have modified the SSV due to Eve using
 the new session, Bob cannot get revenge on Eve by associating a
 rogue connection with the session.

 The question is how did the legitimate client detect that Eve has
 hijacked the old session? When the client detects that a new
 principal, Bob, wants to use the session, it SHOULD have sent a
 SET_SSV, which leads to the following sub-scenarios:

 - Let us suppose that from the rogue connection, Eve sent a
 SET_SSV with the same slot ID and sequence ID that the
 legitimate client later uses. The server will assume the

 SET_SSV sent with Bob’s credentials is a retry, and return to
 the legitimate client the reply it sent Eve. However, unless
 Eve can correctly guess the SSV the legitimate client will use,
 the digest verification checks in the SET_SSV response will
 fail. That is an indication to the client that the session has
 apparently been hijacked.

 - Alternatively, Eve sent a SET_SSV with a different slot ID than
 the legitimate client uses for its SET_SSV. Then the digest
 verification of the SET_SSV sent with Bob’s credentials fails
 on the server, and the error returned to the client makes it
 apparent that the session has been hijacked.

 - Alternatively, Eve sent an operation other than SET_SSV, but
 with the same slot ID and sequence that the legitimate client
 uses for its SET_SSV. The server returns to the legitimate
 client the response it sent Eve. The client sees that the
 response is not at all what it expects. The client assumes
 either session hijacking or a server bug, and either way
 destroys the old session.

 * Eve associates a rogue connection with the session as above, and
 then destroys the session. Again, Bob goes to use the server from
 the legitimate client, which sends a SET_SSV using Bob’s
 credentials. The client receives an error that indicates that the
 session does not exist. When the client tries to create a new
 session, this will fail because the SSV it has does not match that
 which the server has, and now the client knows the session was
 hijacked. The legitimate client establishes a new client ID.

 * If Eve creates a connection before the legitimate client
 establishes an SSV, because the initial value of the SSV is zero
 and therefore known, Eve can send a SET_SSV that will pass the
 digest verification check. However, because the new connection
 has not been associated with the session, the SET_SSV is rejected
 for that reason.

 In summary, an attacker’s disruption of state when SP4_SSV protection
 is in use is limited to the formative period of a client ID, its
 first session, and the establishment of the SSV. Once a non-
 malicious user uses the client ID, the client quickly detects any
 hijack and rectifies the situation. Once a non-malicious user
 successfully modifies the SSV, the attacker cannot use NFSv4.1
 operations to disrupt the non-malicious user.

 Note that neither the SP4_MACH_CRED nor SP4_SSV protection approaches
 prevent hijacking of a transport connection that has previously been
 associated with a session. If the goal of a counter-threat strategy
 is to prevent connection hijacking, the use of IPsec is RECOMMENDED.

 If a connection hijack occurs, the hijacker could in theory change
 locking state and negatively impact the service to legitimate
 clients. However, if the server is configured to require the use of
 RPCSEC_GSS with integrity or privacy on the affected file objects,
 and if EXCHGID4_FLAG_BIND_PRINC_STATEID capability (Section 18.35) is
 in force, this will thwart unauthorized attempts to change locking
 state.

2.10.9. The Secret State Verifier (SSV) GSS Mechanism

 The SSV provides the secret key for a GSS mechanism internal to
 NFSv4.1 that NFSv4.1 uses for state protection. Contexts for this
 mechanism are not established via the RPCSEC_GSS protocol. Instead,
 the contexts are automatically created when EXCHANGE_ID specifies
 SP4_SSV protection. The only tokens defined are the PerMsgToken
 (emitted by GSS_GetMIC) and the SealedMessage token (emitted by
 GSS_Wrap).

 The mechanism OID for the SSV mechanism is
 iso.org.dod.internet.private.enterprise.Michael Eisler.nfs.ssv_mech
 (1.3.6.1.4.1.28882.1.1). While the SSV mechanism does not define any

 initial context tokens, the OID can be used to let servers indicate
 that the SSV mechanism is acceptable whenever the client sends a
 SECINFO or SECINFO_NO_NAME operation (see Section 2.6).

 The SSV mechanism defines four subkeys derived from the SSV value.
 Each time SET_SSV is invoked, the subkeys are recalculated by the
 client and server. The calculation of each of the four subkeys
 depends on each of the four respective ssv_subkey4 enumerated values.
 The calculation uses the HMAC [52] algorithm, using the current SSV
 as the key, the one-way hash algorithm as negotiated by EXCHANGE_ID,
 and the input text as represented by the XDR encoded enumeration
 value for that subkey of data type ssv_subkey4. If the length of the
 output of the HMAC algorithm exceeds the length of key of the
 encryption algorithm (which is also negotiated by EXCHANGE_ID), then
 the subkey MUST be truncated from the HMAC output, i.e., if the
 subkey is of N bytes long, then the first N bytes of the HMAC output
 MUST be used for the subkey. The specification of EXCHANGE_ID states
 that the length of the output of the HMAC algorithm MUST NOT be less
 than the length of subkey needed for the encryption algorithm (see
 Section 18.35).

 /* Input for computing subkeys */
 enum ssv_subkey4 {
 SSV4_SUBKEY_MIC_I2T = 1,
 SSV4_SUBKEY_MIC_T2I = 2,
 SSV4_SUBKEY_SEAL_I2T = 3,
 SSV4_SUBKEY_SEAL_T2I = 4
 };

 The subkey derived from SSV4_SUBKEY_MIC_I2T is used for calculating
 message integrity codes (MICs) that originate from the NFSv4.1
 client, whether as part of a request over the fore channel or a
 response over the backchannel. The subkey derived from
 SSV4_SUBKEY_MIC_T2I is used for MICs originating from the NFSv4.1
 server. The subkey derived from SSV4_SUBKEY_SEAL_I2T is used for
 encryption text originating from the NFSv4.1 client, and the subkey
 derived from SSV4_SUBKEY_SEAL_T2I is used for encryption text
 originating from the NFSv4.1 server.

 The PerMsgToken description is based on an XDR definition:

 /* Input for computing smt_hmac */
 struct ssv_mic_plain_tkn4 {
 uint32_t smpt_ssv_seq;
 opaque smpt_orig_plain<>;
 };

 /* SSV GSS PerMsgToken token */
 struct ssv_mic_tkn4 {
 uint32_t smt_ssv_seq;
 opaque smt_hmac<>;
 };

 The field smt_hmac is an HMAC calculated by using the subkey derived
 from SSV4_SUBKEY_MIC_I2T or SSV4_SUBKEY_MIC_T2I as the key, the one-
 way hash algorithm as negotiated by EXCHANGE_ID, and the input text
 as represented by data of type ssv_mic_plain_tkn4. The field
 smpt_ssv_seq is the same as smt_ssv_seq. The field smpt_orig_plain
 is the "message" input passed to GSS_GetMIC() (see Section 2.3.1 of
 [7]). The caller of GSS_GetMIC() provides a pointer to a buffer
 containing the plain text. The SSV mechanism’s entry point for
 GSS_GetMIC() encodes this into an opaque array, and the encoding will
 include an initial four-byte length, plus any necessary padding.
 Prepended to this will be the XDR encoded value of smpt_ssv_seq, thus
 making up an XDR encoding of a value of data type ssv_mic_plain_tkn4,
 which in turn is the input into the HMAC.

 The token emitted by GSS_GetMIC() is XDR encoded and of XDR data type
 ssv_mic_tkn4. The field smt_ssv_seq comes from the SSV sequence
 number, which is equal to one after SET_SSV (Section 18.47) is called
 the first time on a client ID. Thereafter, the SSV sequence number

 is incremented on each SET_SSV. Thus, smt_ssv_seq represents the
 version of the SSV at the time GSS_GetMIC() was called. As noted in
 Section 18.35, the client and server can maintain multiple concurrent
 versions of the SSV. This allows the SSV to be changed without
 serializing all RPC calls that use the SSV mechanism with SET_SSV
 operations. Once the HMAC is calculated, it is XDR encoded into
 smt_hmac, which will include an initial four-byte length, and any
 necessary padding. Prepended to this will be the XDR encoded value
 of smt_ssv_seq.

 The SealedMessage description is based on an XDR definition:

 /* Input for computing ssct_encr_data and ssct_hmac */
 struct ssv_seal_plain_tkn4 {
 opaque sspt_confounder<>;
 uint32_t sspt_ssv_seq;
 opaque sspt_orig_plain<>;
 opaque sspt_pad<>;
 };

 /* SSV GSS SealedMessage token */
 struct ssv_seal_cipher_tkn4 {
 uint32_t ssct_ssv_seq;
 opaque ssct_iv<>;
 opaque ssct_encr_data<>;
 opaque ssct_hmac<>;
 };

 The token emitted by GSS_Wrap() is XDR encoded and of XDR data type
 ssv_seal_cipher_tkn4.

 The ssct_ssv_seq field has the same meaning as smt_ssv_seq.

 The ssct_encr_data field is the result of encrypting a value of the
 XDR encoded data type ssv_seal_plain_tkn4. The encryption key is the
 subkey derived from SSV4_SUBKEY_SEAL_I2T or SSV4_SUBKEY_SEAL_T2I, and
 the encryption algorithm is that negotiated by EXCHANGE_ID.

 The ssct_iv field is the initialization vector (IV) for the
 encryption algorithm (if applicable) and is sent in clear text. The
 content and size of the IV MUST comply with the specification of the
 encryption algorithm. For example, the id-aes256-CBC algorithm MUST
 use a 16-byte initialization vector (IV), which MUST be unpredictable
 for each instance of a value of data type ssv_seal_plain_tkn4 that is
 encrypted with a particular SSV key.

 The ssct_hmac field is the result of computing an HMAC using the
 value of the XDR encoded data type ssv_seal_plain_tkn4 as the input
 text. The key is the subkey derived from SSV4_SUBKEY_MIC_I2T or
 SSV4_SUBKEY_MIC_T2I, and the one-way hash algorithm is that
 negotiated by EXCHANGE_ID.

 The sspt_confounder field is a random value.

 The sspt_ssv_seq field is the same as ssvt_ssv_seq.

 The field sspt_orig_plain field is the original plaintext and is the
 "input_message" input passed to GSS_Wrap() (see Section 2.3.3 of
 [7]). As with the handling of the plaintext by the SSV mechanism’s
 GSS_GetMIC() entry point, the entry point for GSS_Wrap() expects a
 pointer to the plaintext, and will XDR encode an opaque array into
 sspt_orig_plain representing the plain text, along with the other
 fields of an instance of data type ssv_seal_plain_tkn4.

 The sspt_pad field is present to support encryption algorithms that
 require inputs to be in fixed-sized blocks. The content of sspt_pad
 is zero filled except for the length. Beware that the XDR encoding
 of ssv_seal_plain_tkn4 contains three variable-length arrays, and so
 each array consumes four bytes for an array length, and each array
 that follows the length is always padded to a multiple of four bytes
 per the XDR standard.

 For example, suppose the encryption algorithm uses 16-byte blocks,
 and the sspt_confounder is three bytes long, and the sspt_orig_plain
 field is 15 bytes long. The XDR encoding of sspt_confounder uses
 eight bytes (4 + 3 + 1-byte pad), the XDR encoding of sspt_ssv_seq
 uses four bytes, the XDR encoding of sspt_orig_plain uses 20 bytes (4
 + 15 + 1-byte pad), and the smallest XDR encoding of the sspt_pad
 field is four bytes. This totals 36 bytes. The next multiple of 16
 is 48; thus, the length field of sspt_pad needs to be set to 12
 bytes, or a total encoding of 16 bytes. The total number of XDR
 encoded bytes is thus 8 + 4 + 20 + 16 = 48.

 GSS_Wrap() emits a token that is an XDR encoding of a value of data
 type ssv_seal_cipher_tkn4. Note that regardless of whether or not
 the caller of GSS_Wrap() requests confidentiality, the token always
 has confidentiality. This is because the SSV mechanism is for
 RPCSEC_GSS, and RPCSEC_GSS never produces GSS_wrap() tokens without
 confidentiality.

 There is one SSV per client ID. There is a single GSS context for a
 client ID / SSV pair. All SSV mechanism RPCSEC_GSS handles of a
 client ID / SSV pair share the same GSS context. SSV GSS contexts do
 not expire except when the SSV is destroyed (causes would include the
 client ID being destroyed or a server restart). Since one purpose of
 context expiration is to replace keys that have been in use for "too
 long", hence vulnerable to compromise by brute force or accident, the
 client can replace the SSV key by sending periodic SET_SSV
 operations, which is done by cycling through different users’
 RPCSEC_GSS credentials. This way, the SSV is replaced without
 destroying the SSV’s GSS contexts.

 SSV RPCSEC_GSS handles can be expired or deleted by the server at any
 time, and the EXCHANGE_ID operation can be used to create more SSV
 RPCSEC_GSS handles. Expiration of SSV RPCSEC_GSS handles does not
 imply that the SSV or its GSS context has expired.

 The client MUST establish an SSV via SET_SSV before the SSV GSS
 context can be used to emit tokens from GSS_Wrap() and GSS_GetMIC().
 If SET_SSV has not been successfully called, attempts to emit tokens
 MUST fail.

 The SSV mechanism does not support replay detection and sequencing in
 its tokens because RPCSEC_GSS does not use those features (see
 "Context Creation Requests", Section 5.2.2 of [4]). However,
 Section 2.10.10 discusses special considerations for the SSV
 mechanism when used with RPCSEC_GSS.

2.10.10. Security Considerations for RPCSEC_GSS When Using the SSV
 Mechanism

 When a client ID is created with SP4_SSV state protection (see
 Section 18.35), the client is permitted to associate multiple
 RPCSEC_GSS handles with the single SSV GSS context (see
 Section 2.10.9). Because of the way RPCSEC_GSS (both version 1 and
 version 2, see [4] and [9]) calculate the verifier of the reply,
 special care must be taken by the implementation of the NFSv4.1
 client to prevent attacks by a man-in-the-middle. The verifier of an
 RPCSEC_GSS reply is the output of GSS_GetMIC() applied to the input
 value of the seq_num field of the RPCSEC_GSS credential (data type
 rpc_gss_cred_ver_1_t) (see Section 5.3.3.2 of [4]). If multiple
 RPCSEC_GSS handles share the same GSS context, then if one handle is
 used to send a request with the same seq_num value as another handle,
 an attacker could block the reply, and replace it with the verifier
 used for the other handle.

 There are multiple ways to prevent the attack on the SSV RPCSEC_GSS
 verifier in the reply. The simplest is believed to be as follows.

 * Each time one or more new SSV RPCSEC_GSS handles are created via
 EXCHANGE_ID, the client SHOULD send a SET_SSV operation to modify
 the SSV. By changing the SSV, the new handles will not result in

 the re-use of an SSV RPCSEC_GSS verifier in a reply.

 * When a requester decides to use N SSV RPCSEC_GSS handles, it
 SHOULD assign a unique and non-overlapping range of seq_nums to
 each SSV RPCSEC_GSS handle. The size of each range SHOULD be
 equal to MAXSEQ / N (see Section 5 of [4] for the definition of
 MAXSEQ). When an SSV RPCSEC_GSS handle reaches its maximum, it
 SHOULD force the replier to destroy the handle by sending a NULL
 RPC request with seq_num set to MAXSEQ + 1 (see Section 5.3.3.3 of
 [4]).

 * When the requester wants to increase or decrease N, it SHOULD
 force the replier to destroy all N handles by sending a NULL RPC
 request on each handle with seq_num set to MAXSEQ + 1. If the
 requester is the client, it SHOULD send a SET_SSV operation before
 using new handles. If the requester is the server, then the
 client SHOULD send a SET_SSV operation when it detects that the
 server has forced it to destroy a backchannel’s SSV RPCSEC_GSS
 handle. By sending a SET_SSV operation, the SSV will change, and
 so the attacker will be unavailable to successfully replay a
 previous verifier in a reply to the requester.

 Note that if the replier carefully creates the SSV RPCSEC_GSS
 handles, the related risk of a man-in-the-middle splicing a forged
 SSV RPCSEC_GSS credential with a verifier for another handle does not
 exist. This is because the verifier in an RPCSEC_GSS request is
 computed from input that includes both the RPCSEC_GSS handle and
 seq_num (see Section 5.3.1 of [4]). Provided the replier takes care
 to avoid re-using the value of an RPCSEC_GSS handle that it creates,
 such as by including a generation number in the handle, the man-in-
 the-middle will not be able to successfully replay a previous
 verifier in the request to a replier.

2.10.11. Session Mechanics - Steady State

2.10.11.1. Obligations of the Server

 The server has the primary obligation to monitor the state of
 backchannel resources that the client has created for the server
 (RPCSEC_GSS contexts and backchannel connections). If these
 resources vanish, the server takes action as specified in
 Section 2.10.13.2.

2.10.11.2. Obligations of the Client

 The client SHOULD honor the following obligations in order to utilize
 the session:

 * Keep a necessary session from going idle on the server. A client
 that requires a session but nonetheless is not sending operations
 risks having the session be destroyed by the server. This is
 because sessions consume resources, and resource limitations may
 force the server to cull an inactive session. A server MAY
 consider a session to be inactive if the client has not used the
 session before the session inactivity timer (Section 2.10.12) has
 expired.

 * Destroy the session when not needed. If a client has multiple
 sessions, one of which has no requests waiting for replies, and
 has been idle for some period of time, it SHOULD destroy the
 session.

 * Maintain GSS contexts and RPCSEC_GSS handles for the backchannel.
 If the client requires the server to use the RPCSEC_GSS security
 flavor for callbacks, then it needs to be sure the RPCSEC_GSS
 handles and/or their GSS contexts that are handed to the server
 via BACKCHANNEL_CTL or CREATE_SESSION are unexpired.

 * Preserve a connection for a backchannel. The server requires a
 backchannel in order to gracefully recall recallable state or
 notify the client of certain events. Note that if the connection

 is not being used for the fore channel, there is no way for the
 client to tell if the connection is still alive (e.g., the server
 restarted without sending a disconnect). The onus is on the
 server, not the client, to determine if the backchannel’s
 connection is alive, and to indicate in the response to a SEQUENCE
 operation when the last connection associated with a session’s
 backchannel has disconnected.

2.10.11.3. Steps the Client Takes to Establish a Session

 If the client does not have a client ID, the client sends EXCHANGE_ID
 to establish a client ID. If it opts for SP4_MACH_CRED or SP4_SSV
 protection, in the spo_must_enforce list of operations, it SHOULD at
 minimum specify CREATE_SESSION, DESTROY_SESSION,
 BIND_CONN_TO_SESSION, BACKCHANNEL_CTL, and DESTROY_CLIENTID. If it
 opts for SP4_SSV protection, the client needs to ask for SSV-based
 RPCSEC_GSS handles.

 The client uses the client ID to send a CREATE_SESSION on a
 connection to the server. The results of CREATE_SESSION indicate
 whether or not the server will persist the session reply cache
 through a server that has restarted, and the client notes this for
 future reference.

 If the client specified SP4_SSV state protection when the client ID
 was created, then it SHOULD send SET_SSV in the first COMPOUND after
 the session is created. Each time a new principal goes to use the
 client ID, it SHOULD send a SET_SSV again.

 If the client wants to use delegations, layouts, directory
 notifications, or any other state that requires a backchannel, then
 it needs to add a connection to the backchannel if CREATE_SESSION did
 not already do so. The client creates a connection, and calls
 BIND_CONN_TO_SESSION to associate the connection with the session and
 the session’s backchannel. If CREATE_SESSION did not already do so,
 the client MUST tell the server what security is required in order
 for the client to accept callbacks. The client does this via
 BACKCHANNEL_CTL. If the client selected SP4_MACH_CRED or SP4_SSV
 protection when it called EXCHANGE_ID, then the client SHOULD specify
 that the backchannel use RPCSEC_GSS contexts for security.

 If the client wants to use additional connections for the
 backchannel, then it needs to call BIND_CONN_TO_SESSION on each
 connection it wants to use with the session. If the client wants to
 use additional connections for the fore channel, then it needs to
 call BIND_CONN_TO_SESSION if it specified SP4_SSV or SP4_MACH_CRED
 state protection when the client ID was created.

 At this point, the session has reached steady state.

2.10.12. Session Inactivity Timer

 The server MAY maintain a session inactivity timer for each session.
 If the session inactivity timer expires, then the server MAY destroy
 the session. To avoid losing a session due to inactivity, the client
 MUST renew the session inactivity timer. The length of session
 inactivity timer MUST NOT be less than the lease_time attribute
 (Section 5.8.1.11). As with lease renewal (Section 8.3), when the
 server receives a SEQUENCE operation, it resets the session
 inactivity timer, and MUST NOT allow the timer to expire while the
 rest of the operations in the COMPOUND procedure’s request are still
 executing. Once the last operation has finished, the server MUST set
 the session inactivity timer to expire no sooner than the sum of the
 current time and the value of the lease_time attribute.

2.10.13. Session Mechanics - Recovery

2.10.13.1. Events Requiring Client Action

 The following events require client action to recover.

2.10.13.1.1. RPCSEC_GSS Context Loss by Callback Path

 If all RPCSEC_GSS handles granted by the client to the server for
 callback use have expired, the client MUST establish a new handle via
 BACKCHANNEL_CTL. The sr_status_flags field of the SEQUENCE results
 indicates when callback handles are nearly expired, or fully expired
 (see Section 18.46.3).

2.10.13.1.2. Connection Loss

 If the client loses the last connection of the session and wants to
 retain the session, then it needs to create a new connection, and if,
 when the client ID was created, BIND_CONN_TO_SESSION was specified in
 the spo_must_enforce list, the client MUST use BIND_CONN_TO_SESSION
 to associate the connection with the session.

 If there was a request outstanding at the time of connection loss,
 then if the client wants to continue to use the session, it MUST
 retry the request, as described in Section 2.10.6.2. Note that it is
 not necessary to retry requests over a connection with the same
 source network address or the same destination network address as the
 lost connection. As long as the session ID, slot ID, and sequence ID
 in the retry match that of the original request, the server will
 recognize the request as a retry if it executed the request prior to
 disconnect.

 If the connection that was lost was the last one associated with the
 backchannel, and the client wants to retain the backchannel and/or
 prevent revocation of recallable state, the client needs to
 reconnect, and if it does, it MUST associate the connection to the
 session and backchannel via BIND_CONN_TO_SESSION. The server SHOULD
 indicate when it has no callback connection via the sr_status_flags
 result from SEQUENCE.

2.10.13.1.3. Backchannel GSS Context Loss

 Via the sr_status_flags result of the SEQUENCE operation or other
 means, the client will learn if some or all of the RPCSEC_GSS
 contexts it assigned to the backchannel have been lost. If the
 client wants to retain the backchannel and/or not put recallable
 state subject to revocation, the client needs to use BACKCHANNEL_CTL
 to assign new contexts.

2.10.13.1.4. Loss of Session

 The replier might lose a record of the session. Causes include:

 * Replier failure and restart.

 * A catastrophe that causes the reply cache to be corrupted or lost
 on the media on which it was stored. This applies even if the
 replier indicated in the CREATE_SESSION results that it would
 persist the cache.

 * The server purges the session of a client that has been inactive
 for a very extended period of time.

 * As a result of configuration changes among a set of clustered
 servers, a network address previously connected to one server
 becomes connected to a different server that has no knowledge of
 the session in question. Such a configuration change will
 generally only happen when the original server ceases to function
 for a time.

 Loss of reply cache is equivalent to loss of session. The replier
 indicates loss of session to the requester by returning
 NFS4ERR_BADSESSION on the next operation that uses the session ID
 that refers to the lost session.

 After an event like a server restart, the client may have lost its
 connections. The client assumes for the moment that the session has

 not been lost. It reconnects, and if it specified connection
 association enforcement when the session was created, it invokes
 BIND_CONN_TO_SESSION using the session ID. Otherwise, it invokes
 SEQUENCE. If BIND_CONN_TO_SESSION or SEQUENCE returns
 NFS4ERR_BADSESSION, the client knows the session is not available to
 it when communicating with that network address. If the connection
 survives session loss, then the next SEQUENCE operation the client
 sends over the connection will get back NFS4ERR_BADSESSION. The
 client again knows the session was lost.

 Here is one suggested algorithm for the client when it gets
 NFS4ERR_BADSESSION. It is not obligatory in that, if a client does
 not want to take advantage of such features as trunking, it may omit
 parts of it. However, it is a useful example that draws attention to
 various possible recovery issues:

 1. If the client has other connections to other server network
 addresses associated with the same session, attempt a COMPOUND
 with a single operation, SEQUENCE, on each of the other
 connections.

 2. If the attempts succeed, the session is still alive, and this is
 a strong indicator that the server’s network address has moved.
 The client might send an EXCHANGE_ID on the connection that
 returned NFS4ERR_BADSESSION to see if there are opportunities for
 client ID trunking (i.e., the same client ID and so_major_id
 value are returned). The client might use DNS to see if the
 moved network address was replaced with another, so that the
 performance and availability benefits of session trunking can
 continue.

 3. If the SEQUENCE requests fail with NFS4ERR_BADSESSION, then the
 session no longer exists on any of the server network addresses
 for which the client has connections associated with that session
 ID. It is possible the session is still alive and available on
 other network addresses. The client sends an EXCHANGE_ID on all
 the connections to see if the server owner is still listening on
 those network addresses. If the same server owner is returned
 but a new client ID is returned, this is a strong indicator of a
 server restart. If both the same server owner and same client ID
 are returned, then this is a strong indication that the server
 did delete the session, and the client will need to send a
 CREATE_SESSION if it has no other sessions for that client ID.
 If a different server owner is returned, the client can use DNS
 to find other network addresses. If it does not, or if DNS does
 not find any other addresses for the server, then the client will
 be unable to provide NFSv4.1 service, and fatal errors should be
 returned to processes that were using the server. If the client
 is using a "mount" paradigm, unmounting the server is advised.

 4. If the client knows of no other connections associated with the
 session ID and server network addresses that are, or have been,
 associated with the session ID, then the client can use DNS to
 find other network addresses. If it does not, or if DNS does not
 find any other addresses for the server, then the client will be
 unable to provide NFSv4.1 service, and fatal errors should be
 returned to processes that were using the server. If the client
 is using a "mount" paradigm, unmounting the server is advised.

 If there is a reconfiguration event that results in the same network
 address being assigned to servers where the eir_server_scope value is
 different, it cannot be guaranteed that a session ID generated by the
 first will be recognized as invalid by the first. Therefore, in
 managing server reconfigurations among servers with different server
 scope values, it is necessary to make sure that all clients have
 disconnected from the first server before effecting the
 reconfiguration. Nonetheless, clients should not assume that servers
 will always adhere to this requirement; clients MUST be prepared to
 deal with unexpected effects of server reconfigurations. Even where
 a session ID is inappropriately recognized as valid, it is likely
 either that the connection will not be recognized as valid or that a

 sequence value for a slot will not be correct. Therefore, when a
 client receives results indicating such unexpected errors, the use of
 EXCHANGE_ID to determine the current server configuration is
 RECOMMENDED.

 A variation on the above is that after a server’s network address
 moves, there is no NFSv4.1 server listening, e.g., no listener on
 port 2049. In this example, one of the following occur: the NFSv4
 server returns NFS4ERR_MINOR_VERS_MISMATCH, the NFS server returns a
 PROG_MISMATCH error, the RPC listener on 2049 returns PROG_UNVAIL, or
 attempts to reconnect to the network address timeout. These SHOULD
 be treated as equivalent to SEQUENCE returning NFS4ERR_BADSESSION for
 these purposes.

 When the client detects session loss, it needs to call CREATE_SESSION
 to recover. Any non-idempotent operations that were in progress
 might have been performed on the server at the time of session loss.
 The client has no general way to recover from this.

 Note that loss of session does not imply loss of byte-range lock,
 open, delegation, or layout state because locks, opens, delegations,
 and layouts are tied to the client ID and depend on the client ID,
 not the session. Nor does loss of byte-range lock, open, delegation,
 or layout state imply loss of session state, because the session
 depends on the client ID; loss of client ID however does imply loss
 of session, byte-range lock, open, delegation, and layout state. See
 Section 8.4.2. A session can survive a server restart, but lock
 recovery may still be needed.

 It is possible that CREATE_SESSION will fail with
 NFS4ERR_STALE_CLIENTID (e.g., the server restarts and does not
 preserve client ID state). If so, the client needs to call
 EXCHANGE_ID, followed by CREATE_SESSION.

2.10.13.2. Events Requiring Server Action

 The following events require server action to recover.

2.10.13.2.1. Client Crash and Restart

 As described in Section 18.35, a restarted client sends EXCHANGE_ID
 in such a way that it causes the server to delete any sessions it
 had.

2.10.13.2.2. Client Crash with No Restart

 If a client crashes and never comes back, it will never send
 EXCHANGE_ID with its old client owner. Thus, the server has session
 state that will never be used again. After an extended period of
 time, and if the server has resource constraints, it MAY destroy the
 old session as well as locking state.

2.10.13.2.3. Extended Network Partition

 To the server, the extended network partition may be no different
 from a client crash with no restart (see Section 2.10.13.2.2).
 Unless the server can discern that there is a network partition, it
 is free to treat the situation as if the client has crashed
 permanently.

2.10.13.2.4. Backchannel Connection Loss

 If there were callback requests outstanding at the time of a
 connection loss, then the server MUST retry the requests, as
 described in Section 2.10.6.2. Note that it is not necessary to
 retry requests over a connection with the same source network address
 or the same destination network address as the lost connection. As
 long as the session ID, slot ID, and sequence ID in the retry match
 that of the original request, the callback target will recognize the
 request as a retry even if it did see the request prior to
 disconnect.

 If the connection lost is the last one associated with the
 backchannel, then the server MUST indicate that in the
 sr_status_flags field of every SEQUENCE reply until the backchannel
 is re-established. There are two situations, each of which uses
 different status flags: no connectivity for the session’s backchannel
 and no connectivity for any session backchannel of the client. See
 Section 18.46 for a description of the appropriate flags in
 sr_status_flags.

2.10.13.2.5. GSS Context Loss

 The server SHOULD monitor when the number of RPCSEC_GSS handles
 assigned to the backchannel reaches one, and when that one handle is
 near expiry (i.e., between one and two periods of lease time), and
 indicate so in the sr_status_flags field of all SEQUENCE replies.
 The server MUST indicate when all of the backchannel’s assigned
 RPCSEC_GSS handles have expired via the sr_status_flags field of all
 SEQUENCE replies.

2.10.14. Parallel NFS and Sessions

 A client and server can potentially be a non-pNFS implementation, a
 metadata server implementation, a data server implementation, or two
 or three types of implementations. The EXCHGID4_FLAG_USE_NON_PNFS,
 EXCHGID4_FLAG_USE_PNFS_MDS, and EXCHGID4_FLAG_USE_PNFS_DS flags (not
 mutually exclusive) are passed in the EXCHANGE_ID arguments and
 results to allow the client to indicate how it wants to use sessions
 created under the client ID, and to allow the server to indicate how
 it will allow the sessions to be used. See Section 13.1 for pNFS
 sessions considerations.

3. Protocol Constants and Data Types

 The syntax and semantics to describe the data types of the NFSv4.1
 protocol are defined in the XDR (RFC 4506 [2]) and RPC (RFC 5531 [3])
 documents. The next sections build upon the XDR data types to define
 constants, types, and structures specific to this protocol. The full
 list of XDR data types is in [10].

3.1. Basic Constants

 const NFS4_FHSIZE = 128;
 const NFS4_VERIFIER_SIZE = 8;
 const NFS4_OPAQUE_LIMIT = 1024;
 const NFS4_SESSIONID_SIZE = 16;

 const NFS4_INT64_MAX = 0x7fffffffffffffff;
 const NFS4_UINT64_MAX = 0xffffffffffffffff;
 const NFS4_INT32_MAX = 0x7fffffff;
 const NFS4_UINT32_MAX = 0xffffffff;

 const NFS4_MAXFILELEN = 0xffffffffffffffff;
 const NFS4_MAXFILEOFF = 0xfffffffffffffffe;

 Except where noted, all these constants are defined in bytes.

 * NFS4_FHSIZE is the maximum size of a filehandle.

 * NFS4_VERIFIER_SIZE is the fixed size of a verifier.

 * NFS4_OPAQUE_LIMIT is the maximum size of certain opaque
 information.

 * NFS4_SESSIONID_SIZE is the fixed size of a session identifier.

 * NFS4_INT64_MAX is the maximum value of a signed 64-bit integer.

 * NFS4_UINT64_MAX is the maximum value of an unsigned 64-bit
 integer.

 * NFS4_INT32_MAX is the maximum value of a signed 32-bit integer.

 * NFS4_UINT32_MAX is the maximum value of an unsigned 32-bit
 integer.

 * NFS4_MAXFILELEN is the maximum length of a regular file.

 * NFS4_MAXFILEOFF is the maximum offset into a regular file.

3.2. Basic Data Types

 These are the base NFSv4.1 data types.

 +===============+==+
 | Data Type | Definition |
 +===============+==+
 | int32_t | typedef int int32_t; |
 +---------------+--+
 | uint32_t | typedef unsigned int uint32_t; |
 +---------------+--+
 | int64_t | typedef hyper int64_t; |
 +---------------+--+
 | uint64_t | typedef unsigned hyper uint64_t; |
 +---------------+--+
 | attrlist4 | typedef opaque attrlist4<>; |
 | | |
 | | Used for file/directory attributes. |
 +---------------+--+
 | bitmap4 | typedef uint32_t bitmap4<>; |
 | | |
 | | Used in attribute array encoding. |
 +---------------+--+
 | changeid4 | typedef uint64_t changeid4; |
 | | |
 | | Used in the definition of change_info4. |
 +---------------+--+
 | clientid4 | typedef uint64_t clientid4; |
 | | |
 | | Shorthand reference to client |
 | | identification. |
 +---------------+--+
 | count4 | typedef uint32_t count4; |
 | | |
 | | Various count parameters (READ, WRITE, |
 | | COMMIT). |
 +---------------+--+
 | length4 | typedef uint64_t length4; |
 | | |
 | | The length of a byte-range within a file. |
 +---------------+--+
 | mode4 | typedef uint32_t mode4; |
 | | |
 | | Mode attribute data type. |
 +---------------+--+
 | nfs_cookie4 | typedef uint64_t nfs_cookie4; |
 | | |
 | | Opaque cookie value for READDIR. |
 +---------------+--+
 | nfs_fh4 | typedef opaque nfs_fh4<NFS4_FHSIZE>; |
 | | |
 | | Filehandle definition. |
 +---------------+--+
 | nfs_ftype4 | enum nfs_ftype4; |
 | | |
 | | Various defined file types. |
 +---------------+--+
 | nfsstat4 | enum nfsstat4; |
 | | |
 | | Return value for operations. |
 +---------------+--+
 | offset4 | typedef uint64_t offset4; |

 | | |
 | | Various offset designations (READ, WRITE, |
 | | LOCK, COMMIT). |
 +---------------+--+
 | qop4 | typedef uint32_t qop4; |
 | | |
 | | Quality of protection designation in |
 | | SECINFO. |
 +---------------+--+
 | sec_oid4 | typedef opaque sec_oid4<>; |
 | | |
 | | Security Object Identifier. The sec_oid4 |
 | | data type is not really opaque. Instead, it |
 | | contains an ASN.1 OBJECT IDENTIFIER as used |
 | | by GSS-API in the mech_type argument to |
 | | GSS_Init_sec_context. See [7] for details. |
 +---------------+--+
 | sequenceid4 | typedef uint32_t sequenceid4; |
 | | |
 | | Sequence number used for various session |
 | | operations (EXCHANGE_ID, CREATE_SESSION, |
 | | SEQUENCE, CB_SEQUENCE). |
 +---------------+--+
 | seqid4 | typedef uint32_t seqid4; |
 | | |
 | | Sequence identifier used for locking. |
 +---------------+--+
 | sessionid4 | typedef opaque |
 | | sessionid4[NFS4_SESSIONID_SIZE]; |
 | | |
 | | Session identifier. |
 +---------------+--+
 | slotid4 | typedef uint32_t slotid4; |
 | | |
 | | Sequencing artifact for various session |
 | | operations (SEQUENCE, CB_SEQUENCE). |
 +---------------+--+
 | utf8string | typedef opaque utf8string<>; |
 | | |
 | | UTF-8 encoding for strings. |
 +---------------+--+
 | utf8str_cis | typedef utf8string utf8str_cis; |
 | | |
 | | Case-insensitive UTF-8 string. |
 +---------------+--+
 | utf8str_cs | typedef utf8string utf8str_cs; |
 | | |
 | | Case-sensitive UTF-8 string. |
 +---------------+--+
 | utf8str_mixed | typedef utf8string utf8str_mixed; |
 | | |
 | | UTF-8 strings with a case-sensitive prefix |
 | | and a case-insensitive suffix. |
 +---------------+--+
 | component4 | typedef utf8str_cs component4; |
 | | |
 | | Represents pathname components. |
 +---------------+--+
 | linktext4 | typedef utf8str_cs linktext4; |
 | | |
 | | Symbolic link contents ("symbolic link" is |
 | | defined in an Open Group [11] standard). |
 +---------------+--+
 | pathname4 | typedef component4 pathname4<>; |
 | | |
 | | Represents pathname for fs_locations. |
 +---------------+--+
 | verifier4 | typedef opaque |
 | | verifier4[NFS4_VERIFIER_SIZE]; |
 | | |
 | | Verifier used for various operations |

 | | (COMMIT, CREATE, EXCHANGE_ID, OPEN, READDIR, |
 | | WRITE) NFS4_VERIFIER_SIZE is defined as 8. |
 +---------------+--+

 Table 1

 End of Base Data Types

3.3. Structured Data Types

3.3.1. nfstime4

 struct nfstime4 {
 int64_t seconds;
 uint32_t nseconds;
 };

 The nfstime4 data type gives the number of seconds and nanoseconds
 since midnight or zero hour January 1, 1970 Coordinated Universal
 Time (UTC). Values greater than zero for the seconds field denote
 dates after the zero hour January 1, 1970. Values less than zero for
 the seconds field denote dates before the zero hour January 1, 1970.
 In both cases, the nseconds field is to be added to the seconds field
 for the final time representation. For example, if the time to be
 represented is one-half second before zero hour January 1, 1970, the
 seconds field would have a value of negative one (-1) and the
 nseconds field would have a value of one-half second (500000000).
 Values greater than 999,999,999 for nseconds are invalid.

 This data type is used to pass time and date information. A server
 converts to and from its local representation of time when processing
 time values, preserving as much accuracy as possible. If the
 precision of timestamps stored for a file system object is less than
 defined, loss of precision can occur. An adjunct time maintenance
 protocol is RECOMMENDED to reduce client and server time skew.

3.3.2. time_how4

 enum time_how4 {
 SET_TO_SERVER_TIME4 = 0,
 SET_TO_CLIENT_TIME4 = 1
 };

3.3.3. settime4

 union settime4 switch (time_how4 set_it) {
 case SET_TO_CLIENT_TIME4:
 nfstime4 time;
 default:
 void;
 };

 The time_how4 and settime4 data types are used for setting timestamps
 in file object attributes. If set_it is SET_TO_SERVER_TIME4, then
 the server uses its local representation of time for the time value.

3.3.4. specdata4

 struct specdata4 {
 uint32_t specdata1; /* major device number */
 uint32_t specdata2; /* minor device number */
 };

 This data type represents the device numbers for the device file
 types NF4CHR and NF4BLK.

3.3.5. fsid4

 struct fsid4 {
 uint64_t major;
 uint64_t minor;

 };

3.3.6. change_policy4

 struct change_policy4 {
 uint64_t cp_major;
 uint64_t cp_minor;
 };

 The change_policy4 data type is used for the change_policy
 RECOMMENDED attribute. It provides change sequencing indication
 analogous to the change attribute. To enable the server to present a
 value valid across server re-initialization without requiring
 persistent storage, two 64-bit quantities are used, allowing one to
 be a server instance ID and the second to be incremented non-
 persistently, within a given server instance.

3.3.7. fattr4

 struct fattr4 {
 bitmap4 attrmask;
 attrlist4 attr_vals;
 };

 The fattr4 data type is used to represent file and directory
 attributes.

 The bitmap is a counted array of 32-bit integers used to contain bit
 values. The position of the integer in the array that contains bit n
 can be computed from the expression (n / 32), and its bit within that
 integer is (n mod 32).

 0 1
 +-----------+-----------+-----------+--
 | count | 31 .. 0 | 63 .. 32 |
 +-----------+-----------+-----------+--

3.3.8. change_info4

 struct change_info4 {
 bool atomic;
 changeid4 before;
 changeid4 after;
 };

 This data type is used with the CREATE, LINK, OPEN, REMOVE, and
 RENAME operations to let the client know the value of the change
 attribute for the directory in which the target file system object
 resides.

3.3.9. netaddr4

 struct netaddr4 {
 /* see struct rpcb in RFC 1833 */
 string na_r_netid<>; /* network id */
 string na_r_addr<>; /* universal address */
 };

 The netaddr4 data type is used to identify network transport
 endpoints. The na_r_netid and na_r_addr fields respectively contain
 a netid and uaddr. The netid and uaddr concepts are defined in [12].
 The netid and uaddr formats for TCP over IPv4 and TCP over IPv6 are
 defined in [12], specifically Tables 2 and 3 and in Sections 5.2.3.3
 and 5.2.3.4.

3.3.10. state_owner4

 struct state_owner4 {
 clientid4 clientid;
 opaque owner<NFS4_OPAQUE_LIMIT>;
 };

 typedef state_owner4 open_owner4;
 typedef state_owner4 lock_owner4;

 The state_owner4 data type is the base type for the open_owner4
 (Section 3.3.10.1) and lock_owner4 (Section 3.3.10.2).

3.3.10.1. open_owner4

 This data type is used to identify the owner of OPEN state.

3.3.10.2. lock_owner4

 This structure is used to identify the owner of byte-range locking
 state.

3.3.11. open_to_lock_owner4

 struct open_to_lock_owner4 {
 seqid4 open_seqid;
 stateid4 open_stateid;
 seqid4 lock_seqid;
 lock_owner4 lock_owner;
 };

 This data type is used for the first LOCK operation done for an
 open_owner4. It provides both the open_stateid and lock_owner, such
 that the transition is made from a valid open_stateid sequence to
 that of the new lock_stateid sequence. Using this mechanism avoids
 the confirmation of the lock_owner/lock_seqid pair since it is tied
 to established state in the form of the open_stateid/open_seqid.

3.3.12. stateid4

 struct stateid4 {
 uint32_t seqid;
 opaque other[12];
 };

 This data type is used for the various state sharing mechanisms
 between the client and server. The client never modifies a value of
 data type stateid. The starting value of the "seqid" field is
 undefined. The server is required to increment the "seqid" field by
 one at each transition of the stateid. This is important since the
 client will inspect the seqid in OPEN stateids to determine the order
 of OPEN processing done by the server.

3.3.13. layouttype4

 enum layouttype4 {
 LAYOUT4_NFSV4_1_FILES = 0x1,
 LAYOUT4_OSD2_OBJECTS = 0x2,
 LAYOUT4_BLOCK_VOLUME = 0x3
 };

 This data type indicates what type of layout is being used. The file
 server advertises the layout types it supports through the
 fs_layout_type file system attribute (Section 5.12.1). A client asks
 for layouts of a particular type in LAYOUTGET, and processes those
 layouts in its layout-type-specific logic.

 The layouttype4 data type is 32 bits in length. The range
 represented by the layout type is split into three parts. Type 0x0
 is reserved. Types within the range 0x00000001-0x7FFFFFFF are
 globally unique and are assigned according to the description in
 Section 22.5; they are maintained by IANA. Types within the range
 0x80000000-0xFFFFFFFF are site specific and for private use only.

 The LAYOUT4_NFSV4_1_FILES enumeration specifies that the NFSv4.1 file
 layout type, as defined in Section 13, is to be used. The
 LAYOUT4_OSD2_OBJECTS enumeration specifies that the object layout, as

 defined in [47], is to be used. Similarly, the LAYOUT4_BLOCK_VOLUME
 enumeration specifies that the block/volume layout, as defined in
 [48], is to be used.

3.3.14. deviceid4

 const NFS4_DEVICEID4_SIZE = 16;

 typedef opaque deviceid4[NFS4_DEVICEID4_SIZE];

 Layout information includes device IDs that specify a storage device
 through a compact handle. Addressing and type information is
 obtained with the GETDEVICEINFO operation. Device IDs are not
 guaranteed to be valid across metadata server restarts. A device ID
 is unique per client ID and layout type. See Section 12.2.10 for
 more details.

3.3.15. device_addr4

 struct device_addr4 {
 layouttype4 da_layout_type;
 opaque da_addr_body<>;
 };

 The device address is used to set up a communication channel with the
 storage device. Different layout types will require different data
 types to define how they communicate with storage devices. The
 opaque da_addr_body field is interpreted based on the specified
 da_layout_type field.

 This document defines the device address for the NFSv4.1 file layout
 (see Section 13.3), which identifies a storage device by network IP
 address and port number. This is sufficient for the clients to
 communicate with the NFSv4.1 storage devices, and may be sufficient
 for other layout types as well. Device types for object-based
 storage devices and block storage devices (e.g., Small Computer
 System Interface (SCSI) volume labels) are defined by their
 respective layout specifications.

3.3.16. layout_content4

 struct layout_content4 {
 layouttype4 loc_type;
 opaque loc_body<>;
 };

 The loc_body field is interpreted based on the layout type
 (loc_type). This document defines the loc_body for the NFSv4.1 file
 layout type; see Section 13.3 for its definition.

3.3.17. layout4

 struct layout4 {
 offset4 lo_offset;
 length4 lo_length;
 layoutiomode4 lo_iomode;
 layout_content4 lo_content;
 };

 The layout4 data type defines a layout for a file. The layout type
 specific data is opaque within lo_content. Since layouts are sub-
 dividable, the offset and length together with the file’s filehandle,
 the client ID, iomode, and layout type identify the layout.

3.3.18. layoutupdate4

 struct layoutupdate4 {
 layouttype4 lou_type;
 opaque lou_body<>;
 };

 The layoutupdate4 data type is used by the client to return updated
 layout information to the metadata server via the LAYOUTCOMMIT
 (Section 18.42) operation. This data type provides a channel to pass
 layout type specific information (in field lou_body) back to the
 metadata server. For example, for the block/volume layout type, this
 could include the list of reserved blocks that were written. The
 contents of the opaque lou_body argument are determined by the layout
 type. The NFSv4.1 file-based layout does not use this data type; if
 lou_type is LAYOUT4_NFSV4_1_FILES, the lou_body field MUST have a
 zero length.

3.3.19. layouthint4

 struct layouthint4 {
 layouttype4 loh_type;
 opaque loh_body<>;
 };

 The layouthint4 data type is used by the client to pass in a hint
 about the type of layout it would like created for a particular file.
 It is the data type specified by the layout_hint attribute described
 in Section 5.12.4. The metadata server may ignore the hint or may
 selectively ignore fields within the hint. This hint should be
 provided at create time as part of the initial attributes within
 OPEN. The loh_body field is specific to the type of layout
 (loh_type). The NFSv4.1 file-based layout uses the
 nfsv4_1_file_layouthint4 data type as defined in Section 13.3.

3.3.20. layoutiomode4

 enum layoutiomode4 {
 LAYOUTIOMODE4_READ = 1,
 LAYOUTIOMODE4_RW = 2,
 LAYOUTIOMODE4_ANY = 3
 };

 The iomode specifies whether the client intends to just read or both
 read and write the data represented by the layout. While the
 LAYOUTIOMODE4_ANY iomode MUST NOT be used in the arguments to the
 LAYOUTGET operation, it MAY be used in the arguments to the
 LAYOUTRETURN and CB_LAYOUTRECALL operations. The LAYOUTIOMODE4_ANY
 iomode specifies that layouts pertaining to both LAYOUTIOMODE4_READ
 and LAYOUTIOMODE4_RW iomodes are being returned or recalled,
 respectively. The metadata server’s use of the iomode may depend on
 the layout type being used. The storage devices MAY validate I/O
 accesses against the iomode and reject invalid accesses.

3.3.21. nfs_impl_id4

 struct nfs_impl_id4 {
 utf8str_cis nii_domain;
 utf8str_cs nii_name;
 nfstime4 nii_date;
 };

 This data type is used to identify client and server implementation
 details. The nii_domain field is the DNS domain name with which the
 implementor is associated. The nii_name field is the product name of
 the implementation and is completely free form. It is RECOMMENDED
 that the nii_name be used to distinguish machine architecture,
 machine platforms, revisions, versions, and patch levels. The
 nii_date field is the timestamp of when the software instance was
 published or built.

3.3.22. threshold_item4

 struct threshold_item4 {
 layouttype4 thi_layout_type;
 bitmap4 thi_hintset;
 opaque thi_hintlist<>;
 };

 This data type contains a list of hints specific to a layout type for
 helping the client determine when it should send I/O directly through
 the metadata server versus the storage devices. The data type
 consists of the layout type (thi_layout_type), a bitmap (thi_hintset)
 describing the set of hints supported by the server (they may differ
 based on the layout type), and a list of hints (thi_hintlist) whose
 content is determined by the hintset bitmap. See the mdsthreshold
 attribute for more details.

 The thi_hintset field is a bitmap of the following values:

 +=========================+===+=========+===========================+
 | name | # | Data | Description |
 | | | Type | |
 +=========================+===+=========+===========================+
threshold4_read_size	0	length4	If a file’s length is
			less than the value of
			threshold4_read_size,
			then it is RECOMMENDED
			that the client read
			from the file via the
			MDS and not a storage
			device.
+-------------------------+---+---------+---------------------------+			
threshold4_write_size	1	length4	If a file’s length is
			less than the value of
			threshold4_write_size,
			then it is RECOMMENDED
			that the client write
			to the file via the
			MDS and not a storage
			device.
+-------------------------+---+---------+---------------------------+			
threshold4_read_iosize	2	length4	For read I/O sizes
			below this threshold,
			it is RECOMMENDED to
			read data through the
			MDS.
+-------------------------+---+---------+---------------------------+			
threshold4_write_iosize	3	length4	For write I/O sizes
			below this threshold,
			it is RECOMMENDED to
			write data through the
			MDS.
 +-------------------------+---+---------+---------------------------+

 Table 2

3.3.23. mdsthreshold4

 struct mdsthreshold4 {
 threshold_item4 mth_hints<>;
 };

 This data type holds an array of elements of data type
 threshold_item4, each of which is valid for a particular layout type.
 An array is necessary because a server can support multiple layout
 types for a single file.

4. Filehandles

 The filehandle in the NFS protocol is a per-server unique identifier
 for a file system object. The contents of the filehandle are opaque
 to the client. Therefore, the server is responsible for translating
 the filehandle to an internal representation of the file system
 object.

4.1. Obtaining the First Filehandle

 The operations of the NFS protocol are defined in terms of one or

 more filehandles. Therefore, the client needs a filehandle to
 initiate communication with the server. With the NFSv3 protocol (RFC
 1813 [38]), there exists an ancillary protocol to obtain this first
 filehandle. The MOUNT protocol, RPC program number 100005, provides
 the mechanism of translating a string-based file system pathname to a
 filehandle, which can then be used by the NFS protocols.

 The MOUNT protocol has deficiencies in the area of security and use
 via firewalls. This is one reason that the use of the public
 filehandle was introduced in RFC 2054 [49] and RFC 2055 [50]. With
 the use of the public filehandle in combination with the LOOKUP
 operation in the NFSv3 protocol, it has been demonstrated that the
 MOUNT protocol is unnecessary for viable interaction between NFS
 client and server.

 Therefore, the NFSv4.1 protocol will not use an ancillary protocol
 for translation from string-based pathnames to a filehandle. Two
 special filehandles will be used as starting points for the NFS
 client.

4.1.1. Root Filehandle

 The first of the special filehandles is the ROOT filehandle. The
 ROOT filehandle is the "conceptual" root of the file system namespace
 at the NFS server. The client uses or starts with the ROOT
 filehandle by employing the PUTROOTFH operation. The PUTROOTFH
 operation instructs the server to set the "current" filehandle to the
 ROOT of the server’s file tree. Once this PUTROOTFH operation is
 used, the client can then traverse the entirety of the server’s file
 tree with the LOOKUP operation. A complete discussion of the server
 namespace is in Section 7.

4.1.2. Public Filehandle

 The second special filehandle is the PUBLIC filehandle. Unlike the
 ROOT filehandle, the PUBLIC filehandle may be bound or represent an
 arbitrary file system object at the server. The server is
 responsible for this binding. It may be that the PUBLIC filehandle
 and the ROOT filehandle refer to the same file system object.
 However, it is up to the administrative software at the server and
 the policies of the server administrator to define the binding of the
 PUBLIC filehandle and server file system object. The client may not
 make any assumptions about this binding. The client uses the PUBLIC
 filehandle via the PUTPUBFH operation.

4.2. Filehandle Types

 In the NFSv3 protocol, there was one type of filehandle with a single
 set of semantics. This type of filehandle is termed "persistent" in
 NFSv4.1. The semantics of a persistent filehandle remain the same as
 before. A new type of filehandle introduced in NFSv4.1 is the
 "volatile" filehandle, which attempts to accommodate certain server
 environments.

 The volatile filehandle type was introduced to address server
 functionality or implementation issues that make correct
 implementation of a persistent filehandle infeasible. Some server
 environments do not provide a file-system-level invariant that can be
 used to construct a persistent filehandle. The underlying server
 file system may not provide the invariant or the server’s file system
 programming interfaces may not provide access to the needed
 invariant. Volatile filehandles may ease the implementation of
 server functionality such as hierarchical storage management or file
 system reorganization or migration. However, the volatile filehandle
 increases the implementation burden for the client.

 Since the client will need to handle persistent and volatile
 filehandles differently, a file attribute is defined that may be used
 by the client to determine the filehandle types being returned by the
 server.

4.2.1. General Properties of a Filehandle

 The filehandle contains all the information the server needs to
 distinguish an individual file. To the client, the filehandle is
 opaque. The client stores filehandles for use in a later request and
 can compare two filehandles from the same server for equality by
 doing a byte-by-byte comparison. However, the client MUST NOT
 otherwise interpret the contents of filehandles. If two filehandles
 from the same server are equal, they MUST refer to the same file.
 Servers SHOULD try to maintain a one-to-one correspondence between
 filehandles and files, but this is not required. Clients MUST use
 filehandle comparisons only to improve performance, not for correct
 behavior. All clients need to be prepared for situations in which it
 cannot be determined whether two filehandles denote the same object
 and in such cases, avoid making invalid assumptions that might cause
 incorrect behavior. Further discussion of filehandle and attribute
 comparison in the context of data caching is presented in
 Section 10.3.4.

 As an example, in the case that two different pathnames when
 traversed at the server terminate at the same file system object, the
 server SHOULD return the same filehandle for each path. This can
 occur if a hard link (see [6]) is used to create two file names that
 refer to the same underlying file object and associated data. For
 example, if paths /a/b/c and /a/d/c refer to the same file, the
 server SHOULD return the same filehandle for both pathnames’
 traversals.

4.2.2. Persistent Filehandle

 A persistent filehandle is defined as having a fixed value for the
 lifetime of the file system object to which it refers. Once the
 server creates the filehandle for a file system object, the server
 MUST accept the same filehandle for the object for the lifetime of
 the object. If the server restarts, the NFS server MUST honor the
 same filehandle value as it did in the server’s previous
 instantiation. Similarly, if the file system is migrated, the new
 NFS server MUST honor the same filehandle as the old NFS server.

 The persistent filehandle will be become stale or invalid when the
 file system object is removed. When the server is presented with a
 persistent filehandle that refers to a deleted object, it MUST return
 an error of NFS4ERR_STALE. A filehandle may become stale when the
 file system containing the object is no longer available. The file
 system may become unavailable if it exists on removable media and the
 media is no longer available at the server or the file system in
 whole has been destroyed or the file system has simply been removed
 from the server’s namespace (i.e., unmounted in a UNIX environment).

4.2.3. Volatile Filehandle

 A volatile filehandle does not share the same longevity
 characteristics of a persistent filehandle. The server may determine
 that a volatile filehandle is no longer valid at many different
 points in time. If the server can definitively determine that a
 volatile filehandle refers to an object that has been removed, the
 server should return NFS4ERR_STALE to the client (as is the case for
 persistent filehandles). In all other cases where the server
 determines that a volatile filehandle can no longer be used, it
 should return an error of NFS4ERR_FHEXPIRED.

 The REQUIRED attribute "fh_expire_type" is used by the client to
 determine what type of filehandle the server is providing for a
 particular file system. This attribute is a bitmask with the
 following values:

 FH4_PERSISTENT The value of FH4_PERSISTENT is used to indicate a
 persistent filehandle, which is valid until the object is removed
 from the file system. The server will not return
 NFS4ERR_FHEXPIRED for this filehandle. FH4_PERSISTENT is defined
 as a value in which none of the bits specified below are set.

 FH4_VOLATILE_ANY The filehandle may expire at any time, except as
 specifically excluded (i.e., FH4_NO_EXPIRE_WITH_OPEN).

 FH4_NOEXPIRE_WITH_OPEN May only be set when FH4_VOLATILE_ANY is set.
 If this bit is set, then the meaning of FH4_VOLATILE_ANY is
 qualified to exclude any expiration of the filehandle when it is
 open.

 FH4_VOL_MIGRATION The filehandle will expire as a result of a file
 system transition (migration or replication), in those cases in
 which the continuity of filehandle use is not specified by handle
 class information within the fs_locations_info attribute. When
 this bit is set, clients without access to fs_locations_info
 information should assume that filehandles will expire on file
 system transitions.

 FH4_VOL_RENAME The filehandle will expire during rename. This
 includes a rename by the requesting client or a rename by any
 other client. If FH4_VOL_ANY is set, FH4_VOL_RENAME is redundant.

 Servers that provide volatile filehandles that can expire while open
 require special care as regards handling of RENAMEs and REMOVEs.
 This situation can arise if FH4_VOL_MIGRATION or FH4_VOL_RENAME is
 set, if FH4_VOLATILE_ANY is set and FH4_NOEXPIRE_WITH_OPEN is not
 set, or if a non-read-only file system has a transition target in a
 different handle class. In these cases, the server should deny a
 RENAME or REMOVE that would affect an OPEN file of any of the
 components leading to the OPEN file. In addition, the server should
 deny all RENAME or REMOVE requests during the grace period, in order
 to make sure that reclaims of files where filehandles may have
 expired do not do a reclaim for the wrong file.

 Volatile filehandles are especially suitable for implementation of
 the pseudo file systems used to bridge exports. See Section 7.5 for
 a discussion of this.

4.3. One Method of Constructing a Volatile Filehandle

 A volatile filehandle, while opaque to the client, could contain:

 [volatile bit = 1 | server boot time | slot | generation number]

 * slot is an index in the server volatile filehandle table

 * generation number is the generation number for the table entry/
 slot

 When the client presents a volatile filehandle, the server makes the
 following checks, which assume that the check for the volatile bit
 has passed. If the server boot time is less than the current server
 boot time, return NFS4ERR_FHEXPIRED. If slot is out of range, return
 NFS4ERR_BADHANDLE. If the generation number does not match, return
 NFS4ERR_FHEXPIRED.

 When the server restarts, the table is gone (it is volatile).

 If the volatile bit is 0, then it is a persistent filehandle with a
 different structure following it.

4.4. Client Recovery from Filehandle Expiration

 If possible, the client SHOULD recover from the receipt of an
 NFS4ERR_FHEXPIRED error. The client must take on additional
 responsibility so that it may prepare itself to recover from the
 expiration of a volatile filehandle. If the server returns
 persistent filehandles, the client does not need these additional
 steps.

 For volatile filehandles, most commonly the client will need to store
 the component names leading up to and including the file system

 object in question. With these names, the client should be able to
 recover by finding a filehandle in the namespace that is still
 available or by starting at the root of the server’s file system
 namespace.

 If the expired filehandle refers to an object that has been removed
 from the file system, obviously the client will not be able to
 recover from the expired filehandle.

 It is also possible that the expired filehandle refers to a file that
 has been renamed. If the file was renamed by another client, again
 it is possible that the original client will not be able to recover.
 However, in the case that the client itself is renaming the file and
 the file is open, it is possible that the client may be able to
 recover. The client can determine the new pathname based on the
 processing of the rename request. The client can then regenerate the
 new filehandle based on the new pathname. The client could also use
 the COMPOUND procedure to construct a series of operations like:

 RENAME A B
 LOOKUP B
 GETFH

 Note that the COMPOUND procedure does not provide atomicity. This
 example only reduces the overhead of recovering from an expired
 filehandle.

5. File Attributes

 To meet the requirements of extensibility and increased
 interoperability with non-UNIX platforms, attributes need to be
 handled in a flexible manner. The NFSv3 fattr3 structure contains a
 fixed list of attributes that not all clients and servers are able to
 support or care about. The fattr3 structure cannot be extended as
 new needs arise and it provides no way to indicate non-support. With
 the NFSv4.1 protocol, the client is able to query what attributes the
 server supports and construct requests with only those supported
 attributes (or a subset thereof).

 To this end, attributes are divided into three groups: REQUIRED,
 RECOMMENDED, and named. Both REQUIRED and RECOMMENDED attributes are
 supported in the NFSv4.1 protocol by a specific and well-defined
 encoding and are identified by number. They are requested by setting
 a bit in the bit vector sent in the GETATTR request; the server
 response includes a bit vector to list what attributes were returned
 in the response. New REQUIRED or RECOMMENDED attributes may be added
 to the NFSv4 protocol as part of a new minor version by publishing a
 Standards Track RFC that allocates a new attribute number value and
 defines the encoding for the attribute. See Section 2.7 for further
 discussion.

 Named attributes are accessed by the new OPENATTR operation, which
 accesses a hidden directory of attributes associated with a file
 system object. OPENATTR takes a filehandle for the object and
 returns the filehandle for the attribute hierarchy. The filehandle
 for the named attributes is a directory object accessible by LOOKUP
 or READDIR and contains files whose names represent the named
 attributes and whose data bytes are the value of the attribute. For
 example:

 +----------+-----------+---------------------------------+
 | LOOKUP | "foo" | ; look up file |
 +----------+-----------+---------------------------------+
 | GETATTR | attrbits | |
 +----------+-----------+---------------------------------+
 | OPENATTR | | ; access foo’s named attributes |
 +----------+-----------+---------------------------------+
 | LOOKUP | "x11icon" | ; look up specific attribute |
 +----------+-----------+---------------------------------+
 | READ | 0,4096 | ; read stream of bytes |
 +----------+-----------+---------------------------------+

 Table 3

 Named attributes are intended for data needed by applications rather
 than by an NFS client implementation. NFS implementors are strongly
 encouraged to define their new attributes as RECOMMENDED attributes
 by bringing them to the IETF Standards Track process.

 The set of attributes that are classified as REQUIRED is deliberately
 small since servers need to do whatever it takes to support them. A
 server should support as many of the RECOMMENDED attributes as
 possible but, by their definition, the server is not required to
 support all of them. Attributes are deemed REQUIRED if the data is
 both needed by a large number of clients and is not otherwise
 reasonably computable by the client when support is not provided on
 the server.

 Note that the hidden directory returned by OPENATTR is a convenience
 for protocol processing. The client should not make any assumptions
 about the server’s implementation of named attributes and whether or
 not the underlying file system at the server has a named attribute
 directory. Therefore, operations such as SETATTR and GETATTR on the
 named attribute directory are undefined.

5.1. REQUIRED Attributes

 These MUST be supported by every NFSv4.1 client and server in order
 to ensure a minimum level of interoperability. The server MUST store
 and return these attributes, and the client MUST be able to function
 with an attribute set limited to these attributes. With just the
 REQUIRED attributes some client functionality may be impaired or
 limited in some ways. A client may ask for any of these attributes
 to be returned by setting a bit in the GETATTR request, and the
 server MUST return their value.

5.2. RECOMMENDED Attributes

 These attributes are understood well enough to warrant support in the
 NFSv4.1 protocol. However, they may not be supported on all clients
 and servers. A client may ask for any of these attributes to be
 returned by setting a bit in the GETATTR request but must handle the
 case where the server does not return them. A client MAY ask for the
 set of attributes the server supports and SHOULD NOT request
 attributes the server does not support. A server should be tolerant
 of requests for unsupported attributes and simply not return them
 rather than considering the request an error. It is expected that
 servers will support all attributes they comfortably can and only
 fail to support attributes that are difficult to support in their
 operating environments. A server should provide attributes whenever
 they don’t have to "tell lies" to the client. For example, a file
 modification time should be either an accurate time or should not be
 supported by the server. At times this will be difficult for
 clients, but a client is better positioned to decide whether and how
 to fabricate or construct an attribute or whether to do without the
 attribute.

5.3. Named Attributes

 These attributes are not supported by direct encoding in the NFSv4
 protocol but are accessed by string names rather than numbers and
 correspond to an uninterpreted stream of bytes that are stored with
 the file system object. The namespace for these attributes may be
 accessed by using the OPENATTR operation. The OPENATTR operation
 returns a filehandle for a virtual "named attribute directory", and
 further perusal and modification of the namespace may be done using
 operations that work on more typical directories. In particular,
 READDIR may be used to get a list of such named attributes, and
 LOOKUP and OPEN may select a particular attribute. Creation of a new
 named attribute may be the result of an OPEN specifying file
 creation.

 Once an OPEN is done, named attributes may be examined and changed by
 normal READ and WRITE operations using the filehandles and stateids
 returned by OPEN.

 Named attributes and the named attribute directory may have their own
 (non-named) attributes. Each of these objects MUST have all of the
 REQUIRED attributes and may have additional RECOMMENDED attributes.
 However, the set of attributes for named attributes and the named
 attribute directory need not be, and typically will not be, as large
 as that for other objects in that file system.

 Named attributes and the named attribute directory might be the
 target of delegations (in the case of the named attribute directory,
 these will be directory delegations). However, since granting of
 delegations is at the server’s discretion, a server need not support
 delegations on named attributes or the named attribute directory.

 It is RECOMMENDED that servers support arbitrary named attributes. A
 client should not depend on the ability to store any named attributes
 in the server’s file system. If a server does support named
 attributes, a client that is also able to handle them should be able
 to copy a file’s data and metadata with complete transparency from
 one location to another; this would imply that names allowed for
 regular directory entries are valid for named attribute names as
 well.

 In NFSv4.1, the structure of named attribute directories is
 restricted in a number of ways, in order to prevent the development
 of non-interoperable implementations in which some servers support a
 fully general hierarchical directory structure for named attributes
 while others support a limited but adequate structure for named
 attributes. In such an environment, clients or applications might
 come to depend on non-portable extensions. The restrictions are:

 * CREATE is not allowed in a named attribute directory. Thus, such
 objects as symbolic links and special files are not allowed to be
 named attributes. Further, directories may not be created in a
 named attribute directory, so no hierarchical structure of named
 attributes for a single object is allowed.

 * If OPENATTR is done on a named attribute directory or on a named
 attribute, the server MUST return NFS4ERR_WRONG_TYPE.

 * Doing a RENAME of a named attribute to a different named attribute
 directory or to an ordinary (i.e., non-named-attribute) directory
 is not allowed.

 * Creating hard links between named attribute directories or between
 named attribute directories and ordinary directories is not
 allowed.

 Names of attributes will not be controlled by this document or other
 IETF Standards Track documents. See Section 22.2 for further
 discussion.

5.4. Classification of Attributes

 Each of the REQUIRED and RECOMMENDED attributes can be classified in
 one of three categories: per server (i.e., the value of the attribute
 will be the same for all file objects that share the same server
 owner; see Section 2.5 for a definition of server owner), per file
 system (i.e., the value of the attribute will be the same for some or
 all file objects that share the same fsid attribute (Section 5.8.1.9)
 and server owner), or per file system object. Note that it is
 possible that some per file system attributes may vary within the
 file system, depending on the value of the "homogeneous"
 (Section 5.8.2.16) attribute. Note that the attributes
 time_access_set and time_modify_set are not listed in this section
 because they are write-only attributes corresponding to time_access
 and time_modify, and are used in a special instance of SETATTR.

 * The per-server attribute is:

 lease_time

 * The per-file system attributes are:

 supported_attrs, suppattr_exclcreat, fh_expire_type,
 link_support, symlink_support, unique_handles, aclsupport,
 cansettime, case_insensitive, case_preserving,
 chown_restricted, files_avail, files_free, files_total,
 fs_locations, homogeneous, maxfilesize, maxname, maxread,
 maxwrite, no_trunc, space_avail, space_free, space_total,
 time_delta, change_policy, fs_status, fs_layout_type,
 fs_locations_info, fs_charset_cap

 * The per-file system object attributes are:

 type, change, size, named_attr, fsid, rdattr_error, filehandle,
 acl, archive, fileid, hidden, maxlink, mimetype, mode,
 numlinks, owner, owner_group, rawdev, space_used, system,
 time_access, time_backup, time_create, time_metadata,
 time_modify, mounted_on_fileid, dir_notif_delay,
 dirent_notif_delay, dacl, sacl, layout_type, layout_hint,
 layout_blksize, layout_alignment, mdsthreshold, retention_get,
 retention_set, retentevt_get, retentevt_set, retention_hold,
 mode_set_masked

 For quota_avail_hard, quota_avail_soft, and quota_used, see their
 definitions below for the appropriate classification.

5.5. Set-Only and Get-Only Attributes

 Some REQUIRED and RECOMMENDED attributes are set-only; i.e., they can
 be set via SETATTR but not retrieved via GETATTR. Similarly, some
 REQUIRED and RECOMMENDED attributes are get-only; i.e., they can be
 retrieved via GETATTR but not set via SETATTR. If a client attempts
 to set a get-only attribute or get a set-only attributes, the server
 MUST return NFS4ERR_INVAL.

5.6. REQUIRED Attributes - List and Definition References

 The list of REQUIRED attributes appears in Table 4. The meaning of
 the columns of the table are:

 Name: The name of the attribute.

 Id: The number assigned to the attribute. In the event of conflicts
 between the assigned number and [10], the latter is likely
 authoritative, but should be resolved with Errata to this document
 and/or [10]. See [51] for the Errata process.

 Data Type: The XDR data type of the attribute.

 Acc: Access allowed to the attribute. R means read-only (GETATTR
 may retrieve, SETATTR may not set). W means write-only (SETATTR
 may set, GETATTR may not retrieve). R W means read/write (GETATTR
 may retrieve, SETATTR may set).

 Defined in: The section of this specification that describes the
 attribute.

 +====================+====+============+=====+==================+
 | Name | Id | Data Type | Acc | Defined in: |
 +====================+====+============+=====+==================+
 | supported_attrs | 0 | bitmap4 | R | Section 5.8.1.1 |
 +--------------------+----+------------+-----+------------------+
 | type | 1 | nfs_ftype4 | R | Section 5.8.1.2 |
 +--------------------+----+------------+-----+------------------+
 | fh_expire_type | 2 | uint32_t | R | Section 5.8.1.3 |
 +--------------------+----+------------+-----+------------------+
 | change | 3 | uint64_t | R | Section 5.8.1.4 |

 +--------------------+----+------------+-----+------------------+
 | size | 4 | uint64_t | R W | Section 5.8.1.5 |
 +--------------------+----+------------+-----+------------------+
 | link_support | 5 | bool | R | Section 5.8.1.6 |
 +--------------------+----+------------+-----+------------------+
 | symlink_support | 6 | bool | R | Section 5.8.1.7 |
 +--------------------+----+------------+-----+------------------+
 | named_attr | 7 | bool | R | Section 5.8.1.8 |
 +--------------------+----+------------+-----+------------------+
 | fsid | 8 | fsid4 | R | Section 5.8.1.9 |
 +--------------------+----+------------+-----+------------------+
 | unique_handles | 9 | bool | R | Section 5.8.1.10 |
 +--------------------+----+------------+-----+------------------+
 | lease_time | 10 | nfs_lease4 | R | Section 5.8.1.11 |
 +--------------------+----+------------+-----+------------------+
 | rdattr_error | 11 | enum | R | Section 5.8.1.12 |
 +--------------------+----+------------+-----+------------------+
 | filehandle | 19 | nfs_fh4 | R | Section 5.8.1.13 |
 +--------------------+----+------------+-----+------------------+
 | suppattr_exclcreat | 75 | bitmap4 | R | Section 5.8.1.14 |
 +--------------------+----+------------+-----+------------------+

 Table 4

5.7. RECOMMENDED Attributes - List and Definition References

 The RECOMMENDED attributes are defined in Table 5. The meanings of
 the column headers are the same as Table 4; see Section 5.6 for the
 meanings.

 +====================+====+====================+=====+=============+
 | Name | Id | Data Type | Acc | Defined in: |
 +====================+====+====================+=====+=============+
 | acl | 12 | nfsace4<> | R W | Section |
 | | | | | 6.2.1 |
 +--------------------+----+--------------------+-----+-------------+
 | aclsupport | 13 | uint32_t | R | Section |
 | | | | | 6.2.1.2 |
 +--------------------+----+--------------------+-----+-------------+
 | archive | 14 | bool | R W | Section |
 | | | | | 5.8.2.1 |
 +--------------------+----+--------------------+-----+-------------+
 | cansettime | 15 | bool | R | Section |
 | | | | | 5.8.2.2 |
 +--------------------+----+--------------------+-----+-------------+
 | case_insensitive | 16 | bool | R | Section |
 | | | | | 5.8.2.3 |
 +--------------------+----+--------------------+-----+-------------+
 | case_preserving | 17 | bool | R | Section |
 | | | | | 5.8.2.4 |
 +--------------------+----+--------------------+-----+-------------+
 | change_policy | 60 | chg_policy4 | R | Section |
 | | | | | 5.8.2.5 |
 +--------------------+----+--------------------+-----+-------------+
 | chown_restricted | 18 | bool | R | Section |
 | | | | | 5.8.2.6 |
 +--------------------+----+--------------------+-----+-------------+
 | dacl | 58 | nfsacl41 | R W | Section |
 | | | | | 6.2.2 |
 +--------------------+----+--------------------+-----+-------------+
 | dir_notif_delay | 56 | nfstime4 | R | Section |
 | | | | | 5.11.1 |
 +--------------------+----+--------------------+-----+-------------+
 | dirent_notif_delay | 57 | nfstime4 | R | Section |
 | | | | | 5.11.2 |
 +--------------------+----+--------------------+-----+-------------+
 | fileid | 20 | uint64_t | R | Section |
 | | | | | 5.8.2.7 |
 +--------------------+----+--------------------+-----+-------------+
 | files_avail | 21 | uint64_t | R | Section |
 | | | | | 5.8.2.8 |

 +--------------------+----+--------------------+-----+-------------+
 | files_free | 22 | uint64_t | R | Section |
 | | | | | 5.8.2.9 |
 +--------------------+----+--------------------+-----+-------------+
 | files_total | 23 | uint64_t | R | Section |
 | | | | | 5.8.2.10 |
 +--------------------+----+--------------------+-----+-------------+
 | fs_charset_cap | 76 | uint32_t | R | Section |
 | | | | | 5.8.2.11 |
 +--------------------+----+--------------------+-----+-------------+
 | fs_layout_type | 62 | layouttype4<> | R | Section |
 | | | | | 5.12.1 |
 +--------------------+----+--------------------+-----+-------------+
 | fs_locations | 24 | fs_locations | R | Section |
 | | | | | 5.8.2.12 |
 +--------------------+----+--------------------+-----+-------------+
 | fs_locations_info | 67 | fs_locations_info4 | R | Section |
 | | | | | 5.8.2.13 |
 +--------------------+----+--------------------+-----+-------------+
 | fs_status | 61 | fs4_status | R | Section |
 | | | | | 5.8.2.14 |
 +--------------------+----+--------------------+-----+-------------+
 | hidden | 25 | bool | R W | Section |
 | | | | | 5.8.2.15 |
 +--------------------+----+--------------------+-----+-------------+
 | homogeneous | 26 | bool | R | Section |
 | | | | | 5.8.2.16 |
 +--------------------+----+--------------------+-----+-------------+
 | layout_alignment | 66 | uint32_t | R | Section |
 | | | | | 5.12.2 |
 +--------------------+----+--------------------+-----+-------------+
 | layout_blksize | 65 | uint32_t | R | Section |
 | | | | | 5.12.3 |
 +--------------------+----+--------------------+-----+-------------+
 | layout_hint | 63 | layouthint4 | W | Section |
 | | | | | 5.12.4 |
 +--------------------+----+--------------------+-----+-------------+
 | layout_type | 64 | layouttype4<> | R | Section |
 | | | | | 5.12.5 |
 +--------------------+----+--------------------+-----+-------------+
 | maxfilesize | 27 | uint64_t | R | Section |
 | | | | | 5.8.2.17 |
 +--------------------+----+--------------------+-----+-------------+
 | maxlink | 28 | uint32_t | R | Section |
 | | | | | 5.8.2.18 |
 +--------------------+----+--------------------+-----+-------------+
 | maxname | 29 | uint32_t | R | Section |
 | | | | | 5.8.2.19 |
 +--------------------+----+--------------------+-----+-------------+
 | maxread | 30 | uint64_t | R | Section |
 | | | | | 5.8.2.20 |
 +--------------------+----+--------------------+-----+-------------+
 | maxwrite | 31 | uint64_t | R | Section |
 | | | | | 5.8.2.21 |
 +--------------------+----+--------------------+-----+-------------+
 | mdsthreshold | 68 | mdsthreshold4 | R | Section |
 | | | | | 5.12.6 |
 +--------------------+----+--------------------+-----+-------------+
 | mimetype | 32 | utf8str_cs | R W | Section |
 | | | | | 5.8.2.22 |
 +--------------------+----+--------------------+-----+-------------+
 | mode | 33 | mode4 | R W | Section |
 | | | | | 6.2.4 |
 +--------------------+----+--------------------+-----+-------------+
 | mode_set_masked | 74 | mode_masked4 | W | Section |
 | | | | | 6.2.5 |
 +--------------------+----+--------------------+-----+-------------+
 | mounted_on_fileid | 55 | uint64_t | R | Section |
 | | | | | 5.8.2.23 |
 +--------------------+----+--------------------+-----+-------------+
 | no_trunc | 34 | bool | R | Section |

 | | | | | 5.8.2.24 |
 +--------------------+----+--------------------+-----+-------------+
 | numlinks | 35 | uint32_t | R | Section |
 | | | | | 5.8.2.25 |
 +--------------------+----+--------------------+-----+-------------+
 | owner | 36 | utf8str_mixed | R W | Section |
 | | | | | 5.8.2.26 |
 +--------------------+----+--------------------+-----+-------------+
 | owner_group | 37 | utf8str_mixed | R W | Section |
 | | | | | 5.8.2.27 |
 +--------------------+----+--------------------+-----+-------------+
 | quota_avail_hard | 38 | uint64_t | R | Section |
 | | | | | 5.8.2.28 |
 +--------------------+----+--------------------+-----+-------------+
 | quota_avail_soft | 39 | uint64_t | R | Section |
 | | | | | 5.8.2.29 |
 +--------------------+----+--------------------+-----+-------------+
 | quota_used | 40 | uint64_t | R | Section |
 | | | | | 5.8.2.30 |
 +--------------------+----+--------------------+-----+-------------+
 | rawdev | 41 | specdata4 | R | Section |
 | | | | | 5.8.2.31 |
 +--------------------+----+--------------------+-----+-------------+
 | retentevt_get | 71 | retention_get4 | R | Section |
 | | | | | 5.13.3 |
 +--------------------+----+--------------------+-----+-------------+
 | retentevt_set | 72 | retention_set4 | W | Section |
 | | | | | 5.13.4 |
 +--------------------+----+--------------------+-----+-------------+
 | retention_get | 69 | retention_get4 | R | Section |
 | | | | | 5.13.1 |
 +--------------------+----+--------------------+-----+-------------+
 | retention_hold | 73 | uint64_t | R W | Section |
 | | | | | 5.13.5 |
 +--------------------+----+--------------------+-----+-------------+
 | retention_set | 70 | retention_set4 | W | Section |
 | | | | | 5.13.2 |
 +--------------------+----+--------------------+-----+-------------+
 | sacl | 59 | nfsacl41 | R W | Section |
 | | | | | 6.2.3 |
 +--------------------+----+--------------------+-----+-------------+
 | space_avail | 42 | uint64_t | R | Section |
 | | | | | 5.8.2.32 |
 +--------------------+----+--------------------+-----+-------------+
 | space_free | 43 | uint64_t | R | Section |
 | | | | | 5.8.2.33 |
 +--------------------+----+--------------------+-----+-------------+
 | space_total | 44 | uint64_t | R | Section |
 | | | | | 5.8.2.34 |
 +--------------------+----+--------------------+-----+-------------+
 | space_used | 45 | uint64_t | R | Section |
 | | | | | 5.8.2.35 |
 +--------------------+----+--------------------+-----+-------------+
 | system | 46 | bool | R W | Section |
 | | | | | 5.8.2.36 |
 +--------------------+----+--------------------+-----+-------------+
 | time_access | 47 | nfstime4 | R | Section |
 | | | | | 5.8.2.37 |
 +--------------------+----+--------------------+-----+-------------+
 | time_access_set | 48 | settime4 | W | Section |
 | | | | | 5.8.2.38 |
 +--------------------+----+--------------------+-----+-------------+
 | time_backup | 49 | nfstime4 | R W | Section |
 | | | | | 5.8.2.39 |
 +--------------------+----+--------------------+-----+-------------+
 | time_create | 50 | nfstime4 | R W | Section |
 | | | | | 5.8.2.40 |
 +--------------------+----+--------------------+-----+-------------+
 | time_delta | 51 | nfstime4 | R | Section |
 | | | | | 5.8.2.41 |
 +--------------------+----+--------------------+-----+-------------+

 | time_metadata | 52 | nfstime4 | R | Section |
 | | | | | 5.8.2.42 |
 +--------------------+----+--------------------+-----+-------------+
 | time_modify | 53 | nfstime4 | R | Section |
 | | | | | 5.8.2.43 |
 +--------------------+----+--------------------+-----+-------------+
 | time_modify_set | 54 | settime4 | W | Section |
 | | | | | 5.8.2.44 |
 +--------------------+----+--------------------+-----+-------------+

 Table 5

5.8. Attribute Definitions

5.8.1. Definitions of REQUIRED Attributes

5.8.1.1. Attribute 0: supported_attrs

 The bit vector that would retrieve all REQUIRED and RECOMMENDED
 attributes that are supported for this object. The scope of this
 attribute applies to all objects with a matching fsid.

5.8.1.2. Attribute 1: type

 Designates the type of an object in terms of one of a number of
 special constants:

 * NF4REG designates a regular file.

 * NF4DIR designates a directory.

 * NF4BLK designates a block device special file.

 * NF4CHR designates a character device special file.

 * NF4LNK designates a symbolic link.

 * NF4SOCK designates a named socket special file.

 * NF4FIFO designates a fifo special file.

 * NF4ATTRDIR designates a named attribute directory.

 * NF4NAMEDATTR designates a named attribute.

 Within the explanatory text and operation descriptions, the following
 phrases will be used with the meanings given below:

 * The phrase "is a directory" means that the object’s type attribute
 is NF4DIR or NF4ATTRDIR.

 * The phrase "is a special file" means that the object’s type
 attribute is NF4BLK, NF4CHR, NF4SOCK, or NF4FIFO.

 * The phrases "is an ordinary file" and "is a regular file" mean
 that the object’s type attribute is NF4REG or NF4NAMEDATTR.

5.8.1.3. Attribute 2: fh_expire_type

 Server uses this to specify filehandle expiration behavior to the
 client. See Section 4 for additional description.

5.8.1.4. Attribute 3: change

 A value created by the server that the client can use to determine if
 file data, directory contents, or attributes of the object have been
 modified. The server may return the object’s time_metadata attribute
 for this attribute’s value, but only if the file system object cannot
 be updated more frequently than the resolution of time_metadata.

5.8.1.5. Attribute 4: size

 The size of the object in bytes.

5.8.1.6. Attribute 5: link_support

 TRUE, if the object’s file system supports hard links.

5.8.1.7. Attribute 6: symlink_support

 TRUE, if the object’s file system supports symbolic links.

5.8.1.8. Attribute 7: named_attr

 TRUE, if this object has named attributes. In other words, object
 has a non-empty named attribute directory.

5.8.1.9. Attribute 8: fsid

 Unique file system identifier for the file system holding this
 object. The fsid attribute has major and minor components, each of
 which are of data type uint64_t.

5.8.1.10. Attribute 9: unique_handles

 TRUE, if two distinct filehandles are guaranteed to refer to two
 different file system objects.

5.8.1.11. Attribute 10: lease_time

 Duration of the lease at server in seconds.

5.8.1.12. Attribute 11: rdattr_error

 Error returned from an attempt to retrieve attributes during a
 READDIR operation.

5.8.1.13. Attribute 19: filehandle

 The filehandle of this object (primarily for READDIR requests).

5.8.1.14. Attribute 75: suppattr_exclcreat

 The bit vector that would set all REQUIRED and RECOMMENDED attributes
 that are supported by the EXCLUSIVE4_1 method of file creation via
 the OPEN operation. The scope of this attribute applies to all
 objects with a matching fsid.

5.8.2. Definitions of Uncategorized RECOMMENDED Attributes

 The definitions of most of the RECOMMENDED attributes follow.
 Collections that share a common category are defined in other
 sections.

5.8.2.1. Attribute 14: archive

 TRUE, if this file has been archived since the time of last
 modification (deprecated in favor of time_backup).

5.8.2.2. Attribute 15: cansettime

 TRUE, if the server is able to change the times for a file system
 object as specified in a SETATTR operation.

5.8.2.3. Attribute 16: case_insensitive

 TRUE, if file name comparisons on this file system are case
 insensitive.

5.8.2.4. Attribute 17: case_preserving

 TRUE, if file name case on this file system is preserved.

5.8.2.5. Attribute 60: change_policy

 A value created by the server that the client can use to determine if
 some server policy related to the current file system has been
 subject to change. If the value remains the same, then the client
 can be sure that the values of the attributes related to fs location
 and the fss_type field of the fs_status attribute have not changed.
 On the other hand, a change in this value does necessarily imply a
 change in policy. It is up to the client to interrogate the server
 to determine if some policy relevant to it has changed. See
 Section 3.3.6 for details.

 This attribute MUST change when the value returned by the
 fs_locations or fs_locations_info attribute changes, when a file
 system goes from read-only to writable or vice versa, or when the
 allowable set of security flavors for the file system or any part
 thereof is changed.

5.8.2.6. Attribute 18: chown_restricted

 If TRUE, the server will reject any request to change either the
 owner or the group associated with a file if the caller is not a
 privileged user (for example, "root" in UNIX operating environments
 or, in Windows 2000, the "Take Ownership" privilege).

5.8.2.7. Attribute 20: fileid

 A number uniquely identifying the file within the file system.

5.8.2.8. Attribute 21: files_avail

 File slots available to this user on the file system containing this
 object -- this should be the smallest relevant limit.

5.8.2.9. Attribute 22: files_free

 Free file slots on the file system containing this object -- this
 should be the smallest relevant limit.

5.8.2.10. Attribute 23: files_total

 Total file slots on the file system containing this object.

5.8.2.11. Attribute 76: fs_charset_cap

 Character set capabilities for this file system. See Section 14.4.

5.8.2.12. Attribute 24: fs_locations

 Locations where this file system may be found. If the server returns
 NFS4ERR_MOVED as an error, this attribute MUST be supported. See
 Section 11.16 for more details.

5.8.2.13. Attribute 67: fs_locations_info

 Full function file system location. See Section 11.17.2 for more
 details.

5.8.2.14. Attribute 61: fs_status

 Generic file system type information. See Section 11.18 for more
 details.

5.8.2.15. Attribute 25: hidden

 TRUE, if the file is considered hidden with respect to the Windows
 API.

5.8.2.16. Attribute 26: homogeneous

 TRUE, if this object’s file system is homogeneous; i.e., all objects
 in the file system (all objects on the server with the same fsid)
 have common values for all per-file-system attributes.

5.8.2.17. Attribute 27: maxfilesize

 Maximum supported file size for the file system of this object.

5.8.2.18. Attribute 28: maxlink

 Maximum number of links for this object.

5.8.2.19. Attribute 29: maxname

 Maximum file name size supported for this object.

5.8.2.20. Attribute 30: maxread

 Maximum amount of data the READ operation will return for this
 object.

5.8.2.21. Attribute 31: maxwrite

 Maximum amount of data the WRITE operation will accept for this
 object. This attribute SHOULD be supported if the file is writable.
 Lack of this attribute can lead to the client either wasting
 bandwidth or not receiving the best performance.

5.8.2.22. Attribute 32: mimetype

 MIME body type/subtype of this object.

5.8.2.23. Attribute 55: mounted_on_fileid

 Like fileid, but if the target filehandle is the root of a file
 system, this attribute represents the fileid of the underlying
 directory.

 UNIX-based operating environments connect a file system into the
 namespace by connecting (mounting) the file system onto the existing
 file object (the mount point, usually a directory) of an existing
 file system. When the mount point’s parent directory is read via an
 API like readdir(), the return results are directory entries, each
 with a component name and a fileid. The fileid of the mount point’s
 directory entry will be different from the fileid that the stat()
 system call returns. The stat() system call is returning the fileid
 of the root of the mounted file system, whereas readdir() is
 returning the fileid that stat() would have returned before any file
 systems were mounted on the mount point.

 Unlike NFSv3, NFSv4.1 allows a client’s LOOKUP request to cross other
 file systems. The client detects the file system crossing whenever
 the filehandle argument of LOOKUP has an fsid attribute different
 from that of the filehandle returned by LOOKUP. A UNIX-based client
 will consider this a "mount point crossing". UNIX has a legacy
 scheme for allowing a process to determine its current working
 directory. This relies on readdir() of a mount point’s parent and
 stat() of the mount point returning fileids as previously described.
 The mounted_on_fileid attribute corresponds to the fileid that
 readdir() would have returned as described previously.

 While the NFSv4.1 client could simply fabricate a fileid
 corresponding to what mounted_on_fileid provides (and if the server
 does not support mounted_on_fileid, the client has no choice), there
 is a risk that the client will generate a fileid that conflicts with
 one that is already assigned to another object in the file system.
 Instead, if the server can provide the mounted_on_fileid, the
 potential for client operational problems in this area is eliminated.

 If the server detects that there is no mounted point at the target
 file object, then the value for mounted_on_fileid that it returns is

 the same as that of the fileid attribute.

 The mounted_on_fileid attribute is RECOMMENDED, so the server SHOULD
 provide it if possible, and for a UNIX-based server, this is
 straightforward. Usually, mounted_on_fileid will be requested during
 a READDIR operation, in which case it is trivial (at least for UNIX-
 based servers) to return mounted_on_fileid since it is equal to the
 fileid of a directory entry returned by readdir(). If
 mounted_on_fileid is requested in a GETATTR operation, the server
 should obey an invariant that has it returning a value that is equal
 to the file object’s entry in the object’s parent directory, i.e.,
 what readdir() would have returned. Some operating environments
 allow a series of two or more file systems to be mounted onto a
 single mount point. In this case, for the server to obey the
 aforementioned invariant, it will need to find the base mount point,
 and not the intermediate mount points.

5.8.2.24. Attribute 34: no_trunc

 If this attribute is TRUE, then if the client uses a file name longer
 than name_max, an error will be returned instead of the name being
 truncated.

5.8.2.25. Attribute 35: numlinks

 Number of hard links to this object.

5.8.2.26. Attribute 36: owner

 The string name of the owner of this object.

5.8.2.27. Attribute 37: owner_group

 The string name of the group ownership of this object.

5.8.2.28. Attribute 38: quota_avail_hard

 The value in bytes that represents the amount of additional disk
 space beyond the current allocation that can be allocated to this
 file or directory before further allocations will be refused. It is
 understood that this space may be consumed by allocations to other
 files or directories.

5.8.2.29. Attribute 39: quota_avail_soft

 The value in bytes that represents the amount of additional disk
 space that can be allocated to this file or directory before the user
 may reasonably be warned. It is understood that this space may be
 consumed by allocations to other files or directories though there is
 a rule as to which other files or directories.

5.8.2.30. Attribute 40: quota_used

 The value in bytes that represents the amount of disk space used by
 this file or directory and possibly a number of other similar files
 or directories, where the set of "similar" meets at least the
 criterion that allocating space to any file or directory in the set
 will reduce the "quota_avail_hard" of every other file or directory
 in the set.

 Note that there may be a number of distinct but overlapping sets of
 files or directories for which a quota_used value is maintained,
 e.g., "all files with a given owner", "all files with a given group
 owner", etc. The server is at liberty to choose any of those sets
 when providing the content of the quota_used attribute, but should do
 so in a repeatable way. The rule may be configured per file system
 or may be "choose the set with the smallest quota".

5.8.2.31. Attribute 41: rawdev

 Raw device number of file of type NF4BLK or NF4CHR. The device

 number is split into major and minor numbers. If the file’s type
 attribute is not NF4BLK or NF4CHR, the value returned SHOULD NOT be
 considered useful.

5.8.2.32. Attribute 42: space_avail

 Disk space in bytes available to this user on the file system
 containing this object -- this should be the smallest relevant limit.

5.8.2.33. Attribute 43: space_free

 Free disk space in bytes on the file system containing this object --
 this should be the smallest relevant limit.

5.8.2.34. Attribute 44: space_total

 Total disk space in bytes on the file system containing this object.

5.8.2.35. Attribute 45: space_used

 Number of file system bytes allocated to this object.

5.8.2.36. Attribute 46: system

 This attribute is TRUE if this file is a "system" file with respect
 to the Windows operating environment.

5.8.2.37. Attribute 47: time_access

 The time_access attribute represents the time of last access to the
 object by a READ operation sent to the server. The notion of what is
 an "access" depends on the server’s operating environment and/or the
 server’s file system semantics. For example, for servers obeying
 Portable Operating System Interface (POSIX) semantics, time_access
 would be updated only by the READ and READDIR operations and not any
 of the operations that modify the content of the object [13], [14],
 [15]. Of course, setting the corresponding time_access_set attribute
 is another way to modify the time_access attribute.

 Whenever the file object resides on a writable file system, the
 server should make its best efforts to record time_access into stable
 storage. However, to mitigate the performance effects of doing so,
 and most especially whenever the server is satisfying the read of the
 object’s content from its cache, the server MAY cache access time
 updates and lazily write them to stable storage. It is also
 acceptable to give administrators of the server the option to disable
 time_access updates.

5.8.2.38. Attribute 48: time_access_set

 Sets the time of last access to the object. SETATTR use only.

5.8.2.39. Attribute 49: time_backup

 The time of last backup of the object.

5.8.2.40. Attribute 50: time_create

 The time of creation of the object. This attribute does not have any
 relation to the traditional UNIX file attribute "ctime" or "change
 time".

5.8.2.41. Attribute 51: time_delta

 Smallest useful server time granularity.

5.8.2.42. Attribute 52: time_metadata

 The time of last metadata modification of the object.

5.8.2.43. Attribute 53: time_modify

 The time of last modification to the object.

5.8.2.44. Attribute 54: time_modify_set

 Sets the time of last modification to the object. SETATTR use only.

5.9. Interpreting owner and owner_group

 The RECOMMENDED attributes "owner" and "owner_group" (and also users
 and groups within the "acl" attribute) are represented in terms of a
 UTF-8 string. To avoid a representation that is tied to a particular
 underlying implementation at the client or server, the use of the
 UTF-8 string has been chosen. Note that Section 6.1 of RFC 2624 [53]
 provides additional rationale. It is expected that the client and
 server will have their own local representation of owner and
 owner_group that is used for local storage or presentation to the end
 user. Therefore, it is expected that when these attributes are
 transferred between the client and server, the local representation
 is translated to a syntax of the form "user@dns_domain". This will
 allow for a client and server that do not use the same local
 representation the ability to translate to a common syntax that can
 be interpreted by both.

 Similarly, security principals may be represented in different ways
 by different security mechanisms. Servers normally translate these
 representations into a common format, generally that used by local
 storage, to serve as a means of identifying the users corresponding
 to these security principals. When these local identifiers are
 translated to the form of the owner attribute, associated with files
 created by such principals, they identify, in a common format, the
 users associated with each corresponding set of security principals.

 The translation used to interpret owner and group strings is not
 specified as part of the protocol. This allows various solutions to
 be employed. For example, a local translation table may be consulted
 that maps a numeric identifier to the user@dns_domain syntax. A name
 service may also be used to accomplish the translation. A server may
 provide a more general service, not limited by any particular
 translation (which would only translate a limited set of possible
 strings) by storing the owner and owner_group attributes in local
 storage without any translation or it may augment a translation
 method by storing the entire string for attributes for which no
 translation is available while using the local representation for
 those cases in which a translation is available.

 Servers that do not provide support for all possible values of the
 owner and owner_group attributes SHOULD return an error
 (NFS4ERR_BADOWNER) when a string is presented that has no
 translation, as the value to be set for a SETATTR of the owner,
 owner_group, or acl attributes. When a server does accept an owner
 or owner_group value as valid on a SETATTR (and similarly for the
 owner and group strings in an acl), it is promising to return that
 same string when a corresponding GETATTR is done. Configuration
 changes (including changes from the mapping of the string to the
 local representation) and ill-constructed name translations (those
 that contain aliasing) may make that promise impossible to honor.
 Servers should make appropriate efforts to avoid a situation in which
 these attributes have their values changed when no real change to
 ownership has occurred.

 The "dns_domain" portion of the owner string is meant to be a DNS
 domain name, for example, user@example.org. Servers should accept as
 valid a set of users for at least one domain. A server may treat
 other domains as having no valid translations. A more general
 service is provided when a server is capable of accepting users for
 multiple domains, or for all domains, subject to security
 constraints.

 In the case where there is no translation available to the client or
 server, the attribute value will be constructed without the "@".

 Therefore, the absence of the @ from the owner or owner_group
 attribute signifies that no translation was available at the sender
 and that the receiver of the attribute should not use that string as
 a basis for translation into its own internal format. Even though
 the attribute value cannot be translated, it may still be useful. In
 the case of a client, the attribute string may be used for local
 display of ownership.

 To provide a greater degree of compatibility with NFSv3, which
 identified users and groups by 32-bit unsigned user identifiers and
 group identifiers, owner and group strings that consist of decimal
 numeric values with no leading zeros can be given a special
 interpretation by clients and servers that choose to provide such
 support. The receiver may treat such a user or group string as
 representing the same user as would be represented by an NFSv3 uid or
 gid having the corresponding numeric value. A server is not
 obligated to accept such a string, but may return an NFS4ERR_BADOWNER
 instead. To avoid this mechanism being used to subvert user and
 group translation, so that a client might pass all of the owners and
 groups in numeric form, a server SHOULD return an NFS4ERR_BADOWNER
 error when there is a valid translation for the user or owner
 designated in this way. In that case, the client must use the
 appropriate name@domain string and not the special form for
 compatibility.

 The owner string "nobody" may be used to designate an anonymous user,
 which will be associated with a file created by a security principal
 that cannot be mapped through normal means to the owner attribute.
 Users and implementations of NFSv4.1 SHOULD NOT use "nobody" to
 designate a real user whose access is not anonymous.

5.10. Character Case Attributes

 With respect to the case_insensitive and case_preserving attributes,
 each UCS-4 character (which UTF-8 encodes) can be mapped according to
 Appendix B.2 of RFC 3454 [16]. For general character handling and
 internationalization issues, see Section 14.

5.11. Directory Notification Attributes

 As described in Section 18.39, the client can request a minimum delay
 for notifications of changes to attributes, but the server is free to
 ignore what the client requests. The client can determine in advance
 what notification delays the server will accept by sending a GETATTR
 operation for either or both of two directory notification
 attributes. When the client calls the GET_DIR_DELEGATION operation
 and asks for attribute change notifications, it should request
 notification delays that are no less than the values in the server-
 provided attributes.

5.11.1. Attribute 56: dir_notif_delay

 The dir_notif_delay attribute is the minimum number of seconds the
 server will delay before notifying the client of a change to the
 directory’s attributes.

5.11.2. Attribute 57: dirent_notif_delay

 The dirent_notif_delay attribute is the minimum number of seconds the
 server will delay before notifying the client of a change to a file
 object that has an entry in the directory.

5.12. pNFS Attribute Definitions

5.12.1. Attribute 62: fs_layout_type

 The fs_layout_type attribute (see Section 3.3.13) applies to a file
 system and indicates what layout types are supported by the file
 system. When the client encounters a new fsid, the client SHOULD
 obtain the value for the fs_layout_type attribute associated with the
 new file system. This attribute is used by the client to determine

 if the layout types supported by the server match any of the client’s
 supported layout types.

5.12.2. Attribute 66: layout_alignment

 When a client holds layouts on files of a file system, the
 layout_alignment attribute indicates the preferred alignment for I/O
 to files on that file system. Where possible, the client should send
 READ and WRITE operations with offsets that are whole multiples of
 the layout_alignment attribute.

5.12.3. Attribute 65: layout_blksize

 When a client holds layouts on files of a file system, the
 layout_blksize attribute indicates the preferred block size for I/O
 to files on that file system. Where possible, the client should send
 READ operations with a count argument that is a whole multiple of
 layout_blksize, and WRITE operations with a data argument of size
 that is a whole multiple of layout_blksize.

5.12.4. Attribute 63: layout_hint

 The layout_hint attribute (see Section 3.3.19) may be set on newly
 created files to influence the metadata server’s choice for the
 file’s layout. If possible, this attribute is one of those set in
 the initial attributes within the OPEN operation. The metadata
 server may choose to ignore this attribute. The layout_hint
 attribute is a subset of the layout structure returned by LAYOUTGET.
 For example, instead of specifying particular devices, this would be
 used to suggest the stripe width of a file. The server
 implementation determines which fields within the layout will be
 used.

5.12.5. Attribute 64: layout_type

 This attribute lists the layout type(s) available for a file. The
 value returned by the server is for informational purposes only. The
 client will use the LAYOUTGET operation to obtain the information
 needed in order to perform I/O, for example, the specific device
 information for the file and its layout.

5.12.6. Attribute 68: mdsthreshold

 This attribute is a server-provided hint used to communicate to the
 client when it is more efficient to send READ and WRITE operations to
 the metadata server or the data server. The two types of thresholds
 described are file size thresholds and I/O size thresholds. If a
 file’s size is smaller than the file size threshold, data accesses
 SHOULD be sent to the metadata server. If an I/O request has a
 length that is below the I/O size threshold, the I/O SHOULD be sent
 to the metadata server. Each threshold type is specified separately
 for read and write.

 The server MAY provide both types of thresholds for a file. If both
 file size and I/O size are provided, the client SHOULD reach or
 exceed both thresholds before sending its read or write requests to
 the data server. Alternatively, if only one of the specified
 thresholds is reached or exceeded, the I/O requests are sent to the
 metadata server.

 For each threshold type, a value of zero indicates no READ or WRITE
 should be sent to the metadata server, while a value of all ones
 indicates that all READs or WRITEs should be sent to the metadata
 server.

 The attribute is available on a per-filehandle basis. If the current
 filehandle refers to a non-pNFS file or directory, the metadata
 server should return an attribute that is representative of the
 filehandle’s file system. It is suggested that this attribute is
 queried as part of the OPEN operation. Due to dynamic system
 changes, the client should not assume that the attribute will remain

 constant for any specific time period; thus, it should be
 periodically refreshed.

5.13. Retention Attributes

 Retention is a concept whereby a file object can be placed in an
 immutable, undeletable, unrenamable state for a fixed or infinite
 duration of time. Once in this "retained" state, the file cannot be
 moved out of the state until the duration of retention has been
 reached.

 When retention is enabled, retention MUST extend to the data of the
 file, and the name of file. The server MAY extend retention to any
 other property of the file, including any subset of REQUIRED,
 RECOMMENDED, and named attributes, with the exceptions noted in this
 section.

 Servers MAY support or not support retention on any file object type.

 The five retention attributes are explained in the next subsections.

5.13.1. Attribute 69: retention_get

 If retention is enabled for the associated file, this attribute’s
 value represents the retention begin time of the file object. This
 attribute’s value is only readable with the GETATTR operation and
 MUST NOT be modified by the SETATTR operation (Section 5.5). The
 value of the attribute consists of:

 const RET4_DURATION_INFINITE = 0xffffffffffffffff;
 struct retention_get4 {
 uint64_t rg_duration;
 nfstime4 rg_begin_time<1>;
 };

 The field rg_duration is the duration in seconds indicating how long
 the file will be retained once retention is enabled. The field
 rg_begin_time is an array of up to one absolute time value. If the
 array is zero length, no beginning retention time has been
 established, and retention is not enabled. If rg_duration is equal
 to RET4_DURATION_INFINITE, the file, once retention is enabled, will
 be retained for an infinite duration.

 If (as soon as) rg_duration is zero, then rg_begin_time will be of
 zero length, and again, retention is not (no longer) enabled.

5.13.2. Attribute 70: retention_set

 This attribute is used to set the retention duration and optionally
 enable retention for the associated file object. This attribute is
 only modifiable via the SETATTR operation and MUST NOT be retrieved
 by the GETATTR operation (Section 5.5). This attribute corresponds
 to retention_get. The value of the attribute consists of:

 struct retention_set4 {
 bool rs_enable;
 uint64_t rs_duration<1>;
 };

 If the client sets rs_enable to TRUE, then it is enabling retention
 on the file object with the begin time of retention starting from the
 server’s current time and date. The duration of the retention can
 also be provided if the rs_duration array is of length one. The
 duration is the time in seconds from the begin time of retention, and
 if set to RET4_DURATION_INFINITE, the file is to be retained forever.
 If retention is enabled, with no duration specified in either this
 SETATTR or a previous SETATTR, the duration defaults to zero seconds.
 The server MAY restrict the enabling of retention or the duration of
 retention on the basis of the ACE4_WRITE_RETENTION ACL permission.
 The enabling of retention MUST NOT prevent the enabling of event-
 based retention or the modification of the retention_hold attribute.

 The following rules apply to both the retention_set and retentevt_set
 attributes.

 * As long as retention is not enabled, the client is permitted to
 decrease the duration.

 * The duration can always be set to an equal or higher value, even
 if retention is enabled. Note that once retention is enabled, the
 actual duration (as returned by the retention_get or retentevt_get
 attributes; see Section 5.13.1 or Section 5.13.3) is constantly
 counting down to zero (one unit per second), unless the duration
 was set to RET4_DURATION_INFINITE. Thus, it will not be possible
 for the client to precisely extend the duration on a file that has
 retention enabled.

 * While retention is enabled, attempts to disable retention or
 decrease the retention’s duration MUST fail with the error
 NFS4ERR_INVAL.

 * If the principal attempting to change retention_set or
 retentevt_set does not have ACE4_WRITE_RETENTION permissions, the
 attempt MUST fail with NFS4ERR_ACCESS.

5.13.3. Attribute 71: retentevt_get

 Gets the event-based retention duration, and if enabled, the event-
 based retention begin time of the file object. This attribute is
 like retention_get, but refers to event-based retention. The event
 that triggers event-based retention is not defined by the NFSv4.1
 specification.

5.13.4. Attribute 72: retentevt_set

 Sets the event-based retention duration, and optionally enables
 event-based retention on the file object. This attribute corresponds
 to retentevt_get and is like retention_set, but refers to event-based
 retention. When event-based retention is set, the file MUST be
 retained even if non-event-based retention has been set, and the
 duration of non-event-based retention has been reached. Conversely,
 when non-event-based retention has been set, the file MUST be
 retained even if event-based retention has been set, and the duration
 of event-based retention has been reached. The server MAY restrict
 the enabling of event-based retention or the duration of event-based
 retention on the basis of the ACE4_WRITE_RETENTION ACL permission.
 The enabling of event-based retention MUST NOT prevent the enabling
 of non-event-based retention or the modification of the
 retention_hold attribute.

5.13.5. Attribute 73: retention_hold

 Gets or sets administrative retention holds, one hold per bit
 position.

 This attribute allows one to 64 administrative holds, one hold per
 bit on the attribute. If retention_hold is not zero, then the file
 MUST NOT be deleted, renamed, or modified, even if the duration on
 enabled event or non-event-based retention has been reached. The
 server MAY restrict the modification of retention_hold on the basis
 of the ACE4_WRITE_RETENTION_HOLD ACL permission. The enabling of
 administration retention holds does not prevent the enabling of
 event-based or non-event-based retention.

 If the principal attempting to change retention_hold does not have
 ACE4_WRITE_RETENTION_HOLD permissions, the attempt MUST fail with
 NFS4ERR_ACCESS.

6. Access Control Attributes

 Access Control Lists (ACLs) are file attributes that specify fine-
 grained access control. This section covers the "acl", "dacl",

 "sacl", "aclsupport", "mode", and "mode_set_masked" file attributes
 and their interactions. Note that file attributes may apply to any
 file system object.

6.1. Goals

 ACLs and modes represent two well-established models for specifying
 permissions. This section specifies requirements that attempt to
 meet the following goals:

 * If a server supports the mode attribute, it should provide
 reasonable semantics to clients that only set and retrieve the
 mode attribute.

 * If a server supports ACL attributes, it should provide reasonable
 semantics to clients that only set and retrieve those attributes.

 * On servers that support the mode attribute, if ACL attributes have
 never been set on an object, via inheritance or explicitly, the
 behavior should be traditional UNIX-like behavior.

 * On servers that support the mode attribute, if the ACL attributes
 have been previously set on an object, either explicitly or via
 inheritance:

 - Setting only the mode attribute should effectively control the
 traditional UNIX-like permissions of read, write, and execute
 on owner, owner_group, and other.

 - Setting only the mode attribute should provide reasonable
 security. For example, setting a mode of 000 should be enough
 to ensure that future OPEN operations for
 OPEN4_SHARE_ACCESS_READ or OPEN4_SHARE_ACCESS_WRITE by any
 principal fail, regardless of a previously existing or
 inherited ACL.

 * NFSv4.1 may introduce different semantics relating to the mode and
 ACL attributes, but it does not render invalid any previously
 existing implementations. Additionally, this section provides
 clarifications based on previous implementations and discussions
 around them.

 * On servers that support both the mode and the acl or dacl
 attributes, the server must keep the two consistent with each
 other. The value of the mode attribute (with the exception of the
 three high-order bits described in Section 6.2.4) must be
 determined entirely by the value of the ACL, so that use of the
 mode is never required for anything other than setting the three
 high-order bits. See Section 6.4.1 for exact requirements.

 * When a mode attribute is set on an object, the ACL attributes may
 need to be modified in order to not conflict with the new mode.
 In such cases, it is desirable that the ACL keep as much
 information as possible. This includes information about
 inheritance, AUDIT and ALARM ACEs, and permissions granted and
 denied that do not conflict with the new mode.

6.2. File Attributes Discussion

6.2.1. Attribute 12: acl

 The NFSv4.1 ACL attribute contains an array of Access Control Entries
 (ACEs) that are associated with the file system object. Although the
 client can set and get the acl attribute, the server is responsible
 for using the ACL to perform access control. The client can use the
 OPEN or ACCESS operations to check access without modifying or
 reading data or metadata.

 The NFS ACE structure is defined as follows:

 typedef uint32_t acetype4;

 typedef uint32_t aceflag4;

 typedef uint32_t acemask4;

 struct nfsace4 {
 acetype4 type;
 aceflag4 flag;
 acemask4 access_mask;
 utf8str_mixed who;
 };

 To determine if a request succeeds, the server processes each nfsace4
 entry in order. Only ACEs that have a "who" that matches the
 requester are considered. Each ACE is processed until all of the
 bits of the requester’s access have been ALLOWED. Once a bit (see
 below) has been ALLOWED by an ACCESS_ALLOWED_ACE, it is no longer
 considered in the processing of later ACEs. If an ACCESS_DENIED_ACE
 is encountered where the requester’s access still has unALLOWED bits
 in common with the "access_mask" of the ACE, the request is denied.
 When the ACL is fully processed, if there are bits in the requester’s
 mask that have not been ALLOWED or DENIED, access is denied.

 Unlike the ALLOW and DENY ACE types, the ALARM and AUDIT ACE types do
 not affect a requester’s access, and instead are for triggering
 events as a result of a requester’s access attempt. Therefore, AUDIT
 and ALARM ACEs are processed only after processing ALLOW and DENY
 ACEs.

 The NFSv4.1 ACL model is quite rich. Some server platforms may
 provide access-control functionality that goes beyond the UNIX-style
 mode attribute, but that is not as rich as the NFS ACL model. So
 that users can take advantage of this more limited functionality, the
 server may support the acl attributes by mapping between its ACL
 model and the NFSv4.1 ACL model. Servers must ensure that the ACL
 they actually store or enforce is at least as strict as the NFSv4 ACL
 that was set. It is tempting to accomplish this by rejecting any ACL
 that falls outside the small set that can be represented accurately.
 However, such an approach can render ACLs unusable without special
 client-side knowledge of the server’s mapping, which defeats the
 purpose of having a common NFSv4 ACL protocol. Therefore, servers
 should accept every ACL that they can without compromising security.
 To help accomplish this, servers may make a special exception, in the
 case of unsupported permission bits, to the rule that bits not
 ALLOWED or DENIED by an ACL must be denied. For example, a UNIX-
 style server might choose to silently allow read attribute
 permissions even though an ACL does not explicitly allow those
 permissions. (An ACL that explicitly denies permission to read
 attributes should still be rejected.)

 The situation is complicated by the fact that a server may have
 multiple modules that enforce ACLs. For example, the enforcement for
 NFSv4.1 access may be different from, but not weaker than, the
 enforcement for local access, and both may be different from the
 enforcement for access through other protocols such as SMB (Server
 Message Block). So it may be useful for a server to accept an ACL
 even if not all of its modules are able to support it.

 The guiding principle with regard to NFSv4 access is that the server
 must not accept ACLs that appear to make access to the file more
 restrictive than it really is.

6.2.1.1. ACE Type

 The constants used for the type field (acetype4) are as follows:

 const ACE4_ACCESS_ALLOWED_ACE_TYPE = 0x00000000;
 const ACE4_ACCESS_DENIED_ACE_TYPE = 0x00000001;
 const ACE4_SYSTEM_AUDIT_ACE_TYPE = 0x00000002;
 const ACE4_SYSTEM_ALARM_ACE_TYPE = 0x00000003;

 Only the ALLOWED and DENIED bits may be used in the dacl attribute,
 and only the AUDIT and ALARM bits may be used in the sacl attribute.
 All four are permitted in the acl attribute.

 +==============================+==============+=====================+
 | Value | Abbreviation | Description |
 +==============================+==============+=====================+
ACE4_ACCESS_ALLOWED_ACE_TYPE	ALLOW	Explicitly grants
		the access
		defined in
		acemask4 to the
		file or
		directory.
+------------------------------+--------------+---------------------+		
ACE4_ACCESS_DENIED_ACE_TYPE	DENY	Explicitly denies
		the access
		defined in
		acemask4 to the
		file or
		directory.
+------------------------------+--------------+---------------------+		
ACE4_SYSTEM_AUDIT_ACE_TYPE	AUDIT	Log (in a system-
		dependent way)
		any access
		attempt to a file
		or directory that
		uses any of the
		access methods
		specified in
		acemask4.
+------------------------------+--------------+---------------------+		
ACE4_SYSTEM_ALARM_ACE_TYPE	ALARM	Generate an alarm
		(in a system-
		dependent way)
		when any access
		attempt is made
		to a file or
		directory for the
		access methods
		specified in
		acemask4.
 +------------------------------+--------------+---------------------+

 Table 6

 The "Abbreviation" column denotes how the types will be referred to
 throughout the rest of this section.

6.2.1.2. Attribute 13: aclsupport

 A server need not support all of the above ACE types. This attribute
 indicates which ACE types are supported for the current file system.
 The bitmask constants used to represent the above definitions within
 the aclsupport attribute are as follows:

 const ACL4_SUPPORT_ALLOW_ACL = 0x00000001;
 const ACL4_SUPPORT_DENY_ACL = 0x00000002;
 const ACL4_SUPPORT_AUDIT_ACL = 0x00000004;
 const ACL4_SUPPORT_ALARM_ACL = 0x00000008;

 Servers that support either the ALLOW or DENY ACE type SHOULD support
 both ALLOW and DENY ACE types.

 Clients should not attempt to set an ACE unless the server claims
 support for that ACE type. If the server receives a request to set
 an ACE that it cannot store, it MUST reject the request with
 NFS4ERR_ATTRNOTSUPP. If the server receives a request to set an ACE
 that it can store but cannot enforce, the server SHOULD reject the
 request with NFS4ERR_ATTRNOTSUPP.

 Support for any of the ACL attributes is optional (albeit

 RECOMMENDED). However, a server that supports either of the new ACL
 attributes (dacl or sacl) MUST allow use of the new ACL attributes to
 access all of the ACE types that it supports. In other words, if
 such a server supports ALLOW or DENY ACEs, then it MUST support the
 dacl attribute, and if it supports AUDIT or ALARM ACEs, then it MUST
 support the sacl attribute.

6.2.1.3. ACE Access Mask

 The bitmask constants used for the access mask field are as follows:

 const ACE4_READ_DATA = 0x00000001;
 const ACE4_LIST_DIRECTORY = 0x00000001;
 const ACE4_WRITE_DATA = 0x00000002;
 const ACE4_ADD_FILE = 0x00000002;
 const ACE4_APPEND_DATA = 0x00000004;
 const ACE4_ADD_SUBDIRECTORY = 0x00000004;
 const ACE4_READ_NAMED_ATTRS = 0x00000008;
 const ACE4_WRITE_NAMED_ATTRS = 0x00000010;
 const ACE4_EXECUTE = 0x00000020;
 const ACE4_DELETE_CHILD = 0x00000040;
 const ACE4_READ_ATTRIBUTES = 0x00000080;
 const ACE4_WRITE_ATTRIBUTES = 0x00000100;
 const ACE4_WRITE_RETENTION = 0x00000200;
 const ACE4_WRITE_RETENTION_HOLD = 0x00000400;

 const ACE4_DELETE = 0x00010000;
 const ACE4_READ_ACL = 0x00020000;
 const ACE4_WRITE_ACL = 0x00040000;
 const ACE4_WRITE_OWNER = 0x00080000;
 const ACE4_SYNCHRONIZE = 0x00100000;

 Note that some masks have coincident values, for example,
 ACE4_READ_DATA and ACE4_LIST_DIRECTORY. The mask entries
 ACE4_LIST_DIRECTORY, ACE4_ADD_FILE, and ACE4_ADD_SUBDIRECTORY are
 intended to be used with directory objects, while ACE4_READ_DATA,
 ACE4_WRITE_DATA, and ACE4_APPEND_DATA are intended to be used with
 non-directory objects.

6.2.1.3.1. Discussion of Mask Attributes

 ACE4_READ_DATA

 Operation(s) affected:
 READ

 OPEN

 Discussion:
 Permission to read the data of the file.

 Servers SHOULD allow a user the ability to read the data of the
 file when only the ACE4_EXECUTE access mask bit is allowed.

 ACE4_LIST_DIRECTORY

 Operation(s) affected:
 READDIR

 Discussion:
 Permission to list the contents of a directory.

 ACE4_WRITE_DATA

 Operation(s) affected:
 WRITE

 OPEN

 SETATTR of size

 Discussion:
 Permission to modify a file’s data.

 ACE4_ADD_FILE

 Operation(s) affected:
 CREATE

 LINK

 OPEN

 RENAME

 Discussion:
 Permission to add a new file in a directory. The CREATE
 operation is affected when nfs_ftype4 is NF4LNK, NF4BLK,
 NF4CHR, NF4SOCK, or NF4FIFO. (NF4DIR is not listed because it
 is covered by ACE4_ADD_SUBDIRECTORY.) OPEN is affected when
 used to create a regular file. LINK and RENAME are always
 affected.

 ACE4_APPEND_DATA

 Operation(s) affected:
 WRITE

 OPEN

 SETATTR of size

 Discussion:
 The ability to modify a file’s data, but only starting at EOF.
 This allows for the notion of append-only files, by allowing
 ACE4_APPEND_DATA and denying ACE4_WRITE_DATA to the same user
 or group. If a file has an ACL such as the one described above
 and a WRITE request is made for somewhere other than EOF, the
 server SHOULD return NFS4ERR_ACCESS.

 ACE4_ADD_SUBDIRECTORY

 Operation(s) affected:
 CREATE

 RENAME

 Discussion:
 Permission to create a subdirectory in a directory. The CREATE
 operation is affected when nfs_ftype4 is NF4DIR. The RENAME
 operation is always affected.

 ACE4_READ_NAMED_ATTRS

 Operation(s) affected:
 OPENATTR

 Discussion:
 Permission to read the named attributes of a file or to look up
 the named attribute directory. OPENATTR is affected when it is
 not used to create a named attribute directory. This is when
 1) createdir is TRUE, but a named attribute directory already
 exists, or 2) createdir is FALSE.

 ACE4_WRITE_NAMED_ATTRS

 Operation(s) affected:
 OPENATTR

 Discussion:
 Permission to write the named attributes of a file or to create
 a named attribute directory. OPENATTR is affected when it is

 used to create a named attribute directory. This is when
 createdir is TRUE and no named attribute directory exists. The
 ability to check whether or not a named attribute directory
 exists depends on the ability to look it up; therefore, users
 also need the ACE4_READ_NAMED_ATTRS permission in order to
 create a named attribute directory.

 ACE4_EXECUTE

 Operation(s) affected:
 READ

 OPEN

 REMOVE

 RENAME

 LINK

 CREATE

 Discussion:
 Permission to execute a file.

 Servers SHOULD allow a user the ability to read the data of the
 file when only the ACE4_EXECUTE access mask bit is allowed.
 This is because there is no way to execute a file without
 reading the contents. Though a server may treat ACE4_EXECUTE
 and ACE4_READ_DATA bits identically when deciding to permit a
 READ operation, it SHOULD still allow the two bits to be set
 independently in ACLs, and MUST distinguish between them when
 replying to ACCESS operations. In particular, servers SHOULD
 NOT silently turn on one of the two bits when the other is set,
 as that would make it impossible for the client to correctly
 enforce the distinction between read and execute permissions.

 As an example, following a SETATTR of the following ACL:

 nfsuser:ACE4_EXECUTE:ALLOW

 A subsequent GETATTR of ACL for that file SHOULD return:

 nfsuser:ACE4_EXECUTE:ALLOW

 Rather than:

 nfsuser:ACE4_EXECUTE/ACE4_READ_DATA:ALLOW

 ACE4_EXECUTE

 Operation(s) affected:
 LOOKUP

 Discussion:
 Permission to traverse/search a directory.

 ACE4_DELETE_CHILD

 Operation(s) affected:
 REMOVE

 RENAME

 Discussion:
 Permission to delete a file or directory within a directory.
 See Section 6.2.1.3.2 for information on ACE4_DELETE and
 ACE4_DELETE_CHILD interact.

 ACE4_READ_ATTRIBUTES

 Operation(s) affected:
 GETATTR of file system object attributes

 VERIFY

 NVERIFY

 READDIR

 Discussion:
 The ability to read basic attributes (non-ACLs) of a file. On
 a UNIX system, basic attributes can be thought of as the stat-
 level attributes. Allowing this access mask bit would mean
 that the entity can execute "ls -l" and stat. If a READDIR
 operation requests attributes, this mask must be allowed for
 the READDIR to succeed.

 ACE4_WRITE_ATTRIBUTES

 Operation(s) affected:
 SETATTR of time_access_set, time_backup,

 time_create, time_modify_set, mimetype, hidden, system

 Discussion:
 Permission to change the times associated with a file or
 directory to an arbitrary value. Also permission to change the
 mimetype, hidden, and system attributes. A user having
 ACE4_WRITE_DATA or ACE4_WRITE_ATTRIBUTES will be allowed to set
 the times associated with a file to the current server time.

 ACE4_WRITE_RETENTION

 Operation(s) affected:
 SETATTR of retention_set, retentevt_set.

 Discussion:
 Permission to modify the durations of event and non-event-based
 retention. Also permission to enable event and non-event-based
 retention. A server MAY behave such that setting
 ACE4_WRITE_ATTRIBUTES allows ACE4_WRITE_RETENTION.

 ACE4_WRITE_RETENTION_HOLD

 Operation(s) affected:
 SETATTR of retention_hold.

 Discussion:
 Permission to modify the administration retention holds. A
 server MAY map ACE4_WRITE_ATTRIBUTES to
 ACE_WRITE_RETENTION_HOLD.

 ACE4_DELETE

 Operation(s) affected:
 REMOVE

 Discussion:
 Permission to delete the file or directory. See
 Section 6.2.1.3.2 for information on ACE4_DELETE and
 ACE4_DELETE_CHILD interact.

 ACE4_READ_ACL

 Operation(s) affected:
 GETATTR of acl, dacl, or sacl

 NVERIFY

 VERIFY

 Discussion:
 Permission to read the ACL.

 ACE4_WRITE_ACL

 Operation(s) affected:
 SETATTR of acl and mode

 Discussion:
 Permission to write the acl and mode attributes.

 ACE4_WRITE_OWNER

 Operation(s) affected:
 SETATTR of owner and owner_group

 Discussion:
 Permission to write the owner and owner_group attributes. On
 UNIX systems, this is the ability to execute chown() and
 chgrp().

 ACE4_SYNCHRONIZE

 Operation(s) affected:
 NONE

 Discussion:
 Permission to use the file object as a synchronization
 primitive for interprocess communication. This permission is
 not enforced or interpreted by the NFSv4.1 server on behalf of
 the client.

 Typically, the ACE4_SYNCHRONIZE permission is only meaningful
 on local file systems, i.e., file systems not accessed via
 NFSv4.1. The reason that the permission bit exists is that
 some operating environments, such as Windows, use
 ACE4_SYNCHRONIZE.

 For example, if a client copies a file that has
 ACE4_SYNCHRONIZE set from a local file system to an NFSv4.1
 server, and then later copies the file from the NFSv4.1 server
 to a local file system, it is likely that if ACE4_SYNCHRONIZE
 was set in the original file, the client will want it set in
 the second copy. The first copy will not have the permission
 set unless the NFSv4.1 server has the means to set the
 ACE4_SYNCHRONIZE bit. The second copy will not have the
 permission set unless the NFSv4.1 server has the means to
 retrieve the ACE4_SYNCHRONIZE bit.

 Server implementations need not provide the granularity of control
 that is implied by this list of masks. For example, POSIX-based
 systems might not distinguish ACE4_APPEND_DATA (the ability to append
 to a file) from ACE4_WRITE_DATA (the ability to modify existing
 contents); both masks would be tied to a single "write" permission
 [17]. When such a server returns attributes to the client, it would
 show both ACE4_APPEND_DATA and ACE4_WRITE_DATA if and only if the
 write permission is enabled.

 If a server receives a SETATTR request that it cannot accurately
 implement, it should err in the direction of more restricted access,
 except in the previously discussed cases of execute and read. For
 example, suppose a server cannot distinguish overwriting data from
 appending new data, as described in the previous paragraph. If a
 client submits an ALLOW ACE where ACE4_APPEND_DATA is set but
 ACE4_WRITE_DATA is not (or vice versa), the server should either turn
 off ACE4_APPEND_DATA or reject the request with NFS4ERR_ATTRNOTSUPP.

6.2.1.3.2. ACE4_DELETE vs. ACE4_DELETE_CHILD

 Two access mask bits govern the ability to delete a directory entry:
 ACE4_DELETE on the object itself (the "target") and ACE4_DELETE_CHILD

 on the containing directory (the "parent").

 Many systems also take the "sticky bit" (MODE4_SVTX) on a directory
 to allow unlink only to a user that owns either the target or the
 parent; on some such systems the decision also depends on whether the
 target is writable.

 Servers SHOULD allow unlink if either ACE4_DELETE is permitted on the
 target, or ACE4_DELETE_CHILD is permitted on the parent. (Note that
 this is true even if the parent or target explicitly denies one of
 these permissions.)

 If the ACLs in question neither explicitly ALLOW nor DENY either of
 the above, and if MODE4_SVTX is not set on the parent, then the
 server SHOULD allow the removal if and only if ACE4_ADD_FILE is
 permitted. In the case where MODE4_SVTX is set, the server may also
 require the remover to own either the parent or the target, or may
 require the target to be writable.

 This allows servers to support something close to traditional UNIX-
 like semantics, with ACE4_ADD_FILE taking the place of the write bit.

6.2.1.4. ACE flag

 The bitmask constants used for the flag field are as follows:

 const ACE4_FILE_INHERIT_ACE = 0x00000001;
 const ACE4_DIRECTORY_INHERIT_ACE = 0x00000002;
 const ACE4_NO_PROPAGATE_INHERIT_ACE = 0x00000004;
 const ACE4_INHERIT_ONLY_ACE = 0x00000008;
 const ACE4_SUCCESSFUL_ACCESS_ACE_FLAG = 0x00000010;
 const ACE4_FAILED_ACCESS_ACE_FLAG = 0x00000020;
 const ACE4_IDENTIFIER_GROUP = 0x00000040;
 const ACE4_INHERITED_ACE = 0x00000080;

 A server need not support any of these flags. If the server supports
 flags that are similar to, but not exactly the same as, these flags,
 the implementation may define a mapping between the protocol-defined
 flags and the implementation-defined flags.

 For example, suppose a client tries to set an ACE with
 ACE4_FILE_INHERIT_ACE set but not ACE4_DIRECTORY_INHERIT_ACE. If the
 server does not support any form of ACL inheritance, the server
 should reject the request with NFS4ERR_ATTRNOTSUPP. If the server
 supports a single "inherit ACE" flag that applies to both files and
 directories, the server may reject the request (i.e., requiring the
 client to set both the file and directory inheritance flags). The
 server may also accept the request and silently turn on the
 ACE4_DIRECTORY_INHERIT_ACE flag.

6.2.1.4.1. Discussion of Flag Bits

 ACE4_FILE_INHERIT_ACE
 Any non-directory file in any sub-directory will get this ACE
 inherited.

 ACE4_DIRECTORY_INHERIT_ACE
 Can be placed on a directory and indicates that this ACE should be
 added to each new directory created.

 If this flag is set in an ACE in an ACL attribute to be set on a
 non-directory file system object, the operation attempting to set
 the ACL SHOULD fail with NFS4ERR_ATTRNOTSUPP.

 ACE4_NO_PROPAGATE_INHERIT_ACE
 Can be placed on a directory. This flag tells the server that
 inheritance of this ACE should stop at newly created child
 directories.

 ACE4_INHERIT_ONLY_ACE
 Can be placed on a directory but does not apply to the directory;

 ALLOW and DENY ACEs with this bit set do not affect access to the
 directory, and AUDIT and ALARM ACEs with this bit set do not
 trigger log or alarm events. Such ACEs only take effect once they
 are applied (with this bit cleared) to newly created files and
 directories as specified by the ACE4_FILE_INHERIT_ACE and
 ACE4_DIRECTORY_INHERIT_ACE flags.

 If this flag is present on an ACE, but neither
 ACE4_DIRECTORY_INHERIT_ACE nor ACE4_FILE_INHERIT_ACE is present,
 then an operation attempting to set such an attribute SHOULD fail
 with NFS4ERR_ATTRNOTSUPP.

 ACE4_SUCCESSFUL_ACCESS_ACE_FLAG and ACE4_FAILED_ACCESS_ACE_FLAG
 The ACE4_SUCCESSFUL_ACCESS_ACE_FLAG (SUCCESS) and
 ACE4_FAILED_ACCESS_ACE_FLAG (FAILED) flag bits may be set only on
 ACE4_SYSTEM_AUDIT_ACE_TYPE (AUDIT) and ACE4_SYSTEM_ALARM_ACE_TYPE
 (ALARM) ACE types. If during the processing of the file’s ACL,
 the server encounters an AUDIT or ALARM ACE that matches the
 principal attempting the OPEN, the server notes that fact, and the
 presence, if any, of the SUCCESS and FAILED flags encountered in
 the AUDIT or ALARM ACE. Once the server completes the ACL
 processing, it then notes if the operation succeeded or failed.
 If the operation succeeded, and if the SUCCESS flag was set for a
 matching AUDIT or ALARM ACE, then the appropriate AUDIT or ALARM
 event occurs. If the operation failed, and if the FAILED flag was
 set for the matching AUDIT or ALARM ACE, then the appropriate
 AUDIT or ALARM event occurs. Either or both of the SUCCESS or
 FAILED can be set, but if neither is set, the AUDIT or ALARM ACE
 is not useful.

 The previously described processing applies to ACCESS operations
 even when they return NFS4_OK. For the purposes of AUDIT and
 ALARM, we consider an ACCESS operation to be a "failure" if it
 fails to return a bit that was requested and supported.

 ACE4_IDENTIFIER_GROUP
 Indicates that the "who" refers to a GROUP as defined under UNIX
 or a GROUP ACCOUNT as defined under Windows. Clients and servers
 MUST ignore the ACE4_IDENTIFIER_GROUP flag on ACEs with a who
 value equal to one of the special identifiers outlined in
 Section 6.2.1.5.

 ACE4_INHERITED_ACE
 Indicates that this ACE is inherited from a parent directory. A
 server that supports automatic inheritance will place this flag on
 any ACEs inherited from the parent directory when creating a new
 object. Client applications will use this to perform automatic
 inheritance. Clients and servers MUST clear this bit in the acl
 attribute; it may only be used in the dacl and sacl attributes.

6.2.1.5. ACE Who

 The "who" field of an ACE is an identifier that specifies the
 principal or principals to whom the ACE applies. It may refer to a
 user or a group, with the flag bit ACE4_IDENTIFIER_GROUP specifying
 which.

 There are several special identifiers that need to be understood
 universally, rather than in the context of a particular DNS domain.
 Some of these identifiers cannot be understood when an NFS client
 accesses the server, but have meaning when a local process accesses
 the file. The ability to display and modify these permissions is
 permitted over NFS, even if none of the access methods on the server
 understands the identifiers.

 +===============+==+
 | Who | Description |
 +===============+==+
 | OWNER | The owner of the file. |
 +---------------+--+
 | GROUP | The group associated with the file. |

 +---------------+--+
 | EVERYONE | The world, including the owner and owning group. |
 +---------------+--+
 | INTERACTIVE | Accessed from an interactive terminal. |
 +---------------+--+
 | NETWORK | Accessed via the network. |
 +---------------+--+
 | DIALUP | Accessed as a dialup user to the server. |
 +---------------+--+
 | BATCH | Accessed from a batch job. |
 +---------------+--+
 | ANONYMOUS | Accessed without any authentication. |
 +---------------+--+
 | AUTHENTICATED | Any authenticated user (opposite of ANONYMOUS). |
 +---------------+--+
 | SERVICE | Access from a system service. |
 +---------------+--+

 Table 7

 To avoid conflict, these special identifiers are distinguished by an
 appended "@" and should appear in the form "xxxx@" (with no domain
 name after the "@"), for example, ANONYMOUS@.

 The ACE4_IDENTIFIER_GROUP flag MUST be ignored on entries with these
 special identifiers. When encoding entries with these special
 identifiers, the ACE4_IDENTIFIER_GROUP flag SHOULD be set to zero.

6.2.1.5.1. Discussion of EVERYONE@

 It is important to note that "EVERYONE@" is not equivalent to the
 UNIX "other" entity. This is because, by definition, UNIX "other"
 does not include the owner or owning group of a file. "EVERYONE@"
 means literally everyone, including the owner or owning group.

6.2.2. Attribute 58: dacl

 The dacl attribute is like the acl attribute, but dacl allows just
 ALLOW and DENY ACEs. The dacl attribute supports automatic
 inheritance (see Section 6.4.3.2).

6.2.3. Attribute 59: sacl

 The sacl attribute is like the acl attribute, but sacl allows just
 AUDIT and ALARM ACEs. The sacl attribute supports automatic
 inheritance (see Section 6.4.3.2).

6.2.4. Attribute 33: mode

 The NFSv4.1 mode attribute is based on the UNIX mode bits. The
 following bits are defined:

 const MODE4_SUID = 0x800; /* set user id on execution */
 const MODE4_SGID = 0x400; /* set group id on execution */
 const MODE4_SVTX = 0x200; /* save text even after use */
 const MODE4_RUSR = 0x100; /* read permission: owner */
 const MODE4_WUSR = 0x080; /* write permission: owner */
 const MODE4_XUSR = 0x040; /* execute permission: owner */
 const MODE4_RGRP = 0x020; /* read permission: group */
 const MODE4_WGRP = 0x010; /* write permission: group */
 const MODE4_XGRP = 0x008; /* execute permission: group */
 const MODE4_ROTH = 0x004; /* read permission: other */
 const MODE4_WOTH = 0x002; /* write permission: other */
 const MODE4_XOTH = 0x001; /* execute permission: other */

 Bits MODE4_RUSR, MODE4_WUSR, and MODE4_XUSR apply to the principal
 identified in the owner attribute. Bits MODE4_RGRP, MODE4_WGRP, and
 MODE4_XGRP apply to principals identified in the owner_group
 attribute but who are not identified in the owner attribute. Bits
 MODE4_ROTH, MODE4_WOTH, and MODE4_XOTH apply to any principal that
 does not match that in the owner attribute and does not have a group

 matching that of the owner_group attribute.

 Bits within a mode other than those specified above are not defined
 by this protocol. A server MUST NOT return bits other than those
 defined above in a GETATTR or READDIR operation, and it MUST return
 NFS4ERR_INVAL if bits other than those defined above are set in a
 SETATTR, CREATE, OPEN, VERIFY, or NVERIFY operation.

6.2.5. Attribute 74: mode_set_masked

 The mode_set_masked attribute is a write-only attribute that allows
 individual bits in the mode attribute to be set or reset, without
 changing others. It allows, for example, the bits MODE4_SUID,
 MODE4_SGID, and MODE4_SVTX to be modified while leaving unmodified
 any of the nine low-order mode bits devoted to permissions.

 In such instances that the nine low-order bits are left unmodified,
 then neither the acl nor the dacl attribute should be automatically
 modified as discussed in Section 6.4.1.

 The mode_set_masked attribute consists of two words, each in the form
 of a mode4. The first consists of the value to be applied to the
 current mode value and the second is a mask. Only bits set to one in
 the mask word are changed (set or reset) in the file’s mode. All
 other bits in the mode remain unchanged. Bits in the first word that
 correspond to bits that are zero in the mask are ignored, except that
 undefined bits are checked for validity and can result in
 NFS4ERR_INVAL as described below.

 The mode_set_masked attribute is only valid in a SETATTR operation.
 If it is used in a CREATE or OPEN operation, the server MUST return
 NFS4ERR_INVAL.

 Bits not defined as valid in the mode attribute are not valid in
 either word of the mode_set_masked attribute. The server MUST return
 NFS4ERR_INVAL if any such bits are set to one in a SETATTR. If the
 mode and mode_set_masked attributes are both specified in the same
 SETATTR, the server MUST also return NFS4ERR_INVAL.

6.3. Common Methods

 The requirements in this section will be referred to in future
 sections, especially Section 6.4.

6.3.1. Interpreting an ACL

6.3.1.1. Server Considerations

 The server uses the algorithm described in Section 6.2.1 to determine
 whether an ACL allows access to an object. However, the ACL might
 not be the sole determiner of access. For example:

 * In the case of a file system exported as read-only, the server may
 deny write access even though an object’s ACL grants it.

 * Server implementations MAY grant ACE4_WRITE_ACL and ACE4_READ_ACL
 permissions to prevent a situation from arising in which there is
 no valid way to ever modify the ACL.

 * All servers will allow a user the ability to read the data of the
 file when only the execute permission is granted (i.e., if the ACL
 denies the user the ACE4_READ_DATA access and allows the user
 ACE4_EXECUTE, the server will allow the user to read the data of
 the file).

 * Many servers have the notion of owner-override in which the owner
 of the object is allowed to override accesses that are denied by
 the ACL. This may be helpful, for example, to allow users
 continued access to open files on which the permissions have
 changed.

 * Many servers have the notion of a "superuser" that has privileges
 beyond an ordinary user. The superuser may be able to read or
 write data or metadata in ways that would not be permitted by the
 ACL.

 * A retention attribute might also block access otherwise allowed by
 ACLs (see Section 5.13).

6.3.1.2. Client Considerations

 Clients SHOULD NOT do their own access checks based on their
 interpretation of the ACL, but rather use the OPEN and ACCESS
 operations to do access checks. This allows the client to act on the
 results of having the server determine whether or not access should
 be granted based on its interpretation of the ACL.

 Clients must be aware of situations in which an object’s ACL will
 define a certain access even though the server will not enforce it.
 In general, but especially in these situations, the client needs to
 do its part in the enforcement of access as defined by the ACL. To
 do this, the client MAY send the appropriate ACCESS operation prior
 to servicing the request of the user or application in order to
 determine whether the user or application should be granted the
 access requested. For examples in which the ACL may define accesses
 that the server doesn’t enforce, see Section 6.3.1.1.

6.3.2. Computing a Mode Attribute from an ACL

 The following method can be used to calculate the MODE4_R*, MODE4_W*,
 and MODE4_X* bits of a mode attribute, based upon an ACL.

 First, for each of the special identifiers OWNER@, GROUP@, and
 EVERYONE@, evaluate the ACL in order, considering only ALLOW and DENY
 ACEs for the identifier EVERYONE@ and for the identifier under
 consideration. The result of the evaluation will be an NFSv4 ACL
 mask showing exactly which bits are permitted to that identifier.

 Then translate the calculated mask for OWNER@, GROUP@, and EVERYONE@
 into mode bits for, respectively, the user, group, and other, as
 follows:

 1. Set the read bit (MODE4_RUSR, MODE4_RGRP, or MODE4_ROTH) if and
 only if ACE4_READ_DATA is set in the corresponding mask.

 2. Set the write bit (MODE4_WUSR, MODE4_WGRP, or MODE4_WOTH) if and
 only if ACE4_WRITE_DATA and ACE4_APPEND_DATA are both set in the
 corresponding mask.

 3. Set the execute bit (MODE4_XUSR, MODE4_XGRP, or MODE4_XOTH), if
 and only if ACE4_EXECUTE is set in the corresponding mask.

6.3.2.1. Discussion

 Some server implementations also add bits permitted to named users
 and groups to the group bits (MODE4_RGRP, MODE4_WGRP, and
 MODE4_XGRP).

 Implementations are discouraged from doing this, because it has been
 found to cause confusion for users who see members of a file’s group
 denied access that the mode bits appear to allow. (The presence of
 DENY ACEs may also lead to such behavior, but DENY ACEs are expected
 to be more rarely used.)

 The same user confusion seen when fetching the mode also results if
 setting the mode does not effectively control permissions for the
 owner, group, and other users; this motivates some of the
 requirements that follow.

6.4. Requirements

 The server that supports both mode and ACL must take care to

 synchronize the MODE4_*USR, MODE4_*GRP, and MODE4_*OTH bits with the
 ACEs that have respective who fields of "OWNER@", "GROUP@", and
 "EVERYONE@". This way, the client can see if semantically equivalent
 access permissions exist whether the client asks for the owner,
 owner_group, and mode attributes or for just the ACL.

 In this section, much is made of the methods in Section 6.3.2. Many
 requirements refer to this section. But note that the methods have
 behaviors specified with "SHOULD". This is intentional, to avoid
 invalidating existing implementations that compute the mode according
 to the withdrawn POSIX ACL draft (1003.1e draft 17), rather than by
 actual permissions on owner, group, and other.

6.4.1. Setting the Mode and/or ACL Attributes

 In the case where a server supports the sacl or dacl attribute, in
 addition to the acl attribute, the server MUST fail a request to set
 the acl attribute simultaneously with a dacl or sacl attribute. The
 error to be given is NFS4ERR_ATTRNOTSUPP.

6.4.1.1. Setting Mode and not ACL

 When any of the nine low-order mode bits are subject to change,
 either because the mode attribute was set or because the
 mode_set_masked attribute was set and the mask included one or more
 bits from the nine low-order mode bits, and no ACL attribute is
 explicitly set, the acl and dacl attributes must be modified in
 accordance with the updated value of those bits. This must happen
 even if the value of the low-order bits is the same after the mode is
 set as before.

 Note that any AUDIT or ALARM ACEs (hence any ACEs in the sacl
 attribute) are unaffected by changes to the mode.

 In cases in which the permissions bits are subject to change, the acl
 and dacl attributes MUST be modified such that the mode computed via
 the method in Section 6.3.2 yields the low-order nine bits (MODE4_R*,
 MODE4_W*, MODE4_X*) of the mode attribute as modified by the
 attribute change. The ACL attributes SHOULD also be modified such
 that:

 1. If MODE4_RGRP is not set, entities explicitly listed in the ACL
 other than OWNER@ and EVERYONE@ SHOULD NOT be granted
 ACE4_READ_DATA.

 2. If MODE4_WGRP is not set, entities explicitly listed in the ACL
 other than OWNER@ and EVERYONE@ SHOULD NOT be granted
 ACE4_WRITE_DATA or ACE4_APPEND_DATA.

 3. If MODE4_XGRP is not set, entities explicitly listed in the ACL
 other than OWNER@ and EVERYONE@ SHOULD NOT be granted
 ACE4_EXECUTE.

 Access mask bits other than those listed above, appearing in ALLOW
 ACEs, MAY also be disabled.

 Note that ACEs with the flag ACE4_INHERIT_ONLY_ACE set do not affect
 the permissions of the ACL itself, nor do ACEs of the type AUDIT and
 ALARM. As such, it is desirable to leave these ACEs unmodified when
 modifying the ACL attributes.

 Also note that the requirement may be met by discarding the acl and
 dacl, in favor of an ACL that represents the mode and only the mode.
 This is permitted, but it is preferable for a server to preserve as
 much of the ACL as possible without violating the above requirements.
 Discarding the ACL makes it effectively impossible for a file created
 with a mode attribute to inherit an ACL (see Section 6.4.3).

6.4.1.2. Setting ACL and Not Mode

 When setting the acl or dacl and not setting the mode or

 mode_set_masked attributes, the permission bits of the mode need to
 be derived from the ACL. In this case, the ACL attribute SHOULD be
 set as given. The nine low-order bits of the mode attribute
 (MODE4_R*, MODE4_W*, MODE4_X*) MUST be modified to match the result
 of the method in Section 6.3.2. The three high-order bits of the
 mode (MODE4_SUID, MODE4_SGID, MODE4_SVTX) SHOULD remain unchanged.

6.4.1.3. Setting Both ACL and Mode

 When setting both the mode (includes use of either the mode attribute
 or the mode_set_masked attribute) and the acl or dacl attributes in
 the same operation, the attributes MUST be applied in this order:
 mode (or mode_set_masked), then ACL. The mode-related attribute is
 set as given, then the ACL attribute is set as given, possibly
 changing the final mode, as described above in Section 6.4.1.2.

6.4.2. Retrieving the Mode and/or ACL Attributes

 This section applies only to servers that support both the mode and
 ACL attributes.

 Some server implementations may have a concept of "objects without
 ACLs", meaning that all permissions are granted and denied according
 to the mode attribute and that no ACL attribute is stored for that
 object. If an ACL attribute is requested of such a server, the
 server SHOULD return an ACL that does not conflict with the mode;
 that is to say, the ACL returned SHOULD represent the nine low-order
 bits of the mode attribute (MODE4_R*, MODE4_W*, MODE4_X*) as
 described in Section 6.3.2.

 For other server implementations, the ACL attribute is always present
 for every object. Such servers SHOULD store at least the three high-
 order bits of the mode attribute (MODE4_SUID, MODE4_SGID,
 MODE4_SVTX). The server SHOULD return a mode attribute if one is
 requested, and the low-order nine bits of the mode (MODE4_R*,
 MODE4_W*, MODE4_X*) MUST match the result of applying the method in
 Section 6.3.2 to the ACL attribute.

6.4.3. Creating New Objects

 If a server supports any ACL attributes, it may use the ACL
 attributes on the parent directory to compute an initial ACL
 attribute for a newly created object. This will be referred to as
 the inherited ACL within this section. The act of adding one or more
 ACEs to the inherited ACL that are based upon ACEs in the parent
 directory’s ACL will be referred to as inheriting an ACE within this
 section.

 Implementors should standardize what the behavior of CREATE and OPEN
 must be depending on the presence or absence of the mode and ACL
 attributes.

 1. If just the mode is given in the call:

 In this case, inheritance SHOULD take place, but the mode MUST be
 applied to the inherited ACL as described in Section 6.4.1.1,
 thereby modifying the ACL.

 2. If just the ACL is given in the call:

 In this case, inheritance SHOULD NOT take place, and the ACL as
 defined in the CREATE or OPEN will be set without modification,
 and the mode modified as in Section 6.4.1.2.

 3. If both mode and ACL are given in the call:

 In this case, inheritance SHOULD NOT take place, and both
 attributes will be set as described in Section 6.4.1.3.

 4. If neither mode nor ACL is given in the call:

 In the case where an object is being created without any initial
 attributes at all, e.g., an OPEN operation with an opentype4 of
 OPEN4_CREATE and a createmode4 of EXCLUSIVE4, inheritance SHOULD
 NOT take place (note that EXCLUSIVE4_1 is a better choice of
 createmode4, since it does permit initial attributes). Instead,
 the server SHOULD set permissions to deny all access to the newly
 created object. It is expected that the appropriate client will
 set the desired attributes in a subsequent SETATTR operation, and
 the server SHOULD allow that operation to succeed, regardless of
 what permissions the object is created with. For example, an
 empty ACL denies all permissions, but the server should allow the
 owner’s SETATTR to succeed even though WRITE_ACL is implicitly
 denied.

 In other cases, inheritance SHOULD take place, and no
 modifications to the ACL will happen. The mode attribute, if
 supported, MUST be as computed in Section 6.3.2, with the
 MODE4_SUID, MODE4_SGID, and MODE4_SVTX bits clear. If no
 inheritable ACEs exist on the parent directory, the rules for
 creating acl, dacl, or sacl attributes are implementation
 defined. If either the dacl or sacl attribute is supported, then
 the ACL4_DEFAULTED flag SHOULD be set on the newly created
 attributes.

6.4.3.1. The Inherited ACL

 If the object being created is not a directory, the inherited ACL
 SHOULD NOT inherit ACEs from the parent directory ACL unless the
 ACE4_FILE_INHERIT_FLAG is set.

 If the object being created is a directory, the inherited ACL should
 inherit all inheritable ACEs from the parent directory, that is,
 those that have the ACE4_FILE_INHERIT_ACE or
 ACE4_DIRECTORY_INHERIT_ACE flag set. If the inheritable ACE has
 ACE4_FILE_INHERIT_ACE set but ACE4_DIRECTORY_INHERIT_ACE is clear,
 the inherited ACE on the newly created directory MUST have the
 ACE4_INHERIT_ONLY_ACE flag set to prevent the directory from being
 affected by ACEs meant for non-directories.

 When a new directory is created, the server MAY split any inherited
 ACE that is both inheritable and effective (in other words, that has
 neither ACE4_INHERIT_ONLY_ACE nor ACE4_NO_PROPAGATE_INHERIT_ACE set),
 into two ACEs, one with no inheritance flags and one with
 ACE4_INHERIT_ONLY_ACE set. (In the case of a dacl or sacl attribute,
 both of those ACEs SHOULD also have the ACE4_INHERITED_ACE flag set.)
 This makes it simpler to modify the effective permissions on the
 directory without modifying the ACE that is to be inherited to the
 new directory’s children.

6.4.3.2. Automatic Inheritance

 The acl attribute consists only of an array of ACEs, but the sacl
 (Section 6.2.3) and dacl (Section 6.2.2) attributes also include an
 additional flag field.

 struct nfsacl41 {
 aclflag4 na41_flag;
 nfsace4 na41_aces<>;
 };

 The flag field applies to the entire sacl or dacl; three flag values
 are defined:

 const ACL4_AUTO_INHERIT = 0x00000001;
 const ACL4_PROTECTED = 0x00000002;
 const ACL4_DEFAULTED = 0x00000004;

 and all other bits must be cleared. The ACE4_INHERITED_ACE flag may
 be set in the ACEs of the sacl or dacl (whereas it must always be
 cleared in the acl).

 Together these features allow a server to support automatic
 inheritance, which we now explain in more detail.

 Inheritable ACEs are normally inherited by child objects only at the
 time that the child objects are created; later modifications to
 inheritable ACEs do not result in modifications to inherited ACEs on
 descendants.

 However, the dacl and sacl provide an OPTIONAL mechanism that allows
 a client application to propagate changes to inheritable ACEs to an
 entire directory hierarchy.

 A server that supports this performs inheritance at object creation
 time in the normal way, and SHOULD set the ACE4_INHERITED_ACE flag on
 any inherited ACEs as they are added to the new object.

 A client application such as an ACL editor may then propagate changes
 to inheritable ACEs on a directory by recursively traversing that
 directory’s descendants and modifying each ACL encountered to remove
 any ACEs with the ACE4_INHERITED_ACE flag and to replace them by the
 new inheritable ACEs (also with the ACE4_INHERITED_ACE flag set). It
 uses the existing ACE inheritance flags in the obvious way to decide
 which ACEs to propagate. (Note that it may encounter further
 inheritable ACEs when descending the directory hierarchy and that
 those will also need to be taken into account when propagating
 inheritable ACEs to further descendants.)

 The reach of this propagation may be limited in two ways: first,
 automatic inheritance is not performed from any directory ACL that
 has the ACL4_AUTO_INHERIT flag cleared; and second, automatic
 inheritance stops wherever an ACL with the ACL4_PROTECTED flag is
 set, preventing modification of that ACL and also (if the ACL is set
 on a directory) of the ACL on any of the object’s descendants.

 This propagation is performed independently for the sacl and the dacl
 attributes; thus, the ACL4_AUTO_INHERIT and ACL4_PROTECTED flags may
 be independently set for the sacl and the dacl, and propagation of
 one type of acl may continue down a hierarchy even where propagation
 of the other acl has stopped.

 New objects should be created with a dacl and a sacl that both have
 the ACL4_PROTECTED flag cleared and the ACL4_AUTO_INHERIT flag set to
 the same value as that on, respectively, the sacl or dacl of the
 parent object.

 Both the dacl and sacl attributes are RECOMMENDED, and a server may
 support one without supporting the other.

 A server that supports both the old acl attribute and one or both of
 the new dacl or sacl attributes must do so in such a way as to keep
 all three attributes consistent with each other. Thus, the ACEs
 reported in the acl attribute should be the union of the ACEs
 reported in the dacl and sacl attributes, except that the
 ACE4_INHERITED_ACE flag must be cleared from the ACEs in the acl.
 And of course a client that queries only the acl will be unable to
 determine the values of the sacl or dacl flag fields.

 When a client performs a SETATTR for the acl attribute, the server
 SHOULD set the ACL4_PROTECTED flag to true on both the sacl and the
 dacl. By using the acl attribute, as opposed to the dacl or sacl
 attributes, the client signals that it may not understand automatic
 inheritance, and thus cannot be trusted to set an ACL for which
 automatic inheritance would make sense.

 When a client application queries an ACL, modifies it, and sets it
 again, it should leave any ACEs marked with ACE4_INHERITED_ACE
 unchanged, in their original order, at the end of the ACL. If the
 application is unable to do this, it should set the ACL4_PROTECTED
 flag. This behavior is not enforced by servers, but violations of
 this rule may lead to unexpected results when applications perform
 automatic inheritance.

 If a server also supports the mode attribute, it SHOULD set the mode
 in such a way that leaves inherited ACEs unchanged, in their original
 order, at the end of the ACL. If it is unable to do so, it SHOULD
 set the ACL4_PROTECTED flag on the file’s dacl.

 Finally, in the case where the request that creates a new file or
 directory does not also set permissions for that file or directory,
 and there are also no ACEs to inherit from the parent’s directory,
 then the server’s choice of ACL for the new object is implementation-
 dependent. In this case, the server SHOULD set the ACL4_DEFAULTED
 flag on the ACL it chooses for the new object. An application
 performing automatic inheritance takes the ACL4_DEFAULTED flag as a
 sign that the ACL should be completely replaced by one generated
 using the automatic inheritance rules.

7. Single-Server Namespace

 This section describes the NFSv4 single-server namespace. Single-
 server namespaces may be presented directly to clients, or they may
 be used as a basis to form larger multi-server namespaces (e.g.,
 site-wide or organization-wide) to be presented to clients, as
 described in Section 11.

7.1. Server Exports

 On a UNIX server, the namespace describes all the files reachable by
 pathnames under the root directory or "/". On a Windows server, the
 namespace constitutes all the files on disks named by mapped disk
 letters. NFS server administrators rarely make the entire server’s
 file system namespace available to NFS clients. More often, portions
 of the namespace are made available via an "export" feature. In
 previous versions of the NFS protocol, the root filehandle for each
 export is obtained through the MOUNT protocol; the client sent a
 string that identified the export name within the namespace and the
 server returned the root filehandle for that export. The MOUNT
 protocol also provided an EXPORTS procedure that enumerated the
 server’s exports.

7.2. Browsing Exports

 The NFSv4.1 protocol provides a root filehandle that clients can use
 to obtain filehandles for the exports of a particular server, via a
 series of LOOKUP operations within a COMPOUND, to traverse a path. A
 common user experience is to use a graphical user interface (perhaps
 a file "Open" dialog window) to find a file via progressive browsing
 through a directory tree. The client must be able to move from one
 export to another export via single-component, progressive LOOKUP
 operations.

 This style of browsing is not well supported by the NFSv3 protocol.
 In NFSv3, the client expects all LOOKUP operations to remain within a
 single server file system. For example, the device attribute will
 not change. This prevents a client from taking namespace paths that
 span exports.

 In the case of NFSv3, an automounter on the client can obtain a
 snapshot of the server’s namespace using the EXPORTS procedure of the
 MOUNT protocol. If it understands the server’s pathname syntax, it
 can create an image of the server’s namespace on the client. The
 parts of the namespace that are not exported by the server are filled
 in with directories that might be constructed similarly to an NFSv4.1
 "pseudo file system" (see Section 7.3) that allows the user to browse
 from one mounted file system to another. There is a drawback to this
 representation of the server’s namespace on the client: it is static.
 If the server administrator adds a new export, the client will be
 unaware of it.

7.3. Server Pseudo File System

 NFSv4.1 servers avoid this namespace inconsistency by presenting all

 the exports for a given server within the framework of a single
 namespace for that server. An NFSv4.1 client uses LOOKUP and READDIR
 operations to browse seamlessly from one export to another.

 Where there are portions of the server namespace that are not
 exported, clients require some way of traversing those portions to
 reach actual exported file systems. A technique that servers may use
 to provide for this is to bridge the unexported portion of the
 namespace via a "pseudo file system" that provides a view of exported
 directories only. A pseudo file system has a unique fsid and behaves
 like a normal, read-only file system.

 Based on the construction of the server’s namespace, it is possible
 that multiple pseudo file systems may exist. For example,

 /a pseudo file system
 /a/b real file system
 /a/b/c pseudo file system
 /a/b/c/d real file system

 Each of the pseudo file systems is considered a separate entity and
 therefore MUST have its own fsid, unique among all the fsids for that
 server.

7.4. Multiple Roots

 Certain operating environments are sometimes described as having
 "multiple roots". In such environments, individual file systems are
 commonly represented by disk or volume names. NFSv4 servers for
 these platforms can construct a pseudo file system above these root
 names so that disk letters or volume names are simply directory names
 in the pseudo root.

7.5. Filehandle Volatility

 The nature of the server’s pseudo file system is that it is a logical
 representation of file system(s) available from the server.
 Therefore, the pseudo file system is most likely constructed
 dynamically when the server is first instantiated. It is expected
 that the pseudo file system may not have an on-disk counterpart from
 which persistent filehandles could be constructed. Even though it is
 preferable that the server provide persistent filehandles for the
 pseudo file system, the NFS client should expect that pseudo file
 system filehandles are volatile. This can be confirmed by checking
 the associated "fh_expire_type" attribute for those filehandles in
 question. If the filehandles are volatile, the NFS client must be
 prepared to recover a filehandle value (e.g., with a series of LOOKUP
 operations) when receiving an error of NFS4ERR_FHEXPIRED.

 Because it is quite likely that servers will implement pseudo file
 systems using volatile filehandles, clients need to be prepared for
 them, rather than assuming that all filehandles will be persistent.

7.6. Exported Root

 If the server’s root file system is exported, one might conclude that
 a pseudo file system is unneeded. This is not necessarily so.
 Assume the following file systems on a server:

 / fs1 (exported)
 /a fs2 (not exported)
 /a/b fs3 (exported)

 Because fs2 is not exported, fs3 cannot be reached with simple
 LOOKUPs. The server must bridge the gap with a pseudo file system.

7.7. Mount Point Crossing

 The server file system environment may be constructed in such a way
 that one file system contains a directory that is ’covered’ or
 mounted upon by a second file system. For example:

 /a/b (file system 1)
 /a/b/c/d (file system 2)

 The pseudo file system for this server may be constructed to look
 like:

 / (place holder/not exported)
 /a/b (file system 1)
 /a/b/c/d (file system 2)

 It is the server’s responsibility to present the pseudo file system
 that is complete to the client. If the client sends a LOOKUP request
 for the path /a/b/c/d, the server’s response is the filehandle of the
 root of the file system /a/b/c/d. In previous versions of the NFS
 protocol, the server would respond with the filehandle of directory
 /a/b/c/d within the file system /a/b.

 The NFS client will be able to determine if it crosses a server mount
 point by a change in the value of the "fsid" attribute.

7.8. Security Policy and Namespace Presentation

 Because NFSv4 clients possess the ability to change the security
 mechanisms used, after determining what is allowed, by using SECINFO
 and SECINFO_NONAME, the server SHOULD NOT present a different view of
 the namespace based on the security mechanism being used by a client.
 Instead, it should present a consistent view and return
 NFS4ERR_WRONGSEC if an attempt is made to access data with an
 inappropriate security mechanism.

 If security considerations make it necessary to hide the existence of
 a particular file system, as opposed to all of the data within it,
 the server can apply the security policy of a shared resource in the
 server’s namespace to components of the resource’s ancestors. For
 example:

 / (place holder/not exported)
 /a/b (file system 1)
 /a/b/MySecretProject (file system 2)

 The /a/b/MySecretProject directory is a real file system and is the
 shared resource. Suppose the security policy for /a/b/
 MySecretProject is Kerberos with integrity and it is desired to limit
 knowledge of the existence of this file system. In this case, the
 server should apply the same security policy to /a/b. This allows
 for knowledge of the existence of a file system to be secured when
 desirable.

 For the case of the use of multiple, disjoint security mechanisms in
 the server’s resources, applying that sort of policy would result in
 the higher-level file system not being accessible using any security
 flavor. Therefore, that sort of configuration is not compatible with
 hiding the existence (as opposed to the contents) from clients using
 multiple disjoint sets of security flavors.

 In other circumstances, a desirable policy is for the security of a
 particular object in the server’s namespace to include the union of
 all security mechanisms of all direct descendants. A common and
 convenient practice, unless strong security requirements dictate
 otherwise, is to make the entire the pseudo file system accessible by
 all of the valid security mechanisms.

 Where there is concern about the security of data on the network,
 clients should use strong security mechanisms to access the pseudo
 file system in order to prevent man-in-the-middle attacks.

8. State Management

 Integrating locking into the NFS protocol necessarily causes it to be
 stateful. With the inclusion of such features as share reservations,

 file and directory delegations, recallable layouts, and support for
 mandatory byte-range locking, the protocol becomes substantially more
 dependent on proper management of state than the traditional
 combination of NFS and NLM (Network Lock Manager) [54]. These
 features include expanded locking facilities, which provide some
 measure of inter-client exclusion, but the state also offers features
 not readily providable using a stateless model. There are three
 components to making this state manageable:

 * clear division between client and server

 * ability to reliably detect inconsistency in state between client
 and server

 * simple and robust recovery mechanisms

 In this model, the server owns the state information. The client
 requests changes in locks and the server responds with the changes
 made. Non-client-initiated changes in locking state are infrequent.
 The client receives prompt notification of such changes and can
 adjust its view of the locking state to reflect the server’s changes.

 Individual pieces of state created by the server and passed to the
 client at its request are represented by 128-bit stateids. These
 stateids may represent a particular open file, a set of byte-range
 locks held by a particular owner, or a recallable delegation of
 privileges to access a file in particular ways or at a particular
 location.

 In all cases, there is a transition from the most general information
 that represents a client as a whole to the eventual lightweight
 stateid used for most client and server locking interactions. The
 details of this transition will vary with the type of object but it
 always starts with a client ID.

8.1. Client and Session ID

 A client must establish a client ID (see Section 2.4) and then one or
 more sessionids (see Section 2.10) before performing any operations
 to open, byte-range lock, delegate, or obtain a layout for a file
 object. Each session ID is associated with a specific client ID, and
 thus serves as a shorthand reference to an NFSv4.1 client.

 For some types of locking interactions, the client will represent
 some number of internal locking entities called "owners", which
 normally correspond to processes internal to the client. For other
 types of locking-related objects, such as delegations and layouts, no
 such intermediate entities are provided for, and the locking-related
 objects are considered to be transferred directly between the server
 and a unitary client.

8.2. Stateid Definition

 When the server grants a lock of any type (including opens, byte-
 range locks, delegations, and layouts), it responds with a unique
 stateid that represents a set of locks (often a single lock) for the
 same file, of the same type, and sharing the same ownership
 characteristics. Thus, opens of the same file by different open-
 owners each have an identifying stateid. Similarly, each set of
 byte-range locks on a file owned by a specific lock-owner has its own
 identifying stateid. Delegations and layouts also have associated
 stateids by which they may be referenced. The stateid is used as a
 shorthand reference to a lock or set of locks, and given a stateid,
 the server can determine the associated state-owner or state-owners
 (in the case of an open-owner/lock-owner pair) and the associated
 filehandle. When stateids are used, the current filehandle must be
 the one associated with that stateid.

 All stateids associated with a given client ID are associated with a
 common lease that represents the claim of those stateids and the
 objects they represent to be maintained by the server. See

 Section 8.3 for a discussion of the lease.

 The server may assign stateids independently for different clients.
 A stateid with the same bit pattern for one client may designate an
 entirely different set of locks for a different client. The stateid
 is always interpreted with respect to the client ID associated with
 the current session. Stateids apply to all sessions associated with
 the given client ID, and the client may use a stateid obtained from
 one session on another session associated with the same client ID.

8.2.1. Stateid Types

 With the exception of special stateids (see Section 8.2.3), each
 stateid represents locking objects of one of a set of types defined
 by the NFSv4.1 protocol. Note that in all these cases, where we
 speak of guarantee, it is understood there are situations such as a
 client restart, or lock revocation, that allow the guarantee to be
 voided.

 * Stateids may represent opens of files.

 Each stateid in this case represents the OPEN state for a given
 client ID/open-owner/filehandle triple. Such stateids are subject
 to change (with consequent incrementing of the stateid’s seqid) in
 response to OPENs that result in upgrade and OPEN_DOWNGRADE
 operations.

 * Stateids may represent sets of byte-range locks.

 All locks held on a particular file by a particular owner and
 gotten under the aegis of a particular open file are associated
 with a single stateid with the seqid being incremented whenever
 LOCK and LOCKU operations affect that set of locks.

 * Stateids may represent file delegations, which are recallable
 guarantees by the server to the client that other clients will not
 reference or modify a particular file, until the delegation is
 returned. In NFSv4.1, file delegations may be obtained on both
 regular and non-regular files.

 A stateid represents a single delegation held by a client for a
 particular filehandle.

 * Stateids may represent directory delegations, which are recallable
 guarantees by the server to the client that other clients will not
 modify the directory, until the delegation is returned.

 A stateid represents a single delegation held by a client for a
 particular directory filehandle.

 * Stateids may represent layouts, which are recallable guarantees by
 the server to the client that particular files may be accessed via
 an alternate data access protocol at specific locations. Such
 access is limited to particular sets of byte-ranges and may
 proceed until those byte-ranges are reduced or the layout is
 returned.

 A stateid represents the set of all layouts held by a particular
 client for a particular filehandle with a given layout type. The
 seqid is updated as the layouts of that set of byte-ranges change,
 via layout stateid changing operations such as LAYOUTGET and
 LAYOUTRETURN.

8.2.2. Stateid Structure

 Stateids are divided into two fields, a 96-bit "other" field
 identifying the specific set of locks and a 32-bit "seqid" sequence
 value. Except in the case of special stateids (see Section 8.2.3), a
 particular value of the "other" field denotes a set of locks of the
 same type (for example, byte-range locks, opens, delegations, or
 layouts), for a specific file or directory, and sharing the same

 ownership characteristics. The seqid designates a specific instance
 of such a set of locks, and is incremented to indicate changes in
 such a set of locks, either by the addition or deletion of locks from
 the set, a change in the byte-range they apply to, or an upgrade or
 downgrade in the type of one or more locks.

 When such a set of locks is first created, the server returns a
 stateid with seqid value of one. On subsequent operations that
 modify the set of locks, the server is required to increment the
 "seqid" field by one whenever it returns a stateid for the same
 state-owner/file/type combination and there is some change in the set
 of locks actually designated. In this case, the server will return a
 stateid with an "other" field the same as previously used for that
 state-owner/file/type combination, with an incremented "seqid" field.
 This pattern continues until the seqid is incremented past
 NFS4_UINT32_MAX, and one (not zero) is the next seqid value.

 The purpose of the incrementing of the seqid is to allow the server
 to communicate to the client the order in which operations that
 modified locking state associated with a stateid have been processed
 and to make it possible for the client to send requests that are
 conditional on the set of locks not having changed since the stateid
 in question was returned.

 Except for layout stateids (Section 12.5.3), when a client sends a
 stateid to the server, it has two choices with regard to the seqid
 sent. It may set the seqid to zero to indicate to the server that it
 wishes the most up-to-date seqid for that stateid’s "other" field to
 be used. This would be the common choice in the case of a stateid
 sent with a READ or WRITE operation. It also may set a non-zero
 value, in which case the server checks if that seqid is the correct
 one. In that case, the server is required to return
 NFS4ERR_OLD_STATEID if the seqid is lower than the most current value
 and NFS4ERR_BAD_STATEID if the seqid is greater than the most current
 value. This would be the common choice in the case of stateids sent
 with a CLOSE or OPEN_DOWNGRADE. Because OPENs may be sent in
 parallel for the same owner, a client might close a file without
 knowing that an OPEN upgrade had been done by the server, changing
 the lock in question. If CLOSE were sent with a zero seqid, the OPEN
 upgrade would be cancelled before the client even received an
 indication that an upgrade had happened.

 When a stateid is sent by the server to the client as part of a
 callback operation, it is not subject to checking for a current seqid
 and returning NFS4ERR_OLD_STATEID. This is because the client is not
 in a position to know the most up-to-date seqid and thus cannot
 verify it. Unless specially noted, the seqid value for a stateid
 sent by the server to the client as part of a callback is required to
 be zero with NFS4ERR_BAD_STATEID returned if it is not.

 In making comparisons between seqids, both by the client in
 determining the order of operations and by the server in determining
 whether the NFS4ERR_OLD_STATEID is to be returned, the possibility of
 the seqid being swapped around past the NFS4_UINT32_MAX value needs
 to be taken into account. When two seqid values are being compared,
 the total count of slots for all sessions associated with the current
 client is used to do this. When one seqid value is less than this
 total slot count and another seqid value is greater than
 NFS4_UINT32_MAX minus the total slot count, the former is to be
 treated as lower than the latter, despite the fact that it is
 numerically greater.

8.2.3. Special Stateids

 Stateid values whose "other" field is either all zeros or all ones
 are reserved. They may not be assigned by the server but have
 special meanings defined by the protocol. The particular meaning
 depends on whether the "other" field is all zeros or all ones and the
 specific value of the "seqid" field.

 The following combinations of "other" and "seqid" are defined in

 NFSv4.1:

 * When "other" and "seqid" are both zero, the stateid is treated as
 a special anonymous stateid, which can be used in READ, WRITE, and
 SETATTR requests to indicate the absence of any OPEN state
 associated with the request. When an anonymous stateid value is
 used and an existing open denies the form of access requested,
 then access will be denied to the request. This stateid MUST NOT
 be used on operations to data servers (Section 13.6).

 * When "other" and "seqid" are both all ones, the stateid is a
 special READ bypass stateid. When this value is used in WRITE or
 SETATTR, it is treated like the anonymous value. When used in
 READ, the server MAY grant access, even if access would normally
 be denied to READ operations. This stateid MUST NOT be used on
 operations to data servers.

 * When "other" is zero and "seqid" is one, the stateid represents
 the current stateid, which is whatever value is the last stateid
 returned by an operation within the COMPOUND. In the case of an
 OPEN, the stateid returned for the open file and not the
 delegation is used. The stateid passed to the operation in place
 of the special value has its "seqid" value set to zero, except
 when the current stateid is used by the operation CLOSE or
 OPEN_DOWNGRADE. If there is no operation in the COMPOUND that has
 returned a stateid value, the server MUST return the error
 NFS4ERR_BAD_STATEID. As illustrated in Figure 6, if the value of
 a current stateid is a special stateid and the stateid of an
 operation’s arguments has "other" set to zero and "seqid" set to
 one, then the server MUST return the error NFS4ERR_BAD_STATEID.

 * When "other" is zero and "seqid" is NFS4_UINT32_MAX, the stateid
 represents a reserved stateid value defined to be invalid. When
 this stateid is used, the server MUST return the error
 NFS4ERR_BAD_STATEID.

 If a stateid value is used that has all zeros or all ones in the
 "other" field but does not match one of the cases above, the server
 MUST return the error NFS4ERR_BAD_STATEID.

 Special stateids, unlike other stateids, are not associated with
 individual client IDs or filehandles and can be used with all valid
 client IDs and filehandles. In the case of a special stateid
 designating the current stateid, the current stateid value
 substituted for the special stateid is associated with a particular
 client ID and filehandle, and so, if it is used where the current
 filehandle does not match that associated with the current stateid,
 the operation to which the stateid is passed will return
 NFS4ERR_BAD_STATEID.

8.2.4. Stateid Lifetime and Validation

 Stateids must remain valid until either a client restart or a server
 restart or until the client returns all of the locks associated with
 the stateid by means of an operation such as CLOSE or DELEGRETURN.
 If the locks are lost due to revocation, as long as the client ID is
 valid, the stateid remains a valid designation of that revoked state
 until the client frees it by using FREE_STATEID. Stateids associated
 with byte-range locks are an exception. They remain valid even if a
 LOCKU frees all remaining locks, so long as the open file with which
 they are associated remains open, unless the client frees the
 stateids via the FREE_STATEID operation.

 It should be noted that there are situations in which the client’s
 locks become invalid, without the client requesting they be returned.
 These include lease expiration and a number of forms of lock
 revocation within the lease period. It is important to note that in
 these situations, the stateid remains valid and the client can use it
 to determine the disposition of the associated lost locks.

 An "other" value must never be reused for a different purpose (i.e.,

 different filehandle, owner, or type of locks) within the context of
 a single client ID. A server may retain the "other" value for the
 same purpose beyond the point where it may otherwise be freed, but if
 it does so, it must maintain "seqid" continuity with previous values.

 One mechanism that may be used to satisfy the requirement that the
 server recognize invalid and out-of-date stateids is for the server
 to divide the "other" field of the stateid into two fields.

 * an index into a table of locking-state structures.

 * a generation number that is incremented on each allocation of a
 table entry for a particular use.

 And then store in each table entry,

 * the client ID with which the stateid is associated.

 * the current generation number for the (at most one) valid stateid
 sharing this index value.

 * the filehandle of the file on which the locks are taken.

 * an indication of the type of stateid (open, byte-range lock, file
 delegation, directory delegation, layout).

 * the last "seqid" value returned corresponding to the current
 "other" value.

 * an indication of the current status of the locks associated with
 this stateid, in particular, whether these have been revoked and
 if so, for what reason.

 With this information, an incoming stateid can be validated and the
 appropriate error returned when necessary. Special and non-special
 stateids are handled separately. (See Section 8.2.3 for a discussion
 of special stateids.)

 Note that stateids are implicitly qualified by the current client ID,
 as derived from the client ID associated with the current session.
 Note, however, that the semantics of the session will prevent
 stateids associated with a previous client or server instance from
 being analyzed by this procedure.

 If server restart has resulted in an invalid client ID or a session
 ID that is invalid, SEQUENCE will return an error and the operation
 that takes a stateid as an argument will never be processed.

 If there has been a server restart where there is a persistent
 session and all leased state has been lost, then the session in
 question will, although valid, be marked as dead, and any operation
 not satisfied by means of the reply cache will receive the error
 NFS4ERR_DEADSESSION, and thus not be processed as indicated below.

 When a stateid is being tested and the "other" field is all zeros or
 all ones, a check that the "other" and "seqid" fields match a defined
 combination for a special stateid is done and the results determined
 as follows:

 * If the "other" and "seqid" fields do not match a defined
 combination associated with a special stateid, the error
 NFS4ERR_BAD_STATEID is returned.

 * If the special stateid is one designating the current stateid and
 there is a current stateid, then the current stateid is
 substituted for the special stateid and the checks appropriate to
 non-special stateids are performed.

 * If the combination is valid in general but is not appropriate to
 the context in which the stateid is used (e.g., an all-zero
 stateid is used when an OPEN stateid is required in a LOCK

 operation), the error NFS4ERR_BAD_STATEID is also returned.

 * Otherwise, the check is completed and the special stateid is
 accepted as valid.

 When a stateid is being tested, and the "other" field is neither all
 zeros nor all ones, the following procedure could be used to validate
 an incoming stateid and return an appropriate error, when necessary,
 assuming that the "other" field would be divided into a table index
 and an entry generation.

 * If the table index field is outside the range of the associated
 table, return NFS4ERR_BAD_STATEID.

 * If the selected table entry is of a different generation than that
 specified in the incoming stateid, return NFS4ERR_BAD_STATEID.

 * If the selected table entry does not match the current filehandle,
 return NFS4ERR_BAD_STATEID.

 * If the client ID in the table entry does not match the client ID
 associated with the current session, return NFS4ERR_BAD_STATEID.

 * If the stateid represents revoked state, then return
 NFS4ERR_EXPIRED, NFS4ERR_ADMIN_REVOKED, or NFS4ERR_DELEG_REVOKED,
 as appropriate.

 * If the stateid type is not valid for the context in which the
 stateid appears, return NFS4ERR_BAD_STATEID. Note that a stateid
 may be valid in general, as would be reported by the TEST_STATEID
 operation, but be invalid for a particular operation, as, for
 example, when a stateid that doesn’t represent byte-range locks is
 passed to the non-from_open case of LOCK or to LOCKU, or when a
 stateid that does not represent an open is passed to CLOSE or
 OPEN_DOWNGRADE. In such cases, the server MUST return
 NFS4ERR_BAD_STATEID.

 * If the "seqid" field is not zero and it is greater than the
 current sequence value corresponding to the current "other" field,
 return NFS4ERR_BAD_STATEID.

 * If the "seqid" field is not zero and it is less than the current
 sequence value corresponding to the current "other" field, return
 NFS4ERR_OLD_STATEID.

 * Otherwise, the stateid is valid and the table entry should contain
 any additional information about the type of stateid and
 information associated with that particular type of stateid, such
 as the associated set of locks, e.g., open-owner and lock-owner
 information, as well as information on the specific locks, e.g.,
 open modes and byte-ranges.

8.2.5. Stateid Use for I/O Operations

 Clients performing I/O operations need to select an appropriate
 stateid based on the locks (including opens and delegations) held by
 the client and the various types of state-owners sending the I/O
 requests. SETATTR operations that change the file size are treated
 like I/O operations in this regard.

 The following rules, applied in order of decreasing priority, govern
 the selection of the appropriate stateid. In following these rules,
 the client will only consider locks of which it has actually received
 notification by an appropriate operation response or callback. Note
 that the rules are slightly different in the case of I/O to data
 servers when file layouts are being used (see Section 13.9.1).

 * If the client holds a delegation for the file in question, the
 delegation stateid SHOULD be used.

 * Otherwise, if the entity corresponding to the lock-owner (e.g., a

 process) sending the I/O has a byte-range lock stateid for the
 associated open file, then the byte-range lock stateid for that
 lock-owner and open file SHOULD be used.

 * If there is no byte-range lock stateid, then the OPEN stateid for
 the open file in question SHOULD be used.

 * Finally, if none of the above apply, then a special stateid SHOULD
 be used.

 Ignoring these rules may result in situations in which the server
 does not have information necessary to properly process the request.
 For example, when mandatory byte-range locks are in effect, if the
 stateid does not indicate the proper lock-owner, via a lock stateid,
 a request might be avoidably rejected.

 The server however should not try to enforce these ordering rules and
 should use whatever information is available to properly process I/O
 requests. In particular, when a client has a delegation for a given
 file, it SHOULD take note of this fact in processing a request, even
 if it is sent with a special stateid.

8.2.6. Stateid Use for SETATTR Operations

 Because each operation is associated with a session ID and from that
 the clientid can be determined, operations do not need to include a
 stateid for the server to be able to determine whether they should
 cause a delegation to be recalled or are to be treated as done within
 the scope of the delegation.

 In the case of SETATTR operations, a stateid is present. In cases
 other than those that set the file size, the client may send either a
 special stateid or, when a delegation is held for the file in
 question, a delegation stateid. While the server SHOULD validate the
 stateid and may use the stateid to optimize the determination as to
 whether a delegation is held, it SHOULD note the presence of a
 delegation even when a special stateid is sent, and MUST accept a
 valid delegation stateid when sent.

8.3. Lease Renewal

 Each client/server pair, as represented by a client ID, has a single
 lease. The purpose of the lease is to allow the client to indicate
 to the server, in a low-overhead way, that it is active, and thus
 that the server is to retain the client’s locks. This arrangement
 allows the server to remove stale locking-related objects that are
 held by a client that has crashed or is otherwise unreachable, once
 the relevant lease expires. This in turn allows other clients to
 obtain conflicting locks without being delayed indefinitely by
 inactive or unreachable clients. It is not a mechanism for cache
 consistency and lease renewals may not be denied if the lease
 interval has not expired.

 Since each session is associated with a specific client (identified
 by the client’s client ID), any operation sent on that session is an
 indication that the associated client is reachable. When a request
 is sent for a given session, successful execution of a SEQUENCE
 operation (or successful retrieval of the result of SEQUENCE from the
 reply cache) on an unexpired lease will result in the lease being
 implicitly renewed, for the standard renewal period (equal to the
 lease_time attribute).

 If the client ID’s lease has not expired when the server receives a
 SEQUENCE operation, then the server MUST renew the lease. If the
 client ID’s lease has expired when the server receives a SEQUENCE
 operation, the server MAY renew the lease; this depends on whether
 any state was revoked as a result of the client’s failure to renew
 the lease before expiration.

 Absent other activity that would renew the lease, a COMPOUND
 consisting of a single SEQUENCE operation will suffice. The client

 should also take communication-related delays into account and take
 steps to ensure that the renewal messages actually reach the server
 in good time. For example:

 * When trunking is in effect, the client should consider sending
 multiple requests on different connections, in order to ensure
 that renewal occurs, even in the event of blockage in the path
 used for one of those connections.

 * Transport retransmission delays might become so large as to
 approach or exceed the length of the lease period. This may be
 particularly likely when the server is unresponsive due to a
 restart; see Section 8.4.2.1. If the client implementation is not
 careful, transport retransmission delays can result in the client
 failing to detect a server restart before the grace period ends.
 The scenario is that the client is using a transport with
 exponential backoff, such that the maximum retransmission timeout
 exceeds both the grace period and the lease_time attribute. A
 network partition causes the client’s connection’s retransmission
 interval to back off, and even after the partition heals, the next
 transport-level retransmission is sent after the server has
 restarted and its grace period ends.

 The client MUST either recover from the ensuing NFS4ERR_NO_GRACE
 errors or it MUST ensure that, despite transport-level
 retransmission intervals that exceed the lease_time, a SEQUENCE
 operation is sent that renews the lease before expiration. The
 client can achieve this by associating a new connection with the
 session, and sending a SEQUENCE operation on it. However, if the
 attempt to establish a new connection is delayed for some reason
 (e.g., exponential backoff of the connection establishment
 packets), the client will have to abort the connection
 establishment attempt before the lease expires, and attempt to
 reconnect.

 If the server renews the lease upon receiving a SEQUENCE operation,
 the server MUST NOT allow the lease to expire while the rest of the
 operations in the COMPOUND procedure’s request are still executing.
 Once the last operation has finished, and the response to COMPOUND
 has been sent, the server MUST set the lease to expire no sooner than
 the sum of current time and the value of the lease_time attribute.

 A client ID’s lease can expire when it has been at least the lease
 interval (lease_time) since the last lease-renewing SEQUENCE
 operation was sent on any of the client ID’s sessions and there are
 no active COMPOUND operations on any such sessions.

 Because the SEQUENCE operation is the basic mechanism to renew a
 lease, and because it must be done at least once for each lease
 period, it is the natural mechanism whereby the server will inform
 the client of changes in the lease status that the client needs to be
 informed of. The client should inspect the status flags
 (sr_status_flags) returned by sequence and take the appropriate
 action (see Section 18.46.3 for details).

 * The status bits SEQ4_STATUS_CB_PATH_DOWN and
 SEQ4_STATUS_CB_PATH_DOWN_SESSION indicate problems with the
 backchannel that the client may need to address in order to
 receive callback requests.

 * The status bits SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRING and
 SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRED indicate problems with GSS
 contexts or RPCSEC_GSS handles for the backchannel that the client
 might have to address in order to allow callback requests to be
 sent.

 * The status bits SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED,
 SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED,
 SEQ4_STATUS_ADMIN_STATE_REVOKED, and
 SEQ4_STATUS_RECALLABLE_STATE_REVOKED notify the client of lock
 revocation events. When these bits are set, the client should use

 TEST_STATEID to find what stateids have been revoked and use
 FREE_STATEID to acknowledge loss of the associated state.

 * The status bit SEQ4_STATUS_LEASE_MOVE indicates that
 responsibility for lease renewal has been transferred to one or
 more new servers.

 * The status bit SEQ4_STATUS_RESTART_RECLAIM_NEEDED indicates that
 due to server restart the client must reclaim locking state.

 * The status bit SEQ4_STATUS_BACKCHANNEL_FAULT indicates that the
 server has encountered an unrecoverable fault with the backchannel
 (e.g., it has lost track of a sequence ID for a slot in the
 backchannel).

8.4. Crash Recovery

 A critical requirement in crash recovery is that both the client and
 the server know when the other has failed. Additionally, it is
 required that a client sees a consistent view of data across server
 restarts. All READ and WRITE operations that may have been queued
 within the client or network buffers must wait until the client has
 successfully recovered the locks protecting the READ and WRITE
 operations. Any that reach the server before the server can safely
 determine that the client has recovered enough locking state to be
 sure that such operations can be safely processed must be rejected.
 This will happen because either:

 * The state presented is no longer valid since it is associated with
 a now invalid client ID. In this case, the client will receive
 either an NFS4ERR_BADSESSION or NFS4ERR_DEADSESSION error, and any
 attempt to attach a new session to that invalid client ID will
 result in an NFS4ERR_STALE_CLIENTID error.

 * Subsequent recovery of locks may make execution of the operation
 inappropriate (NFS4ERR_GRACE).

8.4.1. Client Failure and Recovery

 In the event that a client fails, the server may release the client’s
 locks when the associated lease has expired. Conflicting locks from
 another client may only be granted after this lease expiration. As
 discussed in Section 8.3, when a client has not failed and re-
 establishes its lease before expiration occurs, requests for
 conflicting locks will not be granted.

 To minimize client delay upon restart, lock requests are associated
 with an instance of the client by a client-supplied verifier. This
 verifier is part of the client_owner4 sent in the initial EXCHANGE_ID
 call made by the client. The server returns a client ID as a result
 of the EXCHANGE_ID operation. The client then confirms the use of
 the client ID by establishing a session associated with that client
 ID (see Section 18.36.3 for a description of how this is done). All
 locks, including opens, byte-range locks, delegations, and layouts
 obtained by sessions using that client ID, are associated with that
 client ID.

 Since the verifier will be changed by the client upon each
 initialization, the server can compare a new verifier to the verifier
 associated with currently held locks and determine that they do not
 match. This signifies the client’s new instantiation and subsequent
 loss (upon confirmation of the new client ID) of locking state. As a
 result, the server is free to release all locks held that are
 associated with the old client ID that was derived from the old
 verifier. At this point, conflicting locks from other clients, kept
 waiting while the lease had not yet expired, can be granted. In
 addition, all stateids associated with the old client ID can also be
 freed, as they are no longer reference-able.

 Note that the verifier must have the same uniqueness properties as
 the verifier for the COMMIT operation.

8.4.2. Server Failure and Recovery

 If the server loses locking state (usually as a result of a restart),
 it must allow clients time to discover this fact and re-establish the
 lost locking state. The client must be able to re-establish the
 locking state without having the server deny valid requests because
 the server has granted conflicting access to another client.
 Likewise, if there is a possibility that clients have not yet re-
 established their locking state for a file and that such locking
 state might make it invalid to perform READ or WRITE operations. For
 example, if mandatory locks are a possibility, the server must
 disallow READ and WRITE operations for that file.

 A client can determine that loss of locking state has occurred via
 several methods.

 1. When a SEQUENCE (most common) or other operation returns
 NFS4ERR_BADSESSION, this may mean that the session has been
 destroyed but the client ID is still valid. The client sends a
 CREATE_SESSION request with the client ID to re-establish the
 session. If CREATE_SESSION fails with NFS4ERR_STALE_CLIENTID,
 the client must establish a new client ID (see Section 8.1) and
 re-establish its lock state with the new client ID, after the
 CREATE_SESSION operation succeeds (see Section 8.4.2.1).

 2. When a SEQUENCE (most common) or other operation on a persistent
 session returns NFS4ERR_DEADSESSION, this indicates that a
 session is no longer usable for new, i.e., not satisfied from the
 reply cache, operations. Once all pending operations are
 determined to be either performed before the retry or not
 performed, the client sends a CREATE_SESSION request with the
 client ID to re-establish the session. If CREATE_SESSION fails
 with NFS4ERR_STALE_CLIENTID, the client must establish a new
 client ID (see Section 8.1) and re-establish its lock state after
 the CREATE_SESSION, with the new client ID, succeeds
 (Section 8.4.2.1).

 3. When an operation, neither SEQUENCE nor preceded by SEQUENCE (for
 example, CREATE_SESSION, DESTROY_SESSION), returns
 NFS4ERR_STALE_CLIENTID, the client MUST establish a new client ID
 (Section 8.1) and re-establish its lock state (Section 8.4.2.1).

8.4.2.1. State Reclaim

 When state information and the associated locks are lost as a result
 of a server restart, the protocol must provide a way to cause that
 state to be re-established. The approach used is to define, for most
 types of locking state (layouts are an exception), a request whose
 function is to allow the client to re-establish on the server a lock
 first obtained from a previous instance. Generally, these requests
 are variants of the requests normally used to create locks of that
 type and are referred to as "reclaim-type" requests, and the process
 of re-establishing such locks is referred to as "reclaiming" them.

 Because each client must have an opportunity to reclaim all of the
 locks that it has without the possibility that some other client will
 be granted a conflicting lock, a "grace period" is devoted to the
 reclaim process. During this period, requests creating client IDs
 and sessions are handled normally, but locking requests are subject
 to special restrictions. Only reclaim-type locking requests are
 allowed, unless the server can reliably determine (through state
 persistently maintained across restart instances) that granting any
 such lock cannot possibly conflict with a subsequent reclaim. When a
 request is made to obtain a new lock (i.e., not a reclaim-type
 request) during the grace period and such a determination cannot be
 made, the server must return the error NFS4ERR_GRACE.

 Once a session is established using the new client ID, the client
 will use reclaim-type locking requests (e.g., LOCK operations with
 reclaim set to TRUE and OPEN operations with a claim type of

 CLAIM_PREVIOUS; see Section 9.11) to re-establish its locking state.
 Once this is done, or if there is no such locking state to reclaim,
 the client sends a global RECLAIM_COMPLETE operation, i.e., one with
 the rca_one_fs argument set to FALSE, to indicate that it has
 reclaimed all of the locking state that it will reclaim. Once a
 client sends such a RECLAIM_COMPLETE operation, it may attempt non-
 reclaim locking operations, although it might get an NFS4ERR_GRACE
 status result from each such operation until the period of special
 handling is over. See Section 11.11.9 for a discussion of the
 analogous handling lock reclamation in the case of file systems
 transitioning from server to server.

 During the grace period, the server must reject READ and WRITE
 operations and non-reclaim locking requests (i.e., other LOCK and
 OPEN operations) with an error of NFS4ERR_GRACE, unless it can
 guarantee that these may be done safely, as described below.

 The grace period may last until all clients that are known to
 possibly have had locks have done a global RECLAIM_COMPLETE
 operation, indicating that they have finished reclaiming the locks
 they held before the server restart. This means that a client that
 has done a RECLAIM_COMPLETE must be prepared to receive an
 NFS4ERR_GRACE when attempting to acquire new locks. In order for the
 server to know that all clients with possible prior lock state have
 done a RECLAIM_COMPLETE, the server must maintain in stable storage a
 list clients that may have such locks. The server may also terminate
 the grace period before all clients have done a global
 RECLAIM_COMPLETE. The server SHOULD NOT terminate the grace period
 before a time equal to the lease period in order to give clients an
 opportunity to find out about the server restart, as a result of
 sending requests on associated sessions with a frequency governed by
 the lease time. Note that when a client does not send such requests
 (or they are sent by the client but not received by the server), it
 is possible for the grace period to expire before the client finds
 out that the server restart has occurred.

 Some additional time in order to allow a client to establish a new
 client ID and session and to effect lock reclaims may be added to the
 lease time. Note that analogous rules apply to file system-specific
 grace periods discussed in Section 11.11.9.

 If the server can reliably determine that granting a non-reclaim
 request will not conflict with reclamation of locks by other clients,
 the NFS4ERR_GRACE error does not have to be returned even within the
 grace period, although NFS4ERR_GRACE must always be returned to
 clients attempting a non-reclaim lock request before doing their own
 global RECLAIM_COMPLETE. For the server to be able to service READ
 and WRITE operations during the grace period, it must again be able
 to guarantee that no possible conflict could arise between a
 potential reclaim locking request and the READ or WRITE operation.
 If the server is unable to offer that guarantee, the NFS4ERR_GRACE
 error must be returned to the client.

 For a server to provide simple, valid handling during the grace
 period, the easiest method is to simply reject all non-reclaim
 locking requests and READ and WRITE operations by returning the
 NFS4ERR_GRACE error. However, a server may keep information about
 granted locks in stable storage. With this information, the server
 could determine if a locking, READ or WRITE operation can be safely
 processed.

 For example, if the server maintained on stable storage summary
 information on whether mandatory locks exist, either mandatory byte-
 range locks, or share reservations specifying deny modes, many
 requests could be allowed during the grace period. If it is known
 that no such share reservations exist, OPEN request that do not
 specify deny modes may be safely granted. If, in addition, it is
 known that no mandatory byte-range locks exist, either through
 information stored on stable storage or simply because the server
 does not support such locks, READ and WRITE operations may be safely
 processed during the grace period. Another important case is where

 it is known that no mandatory byte-range locks exist, either because
 the server does not provide support for them or because their absence
 is known from persistently recorded data. In this case, READ and
 WRITE operations specifying stateids derived from reclaim-type
 operations may be validly processed during the grace period because
 of the fact that the valid reclaim ensures that no lock subsequently
 granted can prevent the I/O.

 To reiterate, for a server that allows non-reclaim lock and I/O
 requests to be processed during the grace period, it MUST determine
 that no lock subsequently reclaimed will be rejected and that no lock
 subsequently reclaimed would have prevented any I/O operation
 processed during the grace period.

 Clients should be prepared for the return of NFS4ERR_GRACE errors for
 non-reclaim lock and I/O requests. In this case, the client should
 employ a retry mechanism for the request. A delay (on the order of
 several seconds) between retries should be used to avoid overwhelming
 the server. Further discussion of the general issue is included in
 [55]. The client must account for the server that can perform I/O
 and non-reclaim locking requests within the grace period as well as
 those that cannot do so.

 A reclaim-type locking request outside the server’s grace period can
 only succeed if the server can guarantee that no conflicting lock or
 I/O request has been granted since restart.

 A server may, upon restart, establish a new value for the lease
 period. Therefore, clients should, once a new client ID is
 established, refetch the lease_time attribute and use it as the basis
 for lease renewal for the lease associated with that server.
 However, the server must establish, for this restart event, a grace
 period at least as long as the lease period for the previous server
 instantiation. This allows the client state obtained during the
 previous server instance to be reliably re-established.

 The possibility exists that, because of server configuration events,
 the client will be communicating with a server different than the one
 on which the locks were obtained, as shown by the combination of
 eir_server_scope and eir_server_owner. This leads to the issue of if
 and when the client should attempt to reclaim locks previously
 obtained on what is being reported as a different server. The rules
 to resolve this question are as follows:

 * If the server scope is different, the client should not attempt to
 reclaim locks. In this situation, no lock reclaim is possible.
 Any attempt to re-obtain the locks with non-reclaim operations is
 problematic since there is no guarantee that the existing
 filehandles will be recognized by the new server, or that if
 recognized, they denote the same objects. It is best to treat the
 locks as having been revoked by the reconfiguration event.

 * If the server scope is the same, the client should attempt to
 reclaim locks, even if the eir_server_owner value is different.
 In this situation, it is the responsibility of the server to
 return NFS4ERR_NO_GRACE if it cannot provide correct support for
 lock reclaim operations, including the prevention of edge
 conditions.

 The eir_server_owner field is not used in making this determination.
 Its function is to specify trunking possibilities for the client (see
 Section 2.10.5) and not to control lock reclaim.

8.4.2.1.1. Security Considerations for State Reclaim

 During the grace period, a client can reclaim state that it believes
 or asserts it had before the server restarted. Unless the server
 maintained a complete record of all the state the client had, the
 server has little choice but to trust the client. (Of course, if the
 server maintained a complete record, then it would not have to force
 the client to reclaim state after server restart.) While the server

 has to trust the client to tell the truth, the negative consequences
 for security are limited to enabling denial-of-service attacks in
 situations in which AUTH_SYS is supported. The fundamental rule for
 the server when processing reclaim requests is that it MUST NOT grant
 the reclaim if an equivalent non-reclaim request would not be granted
 during steady state due to access control or access conflict issues.
 For example, an OPEN request during a reclaim will be refused with
 NFS4ERR_ACCESS if the principal making the request does not have
 access to open the file according to the discretionary ACL
 (Section 6.2.2) on the file.

 Nonetheless, it is possible that a client operating in error or
 maliciously could, during reclaim, prevent another client from
 reclaiming access to state. For example, an attacker could send an
 OPEN reclaim operation with a deny mode that prevents another client
 from reclaiming the OPEN state it had before the server restarted.
 The attacker could perform the same denial of service during steady
 state prior to server restart, as long as the attacker had
 permissions. Given that the attack vectors are equivalent, the grace
 period does not offer any additional opportunity for denial of
 service, and any concerns about this attack vector, whether during
 grace or steady state, are addressed the same way: use RPCSEC_GSS for
 authentication and limit access to the file only to principals that
 the owner of the file trusts.

 Note that if prior to restart the server had client IDs with the
 EXCHGID4_FLAG_BIND_PRINC_STATEID (Section 18.35) capability set, then
 the server SHOULD record in stable storage the client owner and the
 principal that established the client ID via EXCHANGE_ID. If the
 server does not, then there is a risk a client will be unable to
 reclaim state if it does not have a credential for a principal that
 was originally authorized to establish the state.

8.4.3. Network Partitions and Recovery

 If the duration of a network partition is greater than the lease
 period provided by the server, the server will not have received a
 lease renewal from the client. If this occurs, the server may free
 all locks held for the client or it may allow the lock state to
 remain for a considerable period, subject to the constraint that if a
 request for a conflicting lock is made, locks associated with an
 expired lease do not prevent such a conflicting lock from being
 granted but MUST be revoked as necessary so as to avoid interfering
 with such conflicting requests.

 If the server chooses to delay freeing of lock state until there is a
 conflict, it may either free all of the client’s locks once there is
 a conflict or it may only revoke the minimum set of locks necessary
 to allow conflicting requests. When it adopts the finer-grained
 approach, it must revoke all locks associated with a given stateid,
 even if the conflict is with only a subset of locks.

 When the server chooses to free all of a client’s lock state, either
 immediately upon lease expiration or as a result of the first attempt
 to obtain a conflicting a lock, the server may report the loss of
 lock state in a number of ways.

 The server may choose to invalidate the session and the associated
 client ID. In this case, once the client can communicate with the
 server, it will receive an NFS4ERR_BADSESSION error. Upon attempting
 to create a new session, it would get an NFS4ERR_STALE_CLIENTID.
 Upon creating the new client ID and new session, the client will
 attempt to reclaim locks. Normally, the server will not allow the
 client to reclaim locks, because the server will not be in its
 recovery grace period.

 Another possibility is for the server to maintain the session and
 client ID but for all stateids held by the client to become invalid
 or stale. Once the client can reach the server after such a network
 partition, the status returned by the SEQUENCE operation will
 indicate a loss of locking state; i.e., the flag

 SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED will be set in sr_status_flags.
 In addition, all I/O submitted by the client with the now invalid
 stateids will fail with the server returning the error
 NFS4ERR_EXPIRED. Once the client learns of the loss of locking
 state, it will suitably notify the applications that held the
 invalidated locks. The client should then take action to free
 invalidated stateids, either by establishing a new client ID using a
 new verifier or by doing a FREE_STATEID operation to release each of
 the invalidated stateids.

 When the server adopts a finer-grained approach to revocation of
 locks when a client’s lease has expired, only a subset of stateids
 will normally become invalid during a network partition. When the
 client can communicate with the server after such a network partition
 heals, the status returned by the SEQUENCE operation will indicate a
 partial loss of locking state
 (SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED). In addition, operations,
 including I/O submitted by the client, with the now invalid stateids
 will fail with the server returning the error NFS4ERR_EXPIRED. Once
 the client learns of the loss of locking state, it will use the
 TEST_STATEID operation on all of its stateids to determine which
 locks have been lost and then suitably notify the applications that
 held the invalidated locks. The client can then release the
 invalidated locking state and acknowledge the revocation of the
 associated locks by doing a FREE_STATEID operation on each of the
 invalidated stateids.

 When a network partition is combined with a server restart, there are
 edge conditions that place requirements on the server in order to
 avoid silent data corruption following the server restart. Two of
 these edge conditions are known, and are discussed below.

 The first edge condition arises as a result of the scenarios such as
 the following:

 1. Client A acquires a lock.

 2. Client A and server experience mutual network partition, such
 that client A is unable to renew its lease.

 3. Client A’s lease expires, and the server releases the lock.

 4. Client B acquires a lock that would have conflicted with that of
 client A.

 5. Client B releases its lock.

 6. Server restarts.

 7. Network partition between client A and server heals.

 8. Client A connects to a new server instance and finds out about
 server restart.

 9. Client A reclaims its lock within the server’s grace period.

 Thus, at the final step, the server has erroneously granted client
 A’s lock reclaim. If client B modified the object the lock was
 protecting, client A will experience object corruption.

 The second known edge condition arises in situations such as the
 following:

 1. Client A acquires one or more locks.

 2. Server restarts.

 3. Client A and server experience mutual network partition, such
 that client A is unable to reclaim all of its locks within the
 grace period.

 4. Server’s reclaim grace period ends. Client A has either no
 locks or an incomplete set of locks known to the server.

 5. Client B acquires a lock that would have conflicted with a lock
 of client A that was not reclaimed.

 6. Client B releases the lock.

 7. Server restarts a second time.

 8. Network partition between client A and server heals.

 9. Client A connects to new server instance and finds out about
 server restart.

 10. Client A reclaims its lock within the server’s grace period.

 As with the first edge condition, the final step of the scenario of
 the second edge condition has the server erroneously granting client
 A’s lock reclaim.

 Solving the first and second edge conditions requires either that the
 server always assumes after it restarts that some edge condition
 occurs, and thus returns NFS4ERR_NO_GRACE for all reclaim attempts,
 or that the server record some information in stable storage. The
 amount of information the server records in stable storage is in
 inverse proportion to how harsh the server intends to be whenever
 edge conditions arise. The server that is completely tolerant of all
 edge conditions will record in stable storage every lock that is
 acquired, removing the lock record from stable storage only when the
 lock is released. For the two edge conditions discussed above, the
 harshest a server can be, and still support a grace period for
 reclaims, requires that the server record in stable storage some
 minimal information. For example, a server implementation could, for
 each client, save in stable storage a record containing:

 * the co_ownerid field from the client_owner4 presented in the
 EXCHANGE_ID operation.

 * a boolean that indicates if the client’s lease expired or if there
 was administrative intervention (see Section 8.5) to revoke a
 byte-range lock, share reservation, or delegation and there has
 been no acknowledgment, via FREE_STATEID, of such revocation.

 * a boolean that indicates whether the client may have locks that it
 believes to be reclaimable in situations in which the grace period
 was terminated, making the server’s view of lock reclaimability
 suspect. The server will set this for any client record in stable
 storage where the client has not done a suitable RECLAIM_COMPLETE
 (global or file system-specific depending on the target of the
 lock request) before it grants any new (i.e., not reclaimed) lock
 to any client.

 Assuming the above record keeping, for the first edge condition,
 after the server restarts, the record that client A’s lease expired
 means that another client could have acquired a conflicting byte-
 range lock, share reservation, or delegation. Hence, the server must
 reject a reclaim from client A with the error NFS4ERR_NO_GRACE.

 For the second edge condition, after the server restarts for a second
 time, the indication that the client had not completed its reclaims
 at the time at which the grace period ended means that the server
 must reject a reclaim from client A with the error NFS4ERR_NO_GRACE.

 When either edge condition occurs, the client’s attempt to reclaim
 locks will result in the error NFS4ERR_NO_GRACE. When this is
 received, or after the client restarts with no lock state, the client
 will send a global RECLAIM_COMPLETE. When the RECLAIM_COMPLETE is
 received, the server and client are again in agreement regarding
 reclaimable locks and both booleans in persistent storage can be
 reset, to be set again only when there is a subsequent event that

 causes lock reclaim operations to be questionable.

 Regardless of the level and approach to record keeping, the server
 MUST implement one of the following strategies (which apply to
 reclaims of share reservations, byte-range locks, and delegations):

 1. Reject all reclaims with NFS4ERR_NO_GRACE. This is extremely
 unforgiving, but necessary if the server does not record lock
 state in stable storage.

 2. Record sufficient state in stable storage such that all known
 edge conditions involving server restart, including the two noted
 in this section, are detected. It is acceptable to erroneously
 recognize an edge condition and not allow a reclaim, when, with
 sufficient knowledge, it would be allowed. The error the server
 would return in this case is NFS4ERR_NO_GRACE. Note that it is
 not known if there are other edge conditions.

 In the event that, after a server restart, the server determines
 there is unrecoverable damage or corruption to the information in
 stable storage, then for all clients and/or locks that may be
 affected, the server MUST return NFS4ERR_NO_GRACE.

 A mandate for the client’s handling of the NFS4ERR_NO_GRACE error is
 outside the scope of this specification, since the strategies for
 such handling are very dependent on the client’s operating
 environment. However, one potential approach is described below.

 When the client receives NFS4ERR_NO_GRACE, it could examine the
 change attribute of the objects for which the client is trying to
 reclaim state, and use that to determine whether to re-establish the
 state via normal OPEN or LOCK operations. This is acceptable
 provided that the client’s operating environment allows it. In other
 words, the client implementor is advised to document for his users
 the behavior. The client could also inform the application that its
 byte-range lock or share reservations (whether or not they were
 delegated) have been lost, such as via a UNIX signal, a Graphical
 User Interface (GUI) pop-up window, etc. See Section 10.5 for a
 discussion of what the client should do for dealing with unreclaimed
 delegations on client state.

 For further discussion of revocation of locks, see Section 8.5.

8.5. Server Revocation of Locks

 At any point, the server can revoke locks held by a client, and the
 client must be prepared for this event. When the client detects that
 its locks have been or may have been revoked, the client is
 responsible for validating the state information between itself and
 the server. Validating locking state for the client means that it
 must verify or reclaim state for each lock currently held.

 The first occasion of lock revocation is upon server restart. Note
 that this includes situations in which sessions are persistent and
 locking state is lost. In this class of instances, the client will
 receive an error (NFS4ERR_STALE_CLIENTID) on an operation that takes
 client ID, usually as part of recovery in response to a problem with
 the current session), and the client will proceed with normal crash
 recovery as described in the Section 8.4.2.1.

 The second occasion of lock revocation is the inability to renew the
 lease before expiration, as discussed in Section 8.4.3. While this
 is considered a rare or unusual event, the client must be prepared to
 recover. The server is responsible for determining the precise
 consequences of the lease expiration, informing the client of the
 scope of the lock revocation decided upon. The client then uses the
 status information provided by the server in the SEQUENCE results
 (field sr_status_flags, see Section 18.46.3) to synchronize its
 locking state with that of the server, in order to recover.

 The third occasion of lock revocation can occur as a result of

 revocation of locks within the lease period, either because of
 administrative intervention or because a recallable lock (a
 delegation or layout) was not returned within the lease period after
 having been recalled. While these are considered rare events, they
 are possible, and the client must be prepared to deal with them.
 When either of these events occurs, the client finds out about the
 situation through the status returned by the SEQUENCE operation. Any
 use of stateids associated with locks revoked during the lease period
 will receive the error NFS4ERR_ADMIN_REVOKED or
 NFS4ERR_DELEG_REVOKED, as appropriate.

 In all situations in which a subset of locking state may have been
 revoked, which include all cases in which locking state is revoked
 within the lease period, it is up to the client to determine which
 locks have been revoked and which have not. It does this by using
 the TEST_STATEID operation on the appropriate set of stateids. Once
 the set of revoked locks has been determined, the applications can be
 notified, and the invalidated stateids can be freed and lock
 revocation acknowledged by using FREE_STATEID.

8.6. Short and Long Leases

 When determining the time period for the server lease, the usual
 lease trade-offs apply. A short lease is good for fast server
 recovery at a cost of increased operations to effect lease renewal
 (when there are no other operations during the period to effect lease
 renewal as a side effect). A long lease is certainly kinder and
 gentler to servers trying to handle very large numbers of clients.
 The number of extra requests to effect lock renewal drops in inverse
 proportion to the lease time. The disadvantages of a long lease
 include the possibility of slower recovery after certain failures.
 After server failure, a longer grace period may be required when some
 clients do not promptly reclaim their locks and do a global
 RECLAIM_COMPLETE. In the event of client failure, the longer period
 for a lease to expire will force conflicting requests to wait longer.

 A long lease is practical if the server can store lease state in
 stable storage. Upon recovery, the server can reconstruct the lease
 state from its stable storage and continue operation with its
 clients.

8.7. Clocks, Propagation Delay, and Calculating Lease Expiration

 To avoid the need for synchronized clocks, lease times are granted by
 the server as a time delta. However, there is a requirement that the
 client and server clocks do not drift excessively over the duration
 of the lease. There is also the issue of propagation delay across
 the network, which could easily be several hundred milliseconds, as
 well as the possibility that requests will be lost and need to be
 retransmitted.

 To take propagation delay into account, the client should subtract it
 from lease times (e.g., if the client estimates the one-way
 propagation delay as 200 milliseconds, then it can assume that the
 lease is already 200 milliseconds old when it gets it). In addition,
 it will take another 200 milliseconds to get a response back to the
 server. So the client must send a lease renewal or write data back
 to the server at least 400 milliseconds before the lease would
 expire. If the propagation delay varies over the life of the lease
 (e.g., the client is on a mobile host), the client will need to
 continuously subtract the increase in propagation delay from the
 lease times.

 The server’s lease period configuration should take into account the
 network distance of the clients that will be accessing the server’s
 resources. It is expected that the lease period will take into
 account the network propagation delays and other network delay
 factors for the client population. Since the protocol does not allow
 for an automatic method to determine an appropriate lease period, the
 server’s administrator may have to tune the lease period.

8.8. Obsolete Locking Infrastructure from NFSv4.0

 There are a number of operations and fields within existing
 operations that no longer have a function in NFSv4.1. In one way or
 another, these changes are all due to the implementation of sessions
 that provide client context and exactly once semantics as a base
 feature of the protocol, separate from locking itself.

 The following NFSv4.0 operations MUST NOT be implemented in NFSv4.1.
 The server MUST return NFS4ERR_NOTSUPP if these operations are found
 in an NFSv4.1 COMPOUND.

 * SETCLIENTID since its function has been replaced by EXCHANGE_ID.

 * SETCLIENTID_CONFIRM since client ID confirmation now happens by
 means of CREATE_SESSION.

 * OPEN_CONFIRM because state-owner-based seqids have been replaced
 by the sequence ID in the SEQUENCE operation.

 * RELEASE_LOCKOWNER because lock-owners with no associated locks do
 not have any sequence-related state and so can be deleted by the
 server at will.

 * RENEW because every SEQUENCE operation for a session causes lease
 renewal, making a separate operation superfluous.

 Also, there are a number of fields, present in existing operations,
 related to locking that have no use in minor version 1. They were
 used in minor version 0 to perform functions now provided in a
 different fashion.

 * Sequence ids used to sequence requests for a given state-owner and
 to provide retry protection, now provided via sessions.

 * Client IDs used to identify the client associated with a given
 request. Client identification is now available using the client
 ID associated with the current session, without needing an
 explicit client ID field.

 Such vestigial fields in existing operations have no function in
 NFSv4.1 and are ignored by the server. Note that client IDs in
 operations new to NFSv4.1 (such as CREATE_SESSION and
 DESTROY_CLIENTID) are not ignored.

9. File Locking and Share Reservations

 To support Win32 share reservations, it is necessary to provide
 operations that atomically open or create files. Having a separate
 share/unshare operation would not allow correct implementation of the
 Win32 OpenFile API. In order to correctly implement share semantics,
 the previous NFS protocol mechanisms used when a file is opened or
 created (LOOKUP, CREATE, ACCESS) need to be replaced. The NFSv4.1
 protocol defines an OPEN operation that is capable of atomically
 looking up, creating, and locking a file on the server.

9.1. Opens and Byte-Range Locks

 It is assumed that manipulating a byte-range lock is rare when
 compared to READ and WRITE operations. It is also assumed that
 server restarts and network partitions are relatively rare.
 Therefore, it is important that the READ and WRITE operations have a
 lightweight mechanism to indicate if they possess a held lock. A
 LOCK operation contains the heavyweight information required to
 establish a byte-range lock and uniquely define the owner of the
 lock.

9.1.1. State-Owner Definition

 When opening a file or requesting a byte-range lock, the client must
 specify an identifier that represents the owner of the requested

 lock. This identifier is in the form of a state-owner, represented
 in the protocol by a state_owner4, a variable-length opaque array
 that, when concatenated with the current client ID, uniquely defines
 the owner of a lock managed by the client. This may be a thread ID,
 process ID, or other unique value.

 Owners of opens and owners of byte-range locks are separate entities
 and remain separate even if the same opaque arrays are used to
 designate owners of each. The protocol distinguishes between open-
 owners (represented by open_owner4 structures) and lock-owners
 (represented by lock_owner4 structures).

 Each open is associated with a specific open-owner while each byte-
 range lock is associated with a lock-owner and an open-owner, the
 latter being the open-owner associated with the open file under which
 the LOCK operation was done. Delegations and layouts, on the other
 hand, are not associated with a specific owner but are associated
 with the client as a whole (identified by a client ID).

9.1.2. Use of the Stateid and Locking

 All READ, WRITE, and SETATTR operations contain a stateid. For the
 purposes of this section, SETATTR operations that change the size
 attribute of a file are treated as if they are writing the area
 between the old and new sizes (i.e., the byte-range truncated or
 added to the file by means of the SETATTR), even where SETATTR is not
 explicitly mentioned in the text. The stateid passed to one of these
 operations must be one that represents an open, a set of byte-range
 locks, or a delegation, or it may be a special stateid representing
 anonymous access or the special bypass stateid.

 If the state-owner performs a READ or WRITE operation in a situation
 in which it has established a byte-range lock or share reservation on
 the server (any OPEN constitutes a share reservation), the stateid
 (previously returned by the server) must be used to indicate what
 locks, including both byte-range locks and share reservations, are
 held by the state-owner. If no state is established by the client,
 either a byte-range lock or a share reservation, a special stateid
 for anonymous state (zero as the value for "other" and "seqid") is
 used. (See Section 8.2.3 for a description of ’special’ stateids in
 general.) Regardless of whether a stateid for anonymous state or a
 stateid returned by the server is used, if there is a conflicting
 share reservation or mandatory byte-range lock held on the file, the
 server MUST refuse to service the READ or WRITE operation.

 Share reservations are established by OPEN operations and by their
 nature are mandatory in that when the OPEN denies READ or WRITE
 operations, that denial results in such operations being rejected
 with error NFS4ERR_LOCKED. Byte-range locks may be implemented by
 the server as either mandatory or advisory, or the choice of
 mandatory or advisory behavior may be determined by the server on the
 basis of the file being accessed (for example, some UNIX-based
 servers support a "mandatory lock bit" on the mode attribute such
 that if set, byte-range locks are required on the file before I/O is
 possible). When byte-range locks are advisory, they only prevent the
 granting of conflicting lock requests and have no effect on READs or
 WRITEs. Mandatory byte-range locks, however, prevent conflicting I/O
 operations. When they are attempted, they are rejected with
 NFS4ERR_LOCKED. When the client gets NFS4ERR_LOCKED on a file for
 which it knows it has the proper share reservation, it will need to
 send a LOCK operation on the byte-range of the file that includes the
 byte-range the I/O was to be performed on, with an appropriate
 locktype field of the LOCK operation’s arguments (i.e., READ*_LT for
 a READ operation, WRITE*_LT for a WRITE operation).

 Note that for UNIX environments that support mandatory byte-range
 locking, the distinction between advisory and mandatory locking is
 subtle. In fact, advisory and mandatory byte-range locks are exactly
 the same as far as the APIs and requirements on implementation. If
 the mandatory lock attribute is set on the file, the server checks to
 see if the lock-owner has an appropriate shared (READ_LT) or

 exclusive (WRITE_LT) byte-range lock on the byte-range it wishes to
 READ from or WRITE to. If there is no appropriate lock, the server
 checks if there is a conflicting lock (which can be done by
 attempting to acquire the conflicting lock on behalf of the lock-
 owner, and if successful, release the lock after the READ or WRITE
 operation is done), and if there is, the server returns
 NFS4ERR_LOCKED.

 For Windows environments, byte-range locks are always mandatory, so
 the server always checks for byte-range locks during I/O requests.

 Thus, the LOCK operation does not need to distinguish between
 advisory and mandatory byte-range locks. It is the server’s
 processing of the READ and WRITE operations that introduces the
 distinction.

 Every stateid that is validly passed to READ, WRITE, or SETATTR, with
 the exception of special stateid values, defines an access mode for
 the file (i.e., OPEN4_SHARE_ACCESS_READ, OPEN4_SHARE_ACCESS_WRITE, or
 OPEN4_SHARE_ACCESS_BOTH).

 * For stateids associated with opens, this is the mode defined by
 the original OPEN that caused the allocation of the OPEN stateid
 and as modified by subsequent OPENs and OPEN_DOWNGRADEs for the
 same open-owner/file pair.

 * For stateids returned by byte-range LOCK operations, the
 appropriate mode is the access mode for the OPEN stateid
 associated with the lock set represented by the stateid.

 * For delegation stateids, the access mode is based on the type of
 delegation.

 When a READ, WRITE, or SETATTR (that specifies the size attribute)
 operation is done, the operation is subject to checking against the
 access mode to verify that the operation is appropriate given the
 stateid with which the operation is associated.

 In the case of WRITE-type operations (i.e., WRITEs and SETATTRs that
 set size), the server MUST verify that the access mode allows writing
 and MUST return an NFS4ERR_OPENMODE error if it does not. In the
 case of READ, the server may perform the corresponding check on the
 access mode, or it may choose to allow READ on OPENs for
 OPEN4_SHARE_ACCESS_WRITE, to accommodate clients whose WRITE
 implementation may unavoidably do reads (e.g., due to buffer cache
 constraints). However, even if READs are allowed in these
 circumstances, the server MUST still check for locks that conflict
 with the READ (e.g., another OPEN specified OPEN4_SHARE_DENY_READ or
 OPEN4_SHARE_DENY_BOTH). Note that a server that does enforce the
 access mode check on READs need not explicitly check for conflicting
 share reservations since the existence of OPEN for
 OPEN4_SHARE_ACCESS_READ guarantees that no conflicting share
 reservation can exist.

 The READ bypass special stateid (all bits of "other" and "seqid" set
 to one) indicates a desire to bypass locking checks. The server MAY
 allow READ operations to bypass locking checks at the server, when
 this special stateid is used. However, WRITE operations with this
 special stateid value MUST NOT bypass locking checks and are treated
 exactly the same as if a special stateid for anonymous state were
 used.

 A lock may not be granted while a READ or WRITE operation using one
 of the special stateids is being performed and the scope of the lock
 to be granted would conflict with the READ or WRITE operation. This
 can occur when:

 * A mandatory byte-range lock is requested with a byte-range that
 conflicts with the byte-range of the READ or WRITE operation. For
 the purposes of this paragraph, a conflict occurs when a shared
 lock is requested and a WRITE operation is being performed, or an

 exclusive lock is requested and either a READ or a WRITE operation
 is being performed.

 * A share reservation is requested that denies reading and/or
 writing and the corresponding operation is being performed.

 * A delegation is to be granted and the delegation type would
 prevent the I/O operation, i.e., READ and WRITE conflict with an
 OPEN_DELEGATE_WRITE delegation and WRITE conflicts with an
 OPEN_DELEGATE_READ delegation.

 When a client holds a delegation, it needs to ensure that the stateid
 sent conveys the association of operation with the delegation, to
 avoid the delegation from being avoidably recalled. When the
 delegation stateid, a stateid open associated with that delegation,
 or a stateid representing byte-range locks derived from such an open
 is used, the server knows that the READ, WRITE, or SETATTR does not
 conflict with the delegation but is sent under the aegis of the
 delegation. Even though it is possible for the server to determine
 from the client ID (via the session ID) that the client does in fact
 have a delegation, the server is not obliged to check this, so using
 a special stateid can result in avoidable recall of the delegation.

9.2. Lock Ranges

 The protocol allows a lock-owner to request a lock with a byte-range
 and then either upgrade, downgrade, or unlock a sub-range of the
 initial lock, or a byte-range that overlaps -- fully or partially --
 either with that initial lock or a combination of a set of existing
 locks for the same lock-owner. It is expected that this will be an
 uncommon type of request. In any case, servers or server file
 systems may not be able to support sub-range lock semantics. In the
 event that a server receives a locking request that represents a sub-
 range of current locking state for the lock-owner, the server is
 allowed to return the error NFS4ERR_LOCK_RANGE to signify that it
 does not support sub-range lock operations. Therefore, the client
 should be prepared to receive this error and, if appropriate, report
 the error to the requesting application.

 The client is discouraged from combining multiple independent locking
 ranges that happen to be adjacent into a single request since the
 server may not support sub-range requests for reasons related to the
 recovery of byte-range locking state in the event of server failure.
 As discussed in Section 8.4.2, the server may employ certain
 optimizations during recovery that work effectively only when the
 client’s behavior during lock recovery is similar to the client’s
 locking behavior prior to server failure.

9.3. Upgrading and Downgrading Locks

 If a client has a WRITE_LT lock on a byte-range, it can request an
 atomic downgrade of the lock to a READ_LT lock via the LOCK
 operation, by setting the type to READ_LT. If the server supports
 atomic downgrade, the request will succeed. If not, it will return
 NFS4ERR_LOCK_NOTSUPP. The client should be prepared to receive this
 error and, if appropriate, report the error to the requesting
 application.

 If a client has a READ_LT lock on a byte-range, it can request an
 atomic upgrade of the lock to a WRITE_LT lock via the LOCK operation
 by setting the type to WRITE_LT or WRITEW_LT. If the server does not
 support atomic upgrade, it will return NFS4ERR_LOCK_NOTSUPP. If the
 upgrade can be achieved without an existing conflict, the request
 will succeed. Otherwise, the server will return either
 NFS4ERR_DENIED or NFS4ERR_DEADLOCK. The error NFS4ERR_DEADLOCK is
 returned if the client sent the LOCK operation with the type set to
 WRITEW_LT and the server has detected a deadlock. The client should
 be prepared to receive such errors and, if appropriate, report the
 error to the requesting application.

9.4. Stateid Seqid Values and Byte-Range Locks

 When a LOCK or LOCKU operation is performed, the stateid returned has
 the same "other" value as the argument’s stateid, and a "seqid" value
 that is incremented (relative to the argument’s stateid) to reflect
 the occurrence of the LOCK or LOCKU operation. The server MUST
 increment the value of the "seqid" field whenever there is any change
 to the locking status of any byte offset as described by any of the
 locks covered by the stateid. A change in locking status includes a
 change from locked to unlocked or the reverse or a change from being
 locked for READ_LT to being locked for WRITE_LT or the reverse.

 When there is no such change, as, for example, when a range already
 locked for WRITE_LT is locked again for WRITE_LT, the server MAY
 increment the "seqid" value.

9.5. Issues with Multiple Open-Owners

 When the same file is opened by multiple open-owners, a client will
 have multiple OPEN stateids for that file, each associated with a
 different open-owner. In that case, there can be multiple LOCK and
 LOCKU requests for the same lock-owner sent using the different OPEN
 stateids, and so a situation may arise in which there are multiple
 stateids, each representing byte-range locks on the same file and
 held by the same lock-owner but each associated with a different
 open-owner.

 In such a situation, the locking status of each byte (i.e., whether
 it is locked, the READ_LT or WRITE_LT type of the lock, and the lock-
 owner holding the lock) MUST reflect the last LOCK or LOCKU operation
 done for the lock-owner in question, independent of the stateid
 through which the request was sent.

 When a byte is locked by the lock-owner in question, the open-owner
 to which that byte-range lock is assigned SHOULD be that of the open-
 owner associated with the stateid through which the last LOCK of that
 byte was done. When there is a change in the open-owner associated
 with locks for the stateid through which a LOCK or LOCKU was done,
 the "seqid" field of the stateid MUST be incremented, even if the
 locking, in terms of lock-owners has not changed. When there is a
 change to the set of locked bytes associated with a different stateid
 for the same lock-owner, i.e., associated with a different open-
 owner, the "seqid" value for that stateid MUST NOT be incremented.

9.6. Blocking Locks

 Some clients require the support of blocking locks. While NFSv4.1
 provides a callback when a previously unavailable lock becomes
 available, this is an OPTIONAL feature and clients cannot depend on
 its presence. Clients need to be prepared to continually poll for
 the lock. This presents a fairness problem. Two of the lock types,
 READW_LT and WRITEW_LT, are used to indicate to the server that the
 client is requesting a blocking lock. When the callback is not used,
 the server should maintain an ordered list of pending blocking locks.
 When the conflicting lock is released, the server may wait for the
 period of time equal to lease_time for the first waiting client to
 re-request the lock. After the lease period expires, the next
 waiting client request is allowed the lock. Clients are required to
 poll at an interval sufficiently small that it is likely to acquire
 the lock in a timely manner. The server is not required to maintain
 a list of pending blocked locks as it is used to increase fairness
 and not correct operation. Because of the unordered nature of crash
 recovery, storing of lock state to stable storage would be required
 to guarantee ordered granting of blocking locks.

 Servers may also note the lock types and delay returning denial of
 the request to allow extra time for a conflicting lock to be
 released, allowing a successful return. In this way, clients can
 avoid the burden of needless frequent polling for blocking locks.
 The server should take care in the length of delay in the event the
 client retransmits the request.

 If a server receives a blocking LOCK operation, denies it, and then
 later receives a nonblocking request for the same lock, which is also
 denied, then it should remove the lock in question from its list of
 pending blocking locks. Clients should use such a nonblocking
 request to indicate to the server that this is the last time they
 intend to poll for the lock, as may happen when the process
 requesting the lock is interrupted. This is a courtesy to the
 server, to prevent it from unnecessarily waiting a lease period
 before granting other LOCK operations. However, clients are not
 required to perform this courtesy, and servers must not depend on
 them doing so. Also, clients must be prepared for the possibility
 that this final locking request will be accepted.

 When a server indicates, via the flag OPEN4_RESULT_MAY_NOTIFY_LOCK,
 that CB_NOTIFY_LOCK callbacks might be done for the current open
 file, the client should take notice of this, but, since this is a
 hint, cannot rely on a CB_NOTIFY_LOCK always being done. A client
 may reasonably reduce the frequency with which it polls for a denied
 lock, since the greater latency that might occur is likely to be
 eliminated given a prompt callback, but it still needs to poll. When
 it receives a CB_NOTIFY_LOCK, it should promptly try to obtain the
 lock, but it should be aware that other clients may be polling and
 that the server is under no obligation to reserve the lock for that
 particular client.

9.7. Share Reservations

 A share reservation is a mechanism to control access to a file. It
 is a separate and independent mechanism from byte-range locking.
 When a client opens a file, it sends an OPEN operation to the server
 specifying the type of access required (READ, WRITE, or BOTH) and the
 type of access to deny others (OPEN4_SHARE_DENY_NONE,
 OPEN4_SHARE_DENY_READ, OPEN4_SHARE_DENY_WRITE, or
 OPEN4_SHARE_DENY_BOTH). If the OPEN fails, the client will fail the
 application’s open request.

 Pseudo-code definition of the semantics:

 if (request.access == 0) {
 return (NFS4ERR_INVAL)
 } else {
 if ((request.access & file_state.deny)) ||
 (request.deny & file_state.access)) {
 return (NFS4ERR_SHARE_DENIED)
 }
 return (NFS4ERR_OK);

 When doing this checking of share reservations on OPEN, the current
 file_state used in the algorithm includes bits that reflect all
 current opens, including those for the open-owner making the new OPEN
 request.

 The constants used for the OPEN and OPEN_DOWNGRADE operations for the
 access and deny fields are as follows:

 const OPEN4_SHARE_ACCESS_READ = 0x00000001;
 const OPEN4_SHARE_ACCESS_WRITE = 0x00000002;
 const OPEN4_SHARE_ACCESS_BOTH = 0x00000003;

 const OPEN4_SHARE_DENY_NONE = 0x00000000;
 const OPEN4_SHARE_DENY_READ = 0x00000001;
 const OPEN4_SHARE_DENY_WRITE = 0x00000002;
 const OPEN4_SHARE_DENY_BOTH = 0x00000003;

9.8. OPEN/CLOSE Operations

 To provide correct share semantics, a client MUST use the OPEN
 operation to obtain the initial filehandle and indicate the desired
 access and what access, if any, to deny. Even if the client intends
 to use a special stateid for anonymous state or READ bypass, it must
 still obtain the filehandle for the regular file with the OPEN

 operation so the appropriate share semantics can be applied. Clients
 that do not have a deny mode built into their programming interfaces
 for opening a file should request a deny mode of
 OPEN4_SHARE_DENY_NONE.

 The OPEN operation with the CREATE flag also subsumes the CREATE
 operation for regular files as used in previous versions of the NFS
 protocol. This allows a create with a share to be done atomically.

 The CLOSE operation removes all share reservations held by the open-
 owner on that file. If byte-range locks are held, the client SHOULD
 release all locks before sending a CLOSE operation. The server MAY
 free all outstanding locks on CLOSE, but some servers may not support
 the CLOSE of a file that still has byte-range locks held. The server
 MUST return failure, NFS4ERR_LOCKS_HELD, if any locks would exist
 after the CLOSE.

 The LOOKUP operation will return a filehandle without establishing
 any lock state on the server. Without a valid stateid, the server
 will assume that the client has the least access. For example, if
 one client opened a file with OPEN4_SHARE_DENY_BOTH and another
 client accesses the file via a filehandle obtained through LOOKUP,
 the second client could only read the file using the special read
 bypass stateid. The second client could not WRITE the file at all
 because it would not have a valid stateid from OPEN and the special
 anonymous stateid would not be allowed access.

9.9. Open Upgrade and Downgrade

 When an OPEN is done for a file and the open-owner for which the OPEN
 is being done already has the file open, the result is to upgrade the
 open file status maintained on the server to include the access and
 deny bits specified by the new OPEN as well as those for the existing
 OPEN. The result is that there is one open file, as far as the
 protocol is concerned, and it includes the union of the access and
 deny bits for all of the OPEN requests completed. The OPEN is
 represented by a single stateid whose "other" value matches that of
 the original open, and whose "seqid" value is incremented to reflect
 the occurrence of the upgrade. The increment is required in cases in
 which the "upgrade" results in no change to the open mode (e.g., an
 OPEN is done for read when the existing open file is opened for
 OPEN4_SHARE_ACCESS_BOTH). Only a single CLOSE will be done to reset
 the effects of both OPENs. The client may use the stateid returned
 by the OPEN effecting the upgrade or with a stateid sharing the same
 "other" field and a seqid of zero, although care needs to be taken as
 far as upgrades that happen while the CLOSE is pending. Note that
 the client, when sending the OPEN, may not know that the same file is
 in fact being opened. The above only applies if both OPENs result in
 the OPENed object being designated by the same filehandle.

 When the server chooses to export multiple filehandles corresponding
 to the same file object and returns different filehandles on two
 different OPENs of the same file object, the server MUST NOT "OR"
 together the access and deny bits and coalesce the two open files.
 Instead, the server must maintain separate OPENs with separate
 stateids and will require separate CLOSEs to free them.

 When multiple open files on the client are merged into a single OPEN
 file object on the server, the close of one of the open files (on the
 client) may necessitate change of the access and deny status of the
 open file on the server. This is because the union of the access and
 deny bits for the remaining opens may be smaller (i.e., a proper
 subset) than previously. The OPEN_DOWNGRADE operation is used to
 make the necessary change and the client should use it to update the
 server so that share reservation requests by other clients are
 handled properly. The stateid returned has the same "other" field as
 that passed to the server. The "seqid" value in the returned stateid
 MUST be incremented, even in situations in which there is no change
 to the access and deny bits for the file.

9.10. Parallel OPENs

 Unlike the case of NFSv4.0, in which OPEN operations for the same
 open-owner are inherently serialized because of the owner-based
 seqid, multiple OPENs for the same open-owner may be done in
 parallel. When clients do this, they may encounter situations in
 which, because of the existence of hard links, two OPEN operations
 may turn out to open the same file, with a later OPEN performed being
 an upgrade of the first, with this fact only visible to the client
 once the operations complete.

 In this situation, clients may determine the order in which the OPENs
 were performed by examining the stateids returned by the OPENs.
 Stateids that share a common value of the "other" field can be
 recognized as having opened the same file, with the order of the
 operations determinable from the order of the "seqid" fields, mod any
 possible wraparound of the 32-bit field.

 When the possibility exists that the client will send multiple OPENs
 for the same open-owner in parallel, it may be the case that an open
 upgrade may happen without the client knowing beforehand that this
 could happen. Because of this possibility, CLOSEs and
 OPEN_DOWNGRADEs should generally be sent with a non-zero seqid in the
 stateid, to avoid the possibility that the status change associated
 with an open upgrade is not inadvertently lost.

9.11. Reclaim of Open and Byte-Range Locks

 Special forms of the LOCK and OPEN operations are provided when it is
 necessary to re-establish byte-range locks or opens after a server
 failure.

 * To reclaim existing opens, an OPEN operation is performed using a
 CLAIM_PREVIOUS. Because the client, in this type of situation,
 will have already opened the file and have the filehandle of the
 target file, this operation requires that the current filehandle
 be the target file, rather than a directory, and no file name is
 specified.

 * To reclaim byte-range locks, a LOCK operation with the reclaim
 parameter set to true is used.

 Reclaims of opens associated with delegations are discussed in
 Section 10.2.1.

10. Client-Side Caching

 Client-side caching of data, of file attributes, and of file names is
 essential to providing good performance with the NFS protocol.
 Providing distributed cache coherence is a difficult problem, and
 previous versions of the NFS protocol have not attempted it.
 Instead, several NFS client implementation techniques have been used
 to reduce the problems that a lack of coherence poses for users.
 These techniques have not been clearly defined by earlier protocol
 specifications, and it is often unclear what is valid or invalid
 client behavior.

 The NFSv4.1 protocol uses many techniques similar to those that have
 been used in previous protocol versions. The NFSv4.1 protocol does
 not provide distributed cache coherence. However, it defines a more
 limited set of caching guarantees to allow locks and share
 reservations to be used without destructive interference from client-
 side caching.

 In addition, the NFSv4.1 protocol introduces a delegation mechanism,
 which allows many decisions normally made by the server to be made
 locally by clients. This mechanism provides efficient support of the
 common cases where sharing is infrequent or where sharing is read-
 only.

10.1. Performance Challenges for Client-Side Caching

 Caching techniques used in previous versions of the NFS protocol have
 been successful in providing good performance. However, several
 scalability challenges can arise when those techniques are used with
 very large numbers of clients. This is particularly true when
 clients are geographically distributed, which classically increases
 the latency for cache revalidation requests.

 The previous versions of the NFS protocol repeat their file data
 cache validation requests at the time the file is opened. This
 behavior can have serious performance drawbacks. A common case is
 one in which a file is only accessed by a single client. Therefore,
 sharing is infrequent.

 In this case, repeated references to the server to find that no
 conflicts exist are expensive. A better option with regards to
 performance is to allow a client that repeatedly opens a file to do
 so without reference to the server. This is done until potentially
 conflicting operations from another client actually occur.

 A similar situation arises in connection with byte-range locking.
 Sending LOCK and LOCKU operations as well as the READ and WRITE
 operations necessary to make data caching consistent with the locking
 semantics (see Section 10.3.2) can severely limit performance. When
 locking is used to provide protection against infrequent conflicts, a
 large penalty is incurred. This penalty may discourage the use of
 byte-range locking by applications.

 The NFSv4.1 protocol provides more aggressive caching strategies with
 the following design goals:

 * Compatibility with a large range of server semantics.

 * Providing the same caching benefits as previous versions of the
 NFS protocol when unable to support the more aggressive model.

 * Requirements for aggressive caching are organized so that a large
 portion of the benefit can be obtained even when not all of the
 requirements can be met.

 The appropriate requirements for the server are discussed in later
 sections in which specific forms of caching are covered (see
 Section 10.4).

10.2. Delegation and Callbacks

 Recallable delegation of server responsibilities for a file to a
 client improves performance by avoiding repeated requests to the
 server in the absence of inter-client conflict. With the use of a
 "callback" RPC from server to client, a server recalls delegated
 responsibilities when another client engages in sharing of a
 delegated file.

 A delegation is passed from the server to the client, specifying the
 object of the delegation and the type of delegation. There are
 different types of delegations, but each type contains a stateid to
 be used to represent the delegation when performing operations that
 depend on the delegation. This stateid is similar to those
 associated with locks and share reservations but differs in that the
 stateid for a delegation is associated with a client ID and may be
 used on behalf of all the open-owners for the given client. A
 delegation is made to the client as a whole and not to any specific
 process or thread of control within it.

 The backchannel is established by CREATE_SESSION and
 BIND_CONN_TO_SESSION, and the client is required to maintain it.
 Because the backchannel may be down, even temporarily, correct
 protocol operation does not depend on them. Preliminary testing of
 backchannel functionality by means of a CB_COMPOUND procedure with a
 single operation, CB_SEQUENCE, can be used to check the continuity of
 the backchannel. A server avoids delegating responsibilities until
 it has determined that the backchannel exists. Because the granting

 of a delegation is always conditional upon the absence of conflicting
 access, clients MUST NOT assume that a delegation will be granted and
 they MUST always be prepared for OPENs, WANT_DELEGATIONs, and
 GET_DIR_DELEGATIONs to be processed without any delegations being
 granted.

 Unlike locks, an operation by a second client to a delegated file
 will cause the server to recall a delegation through a callback. For
 individual operations, we will describe, under IMPLEMENTATION, when
 such operations are required to effect a recall. A number of points
 should be noted, however.

 * The server is free to recall a delegation whenever it feels it is
 desirable and may do so even if no operations requiring recall are
 being done.

 * Operations done outside the NFSv4.1 protocol, due to, for example,
 access by other protocols, or by local access, also need to result
 in delegation recall when they make analogous changes to file
 system data. What is crucial is if the change would invalidate
 the guarantees provided by the delegation. When this is possible,
 the delegation needs to be recalled and MUST be returned or
 revoked before allowing the operation to proceed.

 * The semantics of the file system are crucial in defining when
 delegation recall is required. If a particular change within a
 specific implementation causes change to a file attribute, then
 delegation recall is required, whether that operation has been
 specifically listed as requiring delegation recall. Again, what
 is critical is whether the guarantees provided by the delegation
 are being invalidated.

 Despite those caveats, the implementation sections for a number of
 operations describe situations in which delegation recall would be
 required under some common circumstances:

 * For GETATTR, see Section 18.7.4.

 * For OPEN, see Section 18.16.4.

 * For READ, see Section 18.22.4.

 * For REMOVE, see Section 18.25.4.

 * For RENAME, see Section 18.26.4.

 * For SETATTR, see Section 18.30.4.

 * For WRITE, see Section 18.32.4.

 On recall, the client holding the delegation needs to flush modified
 state (such as modified data) to the server and return the
 delegation. The conflicting request will not be acted on until the
 recall is complete. The recall is considered complete when the
 client returns the delegation or the server times its wait for the
 delegation to be returned and revokes the delegation as a result of
 the timeout. In the interim, the server will either delay responding
 to conflicting requests or respond to them with NFS4ERR_DELAY.
 Following the resolution of the recall, the server has the
 information necessary to grant or deny the second client’s request.

 At the time the client receives a delegation recall, it may have
 substantial state that needs to be flushed to the server. Therefore,
 the server should allow sufficient time for the delegation to be
 returned since it may involve numerous RPCs to the server. If the
 server is able to determine that the client is diligently flushing
 state to the server as a result of the recall, the server may extend
 the usual time allowed for a recall. However, the time allowed for
 recall completion should not be unbounded.

 An example of this is when responsibility to mediate opens on a given

 file is delegated to a client (see Section 10.4). The server will
 not know what opens are in effect on the client. Without this
 knowledge, the server will be unable to determine if the access and
 deny states for the file allow any particular open until the
 delegation for the file has been returned.

 A client failure or a network partition can result in failure to
 respond to a recall callback. In this case, the server will revoke
 the delegation, which in turn will render useless any modified state
 still on the client.

10.2.1. Delegation Recovery

 There are three situations that delegation recovery needs to deal
 with:

 * client restart

 * server restart

 * network partition (full or backchannel-only)

 In the event the client restarts, the failure to renew the lease will
 result in the revocation of byte-range locks and share reservations.
 Delegations, however, may be treated a bit differently.

 There will be situations in which delegations will need to be re-
 established after a client restarts. The reason for this is that the
 client may have file data stored locally and this data was associated
 with the previously held delegations. The client will need to re-
 establish the appropriate file state on the server.

 To allow for this type of client recovery, the server MAY extend the
 period for delegation recovery beyond the typical lease expiration
 period. This implies that requests from other clients that conflict
 with these delegations will need to wait. Because the normal recall
 process may require significant time for the client to flush changed
 state to the server, other clients need be prepared for delays that
 occur because of a conflicting delegation. This longer interval
 would increase the window for clients to restart and consult stable
 storage so that the delegations can be reclaimed. For OPEN
 delegations, such delegations are reclaimed using OPEN with a claim
 type of CLAIM_DELEGATE_PREV or CLAIM_DELEG_PREV_FH (see Sections 10.5
 and 18.16 for discussion of OPEN delegation and the details of OPEN,
 respectively).

 A server MAY support claim types of CLAIM_DELEGATE_PREV and
 CLAIM_DELEG_PREV_FH, and if it does, it MUST NOT remove delegations
 upon a CREATE_SESSION that confirm a client ID created by
 EXCHANGE_ID. Instead, the server MUST, for a period of time no less
 than that of the value of the lease_time attribute, maintain the
 client’s delegations to allow time for the client to send
 CLAIM_DELEGATE_PREV and/or CLAIM_DELEG_PREV_FH requests. The server
 that supports CLAIM_DELEGATE_PREV and/or CLAIM_DELEG_PREV_FH MUST
 support the DELEGPURGE operation.

 When the server restarts, delegations are reclaimed (using the OPEN
 operation with CLAIM_PREVIOUS) in a similar fashion to byte-range
 locks and share reservations. However, there is a slight semantic
 difference. In the normal case, if the server decides that a
 delegation should not be granted, it performs the requested action
 (e.g., OPEN) without granting any delegation. For reclaim, the
 server grants the delegation but a special designation is applied so
 that the client treats the delegation as having been granted but
 recalled by the server. Because of this, the client has the duty to
 write all modified state to the server and then return the
 delegation. This process of handling delegation reclaim reconciles
 three principles of the NFSv4.1 protocol:

 * Upon reclaim, a client reporting resources assigned to it by an
 earlier server instance must be granted those resources.

 * The server has unquestionable authority to determine whether
 delegations are to be granted and, once granted, whether they are
 to be continued.

 * The use of callbacks should not be depended upon until the client
 has proven its ability to receive them.

 When a client needs to reclaim a delegation and there is no
 associated open, the client may use the CLAIM_PREVIOUS variant of the
 WANT_DELEGATION operation. However, since the server is not required
 to support this operation, an alternative is to reclaim via a dummy
 OPEN together with the delegation using an OPEN of type
 CLAIM_PREVIOUS. The dummy open file can be released using a CLOSE to
 re-establish the original state to be reclaimed, a delegation without
 an associated open.

 When a client has more than a single open associated with a
 delegation, state for those additional opens can be established using
 OPEN operations of type CLAIM_DELEGATE_CUR. When these are used to
 establish opens associated with reclaimed delegations, the server
 MUST allow them when made within the grace period.

 When a network partition occurs, delegations are subject to freeing
 by the server when the lease renewal period expires. This is similar
 to the behavior for locks and share reservations. For delegations,
 however, the server may extend the period in which conflicting
 requests are held off. Eventually, the occurrence of a conflicting
 request from another client will cause revocation of the delegation.
 A loss of the backchannel (e.g., by later network configuration
 change) will have the same effect. A recall request will fail and
 revocation of the delegation will result.

 A client normally finds out about revocation of a delegation when it
 uses a stateid associated with a delegation and receives one of the
 errors NFS4ERR_EXPIRED, NFS4ERR_ADMIN_REVOKED, or
 NFS4ERR_DELEG_REVOKED. It also may find out about delegation
 revocation after a client restart when it attempts to reclaim a
 delegation and receives that same error. Note that in the case of a
 revoked OPEN_DELEGATE_WRITE delegation, there are issues because data
 may have been modified by the client whose delegation is revoked and
 separately by other clients. See Section 10.5.1 for a discussion of
 such issues. Note also that when delegations are revoked,
 information about the revoked delegation will be written by the
 server to stable storage (as described in Section 8.4.3). This is
 done to deal with the case in which a server restarts after revoking
 a delegation but before the client holding the revoked delegation is
 notified about the revocation.

10.3. Data Caching

 When applications share access to a set of files, they need to be
 implemented so as to take account of the possibility of conflicting
 access by another application. This is true whether the applications
 in question execute on different clients or reside on the same
 client.

 Share reservations and byte-range locks are the facilities the
 NFSv4.1 protocol provides to allow applications to coordinate access
 by using mutual exclusion facilities. The NFSv4.1 protocol’s data
 caching must be implemented such that it does not invalidate the
 assumptions on which those using these facilities depend.

10.3.1. Data Caching and OPENs

 In order to avoid invalidating the sharing assumptions on which
 applications rely, NFSv4.1 clients should not provide cached data to
 applications or modify it on behalf of an application when it would
 not be valid to obtain or modify that same data via a READ or WRITE
 operation.

 Furthermore, in the absence of an OPEN delegation (see Section 10.4),
 two additional rules apply. Note that these rules are obeyed in
 practice by many NFSv3 clients.

 * First, cached data present on a client must be revalidated after
 doing an OPEN. Revalidating means that the client fetches the
 change attribute from the server, compares it with the cached
 change attribute, and if different, declares the cached data (as
 well as the cached attributes) as invalid. This is to ensure that
 the data for the OPENed file is still correctly reflected in the
 client’s cache. This validation must be done at least when the
 client’s OPEN operation includes a deny of OPEN4_SHARE_DENY_WRITE
 or OPEN4_SHARE_DENY_BOTH, thus terminating a period in which other
 clients may have had the opportunity to open the file with
 OPEN4_SHARE_ACCESS_WRITE/OPEN4_SHARE_ACCESS_BOTH access. Clients
 may choose to do the revalidation more often (i.e., at OPENs
 specifying a deny mode of OPEN4_SHARE_DENY_NONE) to parallel the
 NFSv3 protocol’s practice for the benefit of users assuming this
 degree of cache revalidation.

 Since the change attribute is updated for data and metadata
 modifications, some client implementors may be tempted to use the
 time_modify attribute and not the change attribute to validate
 cached data, so that metadata changes do not spuriously invalidate
 clean data. The implementor is cautioned in this approach. The
 change attribute is guaranteed to change for each update to the
 file, whereas time_modify is guaranteed to change only at the
 granularity of the time_delta attribute. Use by the client’s data
 cache validation logic of time_modify and not change runs the risk
 of the client incorrectly marking stale data as valid. Thus, any
 cache validation approach by the client MUST include the use of
 the change attribute.

 * Second, modified data must be flushed to the server before closing
 a file OPENed for OPEN4_SHARE_ACCESS_WRITE. This is complementary
 to the first rule. If the data is not flushed at CLOSE, the
 revalidation done after the client OPENs a file is unable to
 achieve its purpose. The other aspect to flushing the data before
 close is that the data must be committed to stable storage, at the
 server, before the CLOSE operation is requested by the client. In
 the case of a server restart and a CLOSEd file, it may not be
 possible to retransmit the data to be written to the file, hence,
 this requirement.

10.3.2. Data Caching and File Locking

 For those applications that choose to use byte-range locking instead
 of share reservations to exclude inconsistent file access, there is
 an analogous set of constraints that apply to client-side data
 caching. These rules are effective only if the byte-range locking is
 used in a way that matches in an equivalent way the actual READ and
 WRITE operations executed. This is as opposed to byte-range locking
 that is based on pure convention. For example, it is possible to
 manipulate a two-megabyte file by dividing the file into two one-
 megabyte ranges and protecting access to the two byte-ranges by byte-
 range locks on bytes zero and one. A WRITE_LT lock on byte zero of
 the file would represent the right to perform READ and WRITE
 operations on the first byte-range. A WRITE_LT lock on byte one of
 the file would represent the right to perform READ and WRITE
 operations on the second byte-range. As long as all applications
 manipulating the file obey this convention, they will work on a local
 file system. However, they may not work with the NFSv4.1 protocol
 unless clients refrain from data caching.

 The rules for data caching in the byte-range locking environment are:

 * First, when a client obtains a byte-range lock for a particular
 byte-range, the data cache corresponding to that byte-range (if
 any cache data exists) must be revalidated. If the change
 attribute indicates that the file may have been updated since the
 cached data was obtained, the client must flush or invalidate the

 cached data for the newly locked byte-range. A client might
 choose to invalidate all of the non-modified cached data that it
 has for the file, but the only requirement for correct operation
 is to invalidate all of the data in the newly locked byte-range.

 * Second, before releasing a WRITE_LT lock for a byte-range, all
 modified data for that byte-range must be flushed to the server.
 The modified data must also be written to stable storage.

 Note that flushing data to the server and the invalidation of cached
 data must reflect the actual byte-ranges locked or unlocked.
 Rounding these up or down to reflect client cache block boundaries
 will cause problems if not carefully done. For example, writing a
 modified block when only half of that block is within an area being
 unlocked may cause invalid modification to the byte-range outside the
 unlocked area. This, in turn, may be part of a byte-range locked by
 another client. Clients can avoid this situation by synchronously
 performing portions of WRITE operations that overlap that portion
 (initial or final) that is not a full block. Similarly, invalidating
 a locked area that is not an integral number of full buffer blocks
 would require the client to read one or two partial blocks from the
 server if the revalidation procedure shows that the data that the
 client possesses may not be valid.

 The data that is written to the server as a prerequisite to the
 unlocking of a byte-range must be written, at the server, to stable
 storage. The client may accomplish this either with synchronous
 writes or by following asynchronous writes with a COMMIT operation.
 This is required because retransmission of the modified data after a
 server restart might conflict with a lock held by another client.

 A client implementation may choose to accommodate applications that
 use byte-range locking in non-standard ways (e.g., using a byte-range
 lock as a global semaphore) by flushing to the server more data upon
 a LOCKU than is covered by the locked range. This may include
 modified data within files other than the one for which the unlocks
 are being done. In such cases, the client must not interfere with
 applications whose READs and WRITEs are being done only within the
 bounds of byte-range locks that the application holds. For example,
 an application locks a single byte of a file and proceeds to write
 that single byte. A client that chose to handle a LOCKU by flushing
 all modified data to the server could validly write that single byte
 in response to an unrelated LOCKU operation. However, it would not
 be valid to write the entire block in which that single written byte
 was located since it includes an area that is not locked and might be
 locked by another client. Client implementations can avoid this
 problem by dividing files with modified data into those for which all
 modifications are done to areas covered by an appropriate byte-range
 lock and those for which there are modifications not covered by a
 byte-range lock. Any writes done for the former class of files must
 not include areas not locked and thus not modified on the client.

10.3.3. Data Caching and Mandatory File Locking

 Client-side data caching needs to respect mandatory byte-range
 locking when it is in effect. The presence of mandatory byte-range
 locking for a given file is indicated when the client gets back
 NFS4ERR_LOCKED from a READ or WRITE operation on a file for which it
 has an appropriate share reservation. When mandatory locking is in
 effect for a file, the client must check for an appropriate byte-
 range lock for data being read or written. If a byte-range lock
 exists for the range being read or written, the client may satisfy
 the request using the client’s validated cache. If an appropriate
 byte-range lock is not held for the range of the read or write, the
 read or write request must not be satisfied by the client’s cache and
 the request must be sent to the server for processing. When a read
 or write request partially overlaps a locked byte-range, the request
 should be subdivided into multiple pieces with each byte-range
 (locked or not) treated appropriately.

10.3.4. Data Caching and File Identity

 When clients cache data, the file data needs to be organized
 according to the file system object to which the data belongs. For
 NFSv3 clients, the typical practice has been to assume for the
 purpose of caching that distinct filehandles represent distinct file
 system objects. The client then has the choice to organize and
 maintain the data cache on this basis.

 In the NFSv4.1 protocol, there is now the possibility to have
 significant deviations from a "one filehandle per object" model
 because a filehandle may be constructed on the basis of the object’s
 pathname. Therefore, clients need a reliable method to determine if
 two filehandles designate the same file system object. If clients
 were simply to assume that all distinct filehandles denote distinct
 objects and proceed to do data caching on this basis, caching
 inconsistencies would arise between the distinct client-side objects
 that mapped to the same server-side object.

 By providing a method to differentiate filehandles, the NFSv4.1
 protocol alleviates a potential functional regression in comparison
 with the NFSv3 protocol. Without this method, caching
 inconsistencies within the same client could occur, and this has not
 been present in previous versions of the NFS protocol. Note that it
 is possible to have such inconsistencies with applications executing
 on multiple clients, but that is not the issue being addressed here.

 For the purposes of data caching, the following steps allow an
 NFSv4.1 client to determine whether two distinct filehandles denote
 the same server-side object:

 * If GETATTR directed to two filehandles returns different values of
 the fsid attribute, then the filehandles represent distinct
 objects.

 * If GETATTR for any file with an fsid that matches the fsid of the
 two filehandles in question returns a unique_handles attribute
 with a value of TRUE, then the two objects are distinct.

 * If GETATTR directed to the two filehandles does not return the
 fileid attribute for both of the handles, then it cannot be
 determined whether the two objects are the same. Therefore,
 operations that depend on that knowledge (e.g., client-side data
 caching) cannot be done reliably. Note that if GETATTR does not
 return the fileid attribute for both filehandles, it will return
 it for neither of the filehandles, since the fsid for both
 filehandles is the same.

 * If GETATTR directed to the two filehandles returns different
 values for the fileid attribute, then they are distinct objects.

 * Otherwise, they are the same object.

10.4. Open Delegation

 When a file is being OPENed, the server may delegate further handling
 of opens and closes for that file to the opening client. Any such
 delegation is recallable since the circumstances that allowed for the
 delegation are subject to change. In particular, if the server
 receives a conflicting OPEN from another client, the server must
 recall the delegation before deciding whether the OPEN from the other
 client may be granted. Making a delegation is up to the server, and
 clients should not assume that any particular OPEN either will or
 will not result in an OPEN delegation. The following is a typical
 set of conditions that servers might use in deciding whether an OPEN
 should be delegated:

 * The client must be able to respond to the server’s callback
 requests. If a backchannel has been established, the server will
 send a CB_COMPOUND request, containing a single operation,
 CB_SEQUENCE, for a test of backchannel availability.

 * The client must have responded properly to previous recalls.

 * There must be no current OPEN conflicting with the requested
 delegation.

 * There should be no current delegation that conflicts with the
 delegation being requested.

 * The probability of future conflicting open requests should be low
 based on the recent history of the file.

 * The existence of any server-specific semantics of OPEN/CLOSE that
 would make the required handling incompatible with the prescribed
 handling that the delegated client would apply (see below).

 There are two types of OPEN delegations: OPEN_DELEGATE_READ and
 OPEN_DELEGATE_WRITE. An OPEN_DELEGATE_READ delegation allows a
 client to handle, on its own, requests to open a file for reading
 that do not deny OPEN4_SHARE_ACCESS_READ access to others. Multiple
 OPEN_DELEGATE_READ delegations may be outstanding simultaneously and
 do not conflict. An OPEN_DELEGATE_WRITE delegation allows the client
 to handle, on its own, all opens. Only one OPEN_DELEGATE_WRITE
 delegation may exist for a given file at a given time, and it is
 inconsistent with any OPEN_DELEGATE_READ delegations.

 When a client has an OPEN_DELEGATE_READ delegation, it is assured
 that neither the contents, the attributes (with the exception of
 time_access), nor the names of any links to the file will change
 without its knowledge, so long as the delegation is held. When a
 client has an OPEN_DELEGATE_WRITE delegation, it may modify the file
 data locally since no other client will be accessing the file’s data.
 The client holding an OPEN_DELEGATE_WRITE delegation may only locally
 affect file attributes that are intimately connected with the file
 data: size, change, time_access, time_metadata, and time_modify. All
 other attributes must be reflected on the server.

 When a client has an OPEN delegation, it does not need to send OPENs
 or CLOSEs to the server. Instead, the client may update the
 appropriate status internally. For an OPEN_DELEGATE_READ delegation,
 opens that cannot be handled locally (opens that are for
 OPEN4_SHARE_ACCESS_WRITE/OPEN4_SHARE_ACCESS_BOTH or that deny
 OPEN4_SHARE_ACCESS_READ access) must be sent to the server.

 When an OPEN delegation is made, the reply to the OPEN contains an
 OPEN delegation structure that specifies the following:

 * the type of delegation (OPEN_DELEGATE_READ or
 OPEN_DELEGATE_WRITE).

 * space limitation information to control flushing of data on close
 (OPEN_DELEGATE_WRITE delegation only; see Section 10.4.1)

 * an nfsace4 specifying read and write permissions

 * a stateid to represent the delegation

 The delegation stateid is separate and distinct from the stateid for
 the OPEN proper. The standard stateid, unlike the delegation
 stateid, is associated with a particular lock-owner and will continue
 to be valid after the delegation is recalled and the file remains
 open.

 When a request internal to the client is made to open a file and an
 OPEN delegation is in effect, it will be accepted or rejected solely
 on the basis of the following conditions. Any requirement for other
 checks to be made by the delegate should result in the OPEN
 delegation being denied so that the checks can be made by the server
 itself.

 * The access and deny bits for the request and the file as described
 in Section 9.7.

 * The read and write permissions as determined below.

 The nfsace4 passed with delegation can be used to avoid frequent
 ACCESS calls. The permission check should be as follows:

 * If the nfsace4 indicates that the open may be done, then it should
 be granted without reference to the server.

 * If the nfsace4 indicates that the open may not be done, then an
 ACCESS request must be sent to the server to obtain the definitive
 answer.

 The server may return an nfsace4 that is more restrictive than the
 actual ACL of the file. This includes an nfsace4 that specifies
 denial of all access. Note that some common practices such as
 mapping the traditional user "root" to the user "nobody" (see
 Section 5.9) may make it incorrect to return the actual ACL of the
 file in the delegation response.

 The use of a delegation together with various other forms of caching
 creates the possibility that no server authentication and
 authorization will ever be performed for a given user since all of
 the user’s requests might be satisfied locally. Where the client is
 depending on the server for authentication and authorization, the
 client should be sure authentication and authorization occurs for
 each user by use of the ACCESS operation. This should be the case
 even if an ACCESS operation would not be required otherwise. As
 mentioned before, the server may enforce frequent authentication by
 returning an nfsace4 denying all access with every OPEN delegation.

10.4.1. Open Delegation and Data Caching

 An OPEN delegation allows much of the message overhead associated
 with the opening and closing files to be eliminated. An open when an
 OPEN delegation is in effect does not require that a validation
 message be sent to the server. The continued endurance of the
 "OPEN_DELEGATE_READ delegation" provides a guarantee that no OPEN for
 OPEN4_SHARE_ACCESS_WRITE/OPEN4_SHARE_ACCESS_BOTH, and thus no write,
 has occurred. Similarly, when closing a file opened for
 OPEN4_SHARE_ACCESS_WRITE/OPEN4_SHARE_ACCESS_BOTH and if an
 OPEN_DELEGATE_WRITE delegation is in effect, the data written does
 not have to be written to the server until the OPEN delegation is
 recalled. The continued endurance of the OPEN delegation provides a
 guarantee that no open, and thus no READ or WRITE, has been done by
 another client.

 For the purposes of OPEN delegation, READs and WRITEs done without an
 OPEN are treated as the functional equivalents of a corresponding
 type of OPEN. Although a client SHOULD NOT use special stateids when
 an open exists, delegation handling on the server can use the client
 ID associated with the current session to determine if the operation
 has been done by the holder of the delegation (in which case, no
 recall is necessary) or by another client (in which case, the
 delegation must be recalled and I/O not proceed until the delegation
 is returned or revoked).

 With delegations, a client is able to avoid writing data to the
 server when the CLOSE of a file is serviced. The file close system
 call is the usual point at which the client is notified of a lack of
 stable storage for the modified file data generated by the
 application. At the close, file data is written to the server and,
 through normal accounting, the server is able to determine if the
 available file system space for the data has been exceeded (i.e., the
 server returns NFS4ERR_NOSPC or NFS4ERR_DQUOT). This accounting
 includes quotas. The introduction of delegations requires that an
 alternative method be in place for the same type of communication to
 occur between client and server.

 In the delegation response, the server provides either the limit of
 the size of the file or the number of modified blocks and associated

 block size. The server must ensure that the client will be able to
 write modified data to the server of a size equal to that provided in
 the original delegation. The server must make this assurance for all
 outstanding delegations. Therefore, the server must be careful in
 its management of available space for new or modified data, taking
 into account available file system space and any applicable quotas.
 The server can recall delegations as a result of managing the
 available file system space. The client should abide by the server’s
 state space limits for delegations. If the client exceeds the stated
 limits for the delegation, the server’s behavior is undefined.

 Based on server conditions, quotas, or available file system space,
 the server may grant OPEN_DELEGATE_WRITE delegations with very
 restrictive space limitations. The limitations may be defined in a
 way that will always force modified data to be flushed to the server
 on close.

 With respect to authentication, flushing modified data to the server
 after a CLOSE has occurred may be problematic. For example, the user
 of the application may have logged off the client, and unexpired
 authentication credentials may not be present. In this case, the
 client may need to take special care to ensure that local unexpired
 credentials will in fact be available. This may be accomplished by
 tracking the expiration time of credentials and flushing data well in
 advance of their expiration or by making private copies of
 credentials to assure their availability when needed.

10.4.2. Open Delegation and File Locks

 When a client holds an OPEN_DELEGATE_WRITE delegation, lock
 operations are performed locally. This includes those required for
 mandatory byte-range locking. This can be done since the delegation
 implies that there can be no conflicting locks. Similarly, all of
 the revalidations that would normally be associated with obtaining
 locks and the flushing of data associated with the releasing of locks
 need not be done.

 When a client holds an OPEN_DELEGATE_READ delegation, lock operations
 are not performed locally. All lock operations, including those
 requesting non-exclusive locks, are sent to the server for
 resolution.

10.4.3. Handling of CB_GETATTR

 The server needs to employ special handling for a GETATTR where the
 target is a file that has an OPEN_DELEGATE_WRITE delegation in
 effect. The reason for this is that the client holding the
 OPEN_DELEGATE_WRITE delegation may have modified the data, and the
 server needs to reflect this change to the second client that
 submitted the GETATTR. Therefore, the client holding the
 OPEN_DELEGATE_WRITE delegation needs to be interrogated. The server
 will use the CB_GETATTR operation. The only attributes that the
 server can reliably query via CB_GETATTR are size and change.

 Since CB_GETATTR is being used to satisfy another client’s GETATTR
 request, the server only needs to know if the client holding the
 delegation has a modified version of the file. If the client’s copy
 of the delegated file is not modified (data or size), the server can
 satisfy the second client’s GETATTR request from the attributes
 stored locally at the server. If the file is modified, the server
 only needs to know about this modified state. If the server
 determines that the file is currently modified, it will respond to
 the second client’s GETATTR as if the file had been modified locally
 at the server.

 Since the form of the change attribute is determined by the server
 and is opaque to the client, the client and server need to agree on a
 method of communicating the modified state of the file. For the size
 attribute, the client will report its current view of the file size.
 For the change attribute, the handling is more involved.

 For the client, the following steps will be taken when receiving an
 OPEN_DELEGATE_WRITE delegation:

 * The value of the change attribute will be obtained from the server
 and cached. Let this value be represented by c.

 * The client will create a value greater than c that will be used
 for communicating that modified data is held at the client. Let
 this value be represented by d.

 * When the client is queried via CB_GETATTR for the change
 attribute, it checks to see if it holds modified data. If the
 file is modified, the value d is returned for the change attribute
 value. If this file is not currently modified, the client returns
 the value c for the change attribute.

 For simplicity of implementation, the client MAY for each CB_GETATTR
 return the same value d. This is true even if, between successive
 CB_GETATTR operations, the client again modifies the file’s data or
 metadata in its cache. The client can return the same value because
 the only requirement is that the client be able to indicate to the
 server that the client holds modified data. Therefore, the value of
 d may always be c + 1.

 While the change attribute is opaque to the client in the sense that
 it has no idea what units of time, if any, the server is counting
 change with, it is not opaque in that the client has to treat it as
 an unsigned integer, and the server has to be able to see the results
 of the client’s changes to that integer. Therefore, the server MUST
 encode the change attribute in network order when sending it to the
 client. The client MUST decode it from network order to its native
 order when receiving it, and the client MUST encode it in network
 order when sending it to the server. For this reason, change is
 defined as an unsigned integer rather than an opaque array of bytes.

 For the server, the following steps will be taken when providing an
 OPEN_DELEGATE_WRITE delegation:

 * Upon providing an OPEN_DELEGATE_WRITE delegation, the server will
 cache a copy of the change attribute in the data structure it uses
 to record the delegation. Let this value be represented by sc.

 * When a second client sends a GETATTR operation on the same file to
 the server, the server obtains the change attribute from the first
 client. Let this value be cc.

 * If the value cc is equal to sc, the file is not modified and the
 server returns the current values for change, time_metadata, and
 time_modify (for example) to the second client.

 * If the value cc is NOT equal to sc, the file is currently modified
 at the first client and most likely will be modified at the server
 at a future time. The server then uses its current time to
 construct attribute values for time_metadata and time_modify. A
 new value of sc, which we will call nsc, is computed by the
 server, such that nsc >= sc + 1. The server then returns the
 constructed time_metadata, time_modify, and nsc values to the
 requester. The server replaces sc in the delegation record with
 nsc. To prevent the possibility of time_modify, time_metadata,
 and change from appearing to go backward (which would happen if
 the client holding the delegation fails to write its modified data
 to the server before the delegation is revoked or returned), the
 server SHOULD update the file’s metadata record with the
 constructed attribute values. For reasons of reasonable
 performance, committing the constructed attribute values to stable
 storage is OPTIONAL.

 As discussed earlier in this section, the client MAY return the same
 cc value on subsequent CB_GETATTR calls, even if the file was
 modified in the client’s cache yet again between successive
 CB_GETATTR calls. Therefore, the server must assume that the file

 has been modified yet again, and MUST take care to ensure that the
 new nsc it constructs and returns is greater than the previous nsc it
 returned. An example implementation’s delegation record would
 satisfy this mandate by including a boolean field (let us call it
 "modified") that is set to FALSE when the delegation is granted, and
 an sc value set at the time of grant to the change attribute value.
 The modified field would be set to TRUE the first time cc != sc, and
 would stay TRUE until the delegation is returned or revoked. The
 processing for constructing nsc, time_modify, and time_metadata would
 use this pseudo code:

 if (!modified) {
 do CB_GETATTR for change and size;

 if (cc != sc)
 modified = TRUE;
 } else {
 do CB_GETATTR for size;
 }

 if (modified) {
 sc = sc + 1;
 time_modify = time_metadata = current_time;
 update sc, time_modify, time_metadata into file’s metadata;
 }

 This would return to the client (that sent GETATTR) the attributes it
 requested, but make sure size comes from what CB_GETATTR returned.
 The server would not update the file’s metadata with the client’s
 modified size.

 In the case that the file attribute size is different than the
 server’s current value, the server treats this as a modification
 regardless of the value of the change attribute retrieved via
 CB_GETATTR and responds to the second client as in the last step.

 This methodology resolves issues of clock differences between client
 and server and other scenarios where the use of CB_GETATTR break
 down.

 It should be noted that the server is under no obligation to use
 CB_GETATTR, and therefore the server MAY simply recall the delegation
 to avoid its use.

10.4.4. Recall of Open Delegation

 The following events necessitate recall of an OPEN delegation:

 * potentially conflicting OPEN request (or a READ or WRITE operation
 done with a special stateid)

 * SETATTR sent by another client

 * REMOVE request for the file

 * RENAME request for the file as either the source or target of the
 RENAME

 Whether a RENAME of a directory in the path leading to the file
 results in recall of an OPEN delegation depends on the semantics of
 the server’s file system. If that file system denies such RENAMEs
 when a file is open, the recall must be performed to determine
 whether the file in question is, in fact, open.

 In addition to the situations above, the server may choose to recall
 OPEN delegations at any time if resource constraints make it
 advisable to do so. Clients should always be prepared for the
 possibility of recall.

 When a client receives a recall for an OPEN delegation, it needs to
 update state on the server before returning the delegation. These

 same updates must be done whenever a client chooses to return a
 delegation voluntarily. The following items of state need to be
 dealt with:

 * If the file associated with the delegation is no longer open and
 no previous CLOSE operation has been sent to the server, a CLOSE
 operation must be sent to the server.

 * If a file has other open references at the client, then OPEN
 operations must be sent to the server. The appropriate stateids
 will be provided by the server for subsequent use by the client
 since the delegation stateid will no longer be valid. These OPEN
 requests are done with the claim type of CLAIM_DELEGATE_CUR. This
 will allow the presentation of the delegation stateid so that the
 client can establish the appropriate rights to perform the OPEN.
 (See Section 18.16, which describes the OPEN operation, for
 details.)

 * If there are granted byte-range locks, the corresponding LOCK
 operations need to be performed. This applies to the
 OPEN_DELEGATE_WRITE delegation case only.

 * For an OPEN_DELEGATE_WRITE delegation, if at the time of recall
 the file is not open for OPEN4_SHARE_ACCESS_WRITE/
 OPEN4_SHARE_ACCESS_BOTH, all modified data for the file must be
 flushed to the server. If the delegation had not existed, the
 client would have done this data flush before the CLOSE operation.

 * For an OPEN_DELEGATE_WRITE delegation when a file is still open at
 the time of recall, any modified data for the file needs to be
 flushed to the server.

 * With the OPEN_DELEGATE_WRITE delegation in place, it is possible
 that the file was truncated during the duration of the delegation.
 For example, the truncation could have occurred as a result of an
 OPEN UNCHECKED with a size attribute value of zero. Therefore, if
 a truncation of the file has occurred and this operation has not
 been propagated to the server, the truncation must occur before
 any modified data is written to the server.

 In the case of OPEN_DELEGATE_WRITE delegation, byte-range locking
 imposes some additional requirements. To precisely maintain the
 associated invariant, it is required to flush any modified data in
 any byte-range for which a WRITE_LT lock was released while the
 OPEN_DELEGATE_WRITE delegation was in effect. However, because the
 OPEN_DELEGATE_WRITE delegation implies no other locking by other
 clients, a simpler implementation is to flush all modified data for
 the file (as described just above) if any WRITE_LT lock has been
 released while the OPEN_DELEGATE_WRITE delegation was in effect.

 An implementation need not wait until delegation recall (or the
 decision to voluntarily return a delegation) to perform any of the
 above actions, if implementation considerations (e.g., resource
 availability constraints) make that desirable. Generally, however,
 the fact that the actual OPEN state of the file may continue to
 change makes it not worthwhile to send information about opens and
 closes to the server, except as part of delegation return. An
 exception is when the client has no more internal opens of the file.
 In this case, sending a CLOSE is useful because it reduces resource
 utilization on the client and server. Regardless of the client’s
 choices on scheduling these actions, all must be performed before the
 delegation is returned, including (when applicable) the close that
 corresponds to the OPEN that resulted in the delegation. These
 actions can be performed either in previous requests or in previous
 operations in the same COMPOUND request.

10.4.5. Clients That Fail to Honor Delegation Recalls

 A client may fail to respond to a recall for various reasons, such as
 a failure of the backchannel from server to the client. The client
 may be unaware of a failure in the backchannel. This lack of

 awareness could result in the client finding out long after the
 failure that its delegation has been revoked, and another client has
 modified the data for which the client had a delegation. This is
 especially a problem for the client that held an OPEN_DELEGATE_WRITE
 delegation.

 Status bits returned by SEQUENCE operations help to provide an
 alternate way of informing the client of issues regarding the status
 of the backchannel and of recalled delegations. When the backchannel
 is not available, the server returns the status bit
 SEQ4_STATUS_CB_PATH_DOWN on SEQUENCE operations. The client can
 react by attempting to re-establish the backchannel and by returning
 recallable objects if a backchannel cannot be successfully re-
 established.

 Whether the backchannel is functioning or not, it may be that the
 recalled delegation is not returned. Note that the client’s lease
 might still be renewed, even though the recalled delegation is not
 returned. In this situation, servers SHOULD revoke delegations that
 are not returned in a period of time equal to the lease period. This
 period of time should allow the client time to note the backchannel-
 down status and re-establish the backchannel.

 When delegations are revoked, the server will return with the
 SEQ4_STATUS_RECALLABLE_STATE_REVOKED status bit set on subsequent
 SEQUENCE operations. The client should note this and then use
 TEST_STATEID to find which delegations have been revoked.

10.4.6. Delegation Revocation

 At the point a delegation is revoked, if there are associated opens
 on the client, these opens may or may not be revoked. If no byte-
 range lock or open is granted that is inconsistent with the existing
 open, the stateid for the open may remain valid and be disconnected
 from the revoked delegation, just as would be the case if the
 delegation were returned.

 For example, if an OPEN for OPEN4_SHARE_ACCESS_BOTH with a deny of
 OPEN4_SHARE_DENY_NONE is associated with the delegation, granting of
 another such OPEN to a different client will revoke the delegation
 but need not revoke the OPEN, since the two OPENs are consistent with
 each other. On the other hand, if an OPEN denying write access is
 granted, then the existing OPEN must be revoked.

 When opens and/or locks are revoked, the applications holding these
 opens or locks need to be notified. This notification usually occurs
 by returning errors for READ/WRITE operations or when a close is
 attempted for the open file.

 If no opens exist for the file at the point the delegation is
 revoked, then notification of the revocation is unnecessary.
 However, if there is modified data present at the client for the
 file, the user of the application should be notified. Unfortunately,
 it may not be possible to notify the user since active applications
 may not be present at the client. See Section 10.5.1 for additional
 details.

10.4.7. Delegations via WANT_DELEGATION

 In addition to providing delegations as part of the reply to OPEN
 operations, servers MAY provide delegations separate from open, via
 the OPTIONAL WANT_DELEGATION operation. This allows delegations to
 be obtained in advance of an OPEN that might benefit from them, for
 objects that are not a valid target of OPEN, or to deal with cases in
 which a delegation has been recalled and the client wants to make an
 attempt to re-establish it if the absence of use by other clients
 allows that.

 The WANT_DELEGATION operation may be performed on any type of file
 object other than a directory.

 When a delegation is obtained using WANT_DELEGATION, any open files
 for the same filehandle held by that client are to be treated as
 subordinate to the delegation, just as if they had been created using
 an OPEN of type CLAIM_DELEGATE_CUR. They are otherwise unchanged as
 to seqid, access and deny modes, and the relationship with byte-range
 locks. Similarly, because existing byte-range locks are subordinate
 to an open, those byte-range locks also become indirectly subordinate
 to that new delegation.

 The WANT_DELEGATION operation provides for delivery of delegations
 via callbacks, when the delegations are not immediately available.
 When a requested delegation is available, it is delivered to the
 client via a CB_PUSH_DELEG operation. When this happens, open files
 for the same filehandle become subordinate to the new delegation at
 the point at which the delegation is delivered, just as if they had
 been created using an OPEN of type CLAIM_DELEGATE_CUR. Similarly,
 this occurs for existing byte-range locks subordinate to an open.

10.5. Data Caching and Revocation

 When locks and delegations are revoked, the assumptions upon which
 successful caching depends are no longer guaranteed. For any locks
 or share reservations that have been revoked, the corresponding
 state-owner needs to be notified. This notification includes
 applications with a file open that has a corresponding delegation
 that has been revoked. Cached data associated with the revocation
 must be removed from the client. In the case of modified data
 existing in the client’s cache, that data must be removed from the
 client without being written to the server. As mentioned, the
 assumptions made by the client are no longer valid at the point when
 a lock or delegation has been revoked. For example, another client
 may have been granted a conflicting byte-range lock after the
 revocation of the byte-range lock at the first client. Therefore,
 the data within the lock range may have been modified by the other
 client. Obviously, the first client is unable to guarantee to the
 application what has occurred to the file in the case of revocation.

 Notification to a state-owner will in many cases consist of simply
 returning an error on the next and all subsequent READs/WRITEs to the
 open file or on the close. Where the methods available to a client
 make such notification impossible because errors for certain
 operations may not be returned, more drastic action such as signals
 or process termination may be appropriate. The justification here is
 that an invariant on which an application depends may be violated.
 Depending on how errors are typically treated for the client-
 operating environment, further levels of notification including
 logging, console messages, and GUI pop-ups may be appropriate.

10.5.1. Revocation Recovery for Write Open Delegation

 Revocation recovery for an OPEN_DELEGATE_WRITE delegation poses the
 special issue of modified data in the client cache while the file is
 not open. In this situation, any client that does not flush modified
 data to the server on each close must ensure that the user receives
 appropriate notification of the failure as a result of the
 revocation. Since such situations may require human action to
 correct problems, notification schemes in which the appropriate user
 or administrator is notified may be necessary. Logging and console
 messages are typical examples.

 If there is modified data on the client, it must not be flushed
 normally to the server. A client may attempt to provide a copy of
 the file data as modified during the delegation under a different
 name in the file system namespace to ease recovery. Note that when
 the client can determine that the file has not been modified by any
 other client, or when the client has a complete cached copy of the
 file in question, such a saved copy of the client’s view of the file
 may be of particular value for recovery. In another case, recovery
 using a copy of the file based partially on the client’s cached data
 and partially on the server’s copy as modified by other clients will
 be anything but straightforward, so clients may avoid saving file

 contents in these situations or specially mark the results to warn
 users of possible problems.

 Saving of such modified data in delegation revocation situations may
 be limited to files of a certain size or might be used only when
 sufficient disk space is available within the target file system.
 Such saving may also be restricted to situations when the client has
 sufficient buffering resources to keep the cached copy available
 until it is properly stored to the target file system.

10.6. Attribute Caching

 This section pertains to the caching of a file’s attributes on a
 client when that client does not hold a delegation on the file.

 The attributes discussed in this section do not include named
 attributes. Individual named attributes are analogous to files, and
 caching of the data for these needs to be handled just as data
 caching is for ordinary files. Similarly, LOOKUP results from an
 OPENATTR directory (as well as the directory’s contents) are to be
 cached on the same basis as any other pathnames.

 Clients may cache file attributes obtained from the server and use
 them to avoid subsequent GETATTR requests. Such caching is write
 through in that modification to file attributes is always done by
 means of requests to the server and should not be done locally and
 should not be cached. The exception to this are modifications to
 attributes that are intimately connected with data caching.
 Therefore, extending a file by writing data to the local data cache
 is reflected immediately in the size as seen on the client without
 this change being immediately reflected on the server. Normally,
 such changes are not propagated directly to the server, but when the
 modified data is flushed to the server, analogous attribute changes
 are made on the server. When OPEN delegation is in effect, the
 modified attributes may be returned to the server in reaction to a
 CB_RECALL call.

 The result of local caching of attributes is that the attribute
 caches maintained on individual clients will not be coherent.
 Changes made in one order on the server may be seen in a different
 order on one client and in a third order on another client.

 The typical file system application programming interfaces do not
 provide means to atomically modify or interrogate attributes for
 multiple files at the same time. The following rules provide an
 environment where the potential incoherencies mentioned above can be
 reasonably managed. These rules are derived from the practice of
 previous NFS protocols.

 * All attributes for a given file (per-fsid attributes excepted) are
 cached as a unit at the client so that no non-serializability can
 arise within the context of a single file.

 * An upper time boundary is maintained on how long a client cache
 entry can be kept without being refreshed from the server.

 * When operations are performed that change attributes at the
 server, the updated attribute set is requested as part of the
 containing RPC. This includes directory operations that update
 attributes indirectly. This is accomplished by following the
 modifying operation with a GETATTR operation and then using the
 results of the GETATTR to update the client’s cached attributes.

 Note that if the full set of attributes to be cached is requested by
 READDIR, the results can be cached by the client on the same basis as
 attributes obtained via GETATTR.

 A client may validate its cached version of attributes for a file by
 fetching both the change and time_access attributes and assuming that
 if the change attribute has the same value as it did when the
 attributes were cached, then no attributes other than time_access

 have changed. The reason why time_access is also fetched is because
 many servers operate in environments where the operation that updates
 change does not update time_access. For example, POSIX file
 semantics do not update access time when a file is modified by the
 write system call [15]. Therefore, the client that wants a current
 time_access value should fetch it with change during the attribute
 cache validation processing and update its cached time_access.

 The client may maintain a cache of modified attributes for those
 attributes intimately connected with data of modified regular files
 (size, time_modify, and change). Other than those three attributes,
 the client MUST NOT maintain a cache of modified attributes.
 Instead, attribute changes are immediately sent to the server.

 In some operating environments, the equivalent to time_access is
 expected to be implicitly updated by each read of the content of the
 file object. If an NFS client is caching the content of a file
 object, whether it is a regular file, directory, or symbolic link,
 the client SHOULD NOT update the time_access attribute (via SETATTR
 or a small READ or READDIR request) on the server with each read that
 is satisfied from cache. The reason is that this can defeat the
 performance benefits of caching content, especially since an explicit
 SETATTR of time_access may alter the change attribute on the server.
 If the change attribute changes, clients that are caching the content
 will think the content has changed, and will re-read unmodified data
 from the server. Nor is the client encouraged to maintain a modified
 version of time_access in its cache, since the client either would
 eventually have to write the access time to the server with bad
 performance effects or never update the server’s time_access, thereby
 resulting in a situation where an application that caches access time
 between a close and open of the same file observes the access time
 oscillating between the past and present. The time_access attribute
 always means the time of last access to a file by a read that was
 satisfied by the server. This way clients will tend to see only
 time_access changes that go forward in time.

10.7. Data and Metadata Caching and Memory Mapped Files

 Some operating environments include the capability for an application
 to map a file’s content into the application’s address space. Each
 time the application accesses a memory location that corresponds to a
 block that has not been loaded into the address space, a page fault
 occurs and the file is read (or if the block does not exist in the
 file, the block is allocated and then instantiated in the
 application’s address space).

 As long as each memory-mapped access to the file requires a page
 fault, the relevant attributes of the file that are used to detect
 access and modification (time_access, time_metadata, time_modify, and
 change) will be updated. However, in many operating environments,
 when page faults are not required, these attributes will not be
 updated on reads or updates to the file via memory access (regardless
 of whether the file is local or is accessed remotely). A client or
 server MAY fail to update attributes of a file that is being accessed
 via memory-mapped I/O. This has several implications:

 * If there is an application on the server that has memory mapped a
 file that a client is also accessing, the client may not be able
 to get a consistent value of the change attribute to determine
 whether or not its cache is stale. A server that knows that the
 file is memory-mapped could always pessimistically return updated
 values for change so as to force the application to always get the
 most up-to-date data and metadata for the file. However, due to
 the negative performance implications of this, such behavior is
 OPTIONAL.

 * If the memory-mapped file is not being modified on the server, and
 instead is just being read by an application via the memory-mapped
 interface, the client will not see an updated time_access
 attribute. However, in many operating environments, neither will
 any process running on the server. Thus, NFS clients are at no

 disadvantage with respect to local processes.

 * If there is another client that is memory mapping the file, and if
 that client is holding an OPEN_DELEGATE_WRITE delegation, the same
 set of issues as discussed in the previous two bullet points
 apply. So, when a server does a CB_GETATTR to a file that the
 client has modified in its cache, the reply from CB_GETATTR will
 not necessarily be accurate. As discussed earlier, the client’s
 obligation is to report that the file has been modified since the
 delegation was granted, not whether it has been modified again
 between successive CB_GETATTR calls, and the server MUST assume
 that any file the client has modified in cache has been modified
 again between successive CB_GETATTR calls. Depending on the
 nature of the client’s memory management system, this weak
 obligation may not be possible. A client MAY return stale
 information in CB_GETATTR whenever the file is memory-mapped.

 * The mixture of memory mapping and byte-range locking on the same
 file is problematic. Consider the following scenario, where a
 page size on each client is 8192 bytes.

 - Client A memory maps the first page (8192 bytes) of file X.

 - Client B memory maps the first page (8192 bytes) of file X.

 - Client A WRITE_LT locks the first 4096 bytes.

 - Client B WRITE_LT locks the second 4096 bytes.

 - Client A, via a STORE instruction, modifies part of its locked
 byte-range.

 - Simultaneous to client A, client B executes a STORE on part of
 its locked byte-range.

 Here the challenge is for each client to resynchronize to get a
 correct view of the first page. In many operating environments, the
 virtual memory management systems on each client only know a page is
 modified, not that a subset of the page corresponding to the
 respective lock byte-ranges has been modified. So it is not possible
 for each client to do the right thing, which is to write to the
 server only that portion of the page that is locked. For example, if
 client A simply writes out the page, and then client B writes out the
 page, client A’s data is lost.

 Moreover, if mandatory locking is enabled on the file, then we have a
 different problem. When clients A and B execute the STORE
 instructions, the resulting page faults require a byte-range lock on
 the entire page. Each client then tries to extend their locked range
 to the entire page, which results in a deadlock. Communicating the
 NFS4ERR_DEADLOCK error to a STORE instruction is difficult at best.

 If a client is locking the entire memory-mapped file, there is no
 problem with advisory or mandatory byte-range locking, at least until
 the client unlocks a byte-range in the middle of the file.

 Given the above issues, the following are permitted:

 * Clients and servers MAY deny memory mapping a file for which they
 know there are byte-range locks.

 * Clients and servers MAY deny a byte-range lock on a file they know
 is memory-mapped.

 * A client MAY deny memory mapping a file that it knows requires
 mandatory locking for I/O. If mandatory locking is enabled after
 the file is opened and mapped, the client MAY deny the application
 further access to its mapped file.

10.8. Name and Directory Caching without Directory Delegations

 The NFSv4.1 directory delegation facility (described in Section 10.9
 below) is OPTIONAL for servers to implement. Even where it is
 implemented, it may not always be functional because of resource
 availability issues or other constraints. Thus, it is important to
 understand how name and directory caching are done in the absence of
 directory delegations. These topics are discussed in the next two
 subsections.

10.8.1. Name Caching

 The results of LOOKUP and READDIR operations may be cached to avoid
 the cost of subsequent LOOKUP operations. Just as in the case of
 attribute caching, inconsistencies may arise among the various client
 caches. To mitigate the effects of these inconsistencies and given
 the context of typical file system APIs, an upper time boundary is
 maintained for how long a client name cache entry can be kept without
 verifying that the entry has not been made invalid by a directory
 change operation performed by another client.

 When a client is not making changes to a directory for which there
 exist name cache entries, the client needs to periodically fetch
 attributes for that directory to ensure that it is not being
 modified. After determining that no modification has occurred, the
 expiration time for the associated name cache entries may be updated
 to be the current time plus the name cache staleness bound.

 When a client is making changes to a given directory, it needs to
 determine whether there have been changes made to the directory by
 other clients. It does this by using the change attribute as
 reported before and after the directory operation in the associated
 change_info4 value returned for the operation. The server is able to
 communicate to the client whether the change_info4 data is provided
 atomically with respect to the directory operation. If the change
 values are provided atomically, the client has a basis for
 determining, given proper care, whether other clients are modifying
 the directory in question.

 The simplest way to enable the client to make this determination is
 for the client to serialize all changes made to a specific directory.
 When this is done, and the server provides before and after values of
 the change attribute atomically, the client can simply compare the
 after value of the change attribute from one operation on a directory
 with the before value on the subsequent operation modifying that
 directory. When these are equal, the client is assured that no other
 client is modifying the directory in question.

 When such serialization is not used, and there may be multiple
 simultaneous outstanding operations modifying a single directory sent
 from a single client, making this sort of determination can be more
 complicated. If two such operations complete in a different order
 than they were actually performed, that might give an appearance
 consistent with modification being made by another client. Where
 this appears to happen, the client needs to await the completion of
 all such modifications that were started previously, to see if the
 outstanding before and after change numbers can be sorted into a
 chain such that the before value of one change number matches the
 after value of a previous one, in a chain consistent with this client
 being the only one modifying the directory.

 In either of these cases, the client is able to determine whether the
 directory is being modified by another client. If the comparison
 indicates that the directory was updated by another client, the name
 cache associated with the modified directory is purged from the
 client. If the comparison indicates no modification, the name cache
 can be updated on the client to reflect the directory operation and
 the associated timeout can be extended. The post-operation change
 value needs to be saved as the basis for future change_info4
 comparisons.

 As demonstrated by the scenario above, name caching requires that the
 client revalidate name cache data by inspecting the change attribute

 of a directory at the point when the name cache item was cached.
 This requires that the server update the change attribute for
 directories when the contents of the corresponding directory is
 modified. For a client to use the change_info4 information
 appropriately and correctly, the server must report the pre- and
 post-operation change attribute values atomically. When the server
 is unable to report the before and after values atomically with
 respect to the directory operation, the server must indicate that
 fact in the change_info4 return value. When the information is not
 atomically reported, the client should not assume that other clients
 have not changed the directory.

10.8.2. Directory Caching

 The results of READDIR operations may be used to avoid subsequent
 READDIR operations. Just as in the cases of attribute and name
 caching, inconsistencies may arise among the various client caches.
 To mitigate the effects of these inconsistencies, and given the
 context of typical file system APIs, the following rules should be
 followed:

 * Cached READDIR information for a directory that is not obtained in
 a single READDIR operation must always be a consistent snapshot of
 directory contents. This is determined by using a GETATTR before
 the first READDIR and after the last READDIR that contributes to
 the cache.

 * An upper time boundary is maintained to indicate the length of
 time a directory cache entry is considered valid before the client
 must revalidate the cached information.

 The revalidation technique parallels that discussed in the case of
 name caching. When the client is not changing the directory in
 question, checking the change attribute of the directory with GETATTR
 is adequate. The lifetime of the cache entry can be extended at
 these checkpoints. When a client is modifying the directory, the
 client needs to use the change_info4 data to determine whether there
 are other clients modifying the directory. If it is determined that
 no other client modifications are occurring, the client may update
 its directory cache to reflect its own changes.

 As demonstrated previously, directory caching requires that the
 client revalidate directory cache data by inspecting the change
 attribute of a directory at the point when the directory was cached.
 This requires that the server update the change attribute for
 directories when the contents of the corresponding directory is
 modified. For a client to use the change_info4 information
 appropriately and correctly, the server must report the pre- and
 post-operation change attribute values atomically. When the server
 is unable to report the before and after values atomically with
 respect to the directory operation, the server must indicate that
 fact in the change_info4 return value. When the information is not
 atomically reported, the client should not assume that other clients
 have not changed the directory.

10.9. Directory Delegations

10.9.1. Introduction to Directory Delegations

 Directory caching for the NFSv4.1 protocol, as previously described,
 is similar to file caching in previous versions. Clients typically
 cache directory information for a duration determined by the client.
 At the end of a predefined timeout, the client will query the server
 to see if the directory has been updated. By caching attributes,
 clients reduce the number of GETATTR calls made to the server to
 validate attributes. Furthermore, frequently accessed files and
 directories, such as the current working directory, have their
 attributes cached on the client so that some NFS operations can be
 performed without having to make an RPC call. By caching name and
 inode information about most recently looked up entries in a
 Directory Name Lookup Cache (DNLC), clients do not need to send

 LOOKUP calls to the server every time these files are accessed.

 This caching approach works reasonably well at reducing network
 traffic in many environments. However, it does not address
 environments where there are numerous queries for files that do not
 exist. In these cases of "misses", the client sends requests to the
 server in order to provide reasonable application semantics and
 promptly detect the creation of new directory entries. Examples of
 high miss activity are compilation in software development
 environments. The current behavior of NFS limits its potential
 scalability and wide-area sharing effectiveness in these types of
 environments. Other distributed stateful file system architectures
 such as AFS and DFS have proven that adding state around directory
 contents can greatly reduce network traffic in high-miss
 environments.

 Delegation of directory contents is an OPTIONAL feature of NFSv4.1.
 Directory delegations provide similar traffic reduction benefits as
 with file delegations. By allowing clients to cache directory
 contents (in a read-only fashion) while being notified of changes,
 the client can avoid making frequent requests to interrogate the
 contents of slowly-changing directories, reducing network traffic and
 improving client performance. It can also simplify the task of
 determining whether other clients are making changes to the directory
 when the client itself is making many changes to the directory and
 changes are not serialized.

 Directory delegations allow improved namespace cache consistency to
 be achieved through delegations and synchronous recalls, in the
 absence of notifications. In addition, if time-based consistency is
 sufficient, asynchronous notifications can provide performance
 benefits for the client, and possibly the server, under some common
 operating conditions such as slowly-changing and/or very large
 directories.

10.9.2. Directory Delegation Design

 NFSv4.1 introduces the GET_DIR_DELEGATION (Section 18.39) operation
 to allow the client to ask for a directory delegation. The
 delegation covers directory attributes and all entries in the
 directory. If either of these change, the delegation will be
 recalled synchronously. The operation causing the recall will have
 to wait before the recall is complete. Any changes to directory
 entry attributes will not cause the delegation to be recalled.

 In addition to asking for delegations, a client can also ask for
 notifications for certain events. These events include changes to
 the directory’s attributes and/or its contents. If a client asks for
 notification for a certain event, the server will notify the client
 when that event occurs. This will not result in the delegation being
 recalled for that client. The notifications are asynchronous and
 provide a way of avoiding recalls in situations where a directory is
 changing enough that the pure recall model may not be effective while
 trying to allow the client to get substantial benefit. In the
 absence of notifications, once the delegation is recalled the client
 has to refresh its directory cache; this might not be very efficient
 for very large directories.

 The delegation is read-only and the client may not make changes to
 the directory other than by performing NFSv4.1 operations that modify
 the directory or the associated file attributes so that the server
 has knowledge of these changes. In order to keep the client’s
 namespace synchronized with that of the server, the server will
 notify the delegation-holding client (assuming it has requested
 notifications) of the changes made as a result of that client’s
 directory-modifying operations. This is to avoid any need for that
 client to send subsequent GETATTR or READDIR operations to the
 server. If a single client is holding the delegation and that client
 makes any changes to the directory (i.e., the changes are made via
 operations sent on a session associated with the client ID holding
 the delegation), the delegation will not be recalled. Multiple

 clients may hold a delegation on the same directory, but if any such
 client modifies the directory, the server MUST recall the delegation
 from the other clients, unless those clients have made provisions to
 be notified of that sort of modification.

 Delegations can be recalled by the server at any time. Normally, the
 server will recall the delegation when the directory changes in a way
 that is not covered by the notification, or when the directory
 changes and notifications have not been requested. If another client
 removes the directory for which a delegation has been granted, the
 server will recall the delegation.

10.9.3. Attributes in Support of Directory Notifications

 See Section 5.11 for a description of the attributes associated with
 directory notifications.

10.9.4. Directory Delegation Recall

 The server will recall the directory delegation by sending a callback
 to the client. It will use the same callback procedure as used for
 recalling file delegations. The server will recall the delegation
 when the directory changes in a way that is not covered by the
 notification. However, the server need not recall the delegation if
 attributes of an entry within the directory change.

 If the server notices that handing out a delegation for a directory
 is causing too many notifications to be sent out, it may decide to
 not hand out delegations for that directory and/or recall those
 already granted. If a client tries to remove the directory for which
 a delegation has been granted, the server will recall all associated
 delegations.

 The implementation sections for a number of operations describe
 situations in which notification or delegation recall would be
 required under some common circumstances. In this regard, a similar
 set of caveats to those listed in Section 10.2 apply.

 * For CREATE, see Section 18.4.4.

 * For LINK, see Section 18.9.4.

 * For OPEN, see Section 18.16.4.

 * For REMOVE, see Section 18.25.4.

 * For RENAME, see Section 18.26.4.

 * For SETATTR, see Section 18.30.4.

10.9.5. Directory Delegation Recovery

 Recovery from client or server restart for state on regular files has
 two main goals: avoiding the necessity of breaking application
 guarantees with respect to locked files and delivery of updates
 cached at the client. Neither of these goals applies to directories
 protected by OPEN_DELEGATE_READ delegations and notifications. Thus,
 no provision is made for reclaiming directory delegations in the
 event of client or server restart. The client can simply establish a
 directory delegation in the same fashion as was done initially.

11. Multi-Server Namespace

 NFSv4.1 supports attributes that allow a namespace to extend beyond
 the boundaries of a single server. It is desirable that clients and
 servers support construction of such multi-server namespaces. Use of
 such multi-server namespaces is OPTIONAL; however, and for many
 purposes, single-server namespaces are perfectly acceptable. The use
 of multi-server namespaces can provide many advantages by separating
 a file system’s logical position in a namespace from the (possibly
 changing) logistical and administrative considerations that cause a

 particular file system to be located on a particular server via a
 single network access path that has to be known in advance or
 determined using DNS.

11.1. Terminology

 In this section as a whole (i.e., within all of Section 11), the
 phrase "client ID" always refers to the 64-bit shorthand identifier
 assigned by the server (a clientid4) and never to the structure that
 the client uses to identify itself to the server (called an
 nfs_client_id4 or client_owner in NFSv4.0 and NFSv4.1, respectively).
 The opaque identifier within those structures is referred to as a
 "client id string".

11.1.1. Terminology Related to Trunking

 It is particularly important to clarify the distinction between
 trunking detection and trunking discovery. The definitions we
 present are applicable to all minor versions of NFSv4, but we will
 focus on how these terms apply to NFS version 4.1.

 * Trunking detection refers to ways of deciding whether two specific
 network addresses are connected to the same NFSv4 server. The
 means available to make this determination depends on the protocol
 version, and, in some cases, on the client implementation.

 In the case of NFS version 4.1 and later minor versions, the means
 of trunking detection are as described in this document and are
 available to every client. Two network addresses connected to the
 same server can always be used together to access a particular
 server but cannot necessarily be used together to access a single
 session. See below for definitions of the terms "server-
 trunkable" and "session-trunkable".

 * Trunking discovery is a process by which a client using one
 network address can obtain other addresses that are connected to
 the same server. Typically, it builds on a trunking detection
 facility by providing one or more methods by which candidate
 addresses are made available to the client, who can then use
 trunking detection to appropriately filter them.

 Despite the support for trunking detection, there was no
 description of trunking discovery provided in RFC 5661 [66],
 making it necessary to provide those means in this document.

 The combination of a server network address and a particular
 connection type to be used by a connection is referred to as a
 "server endpoint". Although using different connection types may
 result in different ports being used, the use of different ports by
 multiple connections to the same network address in such cases is not
 the essence of the distinction between the two endpoints used. This
 is in contrast to the case of port-specific endpoints, in which the
 explicit specification of port numbers within network addresses is
 used to allow a single server node to support multiple NFS servers.

 Two network addresses connected to the same server are said to be
 server-trunkable. Two such addresses support the use of client ID
 trunking, as described in Section 2.10.5.

 Two network addresses connected to the same server such that those
 addresses can be used to support a single common session are referred
 to as session-trunkable. Note that two addresses may be server-
 trunkable without being session-trunkable, and that, when two
 connections of different connection types are made to the same
 network address and are based on a single file system location entry,
 they are always session-trunkable, independent of the connection
 type, as specified by Section 2.10.5, since their derivation from the
 same file system location entry, together with the identity of their
 network addresses, assures that both connections are to the same
 server and will return server-owner information, allowing session
 trunking to be used.

11.1.2. Terminology Related to File System Location

 Regarding the terminology that relates to the construction of multi-
 server namespaces out of a set of local per-server namespaces:

 * Each server has a set of exported file systems that may be
 accessed by NFSv4 clients. Typically, this is done by assigning
 each file system a name within the pseudo-fs associated with the
 server, although the pseudo-fs may be dispensed with if there is
 only a single exported file system. Each such file system is part
 of the server’s local namespace, and can be considered as a file
 system instance within a larger multi-server namespace.

 * The set of all exported file systems for a given server
 constitutes that server’s local namespace.

 * In some cases, a server will have a namespace more extensive than
 its local namespace by using features associated with attributes
 that provide file system location information. These features,
 which allow construction of a multi-server namespace, are all
 described in individual sections below and include referrals
 (Section 11.5.6), migration (Section 11.5.5), and replication
 (Section 11.5.4).

 * A file system present in a server’s pseudo-fs may have multiple
 file system instances on different servers associated with it.
 All such instances are considered replicas of one another.
 Whether such replicas can be used simultaneously is discussed in
 Section 11.11.1, while the level of coordination between them
 (important when switching between them) is discussed in Sections
 11.11.2 through 11.11.8 below.

 * When a file system is present in a server’s pseudo-fs, but there
 is no corresponding local file system, it is said to be "absent".
 In such cases, all associated instances will be accessed on other
 servers.

 Regarding the terminology that relates to attributes used in trunking
 discovery and other multi-server namespace features:

 * File system location attributes include the fs_locations and
 fs_locations_info attributes.

 * File system location entries provide the individual file system
 locations within the file system location attributes. Each such
 entry specifies a server, in the form of a hostname or an address,
 and an fs name, which designates the location of the file system
 within the server’s local namespace. A file system location entry
 designates a set of server endpoints to which the client may
 establish connections. There may be multiple endpoints because a
 hostname may map to multiple network addresses and because
 multiple connection types may be used to communicate with a single
 network address. However, except where explicit port numbers are
 used to designate a set of servers within a single server node,
 all such endpoints MUST designate a way of connecting to a single
 server. The exact form of the location entry varies with the
 particular file system location attribute used, as described in
 Section 11.2.

 The network addresses used in file system location entries
 typically appear without port number indications and are used to
 designate a server at one of the standard ports for NFS access,
 e.g., 2049 for TCP or 20049 for use with RPC-over-RDMA. Port
 numbers may be used in file system location entries to designate
 servers (typically user-level ones) accessed using other port
 numbers. In the case where network addresses indicate trunking
 relationships, the use of an explicit port number is inappropriate
 since trunking is a relationship between network addresses. See
 Section 11.5.2 for details.

 * File system location elements are derived from location entries,
 and each describes a particular network access path consisting of
 a network address and a location within the server’s local
 namespace. Such location elements need not appear within a file
 system location attribute, but the existence of each location
 element derives from a corresponding location entry. When a
 location entry specifies an IP address, there is only a single
 corresponding location element. File system location entries that
 contain a hostname are resolved using DNS, and may result in one
 or more location elements. All location elements consist of a
 location address that includes the IP address of an interface to a
 server and an fs name, which is the location of the file system
 within the server’s local namespace. The fs name can be empty if
 the server has no pseudo-fs and only a single exported file system
 at the root filehandle.

 * Two file system location elements are said to be server-trunkable
 if they specify the same fs name and the location addresses are
 such that the location addresses are server-trunkable. When the
 corresponding network paths are used, the client will always be
 able to use client ID trunking, but will only be able to use
 session trunking if the paths are also session-trunkable.

 * Two file system location elements are said to be session-trunkable
 if they specify the same fs name and the location addresses are
 such that the location addresses are session-trunkable. When the
 corresponding network paths are used, the client will be able to
 able to use either client ID trunking or session trunking.

 Discussion of the term "replica" is complicated by the fact that the
 term was used in RFC 5661 [66] with a meaning different from that
 used in this document. In short, in [66] each replica is identified
 by a single network access path, while in the current document, a set
 of network access paths that have server-trunkable network addresses
 and the same root-relative file system pathname is considered to be a
 single replica with multiple network access paths.

 Each set of server-trunkable location elements defines a set of
 available network access paths to a particular file system. When
 there are multiple such file systems, each of which containing the
 same data, these file systems are considered replicas of one another.
 Logically, such replication is symmetric, since the fs currently in
 use and an alternate fs are replicas of each other. Often, in other
 documents, the term "replica" is not applied to the fs currently in
 use, despite the fact that the replication relation is inherently
 symmetric.

11.2. File System Location Attributes

 NFSv4.1 contains attributes that provide information about how a
 given file system may be accessed (i.e., at what network address and
 namespace position). As a result, file systems in the namespace of
 one server can be associated with one or more instances of that file
 system on other servers. These attributes contain file system
 location entries specifying a server address target (either as a DNS
 name representing one or more IP addresses or as a specific IP
 address) together with the pathname of that file system within the
 associated single-server namespace.

 The fs_locations_info RECOMMENDED attribute allows specification of
 one or more file system instance locations where the data
 corresponding to a given file system may be found. In addition to
 the specification of file system instance locations, this attribute
 provides helpful information to do the following:

 * Guide choices among the various file system instances provided
 (e.g., priority for use, writability, currency, etc.).

 * Help the client efficiently effect as seamless a transition as
 possible among multiple file system instances, when and if that
 should be necessary.

 * Guide the selection of the appropriate connection type to be used
 when establishing a connection.

 Within the fs_locations_info attribute, each fs_locations_server4
 entry corresponds to a file system location entry: the fls_server
 field designates the server, and the fl_rootpath field of the
 encompassing fs_locations_item4 gives the location pathname within
 the server’s pseudo-fs.

 The fs_locations attribute defined in NFSv4.0 is also a part of
 NFSv4.1. This attribute only allows specification of the file system
 locations where the data corresponding to a given file system may be
 found. Servers SHOULD make this attribute available whenever
 fs_locations_info is supported, but client use of fs_locations_info
 is preferable because it provides more information.

 Within the fs_locations attribute, each fs_location4 contains a file
 system location entry with the server field designating the server
 and the rootpath field giving the location pathname within the
 server’s pseudo-fs.

11.3. File System Presence or Absence

 A given location in an NFSv4.1 namespace (typically but not
 necessarily a multi-server namespace) can have a number of file
 system instance locations associated with it (via the fs_locations or
 fs_locations_info attribute). There may also be an actual current
 file system at that location, accessible via normal namespace
 operations (e.g., LOOKUP). In this case, the file system is said to
 be "present" at that position in the namespace, and clients will
 typically use it, reserving use of additional locations specified via
 the location-related attributes to situations in which the principal
 location is no longer available.

 When there is no actual file system at the namespace location in
 question, the file system is said to be "absent". An absent file
 system contains no files or directories other than the root. Any
 reference to it, except to access a small set of attributes useful in
 determining alternate locations, will result in an error,
 NFS4ERR_MOVED. Note that if the server ever returns the error
 NFS4ERR_MOVED, it MUST support the fs_locations attribute and SHOULD
 support the fs_locations_info and fs_status attributes.

 While the error name suggests that we have a case of a file system
 that once was present, and has only become absent later, this is only
 one possibility. A position in the namespace may be permanently
 absent with the set of file system(s) designated by the location
 attributes being the only realization. The name NFS4ERR_MOVED
 reflects an earlier, more limited conception of its function, but
 this error will be returned whenever the referenced file system is
 absent, whether it has moved or not.

 Except in the case of GETATTR-type operations (to be discussed
 later), when the current filehandle at the start of an operation is
 within an absent file system, that operation is not performed and the
 error NFS4ERR_MOVED is returned, to indicate that the file system is
 absent on the current server.

 Because a GETFH cannot succeed if the current filehandle is within an
 absent file system, filehandles within an absent file system cannot
 be transferred to the client. When a client does have filehandles
 within an absent file system, it is the result of obtaining them when
 the file system was present, and having the file system become absent
 subsequently.

 It should be noted that because the check for the current filehandle
 being within an absent file system happens at the start of every
 operation, operations that change the current filehandle so that it
 is within an absent file system will not result in an error. This
 allows such combinations as PUTFH-GETATTR and LOOKUP-GETATTR to be

 used to get attribute information, particularly location attribute
 information, as discussed below.

 The RECOMMENDED file system attribute fs_status can be used to
 interrogate the present/absent status of a given file system.

11.4. Getting Attributes for an Absent File System

 When a file system is absent, most attributes are not available, but
 it is necessary to allow the client access to the small set of
 attributes that are available, and most particularly those that give
 information about the correct current locations for this file system:
 fs_locations and fs_locations_info.

11.4.1. GETATTR within an Absent File System

 As mentioned above, an exception is made for GETATTR in that
 attributes may be obtained for a filehandle within an absent file
 system. This exception only applies if the attribute mask contains
 at least one attribute bit that indicates the client is interested in
 a result regarding an absent file system: fs_locations,
 fs_locations_info, or fs_status. If none of these attributes is
 requested, GETATTR will result in an NFS4ERR_MOVED error.

 When a GETATTR is done on an absent file system, the set of supported
 attributes is very limited. Many attributes, including those that
 are normally REQUIRED, will not be available on an absent file
 system. In addition to the attributes mentioned above (fs_locations,
 fs_locations_info, fs_status), the following attributes SHOULD be
 available on absent file systems. In the case of RECOMMENDED
 attributes, they should be available at least to the same degree that
 they are available on present file systems.

 change_policy: This attribute is useful for absent file systems and
 can be helpful in summarizing to the client when any of the
 location-related attributes change.

 fsid: This attribute should be provided so that the client can
 determine file system boundaries, including, in particular, the
 boundary between present and absent file systems. This value must
 be different from any other fsid on the current server and need
 have no particular relationship to fsids on any particular
 destination to which the client might be directed.

 mounted_on_fileid: For objects at the top of an absent file system,
 this attribute needs to be available. Since the fileid is within
 the present parent file system, there should be no need to
 reference the absent file system to provide this information.

 Other attributes SHOULD NOT be made available for absent file
 systems, even when it is possible to provide them. The server should
 not assume that more information is always better and should avoid
 gratuitously providing additional information.

 When a GETATTR operation includes a bit mask for one of the
 attributes fs_locations, fs_locations_info, or fs_status, but where
 the bit mask includes attributes that are not supported, GETATTR will
 not return an error, but will return the mask of the actual
 attributes supported with the results.

 Handling of VERIFY/NVERIFY is similar to GETATTR in that if the
 attribute mask does not include fs_locations, fs_locations_info, or
 fs_status, the error NFS4ERR_MOVED will result. It differs in that
 any appearance in the attribute mask of an attribute not supported
 for an absent file system (and note that this will include some
 normally REQUIRED attributes) will also cause an NFS4ERR_MOVED
 result.

11.4.2. READDIR and Absent File Systems

 A READDIR performed when the current filehandle is within an absent

 file system will result in an NFS4ERR_MOVED error, since, unlike the
 case of GETATTR, no such exception is made for READDIR.

 Attributes for an absent file system may be fetched via a READDIR for
 a directory in a present file system, when that directory contains
 the root directories of one or more absent file systems. In this
 case, the handling is as follows:

 * If the attribute set requested includes one of the attributes
 fs_locations, fs_locations_info, or fs_status, then fetching of
 attributes proceeds normally and no NFS4ERR_MOVED indication is
 returned, even when the rdattr_error attribute is requested.

 * If the attribute set requested does not include one of the
 attributes fs_locations, fs_locations_info, or fs_status, then if
 the rdattr_error attribute is requested, each directory entry for
 the root of an absent file system will report NFS4ERR_MOVED as the
 value of the rdattr_error attribute.

 * If the attribute set requested does not include any of the
 attributes fs_locations, fs_locations_info, fs_status, or
 rdattr_error, then the occurrence of the root of an absent file
 system within the directory will result in the READDIR failing
 with an NFS4ERR_MOVED error.

 * The unavailability of an attribute because of a file system’s
 absence, even one that is ordinarily REQUIRED, does not result in
 any error indication. The set of attributes returned for the root
 directory of the absent file system in that case is simply
 restricted to those actually available.

11.5. Uses of File System Location Information

 The file system location attributes (i.e., fs_locations and
 fs_locations_info), together with the possibility of absent file
 systems, provide a number of important facilities for reliable,
 manageable, and scalable data access.

 When a file system is present, these attributes can provide the
 following:

 * The locations of alternative replicas to be used to access the
 same data in the event of server failures, communications
 problems, or other difficulties that make continued access to the
 current replica impossible or otherwise impractical. Provisioning
 and use of such alternate replicas is referred to as "replication"
 and is discussed in Section 11.5.4 below.

 * The network address(es) to be used to access the current file
 system instance or replicas of it. Client use of this information
 is discussed in Section 11.5.2 below.

 Under some circumstances, multiple replicas may be used
 simultaneously to provide higher-performance access to the file
 system in question, although the lack of state sharing between
 servers may be an impediment to such use.

 When a file system is present but becomes absent, clients can be
 given the opportunity to have continued access to their data using a
 different replica. In this case, a continued attempt to use the data
 in the now-absent file system will result in an NFS4ERR_MOVED error,
 and then the successor replica or set of possible replica choices can
 be fetched and used to continue access. Transfer of access to the
 new replica location is referred to as "migration" and is discussed
 in Section 11.5.4 below.

 When a file system is currently absent, specification of file system
 location provides a means by which file systems located on one server
 can be associated with a namespace defined by another server, thus
 allowing a general multi-server namespace facility. A designation of
 such a remote instance, in place of a file system not previously

 present, is called a "pure referral" and is discussed in
 Section 11.5.6 below.

 Because client support for attributes related to file system location
 is OPTIONAL, a server may choose to take action to hide migration and
 referral events from such clients, by acting as a proxy, for example.
 The server can determine the presence of client support from the
 arguments of the EXCHANGE_ID operation (see Section 18.35.3).

11.5.1. Combining Multiple Uses in a Single Attribute

 A file system location attribute will sometimes contain information
 relating to the location of multiple replicas, which may be used in
 different ways:

 * File system location entries that relate to the file system
 instance currently in use provide trunking information, allowing
 the client to find additional network addresses by which the
 instance may be accessed.

 * File system location entries that provide information about
 replicas to which access is to be transferred.

 * Other file system location entries that relate to replicas that
 are available to use in the event that access to the current
 replica becomes unsatisfactory.

 In order to simplify client handling and to allow the best choice of
 replicas to access, the server should adhere to the following
 guidelines:

 * All file system location entries that relate to a single file
 system instance should be adjacent.

 * File system location entries that relate to the instance currently
 in use should appear first.

 * File system location entries that relate to replica(s) to which
 migration is occurring should appear before replicas that are
 available for later use if the current replica should become
 inaccessible.

11.5.2. File System Location Attributes and Trunking

 Trunking is the use of multiple connections between a client and
 server in order to increase the speed of data transfer. A client may
 determine the set of network addresses to use to access a given file
 system in a number of ways:

 * When the name of the server is known to the client, it may use DNS
 to obtain a set of network addresses to use in accessing the
 server.

 * The client may fetch the file system location attribute for the
 file system. This will provide either the name of the server
 (which can be turned into a set of network addresses using DNS) or
 a set of server-trunkable location entries. Using the latter
 alternative, the server can provide addresses it regards as
 desirable to use to access the file system in question. Although
 these entries can contain port numbers, these port numbers are not
 used in determining trunking relationships. Once the candidate
 addresses have been determined and EXCHANGE_ID done to the proper
 server, only the value of the so_major_id field returned by the
 servers in question determines whether a trunking relationship
 actually exists.

 When the client fetches a location attribute for a file system, it
 should be noted that the client may encounter multiple entries for a
 number of reasons, such that when it determines trunking information,
 it may need to bypass addresses not trunkable with one already known.

 The server can provide location entries that include either names or
 network addresses. It might use the latter form because of DNS-
 related security concerns or because the set of addresses to be used
 might require active management by the server.

 Location entries used to discover candidate addresses for use in
 trunking are subject to change, as discussed in Section 11.5.7 below.
 The client may respond to such changes by using additional addresses
 once they are verified or by ceasing to use existing ones. The
 server can force the client to cease using an address by returning
 NFS4ERR_MOVED when that address is used to access a file system.
 This allows a transfer of client access that is similar to migration,
 although the same file system instance is accessed throughout.

11.5.3. File System Location Attributes and Connection Type Selection

 Because of the need to support multiple types of connections, clients
 face the issue of determining the proper connection type to use when
 establishing a connection to a given server network address. In some
 cases, this issue can be addressed through the use of the connection
 "step-up" facility described in Section 18.36. However, because
 there are cases in which that facility is not available, the client
 may have to choose a connection type with no possibility of changing
 it within the scope of a single connection.

 The two file system location attributes differ as to the information
 made available in this regard. The fs_locations attribute provides
 no information to support connection type selection. As a result,
 clients supporting multiple connection types would need to attempt to
 establish connections using multiple connection types until the one
 preferred by the client is successfully established.

 The fs_locations_info attribute includes the FSLI4TF_RDMA flag, which
 is convenient for a client wishing to use RDMA. When this flag is
 set, it indicates that RPC-over-RDMA support is available using the
 specified location entry. A client can establish a TCP connection
 and then convert that connection to use RDMA by using the step-up
 facility.

 Irrespective of the particular attribute used, when there is no
 indication that a step-up operation can be performed, a client
 supporting RDMA operation can establish a new RDMA connection, and it
 can be bound to the session already established by the TCP
 connection, allowing the TCP connection to be dropped and the session
 converted to further use in RDMA mode, if the server supports that.

11.5.4. File System Replication

 The fs_locations and fs_locations_info attributes provide alternative
 file system locations, to be used to access data in place of or in
 addition to the current file system instance. On first access to a
 file system, the client should obtain the set of alternate locations
 by interrogating the fs_locations or fs_locations_info attribute,
 with the latter being preferred.

 In the event that the occurrence of server failures, communications
 problems, or other difficulties make continued access to the current
 file system impossible or otherwise impractical, the client can use
 the alternate locations as a way to get continued access to its data.

 The alternate locations may be physical replicas of the (typically
 read-only) file system data supplemented by possible asynchronous
 propagation of updates. Alternatively, they may provide for the use
 of various forms of server clustering in which multiple servers
 provide alternate ways of accessing the same physical file system.
 How the difference between replicas affects file system transitions
 can be represented within the fs_locations and fs_locations_info
 attributes, and how the client deals with file system transition
 issues will be discussed in detail in later sections.

 Although the location attributes provide some information about the

 nature of the inter-replica transition, many aspects of the semantics
 of possible asynchronous updates are not currently described by the
 protocol, which makes it necessary for clients using replication to
 switch among replicas undergoing change to familiarize themselves
 with the semantics of the update approach used. Due to this lack of
 specificity, many applications may find the use of migration more
 appropriate because a server can propagate all updates made before an
 established point in time to the new replica as part of the migration
 event.

11.5.4.1. File System Trunking Presented as Replication

 In some situations, a file system location entry may indicate a file
 system access path to be used as an alternate location, where
 trunking, rather than replication, is to be used. The situations in
 which this is appropriate are limited to those in which both of the
 following are true:

 * The two file system locations (i.e., the one on which the location
 attribute is obtained and the one specified in the file system
 location entry) designate the same locations within their
 respective single-server namespaces.

 * The two server network addresses (i.e., the one being used to
 obtain the location attribute and the one specified in the file
 system location entry) designate the same server (as indicated by
 the same value of the so_major_id field of the eir_server_owner
 field returned in response to EXCHANGE_ID).

 When these conditions hold, operations using both access paths are
 generally trunked, although trunking may be disallowed when the
 attribute fs_locations_info is used:

 * When the fs_locations_info attribute shows the two entries as not
 having the same simultaneous-use class, trunking is inhibited, and
 the two access paths cannot be used together.

 In this case, the two paths can be used serially with no
 transition activity required on the part of the client, and any
 transition between access paths is transparent. In transferring
 access from one to the other, the client acts as if communication
 were interrupted, establishing a new connection and possibly a new
 session to continue access to the same file system.

 * Note that for two such location entries, any information within
 the fs_locations_info attribute that indicates the need for
 special transition activity, i.e., the appearance of the two file
 system location entries with different handle, fileid, write-
 verifier, change, and readdir classes, indicates a serious
 problem. The client, if it allows transition to the file system
 instance at all, must not treat any transition as a transparent
 one. The server SHOULD NOT indicate that these two entries (for
 the same file system on the same server) belong to different
 handle, fileid, write-verifier, change, and readdir classes,
 whether or not the two entries are shown belonging to the same
 simultaneous-use class.

 These situations were recognized by [66], even though that document
 made no explicit mention of trunking:

 * It treated the situation that we describe as trunking as one of
 simultaneous use of two distinct file system instances, even
 though, in the explanatory framework now used to describe the
 situation, the case is one in which a single file system is
 accessed by two different trunked addresses.

 * It treated the situation in which two paths are to be used
 serially as a special sort of "transparent transition". However,
 in the descriptive framework now used to categorize transition
 situations, this is considered a case of a "network endpoint
 transition" (see Section 11.9).

11.5.5. File System Migration

 When a file system is present and becomes inaccessible using the
 current access path, the NFSv4.1 protocol provides a means by which
 clients can be given the opportunity to have continued access to
 their data. This may involve using a different access path to the
 existing replica or providing a path to a different replica. The new
 access path or the location of the new replica is specified by a file
 system location attribute. The ensuing migration of access includes
 the ability to retain locks across the transition. Depending on
 circumstances, this can involve:

 * The continued use of the existing clientid when accessing the
 current replica using a new access path.

 * Use of lock reclaim, taking advantage of a per-fs grace period.

 * Use of Transparent State Migration.

 Typically, a client will be accessing the file system in question,
 get an NFS4ERR_MOVED error, and then use a file system location
 attribute to determine the new access path for the data. When
 fs_locations_info is used, additional information will be available
 that will define the nature of the client’s handling of the
 transition to a new server.

 In most instances, servers will choose to migrate all clients using a
 particular file system to a successor replica at the same time to
 avoid cases in which different clients are updating different
 replicas. However, migration of an individual client can be helpful
 in providing load balancing, as long as the replicas in question are
 such that they represent the same data as described in
 Section 11.11.8.

 * In the case in which there is no transition between replicas
 (i.e., only a change in access path), there are no special
 difficulties in using of this mechanism to effect load balancing.

 * In the case in which the two replicas are sufficiently coordinated
 as to allow a single client coherent, simultaneous access to both,
 there is, in general, no obstacle to the use of migration of
 particular clients to effect load balancing. Generally, such
 simultaneous use involves cooperation between servers to ensure
 that locks granted on two coordinated replicas cannot conflict and
 can remain effective when transferred to a common replica.

 * In the case in which a large set of clients is accessing a file
 system in a read-only fashion, it can be helpful to migrate all
 clients with writable access simultaneously, while using load
 balancing on the set of read-only copies, as long as the rules in
 Section 11.11.8, which are designed to prevent data reversion, are
 followed.

 In other cases, the client might not have sufficient guarantees of
 data similarity or coherence to function properly (e.g., the data in
 the two replicas is similar but not identical), and the possibility
 that different clients are updating different replicas can exacerbate
 the difficulties, making the use of load balancing in such situations
 a perilous enterprise.

 The protocol does not specify how the file system will be moved
 between servers or how updates to multiple replicas will be
 coordinated. It is anticipated that a number of different server-to-
 server coordination mechanisms might be used, with the choice left to
 the server implementer. The NFSv4.1 protocol specifies the method
 used to communicate the migration event between client and server.

 In the case of various forms of server clustering, the new location
 may be another server providing access to the same physical file
 system. The client’s responsibilities in dealing with this

 transition will depend on whether a switch between replicas has
 occurred and the means the server has chosen to provide continuity of
 locking state. These issues will be discussed in detail below.

 Although a single successor location is typical, multiple locations
 may be provided. When multiple locations are provided, the client
 will typically use the first one provided. If that is inaccessible
 for some reason, later ones can be used. In such cases, the client
 might consider the transition to the new replica to be a migration
 event, even though some of the servers involved might not be aware of
 the use of the server that was inaccessible. In such a case, a
 client might lose access to locking state as a result of the access
 transfer.

 When an alternate location is designated as the target for migration,
 it must designate the same data (with metadata being the same to the
 degree indicated by the fs_locations_info attribute). Where file
 systems are writable, a change made on the original file system must
 be visible on all migration targets. Where a file system is not
 writable but represents a read-only copy (possibly periodically
 updated) of a writable file system, similar requirements apply to the
 propagation of updates. Any change visible in the original file
 system must already be effected on all migration targets, to avoid
 any possibility that a client, in effecting a transition to the
 migration target, will see any reversion in file system state.

11.5.6. Referrals

 Referrals allow the server to associate a file system namespace entry
 located on one server with a file system located on another server.
 When this includes the use of pure referrals, servers are provided a
 way of placing a file system in a location within the namespace
 essentially without respect to its physical location on a particular
 server. This allows a single server or a set of servers to present a
 multi-server namespace that encompasses file systems located on a
 wider range of servers. Some likely uses of this facility include
 establishment of site-wide or organization-wide namespaces, with the
 eventual possibility of combining such together into a truly global
 namespace, such as the one provided by AFS (the Andrew File System)
 [65].

 Referrals occur when a client determines, upon first referencing a
 position in the current namespace, that it is part of a new file
 system and that the file system is absent. When this occurs,
 typically upon receiving the error NFS4ERR_MOVED, the actual location
 or locations of the file system can be determined by fetching a
 locations attribute.

 The file system location attribute may designate a single file system
 location or multiple file system locations, to be selected based on
 the needs of the client. The server, in the fs_locations_info
 attribute, may specify priorities to be associated with various file
 system location choices. The server may assign different priorities
 to different locations as reported to individual clients, in order to
 adapt to client physical location or to effect load balancing. When
 both read-only and read-write file systems are present, some of the
 read-only locations might not be absolutely up-to-date (as they would
 have to be in the case of replication and migration). Servers may
 also specify file system locations that include client-substituted
 variables so that different clients are referred to different file
 systems (with different data contents) based on client attributes
 such as CPU architecture.

 If the fs_locations_info attribute lists multiple possible targets,
 the relationships among them may be important to the client in
 selecting which one to use. The same rules specified in
 Section 11.5.5 below regarding multiple migration targets apply to
 these multiple replicas as well. For example, the client might
 prefer a writable target on a server that has additional writable
 replicas to which it subsequently might switch. Note that, as
 distinguished from the case of replication, there is no need to deal

 with the case of propagation of updates made by the current client,
 since the current client has not accessed the file system in
 question.

 Use of multi-server namespaces is enabled by NFSv4.1 but is not
 required. The use of multi-server namespaces and their scope will
 depend on the applications used and system administration
 preferences.

 Multi-server namespaces can be established by a single server
 providing a large set of pure referrals to all of the included file
 systems. Alternatively, a single multi-server namespace may be
 administratively segmented with separate referral file systems (on
 separate servers) for each separately administered portion of the
 namespace. The top-level referral file system or any segment may use
 replicated referral file systems for higher availability.

 Generally, multi-server namespaces are for the most part uniform, in
 that the same data made available to one client at a given location
 in the namespace is made available to all clients at that namespace
 location. However, there are facilities provided that allow
 different clients to be directed to different sets of data, for
 reasons such as enabling adaptation to such client characteristics as
 CPU architecture. These facilities are described in Section 11.17.3.

 Note that it is possible, when providing a uniform namespace, to
 provide different location entries to different clients in order to
 provide each client with a copy of the data physically closest to it
 or otherwise optimize access (e.g., provide load balancing).

11.5.7. Changes in a File System Location Attribute

 Although clients will typically fetch a file system location
 attribute when first accessing a file system and when NFS4ERR_MOVED
 is returned, a client can choose to fetch the attribute periodically,
 in which case, the value fetched may change over time.

 For clients not prepared to access multiple replicas simultaneously
 (see Section 11.11.1), the handling of the various cases of location
 change are as follows:

 * Changes in the list of replicas or in the network addresses
 associated with replicas do not require immediate action. The
 client will typically update its list of replicas to reflect the
 new information.

 * Additions to the list of network addresses for the current file
 system instance need not be acted on promptly. However, to
 prepare for a subsequent migration event, the client can choose to
 take note of the new address and then use it whenever it needs to
 switch access to a new replica.

 * Deletions from the list of network addresses for the current file
 system instance do not require the client to immediately cease use
 of existing access paths, although new connections are not to be
 established on addresses that have been deleted. However, clients
 can choose to act on such deletions by preparing for an eventual
 shift in access, which becomes unavoidable as soon as the server
 returns NFS4ERR_MOVED to indicate that a particular network access
 path is not usable to access the current file system.

 For clients that are prepared to access several replicas
 simultaneously, the following additional cases need to be addressed.
 As in the cases discussed above, changes in the set of replicas need
 not be acted upon promptly, although the client has the option of
 adjusting its access even in the absence of difficulties that would
 lead to the selection of a new replica.

 * When a new replica is added, which may be accessed simultaneously
 with one currently in use, the client is free to use the new
 replica immediately.

 * When a replica currently in use is deleted from the list, the
 client need not cease using it immediately. However, since the
 server may subsequently force such use to cease (by returning
 NFS4ERR_MOVED), clients might decide to limit the need for later
 state transfer. For example, new opens might be done on other
 replicas, rather than on one not present in the list.

11.6. Trunking without File System Location Information

 In situations in which a file system is accessed using two server-
 trunkable addresses (as indicated by the same value of the
 so_major_id field of the eir_server_owner field returned in response
 to EXCHANGE_ID), trunked access is allowed even though there might
 not be any location entries specifically indicating the use of
 trunking for that file system.

 This situation was recognized by [66], although that document made no
 explicit mention of trunking and treated the situation as one of
 simultaneous use of two distinct file system instances. In the
 explanatory framework now used to describe the situation, the case is
 one in which a single file system is accessed by two different
 trunked addresses.

11.7. Users and Groups in a Multi-Server Namespace

 As in the case of a single-server environment (see Section 5.9), when
 an owner or group name of the form "id@domain" is assigned to a file,
 there is an implicit promise to return that same string when the
 corresponding attribute is interrogated subsequently. In the case of
 a multi-server namespace, that same promise applies even if server
 boundaries have been crossed. Similarly, when the owner attribute of
 a file is derived from the security principal that created the file,
 that attribute should have the same value even if the interrogation
 occurs on a different server from the file creation.

 Similarly, the set of security principals recognized by all the
 participating servers needs to be the same, with each such principal
 having the same credentials, regardless of the particular server
 being accessed.

 In order to meet these requirements, those setting up multi-server
 namespaces will need to limit the servers included so that:

 * In all cases in which more than a single domain is supported, the
 requirements stated in RFC 8000 [31] are to be respected.

 * All servers support a common set of domains that includes all of
 the domains clients use and expect to see returned as the domain
 portion of an owner or group in the form "id@domain". Note that,
 although this set most often consists of a single domain, it is
 possible for multiple domains to be supported.

 * All servers, for each domain that they support, accept the same
 set of user and group ids as valid.

 * All servers recognize the same set of security principals. For
 each principal, the same credential is required, independent of
 the server being accessed. In addition, the group membership for
 each such principal is to be the same, independent of the server
 accessed.

 Note that there is no requirement in general that the users
 corresponding to particular security principals have the same local
 representation on each server, even though it is most often the case
 that this is so.

 When AUTH_SYS is used, the following additional requirements must be
 met:

 * Only a single NFSv4 domain can be supported through the use of

 AUTH_SYS.

 * The "local" representation of all owners and groups must be the
 same on all servers. The word "local" is used here since that is
 the way that numeric user and group ids are described in
 Section 5.9. However, when AUTH_SYS or stringified numeric owners
 or groups are used, these identifiers are not truly local, since
 they are known to the clients as well as to the server.

 Similarly, when stringified numeric user and group ids are used, the
 "local" representation of all owners and groups must be the same on
 all servers, even when AUTH_SYS is not used.

11.8. Additional Client-Side Considerations

 When clients make use of servers that implement referrals,
 replication, and migration, care should be taken that a user who
 mounts a given file system that includes a referral or a relocated
 file system continues to see a coherent picture of that user-side
 file system despite the fact that it contains a number of server-side
 file systems that may be on different servers.

 One important issue is upward navigation from the root of a server-
 side file system to its parent (specified as ".." in UNIX), in the
 case in which it transitions to that file system as a result of
 referral, migration, or a transition as a result of replication.
 When the client is at such a point, and it needs to ascend to the
 parent, it must go back to the parent as seen within the multi-server
 namespace rather than sending a LOOKUPP operation to the server,
 which would result in the parent within that server’s single-server
 namespace. In order to do this, the client needs to remember the
 filehandles that represent such file system roots and use these
 instead of sending a LOOKUPP operation to the current server. This
 will allow the client to present to applications a consistent
 namespace, where upward navigation and downward navigation are
 consistent.

 Another issue concerns refresh of referral locations. When referrals
 are used extensively, they may change as server configurations
 change. It is expected that clients will cache information related
 to traversing referrals so that future client-side requests are
 resolved locally without server communication. This is usually
 rooted in client-side name look up caching. Clients should
 periodically purge this data for referral points in order to detect
 changes in location information. When the change_policy attribute
 changes for directories that hold referral entries or for the
 referral entries themselves, clients should consider any associated
 cached referral information to be out of date.

11.9. Overview of File Access Transitions

 File access transitions are of two types:

 * Those that involve a transition from accessing the current replica
 to another one in connection with either replication or migration.
 How these are dealt with is discussed in Section 11.11.

 * Those in which access to the current file system instance is
 retained, while the network path used to access that instance is
 changed. This case is discussed in Section 11.10.

11.10. Effecting Network Endpoint Transitions

 The endpoints used to access a particular file system instance may
 change in a number of ways, as listed below. In each of these cases,
 the same fsid, client IDs, filehandles, and stateids are used to
 continue access, with a continuity of lock state. In many cases, the
 same sessions can also be used.

 The appropriate action depends on the set of replacement addresses
 that are available for use (i.e., server endpoints that are server-

 trunkable with one previously being used).

 * When use of a particular address is to cease, and there is also
 another address currently in use that is server-trunkable with it,
 requests that would have been issued on the address whose use is
 to be discontinued can be issued on the remaining address(es).
 When an address is server-trunkable but not session-trunkable with
 the address whose use is to be discontinued, the request might
 need to be modified to reflect the fact that a different session
 will be used.

 * When use of a particular connection is to cease, as indicated by
 receiving NFS4ERR_MOVED when using that connection, but that
 address is still indicated as accessible according to the
 appropriate file system location entries, it is likely that
 requests can be issued on a new connection of a different
 connection type once that connection is established. Since any
 two non-port-specific server endpoints that share a network
 address are inherently session-trunkable, the client can use
 BIND_CONN_TO_SESSION to access the existing session with the new
 connection.

 * When there are no potential replacement addresses in use, but
 there are valid addresses session-trunkable with the one whose use
 is to be discontinued, the client can use BIND_CONN_TO_SESSION to
 access the existing session using the new address. Although the
 target session will generally be accessible, there may be rare
 situations in which that session is no longer accessible when an
 attempt is made to bind the new connection to it. In this case,
 the client can create a new session to enable continued access to
 the existing instance using the new connection, providing for the
 use of existing filehandles, stateids, and client ids while
 supplying continuity of locking state.

 * When there is no potential replacement address in use, and there
 are no valid addresses session-trunkable with the one whose use is
 to be discontinued, other server-trunkable addresses may be used
 to provide continued access. Although the use of CREATE_SESSION
 is available to provide continued access to the existing instance,
 servers have the option of providing continued access to the
 existing session through the new network access path in a fashion
 similar to that provided by session migration (see Section 11.12).
 To take advantage of this possibility, clients can perform an
 initial BIND_CONN_TO_SESSION, as in the previous case, and use
 CREATE_SESSION only if that fails.

11.11. Effecting File System Transitions

 There are a range of situations in which there is a change to be
 effected in the set of replicas used to access a particular file
 system. Some of these may involve an expansion or contraction of the
 set of replicas used as discussed in Section 11.11.1 below.

 For reasons explained in that section, most transitions will involve
 a transition from a single replica to a corresponding replacement
 replica. When effecting replica transition, some types of sharing
 between the replicas may affect handling of the transition as
 described in Sections 11.11.2 through 11.11.8 below. The attribute
 fs_locations_info provides helpful information to allow the client to
 determine the degree of inter-replica sharing.

 With regard to some types of state, the degree of continuity across
 the transition depends on the occasion prompting the transition, with
 transitions initiated by the servers (i.e., migration) offering much
 more scope for a nondisruptive transition than cases in which the
 client on its own shifts its access to another replica (i.e.,
 replication). This issue potentially applies to locking state and to
 session state, which are dealt with below as follows:

 * An introduction to the possible means of providing continuity in
 these areas appears in Section 11.11.9 below.

 * Transparent State Migration is introduced in Section 11.12. The
 possible transfer of session state is addressed there as well.

 * The client handling of transitions, including determining how to
 deal with the various means that the server might take to supply
 effective continuity of locking state, is discussed in
 Section 11.13.

 * The source and destination servers’ responsibilities in effecting
 Transparent State Migration of locking and session state are
 discussed in Section 11.14.

11.11.1. File System Transitions and Simultaneous Access

 The fs_locations_info attribute (described in Section 11.17) may
 indicate that two replicas may be used simultaneously, although some
 situations in which such simultaneous access is permitted are more
 appropriately described as instances of trunking (see
 Section 11.5.4.1). Although situations in which multiple replicas
 may be accessed simultaneously are somewhat similar to those in which
 a single replica is accessed by multiple network addresses, there are
 important differences since locking state is not shared among
 multiple replicas.

 Because of this difference in state handling, many clients will not
 have the ability to take advantage of the fact that such replicas
 represent the same data. Such clients will not be prepared to use
 multiple replicas simultaneously but will access each file system
 using only a single replica, although the replica selected might make
 multiple server-trunkable addresses available.

 Clients who are prepared to use multiple replicas simultaneously can
 divide opens among replicas however they choose. Once that choice is
 made, any subsequent transitions will treat the set of locking state
 associated with each replica as a single entity.

 For example, if one of the replicas become unavailable, access will
 be transferred to a different replica, which is also capable of
 simultaneous access with the one still in use.

 When there is no such replica, the transition may be to the replica
 already in use. At this point, the client has a choice between
 merging the locking state for the two replicas under the aegis of the
 sole replica in use or treating these separately until another
 replica capable of simultaneous access presents itself.

11.11.2. Filehandles and File System Transitions

 There are a number of ways in which filehandles can be handled across
 a file system transition. These can be divided into two broad
 classes depending upon whether the two file systems across which the
 transition happens share sufficient state to effect some sort of
 continuity of file system handling.

 When there is no such cooperation in filehandle assignment, the two
 file systems are reported as being in different handle classes. In
 this case, all filehandles are assumed to expire as part of the file
 system transition. Note that this behavior does not depend on the
 fh_expire_type attribute and supersedes the specification of the
 FH4_VOL_MIGRATION bit, which only affects behavior when
 fs_locations_info is not available.

 When there is cooperation in filehandle assignment, the two file
 systems are reported as being in the same handle classes. In this
 case, persistent filehandles remain valid after the file system
 transition, while volatile filehandles (excluding those that are only
 volatile due to the FH4_VOL_MIGRATION bit) are subject to expiration
 on the target server.

11.11.3. Fileids and File System Transitions

 In NFSv4.0, the issue of continuity of fileids in the event of a file
 system transition was not addressed. The general expectation had
 been that in situations in which the two file system instances are
 created by a single vendor using some sort of file system image copy,
 fileids would be consistent across the transition, while in the
 analogous multi-vendor transitions they would not. This poses
 difficulties, especially for the client without special knowledge of
 the transition mechanisms adopted by the server. Note that although
 fileid is not a REQUIRED attribute, many servers support fileids and
 many clients provide APIs that depend on fileids.

 It is important to note that while clients themselves may have no
 trouble with a fileid changing as a result of a file system
 transition event, applications do typically have access to the fileid
 (e.g., via stat). The result is that an application may work
 perfectly well if there is no file system instance transition or if
 any such transition is among instances created by a single vendor,
 yet be unable to deal with the situation in which a multi-vendor
 transition occurs at the wrong time.

 Providing the same fileids in a multi-vendor (multiple server
 vendors) environment has generally been held to be quite difficult.
 While there is work to be done, it needs to be pointed out that this
 difficulty is partly self-imposed. Servers have typically identified
 fileid with inode number, i.e. with a quantity used to find the file
 in question. This identification poses special difficulties for
 migration of a file system between vendors where assigning the same
 index to a given file may not be possible. Note here that a fileid
 is not required to be useful to find the file in question, only that
 it is unique within the given file system. Servers prepared to
 accept a fileid as a single piece of metadata and store it apart from
 the value used to index the file information can relatively easily
 maintain a fileid value across a migration event, allowing a truly
 transparent migration event.

 In any case, where servers can provide continuity of fileids, they
 should, and the client should be able to find out that such
 continuity is available and take appropriate action. Information
 about the continuity (or lack thereof) of fileids across a file
 system transition is represented by specifying whether the file
 systems in question are of the same fileid class.

 Note that when consistent fileids do not exist across a transition
 (either because there is no continuity of fileids or because fileid
 is not a supported attribute on one of instances involved), and there
 are no reliable filehandles across a transition event (either because
 there is no filehandle continuity or because the filehandles are
 volatile), the client is in a position where it cannot verify that
 files it was accessing before the transition are the same objects.
 It is forced to assume that no object has been renamed, and, unless
 there are guarantees that provide this (e.g., the file system is
 read-only), problems for applications may occur. Therefore, use of
 such configurations should be limited to situations where the
 problems that this may cause can be tolerated.

11.11.4. Fsids and File System Transitions

 Since fsids are generally only unique on a per-server basis, it is
 likely that they will change during a file system transition.
 Clients should not make the fsids received from the server visible to
 applications since they may not be globally unique, and because they
 may change during a file system transition event. Applications are
 best served if they are isolated from such transitions to the extent
 possible.

 Although normally a single source file system will transition to a
 single target file system, there is a provision for splitting a
 single source file system into multiple target file systems, by
 specifying the FSLI4F_MULTI_FS flag.

11.11.4.1. File System Splitting

 When a file system transition is made and the fs_locations_info
 indicates that the file system in question might be split into
 multiple file systems (via the FSLI4F_MULTI_FS flag), the client
 SHOULD do GETATTRs to determine the fsid attribute on all known
 objects within the file system undergoing transition to determine the
 new file system boundaries.

 Clients might choose to maintain the fsids passed to existing
 applications by mapping all of the fsids for the descendant file
 systems to the common fsid used for the original file system.

 Splitting a file system can be done on a transition between file
 systems of the same fileid class, since the fact that fileids are
 unique within the source file system ensure they will be unique in
 each of the target file systems.

11.11.5. The Change Attribute and File System Transitions

 Since the change attribute is defined as a server-specific one,
 change attributes fetched from one server are normally presumed to be
 invalid on another server. Such a presumption is troublesome since
 it would invalidate all cached change attributes, requiring
 refetching. Even more disruptive, the absence of any assured
 continuity for the change attribute means that even if the same value
 is retrieved on refetch, no conclusions can be drawn as to whether
 the object in question has changed. The identical change attribute
 could be merely an artifact of a modified file with a different
 change attribute construction algorithm, with that new algorithm just
 happening to result in an identical change value.

 When the two file systems have consistent change attribute formats,
 and this fact is communicated to the client by reporting in the same
 change class, the client may assume a continuity of change attribute
 construction and handle this situation just as it would be handled
 without any file system transition.

11.11.6. Write Verifiers and File System Transitions

 In a file system transition, the two file systems might be
 cooperating in the handling of unstably written data. Clients can
 determine if this is the case by seeing if the two file systems
 belong to the same write-verifier class. When this is the case,
 write verifiers returned from one system may be compared to those
 returned by the other and superfluous writes can be avoided.

 When two file systems belong to different write-verifier classes, any
 verifier generated by one must not be compared to one provided by the
 other. Instead, the two verifiers should be treated as not equal
 even when the values are identical.

11.11.7. READDIR Cookies and Verifiers and File System Transitions

 In a file system transition, the two file systems might be consistent
 in their handling of READDIR cookies and verifiers. Clients can
 determine if this is the case by seeing if the two file systems
 belong to the same readdir class. When this is the case, readdir
 class, READDIR cookies, and verifiers from one system will be
 recognized by the other, and READDIR operations started on one server
 can be validly continued on the other simply by presenting the cookie
 and verifier returned by a READDIR operation done on the first file
 system to the second.

 When two file systems belong to different readdir classes, any
 READDIR cookie and verifier generated by one is not valid on the
 second and must not be presented to that server by the client. The
 client should act as if the verifier were rejected.

11.11.8. File System Data and File System Transitions

 When multiple replicas exist and are used simultaneously or in
 succession by a client, applications using them will normally expect
 that they contain either the same data or data that is consistent
 with the normal sorts of changes that are made by other clients
 updating the data of the file system (with metadata being the same to
 the degree indicated by the fs_locations_info attribute). However,
 when multiple file systems are presented as replicas of one another,
 the precise relationship between the data of one and the data of
 another is not, as a general matter, specified by the NFSv4.1
 protocol. It is quite possible to present as replicas file systems
 where the data of those file systems is sufficiently different that
 some applications have problems dealing with the transition between
 replicas. The namespace will typically be constructed so that
 applications can choose an appropriate level of support, so that in
 one position in the namespace, a varied set of replicas might be
 listed, while in another, only those that are up-to-date would be
 considered replicas. The protocol does define three special cases of
 the relationship among replicas to be specified by the server and
 relied upon by clients:

 * When multiple replicas exist and are used simultaneously by a
 client (see the FSLIB4_CLSIMUL definition within
 fs_locations_info), they must designate the same data. Where file
 systems are writable, a change made on one instance must be
 visible on all instances at the same time, regardless of whether
 the interrogated instance is the one on which the modification was
 done. This allows a client to use these replicas simultaneously
 without any special adaptation to the fact that there are multiple
 replicas, beyond adapting to the fact that locks obtained on one
 replica are maintained separately (i.e., under a different client
 ID). In this case, locks (whether share reservations or byte-
 range locks) and delegations obtained on one replica are
 immediately reflected on all replicas, in the sense that access
 from all other servers is prevented regardless of the replica
 used. However, because the servers are not required to treat two
 associated client IDs as representing the same client, it is best
 to access each file using only a single client ID.

 * When one replica is designated as the successor instance to
 another existing instance after the return of NFS4ERR_MOVED (i.e.,
 the case of migration), the client may depend on the fact that all
 changes written to stable storage on the original instance are
 written to stable storage of the successor (uncommitted writes are
 dealt with in Section 11.11.6 above).

 * Where a file system is not writable but represents a read-only
 copy (possibly periodically updated) of a writable file system,
 clients have similar requirements with regard to the propagation
 of updates. They may need a guarantee that any change visible on
 the original file system instance must be immediately visible on
 any replica before the client transitions access to that replica,
 in order to avoid any possibility that a client, in effecting a
 transition to a replica, will see any reversion in file system
 state. The specific means of this guarantee varies based on the
 value of the fss_type field that is reported as part of the
 fs_status attribute (see Section 11.18). Since these file systems
 are presumed to be unsuitable for simultaneous use, there is no
 specification of how locking is handled; in general, locks
 obtained on one file system will be separate from those on others.
 Since these are expected to be read-only file systems, this is not
 likely to pose an issue for clients or applications.

 When none of these special situations applies, there is no basis
 within the protocol for the client to make assumptions about the
 contents of a replica file system or its relationship to previous
 file system instances. Thus, switching between nominally identical
 read-write file systems would not be possible because either the
 client does not use the fs_locations_info attribute, or the server
 does not support it.

11.11.9. Lock State and File System Transitions

 While accessing a file system, clients obtain locks enforced by the
 server, which may prevent actions by other clients that are
 inconsistent with those locks.

 When access is transferred between replicas, clients need to be
 assured that the actions disallowed by holding these locks cannot
 have occurred during the transition. This can be ensured by the
 methods below. Unless at least one of these is implemented, clients
 will not be assured of continuity of lock possession across a
 migration event:

 * Providing the client an opportunity to re-obtain his locks via a
 per-fs grace period on the destination server, denying all clients
 using the destination file system the opportunity to obtain new
 locks that conflict with those held by the transferred client as
 long as that client has not completed its per-fs grace period.
 Because the lock reclaim mechanism was originally defined to
 support server reboot, it implicitly assumes that filehandles
 will, upon reclaim, be the same as those at open. In the case of
 migration, this requires that source and destination servers use
 the same filehandles, as evidenced by using the same server scope
 (see Section 2.10.4) or by showing this agreement using
 fs_locations_info (see Section 11.11.2 above).

 Note that such a grace period can be implemented without
 interfering with the ability of non-transferred clients to obtain
 new locks while it is going on. As long as the destination server
 is aware of the transferred locks, it can distinguish requests to
 obtain new locks that contrast with existing locks from those that
 do not, allowing it to treat such client requests without
 reference to the ongoing grace period.

 * Locking state can be transferred as part of the transition by
 providing Transparent State Migration as described in
 Section 11.12.

 Of these, Transparent State Migration provides the smoother
 experience for clients in that there is no need to go through a
 reclaim process before new locks can be obtained; however, it
 requires a greater degree of inter-server coordination. In general,
 the servers taking part in migration are free to provide either
 facility. However, when the filehandles can differ across the
 migration event, Transparent State Migration is the only available
 means of providing the needed functionality.

 It should be noted that these two methods are not mutually exclusive
 and that a server might well provide both. In particular, if there
 is some circumstance preventing a specific lock from being
 transferred transparently, the destination server can allow it to be
 reclaimed by implementing a per-fs grace period for the migrated file
 system.

11.11.9.1. Security Consideration Related to Reclaiming Lock State
 after File System Transitions

 Although it is possible for a client reclaiming state to misrepresent
 its state in the same fashion as described in Section 8.4.2.1.1, most
 implementations providing for such reclamation in the case of file
 system transitions will have the ability to detect such
 misrepresentations. This limits the ability of unauthenticated
 clients to execute denial-of-service attacks in these circumstances.
 Nevertheless, the rules stated in Section 8.4.2.1.1 regarding
 principal verification for reclaim requests apply in this situation
 as well.

 Typically, implementations that support file system transitions will
 have extensive information about the locks to be transferred. This
 is because of the following:

 * Since failure is not involved, there is no need to store locking

 information in persistent storage.

 * There is no need, as there is in the failure case, to update
 multiple repositories containing locking state to keep them in
 sync. Instead, there is a one-time communication of locking state
 from the source to the destination server.

 * Providing this information avoids potential interference with
 existing clients using the destination file system by denying them
 the ability to obtain new locks during the grace period.

 When such detailed locking information, not necessarily including the
 associated stateids, is available:

 * It is possible to detect reclaim requests that attempt to reclaim
 locks that did not exist before the transfer, rejecting them with
 NFS4ERR_RECLAIM_BAD (Section 15.1.9.4).

 * It is possible when dealing with non-reclaim requests, to
 determine whether they conflict with existing locks, eliminating
 the need to return NFS4ERR_GRACE (Section 15.1.9.2) on non-reclaim
 requests.

 It is possible for implementations of grace periods in connection
 with file system transitions not to have detailed locking information
 available at the destination server, in which case, the security
 situation is exactly as described in Section 8.4.2.1.1.

11.11.9.2. Leases and File System Transitions

 In the case of lease renewal, the client may not be submitting
 requests for a file system that has been transferred to another
 server. This can occur because of the lease renewal mechanism. The
 client renews the lease associated with all file systems when
 submitting a request on an associated session, regardless of the
 specific file system being referenced.

 In order for the client to schedule renewal of its lease where there
 is locking state that may have been relocated to the new server, the
 client must find out about lease relocation before that lease expire.
 To accomplish this, the SEQUENCE operation will return the status bit
 SEQ4_STATUS_LEASE_MOVED if responsibility for any of the renewed
 locking state has been transferred to a new server. This will
 continue until the client receives an NFS4ERR_MOVED error for each of
 the file systems for which there has been locking state relocation.

 When a client receives an SEQ4_STATUS_LEASE_MOVED indication from a
 server, for each file system of the server for which the client has
 locking state, the client should perform an operation. For
 simplicity, the client may choose to reference all file systems, but
 what is important is that it must reference all file systems for
 which there was locking state where that state has moved. Once the
 client receives an NFS4ERR_MOVED error for each such file system, the
 server will clear the SEQ4_STATUS_LEASE_MOVED indication. The client
 can terminate the process of checking file systems once this
 indication is cleared (but only if the client has received a reply
 for all outstanding SEQUENCE requests on all sessions it has with the
 server), since there are no others for which locking state has moved.

 A client may use GETATTR of the fs_status (or fs_locations_info)
 attribute on all of the file systems to get absence indications in a
 single (or a few) request(s), since absent file systems will not
 cause an error in this context. However, it still must do an
 operation that receives NFS4ERR_MOVED on each file system, in order
 to clear the SEQ4_STATUS_LEASE_MOVED indication.

 Once the set of file systems with transferred locking state has been
 determined, the client can follow the normal process to obtain the
 new server information (through the fs_locations and
 fs_locations_info attributes) and perform renewal of that lease on
 the new server, unless information in the fs_locations_info attribute

 shows that no state could have been transferred. If the server has
 not had state transferred to it transparently, the client will
 receive NFS4ERR_STALE_CLIENTID from the new server, as described
 above, and the client can then reclaim locks as is done in the event
 of server failure.

11.11.9.3. Transitions and the Lease_time Attribute

 In order that the client may appropriately manage its lease in the
 case of a file system transition, the destination server must
 establish proper values for the lease_time attribute.

 When state is transferred transparently, that state should include
 the correct value of the lease_time attribute. The lease_time
 attribute on the destination server must never be less than that on
 the source, since this would result in premature expiration of a
 lease granted by the source server. Upon transitions in which state
 is transferred transparently, the client is under no obligation to
 refetch the lease_time attribute and may continue to use the value
 previously fetched (on the source server).

 If state has not been transferred transparently, either because the
 associated servers are shown as having different eir_server_scope
 strings or because the client ID is rejected when presented to the
 new server, the client should fetch the value of lease_time on the
 new (i.e., destination) server, and use it for subsequent locking
 requests. However, the server must respect a grace period of at
 least as long as the lease_time on the source server, in order to
 ensure that clients have ample time to reclaim their lock before
 potentially conflicting non-reclaimed locks are granted.

11.12. Transferring State upon Migration

 When the transition is a result of a server-initiated decision to
 transition access, and the source and destination servers have
 implemented appropriate cooperation, it is possible to do the
 following:

 * Transfer locking state from the source to the destination server
 in a fashion similar to that provided by Transparent State
 Migration in NFSv4.0, as described in [69]. Server
 responsibilities are described in Section 11.14.2.

 * Transfer session state from the source to the destination server.
 Server responsibilities in effecting such a transfer are described
 in Section 11.14.3.

 The means by which the client determines which of these transfer
 events has occurred are described in Section 11.13.

11.12.1. Transparent State Migration and pNFS

 When pNFS is involved, the protocol is capable of supporting:

 * Migration of the Metadata Server (MDS), leaving the Data Servers
 (DSs) in place.

 * Migration of the file system as a whole, including the MDS and
 associated DSs.

 * Replacement of one DS by another.

 * Migration of a pNFS file system to one in which pNFS is not used.

 * Migration of a file system not using pNFS to one in which layouts
 are available.

 Note that migration, per se, is only involved in the transfer of the
 MDS function. Although the servicing of a layout may be transferred
 from one data server to another, this not done using the file system
 location attributes. The MDS can effect such transfers by recalling

 or revoking existing layouts and granting new ones on a different
 data server.

 Migration of the MDS function is directly supported by Transparent
 State Migration. Layout state will normally be transparently
 transferred, just as other state is. As a result, Transparent State
 Migration provides a framework in which, given appropriate inter-MDS
 data transfer, one MDS can be substituted for another.

 Migration of the file system function as a whole can be accomplished
 by recalling all layouts as part of the initial phase of the
 migration process. As a result, I/O will be done through the MDS
 during the migration process, and new layouts can be granted once the
 client is interacting with the new MDS. An MDS can also effect this
 sort of transition by revoking all layouts as part of Transparent
 State Migration, as long as the client is notified about the loss of
 locking state.

 In order to allow migration to a file system on which pNFS is not
 supported, clients need to be prepared for a situation in which
 layouts are not available or supported on the destination file system
 and so direct I/O requests to the destination server, rather than
 depending on layouts being available.

 Replacement of one DS by another is not addressed by migration as
 such but can be effected by an MDS recalling layouts for the DS to be
 replaced and issuing new ones to be served by the successor DS.

 Migration may transfer a file system from a server that does not
 support pNFS to one that does. In order to properly adapt to this
 situation, clients that support pNFS, but function adequately in its
 absence, should check for pNFS support when a file system is migrated
 and be prepared to use pNFS when support is available on the
 destination.

11.13. Client Responsibilities When Access Is Transitioned

 For a client to respond to an access transition, it must become aware
 of it. The ways in which this can happen are discussed in
 Section 11.13.1, which discusses indications that a specific file
 system access path has transitioned as well as situations in which
 additional activity is necessary to determine the set of file systems
 that have been migrated. Section 11.13.2 goes on to complete the
 discussion of how the set of migrated file systems might be
 determined. Sections 11.13.3 through 11.13.5 discuss how the client
 should deal with each transition it becomes aware of, either directly
 or as a result of migration discovery.

 The following terms are used to describe client activities:

 * "Transition recovery" refers to the process of restoring access to
 a file system on which NFS4ERR_MOVED was received.

 * "Migration recovery" refers to that subset of transition recovery
 that applies when the file system has migrated to a different
 replica.

 * "Migration discovery" refers to the process of determining which
 file system(s) have been migrated. It is necessary to avoid a
 situation in which leases could expire when a file system is not
 accessed for a long period of time, since a client unaware of the
 migration might be referencing an unmigrated file system and not
 renewing the lease associated with the migrated file system.

11.13.1. Client Transition Notifications

 When there is a change in the network access path that a client is to
 use to access a file system, there are a number of related status
 indications with which clients need to deal:

 * If an attempt is made to use or return a filehandle within a file

 system that is no longer accessible at the address previously used
 to access it, the error NFS4ERR_MOVED is returned.

 Exceptions are made to allow such filehandles to be used when
 interrogating a file system location attribute. This enables a
 client to determine a new replica’s location or a new network
 access path.

 This condition continues on subsequent attempts to access the file
 system in question. The only way the client can avoid the error
 is to cease accessing the file system in question at its old
 server location and access it instead using a different address at
 which it is now available.

 * Whenever a client sends a SEQUENCE operation to a server that
 generated state held on that client and associated with a file
 system no longer accessible on that server, the response will
 contain the status bit SEQ4_STATUS_LEASE_MOVED, indicating that
 there has been a lease migration.

 This condition continues until the client acknowledges the
 notification by fetching a file system location attribute for the
 file system whose network access path is being changed. When
 there are multiple such file systems, a location attribute for
 each such file system needs to be fetched. The location attribute
 for all migrated file systems needs to be fetched in order to
 clear the condition. Even after the condition is cleared, the
 client needs to respond by using the location information to
 access the file system at its new location to ensure that leases
 are not needlessly expired.

 Unlike NFSv4.0, in which the corresponding conditions are both errors
 and thus mutually exclusive, in NFSv4.1 the client can, and often
 will, receive both indications on the same request. As a result,
 implementations need to address the question of how to coordinate the
 necessary recovery actions when both indications arrive in the
 response to the same request. It should be noted that when
 processing an NFSv4 COMPOUND, the server will normally decide whether
 SEQ4_STATUS_LEASE_MOVED is to be set before it determines which file
 system will be referenced or whether NFS4ERR_MOVED is to be returned.

 Since these indications are not mutually exclusive in NFSv4.1, the
 following combinations are possible results when a COMPOUND is
 issued:

 * The COMPOUND status is NFS4ERR_MOVED, and SEQ4_STATUS_LEASE_MOVED
 is asserted.

 In this case, transition recovery is required. While it is
 possible that migration discovery is needed in addition, it is
 likely that only the accessed file system has transitioned. In
 any case, because addressing NFS4ERR_MOVED is necessary to allow
 the rejected requests to be processed on the target, dealing with
 it will typically have priority over migration discovery.

 * The COMPOUND status is NFS4ERR_MOVED, and SEQ4_STATUS_LEASE_MOVED
 is clear.

 In this case, transition recovery is also required. It is clear
 that migration discovery is not needed to find file systems that
 have been migrated other than the one returning NFS4ERR_MOVED.
 Cases in which this result can arise include a referral or a
 migration for which there is no associated locking state. This
 can also arise in cases in which an access path transition other
 than migration occurs within the same server. In such a case,
 there is no need to set SEQ4_STATUS_LEASE_MOVED, since the lease
 remains associated with the current server even though the access
 path has changed.

 * The COMPOUND status is not NFS4ERR_MOVED, and
 SEQ4_STATUS_LEASE_MOVED is asserted.

 In this case, no transition recovery activity is required on the
 file system(s) accessed by the request. However, to prevent
 avoidable lease expiration, migration discovery needs to be done.

 * The COMPOUND status is not NFS4ERR_MOVED, and
 SEQ4_STATUS_LEASE_MOVED is clear.

 In this case, neither transition-related activity nor migration
 discovery is required.

 Note that the specified actions only need to be taken if they are not
 already going on. For example, when NFS4ERR_MOVED is received while
 accessing a file system for which transition recovery is already
 occurring, the client merely waits for that recovery to be completed,
 while the receipt of the SEQ4_STATUS_LEASE_MOVED indication only
 needs to initiate migration discovery for a server if such discovery
 is not already underway for that server.

 The fact that a lease-migrated condition does not result in an error
 in NFSv4.1 has a number of important consequences. In addition to
 the fact that the two indications are not mutually exclusive, as
 discussed above, there are number of issues that are important in
 considering implementation of migration discovery, as discussed in
 Section 11.13.2.

 Because SEQ4_STATUS_LEASE_MOVED is not an error condition, it is
 possible for file systems whose access paths have not changed to be
 successfully accessed on a given server even though recovery is
 necessary for other file systems on the same server. As a result,
 access can take place while:

 * The migration discovery process is happening for that server.

 * The transition recovery process is happening for other file
 systems connected to that server.

11.13.2. Performing Migration Discovery

 Migration discovery can be performed in the same context as
 transition recovery, allowing recovery for each migrated file system
 to be invoked as it is discovered. Alternatively, it may be done in
 a separate migration discovery thread, allowing migration discovery
 to be done in parallel with one or more instances of transition
 recovery.

 In either case, because the lease-migrated indication does not result
 in an error, other access to file systems on the server can proceed
 normally, with the possibility that further such indications will be
 received, raising the issue of how such indications are to be dealt
 with. In general:

 * No action needs to be taken for such indications received by any
 threads performing migration discovery, since continuation of that
 work will address the issue.

 * In other cases in which migration discovery is currently being
 performed, nothing further needs to be done to respond to such
 lease migration indications, as long as one can be certain that
 the migration discovery process would deal with those indications.
 See below for details.

 * For such indications received in all other contexts, the
 appropriate response is to initiate or otherwise provide for the
 execution of migration discovery for file systems associated with
 the server IP address returning the indication.

 This leaves a potential difficulty in situations in which the
 migration discovery process is near to completion but is still
 operating. One should not ignore a SEQ4_STATUS_LEASE_MOVED
 indication if the migration discovery process is not able to respond

 to the discovery of additional migrating file systems without
 additional aid. A further complexity relevant in addressing such
 situations is that a lease-migrated indication may reflect the
 server’s state at the time the SEQUENCE operation was processed,
 which may be different from that in effect at the time the response
 is received. Because new migration events may occur at any time, and
 because a SEQ4_STATUS_LEASE_MOVED indication may reflect the
 situation in effect a considerable time before the indication is
 received, special care needs to be taken to ensure that
 SEQ4_STATUS_LEASE_MOVED indications are not inappropriately ignored.

 A useful approach to this issue involves the use of separate
 externally-visible migration discovery states for each server.
 Separate values could represent the various possible states for the
 migration discovery process for a server:

 * Non-operation, in which migration discovery is not being
 performed.

 * Normal operation, in which there is an ongoing scan for migrated
 file systems.

 * Completion/verification of migration discovery processing, in
 which the possible completion of migration discovery processing
 needs to be verified.

 Given that framework, migration discovery processing would proceed as
 follows:

 * While in the normal-operation state, the thread performing
 discovery would fetch, for successive file systems known to the
 client on the server being worked on, a file system location
 attribute plus the fs_status attribute.

 * If the fs_status attribute indicates that the file system is a
 migrated one (i.e., fss_absent is true, and fss_type !=
 STATUS4_REFERRAL), then a migrated file system has been found. In
 this situation, it is likely that the fetch of the file system
 location attribute has cleared one of the file systems
 contributing to the lease-migrated indication.

 * In cases in which that happened, the thread cannot know whether
 the lease-migrated indication has been cleared, and so it enters
 the completion/verification state and proceeds to issue a COMPOUND
 to see if the SEQ4_STATUS_LEASE_MOVED indication has been cleared.

 * When the discovery process is in the completion/verification
 state, if other requests get a lease-migrated indication, they
 note that it was received. Later, the existence of such
 indications is used when the request completes, as described
 below.

 When the request used in the completion/verification state completes:

 * If a lease-migrated indication is returned, the discovery
 continues normally. Note that this is so even if all file systems
 have been traversed, since new migrations could have occurred
 while the process was going on.

 * Otherwise, if there is any record that other requests saw a lease-
 migrated indication while the request was occurring, that record
 is cleared, and the verification request is retried. The
 discovery process remains in the completion/verification state.

 * If there have been no lease-migrated indications, the work of
 migration discovery is considered completed, and it enters the
 non-operating state. Once it enters this state, subsequent lease-
 migrated indications will trigger a new migration discovery
 process.

 It should be noted that the process described above is not guaranteed

 to terminate, as a long series of new migration events might
 continually delay the clearing of the SEQ4_STATUS_LEASE_MOVED
 indication. To prevent unnecessary lease expiration, it is
 appropriate for clients to use the discovery of migrations to effect
 lease renewal immediately, rather than waiting for the clearing of
 the SEQ4_STATUS_LEASE_MOVED indication when the complete set of
 migrations is available.

 Lease discovery needs to be provided as described above. This
 ensures that the client discovers file system migrations soon enough
 to renew its leases on each destination server before they expire.
 Non-renewal of leases can lead to loss of locking state. While the
 consequences of such loss can be ameliorated through implementations
 of courtesy locks, servers are under no obligation to do so, and a
 conflicting lock request may mean that a lock is revoked
 unexpectedly. Clients should be aware of this possibility.

11.13.3. Overview of Client Response to NFS4ERR_MOVED

 This section outlines a way in which a client that receives
 NFS4ERR_MOVED can effect transition recovery by using a new server or
 server endpoint if one is available. As part of that process, it
 will determine:

 * Whether the NFS4ERR_MOVED indicates migration has occurred, or
 whether it indicates another sort of file system access transition
 as discussed in Section 11.10 above.

 * In the case of migration, whether Transparent State Migration has
 occurred.

 * Whether any state has been lost during the process of Transparent
 State Migration.

 * Whether sessions have been transferred as part of Transparent
 State Migration.

 During the first phase of this process, the client proceeds to
 examine file system location entries to find the initial network
 address it will use to continue access to the file system or its
 replacement. For each location entry that the client examines, the
 process consists of five steps:

 1. Performing an EXCHANGE_ID directed at the location address. This
 operation is used to register the client owner (in the form of a
 client_owner4) with the server, to obtain a client ID to be used
 subsequently to communicate with it, to obtain that client ID’s
 confirmation status, and to determine server_owner4 and scope for
 the purpose of determining if the entry is trunkable with the
 address previously being used to access the file system (i.e.,
 that it represents another network access path to the same file
 system and can share locking state with it).

 2. Making an initial determination of whether migration has
 occurred. The initial determination will be based on whether the
 EXCHANGE_ID results indicate that the current location element is
 server-trunkable with that used to access the file system when
 access was terminated by receiving NFS4ERR_MOVED. If it is, then
 migration has not occurred. In that case, the transition is
 dealt with, at least initially, as one involving continued access
 to the same file system on the same server through a new network
 address.

 3. Obtaining access to existing session state or creating new
 sessions. How this is done depends on the initial determination
 of whether migration has occurred and can be done as described in
 Section 11.13.4 below in the case of migration or as described in
 Section 11.13.5 below in the case of a network address transfer
 without migration.

 4. Verifying the trunking relationship assumed in step 2 as

 discussed in Section 2.10.5.1. Although this step will generally
 confirm the initial determination, it is possible for
 verification to invalidate the initial determination of network
 address shift (without migration) and instead determine that
 migration had occurred. There is no need to redo step 3 above,
 since it will be possible to continue use of the session
 established already.

 5. Obtaining access to existing locking state and/or re-obtaining
 it. How this is done depends on the final determination of
 whether migration has occurred and can be done as described below
 in Section 11.13.4 in the case of migration or as described in
 Section 11.13.5 in the case of a network address transfer without
 migration.

 Once the initial address has been determined, clients are free to
 apply an abbreviated process to find additional addresses trunkable
 with it (clients may seek session-trunkable or server-trunkable
 addresses depending on whether they support client ID trunking).
 During this later phase of the process, further location entries are
 examined using the abbreviated procedure specified below:

 A: Before the EXCHANGE_ID, the fs name of the location entry is
 examined, and if it does not match that currently being used, the
 entry is ignored. Otherwise, one proceeds as specified by step 1
 above.

 B: In the case that the network address is session-trunkable with
 one used previously, a BIND_CONN_TO_SESSION is used to access
 that session using the new network address. Otherwise, or if the
 bind operation fails, a CREATE_SESSION is done.

 C: The verification procedure referred to in step 4 above is used.
 However, if it fails, the entry is ignored and the next available
 entry is used.

11.13.4. Obtaining Access to Sessions and State after Migration

 In the event that migration has occurred, migration recovery will
 involve determining whether Transparent State Migration has occurred.
 This decision is made based on the client ID returned by the
 EXCHANGE_ID and the reported confirmation status.

 * If the client ID is an unconfirmed client ID not previously known
 to the client, then Transparent State Migration has not occurred.

 * If the client ID is a confirmed client ID previously known to the
 client, then any transferred state would have been merged with an
 existing client ID representing the client to the destination
 server. In this state merger case, Transparent State Migration
 might or might not have occurred, and a determination as to
 whether it has occurred is deferred until sessions are established
 and the client is ready to begin state recovery.

 * If the client ID is a confirmed client ID not previously known to
 the client, then the client can conclude that the client ID was
 transferred as part of Transparent State Migration. In this
 transferred client ID case, Transparent State Migration has
 occurred, although some state might have been lost.

 Once the client ID has been obtained, it is necessary to obtain
 access to sessions to continue communication with the new server. In
 any of the cases in which Transparent State Migration has occurred,
 it is possible that a session was transferred as well. To deal with
 that possibility, clients can, after doing the EXCHANGE_ID, issue a
 BIND_CONN_TO_SESSION to connect the transferred session to a
 connection to the new server. If that fails, it is an indication
 that the session was not transferred and that a new session needs to
 be created to take its place.

 In some situations, it is possible for a BIND_CONN_TO_SESSION to

 succeed without session migration having occurred. If state merger
 has taken place, then the associated client ID may have already had a
 set of existing sessions, with it being possible that the session ID
 of a given session is the same as one that might have been migrated.
 In that event, a BIND_CONN_TO_SESSION might succeed, even though
 there could have been no migration of the session with that session
 ID. In such cases, the client will receive sequence errors when the
 slot sequence values used are not appropriate on the new session.
 When this occurs, the client can create a new a session and cease
 using the existing one.

 Once the client has determined the initial migration status, and
 determined that there was a shift to a new server, it needs to re-
 establish its locking state, if possible. To enable this to happen
 without loss of the guarantees normally provided by locking, the
 destination server needs to implement a per-fs grace period in all
 cases in which lock state was lost, including those in which
 Transparent State Migration was not implemented. Each client for
 which there was a transfer of locking state to the new server will
 have the duration of the grace period to reclaim its locks, from the
 time its locks were transferred.

 Clients need to deal with the following cases:

 * In the state merger case, it is possible that the server has not
 attempted Transparent State Migration, in which case state may
 have been lost without it being reflected in the SEQ4_STATUS bits.
 To determine whether this has happened, the client can use
 TEST_STATEID to check whether the stateids created on the source
 server are still accessible on the destination server. Once a
 single stateid is found to have been successfully transferred, the
 client can conclude that Transparent State Migration was begun,
 and any failure to transport all of the stateids will be reflected
 in the SEQ4_STATUS bits. Otherwise, Transparent State Migration
 has not occurred.

 * In a case in which Transparent State Migration has not occurred,
 the client can use the per-fs grace period provided by the
 destination server to reclaim locks that were held on the source
 server.

 * In a case in which Transparent State Migration has occurred, and
 no lock state was lost (as shown by SEQ4_STATUS flags), no lock
 reclaim is necessary.

 * In a case in which Transparent State Migration has occurred, and
 some lock state was lost (as shown by SEQ4_STATUS flags), existing
 stateids need to be checked for validity using TEST_STATEID, and
 reclaim used to re-establish any that were not transferred.

 For all of the cases above, RECLAIM_COMPLETE with an rca_one_fs value
 of TRUE needs to be done before normal use of the file system,
 including obtaining new locks for the file system. This applies even
 if no locks were lost and there was no need for any to be reclaimed.

11.13.5. Obtaining Access to Sessions and State after Network Address
 Transfer

 The case in which there is a transfer to a new network address
 without migration is similar to that described in Section 11.13.4
 above in that there is a need to obtain access to needed sessions and
 locking state. However, the details are simpler and will vary
 depending on the type of trunking between the address receiving
 NFS4ERR_MOVED and that to which the transfer is to be made.

 To make a session available for use, a BIND_CONN_TO_SESSION should be
 used to obtain access to the session previously in use. Only if this
 fails, should a CREATE_SESSION be done. While this procedure mirrors
 that in Section 11.13.4 above, there is an important difference in
 that preservation of the session is not purely optional but depends
 on the type of trunking.

 Access to appropriate locking state will generally need no actions
 beyond access to the session. However, the SEQ4_STATUS bits need to
 be checked for lost locking state, including the need to reclaim
 locks after a server reboot, since there is always a possibility of
 locking state being lost.

11.14. Server Responsibilities Upon Migration

 In the event of file system migration, when the client connects to
 the destination server, that server needs to be able to provide the
 client continued access to the files it had open on the source
 server. There are two ways to provide this:

 * By provision of an fs-specific grace period, allowing the client
 the ability to reclaim its locks, in a fashion similar to what
 would have been done in the case of recovery from a server
 restart. See Section 11.14.1 for a more complete discussion.

 * By implementing Transparent State Migration possibly in connection
 with session migration, the server can provide the client
 immediate access to the state built up on the source server on the
 destination server.

 These features are discussed separately in Sections 11.14.2 and
 11.14.3, which discuss Transparent State Migration and session
 migration, respectively.

 All the features described above can involve transfer of lock-related
 information between source and destination servers. In some cases,
 this transfer is a necessary part of the implementation, while in
 other cases, it is a helpful implementation aid, which servers might
 or might not use. The subsections below discuss the information that
 would be transferred but do not define the specifics of the transfer
 protocol. This is left as an implementation choice, although
 standards in this area could be developed at a later time.

11.14.1. Server Responsibilities in Effecting State Reclaim after
 Migration

 In this case, the destination server needs no knowledge of the locks
 held on the source server. It relies on the clients to accurately
 report (via reclaim operations) the locks previously held, and does
 not allow new locks to be granted on migrated file systems until the
 grace period expires. Disallowing of new locks applies to all
 clients accessing these file systems, while grace period expiration
 occurs for each migrated client independently.

 During this grace period, clients have the opportunity to use reclaim
 operations to obtain locks for file system objects within the
 migrated file system, in the same way that they do when recovering
 from server restart, and the servers typically rely on clients to
 accurately report their locks, although they have the option of
 subjecting these requests to verification. If the clients only
 reclaim locks held on the source server, no conflict can arise. Once
 the client has reclaimed its locks, it indicates the completion of
 lock reclamation by performing a RECLAIM_COMPLETE specifying
 rca_one_fs as TRUE.

 While it is not necessary for source and destination servers to
 cooperate to transfer information about locks, implementations are
 well advised to consider transferring the following useful
 information:

 * If information about the set of clients that have locking state
 for the transferred file system is made available, the destination
 server will be able to terminate the grace period once all such
 clients have reclaimed their locks, allowing normal locking
 activity to resume earlier than it would have otherwise.

 * Locking summary information for individual clients (at various

 possible levels of detail) can detect some instances in which
 clients do not accurately represent the locks held on the source
 server.

11.14.2. Server Responsibilities in Effecting Transparent State
 Migration

 The basic responsibility of the source server in effecting
 Transparent State Migration is to make available to the destination
 server a description of each piece of locking state associated with
 the file system being migrated. In addition to client id string and
 verifier, the source server needs to provide for each stateid:

 * The stateid including the current sequence value.

 * The associated client ID.

 * The handle of the associated file.

 * The type of the lock, such as open, byte-range lock, delegation,
 or layout.

 * For locks such as opens and byte-range locks, there will be
 information about the owner(s) of the lock.

 * For recallable/revocable lock types, the current recall status
 needs to be included.

 * For each lock type, there will be associated type-specific
 information. For opens, this will include share and deny mode
 while for byte-range locks and layouts, there will be a type and a
 byte-range.

 Such information will most probably be organized by client id string
 on the destination server so that it can be used to provide
 appropriate context to each client when it makes itself known to the
 client. Issues connected with a client impersonating another by
 presenting another client’s client id string can be addressed using
 NFSv4.1 state protection features, as described in Section 21.

 A further server responsibility concerns locks that are revoked or
 otherwise lost during the process of file system migration. Because
 locks that appear to be lost during the process of migration will be
 reclaimed by the client, the servers have to take steps to ensure
 that locks revoked soon before or soon after migration are not
 inadvertently allowed to be reclaimed in situations in which the
 continuity of lock possession cannot be assured.

 * For locks lost on the source but whose loss has not yet been
 acknowledged by the client (by using FREE_STATEID), the
 destination must be aware of this loss so that it can deny a
 request to reclaim them.

 * For locks lost on the destination after the state transfer but
 before the client’s RECLAIM_COMPLETE is done, the destination
 server should note these and not allow them to be reclaimed.

 An additional responsibility of the cooperating servers concerns
 situations in which a stateid cannot be transferred transparently
 because it conflicts with an existing stateid held by the client and
 associated with a different file system. In this case, there are two
 valid choices:

 * Treat the transfer, as in NFSv4.0, as one without Transparent
 State Migration. In this case, conflicting locks cannot be
 granted until the client does a RECLAIM_COMPLETE, after reclaiming
 the locks it had, with the exception of reclaims denied because
 they were attempts to reclaim locks that had been lost.

 * Implement Transparent State Migration, except for the lock with
 the conflicting stateid. In this case, the client will be aware

 of a lost lock (through the SEQ4_STATUS flags) and be allowed to
 reclaim it.

 When transferring state between the source and destination, the
 issues discussed in Section 7.2 of [69] must still be attended to.
 In this case, the use of NFS4ERR_DELAY may still be necessary in
 NFSv4.1, as it was in NFSv4.0, to prevent locking state changing
 while it is being transferred. See Section 15.1.1.3 for information
 about appropriate client retry approaches in the event that
 NFS4ERR_DELAY is returned.

 There are a number of important differences in the NFS4.1 context:

 * The absence of RELEASE_LOCKOWNER means that the one case in which
 an operation could not be deferred by use of NFS4ERR_DELAY no
 longer exists.

 * Sequencing of operations is no longer done using owner-based
 operation sequences numbers. Instead, sequencing is session-
 based.

 As a result, when sessions are not transferred, the techniques
 discussed in Section 7.2 of [69] are adequate and will not be further
 discussed.

11.14.3. Server Responsibilities in Effecting Session Transfer

 The basic responsibility of the source server in effecting session
 transfer is to make available to the destination server a description
 of the current state of each slot with the session, including the
 following:

 * The last sequence value received for that slot.

 * Whether there is cached reply data for the last request executed
 and, if so, the cached reply.

 When sessions are transferred, there are a number of issues that pose
 challenges in terms of making the transferred state unmodifiable
 during the period it is gathered up and transferred to the
 destination server:

 * A single session may be used to access multiple file systems, not
 all of which are being transferred.

 * Requests made on a session may, even if rejected, affect the state
 of the session by advancing the sequence number associated with
 the slot used.

 As a result, when the file system state might otherwise be considered
 unmodifiable, the client might have any number of in-flight requests,
 each of which is capable of changing session state, which may be of a
 number of types:

 1. Those requests that were processed on the migrating file system
 before migration began.

 2. Those requests that received the error NFS4ERR_DELAY because the
 file system being accessed was in the process of being migrated.

 3. Those requests that received the error NFS4ERR_MOVED because the
 file system being accessed had been migrated.

 4. Those requests that accessed the migrating file system in order
 to obtain location or status information.

 5. Those requests that did not reference the migrating file system.

 It should be noted that the history of any particular slot is likely
 to include a number of these request classes. In the case in which a
 session that is migrated is used by file systems other than the one

 migrated, requests of class 5 may be common and may be the last
 request processed for many slots.

 Since session state can change even after the locking state has been
 fixed as part of the migration process, the session state known to
 the client could be different from that on the destination server,
 which necessarily reflects the session state on the source server at
 an earlier time. In deciding how to deal with this situation, it is
 helpful to distinguish between two sorts of behavioral consequences
 of the choice of initial sequence ID values:

 * The error NFS4ERR_SEQ_MISORDERED is returned when the sequence ID
 in a request is neither equal to the last one seen for the current
 slot nor the next greater one.

 In view of the difficulty of arriving at a mutually acceptable
 value for the correct last sequence value at the point of
 migration, it may be necessary for the server to show some degree
 of forbearance when the sequence ID is one that would be
 considered unacceptable if session migration were not involved.

 * Returning the cached reply for a previously executed request when
 the sequence ID in the request matches the last value recorded for
 the slot.

 In the cases in which an error is returned and there is no
 possibility of any non-idempotent operation having been executed,
 it may not be necessary to adhere to this as strictly as might be
 proper if session migration were not involved. For example, the
 fact that the error NFS4ERR_DELAY was returned may not assist the
 client in any material way, while the fact that NFS4ERR_MOVED was
 returned by the source server may not be relevant when the request
 was reissued and directed to the destination server.

 An important issue is that the specification needs to take note of
 all potential COMPOUNDs, even if they might be unlikely in practice.
 For example, a COMPOUND is allowed to access multiple file systems
 and might perform non-idempotent operations in some of them before
 accessing a file system being migrated. Also, a COMPOUND may return
 considerable data in the response before being rejected with
 NFS4ERR_DELAY or NFS4ERR_MOVED, and may in addition be marked as
 sa_cachethis. However, note that if the client and server adhere to
 rules in Section 15.1.1.3, there is no possibility of non-idempotent
 operations being spuriously reissued after receiving NFS4ERR_DELAY
 response.

 To address these issues, a destination server MAY do any of the
 following when implementing session transfer:

 * Avoid enforcing any sequencing semantics for a particular slot
 until the client has established the starting sequence for that
 slot on the destination server.

 * For each slot, avoid returning a cached reply returning
 NFS4ERR_DELAY or NFS4ERR_MOVED until the client has established
 the starting sequence for that slot on the destination server.

 * Until the client has established the starting sequence for a
 particular slot on the destination server, avoid reporting
 NFS4ERR_SEQ_MISORDERED or returning a cached reply that contains
 either NFS4ERR_DELAY or NFS4ERR_MOVED and consists solely of a
 series of operations where the response is NFS4_OK until the final
 error.

 Because of the considerations mentioned above, including the rules
 for the handling of NFS4ERR_DELAY included in Section 15.1.1.3, the
 destination server can respond appropriately to SEQUENCE operations
 received from the client by adopting the three policies listed below:

 * Not responding with NFS4ERR_SEQ_MISORDERED for the initial request
 on a slot within a transferred session because the destination

 server cannot be aware of requests made by the client after the
 server handoff but before the client became aware of the shift.
 In cases in which NFS4ERR_SEQ_MISORDERED would normally have been
 reported, the request is to be processed normally as a new
 request.

 * Replying as it would for a retry whenever the sequence matches
 that transferred by the source server, even though this would not
 provide retry handling for requests issued after the server
 handoff, under the assumption that, when such requests are issued,
 they will never be responded to in a state-changing fashion,
 making retry support for them unnecessary.

 * Once a non-retry SEQUENCE is received for a given slot, using that
 as the basis for further sequence checking, with no further
 reference to the sequence value transferred by the source server.

11.15. Effecting File System Referrals

 Referrals are effected when an absent file system is encountered and
 one or more alternate locations are made available by the
 fs_locations or fs_locations_info attributes. The client will
 typically get an NFS4ERR_MOVED error, fetch the appropriate location
 information, and proceed to access the file system on a different
 server, even though it retains its logical position within the
 original namespace. Referrals differ from migration events in that
 they happen only when the client has not previously referenced the
 file system in question (so there is nothing to transition).
 Referrals can only come into effect when an absent file system is
 encountered at its root.

 The examples given in the sections below are somewhat artificial in
 that an actual client will not typically do a multi-component look
 up, but will have cached information regarding the upper levels of
 the name hierarchy. However, these examples are chosen to make the
 required behavior clear and easy to put within the scope of a small
 number of requests, without getting into a discussion of the details
 of how specific clients might choose to cache things.

11.15.1. Referral Example (LOOKUP)

 Let us suppose that the following COMPOUND is sent in an environment
 in which /this/is/the/path is absent from the target server. This
 may be for a number of reasons. It may be that the file system has
 moved, or it may be that the target server is functioning mainly, or
 solely, to refer clients to the servers on which various file systems
 are located.

 * PUTROOTFH

 * LOOKUP "this"

 * LOOKUP "is"

 * LOOKUP "the"

 * LOOKUP "path"

 * GETFH

 * GETATTR (fsid, fileid, size, time_modify)

 Under the given circumstances, the following will be the result.

 * PUTROOTFH --> NFS_OK. The current fh is now the root of the
 pseudo-fs.

 * LOOKUP "this" --> NFS_OK. The current fh is for /this and is
 within the pseudo-fs.

 * LOOKUP "is" --> NFS_OK. The current fh is for /this/is and is

 within the pseudo-fs.

 * LOOKUP "the" --> NFS_OK. The current fh is for /this/is/the and
 is within the pseudo-fs.

 * LOOKUP "path" --> NFS_OK. The current fh is for /this/is/the/path
 and is within a new, absent file system, but ... the client will
 never see the value of that fh.

 * GETFH --> NFS4ERR_MOVED. Fails because current fh is in an absent
 file system at the start of the operation, and the specification
 makes no exception for GETFH.

 * GETATTR (fsid, fileid, size, time_modify). Not executed because
 the failure of the GETFH stops processing of the COMPOUND.

 Given the failure of the GETFH, the client has the job of determining
 the root of the absent file system and where to find that file
 system, i.e., the server and path relative to that server’s root fh.
 Note that in this example, the client did not obtain filehandles and
 attribute information (e.g., fsid) for the intermediate directories,
 so that it would not be sure where the absent file system starts. It
 could be the case, for example, that /this/is/the is the root of the
 moved file system and that the reason that the look up of "path"
 succeeded is that the file system was not absent on that operation
 but was moved between the last LOOKUP and the GETFH (since COMPOUND
 is not atomic). Even if we had the fsids for all of the intermediate
 directories, we could have no way of knowing that /this/is/the/path
 was the root of a new file system, since we don’t yet have its fsid.

 In order to get the necessary information, let us re-send the chain
 of LOOKUPs with GETFHs and GETATTRs to at least get the fsids so we
 can be sure where the appropriate file system boundaries are. The
 client could choose to get fs_locations_info at the same time but in
 most cases the client will have a good guess as to where file system
 boundaries are (because of where NFS4ERR_MOVED was, and was not,
 received) making fetching of fs_locations_info unnecessary.

 OP01: PUTROOTFH --> NFS_OK

 * Current fh is root of pseudo-fs.

 OP02: GETATTR(fsid) --> NFS_OK

 * Just for completeness. Normally, clients will know the fsid of
 the pseudo-fs as soon as they establish communication with a
 server.

 OP03: LOOKUP "this" --> NFS_OK

 OP04: GETATTR(fsid) --> NFS_OK

 * Get current fsid to see where file system boundaries are. The
 fsid will be that for the pseudo-fs in this example, so no
 boundary.

 OP05: GETFH --> NFS_OK

 * Current fh is for /this and is within pseudo-fs.

 OP06: LOOKUP "is" --> NFS_OK

 * Current fh is for /this/is and is within pseudo-fs.

 OP07: GETATTR(fsid) --> NFS_OK

 * Get current fsid to see where file system boundaries are. The
 fsid will be that for the pseudo-fs in this example, so no
 boundary.

 OP08: GETFH --> NFS_OK

 * Current fh is for /this/is and is within pseudo-fs.

 OP09: LOOKUP "the" --> NFS_OK

 * Current fh is for /this/is/the and is within pseudo-fs.

 OP10: GETATTR(fsid) --> NFS_OK

 * Get current fsid to see where file system boundaries are. The
 fsid will be that for the pseudo-fs in this example, so no
 boundary.

 OP11: GETFH --> NFS_OK

 * Current fh is for /this/is/the and is within pseudo-fs.

 OP12: LOOKUP "path" --> NFS_OK

 * Current fh is for /this/is/the/path and is within a new, absent
 file system, but ...

 * The client will never see the value of that fh.

 OP13: GETATTR(fsid, fs_locations_info) --> NFS_OK

 * We are getting the fsid to know where the file system
 boundaries are. In this operation, the fsid will be different
 than that of the parent directory (which in turn was retrieved
 in OP10). Note that the fsid we are given will not necessarily
 be preserved at the new location. That fsid might be
 different, and in fact the fsid we have for this file system
 might be a valid fsid of a different file system on that new
 server.

 * In this particular case, we are pretty sure anyway that what
 has moved is /this/is/the/path rather than /this/is/the since
 we have the fsid of the latter and it is that of the pseudo-fs,
 which presumably cannot move. However, in other examples, we
 might not have this kind of information to rely on (e.g.,
 /this/is/the might be a non-pseudo file system separate from
 /this/is/the/path), so we need to have other reliable source
 information on the boundary of the file system that is moved.
 If, for example, the file system /this/is had moved, we would
 have a case of migration rather than referral, and once the
 boundaries of the migrated file system was clear we could fetch
 fs_locations_info.

 * We are fetching fs_locations_info because the fact that we got
 an NFS4ERR_MOVED at this point means that it is most likely
 that this is a referral and we need the destination. Even if
 it is the case that /this/is/the is a file system that has
 migrated, we will still need the location information for that
 file system.

 OP14: GETFH --> NFS4ERR_MOVED

 * Fails because current fh is in an absent file system at the
 start of the operation, and the specification makes no
 exception for GETFH. Note that this means the server will
 never send the client a filehandle from within an absent file
 system.

 Given the above, the client knows where the root of the absent file
 system is (/this/is/the/path) by noting where the change of fsid
 occurred (between "the" and "path"). The fs_locations_info attribute
 also gives the client the actual location of the absent file system,
 so that the referral can proceed. The server gives the client the
 bare minimum of information about the absent file system so that
 there will be very little scope for problems of conflict between
 information sent by the referring server and information of the file

 system’s home. No filehandles and very few attributes are present on
 the referring server, and the client can treat those it receives as
 transient information with the function of enabling the referral.

11.15.2. Referral Example (READDIR)

 Another context in which a client may encounter referrals is when it
 does a READDIR on a directory in which some of the sub-directories
 are the roots of absent file systems.

 Suppose such a directory is read as follows:

 * PUTROOTFH

 * LOOKUP "this"

 * LOOKUP "is"

 * LOOKUP "the"

 * READDIR (fsid, size, time_modify, mounted_on_fileid)

 In this case, because rdattr_error is not requested,
 fs_locations_info is not requested, and some of the attributes cannot
 be provided, the result will be an NFS4ERR_MOVED error on the
 READDIR, with the detailed results as follows:

 * PUTROOTFH --> NFS_OK. The current fh is at the root of the
 pseudo-fs.

 * LOOKUP "this" --> NFS_OK. The current fh is for /this and is
 within the pseudo-fs.

 * LOOKUP "is" --> NFS_OK. The current fh is for /this/is and is
 within the pseudo-fs.

 * LOOKUP "the" --> NFS_OK. The current fh is for /this/is/the and
 is within the pseudo-fs.

 * READDIR (fsid, size, time_modify, mounted_on_fileid) -->
 NFS4ERR_MOVED. Note that the same error would have been returned
 if /this/is/the had migrated, but it is returned because the
 directory contains the root of an absent file system.

 So now suppose that we re-send with rdattr_error:

 * PUTROOTFH

 * LOOKUP "this"

 * LOOKUP "is"

 * LOOKUP "the"

 * READDIR (rdattr_error, fsid, size, time_modify, mounted_on_fileid)

 The results will be:

 * PUTROOTFH --> NFS_OK. The current fh is at the root of the
 pseudo-fs.

 * LOOKUP "this" --> NFS_OK. The current fh is for /this and is
 within the pseudo-fs.

 * LOOKUP "is" --> NFS_OK. The current fh is for /this/is and is
 within the pseudo-fs.

 * LOOKUP "the" --> NFS_OK. The current fh is for /this/is/the and
 is within the pseudo-fs.

 * READDIR (rdattr_error, fsid, size, time_modify, mounted_on_fileid)

 --> NFS_OK. The attributes for directory entry with the component
 named "path" will only contain rdattr_error with the value
 NFS4ERR_MOVED, together with an fsid value and a value for
 mounted_on_fileid.

 Suppose we do another READDIR to get fs_locations_info (although we
 could have used a GETATTR directly, as in Section 11.15.1).

 * PUTROOTFH

 * LOOKUP "this"

 * LOOKUP "is"

 * LOOKUP "the"

 * READDIR (rdattr_error, fs_locations_info, mounted_on_fileid, fsid,
 size, time_modify)

 The results would be:

 * PUTROOTFH --> NFS_OK. The current fh is at the root of the
 pseudo-fs.

 * LOOKUP "this" --> NFS_OK. The current fh is for /this and is
 within the pseudo-fs.

 * LOOKUP "is" --> NFS_OK. The current fh is for /this/is and is
 within the pseudo-fs.

 * LOOKUP "the" --> NFS_OK. The current fh is for /this/is/the and
 is within the pseudo-fs.

 * READDIR (rdattr_error, fs_locations_info, mounted_on_fileid, fsid,
 size, time_modify) --> NFS_OK. The attributes will be as shown
 below.

 The attributes for the directory entry with the component named
 "path" will only contain:

 * rdattr_error (value: NFS_OK)

 * fs_locations_info

 * mounted_on_fileid (value: unique fileid within referring file
 system)

 * fsid (value: unique value within referring server)

 The attributes for entry "path" will not contain size or time_modify
 because these attributes are not available within an absent file
 system.

11.16. The Attribute fs_locations

 The fs_locations attribute is structured in the following way:

 struct fs_location4 {
 utf8str_cis server<>;
 pathname4 rootpath;
 };

 struct fs_locations4 {
 pathname4 fs_root;
 fs_location4 locations<>;
 };

 The fs_location4 data type is used to represent the location of a
 file system by providing a server name and the path to the root of
 the file system within that server’s namespace. When a set of
 servers have corresponding file systems at the same path within their

 namespaces, an array of server names may be provided. An entry in
 the server array is a UTF-8 string and represents one of a
 traditional DNS host name, IPv4 address, IPv6 address, or a zero-
 length string. An IPv4 or IPv6 address is represented as a universal
 address (see Section 3.3.9 and [12]), minus the netid, and either
 with or without the trailing ".p1.p2" suffix that represents the port
 number. If the suffix is omitted, then the default port, 2049,
 SHOULD be assumed. A zero-length string SHOULD be used to indicate
 the current address being used for the RPC call. It is not a
 requirement that all servers that share the same rootpath be listed
 in one fs_location4 instance. The array of server names is provided
 for convenience. Servers that share the same rootpath may also be
 listed in separate fs_location4 entries in the fs_locations
 attribute.

 The fs_locations4 data type and the fs_locations attribute each
 contain an array of such locations. Since the namespace of each
 server may be constructed differently, the "fs_root" field is
 provided. The path represented by fs_root represents the location of
 the file system in the current server’s namespace, i.e., that of the
 server from which the fs_locations attribute was obtained. The
 fs_root path is meant to aid the client by clearly referencing the
 root of the file system whose locations are being reported, no matter
 what object within the current file system the current filehandle
 designates. The fs_root is simply the pathname the client used to
 reach the object on the current server (i.e., the object to which the
 fs_locations attribute applies).

 When the fs_locations attribute is interrogated and there are no
 alternate file system locations, the server SHOULD return a zero-
 length array of fs_location4 structures, together with a valid
 fs_root.

 As an example, suppose there is a replicated file system located at
 two servers (servA and servB). At servA, the file system is located
 at path /a/b/c. At, servB the file system is located at path /x/y/z.
 If the client were to obtain the fs_locations value for the directory
 at /a/b/c/d, it might not necessarily know that the file system’s
 root is located in servA’s namespace at /a/b/c. When the client
 switches to servB, it will need to determine that the directory it
 first referenced at servA is now represented by the path /x/y/z/d on
 servB. To facilitate this, the fs_locations attribute provided by
 servA would have an fs_root value of /a/b/c and two entries in
 fs_locations. One entry in fs_locations will be for itself (servA)
 and the other will be for servB with a path of /x/y/z. With this
 information, the client is able to substitute /x/y/z for the /a/b/c
 at the beginning of its access path and construct /x/y/z/d to use for
 the new server.

 Note that there is no requirement that the number of components in
 each rootpath be the same; there is no relation between the number of
 components in rootpath or fs_root, and none of the components in a
 rootpath and fs_root have to be the same. In the above example, we
 could have had a third element in the locations array, with server
 equal to "servC" and rootpath equal to "/I/II", and a fourth element
 in locations with server equal to "servD" and rootpath equal to
 "/aleph/beth/gimel/daleth/he".

 The relationship between fs_root to a rootpath is that the client
 replaces the pathname indicated in fs_root for the current server for
 the substitute indicated in rootpath for the new server.

 For an example of a referred or migrated file system, suppose there
 is a file system located at serv1. At serv1, the file system is
 located at /az/buky/vedi/glagoli. The client finds that object at
 glagoli has migrated (or is a referral). The client gets the
 fs_locations attribute, which contains an fs_root of /az/buky/vedi/
 glagoli, and one element in the locations array, with server equal to
 serv2, and rootpath equal to /izhitsa/fita. The client replaces
 /az/buky/vedi/glagoli with /izhitsa/fita, and uses the latter
 pathname on serv2.

 Thus, the server MUST return an fs_root that is equal to the path the
 client used to reach the object to which the fs_locations attribute
 applies. Otherwise, the client cannot determine the new path to use
 on the new server.

 Since the fs_locations attribute lacks information defining various
 attributes of the various file system choices presented, it SHOULD
 only be interrogated and used when fs_locations_info is not
 available. When fs_locations is used, information about the specific
 locations should be assumed based on the following rules.

 The following rules are general and apply irrespective of the
 context.

 * All listed file system instances should be considered as of the
 same handle class, if and only if, the current fh_expire_type
 attribute does not include the FH4_VOL_MIGRATION bit. Note that
 in the case of referral, filehandle issues do not apply since
 there can be no filehandles known within the current file system,
 nor is there any access to the fh_expire_type attribute on the
 referring (absent) file system.

 * All listed file system instances should be considered as of the
 same fileid class if and only if the fh_expire_type attribute
 indicates persistent filehandles and does not include the
 FH4_VOL_MIGRATION bit. Note that in the case of referral, fileid
 issues do not apply since there can be no fileids known within the
 referring (absent) file system, nor is there any access to the
 fh_expire_type attribute.

 * All file system instances servers should be considered as of
 different change classes.

 For other class assignments, handling of file system transitions
 depends on the reasons for the transition:

 * When the transition is due to migration, that is, the client was
 directed to a new file system after receiving an NFS4ERR_MOVED
 error, the target should be treated as being of the same write-
 verifier class as the source.

 * When the transition is due to failover to another replica, that
 is, the client selected another replica without receiving an
 NFS4ERR_MOVED error, the target should be treated as being of a
 different write-verifier class from the source.

 The specific choices reflect typical implementation patterns for
 failover and controlled migration, respectively. Since other choices
 are possible and useful, this information is better obtained by using
 fs_locations_info. When a server implementation needs to communicate
 other choices, it MUST support the fs_locations_info attribute.

 See Section 21 for a discussion on the recommendations for the
 security flavor to be used by any GETATTR operation that requests the
 fs_locations attribute.

11.17. The Attribute fs_locations_info

 The fs_locations_info attribute is intended as a more functional
 replacement for the fs_locations attribute, which will continue to
 exist and be supported. Clients can use it to get a more complete
 set of data about alternative file system locations, including
 additional network paths to access replicas in use and additional
 replicas. When the server does not support fs_locations_info,
 fs_locations can be used to get a subset of the data. A server that
 supports fs_locations_info MUST support fs_locations as well.

 There is additional data present in fs_locations_info that is not
 available in fs_locations:

 * Attribute continuity information. This information will allow a
 client to select a replica that meets the transparency
 requirements of the applications accessing the data and to
 leverage optimizations due to the server guarantees of attribute
 continuity (e.g., if the change attribute of a file of the file
 system is continuous between multiple replicas, the client does
 not have to invalidate the file’s cache when switching to a
 different replica).

 * File system identity information that indicates when multiple
 replicas, from the client’s point of view, correspond to the same
 target file system, allowing them to be used interchangeably,
 without disruption, as distinct synchronized replicas of the same
 file data.

 Note that having two replicas with common identity information is
 distinct from the case of two (trunked) paths to the same replica.

 * Information that will bear on the suitability of various replicas,
 depending on the use that the client intends. For example, many
 applications need an absolutely up-to-date copy (e.g., those that
 write), while others may only need access to the most up-to-date
 copy reasonably available.

 * Server-derived preference information for replicas, which can be
 used to implement load-balancing while giving the client the
 entire file system list to be used in case the primary fails.

 The fs_locations_info attribute is structured similarly to the
 fs_locations attribute. A top-level structure (fs_locations_info4)
 contains the entire attribute including the root pathname of the file
 system and an array of lower-level structures that define replicas
 that share a common rootpath on their respective servers. The lower-
 level structure in turn (fs_locations_item4) contains a specific
 pathname and information on one or more individual network access
 paths. For that last, lowest level, fs_locations_info has an
 fs_locations_server4 structure that contains per-server-replica
 information in addition to the file system location entry. This per-
 server-replica information includes a nominally opaque array,
 fls_info, within which specific pieces of information are located at
 the specific indices listed below.

 Two fs_location_server4 entries that are within different
 fs_location_item4 structures are never trunkable, while two entries
 within in the same fs_location_item4 structure might or might not be
 trunkable. Two entries that are trunkable will have identical
 identity information, although, as noted above, the converse is not
 the case.

 The attribute will always contain at least a single
 fs_locations_server entry. Typically, there will be an entry with
 the FS4LIGF_CUR_REQ flag set, although in the case of a referral
 there will be no entry with that flag set.

 It should be noted that fs_locations_info attributes returned by
 servers for various replicas may differ for various reasons. One
 server may know about a set of replicas that are not known to other
 servers. Further, compatibility attributes may differ. Filehandles
 might be of the same class going from replica A to replica B but not
 going in the reverse direction. This might happen because the
 filehandles are the same, but replica B’s server implementation might
 not have provision to note and report that equivalence.

 The fs_locations_info attribute consists of a root pathname
 (fli_fs_root, just like fs_root in the fs_locations attribute),
 together with an array of fs_location_item4 structures. The
 fs_location_item4 structures in turn consist of a root pathname
 (fli_rootpath) together with an array (fli_entries) of elements of
 data type fs_locations_server4, all defined as follows.

 /*

 * Defines an individual server access path
 */
 struct fs_locations_server4 {
 int32_t fls_currency;
 opaque fls_info<>;
 utf8str_cis fls_server;
 };

 /*
 * Byte indices of items within
 * fls_info: flag fields, class numbers,
 * bytes indicating ranks and orders.
 */
 const FSLI4BX_GFLAGS = 0;
 const FSLI4BX_TFLAGS = 1;

 const FSLI4BX_CLSIMUL = 2;
 const FSLI4BX_CLHANDLE = 3;
 const FSLI4BX_CLFILEID = 4;
 const FSLI4BX_CLWRITEVER = 5;
 const FSLI4BX_CLCHANGE = 6;
 const FSLI4BX_CLREADDIR = 7;

 const FSLI4BX_READRANK = 8;
 const FSLI4BX_WRITERANK = 9;
 const FSLI4BX_READORDER = 10;
 const FSLI4BX_WRITEORDER = 11;

 /*
 * Bits defined within the general flag byte.
 */
 const FSLI4GF_WRITABLE = 0x01;
 const FSLI4GF_CUR_REQ = 0x02;
 const FSLI4GF_ABSENT = 0x04;
 const FSLI4GF_GOING = 0x08;
 const FSLI4GF_SPLIT = 0x10;

 /*
 * Bits defined within the transport flag byte.
 */
 const FSLI4TF_RDMA = 0x01;

 /*
 * Defines a set of replicas sharing
 * a common value of the rootpath
 * within the corresponding
 * single-server namespaces.
 */
 struct fs_locations_item4 {
 fs_locations_server4 fli_entries<>;
 pathname4 fli_rootpath;
 };

 /*
 * Defines the overall structure of
 * the fs_locations_info attribute.
 */
 struct fs_locations_info4 {
 uint32_t fli_flags;
 int32_t fli_valid_for;
 pathname4 fli_fs_root;
 fs_locations_item4 fli_items<>;
 };

 /*
 * Flag bits in fli_flags.
 */
 const FSLI4IF_VAR_SUB = 0x00000001;

 typedef fs_locations_info4 fattr4_fs_locations_info;

 As noted above, the fs_locations_info attribute, when supported, may
 be requested of absent file systems without causing NFS4ERR_MOVED to
 be returned. It is generally expected that it will be available for
 both present and absent file systems even if only a single
 fs_locations_server4 entry is present, designating the current
 (present) file system, or two fs_locations_server4 entries
 designating the previous location of an absent file system (the one
 just referenced) and its successor location. Servers are strongly
 urged to support this attribute on all file systems if they support
 it on any file system.

 The data presented in the fs_locations_info attribute may be obtained
 by the server in any number of ways, including specification by the
 administrator or by current protocols for transferring data among
 replicas and protocols not yet developed. NFSv4.1 only defines how
 this information is presented by the server to the client.

11.17.1. The fs_locations_server4 Structure

 The fs_locations_server4 structure consists of the following items in
 addition to the fls_server field, which specifies a network address
 or set of addresses to be used to access the specified file system.
 Note that both of these items (i.e., fls_currency and fls_info)
 specify attributes of the file system replica and should not be
 different when there are multiple fs_locations_server4 structures,
 each specifying a network path to the chosen replica, for the same
 replica.

 When these values are different in two fs_locations_server4
 structures, a client has no basis for choosing one over the other and
 is best off simply ignoring both entries, whether these entries apply
 to migration replication or referral. When there are more than two
 such entries, majority voting can be used to exclude a single
 erroneous entry from consideration. In the case in which trunking
 information is provided for a replica currently being accessed, the
 additional trunked addresses can be ignored while access continues on
 the address currently being used, even if the entry corresponding to
 that path might be considered invalid.

 * An indication of how up-to-date the file system is (fls_currency)
 in seconds. This value is relative to the master copy. A
 negative value indicates that the server is unable to give any
 reasonably useful value here. A value of zero indicates that the
 file system is the actual writable data or a reliably coherent and
 fully up-to-date copy. Positive values indicate how out-of-date
 this copy can normally be before it is considered for update.
 Such a value is not a guarantee that such updates will always be
 performed on the required schedule but instead serves as a hint
 about how far the copy of the data would be expected to be behind
 the most up-to-date copy.

 * A counted array of one-byte values (fls_info) containing
 information about the particular file system instance. This data
 includes general flags, transport capability flags, file system
 equivalence class information, and selection priority information.
 The encoding will be discussed below.

 * The server string (fls_server). For the case of the replica
 currently being accessed (via GETATTR), a zero-length string MAY
 be used to indicate the current address being used for the RPC
 call. The fls_server field can also be an IPv4 or IPv6 address,
 formatted the same way as an IPv4 or IPv6 address in the "server"
 field of the fs_location4 data type (see Section 11.16).

 With the exception of the transport-flag field (at offset
 FSLI4BX_TFLAGS with the fls_info array), all of this data defined in
 this specification applies to the replica specified by the entry,
 rather than the specific network path used to access it. The
 classification of data in extensions to this data is discussed below.

 Data within the fls_info array is in the form of 8-bit data items

 with constants giving the offsets within the array of various values
 describing this particular file system instance. This style of
 definition was chosen, in preference to explicit XDR structure
 definitions for these values, for a number of reasons.

 * The kinds of data in the fls_info array, representing flags, file
 system classes, and priorities among sets of file systems
 representing the same data, are such that 8 bits provide a quite
 acceptable range of values. Even where there might be more than
 256 such file system instances, having more than 256 distinct
 classes or priorities is unlikely.

 * Explicit definition of the various specific data items within XDR
 would limit expandability in that any extension within would
 require yet another attribute, leading to specification and
 implementation clumsiness. In the context of the NFSv4 extension
 model in effect at the time fs_locations_info was designed (i.e.,
 that which is described in RFC 5661 [66]), this would necessitate
 a new minor version to effect any Standards Track extension to the
 data in fls_info.

 The set of fls_info data is subject to expansion in a future minor
 version or in a Standards Track RFC within the context of a single
 minor version. The server SHOULD NOT send and the client MUST NOT
 use indices within the fls_info array or flag bits that are not
 defined in Standards Track RFCs.

 In light of the new extension model defined in RFC 8178 [67] and the
 fact that the individual items within fls_info are not explicitly
 referenced in the XDR, the following practices should be followed
 when extending or otherwise changing the structure of the data
 returned in fls_info within the scope of a single minor version:

 * All extensions need to be described by Standards Track documents.
 There is no need for such documents to be marked as updating RFC
 5661 [66] or this document.

 * It needs to be made clear whether the information in any added
 data items applies to the replica specified by the entry or to the
 specific network paths specified in the entry.

 * There needs to be a reliable way defined to determine whether the
 server is aware of the extension. This may be based on the length
 field of the fls_info array, but it is more flexible to provide
 fs-scope or server-scope attributes to indicate what extensions
 are provided.

 This encoding scheme can be adapted to the specification of multi-
 byte numeric values, even though none are currently defined. If
 extensions are made via Standards Track RFCs, multi-byte quantities
 will be encoded as a range of bytes with a range of indices, with the
 byte interpreted in big-endian byte order. Further, any such index
 assignments will be constrained by the need for the relevant
 quantities not to cross XDR word boundaries.

 The fls_info array currently contains:

 * Two 8-bit flag fields, one devoted to general file-system
 characteristics and a second reserved for transport-related
 capabilities.

 * Six 8-bit class values that define various file system equivalence
 classes as explained below.

 * Four 8-bit priority values that govern file system selection as
 explained below.

 The general file system characteristics flag (at byte index
 FSLI4BX_GFLAGS) has the following bits defined within it:

 * FSLI4GF_WRITABLE indicates that this file system target is

 writable, allowing it to be selected by clients that may need to
 write on this file system. When the current file system instance
 is writable and is defined as of the same simultaneous use class
 (as specified by the value at index FSLI4BX_CLSIMUL) to which the
 client was previously writing, then it must incorporate within its
 data any committed write made on the source file system instance.
 See Section 11.11.6, which discusses the write-verifier class.
 While there is no harm in not setting this flag for a file system
 that turns out to be writable, turning the flag on for a read-only
 file system can cause problems for clients that select a migration
 or replication target based on the flag and then find themselves
 unable to write.

 * FSLI4GF_CUR_REQ indicates that this replica is the one on which
 the request is being made. Only a single server entry may have
 this flag set and, in the case of a referral, no entry will have
 it set. Note that this flag might be set even if the request was
 made on a network access path different from any of those
 specified in the current entry.

 * FSLI4GF_ABSENT indicates that this entry corresponds to an absent
 file system replica. It can only be set if FSLI4GF_CUR_REQ is
 set. When both such bits are set, it indicates that a file system
 instance is not usable but that the information in the entry can
 be used to determine the sorts of continuity available when
 switching from this replica to other possible replicas. Since
 this bit can only be true if FSLI4GF_CUR_REQ is true, the value
 could be determined using the fs_status attribute, but the
 information is also made available here for the convenience of the
 client. An entry with this bit, since it represents a true file
 system (albeit absent), does not appear in the event of a
 referral, but only when a file system has been accessed at this
 location and has subsequently been migrated.

 * FSLI4GF_GOING indicates that a replica, while still available,
 should not be used further. The client, if using it, should make
 an orderly transfer to another file system instance as
 expeditiously as possible. It is expected that file systems going
 out of service will be announced as FSLI4GF_GOING some time before
 the actual loss of service. It is also expected that the
 fli_valid_for value will be sufficiently small to allow clients to
 detect and act on scheduled events, while large enough that the
 cost of the requests to fetch the fs_locations_info values will
 not be excessive. Values on the order of ten minutes seem
 reasonable.

 When this flag is seen as part of a transition into a new file
 system, a client might choose to transfer immediately to another
 replica, or it may reference the current file system and only
 transition when a migration event occurs. Similarly, when this
 flag appears as a replica in the referral, clients would likely
 avoid being referred to this instance whenever there is another
 choice.

 This flag, like the other items within fls_info, applies to the
 replica rather than to a particular path to that replica. When it
 appears, a transition to a new replica, rather than to a different
 path to the same replica, is indicated.

 * FSLI4GF_SPLIT indicates that when a transition occurs from the
 current file system instance to this one, the replacement may
 consist of multiple file systems. In this case, the client has to
 be prepared for the possibility that objects on the same file
 system before migration will be on different ones after. Note
 that FSLI4GF_SPLIT is not incompatible with the file systems
 belonging to the same fileid class since, if one has a set of
 fileids that are unique within a file system, each subset assigned
 to a smaller file system after migration would not have any
 conflicts internal to that file system.

 A client, in the case of a split file system, will interrogate

 existing files with which it has continuing connection (it is free
 to simply forget cached filehandles). If the client remembers the
 directory filehandle associated with each open file, it may
 proceed upward using LOOKUPP to find the new file system
 boundaries. Note that in the event of a referral, there will not
 be any such files and so these actions will not be performed.
 Instead, a reference to a portion of the original file system now
 split off into other file systems will encounter an fsid change
 and possibly a further referral.

 Once the client recognizes that one file system has been split
 into two, it can prevent the disruption of running applications by
 presenting the two file systems as a single one until a convenient
 point to recognize the transition, such as a restart. This would
 require a mapping from the server’s fsids to fsids as seen by the
 client, but this is already necessary for other reasons. As noted
 above, existing fileids within the two descendant file systems
 will not conflict. Providing non-conflicting fileids for newly
 created files on the split file systems is the responsibility of
 the server (or servers working in concert). The server can encode
 filehandles such that filehandles generated before the split event
 can be discerned from those generated after the split, allowing
 the server to determine when the need for emulating two file
 systems as one is over.

 Although it is possible for this flag to be present in the event
 of referral, it would generally be of little interest to the
 client, since the client is not expected to have information
 regarding the current contents of the absent file system.

 The transport-flag field (at byte index FSLI4BX_TFLAGS) contains the
 following bits related to the transport capabilities of the specific
 network path(s) specified by the entry:

 * FSLI4TF_RDMA indicates that any specified network paths provide
 NFSv4.1 clients access using an RDMA-capable transport.

 Attribute continuity and file system identity information are
 expressed by defining equivalence relations on the sets of file
 systems presented to the client. Each such relation is expressed as
 a set of file system equivalence classes. For each relation, a file
 system has an 8-bit class number. Two file systems belong to the
 same class if both have identical non-zero class numbers. Zero is
 treated as non-matching. Most often, the relevant question for the
 client will be whether a given replica is identical to / continuous
 with the current one in a given respect, but the information should
 be available also as to whether two other replicas match in that
 respect as well.

 The following fields specify the file system’s class numbers for the
 equivalence relations used in determining the nature of file system
 transitions. See Sections 11.9 through 11.14 and their various
 subsections for details about how this information is to be used.
 Servers may assign these values as they wish, so long as file system
 instances that share the same value have the specified relationship
 to one another; conversely, file systems that have the specified
 relationship to one another share a common class value. As each
 instance entry is added, the relationships of this instance to
 previously entered instances can be consulted, and if one is found
 that bears the specified relationship, that entry’s class value can
 be copied to the new entry. When no such previous entry exists, a
 new value for that byte index (not previously used) can be selected,
 most likely by incrementing the value of the last class value
 assigned for that index.

 * The field with byte index FSLI4BX_CLSIMUL defines the
 simultaneous-use class for the file system.

 * The field with byte index FSLI4BX_CLHANDLE defines the handle
 class for the file system.

 * The field with byte index FSLI4BX_CLFILEID defines the fileid
 class for the file system.

 * The field with byte index FSLI4BX_CLWRITEVER defines the write-
 verifier class for the file system.

 * The field with byte index FSLI4BX_CLCHANGE defines the change
 class for the file system.

 * The field with byte index FSLI4BX_CLREADDIR defines the readdir
 class for the file system.

 Server-specified preference information is also provided via 8-bit
 values within the fls_info array. The values provide a rank and an
 order (see below) to be used with separate values specifiable for the
 cases of read-only and writable file systems. These values are
 compared for different file systems to establish the server-specified
 preference, with lower values indicating "more preferred".

 Rank is used to express a strict server-imposed ordering on clients,
 with lower values indicating "more preferred". Clients should
 attempt to use all replicas with a given rank before they use one
 with a higher rank. Only if all of those file systems are
 unavailable should the client proceed to those of a higher rank.
 Because specifying a rank will override client preferences, servers
 should be conservative about using this mechanism, particularly when
 the environment is one in which client communication characteristics
 are neither tightly controlled nor visible to the server.

 Within a rank, the order value is used to specify the server’s
 preference to guide the client’s selection when the client’s own
 preferences are not controlling, with lower values of order
 indicating "more preferred". If replicas are approximately equal in
 all respects, clients should defer to the order specified by the
 server. When clients look at server latency as part of their
 selection, they are free to use this criterion, but it is suggested
 that when latency differences are not significant, the server-
 specified order should guide selection.

 * The field at byte index FSLI4BX_READRANK gives the rank value to
 be used for read-only access.

 * The field at byte index FSLI4BX_READORDER gives the order value to
 be used for read-only access.

 * The field at byte index FSLI4BX_WRITERANK gives the rank value to
 be used for writable access.

 * The field at byte index FSLI4BX_WRITEORDER gives the order value
 to be used for writable access.

 Depending on the potential need for write access by a given client,
 one of the pairs of rank and order values is used. The read rank and
 order should only be used if the client knows that only reading will
 ever be done or if it is prepared to switch to a different replica in
 the event that any write access capability is required in the future.

11.17.2. The fs_locations_info4 Structure

 The fs_locations_info4 structure, encoding the fs_locations_info
 attribute, contains the following:

 * The fli_flags field, which contains general flags that affect the
 interpretation of this fs_locations_info4 structure and all
 fs_locations_item4 structures within it. The only flag currently
 defined is FSLI4IF_VAR_SUB. All bits in the fli_flags field that
 are not defined should always be returned as zero.

 * The fli_fs_root field, which contains the pathname of the root of
 the current file system on the current server, just as it does in
 the fs_locations4 structure.

 * An array called fli_items of fs_locations4_item structures, which
 contain information about replicas of the current file system.
 Where the current file system is actually present, or has been
 present, i.e., this is not a referral situation, one of the
 fs_locations_item4 structures will contain an fs_locations_server4
 for the current server. This structure will have FSLI4GF_ABSENT
 set if the current file system is absent, i.e., normal access to
 it will return NFS4ERR_MOVED.

 * The fli_valid_for field specifies a time in seconds for which it
 is reasonable for a client to use the fs_locations_info attribute
 without refetch. The fli_valid_for value does not provide a
 guarantee of validity since servers can unexpectedly go out of
 service or become inaccessible for any number of reasons. Clients
 are well-advised to refetch this information for an actively
 accessed file system at every fli_valid_for seconds. This is
 particularly important when file system replicas may go out of
 service in a controlled way using the FSLI4GF_GOING flag to
 communicate an ongoing change. The server should set
 fli_valid_for to a value that allows well-behaved clients to
 notice the FSLI4GF_GOING flag and make an orderly switch before
 the loss of service becomes effective. If this value is zero,
 then no refetch interval is appropriate and the client need not
 refetch this data on any particular schedule. In the event of a
 transition to a new file system instance, a new value of the
 fs_locations_info attribute will be fetched at the destination.
 It is to be expected that this may have a different fli_valid_for
 value, which the client should then use in the same fashion as the
 previous value. Because a refetch of the attribute causes
 information from all component entries to be refetched, the server
 will typically provide a low value for this field if any of the
 replicas are likely to go out of service in a short time frame.
 Note that, because of the ability of the server to return
 NFS4ERR_MOVED to trigger the use of different paths, when
 alternate trunked paths are available, there is generally no need
 to use low values of fli_valid_for in connection with the
 management of alternate paths to the same replica.

 The FSLI4IF_VAR_SUB flag within fli_flags controls whether variable
 substitution is to be enabled. See Section 11.17.3 for an
 explanation of variable substitution.

11.17.3. The fs_locations_item4 Structure

 The fs_locations_item4 structure contains a pathname (in the field
 fli_rootpath) that encodes the path of the target file system
 replicas on the set of servers designated by the included
 fs_locations_server4 entries. The precise manner in which this
 target location is specified depends on the value of the
 FSLI4IF_VAR_SUB flag within the associated fs_locations_info4
 structure.

 If this flag is not set, then fli_rootpath simply designates the
 location of the target file system within each server’s single-server
 namespace just as it does for the rootpath within the fs_location4
 structure. When this bit is set, however, component entries of a
 certain form are subject to client-specific variable substitution so
 as to allow a degree of namespace non-uniformity in order to
 accommodate the selection of client-specific file system targets to
 adapt to different client architectures or other characteristics.

 When such substitution is in effect, a variable beginning with the
 string "${" and ending with the string "}" and containing a colon is
 to be replaced by the client-specific value associated with that
 variable. The string "unknown" should be used by the client when it
 has no value for such a variable. The pathname resulting from such
 substitutions is used to designate the target file system, so that
 different clients may have different file systems, corresponding to
 that location in the multi-server namespace.

 As mentioned above, such substituted pathname variables contain a
 colon. The part before the colon is to be a DNS domain name, and the
 part after is to be a case-insensitive alphanumeric string.

 Where the domain is "ietf.org", only variable names defined in this
 document or subsequent Standards Track RFCs are subject to such
 substitution. Organizations are free to use their domain names to
 create their own sets of client-specific variables, to be subject to
 such substitution. In cases where such variables are intended to be
 used more broadly than a single organization, publication of an
 Informational RFC defining such variables is RECOMMENDED.

 The variable ${ietf.org:CPU_ARCH} is used to denote that the CPU
 architecture object files are compiled. This specification does not
 limit the acceptable values (except that they must be valid UTF-8
 strings), but such values as "x86", "x86_64", and "sparc" would be
 expected to be used in line with industry practice.

 The variable ${ietf.org:OS_TYPE} is used to denote the operating
 system, and thus the kernel and library APIs, for which code might be
 compiled. This specification does not limit the acceptable values
 (except that they must be valid UTF-8 strings), but such values as
 "linux" and "freebsd" would be expected to be used in line with
 industry practice.

 The variable ${ietf.org:OS_VERSION} is used to denote the operating
 system version, and thus the specific details of versioned
 interfaces, for which code might be compiled. This specification
 does not limit the acceptable values (except that they must be valid
 UTF-8 strings). However, combinations of numbers and letters with
 interspersed dots would be expected to be used in line with industry
 practice, with the details of the version format depending on the
 specific value of the variable ${ietf.org:OS_TYPE} with which it is
 used.

 Use of these variables could result in the direction of different
 clients to different file systems on the same server, as appropriate
 to particular clients. In cases in which the target file systems are
 located on different servers, a single server could serve as a
 referral point so that each valid combination of variable values
 would designate a referral hosted on a single server, with the
 targets of those referrals on a number of different servers.

 Because namespace administration is affected by the values selected
 to substitute for various variables, clients should provide
 convenient means of determining what variable substitutions a client
 will implement, as well as, where appropriate, providing means to
 control the substitutions to be used. The exact means by which this
 will be done is outside the scope of this specification.

 Although variable substitution is most suitable for use in the
 context of referrals, it may be used in the context of replication
 and migration. If it is used in these contexts, the server must
 ensure that no matter what values the client presents for the
 substituted variables, the result is always a valid successor file
 system instance to that from which a transition is occurring, i.e.,
 that the data is identical or represents a later image of a writable
 file system.

 Note that when fli_rootpath is a null pathname (that is, one with
 zero components), the file system designated is at the root of the
 specified server, whether or not the FSLI4IF_VAR_SUB flag within the
 associated fs_locations_info4 structure is set.

11.18. The Attribute fs_status

 In an environment in which multiple copies of the same basic set of
 data are available, information regarding the particular source of
 such data and the relationships among different copies can be very
 helpful in providing consistent data to applications.

 enum fs4_status_type {
 STATUS4_FIXED = 1,
 STATUS4_UPDATED = 2,
 STATUS4_VERSIONED = 3,
 STATUS4_WRITABLE = 4,
 STATUS4_REFERRAL = 5
 };

 struct fs4_status {
 bool fss_absent;
 fs4_status_type fss_type;
 utf8str_cs fss_source;
 utf8str_cs fss_current;
 int32_t fss_age;
 nfstime4 fss_version;
 };

 The boolean fss_absent indicates whether the file system is currently
 absent. This value will be set if the file system was previously
 present and becomes absent, or if the file system has never been
 present and the type is STATUS4_REFERRAL. When this boolean is set
 and the type is not STATUS4_REFERRAL, the remaining information in
 the fs4_status reflects that last valid when the file system was
 present.

 The fss_type field indicates the kind of file system image
 represented. This is of particular importance when using the version
 values to determine appropriate succession of file system images.
 When fss_absent is set, and the file system was previously present,
 the value of fss_type reflected is that when the file was last
 present. Five values are distinguished:

 * STATUS4_FIXED, which indicates a read-only image in the sense that
 it will never change. The possibility is allowed that, as a
 result of migration or switch to a different image, changed data
 can be accessed, but within the confines of this instance, no
 change is allowed. The client can use this fact to cache
 aggressively.

 * STATUS4_VERSIONED, which indicates that the image, like the
 STATUS4_UPDATED case, is updated externally, but it provides a
 guarantee that the server will carefully update an associated
 version value so that the client can protect itself from a
 situation in which it reads data from one version of the file
 system and then later reads data from an earlier version of the
 same file system. See below for a discussion of how this can be
 done.

 * STATUS4_UPDATED, which indicates an image that cannot be updated
 by the user writing to it but that may be changed externally,
 typically because it is a periodically updated copy of another
 writable file system somewhere else. In this case, version
 information is not provided, and the client does not have the
 responsibility of making sure that this version only advances upon
 a file system instance transition. In this case, it is the
 responsibility of the server to make sure that the data presented
 after a file system instance transition is a proper successor
 image and includes all changes seen by the client and any change
 made before all such changes.

 * STATUS4_WRITABLE, which indicates that the file system is an
 actual writable one. The client need not, of course, actually
 write to the file system, but once it does, it should not accept a
 transition to anything other than a writable instance of that same
 file system.

 * STATUS4_REFERRAL, which indicates that the file system in question
 is absent and has never been present on this server.

 Note that in the STATUS4_UPDATED and STATUS4_VERSIONED cases, the
 server is responsible for the appropriate handling of locks that are

 inconsistent with external changes to delegations. If a server gives
 out delegations, they SHOULD be recalled before an inconsistent
 change is made to the data, and MUST be revoked if this is not
 possible. Similarly, if an OPEN is inconsistent with data that is
 changed (the OPEN has OPEN4_SHARE_DENY_WRITE/OPEN4_SHARE_DENY_BOTH
 and the data is changed), that OPEN SHOULD be considered
 administratively revoked.

 The opaque strings fss_source and fss_current provide a way of
 presenting information about the source of the file system image
 being present. It is not intended that the client do anything with
 this information other than make it available to administrative
 tools. It is intended that this information be helpful when
 researching possible problems with a file system image that might
 arise when it is unclear if the correct image is being accessed and,
 if not, how that image came to be made. This kind of diagnostic
 information will be helpful, if, as seems likely, copies of file
 systems are made in many different ways (e.g., simple user-level
 copies, file-system-level point-in-time copies, clones of the
 underlying storage), under a variety of administrative arrangements.
 In such environments, determining how a given set of data was
 constructed can be very helpful in resolving problems.

 The opaque string fss_source is used to indicate the source of a
 given file system with the expectation that tools capable of creating
 a file system image propagate this information, when possible. It is
 understood that this may not always be possible since a user-level
 copy may be thought of as creating a new data set and the tools used
 may have no mechanism to propagate this data. When a file system is
 initially created, it is desirable to associate with it data
 regarding how the file system was created, where it was created, who
 created it, etc. Making this information available in this attribute
 in a human-readable string will be helpful for applications and
 system administrators and will also serve to make it available when
 the original file system is used to make subsequent copies.

 The opaque string fss_current should provide whatever information is
 available about the source of the current copy. Such information
 includes the tool creating it, any relevant parameters to that tool,
 the time at which the copy was done, the user making the change, the
 server on which the change was made, etc. All information should be
 in a human-readable string.

 The field fss_age provides an indication of how out-of-date the file
 system currently is with respect to its ultimate data source (in case
 of cascading data updates). This complements the fls_currency field
 of fs_locations_server4 (see Section 11.17) in the following way: the
 information in fls_currency gives a bound for how out of date the
 data in a file system might typically get, while the value in fss_age
 gives a bound on how out-of-date that data actually is. Negative
 values imply that no information is available. A zero means that
 this data is known to be current. A positive value means that this
 data is known to be no older than that number of seconds with respect
 to the ultimate data source. Using this value, the client may be
 able to decide that a data copy is too old, so that it may search for
 a newer version to use.

 The fss_version field provides a version identification, in the form
 of a time value, such that successive versions always have later time
 values. When the fs_type is anything other than STATUS4_VERSIONED,
 the server may provide such a value, but there is no guarantee as to
 its validity and clients will not use it except to provide additional
 information to add to fss_source and fss_current.

 When fss_type is STATUS4_VERSIONED, servers SHOULD provide a value of
 fss_version that progresses monotonically whenever any new version of
 the data is established. This allows the client, if reliable image
 progression is important to it, to fetch this attribute as part of
 each COMPOUND where data or metadata from the file system is used.

 When it is important to the client to make sure that only valid

 successor images are accepted, it must make sure that it does not
 read data or metadata from the file system without updating its sense
 of the current state of the image. This is to avoid the possibility
 that the fs_status that the client holds will be one for an earlier
 image, which would cause the client to accept a new file system
 instance that is later than that but still earlier than the updated
 data read by the client.

 In order to accept valid images reliably, the client must do a
 GETATTR of the fs_status attribute that follows any interrogation of
 data or metadata within the file system in question. Often this is
 most conveniently done by appending such a GETATTR after all other
 operations that reference a given file system. When errors occur
 between reading file system data and performing such a GETATTR, care
 must be exercised to make sure that the data in question is not used
 before obtaining the proper fs_status value. In this connection,
 when an OPEN is done within such a versioned file system and the
 associated GETATTR of fs_status is not successfully completed, the
 open file in question must not be accessed until that fs_status is
 fetched.

 The procedure above will ensure that before using any data from the
 file system the client has in hand a newly-fetched current version of
 the file system image. Multiple values for multiple requests in
 flight can be resolved by assembling them into the required partial
 order (and the elements should form a total order within the partial
 order) and using the last. The client may then, when switching among
 file system instances, decline to use an instance that does not have
 an fss_type of STATUS4_VERSIONED or whose fss_version field is
 earlier than the last one obtained from the predecessor file system
 instance.

12. Parallel NFS (pNFS)

12.1. Introduction

 pNFS is an OPTIONAL feature within NFSv4.1; the pNFS feature set
 allows direct client access to the storage devices containing file
 data. When file data for a single NFSv4 server is stored on multiple
 and/or higher-throughput storage devices (by comparison to the
 server’s throughput capability), the result can be significantly
 better file access performance. The relationship among multiple
 clients, a single server, and multiple storage devices for pNFS
 (server and clients have access to all storage devices) is shown in
 Figure 1.

 +-----------+
 |+-----------+ +-----------+
 ||+-----------+ | |
 ||| | NFSv4.1 + pNFS | |
 +|| Clients |<------------------------------>| Server |
 +| | | |
 +-----------+ | |
 ||| +-----------+
 ||| | | |
 ||| |
 ||| Storage +-----------+ |
 ||| Protocol |+-----------+ |
 ||+----------------||+-----------+ Control |
 |+-----------------||| | Protocol|
 +------------------+|| Storage |------------+
 +| Devices |
 +-----------+

 Figure 1

 In this model, the clients, server, and storage devices are
 responsible for managing file access. This is in contrast to NFSv4
 without pNFS, where it is primarily the server’s responsibility; some
 of this responsibility may be delegated to the client under strictly
 specified conditions. See Section 12.2.5 for a discussion of the

 Storage Protocol. See Section 12.2.6 for a discussion of the Control
 Protocol.

 pNFS takes the form of OPTIONAL operations that manage protocol
 objects called ’layouts’ (Section 12.2.7) that contain a byte-range
 and storage location information. The layout is managed in a similar
 fashion as NFSv4.1 data delegations. For example, the layout is
 leased, recallable, and revocable. However, layouts are distinct
 abstractions and are manipulated with new operations. When a client
 holds a layout, it is granted the ability to directly access the
 byte-range at the storage location specified in the layout.

 There are interactions between layouts and other NFSv4.1 abstractions
 such as data delegations and byte-range locking. Delegation issues
 are discussed in Section 12.5.5. Byte-range locking issues are
 discussed in Sections 12.2.9 and 12.5.1.

12.2. pNFS Definitions

 NFSv4.1’s pNFS feature provides parallel data access to a file system
 that stripes its content across multiple storage servers. The first
 instantiation of pNFS, as part of NFSv4.1, separates the file system
 protocol processing into two parts: metadata processing and data
 processing. Data consist of the contents of regular files that are
 striped across storage servers. Data striping occurs in at least two
 ways: on a file-by-file basis and, within sufficiently large files,
 on a block-by-block basis. In contrast, striped access to metadata
 by pNFS clients is not provided in NFSv4.1, even though the file
 system back end of a pNFS server might stripe metadata. Metadata
 consist of everything else, including the contents of non-regular
 files (e.g., directories); see Section 12.2.1. The metadata
 functionality is implemented by an NFSv4.1 server that supports pNFS
 and the operations described in Section 18; such a server is called a
 metadata server (Section 12.2.2).

 The data functionality is implemented by one or more storage devices,
 each of which are accessed by the client via a storage protocol. A
 subset (defined in Section 13.6) of NFSv4.1 is one such storage
 protocol. New terms are introduced to the NFSv4.1 nomenclature and
 existing terms are clarified to allow for the description of the pNFS
 feature.

12.2.1. Metadata

 Information about a file system object, such as its name, location
 within the namespace, owner, ACL, and other attributes. Metadata may
 also include storage location information, and this will vary based
 on the underlying storage mechanism that is used.

12.2.2. Metadata Server

 An NFSv4.1 server that supports the pNFS feature. A variety of
 architectural choices exist for the metadata server and its use of
 file system information held at the server. Some servers may contain
 metadata only for file objects residing at the metadata server, while
 the file data resides on associated storage devices. Other metadata
 servers may hold both metadata and a varying degree of file data.

12.2.3. pNFS Client

 An NFSv4.1 client that supports pNFS operations and supports at least
 one storage protocol for performing I/O to storage devices.

12.2.4. Storage Device

 A storage device stores a regular file’s data, but leaves metadata
 management to the metadata server. A storage device could be another
 NFSv4.1 server, an object-based storage device (OSD), a block device
 accessed over a System Area Network (SAN, e.g., either FiberChannel
 or iSCSI SAN), or some other entity.

12.2.5. Storage Protocol

 As noted in Figure 1, the storage protocol is the method used by the
 client to store and retrieve data directly from the storage devices.

 The NFSv4.1 pNFS feature has been structured to allow for a variety
 of storage protocols to be defined and used. One example storage
 protocol is NFSv4.1 itself (as documented in Section 13). Other
 options for the storage protocol are described elsewhere and include:

 * Block/volume protocols such as Internet SCSI (iSCSI) [56] and FCP
 [57]. The block/volume protocol support can be independent of the
 addressing structure of the block/volume protocol used, allowing
 more than one protocol to access the same file data and enabling
 extensibility to other block/volume protocols. See [48] for a
 layout specification that allows pNFS to use block/volume storage
 protocols.

 * Object protocols such as OSD over iSCSI or Fibre Channel [58].
 See [47] for a layout specification that allows pNFS to use object
 storage protocols.

 It is possible that various storage protocols are available to both
 client and server and it may be possible that a client and server do
 not have a matching storage protocol available to them. Because of
 this, the pNFS server MUST support normal NFSv4.1 access to any file
 accessible by the pNFS feature; this will allow for continued
 interoperability between an NFSv4.1 client and server.

12.2.6. Control Protocol

 As noted in Figure 1, the control protocol is used by the exported
 file system between the metadata server and storage devices.
 Specification of such protocols is outside the scope of the NFSv4.1
 protocol. Such control protocols would be used to control activities
 such as the allocation and deallocation of storage, the management of
 state required by the storage devices to perform client access
 control, and, depending on the storage protocol, the enforcement of
 authentication and authorization so that restrictions that would be
 enforced by the metadata server are also enforced by the storage
 device.

 A particular control protocol is not REQUIRED by NFSv4.1 but
 requirements are placed on the control protocol for maintaining
 attributes like modify time, the change attribute, and the end-of-
 file (EOF) position. Note that if pNFS is layered over a clustered,
 parallel file system (e.g., PVFS [59]), the mechanisms that enable
 clustering and parallelism in that file system can be considered the
 control protocol.

12.2.7. Layout Types

 A layout describes the mapping of a file’s data to the storage
 devices that hold the data. A layout is said to belong to a specific
 layout type (data type layouttype4, see Section 3.3.13). The layout
 type allows for variants to handle different storage protocols, such
 as those associated with block/volume [48], object [47], and file
 (Section 13) layout types. A metadata server, along with its control
 protocol, MUST support at least one layout type. A private sub-range
 of the layout type namespace is also defined. Values from the
 private layout type range MAY be used for internal testing or
 experimentation (see Section 3.3.13).

 As an example, the organization of the file layout type could be an
 array of tuples (e.g., device ID, filehandle), along with a
 definition of how the data is stored across the devices (e.g.,
 striping). A block/volume layout might be an array of tuples that
 store <device ID, block number, block count> along with information
 about block size and the associated file offset of the block number.
 An object layout might be an array of tuples <device ID, object ID>
 and an additional structure (i.e., the aggregation map) that defines

 how the logical byte sequence of the file data is serialized into the
 different objects. Note that the actual layouts are typically more
 complex than these simple expository examples.

 Requests for pNFS-related operations will often specify a layout
 type. Examples of such operations are GETDEVICEINFO and LAYOUTGET.
 The response for these operations will include structures such as a
 device_addr4 or a layout4, each of which includes a layout type
 within it. The layout type sent by the server MUST always be the
 same one requested by the client. When a server sends a response
 that includes a different layout type, the client SHOULD ignore the
 response and behave as if the server had returned an error response.

12.2.8. Layout

 A layout defines how a file’s data is organized on one or more
 storage devices. There are many potential layout types; each of the
 layout types are differentiated by the storage protocol used to
 access data and by the aggregation scheme that lays out the file data
 on the underlying storage devices. A layout is precisely identified
 by the tuple <client ID, filehandle, layout type, iomode, range>,
 where filehandle refers to the filehandle of the file on the metadata
 server.

 It is important to define when layouts overlap and/or conflict with
 each other. For two layouts with overlapping byte-ranges to actually
 overlap each other, both layouts must be of the same layout type,
 correspond to the same filehandle, and have the same iomode. Layouts
 conflict when they overlap and differ in the content of the layout
 (i.e., the storage device/file mapping parameters differ). Note that
 differing iomodes do not lead to conflicting layouts. It is
 permissible for layouts with different iomodes, pertaining to the
 same byte-range, to be held by the same client. An example of this
 would be copy-on-write functionality for a block/volume layout type.

12.2.9. Layout Iomode

 The layout iomode (data type layoutiomode4, see Section 3.3.20)
 indicates to the metadata server the client’s intent to perform
 either just READ operations or a mixture containing READ and WRITE
 operations. For certain layout types, it is useful for a client to
 specify this intent at the time it sends LAYOUTGET (Section 18.43).
 For example, for block/volume-based protocols, block allocation could
 occur when a LAYOUTIOMODE4_RW iomode is specified. A special
 LAYOUTIOMODE4_ANY iomode is defined and can only be used for
 LAYOUTRETURN and CB_LAYOUTRECALL, not for LAYOUTGET. It specifies
 that layouts pertaining to both LAYOUTIOMODE4_READ and
 LAYOUTIOMODE4_RW iomodes are being returned or recalled,
 respectively.

 A storage device may validate I/O with regard to the iomode; this is
 dependent upon storage device implementation and layout type. Thus,
 if the client’s layout iomode is inconsistent with the I/O being
 performed, the storage device may reject the client’s I/O with an
 error indicating that a new layout with the correct iomode should be
 obtained via LAYOUTGET. For example, if a client gets a layout with
 a LAYOUTIOMODE4_READ iomode and performs a WRITE to a storage device,
 the storage device is allowed to reject that WRITE.

 The use of the layout iomode does not conflict with OPEN share modes
 or byte-range LOCK operations; open share mode and byte-range lock
 conflicts are enforced as they are without the use of pNFS and are
 logically separate from the pNFS layout level. Open share modes and
 byte-range locks are the preferred method for restricting user access
 to data files. For example, an OPEN of OPEN4_SHARE_ACCESS_WRITE does
 not conflict with a LAYOUTGET containing an iomode of
 LAYOUTIOMODE4_RW performed by another client. Applications that
 depend on writing into the same file concurrently may use byte-range
 locking to serialize their accesses.

12.2.10. Device IDs

 The device ID (data type deviceid4, see Section 3.3.14) identifies a
 group of storage devices. The scope of a device ID is the pair
 <client ID, layout type>. In practice, a significant amount of
 information may be required to fully address a storage device.
 Rather than embedding all such information in a layout, layouts embed
 device IDs. The NFSv4.1 operation GETDEVICEINFO (Section 18.40) is
 used to retrieve the complete address information (including all
 device addresses for the device ID) regarding the storage device
 according to its layout type and device ID. For example, the address
 of an NFSv4.1 data server or of an object-based storage device could
 be an IP address and port. The address of a block storage device
 could be a volume label.

 Clients cannot expect the mapping between a device ID and its storage
 device address(es) to persist across metadata server restart. See
 Section 12.7.4 for a description of how recovery works in that
 situation.

 A device ID lives as long as there is a layout referring to the
 device ID. If there are no layouts referring to the device ID, the
 server is free to delete the device ID any time. Once a device ID is
 deleted by the server, the server MUST NOT reuse the device ID for
 the same layout type and client ID again. This requirement is
 feasible because the device ID is 16 bytes long, leaving sufficient
 room to store a generation number if the server’s implementation
 requires most of the rest of the device ID’s content to be reused.
 This requirement is necessary because otherwise the race conditions
 between asynchronous notification of device ID addition and deletion
 would be too difficult to sort out.

 Device ID to device address mappings are not leased, and can be
 changed at any time. (Note that while device ID to device address
 mappings are likely to change after the metadata server restarts, the
 server is not required to change the mappings.) A server has two
 choices for changing mappings. It can recall all layouts referring
 to the device ID or it can use a notification mechanism.

 The NFSv4.1 protocol has no optimal way to recall all layouts that
 referred to a particular device ID (unless the server associates a
 single device ID with a single fsid or a single client ID; in which
 case, CB_LAYOUTRECALL has options for recalling all layouts
 associated with the fsid, client ID pair, or just the client ID).

 Via a notification mechanism (see Section 20.12), device ID to device
 address mappings can change over the duration of server operation
 without recalling or revoking the layouts that refer to device ID.
 The notification mechanism can also delete a device ID, but only if
 the client has no layouts referring to the device ID. A notification
 of a change to a device ID to device address mapping will immediately
 or eventually invalidate some or all of the device ID’s mappings.
 The server MUST support notifications and the client must request
 them before they can be used. For further information about the
 notification types, see Section 20.12.

12.3. pNFS Operations

 NFSv4.1 has several operations that are needed for pNFS servers,
 regardless of layout type or storage protocol. These operations are
 all sent to a metadata server and summarized here. While pNFS is an
 OPTIONAL feature, if pNFS is implemented, some operations are
 REQUIRED in order to comply with pNFS. See Section 17.

 These are the fore channel pNFS operations:

 GETDEVICEINFO (Section 18.40), as noted previously
 (Section 12.2.10), returns the mapping of device ID to storage
 device address.

 GETDEVICELIST (Section 18.41) allows clients to fetch all device IDs
 for a specific file system.

 LAYOUTGET (Section 18.43) is used by a client to get a layout for a
 file.

 LAYOUTCOMMIT (Section 18.42) is used to inform the metadata server
 of the client’s intent to commit data that has been written to the
 storage device (the storage device as originally indicated in the
 return value of LAYOUTGET).

 LAYOUTRETURN (Section 18.44) is used to return layouts for a file, a
 file system ID (FSID), or a client ID.

 These are the backchannel pNFS operations:

 CB_LAYOUTRECALL (Section 20.3) recalls a layout, all layouts
 belonging to a file system, or all layouts belonging to a client
 ID.

 CB_RECALL_ANY (Section 20.6) tells a client that it needs to return
 some number of recallable objects, including layouts, to the
 metadata server.

 CB_RECALLABLE_OBJ_AVAIL (Section 20.7) tells a client that a
 recallable object that it was denied (in case of pNFS, a layout
 denied by LAYOUTGET) due to resource exhaustion is now available.

 CB_NOTIFY_DEVICEID (Section 20.12) notifies the client of changes to
 device IDs.

12.4. pNFS Attributes

 A number of attributes specific to pNFS are listed and described in
 Section 5.12.

12.5. Layout Semantics

12.5.1. Guarantees Provided by Layouts

 Layouts grant to the client the ability to access data located at a
 storage device with the appropriate storage protocol. The client is
 guaranteed the layout will be recalled when one of two things occur:
 either a conflicting layout is requested or the state encapsulated by
 the layout becomes invalid (this can happen when an event directly or
 indirectly modifies the layout). When a layout is recalled and
 returned by the client, the client continues with the ability to
 access file data with normal NFSv4.1 operations through the metadata
 server. Only the ability to access the storage devices is affected.

 The requirement of NFSv4.1 that all user access rights MUST be
 obtained through the appropriate OPEN, LOCK, and ACCESS operations is
 not modified with the existence of layouts. Layouts are provided to
 NFSv4.1 clients, and user access still follows the rules of the
 protocol as if they did not exist. It is a requirement that for a
 client to access a storage device, a layout must be held by the
 client. If a storage device receives an I/O request for a byte-range
 for which the client does not hold a layout, the storage device
 SHOULD reject that I/O request. Note that the act of modifying a
 file for which a layout is held does not necessarily conflict with
 the holding of the layout that describes the file being modified.
 Therefore, it is the requirement of the storage protocol or layout
 type that determines the necessary behavior. For example, block/
 volume layout types require that the layout’s iomode agree with the
 type of I/O being performed.

 Depending upon the layout type and storage protocol in use, storage
 device access permissions may be granted by LAYOUTGET and may be
 encoded within the type-specific layout. For an example of storage
 device access permissions, see an object-based protocol such as [58].
 If access permissions are encoded within the layout, the metadata
 server SHOULD recall the layout when those permissions become invalid
 for any reason -- for example, when a file becomes unwritable or

 inaccessible to a client. Note, clients are still required to
 perform the appropriate OPEN, LOCK, and ACCESS operations as
 described above. The degree to which it is possible for the client
 to circumvent these operations and the consequences of doing so must
 be clearly specified by the individual layout type specifications.
 In addition, these specifications must be clear about the
 requirements and non-requirements for the checking performed by the
 server.

 In the presence of pNFS functionality, mandatory byte-range locks
 MUST behave as they would without pNFS. Therefore, if mandatory file
 locks and layouts are provided simultaneously, the storage device
 MUST be able to enforce the mandatory byte-range locks. For example,
 if one client obtains a mandatory byte-range lock and a second client
 accesses the storage device, the storage device MUST appropriately
 restrict I/O for the range of the mandatory byte-range lock. If the
 storage device is incapable of providing this check in the presence
 of mandatory byte-range locks, then the metadata server MUST NOT
 grant layouts and mandatory byte-range locks simultaneously.

12.5.2. Getting a Layout

 A client obtains a layout with the LAYOUTGET operation. The metadata
 server will grant layouts of a particular type (e.g., block/volume,
 object, or file). The client selects an appropriate layout type that
 the server supports and the client is prepared to use. The layout
 returned to the client might not exactly match the requested byte-
 range as described in Section 18.43.3. As needed a client may send
 multiple LAYOUTGET operations; these might result in multiple
 overlapping, non-conflicting layouts (see Section 12.2.8).

 In order to get a layout, the client must first have opened the file
 via the OPEN operation. When a client has no layout on a file, it
 MUST present an open stateid, a delegation stateid, or a byte-range
 lock stateid in the loga_stateid argument. A successful LAYOUTGET
 result includes a layout stateid. The first successful LAYOUTGET
 processed by the server using a non-layout stateid as an argument
 MUST have the "seqid" field of the layout stateid in the response set
 to one. Thereafter, the client MUST use a layout stateid (see
 Section 12.5.3) on future invocations of LAYOUTGET on the file, and
 the "seqid" MUST NOT be set to zero. Once the layout has been
 retrieved, it can be held across multiple OPEN and CLOSE sequences.
 Therefore, a client may hold a layout for a file that is not
 currently open by any user on the client. This allows for the
 caching of layouts beyond CLOSE.

 The storage protocol used by the client to access the data on the
 storage device is determined by the layout’s type. The client is
 responsible for matching the layout type with an available method to
 interpret and use the layout. The method for this layout type
 selection is outside the scope of the pNFS functionality.

 Although the metadata server is in control of the layout for a file,
 the pNFS client can provide hints to the server when a file is opened
 or created about the preferred layout type and aggregation schemes.
 pNFS introduces a layout_hint attribute (Section 5.12.4) that the
 client can set at file creation time to provide a hint to the server
 for new files. Setting this attribute separately, after the file has
 been created might make it difficult, or impossible, for the server
 implementation to comply.

 Because the EXCLUSIVE4 createmode4 does not allow the setting of
 attributes at file creation time, NFSv4.1 introduces the EXCLUSIVE4_1
 createmode4, which does allow attributes to be set at file creation
 time. In addition, if the session is created with persistent reply
 caches, EXCLUSIVE4_1 is neither necessary nor allowed. Instead,
 GUARDED4 both works better and is prescribed. Table 18 in
 Section 18.16.3 summarizes how a client is allowed to send an
 exclusive create.

12.5.3. Layout Stateid

 As with all other stateids, the layout stateid consists of a "seqid"
 and "other" field. Once a layout stateid is established, the "other"
 field will stay constant unless the stateid is revoked or the client
 returns all layouts on the file and the server disposes of the
 stateid. The "seqid" field is initially set to one, and is never
 zero on any NFSv4.1 operation that uses layout stateids, whether it
 is a fore channel or backchannel operation. After the layout stateid
 is established, the server increments by one the value of the "seqid"
 in each subsequent LAYOUTGET and LAYOUTRETURN response, and in each
 CB_LAYOUTRECALL request.

 Given the design goal of pNFS to provide parallelism, the layout
 stateid differs from other stateid types in that the client is
 expected to send LAYOUTGET and LAYOUTRETURN operations in parallel.
 The "seqid" value is used by the client to properly sort responses to
 LAYOUTGET and LAYOUTRETURN. The "seqid" is also used to prevent race
 conditions between LAYOUTGET and CB_LAYOUTRECALL. Given that the
 processing rules differ from layout stateids and other stateid types,
 only the pNFS sections of this document should be considered to
 determine proper layout stateid handling.

 Once the client receives a layout stateid, it MUST use the correct
 "seqid" for subsequent LAYOUTGET or LAYOUTRETURN operations. The
 correct "seqid" is defined as the highest "seqid" value from
 responses of fully processed LAYOUTGET or LAYOUTRETURN operations or
 arguments of a fully processed CB_LAYOUTRECALL operation. Since the
 server is incrementing the "seqid" value on each layout operation,
 the client may determine the order of operation processing by
 inspecting the "seqid" value. In the case of overlapping layout
 ranges, the ordering information will provide the client the
 knowledge of which layout ranges are held. Note that overlapping
 layout ranges may occur because of the client’s specific requests or
 because the server is allowed to expand the range of a requested
 layout and notify the client in the LAYOUTRETURN results. Additional
 layout stateid sequencing requirements are provided in
 Section 12.5.5.2.

 The client’s receipt of a "seqid" is not sufficient for subsequent
 use. The client must fully process the operations before the "seqid"
 can be used. For LAYOUTGET results, if the client is not using the
 forgetful model (Section 12.5.5.1), it MUST first update its record
 of what ranges of the file’s layout it has before using the seqid.
 For LAYOUTRETURN results, the client MUST delete the range from its
 record of what ranges of the file’s layout it had before using the
 seqid. For CB_LAYOUTRECALL arguments, the client MUST send a
 response to the recall before using the seqid. The fundamental
 requirement in client processing is that the "seqid" is used to
 provide the order of processing. LAYOUTGET results may be processed
 in parallel. LAYOUTRETURN results may be processed in parallel.
 LAYOUTGET and LAYOUTRETURN responses may be processed in parallel as
 long as the ranges do not overlap. CB_LAYOUTRECALL request
 processing MUST be processed in "seqid" order at all times.

 Once a client has no more layouts on a file, the layout stateid is no
 longer valid and MUST NOT be used. Any attempt to use such a layout
 stateid will result in NFS4ERR_BAD_STATEID.

12.5.4. Committing a Layout

 Allowing for varying storage protocol capabilities, the pNFS protocol
 does not require the metadata server and storage devices to have a
 consistent view of file attributes and data location mappings. Data
 location mapping refers to aspects such as which offsets store data
 as opposed to storing holes (see Section 13.4.4 for a discussion).
 Related issues arise for storage protocols where a layout may hold
 provisionally allocated blocks where the allocation of those blocks
 does not survive a complete restart of both the client and server.
 Because of this inconsistency, it is necessary to resynchronize the
 client with the metadata server and its storage devices and make any
 potential changes available to other clients. This is accomplished

 by use of the LAYOUTCOMMIT operation.

 The LAYOUTCOMMIT operation is responsible for committing a modified
 layout to the metadata server. The data should be written and
 committed to the appropriate storage devices before the LAYOUTCOMMIT
 occurs. The scope of the LAYOUTCOMMIT operation depends on the
 storage protocol in use. It is important to note that the level of
 synchronization is from the point of view of the client that sent the
 LAYOUTCOMMIT. The updated state on the metadata server need only
 reflect the state as of the client’s last operation previous to the
 LAYOUTCOMMIT. The metadata server is not REQUIRED to maintain a
 global view that accounts for other clients’ I/O that may have
 occurred within the same time frame.

 For block/volume-based layouts, LAYOUTCOMMIT may require updating the
 block list that comprises the file and committing this layout to
 stable storage. For file-based layouts, synchronization of
 attributes between the metadata and storage devices, primarily the
 size attribute, is required.

 The control protocol is free to synchronize the attributes before it
 receives a LAYOUTCOMMIT; however, upon successful completion of a
 LAYOUTCOMMIT, state that exists on the metadata server that describes
 the file MUST be synchronized with the state that exists on the
 storage devices that comprise that file as of the client’s last sent
 operation. Thus, a client that queries the size of a file between a
 WRITE to a storage device and the LAYOUTCOMMIT might observe a size
 that does not reflect the actual data written.

 The client MUST have a layout in order to send a LAYOUTCOMMIT
 operation.

12.5.4.1. LAYOUTCOMMIT and change/time_modify

 The change and time_modify attributes may be updated by the server
 when the LAYOUTCOMMIT operation is processed. The reason for this is
 that some layout types do not support the update of these attributes
 when the storage devices process I/O operations. If a client has a
 layout with the LAYOUTIOMODE4_RW iomode on the file, the client MAY
 provide a suggested value to the server for time_modify within the
 arguments to LAYOUTCOMMIT. Based on the layout type, the provided
 value may or may not be used. The server should sanity-check the
 client-provided values before they are used. For example, the server
 should ensure that time does not flow backwards. The client always
 has the option to set time_modify through an explicit SETATTR
 operation.

 For some layout protocols, the storage device is able to notify the
 metadata server of the occurrence of an I/O; as a result, the change
 and time_modify attributes may be updated at the metadata server.
 For a metadata server that is capable of monitoring updates to the
 change and time_modify attributes, LAYOUTCOMMIT processing is not
 required to update the change attribute. In this case, the metadata
 server must ensure that no further update to the data has occurred
 since the last update of the attributes; file-based protocols may
 have enough information to make this determination or may update the
 change attribute upon each file modification. This also applies for
 the time_modify attribute. If the server implementation is able to
 determine that the file has not been modified since the last
 time_modify update, the server need not update time_modify at
 LAYOUTCOMMIT. At LAYOUTCOMMIT completion, the updated attributes
 should be visible if that file was modified since the latest previous
 LAYOUTCOMMIT or LAYOUTGET.

12.5.4.2. LAYOUTCOMMIT and size

 The size of a file may be updated when the LAYOUTCOMMIT operation is
 used by the client. One of the fields in the argument to
 LAYOUTCOMMIT is loca_last_write_offset; this field indicates the
 highest byte offset written but not yet committed with the
 LAYOUTCOMMIT operation. The data type of loca_last_write_offset is

 newoffset4 and is switched on a boolean value, no_newoffset, that
 indicates if a previous write occurred or not. If no_newoffset is
 FALSE, an offset is not given. If the client has a layout with
 LAYOUTIOMODE4_RW iomode on the file, with a byte-range (denoted by
 the values of lo_offset and lo_length) that overlaps
 loca_last_write_offset, then the client MAY set no_newoffset to TRUE
 and provide an offset that will update the file size. Keep in mind
 that offset is not the same as length, though they are related. For
 example, a loca_last_write_offset value of zero means that one byte
 was written at offset zero, and so the length of the file is at least
 one byte.

 The metadata server may do one of the following:

 1. Update the file’s size using the last write offset provided by
 the client as either the true file size or as a hint of the file
 size. If the metadata server has a method available, any new
 value for file size should be sanity-checked. For example, the
 file must not be truncated if the client presents a last write
 offset less than the file’s current size.

 2. Ignore the client-provided last write offset; the metadata server
 must have sufficient knowledge from other sources to determine
 the file’s size. For example, the metadata server queries the
 storage devices with the control protocol.

 The method chosen to update the file’s size will depend on the
 storage device’s and/or the control protocol’s capabilities. For
 example, if the storage devices are block devices with no knowledge
 of file size, the metadata server must rely on the client to set the
 last write offset appropriately.

 The results of LAYOUTCOMMIT contain a new size value in the form of a
 newsize4 union data type. If the file’s size is set as a result of
 LAYOUTCOMMIT, the metadata server must reply with the new size;
 otherwise, the new size is not provided. If the file size is
 updated, the metadata server SHOULD update the storage devices such
 that the new file size is reflected when LAYOUTCOMMIT processing is
 complete. For example, the client should be able to read up to the
 new file size.

 The client can extend the length of a file or truncate a file by
 sending a SETATTR operation to the metadata server with the size
 attribute specified. If the size specified is larger than the
 current size of the file, the file is "zero extended", i.e., zeros
 are implicitly added between the file’s previous EOF and the new EOF.
 (In many implementations, the zero-extended byte-range of the file
 consists of unallocated holes in the file.) When the client writes
 past EOF via WRITE, the SETATTR operation does not need to be used.

12.5.4.3. LAYOUTCOMMIT and layoutupdate

 The LAYOUTCOMMIT argument contains a loca_layoutupdate field
 (Section 18.42.1) of data type layoutupdate4 (Section 3.3.18). This
 argument is a layout-type-specific structure. The structure can be
 used to pass arbitrary layout-type-specific information from the
 client to the metadata server at LAYOUTCOMMIT time. For example, if
 using a block/volume layout, the client can indicate to the metadata
 server which reserved or allocated blocks the client used or did not
 use. The content of loca_layoutupdate (field lou_body) need not be
 the same layout-type-specific content returned by LAYOUTGET
 (Section 18.43.2) in the loc_body field of the lo_content field of
 the logr_layout field. The content of loca_layoutupdate is defined
 by the layout type specification and is opaque to LAYOUTCOMMIT.

12.5.5. Recalling a Layout

 Since a layout protects a client’s access to a file via a direct
 client-storage-device path, a layout need only be recalled when it is
 semantically unable to serve this function. Typically, this occurs
 when the layout no longer encapsulates the true location of the file

 over the byte-range it represents. Any operation or action, such as
 server-driven restriping or load balancing, that changes the layout
 will result in a recall of the layout. A layout is recalled by the
 CB_LAYOUTRECALL callback operation (see Section 20.3) and returned
 with LAYOUTRETURN (see Section 18.44). The CB_LAYOUTRECALL operation
 may recall a layout identified by a byte-range, all layouts
 associated with a file system ID (FSID), or all layouts associated
 with a client ID. Section 12.5.5.2 discusses sequencing issues
 surrounding the getting, returning, and recalling of layouts.

 An iomode is also specified when recalling a layout. Generally, the
 iomode in the recall request must match the layout being returned;
 for example, a recall with an iomode of LAYOUTIOMODE4_RW should cause
 the client to only return LAYOUTIOMODE4_RW layouts and not
 LAYOUTIOMODE4_READ layouts. However, a special LAYOUTIOMODE4_ANY
 enumeration is defined to enable recalling a layout of any iomode; in
 other words, the client must return both LAYOUTIOMODE4_READ and
 LAYOUTIOMODE4_RW layouts.

 A REMOVE operation SHOULD cause the metadata server to recall the
 layout to prevent the client from accessing a non-existent file and
 to reclaim state stored on the client. Since a REMOVE may be delayed
 until the last close of the file has occurred, the recall may also be
 delayed until this time. After the last reference on the file has
 been released and the file has been removed, the client should no
 longer be able to perform I/O using the layout. In the case of a
 file-based layout, the data server SHOULD return NFS4ERR_STALE in
 response to any operation on the removed file.

 Once a layout has been returned, the client MUST NOT send I/Os to the
 storage devices for the file, byte-range, and iomode represented by
 the returned layout. If a client does send an I/O to a storage
 device for which it does not hold a layout, the storage device SHOULD
 reject the I/O.

 Although pNFS does not alter the file data caching capabilities of
 clients, or their semantics, it recognizes that some clients may
 perform more aggressive write-behind caching to optimize the benefits
 provided by pNFS. However, write-behind caching may negatively
 affect the latency in returning a layout in response to a
 CB_LAYOUTRECALL; this is similar to file delegations and the impact
 that file data caching has on DELEGRETURN. Client implementations
 SHOULD limit the amount of unwritten data they have outstanding at
 any one time in order to prevent excessively long responses to
 CB_LAYOUTRECALL. Once a layout is recalled, a server MUST wait one
 lease period before taking further action. As soon as a lease period
 has passed, the server may choose to fence the client’s access to the
 storage devices if the server perceives the client has taken too long
 to return a layout. However, just as in the case of data delegation
 and DELEGRETURN, the server may choose to wait, given that the client
 is showing forward progress on its way to returning the layout. This
 forward progress can take the form of successful interaction with the
 storage devices or of sub-portions of the layout being returned by
 the client. The server can also limit exposure to these problems by
 limiting the byte-ranges initially provided in the layouts and thus
 the amount of outstanding modified data.

12.5.5.1. Layout Recall Callback Robustness

 It has been assumed thus far that pNFS client state (layout ranges
 and iomode) for a file exactly matches that of the pNFS server for
 that file. This assumption leads to the implication that any
 callback results in a LAYOUTRETURN or set of LAYOUTRETURNs that
 exactly match the range in the callback, since both client and server
 agree about the state being maintained. However, it can be useful if
 this assumption does not always hold. For example:

 * If conflicts that require callbacks are very rare, and a server
 can use a multi-file callback to recover per-client resources
 (e.g., via an FSID recall or a multi-file recall within a single
 CB_COMPOUND), the result may be significantly less client-server

 pNFS traffic.

 * It may be useful for servers to maintain information about what
 ranges are held by a client on a coarse-grained basis, leading to
 the server’s layout ranges being beyond those actually held by the
 client. In the extreme, a server could manage conflicts on a per-
 file basis, only sending whole-file callbacks even though clients
 may request and be granted sub-file ranges.

 * It may be useful for clients to "forget" details about what
 layouts and ranges the client actually has, leading to the
 server’s layout ranges being beyond those that the client "thinks"
 it has. As long as the client does not assume it has layouts that
 are beyond what the server has granted, this is a safe practice.
 When a client forgets what ranges and layouts it has, and it
 receives a CB_LAYOUTRECALL operation, the client MUST follow up
 with a LAYOUTRETURN for what the server recalled, or alternatively
 return the NFS4ERR_NOMATCHING_LAYOUT error if it has no layout to
 return in the recalled range.

 * In order to avoid errors, it is vital that a client not assign
 itself layout permissions beyond what the server has granted, and
 that the server not forget layout permissions that have been
 granted. On the other hand, if a server believes that a client
 holds a layout that the client does not know about, it is useful
 for the client to cleanly indicate completion of the requested
 recall either by sending a LAYOUTRETURN operation for the entire
 requested range or by returning an NFS4ERR_NOMATCHING_LAYOUT error
 to the CB_LAYOUTRECALL.

 Thus, in light of the above, it is useful for a server to be able to
 send callbacks for layout ranges it has not granted to a client, and
 for a client to return ranges it does not hold. A pNFS client MUST
 always return layouts that comprise the full range specified by the
 recall. Note, the full recalled layout range need not be returned as
 part of a single operation, but may be returned in portions. This
 allows the client to stage the flushing of dirty data and commits and
 returns of layouts. Also, it indicates to the metadata server that
 the client is making progress.

 When a layout is returned, the client MUST NOT have any outstanding
 I/O requests to the storage devices involved in the layout.
 Rephrasing, the client MUST NOT return the layout while it has
 outstanding I/O requests to the storage device.

 Even with this requirement for the client, it is possible that I/O
 requests may be presented to a storage device no longer allowed to
 perform them. Since the server has no strict control as to when the
 client will return the layout, the server may later decide to
 unilaterally revoke the client’s access to the storage devices as
 provided by the layout. In choosing to revoke access, the server
 must deal with the possibility of lingering I/O requests, i.e., I/O
 requests that are still in flight to storage devices identified by
 the revoked layout. All layout type specifications MUST define
 whether unilateral layout revocation by the metadata server is
 supported; if it is, the specification must also describe how
 lingering writes are processed. For example, storage devices
 identified by the revoked layout could be fenced off from the client
 that held the layout.

 In order to ensure client/server convergence with regard to layout
 state, the final LAYOUTRETURN operation in a sequence of LAYOUTRETURN
 operations for a particular recall MUST specify the entire range
 being recalled, echoing the recalled layout type, iomode, recall/
 return type (FILE, FSID, or ALL), and byte-range, even if layouts
 pertaining to partial ranges were previously returned. In addition,
 if the client holds no layouts that overlap the range being recalled,
 the client should return the NFS4ERR_NOMATCHING_LAYOUT error code to
 CB_LAYOUTRECALL. This allows the server to update its view of the
 client’s layout state.

12.5.5.2. Sequencing of Layout Operations

 As with other stateful operations, pNFS requires the correct
 sequencing of layout operations. pNFS uses the "seqid" in the layout
 stateid to provide the correct sequencing between regular operations
 and callbacks. It is the server’s responsibility to avoid
 inconsistencies regarding the layouts provided and the client’s
 responsibility to properly serialize its layout requests and layout
 returns.

12.5.5.2.1. Layout Recall and Return Sequencing

 One critical issue with regard to layout operations sequencing
 concerns callbacks. The protocol must defend against races between
 the reply to a LAYOUTGET or LAYOUTRETURN operation and a subsequent
 CB_LAYOUTRECALL. A client MUST NOT process a CB_LAYOUTRECALL that
 implies one or more outstanding LAYOUTGET or LAYOUTRETURN operations
 to which the client has not yet received a reply. The client detects
 such a CB_LAYOUTRECALL by examining the "seqid" field of the recall’s
 layout stateid. If the "seqid" is not exactly one higher than what
 the client currently has recorded, and the client has at least one
 LAYOUTGET and/or LAYOUTRETURN operation outstanding, the client knows
 the server sent the CB_LAYOUTRECALL after sending a response to an
 outstanding LAYOUTGET or LAYOUTRETURN. The client MUST wait before
 processing such a CB_LAYOUTRECALL until it processes all replies for
 outstanding LAYOUTGET and LAYOUTRETURN operations for the
 corresponding file with seqid less than the seqid given by
 CB_LAYOUTRECALL (lor_stateid; see Section 20.3.)

 In addition to the seqid-based mechanism, Section 2.10.6.3 describes
 the sessions mechanism for allowing the client to detect callback
 race conditions and delay processing such a CB_LAYOUTRECALL. The
 server MAY reference conflicting operations in the CB_SEQUENCE that
 precedes the CB_LAYOUTRECALL. Because the server has already sent
 replies for these operations before sending the callback, the replies
 may race with the CB_LAYOUTRECALL. The client MUST wait for all the
 referenced calls to complete and update its view of the layout state
 before processing the CB_LAYOUTRECALL.

12.5.5.2.1.1. Get/Return Sequencing

 The protocol allows the client to send concurrent LAYOUTGET and
 LAYOUTRETURN operations to the server. The protocol does not provide
 any means for the server to process the requests in the same order in
 which they were created. However, through the use of the "seqid"
 field in the layout stateid, the client can determine the order in
 which parallel outstanding operations were processed by the server.
 Thus, when a layout retrieved by an outstanding LAYOUTGET operation
 intersects with a layout returned by an outstanding LAYOUTRETURN on
 the same file, the order in which the two conflicting operations are
 processed determines the final state of the overlapping layout. The
 order is determined by the "seqid" returned in each operation: the
 operation with the higher seqid was executed later.

 It is permissible for the client to send multiple parallel LAYOUTGET
 operations for the same file or multiple parallel LAYOUTRETURN
 operations for the same file or a mix of both.

 It is permissible for the client to use the current stateid (see
 Section 16.2.3.1.2) for LAYOUTGET operations, for example, when
 compounding LAYOUTGETs or compounding OPEN and LAYOUTGETs. It is
 also permissible to use the current stateid when compounding
 LAYOUTRETURNs.

 It is permissible for the client to use the current stateid when
 combining LAYOUTRETURN and LAYOUTGET operations for the same file in
 the same COMPOUND request since the server MUST process these in
 order. However, if a client does send such COMPOUND requests, it
 MUST NOT have more than one outstanding for the same file at the same
 time, and it MUST NOT have other LAYOUTGET or LAYOUTRETURN operations
 outstanding at the same time for that same file.

12.5.5.2.1.2. Client Considerations

 Consider a pNFS client that has sent a LAYOUTGET, and before it
 receives the reply to LAYOUTGET, it receives a CB_LAYOUTRECALL for
 the same file with an overlapping range. There are two
 possibilities, which the client can distinguish via the layout
 stateid in the recall.

 1. The server processed the LAYOUTGET before sending the recall, so
 the LAYOUTGET must be waited for because it may be carrying
 layout information that will need to be returned to deal with the
 CB_LAYOUTRECALL.

 2. The server sent the callback before receiving the LAYOUTGET. The
 server will not respond to the LAYOUTGET until the
 CB_LAYOUTRECALL is processed.

 If these possibilities cannot be distinguished, a deadlock could
 result, as the client must wait for the LAYOUTGET response before
 processing the recall in the first case, but that response will not
 arrive until after the recall is processed in the second case. Note
 that in the first case, the "seqid" in the layout stateid of the
 recall is two greater than what the client has recorded; in the
 second case, the "seqid" is one greater than what the client has
 recorded. This allows the client to disambiguate between the two
 cases. The client thus knows precisely which possibility applies.

 In case 1, the client knows it needs to wait for the LAYOUTGET
 response before processing the recall (or the client can return
 NFS4ERR_DELAY).

 In case 2, the client will not wait for the LAYOUTGET response before
 processing the recall because waiting would cause deadlock.
 Therefore, the action at the client will only require waiting in the
 case that the client has not yet seen the server’s earlier responses
 to the LAYOUTGET operation(s).

 The recall process can be considered completed when the final
 LAYOUTRETURN operation for the recalled range is completed. The
 LAYOUTRETURN uses the layout stateid (with seqid) specified in
 CB_LAYOUTRECALL. If the client uses multiple LAYOUTRETURNs in
 processing the recall, the first LAYOUTRETURN will use the layout
 stateid as specified in CB_LAYOUTRECALL. Subsequent LAYOUTRETURNs
 will use the highest seqid as is the usual case.

12.5.5.2.1.3. Server Considerations

 Consider a race from the metadata server’s point of view. The
 metadata server has sent a CB_LAYOUTRECALL and receives an
 overlapping LAYOUTGET for the same file before the LAYOUTRETURN(s)
 that respond to the CB_LAYOUTRECALL. There are three cases:

 1. The client sent the LAYOUTGET before processing the
 CB_LAYOUTRECALL. The "seqid" in the layout stateid of the
 arguments of LAYOUTGET is one less than the "seqid" in
 CB_LAYOUTRECALL. The server returns NFS4ERR_RECALLCONFLICT to
 the client, which indicates to the client that there is a pending
 recall.

 2. The client sent the LAYOUTGET after processing the
 CB_LAYOUTRECALL, but the LAYOUTGET arrived before the
 LAYOUTRETURN and the response to CB_LAYOUTRECALL that completed
 that processing. The "seqid" in the layout stateid of LAYOUTGET
 is equal to or greater than that of the "seqid" in
 CB_LAYOUTRECALL. The server has not received a response to the
 CB_LAYOUTRECALL, so it returns NFS4ERR_RECALLCONFLICT.

 3. The client sent the LAYOUTGET after processing the
 CB_LAYOUTRECALL; the server received the CB_LAYOUTRECALL
 response, but the LAYOUTGET arrived before the LAYOUTRETURN that

 completed that processing. The "seqid" in the layout stateid of
 LAYOUTGET is equal to that of the "seqid" in CB_LAYOUTRECALL.
 The server has received a response to the CB_LAYOUTRECALL, so it
 returns NFS4ERR_RETURNCONFLICT.

12.5.5.2.1.4. Wraparound and Validation of Seqid

 The rules for layout stateid processing differ from other stateids in
 the protocol because the "seqid" value cannot be zero and the
 stateid’s "seqid" value changes in a CB_LAYOUTRECALL operation. The
 non-zero requirement combined with the inherent parallelism of layout
 operations means that a set of LAYOUTGET and LAYOUTRETURN operations
 may contain the same value for "seqid". The server uses a slightly
 modified version of the modulo arithmetic as described in
 Section 2.10.6.1 when incrementing the layout stateid’s "seqid". The
 difference is that zero is not a valid value for "seqid"; when the
 value of a "seqid" is 0xFFFFFFFF, the next valid value will be
 0x00000001. The modulo arithmetic is also used for the comparisons
 of "seqid" values in the processing of CB_LAYOUTRECALL events as
 described above in Section 12.5.5.2.1.3.

 Just as the server validates the "seqid" in the event of
 CB_LAYOUTRECALL usage, as described in Section 12.5.5.2.1.3, the
 server also validates the "seqid" value to ensure that it is within
 an appropriate range. This range represents the degree of
 parallelism the server supports for layout stateids. If the client
 is sending multiple layout operations to the server in parallel, by
 definition, the "seqid" value in the supplied stateid will not be the
 current "seqid" as held by the server. The range of parallelism
 spans from the highest or current "seqid" to a "seqid" value in the
 past. To assist in the discussion, the server’s current "seqid"
 value for a layout stateid is defined as SERVER_CURRENT_SEQID. The
 lowest "seqid" value that is acceptable to the server is represented
 by PAST_SEQID. And the value for the range of valid "seqid"s or
 range of parallelism is VALID_SEQID_RANGE. Therefore, the following
 holds: VALID_SEQID_RANGE = SERVER_CURRENT_SEQID - PAST_SEQID. In the
 following, all arithmetic is the modulo arithmetic as described
 above.

 The server MUST support a minimum VALID_SEQID_RANGE. The minimum is
 defined as: VALID_SEQID_RANGE = summation over 1..N of
 (ca_maxoperations(i) - 1), where N is the number of session fore
 channels and ca_maxoperations(i) is the value of the ca_maxoperations
 returned from CREATE_SESSION of the i’th session. The reason for "-
 1" is to allow for the required SEQUENCE operation. The server MAY
 support a VALID_SEQID_RANGE value larger than the minimum. The
 maximum VALID_SEQID_RANGE is (2^(32) - 2) (accounting for zero not
 being a valid "seqid" value).

 If the server finds the "seqid" is zero, the NFS4ERR_BAD_STATEID
 error is returned to the client. The server further validates the
 "seqid" to ensure it is within the range of parallelism,
 VALID_SEQID_RANGE. If the "seqid" value is outside of that range,
 the error NFS4ERR_OLD_STATEID is returned to the client. Upon
 receipt of NFS4ERR_OLD_STATEID, the client updates the stateid in the
 layout request based on processing of other layout requests and re-
 sends the operation to the server.

12.5.5.2.1.5. Bulk Recall and Return

 pNFS supports recalling and returning all layouts that are for files
 belonging to a particular fsid (LAYOUTRECALL4_FSID,
 LAYOUTRETURN4_FSID) or client ID (LAYOUTRECALL4_ALL,
 LAYOUTRETURN4_ALL). There are no "bulk" stateids, so detection of
 races via the seqid is not possible. The server MUST NOT initiate
 bulk recall while another recall is in progress, or the corresponding
 LAYOUTRETURN is in progress or pending. In the event the server
 sends a bulk recall while the client has a pending or in-progress
 LAYOUTRETURN, CB_LAYOUTRECALL, or LAYOUTGET, the client returns
 NFS4ERR_DELAY. In the event the client sends a LAYOUTGET or
 LAYOUTRETURN while a bulk recall is in progress, the server returns

 NFS4ERR_RECALLCONFLICT. If the client sends a LAYOUTGET or
 LAYOUTRETURN after the server receives NFS4ERR_DELAY from a bulk
 recall, then to ensure forward progress, the server MAY return
 NFS4ERR_RECALLCONFLICT.

 Once a CB_LAYOUTRECALL of LAYOUTRECALL4_ALL is sent, the server MUST
 NOT allow the client to use any layout stateid except for
 LAYOUTCOMMIT operations. Once the client receives a CB_LAYOUTRECALL
 of LAYOUTRECALL4_ALL, it MUST NOT use any layout stateid except for
 LAYOUTCOMMIT operations. Once a LAYOUTRETURN of LAYOUTRETURN4_ALL is
 sent, all layout stateids granted to the client ID are freed. The
 client MUST NOT use the layout stateids again. It MUST use LAYOUTGET
 to obtain new layout stateids.

 Once a CB_LAYOUTRECALL of LAYOUTRECALL4_FSID is sent, the server MUST
 NOT allow the client to use any layout stateid that refers to a file
 with the specified fsid except for LAYOUTCOMMIT operations. Once the
 client receives a CB_LAYOUTRECALL of LAYOUTRECALL4_ALL, it MUST NOT
 use any layout stateid that refers to a file with the specified fsid
 except for LAYOUTCOMMIT operations. Once a LAYOUTRETURN of
 LAYOUTRETURN4_FSID is sent, all layout stateids granted to the
 referenced fsid are freed. The client MUST NOT use those freed
 layout stateids for files with the referenced fsid again.
 Subsequently, for any file with the referenced fsid, to use a layout,
 the client MUST first send a LAYOUTGET operation in order to obtain a
 new layout stateid for that file.

 If the server has sent a bulk CB_LAYOUTRECALL and receives a
 LAYOUTGET, or a LAYOUTRETURN with a stateid, the server MUST return
 NFS4ERR_RECALLCONFLICT. If the server has sent a bulk
 CB_LAYOUTRECALL and receives a LAYOUTRETURN with an lr_returntype
 that is not equal to the lor_recalltype of the CB_LAYOUTRECALL, the
 server MUST return NFS4ERR_RECALLCONFLICT.

12.5.6. Revoking Layouts

 Parallel NFS permits servers to revoke layouts from clients that fail
 to respond to recalls and/or fail to renew their lease in time.
 Depending on the layout type, the server might revoke the layout and
 might take certain actions with respect to the client’s I/O to data
 servers.

12.5.7. Metadata Server Write Propagation

 Asynchronous writes written through the metadata server may be
 propagated lazily to the storage devices. For data written
 asynchronously through the metadata server, a client performing a
 read at the appropriate storage device is not guaranteed to see the
 newly written data until a COMMIT occurs at the metadata server.
 While the write is pending, reads to the storage device may give out
 either the old data, the new data, or a mixture of new and old. Upon
 completion of a synchronous WRITE or COMMIT (for asynchronously
 written data), the metadata server MUST ensure that storage devices
 give out the new data and that the data has been written to stable
 storage. If the server implements its storage in any way such that
 it cannot obey these constraints, then it MUST recall the layouts to
 prevent reads being done that cannot be handled correctly. Note that
 the layouts MUST be recalled prior to the server responding to the
 associated WRITE operations.

12.6. pNFS Mechanics

 This section describes the operations flow taken by a pNFS client to
 a metadata server and storage device.

 When a pNFS client encounters a new FSID, it sends a GETATTR to the
 NFSv4.1 server for the fs_layout_type (Section 5.12.1) attribute. If
 the attribute returns at least one layout type, and the layout types
 returned are among the set supported by the client, the client knows
 that pNFS is a possibility for the file system. If, from the server
 that returned the new FSID, the client does not have a client ID that

 came from an EXCHANGE_ID result that returned
 EXCHGID4_FLAG_USE_PNFS_MDS, it MUST send an EXCHANGE_ID to the server
 with the EXCHGID4_FLAG_USE_PNFS_MDS bit set. If the server’s
 response does not have EXCHGID4_FLAG_USE_PNFS_MDS, then contrary to
 what the fs_layout_type attribute said, the server does not support
 pNFS, and the client will not be able use pNFS to that server; in
 this case, the server MUST return NFS4ERR_NOTSUPP in response to any
 pNFS operation.

 The client then creates a session, requesting a persistent session,
 so that exclusive creates can be done with single round trip via the
 createmode4 of GUARDED4. If the session ends up not being
 persistent, the client will use EXCLUSIVE4_1 for exclusive creates.

 If a file is to be created on a pNFS-enabled file system, the client
 uses the OPEN operation. With the normal set of attributes that may
 be provided upon OPEN used for creation, there is an OPTIONAL
 layout_hint attribute. The client’s use of layout_hint allows the
 client to express its preference for a layout type and its associated
 layout details. The use of a createmode4 of UNCHECKED4, GUARDED4, or
 EXCLUSIVE4_1 will allow the client to provide the layout_hint
 attribute at create time. The client MUST NOT use EXCLUSIVE4 (see
 Table 18). The client is RECOMMENDED to combine a GETATTR operation
 after the OPEN within the same COMPOUND. The GETATTR may then
 retrieve the layout_type attribute for the newly created file. The
 client will then know what layout type the server has chosen for the
 file and therefore what storage protocol the client must use.

 If the client wants to open an existing file, then it also includes a
 GETATTR to determine what layout type the file supports.

 The GETATTR in either the file creation or plain file open case can
 also include the layout_blksize and layout_alignment attributes so
 that the client can determine optimal offsets and lengths for I/O on
 the file.

 Assuming the client supports the layout type returned by GETATTR and
 it chooses to use pNFS for data access, it then sends LAYOUTGET using
 the filehandle and stateid returned by OPEN, specifying the range it
 wants to do I/O on. The response is a layout, which may be a subset
 of the range for which the client asked. It also includes device IDs
 and a description of how data is organized (or in the case of
 writing, how data is to be organized) across the devices. The device
 IDs and data description are encoded in a format that is specific to
 the layout type, but the client is expected to understand.

 When the client wants to send an I/O, it determines to which device
 ID it needs to send the I/O command by examining the data description
 in the layout. It then sends a GETDEVICEINFO to find the device
 address(es) of the device ID. The client then sends the I/O request
 to one of device ID’s device addresses, using the storage protocol
 defined for the layout type. Note that if a client has multiple I/Os
 to send, these I/O requests may be done in parallel.

 If the I/O was a WRITE, then at some point the client may want to use
 LAYOUTCOMMIT to commit the modification time and the new size of the
 file (if it believes it extended the file size) to the metadata
 server and the modified data to the file system.

12.7. Recovery

 Recovery is complicated by the distributed nature of the pNFS
 protocol. In general, crash recovery for layouts is similar to crash
 recovery for delegations in the base NFSv4.1 protocol. However, the
 client’s ability to perform I/O without contacting the metadata
 server introduces subtleties that must be handled correctly if the
 possibility of file system corruption is to be avoided.

12.7.1. Recovery from Client Restart

 Client recovery for layouts is similar to client recovery for other

 lock and delegation state. When a pNFS client restarts, it will lose
 all information about the layouts that it previously owned. There
 are two methods by which the server can reclaim these resources and
 allow otherwise conflicting layouts to be provided to other clients.

 The first is through the expiry of the client’s lease. If the client
 recovery time is longer than the lease period, the client’s lease
 will expire and the server will know that state may be released. For
 layouts, the server may release the state immediately upon lease
 expiry or it may allow the layout to persist, awaiting possible lease
 revival, as long as no other layout conflicts.

 The second is through the client restarting in less time than it
 takes for the lease period to expire. In such a case, the client
 will contact the server through the standard EXCHANGE_ID protocol.
 The server will find that the client’s co_ownerid matches the
 co_ownerid of the previous client invocation, but that the verifier
 is different. The server uses this as a signal to release all layout
 state associated with the client’s previous invocation. In this
 scenario, the data written by the client but not covered by a
 successful LAYOUTCOMMIT is in an undefined state; it may have been
 written or it may now be lost. This is acceptable behavior and it is
 the client’s responsibility to use LAYOUTCOMMIT to achieve the
 desired level of stability.

12.7.2. Dealing with Lease Expiration on the Client

 If a client believes its lease has expired, it MUST NOT send I/O to
 the storage device until it has validated its lease. The client can
 send a SEQUENCE operation to the metadata server. If the SEQUENCE
 operation is successful, but sr_status_flag has
 SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED,
 SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED, or
 SEQ4_STATUS_ADMIN_STATE_REVOKED set, the client MUST NOT use
 currently held layouts. The client has two choices to recover from
 the lease expiration. First, for all modified but uncommitted data,
 the client writes it to the metadata server using the FILE_SYNC4 flag
 for the WRITEs, or WRITE and COMMIT. Second, the client re-
 establishes a client ID and session with the server and obtains new
 layouts and device-ID-to-device-address mappings for the modified
 data ranges and then writes the data to the storage devices with the
 newly obtained layouts.

 If sr_status_flags from the metadata server has
 SEQ4_STATUS_RESTART_RECLAIM_NEEDED set (or SEQUENCE returns
 NFS4ERR_BAD_SESSION and CREATE_SESSION returns
 NFS4ERR_STALE_CLIENTID), then the metadata server has restarted, and
 the client SHOULD recover using the methods described in
 Section 12.7.4.

 If sr_status_flags from the metadata server has
 SEQ4_STATUS_LEASE_MOVED set, then the client recovers by following
 the procedure described in Section 11.11.9.2. After that, the client
 may get an indication that the layout state was not moved with the
 file system. The client recovers as in the other applicable
 situations discussed in the first two paragraphs of this section.

 If sr_status_flags reports no loss of state, then the lease for the
 layouts that the client has are valid and renewed, and the client can
 once again send I/O requests to the storage devices.

 While clients SHOULD NOT send I/Os to storage devices that may extend
 past the lease expiration time period, this is not always possible,
 for example, an extended network partition that starts after the I/O
 is sent and does not heal until the I/O request is received by the
 storage device. Thus, the metadata server and/or storage devices are
 responsible for protecting themselves from I/Os that are both sent
 before the lease expires and arrive after the lease expires. See
 Section 12.7.3.

12.7.3. Dealing with Loss of Layout State on the Metadata Server

 This is a description of the case where all of the following are
 true:

 * the metadata server has not restarted

 * a pNFS client’s layouts have been discarded (usually because the
 client’s lease expired) and are invalid

 * an I/O from the pNFS client arrives at the storage device

 The metadata server and its storage devices MUST solve this by
 fencing the client. In other words, they MUST solve this by
 preventing the execution of I/O operations from the client to the
 storage devices after layout state loss. The details of how fencing
 is done are specific to the layout type. The solution for NFSv4.1
 file-based layouts is described in (Section 13.11), and solutions for
 other layout types are in their respective external specification
 documents.

12.7.4. Recovery from Metadata Server Restart

 The pNFS client will discover that the metadata server has restarted
 via the methods described in Section 8.4.2 and discussed in a pNFS-
 specific context in Section 12.7.2, Paragraph 2. The client MUST
 stop using layouts and delete the device ID to device address
 mappings it previously received from the metadata server. Having
 done that, if the client wrote data to the storage device without
 committing the layouts via LAYOUTCOMMIT, then the client has
 additional work to do in order to have the client, metadata server,
 and storage device(s) all synchronized on the state of the data.

 * If the client has data still modified and unwritten in the
 client’s memory, the client has only two choices.

 1. The client can obtain a layout via LAYOUTGET after the
 server’s grace period and write the data to the storage
 devices.

 2. The client can WRITE that data through the metadata server
 using the WRITE (Section 18.32) operation, and then obtain
 layouts as desired.

 * If the client asynchronously wrote data to the storage device, but
 still has a copy of the data in its memory, then it has available
 to it the recovery options listed above in the previous bullet
 point. If the metadata server is also in its grace period, the
 client has available to it the options below in the next bullet
 point.

 * The client does not have a copy of the data in its memory and the
 metadata server is still in its grace period. The client cannot
 use LAYOUTGET (within or outside the grace period) to reclaim a
 layout because the contents of the response from LAYOUTGET may not
 match what it had previously. The range might be different or the
 client might get the same range but the content of the layout
 might be different. Even if the content of the layout appears to
 be the same, the device IDs may map to different device addresses,
 and even if the device addresses are the same, the device
 addresses could have been assigned to a different storage device.
 The option of retrieving the data from the storage device and
 writing it to the metadata server per the recovery scenario
 described above is not available because, again, the mappings of
 range to device ID, device ID to device address, and device
 address to physical device are stale, and new mappings via new
 LAYOUTGET do not solve the problem.

 The only recovery option for this scenario is to send a
 LAYOUTCOMMIT in reclaim mode, which the metadata server will
 accept as long as it is in its grace period. The use of
 LAYOUTCOMMIT in reclaim mode informs the metadata server that the

 layout has changed. It is critical that the metadata server
 receive this information before its grace period ends, and thus
 before it starts allowing updates to the file system.

 To send LAYOUTCOMMIT in reclaim mode, the client sets the
 loca_reclaim field of the operation’s arguments (Section 18.42.1)
 to TRUE. During the metadata server’s recovery grace period (and
 only during the recovery grace period) the metadata server is
 prepared to accept LAYOUTCOMMIT requests with the loca_reclaim
 field set to TRUE.

 When loca_reclaim is TRUE, the client is attempting to commit
 changes to the layout that occurred prior to the restart of the
 metadata server. The metadata server applies some consistency
 checks on the loca_layoutupdate field of the arguments to
 determine whether the client can commit the data written to the
 storage device to the file system. The loca_layoutupdate field is
 of data type layoutupdate4 and contains layout-type-specific
 content (in the lou_body field of loca_layoutupdate). The layout-
 type-specific information that loca_layoutupdate might have is
 discussed in Section 12.5.4.3. If the metadata server’s
 consistency checks on loca_layoutupdate succeed, then the metadata
 server MUST commit the data (as described by the loca_offset,
 loca_length, and loca_layoutupdate fields of the arguments) that
 was written to the storage device. If the metadata server’s
 consistency checks on loca_layoutupdate fail, the metadata server
 rejects the LAYOUTCOMMIT operation and makes no changes to the
 file system. However, any time LAYOUTCOMMIT with loca_reclaim
 TRUE fails, the pNFS client has lost all the data in the range
 defined by <loca_offset, loca_length>. A client can defend
 against this risk by caching all data, whether written
 synchronously or asynchronously in its memory, and by not
 releasing the cached data until a successful LAYOUTCOMMIT. This
 condition does not hold true for all layout types; for example,
 file-based storage devices need not suffer from this limitation.

 * The client does not have a copy of the data in its memory and the
 metadata server is no longer in its grace period; i.e., the
 metadata server returns NFS4ERR_NO_GRACE. As with the scenario in
 the above bullet point, the failure of LAYOUTCOMMIT means the data
 in the range <loca_offset, loca_length> lost. The defense against
 the risk is the same -- cache all written data on the client until
 a successful LAYOUTCOMMIT.

12.7.5. Operations during Metadata Server Grace Period

 Some of the recovery scenarios thus far noted that some operations
 (namely, WRITE and LAYOUTGET) might be permitted during the metadata
 server’s grace period. The metadata server may allow these
 operations during its grace period. For LAYOUTGET, the metadata
 server must reliably determine that servicing such a request will not
 conflict with an impending LAYOUTCOMMIT reclaim request. For WRITE,
 the metadata server must reliably determine that servicing the
 request will not conflict with an impending OPEN or with a LOCK where
 the file has mandatory byte-range locking enabled.

 As mentioned previously, for expediency, the metadata server might
 reject some operations (namely, WRITE and LAYOUTGET) during its grace
 period, because the simplest correct approach is to reject all non-
 reclaim pNFS requests and WRITE operations by returning the
 NFS4ERR_GRACE error. However, depending on the storage protocol
 (which is specific to the layout type) and metadata server
 implementation, the metadata server may be able to determine that a
 particular request is safe. For example, a metadata server may save
 provisional allocation mappings for each file to stable storage, as
 well as information about potentially conflicting OPEN share modes
 and mandatory byte-range locks that might have been in effect at the
 time of restart, and the metadata server may use this information
 during the recovery grace period to determine that a WRITE request is
 safe.

12.7.6. Storage Device Recovery

 Recovery from storage device restart is mostly dependent upon the
 layout type in use. However, there are a few general techniques a
 client can use if it discovers a storage device has crashed while
 holding modified, uncommitted data that was asynchronously written.
 First and foremost, it is important to realize that the client is the
 only one that has the information necessary to recover non-committed
 data since it holds the modified data and probably nothing else does.
 Second, the best solution is for the client to err on the side of
 caution and attempt to rewrite the modified data through another
 path.

 The client SHOULD immediately WRITE the data to the metadata server,
 with the stable field in the WRITE4args set to FILE_SYNC4. Once it
 does this, there is no need to wait for the original storage device.

12.8. Metadata and Storage Device Roles

 If the same physical hardware is used to implement both a metadata
 server and storage device, then the same hardware entity is to be
 understood to be implementing two distinct roles and it is important
 that it be clearly understood on behalf of which role the hardware is
 executing at any given time.

 Two sub-cases can be distinguished.

 1. The storage device uses NFSv4.1 as the storage protocol, i.e.,
 the same physical hardware is used to implement both a metadata
 and data server. See Section 13.1 for a description of how
 multiple roles are handled.

 2. The storage device does not use NFSv4.1 as the storage protocol,
 and the same physical hardware is used to implement both a
 metadata and storage device. Whether distinct network addresses
 are used to access the metadata server and storage device is
 immaterial. This is because it is always clear to the pNFS
 client and server, from the upper-layer protocol being used
 (NFSv4.1 or non-NFSv4.1), to which role the request to the common
 server network address is directed.

12.9. Security Considerations for pNFS

 pNFS separates file system metadata and data and provides access to
 both. There are pNFS-specific operations (listed in Section 12.3)
 that provide access to the metadata; all existing NFSv4.1
 conventional (non-pNFS) security mechanisms and features apply to
 accessing the metadata. The combination of components in a pNFS
 system (see Figure 1) is required to preserve the security properties
 of NFSv4.1 with respect to an entity that is accessing a storage
 device from a client, including security countermeasures to defend
 against threats for which NFSv4.1 provides defenses in environments
 where these threats are considered significant.

 In some cases, the security countermeasures for connections to
 storage devices may take the form of physical isolation or a
 recommendation to avoid the use of pNFS in an environment. For
 example, it may be impractical to provide confidentiality protection
 for some storage protocols to protect against eavesdropping. In
 environments where eavesdropping on such protocols is of sufficient
 concern to require countermeasures, physical isolation of the
 communication channel (e.g., via direct connection from client(s) to
 storage device(s)) and/or a decision to forgo use of pNFS (e.g., and
 fall back to conventional NFSv4.1) may be appropriate courses of
 action.

 Where communication with storage devices is subject to the same
 threats as client-to-metadata server communication, the protocols
 used for that communication need to provide security mechanisms as
 strong as or no weaker than those available via RPCSEC_GSS for
 NFSv4.1. Except for the storage protocol used for the

 LAYOUT4_NFSV4_1_FILES layout (see Section 13), i.e., except for
 NFSv4.1, it is beyond the scope of this document to specify the
 security mechanisms for storage access protocols.

 pNFS implementations MUST NOT remove NFSv4.1’s access controls. The
 combination of clients, storage devices, and the metadata server are
 responsible for ensuring that all client-to-storage-device file data
 access respects NFSv4.1’s ACLs and file open modes. This entails
 performing both of these checks on every access in the client, the
 storage device, or both (as applicable; when the storage device is an
 NFSv4.1 server, the storage device is ultimately responsible for
 controlling access as described in Section 13.9.2). If a pNFS
 configuration performs these checks only in the client, the risk of a
 misbehaving client obtaining unauthorized access is an important
 consideration in determining when it is appropriate to use such a
 pNFS configuration. Such layout types SHOULD NOT be used when
 client-only access checks do not provide sufficient assurance that
 NFSv4.1 access control is being applied correctly. (This is not a
 problem for the file layout type described in Section 13 because the
 storage access protocol for LAYOUT4_NFSV4_1_FILES is NFSv4.1, and
 thus the security model for storage device access via
 LAYOUT4_NFSv4_1_FILES is the same as that of the metadata server.)
 For handling of access control specific to a layout, the reader
 should examine the layout specification, such as the NFSv4.1/
 file-based layout (Section 13) of this document, the blocks layout
 [48], and objects layout [47].

13. NFSv4.1 as a Storage Protocol in pNFS: the File Layout Type

 This section describes the semantics and format of NFSv4.1 file-based
 layouts for pNFS. NFSv4.1 file-based layouts use the
 LAYOUT4_NFSV4_1_FILES layout type. The LAYOUT4_NFSV4_1_FILES type
 defines striping data across multiple NFSv4.1 data servers.

13.1. Client ID and Session Considerations

 Sessions are a REQUIRED feature of NFSv4.1, and this extends to both
 the metadata server and file-based (NFSv4.1-based) data servers.

 The role a server plays in pNFS is determined by the result it
 returns from EXCHANGE_ID. The roles are:

 * Metadata server (EXCHGID4_FLAG_USE_PNFS_MDS is set in the result
 eir_flags).

 * Data server (EXCHGID4_FLAG_USE_PNFS_DS).

 * Non-metadata server (EXCHGID4_FLAG_USE_NON_PNFS). This is an
 NFSv4.1 server that does not support operations (e.g., LAYOUTGET)
 or attributes that pertain to pNFS.

 The client MAY request zero or more of EXCHGID4_FLAG_USE_NON_PNFS,
 EXCHGID4_FLAG_USE_PNFS_DS, or EXCHGID4_FLAG_USE_PNFS_MDS, even though
 some combinations (e.g., EXCHGID4_FLAG_USE_NON_PNFS |
 EXCHGID4_FLAG_USE_PNFS_MDS) are contradictory. However, the server
 MUST only return the following acceptable combinations:

 +==+
 | Acceptable Results from EXCHANGE_ID |
 +==+
 | EXCHGID4_FLAG_USE_PNFS_MDS |
 +--+
 | EXCHGID4_FLAG_USE_PNFS_MDS | EXCHGID4_FLAG_USE_PNFS_DS |
 +--+
 | EXCHGID4_FLAG_USE_PNFS_DS |
 +--+
 | EXCHGID4_FLAG_USE_NON_PNFS |
 +--+
 | EXCHGID4_FLAG_USE_PNFS_DS | EXCHGID4_FLAG_USE_NON_PNFS |
 +--+

 Table 8

 As the above table implies, a server can have one or two roles. A
 server can be both a metadata server and a data server, or it can be
 both a data server and non-metadata server. In addition to returning
 two roles in the EXCHANGE_ID’s results, and thus serving both roles
 via a common client ID, a server can serve two roles by returning a
 unique client ID and server owner for each role in each of two
 EXCHANGE_ID results, with each result indicating each role.

 In the case of a server with concurrent pNFS roles that are served by
 a common client ID, if the EXCHANGE_ID request from the client has
 zero or a combination of the bits set in eia_flags, the server result
 should set bits that represent the higher of the acceptable
 combination of the server roles, with a preference to match the roles
 requested by the client. Thus, if a client request has
 (EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_USE_PNFS_MDS |
 EXCHGID4_FLAG_USE_PNFS_DS) flags set, and the server is both a
 metadata server and a data server, serving both the roles by a common
 client ID, the server SHOULD return with
 (EXCHGID4_FLAG_USE_PNFS_MDS | EXCHGID4_FLAG_USE_PNFS_DS) set.

 In the case of a server that has multiple concurrent pNFS roles, each
 role served by a unique client ID, if the client specifies zero or a
 combination of roles in the request, the server results SHOULD return
 only one of the roles from the combination specified by the client
 request. If the role specified by the server result does not match
 the intended use by the client, the client should send the
 EXCHANGE_ID specifying just the interested pNFS role.

 If a pNFS metadata client gets a layout that refers it to an NFSv4.1
 data server, it needs a client ID on that data server. If it does
 not yet have a client ID from the server that had the
 EXCHGID4_FLAG_USE_PNFS_DS flag set in the EXCHANGE_ID results, then
 the client needs to send an EXCHANGE_ID to the data server, using the
 same co_ownerid as it sent to the metadata server, with the
 EXCHGID4_FLAG_USE_PNFS_DS flag set in the arguments. If the server’s
 EXCHANGE_ID results have EXCHGID4_FLAG_USE_PNFS_DS set, then the
 client may use the client ID to create sessions that will exchange
 pNFS data operations. The client ID returned by the data server has
 no relationship with the client ID returned by a metadata server
 unless the client IDs are equal, and the server owners and server
 scopes of the data server and metadata server are equal.

 In NFSv4.1, the session ID in the SEQUENCE operation implies the
 client ID, which in turn might be used by the server to map the
 stateid to the right client/server pair. However, when a data server
 is presented with a READ or WRITE operation with a stateid, because
 the stateid is associated with a client ID on a metadata server, and
 because the session ID in the preceding SEQUENCE operation is tied to
 the client ID of the data server, the data server has no obvious way
 to determine the metadata server from the COMPOUND procedure, and
 thus has no way to validate the stateid. One RECOMMENDED approach is
 for pNFS servers to encode metadata server routing and/or identity
 information in the data server filehandles as returned in the layout.

 If metadata server routing and/or identity information is encoded in
 data server filehandles, when the metadata server identity or
 location changes, the data server filehandles it gave out will become
 invalid (stale), and so the metadata server MUST first recall the
 layouts. Invalidating a data server filehandle does not render the
 NFS client’s data cache invalid. The client’s cache should map a
 data server filehandle to a metadata server filehandle, and a
 metadata server filehandle to cached data.

 If a server is both a metadata server and a data server, the server
 might need to distinguish operations on files that are directed to
 the metadata server from those that are directed to the data server.
 It is RECOMMENDED that the values of the filehandles returned by the
 LAYOUTGET operation be different than the value of the filehandle
 returned by the OPEN of the same file.

 Another scenario is for the metadata server and the storage device to
 be distinct from one client’s point of view, and the roles reversed
 from another client’s point of view. For example, in the cluster
 file system model, a metadata server to one client might be a data
 server to another client. If NFSv4.1 is being used as the storage
 protocol, then pNFS servers need to encode the values of filehandles
 according to their specific roles.

13.1.1. Sessions Considerations for Data Servers

 Section 2.10.11.2 states that a client has to keep its lease renewed
 in order to prevent a session from being deleted by the server. If
 the reply to EXCHANGE_ID has just the EXCHGID4_FLAG_USE_PNFS_DS role
 set, then (as noted in Section 13.6) the client will not be able to
 determine the data server’s lease_time attribute because GETATTR will
 not be permitted. Instead, the rule is that any time a client
 receives a layout referring it to a data server that returns just the
 EXCHGID4_FLAG_USE_PNFS_DS role, the client MAY assume that the
 lease_time attribute from the metadata server that returned the
 layout applies to the data server. Thus, the data server MUST be
 aware of the values of all lease_time attributes of all metadata
 servers for which it is providing I/O, and it MUST use the maximum of
 all such lease_time values as the lease interval for all client IDs
 and sessions established on it.

 For example, if one metadata server has a lease_time attribute of 20
 seconds, and a second metadata server has a lease_time attribute of
 10 seconds, then if both servers return layouts that refer to an
 EXCHGID4_FLAG_USE_PNFS_DS-only data server, the data server MUST
 renew a client’s lease if the interval between two SEQUENCE
 operations on different COMPOUND requests is less than 20 seconds.

13.2. File Layout Definitions

 The following definitions apply to the LAYOUT4_NFSV4_1_FILES layout
 type and may be applicable to other layout types.

 Unit. A unit is a fixed-size quantity of data written to a data
 server.

 Pattern. A pattern is a method of distributing one or more equal
 sized units across a set of data servers. A pattern is iterated
 one or more times.

 Stripe. A stripe is a set of data distributed across a set of data
 servers in a pattern before that pattern repeats.

 Stripe Count. A stripe count is the number of units in a pattern.

 Stripe Width. A stripe width is the size of a stripe in bytes. The
 stripe width = the stripe count * the size of the stripe unit.

 Hereafter, this document will refer to a unit that is a written in a
 pattern as a "stripe unit".

 A pattern may have more stripe units than data servers. If so, some
 data servers will have more than one stripe unit per stripe. A data
 server that has multiple stripe units per stripe MAY store each unit
 in a different data file (and depending on the implementation, will
 possibly assign a unique data filehandle to each data file).

13.3. File Layout Data Types

 The high level NFSv4.1 layout types are nfsv4_1_file_layouthint4,
 nfsv4_1_file_layout_ds_addr4, and nfsv4_1_file_layout4.

 The SETATTR operation supports a layout hint attribute
 (Section 5.12.4). When the client sets a layout hint (data type
 layouthint4) with a layout type of LAYOUT4_NFSV4_1_FILES (the
 loh_type field), the loh_body field contains a value of data type

 nfsv4_1_file_layouthint4.

 const NFL4_UFLG_MASK = 0x0000003F;
 const NFL4_UFLG_DENSE = 0x00000001;
 const NFL4_UFLG_COMMIT_THRU_MDS = 0x00000002;
 const NFL4_UFLG_STRIPE_UNIT_SIZE_MASK
 = 0xFFFFFFC0;

 typedef uint32_t nfl_util4;

 enum filelayout_hint_care4 {
 NFLH4_CARE_DENSE = NFL4_UFLG_DENSE,

 NFLH4_CARE_COMMIT_THRU_MDS
 = NFL4_UFLG_COMMIT_THRU_MDS,

 NFLH4_CARE_STRIPE_UNIT_SIZE
 = 0x00000040,

 NFLH4_CARE_STRIPE_COUNT = 0x00000080
 };

 /* Encoded in the loh_body field of data type layouthint4: */

 struct nfsv4_1_file_layouthint4 {
 uint32_t nflh_care;
 nfl_util4 nflh_util;
 count4 nflh_stripe_count;
 };

 The generic layout hint structure is described in Section 3.3.19.
 The client uses the layout hint in the layout_hint (Section 5.12.4)
 attribute to indicate the preferred type of layout to be used for a
 newly created file. The LAYOUT4_NFSV4_1_FILES layout-type-specific
 content for the layout hint is composed of three fields. The first
 field, nflh_care, is a set of flags indicating which values of the
 hint the client cares about. If the NFLH4_CARE_DENSE flag is set,
 then the client indicates in the second field, nflh_util, a
 preference for how the data file is packed (Section 13.4.4), which is
 controlled by the value of the expression nflh_util & NFL4_UFLG_DENSE
 ("&" represents the bitwise AND operator). If the
 NFLH4_CARE_COMMIT_THRU_MDS flag is set, then the client indicates a
 preference for whether the client should send COMMIT operations to
 the metadata server or data server (Section 13.7), which is
 controlled by the value of nflh_util & NFL4_UFLG_COMMIT_THRU_MDS. If
 the NFLH4_CARE_STRIPE_UNIT_SIZE flag is set, the client indicates its
 preferred stripe unit size, which is indicated in nflh_util &
 NFL4_UFLG_STRIPE_UNIT_SIZE_MASK (thus, the stripe unit size MUST be a
 multiple of 64 bytes). The minimum stripe unit size is 64 bytes. If
 the NFLH4_CARE_STRIPE_COUNT flag is set, the client indicates in the
 third field, nflh_stripe_count, the stripe count. The stripe count
 multiplied by the stripe unit size is the stripe width.

 When LAYOUTGET returns a LAYOUT4_NFSV4_1_FILES layout (indicated in
 the loc_type field of the lo_content field), the loc_body field of
 the lo_content field contains a value of data type
 nfsv4_1_file_layout4. Among other content, nfsv4_1_file_layout4 has
 a storage device ID (field nfl_deviceid) of data type deviceid4. The
 GETDEVICEINFO operation maps a device ID to a storage device address
 (type device_addr4). When GETDEVICEINFO returns a device address
 with a layout type of LAYOUT4_NFSV4_1_FILES (the da_layout_type
 field), the da_addr_body field contains a value of data type
 nfsv4_1_file_layout_ds_addr4.

 typedef netaddr4 multipath_list4<>;

 /*
 * Encoded in the da_addr_body field of
 * data type device_addr4:
 */
 struct nfsv4_1_file_layout_ds_addr4 {

 uint32_t nflda_stripe_indices<>;
 multipath_list4 nflda_multipath_ds_list<>;
 };

 The nfsv4_1_file_layout_ds_addr4 data type represents the device
 address. It is composed of two fields:

 1. nflda_multipath_ds_list: An array of lists of data servers, where
 each list can be one or more elements, and each element
 represents a data server address that may serve equally as the
 target of I/O operations (see Section 13.5). The length of this
 array might be different than the stripe count.

 2. nflda_stripe_indices: An array of indices used to index into
 nflda_multipath_ds_list. The value of each element of
 nflda_stripe_indices MUST be less than the number of elements in
 nflda_multipath_ds_list. Each element of nflda_multipath_ds_list
 SHOULD be referred to by one or more elements of
 nflda_stripe_indices. The number of elements in
 nflda_stripe_indices is always equal to the stripe count.

 /*
 * Encoded in the loc_body field of
 * data type layout_content4:
 */
 struct nfsv4_1_file_layout4 {
 deviceid4 nfl_deviceid;
 nfl_util4 nfl_util;
 uint32_t nfl_first_stripe_index;
 offset4 nfl_pattern_offset;
 nfs_fh4 nfl_fh_list<>;
 };

 The nfsv4_1_file_layout4 data type represents the layout. It is
 composed of the following fields:

 1. nfl_deviceid: The device ID that maps to a value of type
 nfsv4_1_file_layout_ds_addr4.

 2. nfl_util: Like the nflh_util field of data type
 nfsv4_1_file_layouthint4, a compact representation of how the
 data on a file on each data server is packed, whether the client
 should send COMMIT operations to the metadata server or data
 server, and the stripe unit size. If a server returns two or
 more overlapping layouts, each stripe unit size in each
 overlapping layout MUST be the same.

 3. nfl_first_stripe_index: The index into the first element of the
 nflda_stripe_indices array to use.

 4. nfl_pattern_offset: This field is the logical offset into the
 file where the striping pattern starts. It is required for
 converting the client’s logical I/O offset (e.g., the current
 offset in a POSIX file descriptor before the read() or write()
 system call is sent) into the stripe unit number (see
 Section 13.4.1).

 If dense packing is used, then nfl_pattern_offset is also needed
 to convert the client’s logical I/O offset to an offset on the
 file on the data server corresponding to the stripe unit number
 (see Section 13.4.4).

 Note that nfl_pattern_offset is not always the same as lo_offset.
 For example, via the LAYOUTGET operation, a client might request
 a layout starting at offset 1000 of a file that has its striping
 pattern start at offset zero.

 5. nfl_fh_list: An array of data server filehandles for each list of
 data servers in each element of the nflda_multipath_ds_list
 array. The number of elements in nfl_fh_list depends on whether
 sparse or dense packing is being used.

 * If sparse packing is being used, the number of elements in
 nfl_fh_list MUST be one of three values:

 - Zero. This means that filehandles used for each data
 server are the same as the filehandle returned by the OPEN
 operation from the metadata server.

 - One. This means that every data server uses the same
 filehandle: what is specified in nfl_fh_list[0].

 - The same number of elements in nflda_multipath_ds_list.
 Thus, in this case, when sending an I/O operation to any
 data server in nflda_multipath_ds_list[X], the filehandle
 in nfl_fh_list[X] MUST be used.

 See the discussion on sparse packing in Section 13.4.4.

 * If dense packing is being used, the number of elements in
 nfl_fh_list MUST be the same as the number of elements in
 nflda_stripe_indices. Thus, when sending an I/O operation to
 any data server in
 nflda_multipath_ds_list[nflda_stripe_indices[Y]], the
 filehandle in nfl_fh_list[Y] MUST be used. In addition, any
 time there exists i and j, (i != j), such that the
 intersection of
 nflda_multipath_ds_list[nflda_stripe_indices[i]] and
 nflda_multipath_ds_list[nflda_stripe_indices[j]] is not empty,
 then nfl_fh_list[i] MUST NOT equal nfl_fh_list[j]. In other
 words, when dense packing is being used, if a data server
 appears in two or more units of a striping pattern, each
 reference to the data server MUST use a different filehandle.

 Indeed, if there are multiple striping patterns, as indicated
 by the presence of multiple objects of data type layout4
 (either returned in one or multiple LAYOUTGET operations), and
 a data server is the target of a unit of one pattern and
 another unit of another pattern, then each reference to each
 data server MUST use a different filehandle.

 See the discussion on dense packing in Section 13.4.4.

 The details on the interpretation of the layout are in Section 13.4.

13.4. Interpreting the File Layout

13.4.1. Determining the Stripe Unit Number

 To find the stripe unit number that corresponds to the client’s
 logical file offset, the pattern offset will also be used. The i’th
 stripe unit (SUi) is:

 relative_offset = file_offset - nfl_pattern_offset;
 SUi = floor(relative_offset / stripe_unit_size);

13.4.2. Interpreting the File Layout Using Sparse Packing

 When sparse packing is used, the algorithm for determining the
 filehandle and set of data-server network addresses to write stripe
 unit i (SUi) to is:

 stripe_count = number of elements in nflda_stripe_indices;

 j = (SUi + nfl_first_stripe_index) % stripe_count;

 idx = nflda_stripe_indices[j];

 fh_count = number of elements in nfl_fh_list;
 ds_count = number of elements in nflda_multipath_ds_list;

 switch (fh_count) {

 case ds_count:
 fh = nfl_fh_list[idx];
 break;

 case 1:
 fh = nfl_fh_list[0];
 break;

 case 0:
 fh = filehandle returned by OPEN;
 break;

 default:
 throw a fatal exception;
 break;
 }

 address_list = nflda_multipath_ds_list[idx];

 The client would then select a data server from address_list, and
 send a READ or WRITE operation using the filehandle specified in fh.

 Consider the following example:

 Suppose we have a device address consisting of seven data servers,
 arranged in three equivalence (Section 13.5) classes:

 { A, B, C, D }, { E }, { F, G }

 where A through G are network addresses.

 Then

 nflda_multipath_ds_list<> = { A, B, C, D }, { E }, { F, G }

 i.e.,

 nflda_multipath_ds_list[0] = { A, B, C, D }

 nflda_multipath_ds_list[1] = { E }

 nflda_multipath_ds_list[2] = { F, G }

 Suppose the striping index array is:

 nflda_stripe_indices<> = { 2, 0, 1, 0 }

 Now suppose the client gets a layout that has a device ID that maps
 to the above device address. The initial index contains

 nfl_first_stripe_index = 2,

 and the filehandle list is

 nfl_fh_list = { 0x36, 0x87, 0x67 }.

 If the client wants to write to SU0, the set of valid { network
 address, filehandle } combinations for SUi are determined by:

 nfl_first_stripe_index = 2

 So

 idx = nflda_stripe_indices[(0 + 2) % 4]

 = nflda_stripe_indices[2]

 = 1

 So

 nflda_multipath_ds_list[1] = { E }

 and

 nfl_fh_list[1] = { 0x87 }

 The client can thus write SU0 to { 0x87, { E } }.

 The destinations of the first 13 storage units are:

 +=====+============+==============+
 | SUi | filehandle | data servers |
 +=====+============+==============+
 | 0 | 87 | E |
 +-----+------------+--------------+
 | 1 | 36 | A,B,C,D |
 +-----+------------+--------------+
 | 2 | 67 | F,G |
 +-----+------------+--------------+
 | 3 | 36 | A,B,C,D |
 +-----+------------+--------------+
 +-----+------------+--------------+
 | 4 | 87 | E |
 +-----+------------+--------------+
 | 5 | 36 | A,B,C,D |
 +-----+------------+--------------+
 | 6 | 67 | F,G |
 +-----+------------+--------------+
 | 7 | 36 | A,B,C,D |
 +-----+------------+--------------+
 +-----+------------+--------------+
 | 8 | 87 | E |
 +-----+------------+--------------+
 | 9 | 36 | A,B,C,D |
 +-----+------------+--------------+
 | 10 | 67 | F,G |
 +-----+------------+--------------+
 | 11 | 36 | A,B,C,D |
 +-----+------------+--------------+
 +-----+------------+--------------+
 | 12 | 87 | E |
 +-----+------------+--------------+

 Table 9

13.4.3. Interpreting the File Layout Using Dense Packing

 When dense packing is used, the algorithm for determining the
 filehandle and set of data server network addresses to write stripe
 unit i (SUi) to is:

 stripe_count = number of elements in nflda_stripe_indices;

 j = (SUi + nfl_first_stripe_index) % stripe_count;

 idx = nflda_stripe_indices[j];

 fh_count = number of elements in nfl_fh_list;
 ds_count = number of elements in nflda_multipath_ds_list;

 switch (fh_count) {
 case stripe_count:
 fh = nfl_fh_list[j];
 break;

 default:
 throw a fatal exception;
 break;
 }

 address_list = nflda_multipath_ds_list[idx];

 The client would then select a data server from address_list, and
 send a READ or WRITE operation using the filehandle specified in fh.

 Consider the following example (which is the same as the sparse
 packing example, except for the filehandle list):

 Suppose we have a device address consisting of seven data servers,
 arranged in three equivalence (Section 13.5) classes:

 { A, B, C, D }, { E }, { F, G }

 where A through G are network addresses.

 Then

 nflda_multipath_ds_list<> = { A, B, C, D }, { E }, { F, G }

 i.e.,

 nflda_multipath_ds_list[0] = { A, B, C, D }

 nflda_multipath_ds_list[1] = { E }

 nflda_multipath_ds_list[2] = { F, G }

 Suppose the striping index array is:

 nflda_stripe_indices<> = { 2, 0, 1, 0 }

 Now suppose the client gets a layout that has a device ID that maps
 to the above device address. The initial index contains

 nfl_first_stripe_index = 2,

 and

 nfl_fh_list = { 0x67, 0x37, 0x87, 0x36 }.

 The interesting examples for dense packing are SU1 and SU3 because
 each stripe unit refers to the same data server list, yet each stripe
 unit MUST use a different filehandle. If the client wants to write
 to SU1, the set of valid { network address, filehandle } combinations
 for SUi are determined by:

 nfl_first_stripe_index = 2

 So

 j = (1 + 2) % 4 = 3

 idx = nflda_stripe_indices[j]

 = nflda_stripe_indices[3]

 = 0

 So

 nflda_multipath_ds_list[0] = { A, B, C, D }

 and

 nfl_fh_list[3] = { 0x36 }

 The client can thus write SU1 to { 0x36, { A, B, C, D } }.

 For SU3, j = (3 + 2) % 4 = 1, and nflda_stripe_indices[1] = 0. Then
 nflda_multipath_ds_list[0] = { A, B, C, D }, and nfl_fh_list[1] =
 0x37. The client can thus write SU3 to { 0x37, { A, B, C, D } }.

 The destinations of the first 13 storage units are:

 +=====+============+==============+
 | SUi | filehandle | data servers |
 +=====+============+==============+
 | 0 | 87 | E |
 +-----+------------+--------------+
 | 1 | 36 | A,B,C,D |
 +-----+------------+--------------+
 | 2 | 67 | F,G |
 +-----+------------+--------------+
 | 3 | 37 | A,B,C,D |
 +-----+------------+--------------+
 +-----+------------+--------------+
 | 4 | 87 | E |
 +-----+------------+--------------+
 | 5 | 36 | A,B,C,D |
 +-----+------------+--------------+
 | 6 | 67 | F,G |
 +-----+------------+--------------+
 | 7 | 37 | A,B,C,D |
 +-----+------------+--------------+
 +-----+------------+--------------+
 | 8 | 87 | E |
 +-----+------------+--------------+
 | 9 | 36 | A,B,C,D |
 +-----+------------+--------------+
 | 10 | 67 | F,G |
 +-----+------------+--------------+
 | 11 | 37 | A,B,C,D |
 +-----+------------+--------------+
 +-----+------------+--------------+
 | 12 | 87 | E |
 +-----+------------+--------------+

 Table 10

13.4.4. Sparse and Dense Stripe Unit Packing

 The flag NFL4_UFLG_DENSE of the nfl_util4 data type (field nflh_util
 of the data type nfsv4_1_file_layouthint4 and field nfl_util of data
 type nfsv4_1_file_layout_ds_addr4) specifies how the data is packed
 within the data file on a data server. It allows for two different
 data packings: sparse and dense. The packing type determines the
 calculation that will be made to map the client-visible file offset
 to the offset within the data file located on the data server.

 If nfl_util & NFL4_UFLG_DENSE is zero, this means that sparse packing
 is being used. Hence, the logical offsets of the file as viewed by a
 client sending READs and WRITEs directly to the metadata server are
 the same offsets each data server uses when storing a stripe unit.
 The effect then, for striping patterns consisting of at least two
 stripe units, is for each data server file to be sparse or "holey".
 So for example, suppose there is a pattern with three stripe units,
 the stripe unit size is 4096 bytes, and there are three data servers
 in the pattern. Then, the file in data server 1 will have stripe
 units 0, 3, 6, 9, ... filled; data server 2’s file will have stripe
 units 1, 4, 7, 10, ... filled; and data server 3’s file will have
 stripe units 2, 5, 8, 11, ... filled. The unfilled stripe units of
 each file will be holes; hence, the files in each data server are
 sparse.

 If sparse packing is being used and a client attempts I/O to one of
 the holes, then an error MUST be returned by the data server. Using
 the above example, if data server 3 received a READ or WRITE
 operation for block 4, the data server would return
 NFS4ERR_PNFS_IO_HOLE. Thus, data servers need to understand the
 striping pattern in order to support sparse packing.

 If nfl_util & NFL4_UFLG_DENSE is one, this means that dense packing
 is being used, and the data server files have no holes. Dense

 packing might be selected because the data server does not
 (efficiently) support holey files or because the data server cannot
 recognize read-ahead unless there are no holes. If dense packing is
 indicated in the layout, the data files will be packed. Using the
 same striping pattern and stripe unit size that were used for the
 sparse packing example, the corresponding dense packing example would
 have all stripe units of all data files filled as follows:

 * Logical stripe units 0, 3, 6, ... of the file would live on stripe
 units 0, 1, 2, ... of the file of data server 1.

 * Logical stripe units 1, 4, 7, ... of the file would live on stripe
 units 0, 1, 2, ... of the file of data server 2.

 * Logical stripe units 2, 5, 8, ... of the file would live on stripe
 units 0, 1, 2, ... of the file of data server 3.

 Because dense packing does not leave holes on the data servers, the
 pNFS client is allowed to write to any offset of any data file of any
 data server in the stripe. Thus, the data servers need not know the
 file’s striping pattern.

 The calculation to determine the byte offset within the data file for
 dense data server layouts is:

 stripe_width = stripe_unit_size * N;
 where N = number of elements in nflda_stripe_indices.

 relative_offset = file_offset - nfl_pattern_offset;

 data_file_offset = floor(relative_offset / stripe_width)
 * stripe_unit_size
 + relative_offset % stripe_unit_size

 If dense packing is being used, and a data server appears more than
 once in a striping pattern, then to distinguish one stripe unit from
 another, the data server MUST use a different filehandle. Let’s
 suppose there are two data servers. Logical stripe units 0, 3, 6 are
 served by data server 1; logical stripe units 1, 4, 7 are served by
 data server 2; and logical stripe units 2, 5, 8 are also served by
 data server 2. Unless data server 2 has two filehandles (each
 referring to a different data file), then, for example, a write to
 logical stripe unit 1 overwrites the write to logical stripe unit 2
 because both logical stripe units are located in the same stripe unit
 (0) of data server 2.

13.5. Data Server Multipathing

 The NFSv4.1 file layout supports multipathing to multiple data server
 addresses. Data-server-level multipathing is used for bandwidth
 scaling via trunking (Section 2.10.5) and for higher availability of
 use in the case of a data-server failure. Multipathing allows the
 client to switch to another data server address which may be that of
 another data server that is exporting the same data stripe unit,
 without having to contact the metadata server for a new layout.

 To support data server multipathing, each element of the
 nflda_multipath_ds_list contains an array of one more data server
 network addresses. This array (data type multipath_list4) represents
 a list of data servers (each identified by a network address), with
 the possibility that some data servers will appear in the list
 multiple times.

 The client is free to use any of the network addresses as a
 destination to send data server requests. If some network addresses
 are less optimal paths to the data than others, then the MDS SHOULD
 NOT include those network addresses in an element of
 nflda_multipath_ds_list. If less optimal network addresses exist to
 provide failover, the RECOMMENDED method to offer the addresses is to
 provide them in a replacement device-ID-to-device-address mapping, or
 a replacement device ID. When a client finds that no data server in

 an element of nflda_multipath_ds_list responds, it SHOULD send a
 GETDEVICEINFO to attempt to replace the existing device-ID-to-device-
 address mappings. If the MDS detects that all data servers
 represented by an element of nflda_multipath_ds_list are unavailable,
 the MDS SHOULD send a CB_NOTIFY_DEVICEID (if the client has indicated
 it wants device ID notifications for changed device IDs) to change
 the device-ID-to-device-address mappings to the available data
 servers. If the device ID itself will be replaced, the MDS SHOULD
 recall all layouts with the device ID, and thus force the client to
 get new layouts and device ID mappings via LAYOUTGET and
 GETDEVICEINFO.

 Generally, if two network addresses appear in an element of
 nflda_multipath_ds_list, they will designate the same data server,
 and the two data server addresses will support the implementation of
 client ID or session trunking (the latter is RECOMMENDED) as defined
 in Section 2.10.5. The two data server addresses will share the same
 server owner or major ID of the server owner. It is not always
 necessary for the two data server addresses to designate the same
 server with trunking being used. For example, the data could be
 read-only, and the data consist of exact replicas.

13.6. Operations Sent to NFSv4.1 Data Servers

 Clients accessing data on an NFSv4.1 data server MUST send only the
 NULL procedure and COMPOUND procedures whose operations are taken
 only from two restricted subsets of the operations defined as valid
 NFSv4.1 operations. Clients MUST use the filehandle specified by the
 layout when accessing data on NFSv4.1 data servers.

 The first of these operation subsets consists of management
 operations. This subset consists of the BACKCHANNEL_CTL,
 BIND_CONN_TO_SESSION, CREATE_SESSION, DESTROY_CLIENTID,
 DESTROY_SESSION, EXCHANGE_ID, SECINFO_NO_NAME, SET_SSV, and SEQUENCE
 operations. The client may use these operations in order to set up
 and maintain the appropriate client IDs, sessions, and security
 contexts involved in communication with the data server. Henceforth,
 these will be referred to as data-server housekeeping operations.

 The second subset consists of COMMIT, READ, WRITE, and PUTFH. These
 operations MUST be used with a current filehandle specified by the
 layout. In the case of PUTFH, the new current filehandle MUST be one
 taken from the layout. Henceforth, these will be referred to as
 data-server I/O operations. As described in Section 12.5.1, a client
 MUST NOT send an I/O to a data server for which it does not hold a
 valid layout; the data server MUST reject such an I/O.

 Unless the server has a concurrent non-data-server personality --
 i.e., EXCHANGE_ID results returned (EXCHGID4_FLAG_USE_PNFS_DS |
 EXCHGID4_FLAG_USE_PNFS_MDS) or (EXCHGID4_FLAG_USE_PNFS_DS |
 EXCHGID4_FLAG_USE_NON_PNFS) see Section 13.1 -- any attempted use of
 operations against a data server other than those specified in the
 two subsets above MUST return NFS4ERR_NOTSUPP to the client.

 When the server has concurrent data-server and non-data-server
 personalities, each COMPOUND sent by the client MUST be constructed
 so that it is appropriate to one of the two personalities, and it
 MUST NOT contain operations directed to a mix of those personalities.
 The server MUST enforce this. To understand the constraints,
 operations within a COMPOUND are divided into the following three
 classes:

 1. An operation that is ambiguous regarding its personality
 assignment. This includes all of the data-server housekeeping
 operations. Additionally, if the server has assigned filehandles
 so that the ones defined by the layout are the same as those used
 by the metadata server, all operations using such filehandles are
 within this class, with the following exception. The exception
 is that if the operation uses a stateid that is incompatible with
 a data-server personality (e.g., a special stateid or the stateid
 has a non-zero "seqid" field, see Section 13.9.1), the operation

 is in class 3, as described below. A COMPOUND containing
 multiple class 1 operations (and operations of no other class)
 MAY be sent to a server with multiple concurrent data server and
 non-data-server personalities.

 2. An operation that is unambiguously referable to the data-server
 personality. This includes data-server I/O operations where the
 filehandle is one that can only be validly directed to the data-
 server personality.

 3. An operation that is unambiguously referable to the non-data-
 server personality. This includes all COMPOUND operations that
 are neither data-server housekeeping nor data-server I/O
 operations, plus data-server I/O operations where the current fh
 (or the one to be made the current fh in the case of PUTFH) is
 only valid on the metadata server or where a stateid is used that
 is incompatible with the data server, i.e., is a special stateid
 or has a non-zero seqid value.

 When a COMPOUND first executes an operation from class 3 above, it
 acts as a normal COMPOUND on any other server, and the data-server
 personality ceases to be relevant. There are no special restrictions
 on the operations in the COMPOUND to limit them to those for a data
 server. When a PUTFH is done, filehandles derived from the layout
 are not valid. If their format is not normally acceptable, then
 NFS4ERR_BADHANDLE MUST result. Similarly, current filehandles for
 other operations do not accept filehandles derived from layouts and
 are not normally usable on the metadata server. Using these will
 result in NFS4ERR_STALE.

 When a COMPOUND first executes an operation from class 2, which would
 be PUTFH where the filehandle is one from a layout, the COMPOUND
 henceforth is interpreted with respect to the data-server
 personality. Operations outside the two classes discussed above MUST
 result in NFS4ERR_NOTSUPP. Filehandles are validated using the rules
 of the data server, resulting in NFS4ERR_BADHANDLE and/or
 NFS4ERR_STALE even when they would not normally do so when addressed
 to the non-data-server personality. Stateids must obey the rules of
 the data server in that any use of special stateids or stateids with
 non-zero seqid values must result in NFS4ERR_BAD_STATEID.

 Until the server first executes an operation from class 2 or class 3,
 the client MUST NOT depend on the operation being executed by either
 the data-server or the non-data-server personality. The server MUST
 pick one personality consistently for a given COMPOUND, with the only
 possible transition being a single one when the first operation from
 class 2 or class 3 is executed.

 Because of the complexity induced by assigning filehandles so they
 can be used on both a data server and a metadata server, it is
 RECOMMENDED that where the same server can have both personalities,
 the server assign separate unique filehandles to both personalities.
 This makes it unambiguous for which server a given request is
 intended.

 GETATTR and SETATTR MUST be directed to the metadata server. In the
 case of a SETATTR of the size attribute, the control protocol is
 responsible for propagating size updates/truncations to the data
 servers. In the case of extending WRITEs to the data servers, the
 new size must be visible on the metadata server once a LAYOUTCOMMIT
 has completed (see Section 12.5.4.2). Section 13.10 describes the
 mechanism by which the client is to handle data-server files that do
 not reflect the metadata server’s size.

13.7. COMMIT through Metadata Server

 The file layout provides two alternate means of providing for the
 commit of data written through data servers. The flag
 NFL4_UFLG_COMMIT_THRU_MDS in the field nfl_util of the file layout
 (data type nfsv4_1_file_layout4) is an indication from the metadata
 server to the client of the REQUIRED way of performing COMMIT, either

 by sending the COMMIT to the data server or the metadata server.
 These two methods of dealing with the issue correspond to broad
 styles of implementation for a pNFS server supporting the file layout
 type.

 * When the flag is FALSE, COMMIT operations MUST to be sent to the
 data server to which the corresponding WRITE operations were sent.
 This approach is sometimes useful when file striping is
 implemented within the pNFS server (instead of the file system),
 with the individual data servers each implementing their own file
 systems.

 * When the flag is TRUE, COMMIT operations MUST be sent to the
 metadata server, rather than to the individual data servers. This
 approach is sometimes useful when file striping is implemented
 within the clustered file system that is the backend to the pNFS
 server. In such an implementation, each COMMIT to each data
 server might result in repeated writes of metadata blocks to the
 detriment of write performance. Sending a single COMMIT to the
 metadata server can be more efficient when there exists a
 clustered file system capable of implementing such a coordinated
 COMMIT.

 If nfl_util & NFL4_UFLG_COMMIT_THRU_MDS is TRUE, then in order to
 maintain the current NFSv4.1 commit and recovery model, the data
 servers MUST return a common writeverf verifier in all WRITE
 responses for a given file layout, and the metadata server’s
 COMMIT implementation must return the same writeverf. The value
 of the writeverf verifier MUST be changed at the metadata server
 or any data server that is referenced in the layout, whenever
 there is a server event that can possibly lead to loss of
 uncommitted data. The scope of the verifier can be for a file or
 for the entire pNFS server. It might be more difficult for the
 server to maintain the verifier at the file level, but the benefit
 is that only events that impact a given file will require recovery
 action.

 Note that if the layout specified dense packing, then the offset used
 to a COMMIT to the MDS may differ than that of an offset used to a
 COMMIT to the data server.

 The single COMMIT to the metadata server will return a verifier, and
 the client should compare it to all the verifiers from the WRITEs and
 fail the COMMIT if there are any mismatched verifiers. If COMMIT to
 the metadata server fails, the client should re-send WRITEs for all
 the modified data in the file. The client should treat modified data
 with a mismatched verifier as a WRITE failure and try to recover by
 resending the WRITEs to the original data server or using another
 path to that data if the layout has not been recalled.
 Alternatively, the client can obtain a new layout or it could rewrite
 the data directly to the metadata server. If nfl_util &
 NFL4_UFLG_COMMIT_THRU_MDS is FALSE, sending a COMMIT to the metadata
 server might have no effect. If nfl_util & NFL4_UFLG_COMMIT_THRU_MDS
 is FALSE, a COMMIT sent to the metadata server should be used only to
 commit data that was written to the metadata server. See
 Section 12.7.6 for recovery options.

13.8. The Layout Iomode

 The layout iomode need not be used by the metadata server when
 servicing NFSv4.1 file-based layouts, although in some circumstances
 it may be useful. For example, if the server implementation supports
 reading from read-only replicas or mirrors, it would be useful for
 the server to return a layout enabling the client to do so. As such,
 the client SHOULD set the iomode based on its intent to read or write
 the data. The client may default to an iomode of LAYOUTIOMODE4_RW.
 The iomode need not be checked by the data servers when clients
 perform I/O. However, the data servers SHOULD still validate that
 the client holds a valid layout and return an error if the client
 does not.

13.9. Metadata and Data Server State Coordination

13.9.1. Global Stateid Requirements

 When the client sends I/O to a data server, the stateid used MUST NOT
 be a layout stateid as returned by LAYOUTGET or sent by
 CB_LAYOUTRECALL. Permitted stateids are based on one of the
 following: an OPEN stateid (the stateid field of data type OPEN4resok
 as returned by OPEN), a delegation stateid (the stateid field of data
 types open_read_delegation4 and open_write_delegation4 as returned by
 OPEN or WANT_DELEGATION, or as sent by CB_PUSH_DELEG), or a stateid
 returned by the LOCK or LOCKU operations. The stateid sent to the
 data server MUST be sent with the seqid set to zero, indicating the
 most current version of that stateid, rather than indicating a
 specific non-zero seqid value. In no case is the use of special
 stateid values allowed.

 The stateid used for I/O MUST have the same effect and be subject to
 the same validation on a data server as it would if the I/O was being
 performed on the metadata server itself in the absence of pNFS. This
 has the implication that stateids are globally valid on both the
 metadata and data servers. This requires the metadata server to
 propagate changes in LOCK and OPEN state to the data servers, so that
 the data servers can validate I/O accesses. This is discussed
 further in Section 13.9.2. Depending on when stateids are
 propagated, the existence of a valid stateid on the data server may
 act as proof of a valid layout.

 Clients performing I/O operations need to select an appropriate
 stateid based on the locks (including opens and delegations) held by
 the client and the various types of state-owners sending the I/O
 requests. The rules for doing so when referencing data servers are
 somewhat different from those discussed in Section 8.2.5, which apply
 when accessing metadata servers.

 The following rules, applied in order of decreasing priority, govern
 the selection of the appropriate stateid:

 * If the client holds a delegation for the file in question, the
 delegation stateid should be used.

 * Otherwise, there must be an OPEN stateid for the current open-
 owner, and that OPEN stateid for the open file in question is
 used, unless mandatory locking prevents that. See below.

 * If the data server had previously responded with NFS4ERR_LOCKED to
 use of the OPEN stateid, then the client should use the byte-range
 lock stateid whenever one exists for that open file with the
 current lock-owner.

 * Special stateids should never be used. If they are used, the data
 server MUST reject the I/O with an NFS4ERR_BAD_STATEID error.

13.9.2. Data Server State Propagation

 Since the metadata server, which handles byte-range lock and open-
 mode state changes as well as ACLs, might not be co-located with the
 data servers where I/O accesses are validated, the server
 implementation MUST take care of propagating changes of this state to
 the data servers. Once the propagation to the data servers is
 complete, the full effect of those changes MUST be in effect at the
 data servers. However, some state changes need not be propagated
 immediately, although all changes SHOULD be propagated promptly.
 These state propagations have an impact on the design of the control
 protocol, even though the control protocol is outside of the scope of
 this specification. Immediate propagation refers to the synchronous
 propagation of state from the metadata server to the data server(s);
 the propagation must be complete before returning to the client.

13.9.2.1. Lock State Propagation

 If the pNFS server supports mandatory byte-range locking, any
 mandatory byte-range locks on a file MUST be made effective at the
 data servers before the request that establishes them returns to the
 caller. The effect MUST be the same as if the mandatory byte-range
 lock state were synchronously propagated to the data servers, even
 though the details of the control protocol may avoid actual transfer
 of the state under certain circumstances.

 On the other hand, since advisory byte-range lock state is not used
 for checking I/O accesses at the data servers, there is no semantic
 reason for propagating advisory byte-range lock state to the data
 servers. Since updates to advisory locks neither confer nor remove
 privileges, these changes need not be propagated immediately, and may
 not need to be propagated promptly. The updates to advisory locks
 need only be propagated when the data server needs to resolve a
 question about a stateid. In fact, if byte-range locking is not
 mandatory (i.e., is advisory) the clients are advised to avoid using
 the byte-range lock-based stateids for I/O. The stateids returned by
 OPEN are sufficient and eliminate overhead for this kind of state
 propagation.

 If a client gets back an NFS4ERR_LOCKED error from a data server,
 this is an indication that mandatory byte-range locking is in force.
 The client recovers from this by getting a byte-range lock that
 covers the affected range and re-sends the I/O with the stateid of
 the byte-range lock.

13.9.2.2. Open and Deny Mode Validation

 Open and deny mode validation MUST be performed against the open and
 deny mode(s) held by the data servers. When access is reduced or a
 deny mode made more restrictive (because of CLOSE or OPEN_DOWNGRADE),
 the data server MUST prevent any I/Os that would be denied if
 performed on the metadata server. When access is expanded, the data
 server MUST make sure that no requests are subsequently rejected
 because of open or deny issues that no longer apply, given the
 previous relaxation.

13.9.2.3. File Attributes

 Since the SETATTR operation has the ability to modify state that is
 visible on both the metadata and data servers (e.g., the size), care
 must be taken to ensure that the resultant state across the set of
 data servers is consistent, especially when truncating or growing the
 file.

 As described earlier, the LAYOUTCOMMIT operation is used to ensure
 that the metadata is synchronized with changes made to the data
 servers. For the NFSv4.1-based data storage protocol, it is
 necessary to re-synchronize state such as the size attribute, and the
 setting of mtime/change/atime. See Section 12.5.4 for a full
 description of the semantics regarding LAYOUTCOMMIT and attribute
 synchronization. It should be noted that by using an NFSv4.1-based
 layout type, it is possible to synchronize this state before
 LAYOUTCOMMIT occurs. For example, the control protocol can be used
 to query the attributes present on the data servers.

 Any changes to file attributes that control authorization or access
 as reflected by ACCESS calls or READs and WRITEs on the metadata
 server, MUST be propagated to the data servers for enforcement on
 READ and WRITE I/O calls. If the changes made on the metadata server
 result in more restrictive access permissions for any user, those
 changes MUST be propagated to the data servers synchronously.

 The OPEN operation (Section 18.16.4) does not impose any requirement
 that I/O operations on an open file have the same credentials as the
 OPEN itself (unless EXCHGID4_FLAG_BIND_PRINC_STATEID is set when
 EXCHANGE_ID creates the client ID), and so it requires the server’s
 READ and WRITE operations to perform appropriate access checking.
 Changes to ACLs also require new access checking by READ and WRITE on
 the server. The propagation of access-right changes due to changes

 in ACLs may be asynchronous only if the server implementation is able
 to determine that the updated ACL is not more restrictive for any
 user specified in the old ACL. Due to the relative infrequency of
 ACL updates, it is suggested that all changes be propagated
 synchronously.

13.10. Data Server Component File Size

 A potential problem exists when a component data file on a particular
 data server has grown past EOF; the problem exists for both dense and
 sparse layouts. Imagine the following scenario: a client creates a
 new file (size == 0) and writes to byte 131072; the client then seeks
 to the beginning of the file and reads byte 100. The client should
 receive zeroes back as a result of the READ. However, if the
 striping pattern directs the client to send the READ to a data server
 other than the one that received the client’s original WRITE, the
 data server servicing the READ may believe that the file’s size is
 still 0 bytes. In that event, the data server’s READ response will
 contain zero bytes and an indication of EOF. The data server can
 only return zeroes if it knows that the file’s size has been
 extended. This would require the immediate propagation of the file’s
 size to all data servers, which is potentially very costly.
 Therefore, the client that has initiated the extension of the file’s
 size MUST be prepared to deal with these EOF conditions. When the
 offset in the arguments to READ is less than the client’s view of the
 file size, if the READ response indicates EOF and/or contains fewer
 bytes than requested, the client will interpret such a response as a
 hole in the file, and the NFS client will substitute zeroes for the
 data.

 The NFSv4.1 protocol only provides close-to-open file data cache
 semantics; meaning that when the file is closed, all modified data is
 written to the server. When a subsequent OPEN of the file is done,
 the change attribute is inspected for a difference from a cached
 value for the change attribute. For the case above, this means that
 a LAYOUTCOMMIT will be done at close (along with the data WRITEs) and
 will update the file’s size and change attribute. Access from
 another client after that point will result in the appropriate size
 being returned.

13.11. Layout Revocation and Fencing

 As described in Section 12.7, the layout-type-specific storage
 protocol is responsible for handling the effects of I/Os that started
 before lease expiration and extend through lease expiration. The
 LAYOUT4_NFSV4_1_FILES layout type can prevent all I/Os to data
 servers from being executed after lease expiration (this prevention
 is called "fencing"), without relying on a precise client lease timer
 and without requiring data servers to maintain lease timers. The
 LAYOUT4_NFSV4_1_FILES pNFS server has the flexibility to revoke
 individual layouts, and thus fence I/O on a per-file basis.

 In addition to lease expiration, the reasons a layout can be revoked
 include: client fails to respond to a CB_LAYOUTRECALL, the metadata
 server restarts, or administrative intervention. Regardless of the
 reason, once a client’s layout has been revoked, the pNFS server MUST
 prevent the client from sending I/O for the affected file from and to
 all data servers; in other words, it MUST fence the client from the
 affected file on the data servers.

 Fencing works as follows. As described in Section 13.1, in COMPOUND
 procedure requests to the data server, the data filehandle provided
 by the PUTFH operation and the stateid in the READ or WRITE operation
 are used to ensure that the client has a valid layout for the I/O
 being performed; if it does not, the I/O is rejected with
 NFS4ERR_PNFS_NO_LAYOUT. The server can simply check the stateid and,
 additionally, make the data filehandle stale if the layout specified
 a data filehandle that is different from the metadata server’s
 filehandle for the file (see the nfl_fh_list description in
 Section 13.3).

 Before the metadata server takes any action to revoke layout state
 given out by a previous instance, it must make sure that all layout
 state from that previous instance are invalidated at the data
 servers. This has the following implications.

 * The metadata server must not restripe a file until it has
 contacted all of the data servers to invalidate the layouts from
 the previous instance.

 * The metadata server must not give out mandatory locks that
 conflict with layouts from the previous instance without either
 doing a specific layout invalidation (as it would have to do
 anyway) or doing a global data server invalidation.

13.12. Security Considerations for the File Layout Type

 The NFSv4.1 file layout type MUST adhere to the security
 considerations outlined in Section 12.9. NFSv4.1 data servers MUST
 make all of the required access checks on each READ or WRITE I/O as
 determined by the NFSv4.1 protocol. If the metadata server would
 deny a READ or WRITE operation on a file due to its ACL, mode
 attribute, open access mode, open deny mode, mandatory byte-range
 lock state, or any other attributes and state, the data server MUST
 also deny the READ or WRITE operation. This impacts the control
 protocol and the propagation of state from the metadata server to the
 data servers; see Section 13.9.2 for more details.

 The methods for authentication, integrity, and privacy for data
 servers based on the LAYOUT4_NFSV4_1_FILES layout type are the same
 as those used by metadata servers. Metadata and data servers use ONC
 RPC security flavors to authenticate, and SECINFO and SECINFO_NO_NAME
 to negotiate the security mechanism and services to be used. Thus,
 when using the LAYOUT4_NFSV4_1_FILES layout type, the impact on the
 RPC-based security model due to pNFS (as alluded to in Sections 1.8.1
 and 1.8.2.2) is zero.

 For a given file object, a metadata server MAY require different
 security parameters (secinfo4 value) than the data server. For a
 given file object with multiple data servers, the secinfo4 value
 SHOULD be the same across all data servers. If the secinfo4 values
 across a metadata server and its data servers differ for a specific
 file, the mapping of the principal to the server’s internal user
 identifier MUST be the same in order for the access-control checks
 based on ACL, mode, open and deny mode, and mandatory locking to be
 consistent across on the pNFS server.

 If an NFSv4.1 implementation supports pNFS and supports NFSv4.1 file
 layouts, then the implementation MUST support the SECINFO_NO_NAME
 operation on both the metadata and data servers.

14. Internationalization

 The primary issue in which NFSv4.1 needs to deal with
 internationalization, or I18N, is with respect to file names and
 other strings as used within the protocol. The choice of string
 representation must allow reasonable name/string access to clients
 that use various languages. The UTF-8 encoding of the UCS (Universal
 Multiple-Octet Coded Character Set) as defined by ISO10646 [18]
 allows for this type of access and follows the policy described in
 "IETF Policy on Character Sets and Languages", RFC 2277 [19].

 RFC 3454 [16], otherwise known as "stringprep", documents a framework
 for using Unicode/UTF-8 in networking protocols so as "to increase
 the likelihood that string input and string comparison work in ways
 that make sense for typical users throughout the world". A protocol
 must define a profile of stringprep "in order to fully specify the
 processing options". The remainder of this section defines the
 NFSv4.1 stringprep profiles. Much of the terminology used for the
 remainder of this section comes from stringprep.

 There are three UTF-8 string types defined for NFSv4.1: utf8str_cs,

 utf8str_cis, and utf8str_mixed. Separate profiles are defined for
 each. Each profile defines the following, as required by stringprep:

 * The intended applicability of the profile.

 * The character repertoire that is the input and output to
 stringprep (which is Unicode 3.2 for the referenced version of
 stringprep). However, NFSv4.1 implementations are not limited to
 3.2.

 * The mapping tables from stringprep used (as described in Section 3
 of stringprep).

 * Any additional mapping tables specific to the profile.

 * The Unicode normalization used, if any (as described in Section 4
 of stringprep).

 * The tables from the stringprep listing of characters that are
 prohibited as output (as described in Section 5 of stringprep).

 * The bidirectional string testing used, if any (as described in
 Section 6 of stringprep).

 * Any additional characters that are prohibited as output specific
 to the profile.

 Stringprep discusses Unicode characters, whereas NFSv4.1 renders
 UTF-8 characters. Since there is a one-to-one mapping from UTF-8 to
 Unicode, when the remainder of this document refers to Unicode, the
 reader should assume UTF-8.

 Much of the text for the profiles comes from RFC 3491 [20].

14.1. Stringprep Profile for the utf8str_cs Type

 Every use of the utf8str_cs type definition in the NFSv4 protocol
 specification follows the profile named nfs4_cs_prep.

14.1.1. Intended Applicability of the nfs4_cs_prep Profile

 The utf8str_cs type is a case-sensitive string of UTF-8 characters.
 Its primary use in NFSv4.1 is for naming components and pathnames.
 Components and pathnames are stored on the server’s file system. Two
 valid distinct UTF-8 strings might be the same after processing via
 the utf8str_cs profile. If the strings are two names inside a
 directory, the NFSv4.1 server will need to either:

 * disallow the creation of a second name if its post-processed form
 collides with that of an existing name, or

 * allow the creation of the second name, but arrange so that after
 post-processing, the second name is different than the post-
 processed form of the first name.

14.1.2. Character Repertoire of nfs4_cs_prep

 The nfs4_cs_prep profile uses Unicode 3.2, as defined in stringprep’s
 Appendix A.1. However, NFSv4.1 implementations are not limited to
 3.2.

14.1.3. Mapping Used by nfs4_cs_prep

 The nfs4_cs_prep profile specifies mapping using the following tables
 from stringprep:

 Table B.1

 Table B.2 is normally not part of the nfs4_cs_prep profile as it is
 primarily for dealing with case-insensitive comparisons. However, if
 the NFSv4.1 file server supports the case_insensitive file system

 attribute, and if case_insensitive is TRUE, the NFSv4.1 server MUST
 use Table B.2 (in addition to Table B1) when processing utf8str_cs
 strings, and the NFSv4.1 client MUST assume Table B.2 (in addition to
 Table B.1) is being used.

 If the case_preserving attribute is present and set to FALSE, then
 the NFSv4.1 server MUST use Table B.2 to map case when processing
 utf8str_cs strings. Whether the server maps from lower to upper case
 or from upper to lower case is an implementation dependency.

14.1.4. Normalization used by nfs4_cs_prep

 The nfs4_cs_prep profile does not specify a normalization form. A
 later revision of this specification may specify a particular
 normalization form. Therefore, the server and client can expect that
 they may receive unnormalized characters within protocol requests and
 responses. If the operating environment requires normalization, then
 the implementation must normalize utf8str_cs strings within the
 protocol before presenting the information to an application (at the
 client) or local file system (at the server).

14.1.5. Prohibited Output for nfs4_cs_prep

 The nfs4_cs_prep profile RECOMMENDS prohibiting the use of the
 following tables from stringprep:

 Table C.5

 Table C.6

14.1.6. Bidirectional Output for nfs4_cs_prep

 The nfs4_cs_prep profile does not specify any checking of
 bidirectional strings.

14.2. Stringprep Profile for the utf8str_cis Type

 Every use of the utf8str_cis type definition in the NFSv4.1 protocol
 specification follows the profile named nfs4_cis_prep.

14.2.1. Intended Applicability of the nfs4_cis_prep Profile

 The utf8str_cis type is a case-insensitive string of UTF-8
 characters. Its primary use in NFSv4.1 is for naming NFS servers.

14.2.2. Character Repertoire of nfs4_cis_prep

 The nfs4_cis_prep profile uses Unicode 3.2, as defined in
 stringprep’s Appendix A.1. However, NFSv4.1 implementations are not
 limited to 3.2.

14.2.3. Mapping Used by nfs4_cis_prep

 The nfs4_cis_prep profile specifies mapping using the following
 tables from stringprep:

 Table B.1

 Table B.2

14.2.4. Normalization Used by nfs4_cis_prep

 The nfs4_cis_prep profile specifies using Unicode normalization form
 KC, as described in stringprep.

14.2.5. Prohibited Output for nfs4_cis_prep

 The nfs4_cis_prep profile specifies prohibiting using the following
 tables from stringprep:

 Table C.1.2

 Table C.2.2

 Table C.3

 Table C.4

 Table C.5

 Table C.6

 Table C.7

 Table C.8

 Table C.9

14.2.6. Bidirectional Output for nfs4_cis_prep

 The nfs4_cis_prep profile specifies checking bidirectional strings as
 described in stringprep’s Section 6.

14.3. Stringprep Profile for the utf8str_mixed Type

 Every use of the utf8str_mixed type definition in the NFSv4.1
 protocol specification follows the profile named nfs4_mixed_prep.

14.3.1. Intended Applicability of the nfs4_mixed_prep Profile

 The utf8str_mixed type is a string of UTF-8 characters, with a prefix
 that is case sensitive, a separator equal to ’@’, and a suffix that
 is a fully qualified domain name. Its primary use in NFSv4.1 is for
 naming principals identified in an Access Control Entry.

14.3.2. Character Repertoire of nfs4_mixed_prep

 The nfs4_mixed_prep profile uses Unicode 3.2, as defined in
 stringprep’s Appendix A.1. However, NFSv4.1 implementations are not
 limited to 3.2.

14.3.3. Mapping Used by nfs4_cis_prep

 For the prefix and the separator of a utf8str_mixed string, the
 nfs4_mixed_prep profile specifies mapping using the following table
 from stringprep:

 Table B.1

 For the suffix of a utf8str_mixed string, the nfs4_mixed_prep profile
 specifies mapping using the following tables from stringprep:

 Table B.1

 Table B.2

14.3.4. Normalization Used by nfs4_mixed_prep

 The nfs4_mixed_prep profile specifies using Unicode normalization
 form KC, as described in stringprep.

14.3.5. Prohibited Output for nfs4_mixed_prep

 The nfs4_mixed_prep profile specifies prohibiting using the following
 tables from stringprep:

 Table C.1.2

 Table C.2.2

 Table C.3

 Table C.4

 Table C.5

 Table C.6

 Table C.7

 Table C.8

 Table C.9

14.3.6. Bidirectional Output for nfs4_mixed_prep

 The nfs4_mixed_prep profile specifies checking bidirectional strings
 as described in stringprep’s Section 6.

14.4. UTF-8 Capabilities

 const FSCHARSET_CAP4_CONTAINS_NON_UTF8 = 0x1;
 const FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 = 0x2;

 typedef uint32_t fs_charset_cap4;

 Because some operating environments and file systems do not enforce
 character set encodings, NFSv4.1 supports the fs_charset_cap
 attribute (Section 5.8.2.11) that indicates to the client a file
 system’s UTF-8 capabilities. The attribute is an integer containing
 a pair of flags. The first flag is FSCHARSET_CAP4_CONTAINS_NON_UTF8,
 which, if set to one, tells the client that the file system contains
 non-UTF-8 characters, and the server will not convert non-UTF
 characters to UTF-8 if the client reads a symbolic link or directory,
 neither will operations with component names or pathnames in the
 arguments convert the strings to UTF-8. The second flag is
 FSCHARSET_CAP4_ALLOWS_ONLY_UTF8, which, if set to one, indicates that
 the server will accept (and generate) only UTF-8 characters on the
 file system. If FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 is set to one,
 FSCHARSET_CAP4_CONTAINS_NON_UTF8 MUST be set to zero.
 FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 SHOULD always be set to one.

14.5. UTF-8 Related Errors

 Where the client sends an invalid UTF-8 string, the server should
 return NFS4ERR_INVAL (see Table 11). This includes cases in which
 inappropriate prefixes are detected and where the count includes
 trailing bytes that do not constitute a full UCS character.

 Where the client-supplied string is valid UTF-8 but contains
 characters that are not supported by the server as a value for that
 string (e.g., names containing characters outside of Unicode plane 0
 on file systems that fail to support such characters despite their
 presence in the Unicode standard), the server should return
 NFS4ERR_BADCHAR.

 Where a UTF-8 string is used as a file name, and the file system
 (while supporting all of the characters within the name) does not
 allow that particular name to be used, the server should return the
 error NFS4ERR_BADNAME (Table 11). This includes situations in which
 the server file system imposes a normalization constraint on name
 strings, but will also include such situations as file system
 prohibitions of "." and ".." as file names for certain operations,
 and other such constraints.

15. Error Values

 NFS error numbers are assigned to failed operations within a Compound
 (COMPOUND or CB_COMPOUND) request. A Compound request contains a
 number of NFS operations that have their results encoded in sequence
 in a Compound reply. The results of successful operations will
 consist of an NFS4_OK status followed by the encoded results of the
 operation. If an NFS operation fails, an error status will be

 entered in the reply and the Compound request will be terminated.

15.1. Error Definitions

 +===================================+========+===================+
 | Error | Number | Description |
 +===================================+========+===================+
 | NFS4_OK | 0 | Section 15.1.3.1 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_ACCESS | 13 | Section 15.1.6.1 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_ATTRNOTSUPP | 10032 | Section 15.1.15.1 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_ADMIN_REVOKED | 10047 | Section 15.1.5.1 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_BACK_CHAN_BUSY | 10057 | Section 15.1.12.1 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_BADCHAR | 10040 | Section 15.1.7.1 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_BADHANDLE | 10001 | Section 15.1.2.1 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_BADIOMODE | 10049 | Section 15.1.10.1 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_BADLAYOUT | 10050 | Section 15.1.10.2 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_BADNAME | 10041 | Section 15.1.7.2 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_BADOWNER | 10039 | Section 15.1.15.2 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_BADSESSION | 10052 | Section 15.1.11.1 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_BADSLOT | 10053 | Section 15.1.11.2 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_BADTYPE | 10007 | Section 15.1.4.1 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_BADXDR | 10036 | Section 15.1.1.1 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_BAD_COOKIE | 10003 | Section 15.1.1.2 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_BAD_HIGH_SLOT | 10077 | Section 15.1.11.3 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_BAD_RANGE | 10042 | Section 15.1.8.1 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_BAD_SEQID | 10026 | Section 15.1.16.1 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_BAD_SESSION_DIGEST | 10051 | Section 15.1.12.2 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_BAD_STATEID | 10025 | Section 15.1.5.2 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_CB_PATH_DOWN | 10048 | Section 15.1.11.4 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_CLID_INUSE | 10017 | Section 15.1.13.2 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_CLIENTID_BUSY | 10074 | Section 15.1.13.1 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_COMPLETE_ALREADY | 10054 | Section 15.1.9.1 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_CONN_NOT_BOUND_TO_SESSION | 10055 | Section 15.1.11.6 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_DEADLOCK | 10045 | Section 15.1.8.2 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_DEADSESSION | 10078 | Section 15.1.11.5 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_DELAY | 10008 | Section 15.1.1.3 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_DELEG_ALREADY_WANTED | 10056 | Section 15.1.14.1 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_DELEG_REVOKED | 10087 | Section 15.1.5.3 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_DENIED | 10010 | Section 15.1.8.3 |
 +-----------------------------------+--------+-------------------+

 | NFS4ERR_DIRDELEG_UNAVAIL | 10084 | Section 15.1.14.2 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_DQUOT | 69 | Section 15.1.4.2 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_ENCR_ALG_UNSUPP | 10079 | Section 15.1.13.3 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_EXIST | 17 | Section 15.1.4.3 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_EXPIRED | 10011 | Section 15.1.5.4 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_FBIG | 27 | Section 15.1.4.4 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_FHEXPIRED | 10014 | Section 15.1.2.2 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_FILE_OPEN | 10046 | Section 15.1.4.5 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_GRACE | 10013 | Section 15.1.9.2 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_HASH_ALG_UNSUPP | 10072 | Section 15.1.13.4 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_INVAL | 22 | Section 15.1.1.4 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_IO | 5 | Section 15.1.4.6 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_ISDIR | 21 | Section 15.1.2.3 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_LAYOUTTRYLATER | 10058 | Section 15.1.10.3 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_LAYOUTUNAVAILABLE | 10059 | Section 15.1.10.4 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_LEASE_MOVED | 10031 | Section 15.1.16.2 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_LOCKED | 10012 | Section 15.1.8.4 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_LOCKS_HELD | 10037 | Section 15.1.8.5 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_LOCK_NOTSUPP | 10043 | Section 15.1.8.6 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_LOCK_RANGE | 10028 | Section 15.1.8.7 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_MINOR_VERS_MISMATCH | 10021 | Section 15.1.3.2 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_MLINK | 31 | Section 15.1.4.7 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_MOVED | 10019 | Section 15.1.2.4 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_NAMETOOLONG | 63 | Section 15.1.7.3 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_NOENT | 2 | Section 15.1.4.8 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_NOFILEHANDLE | 10020 | Section 15.1.2.5 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_NOMATCHING_LAYOUT | 10060 | Section 15.1.10.5 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_NOSPC | 28 | Section 15.1.4.9 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_NOTDIR | 20 | Section 15.1.2.6 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_NOTEMPTY | 66 | Section 15.1.4.10 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_NOTSUPP | 10004 | Section 15.1.1.5 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_NOT_ONLY_OP | 10081 | Section 15.1.3.3 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_NOT_SAME | 10027 | Section 15.1.15.3 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_NO_GRACE | 10033 | Section 15.1.9.3 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_NXIO | 6 | Section 15.1.16.3 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_OLD_STATEID | 10024 | Section 15.1.5.5 |

 +-----------------------------------+--------+-------------------+
 | NFS4ERR_OPENMODE | 10038 | Section 15.1.8.8 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_OP_ILLEGAL | 10044 | Section 15.1.3.4 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_OP_NOT_IN_SESSION | 10071 | Section 15.1.3.5 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_PERM | 1 | Section 15.1.6.2 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_PNFS_IO_HOLE | 10075 | Section 15.1.10.6 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_PNFS_NO_LAYOUT | 10080 | Section 15.1.10.7 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_RECALLCONFLICT | 10061 | Section 15.1.14.3 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_RECLAIM_BAD | 10034 | Section 15.1.9.4 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_RECLAIM_CONFLICT | 10035 | Section 15.1.9.5 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_REJECT_DELEG | 10085 | Section 15.1.14.4 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_REP_TOO_BIG | 10066 | Section 15.1.3.6 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_REP_TOO_BIG_TO_CACHE | 10067 | Section 15.1.3.7 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_REQ_TOO_BIG | 10065 | Section 15.1.3.8 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_RESTOREFH | 10030 | Section 15.1.16.4 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_RETRY_UNCACHED_REP | 10068 | Section 15.1.3.9 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_RETURNCONFLICT | 10086 | Section 15.1.10.8 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_ROFS | 30 | Section 15.1.4.11 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_SAME | 10009 | Section 15.1.15.4 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_SHARE_DENIED | 10015 | Section 15.1.8.9 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_SEQUENCE_POS | 10064 | Section 15.1.3.10 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_SEQ_FALSE_RETRY | 10076 | Section 15.1.11.7 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_SEQ_MISORDERED | 10063 | Section 15.1.11.8 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_SERVERFAULT | 10006 | Section 15.1.1.6 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_STALE | 70 | Section 15.1.2.7 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_STALE_CLIENTID | 10022 | Section 15.1.13.5 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_STALE_STATEID | 10023 | Section 15.1.16.5 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_SYMLINK | 10029 | Section 15.1.2.8 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_TOOSMALL | 10005 | Section 15.1.1.7 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_TOO_MANY_OPS | 10070 | Section 15.1.3.11 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_UNKNOWN_LAYOUTTYPE | 10062 | Section 15.1.10.9 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_UNSAFE_COMPOUND | 10069 | Section 15.1.3.12 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_WRONGSEC | 10016 | Section 15.1.6.3 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_WRONG_CRED | 10082 | Section 15.1.6.4 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_WRONG_TYPE | 10083 | Section 15.1.2.9 |
 +-----------------------------------+--------+-------------------+
 | NFS4ERR_XDEV | 18 | Section 15.1.4.12 |
 +-----------------------------------+--------+-------------------+

 Table 11: Protocol Error Definitions

15.1.1. General Errors

 This section deals with errors that are applicable to a broad set of
 different purposes.

15.1.1.1. NFS4ERR_BADXDR (Error Code 10036)

 The arguments for this operation do not match those specified in the
 XDR definition. This includes situations in which the request ends
 before all the arguments have been seen. Note that this error
 applies when fixed enumerations (these include booleans) have a value
 within the input stream that is not valid for the enum. A replier
 may pre-parse all operations for a Compound procedure before doing
 any operation execution and return RPC-level XDR errors in that case.

15.1.1.2. NFS4ERR_BAD_COOKIE (Error Code 10003)

 Used for operations that provide a set of information indexed by some
 quantity provided by the client or cookie sent by the server for an
 earlier invocation. Where the value cannot be used for its intended
 purpose, this error results.

15.1.1.3. NFS4ERR_DELAY (Error Code 10008)

 For any of a number of reasons, the replier could not process this
 operation in what was deemed a reasonable time. The client should
 wait and then try the request with a new slot and sequence value.

 Some examples of scenarios that might lead to this situation:

 * A server that supports hierarchical storage receives a request to
 process a file that had been migrated.

 * An operation requires a delegation recall to proceed, but the need
 to wait for this delegation to be recalled and returned makes
 processing this request in a timely fashion impossible.

 * A request is being performed on a session being migrated from
 another server as described in Section 11.14.3, and the lack of
 full information about the state of the session on the source
 makes it impossible to process the request immediately.

 In such cases, returning the error NFS4ERR_DELAY allows necessary
 preparatory operations to proceed without holding up requester
 resources such as a session slot. After delaying for period of time,
 the client can then re-send the operation in question, often as part
 of a nearly identical request. Because of the need to avoid spurious
 reissues of non-idempotent operations and to avoid acting in response
 to NFS4ERR_DELAY errors returned on responses returned from the
 replier’s reply cache, integration with the session-provided reply
 cache is necessary. There are a number of cases to deal with, each
 of which requires different sorts of handling by the requester and
 replier:

 * If NFS4ERR_DELAY is returned on a SEQUENCE operation, the request
 is retried in full with the SEQUENCE operation containing the same
 slot and sequence values. In this case, the replier MUST avoid
 returning a response containing NFS4ERR_DELAY as the response to
 SEQUENCE solely because an earlier instance of the same request
 returned that error and it was stored in the reply cache. If the
 replier did this, the retries would not be effective as there
 would be no opportunity for the replier to see whether the
 condition that generated the NFS4ERR_DELAY had been rectified
 during the interim between the original request and the retry.

 * If NFS4ERR_DELAY is returned on an operation other than SEQUENCE
 that validly appears as the first operation of a request, the
 handling is similar. The request can be retried in full without

 modification. In this case as well, the replier MUST avoid
 returning a response containing NFS4ERR_DELAY as the response to
 an initial operation of a request solely on the basis of its
 presence in the reply cache. If the replier did this, the retries
 would not be effective as there would be no opportunity for the
 replier to see whether the condition that generated the
 NFS4ERR_DELAY had been rectified during the interim between the
 original request and the retry.

 * If NFS4ERR_DELAY is returned on an operation other than the first
 in the request, the request when retried MUST contain a SEQUENCE
 operation that is different than the original one, with either the
 slot ID or the sequence value different from that in the original
 request. Because requesters do this, there is no need for the
 replier to take special care to avoid returning an NFS4ERR_DELAY
 error obtained from the reply cache. When no non-idempotent
 operations have been processed before the NFS4ERR_DELAY was
 returned, the requester should retry the request in full, with the
 only difference from the original request being the modification
 to the slot ID or sequence value in the reissued SEQUENCE
 operation.

 * When NFS4ERR_DELAY is returned on an operation other than the
 first within a request and there has been a non-idempotent
 operation processed before the NFS4ERR_DELAY was returned,
 reissuing the request as is normally done would incorrectly cause
 the re-execution of the non-idempotent operation.

 To avoid this situation, the client should reissue the request
 without the non-idempotent operation. The request still must use
 a SEQUENCE operation with either a different slot ID or sequence
 value from the SEQUENCE in the original request. Because this is
 done, there is no way the replier could avoid spuriously re-
 executing the non-idempotent operation since the different
 SEQUENCE parameters prevent the requester from recognizing that
 the non-idempotent operation is being retried.

 Note that without the ability to return NFS4ERR_DELAY and the
 requester’s willingness to re-send when receiving it, deadlock might
 result. For example, if a recall is done, and if the delegation
 return or operations preparatory to delegation return are held up by
 other operations that need the delegation to be returned, session
 slots might not be available. The result could be deadlock.

15.1.1.4. NFS4ERR_INVAL (Error Code 22)

 The arguments for this operation are not valid for some reason, even
 though they do match those specified in the XDR definition for the
 request.

15.1.1.5. NFS4ERR_NOTSUPP (Error Code 10004)

 Operation not supported, either because the operation is an OPTIONAL
 one and is not supported by this server or because the operation MUST
 NOT be implemented in the current minor version.

15.1.1.6. NFS4ERR_SERVERFAULT (Error Code 10006)

 An error occurred on the server that does not map to any of the
 specific legal NFSv4.1 protocol error values. The client should
 translate this into an appropriate error. UNIX clients may choose to
 translate this to EIO.

15.1.1.7. NFS4ERR_TOOSMALL (Error Code 10005)

 Used where an operation returns a variable amount of data, with a
 limit specified by the client. Where the data returned cannot be fit
 within the limit specified by the client, this error results.

15.1.2. Filehandle Errors

 These errors deal with the situation in which the current or saved
 filehandle, or the filehandle passed to PUTFH intended to become the
 current filehandle, is invalid in some way. This includes situations
 in which the filehandle is a valid filehandle in general but is not
 of the appropriate object type for the current operation.

 Where the error description indicates a problem with the current or
 saved filehandle, it is to be understood that filehandles are only
 checked for the condition if they are implicit arguments of the
 operation in question.

15.1.2.1. NFS4ERR_BADHANDLE (Error Code 10001)

 Illegal NFS filehandle for the current server. The current
 filehandle failed internal consistency checks. Once accepted as
 valid (by PUTFH), no subsequent status change can cause the
 filehandle to generate this error.

15.1.2.2. NFS4ERR_FHEXPIRED (Error Code 10014)

 A current or saved filehandle that is an argument to the current
 operation is volatile and has expired at the server.

15.1.2.3. NFS4ERR_ISDIR (Error Code 21)

 The current or saved filehandle designates a directory when the
 current operation does not allow a directory to be accepted as the
 target of this operation.

15.1.2.4. NFS4ERR_MOVED (Error Code 10019)

 The file system that contains the current filehandle object is not
 present at the server or is not accessible with the network address
 used. It may have been made accessible on a different set of network
 addresses, relocated or migrated to another server, or it may have
 never been present. The client may obtain the new file system
 location by obtaining the fs_locations or fs_locations_info attribute
 for the current filehandle. For further discussion, refer to
 Section 11.3.

 As with the case of NFS4ERR_DELAY, it is possible that one or more
 non-idempotent operations may have been successfully executed within
 a COMPOUND before NFS4ERR_MOVED is returned. Because of this, once
 the new location is determined, the original request that received
 the NFS4ERR_MOVED should not be re-executed in full. Instead, the
 client should send a new COMPOUND with any successfully executed non-
 idempotent operations removed. When the client uses the same session
 for the new COMPOUND, its SEQUENCE operation should use a different
 slot ID or sequence.

15.1.2.5. NFS4ERR_NOFILEHANDLE (Error Code 10020)

 The logical current or saved filehandle value is required by the
 current operation and is not set. This may be a result of a
 malformed COMPOUND operation (i.e., no PUTFH or PUTROOTFH before an
 operation that requires the current filehandle be set).

15.1.2.6. NFS4ERR_NOTDIR (Error Code 20)

 The current (or saved) filehandle designates an object that is not a
 directory for an operation in which a directory is required.

15.1.2.7. NFS4ERR_STALE (Error Code 70)

 The current or saved filehandle value designating an argument to the
 current operation is invalid. The file referred to by that
 filehandle no longer exists or access to it has been revoked.

15.1.2.8. NFS4ERR_SYMLINK (Error Code 10029)

 The current filehandle designates a symbolic link when the current

 operation does not allow a symbolic link as the target.

15.1.2.9. NFS4ERR_WRONG_TYPE (Error Code 10083)

 The current (or saved) filehandle designates an object that is of an
 invalid type for the current operation, and there is no more specific
 error (such as NFS4ERR_ISDIR or NFS4ERR_SYMLINK) that applies. Note
 that in NFSv4.0, such situations generally resulted in the less-
 specific error NFS4ERR_INVAL.

15.1.3. Compound Structure Errors

 This section deals with errors that relate to the overall structure
 of a Compound request (by which we mean to include both COMPOUND and
 CB_COMPOUND), rather than to particular operations.

 There are a number of basic constraints on the operations that may
 appear in a Compound request. Sessions add to these basic
 constraints by requiring a Sequence operation (either SEQUENCE or
 CB_SEQUENCE) at the start of the Compound.

15.1.3.1. NFS_OK (Error code 0)

 Indicates the operation completed successfully, in that all of the
 constituent operations completed without error.

15.1.3.2. NFS4ERR_MINOR_VERS_MISMATCH (Error code 10021)

 The minor version specified is not one that the current listener
 supports. This value is returned in the overall status for the
 Compound but is not associated with a specific operation since the
 results will specify a result count of zero.

15.1.3.3. NFS4ERR_NOT_ONLY_OP (Error Code 10081)

 Certain operations, which are allowed to be executed outside of a
 session, MUST be the only operation within a Compound whenever the
 Compound does not start with a Sequence operation. This error
 results when that constraint is not met.

15.1.3.4. NFS4ERR_OP_ILLEGAL (Error Code 10044)

 The operation code is not a valid one for the current Compound
 procedure. The opcode in the result stream matched with this error
 is the ILLEGAL value, although the value that appears in the request
 stream may be different. Where an illegal value appears and the
 replier pre-parses all operations for a Compound procedure before
 doing any operation execution, an RPC-level XDR error may be
 returned.

15.1.3.5. NFS4ERR_OP_NOT_IN_SESSION (Error Code 10071)

 Most forward operations and all callback operations are only valid
 within the context of a session, so that the Compound request in
 question MUST begin with a Sequence operation. If an attempt is made
 to execute these operations outside the context of session, this
 error results.

15.1.3.6. NFS4ERR_REP_TOO_BIG (Error Code 10066)

 The reply to a Compound would exceed the channel’s negotiated maximum
 response size.

15.1.3.7. NFS4ERR_REP_TOO_BIG_TO_CACHE (Error Code 10067)

 The reply to a Compound would exceed the channel’s negotiated maximum
 size for replies cached in the reply cache when the Sequence for the
 current request specifies that this request is to be cached.

15.1.3.8. NFS4ERR_REQ_TOO_BIG (Error Code 10065)

 The Compound request exceeds the channel’s negotiated maximum size
 for requests.

15.1.3.9. NFS4ERR_RETRY_UNCACHED_REP (Error Code 10068)

 The requester has attempted a retry of a Compound that it previously
 requested not be placed in the reply cache.

15.1.3.10. NFS4ERR_SEQUENCE_POS (Error Code 10064)

 A Sequence operation appeared in a position other than the first
 operation of a Compound request.

15.1.3.11. NFS4ERR_TOO_MANY_OPS (Error Code 10070)

 The Compound request has too many operations, exceeding the count
 negotiated when the session was created.

15.1.3.12. NFS4ERR_UNSAFE_COMPOUND (Error Code 10068)

 The client has sent a COMPOUND request with an unsafe mix of
 operations -- specifically, with a non-idempotent operation that
 changes the current filehandle and that is not followed by a GETFH.

15.1.4. File System Errors

 These errors describe situations that occurred in the underlying file
 system implementation rather than in the protocol or any NFSv4.x
 feature.

15.1.4.1. NFS4ERR_BADTYPE (Error Code 10007)

 An attempt was made to create an object with an inappropriate type
 specified to CREATE. This may be because the type is undefined,
 because the type is not supported by the server, or because the type
 is not intended to be created by CREATE (such as a regular file or
 named attribute, for which OPEN is used to do the file creation).

15.1.4.2. NFS4ERR_DQUOT (Error Code 69)

 Resource (quota) hard limit exceeded. The user’s resource limit on
 the server has been exceeded.

15.1.4.3. NFS4ERR_EXIST (Error Code 17)

 A file of the specified target name (when creating, renaming, or
 linking) already exists.

15.1.4.4. NFS4ERR_FBIG (Error Code 27)

 The file is too large. The operation would have caused the file to
 grow beyond the server’s limit.

15.1.4.5. NFS4ERR_FILE_OPEN (Error Code 10046)

 The operation is not allowed because a file involved in the operation
 is currently open. Servers may, but are not required to, disallow
 linking-to, removing, or renaming open files.

15.1.4.6. NFS4ERR_IO (Error Code 5)

 Indicates that an I/O error occurred for which the file system was
 unable to provide recovery.

15.1.4.7. NFS4ERR_MLINK (Error Code 31)

 The request would have caused the server’s limit for the number of
 hard links a file may have to be exceeded.

15.1.4.8. NFS4ERR_NOENT (Error Code 2)

 Indicates no such file or directory. The file or directory name
 specified does not exist.

15.1.4.9. NFS4ERR_NOSPC (Error Code 28)

 Indicates there is no space left on the device. The operation would
 have caused the server’s file system to exceed its limit.

15.1.4.10. NFS4ERR_NOTEMPTY (Error Code 66)

 An attempt was made to remove a directory that was not empty.

15.1.4.11. NFS4ERR_ROFS (Error Code 30)

 Indicates a read-only file system. A modifying operation was
 attempted on a read-only file system.

15.1.4.12. NFS4ERR_XDEV (Error Code 18)

 Indicates an attempt to do an operation, such as linking, that
 inappropriately crosses a boundary. This may be due to such
 boundaries as:

 * that between file systems (where the fsids are different).

 * that between different named attribute directories or between a
 named attribute directory and an ordinary directory.

 * that between byte-ranges of a file system that the file system
 implementation treats as separate (for example, for space
 accounting purposes), and where cross-connection between the byte-
 ranges are not allowed.

15.1.5. State Management Errors

 These errors indicate problems with the stateid (or one of the
 stateids) passed to a given operation. This includes situations in
 which the stateid is invalid as well as situations in which the
 stateid is valid but designates locking state that has been revoked.
 Depending on the operation, the stateid when valid may designate
 opens, byte-range locks, file or directory delegations, layouts, or
 device maps.

15.1.5.1. NFS4ERR_ADMIN_REVOKED (Error Code 10047)

 A stateid designates locking state of any type that has been revoked
 due to administrative interaction, possibly while the lease is valid.

15.1.5.2. NFS4ERR_BAD_STATEID (Error Code 10026)

 A stateid does not properly designate any valid state. See Sections
 8.2.4 and 8.2.3 for a discussion of how stateids are validated.

15.1.5.3. NFS4ERR_DELEG_REVOKED (Error Code 10087)

 A stateid designates recallable locking state of any type (delegation
 or layout) that has been revoked due to the failure of the client to
 return the lock when it was recalled.

15.1.5.4. NFS4ERR_EXPIRED (Error Code 10011)

 A stateid designates locking state of any type that has been revoked
 due to expiration of the client’s lease, either immediately upon
 lease expiration, or following a later request for a conflicting
 lock.

15.1.5.5. NFS4ERR_OLD_STATEID (Error Code 10024)

 A stateid with a non-zero seqid value does match the current seqid
 for the state designated by the user.

15.1.6. Security Errors

 These are the various permission-related errors in NFSv4.1.

15.1.6.1. NFS4ERR_ACCESS (Error Code 13)

 Indicates permission denied. The caller does not have the correct
 permission to perform the requested operation. Contrast this with
 NFS4ERR_PERM (Section 15.1.6.2), which restricts itself to owner or
 privileged-user permission failures, and NFS4ERR_WRONG_CRED
 (Section 15.1.6.4), which deals with appropriate permission to delete
 or modify transient objects based on the credentials of the user that
 created them.

15.1.6.2. NFS4ERR_PERM (Error Code 1)

 Indicates requester is not the owner. The operation was not allowed
 because the caller is neither a privileged user (root) nor the owner
 of the target of the operation.

15.1.6.3. NFS4ERR_WRONGSEC (Error Code 10016)

 Indicates that the security mechanism being used by the client for
 the operation does not match the server’s security policy. The
 client should change the security mechanism being used and re-send
 the operation (but not with the same slot ID and sequence ID; one or
 both MUST be different on the re-send). SECINFO and SECINFO_NO_NAME
 can be used to determine the appropriate mechanism.

15.1.6.4. NFS4ERR_WRONG_CRED (Error Code 10082)

 An operation that manipulates state was attempted by a principal that
 was not allowed to modify that piece of state.

15.1.7. Name Errors

 Names in NFSv4 are UTF-8 strings. When the strings are not valid
 UTF-8 or are of length zero, the error NFS4ERR_INVAL results.
 Besides this, there are a number of other errors to indicate specific
 problems with names.

15.1.7.1. NFS4ERR_BADCHAR (Error Code 10040)

 A UTF-8 string contains a character that is not supported by the
 server in the context in which it being used.

15.1.7.2. NFS4ERR_BADNAME (Error Code 10041)

 A name string in a request consisted of valid UTF-8 characters
 supported by the server, but the name is not supported by the server
 as a valid name for the current operation. An example might be
 creating a file or directory named ".." on a server whose file system
 uses that name for links to parent directories.

15.1.7.3. NFS4ERR_NAMETOOLONG (Error Code 63)

 Returned when the filename in an operation exceeds the server’s
 implementation limit.

15.1.8. Locking Errors

 This section deals with errors related to locking, both as to share
 reservations and byte-range locking. It does not deal with errors
 specific to the process of reclaiming locks. Those are dealt with in
 Section 15.1.9.

15.1.8.1. NFS4ERR_BAD_RANGE (Error Code 10042)

 The byte-range of a LOCK, LOCKT, or LOCKU operation is not allowed by
 the server. For example, this error results when a server that only
 supports 32-bit ranges receives a range that cannot be handled by

 that server. (See Section 18.10.3.)

15.1.8.2. NFS4ERR_DEADLOCK (Error Code 10045)

 The server has been able to determine a byte-range locking deadlock
 condition for a READW_LT or WRITEW_LT LOCK operation.

15.1.8.3. NFS4ERR_DENIED (Error Code 10010)

 An attempt to lock a file is denied. Since this may be a temporary
 condition, the client is encouraged to re-send the lock request (but
 not with the same slot ID and sequence ID; one or both MUST be
 different on the re-send) until the lock is accepted. See
 Section 9.6 for a discussion of the re-send.

15.1.8.4. NFS4ERR_LOCKED (Error Code 10012)

 A READ or WRITE operation was attempted on a file where there was a
 conflict between the I/O and an existing lock:

 * There is a share reservation inconsistent with the I/O being done.

 * The range to be read or written intersects an existing mandatory
 byte-range lock.

15.1.8.5. NFS4ERR_LOCKS_HELD (Error Code 10037)

 An operation was prevented by the unexpected presence of locks.

15.1.8.6. NFS4ERR_LOCK_NOTSUPP (Error Code 10043)

 A LOCK operation was attempted that would require the upgrade or
 downgrade of a byte-range lock range already held by the owner, and
 the server does not support atomic upgrade or downgrade of locks.

15.1.8.7. NFS4ERR_LOCK_RANGE (Error Code 10028)

 A LOCK operation is operating on a range that overlaps in part a
 currently held byte-range lock for the current lock-owner and does
 not precisely match a single such byte-range lock where the server
 does not support this type of request, and thus does not implement
 POSIX locking semantics [21]. See Sections 18.10.4, 18.11.4, and
 18.12.4 for a discussion of how this applies to LOCK, LOCKT, and
 LOCKU respectively.

15.1.8.8. NFS4ERR_OPENMODE (Error Code 10038)

 The client attempted a READ, WRITE, LOCK, or other operation not
 sanctioned by the stateid passed (e.g., writing to a file opened for
 read-only access).

15.1.8.9. NFS4ERR_SHARE_DENIED (Error Code 10015)

 An attempt to OPEN a file with a share reservation has failed because
 of a share conflict.

15.1.9. Reclaim Errors

 These errors relate to the process of reclaiming locks after a server
 restart.

15.1.9.1. NFS4ERR_COMPLETE_ALREADY (Error Code 10054)

 The client previously sent a successful RECLAIM_COMPLETE operation
 specifying the same scope, whether that scope is global or for the
 same file system in the case of a per-fs RECLAIM_COMPLETE. An
 additional RECLAIM_COMPLETE operation is not necessary and results in
 this error.

15.1.9.2. NFS4ERR_GRACE (Error Code 10013)

 This error is returned when the server is in its grace period with
 regard to the file system object for which the lock was requested.
 In this situation, a non-reclaim locking request cannot be granted.
 This can occur because either:

 * The server does not have sufficient information about locks that
 might be potentially reclaimed to determine whether the lock could
 be granted.

 * The request is made by a client responsible for reclaiming its
 locks that has not yet done the appropriate RECLAIM_COMPLETE
 operation, allowing it to proceed to obtain new locks.

 In the case of a per-fs grace period, there may be clients (i.e.,
 those currently using the destination file system) who might be
 unaware of the circumstances resulting in the initiation of the grace
 period. Such clients need to periodically retry the request until
 the grace period is over, just as other clients do.

15.1.9.3. NFS4ERR_NO_GRACE (Error Code 10033)

 A reclaim of client state was attempted in circumstances in which the
 server cannot guarantee that conflicting state has not been provided
 to another client. This occurs in any of the following situations:

 * There is no active grace period applying to the file system object
 for which the request was made.

 * The client making the request has no current role in reclaiming
 locks.

 * Previous operations have created a situation in which the server
 is not able to determine that a reclaim-interfering edge condition
 does not exist.

15.1.9.4. NFS4ERR_RECLAIM_BAD (Error Code 10034)

 The server has determined that a reclaim attempted by the client is
 not valid, i.e., the lock specified as being reclaimed could not
 possibly have existed before the server restart or file system
 migration event. A server is not obliged to make this determination
 and will typically rely on the client to only reclaim locks that the
 client was granted prior to restart. However, when a server does
 have reliable information to enable it to make this determination,
 this error indicates that the reclaim has been rejected as invalid.
 This is as opposed to the error NFS4ERR_RECLAIM_CONFLICT (see
 Section 15.1.9.5) where the server can only determine that there has
 been an invalid reclaim, but cannot determine which request is
 invalid.

15.1.9.5. NFS4ERR_RECLAIM_CONFLICT (Error Code 10035)

 The reclaim attempted by the client has encountered a conflict and
 cannot be satisfied. This potentially indicates a misbehaving
 client, although not necessarily the one receiving the error. The
 misbehavior might be on the part of the client that established the
 lock with which this client conflicted. See also Section 15.1.9.4
 for the related error, NFS4ERR_RECLAIM_BAD.

15.1.10. pNFS Errors

 This section deals with pNFS-related errors including those that are
 associated with using NFSv4.1 to communicate with a data server.

15.1.10.1. NFS4ERR_BADIOMODE (Error Code 10049)

 An invalid or inappropriate layout iomode was specified. For example
 an inappropriate layout iomode, suppose a client’s LAYOUTGET
 operation specified an iomode of LAYOUTIOMODE4_RW, and the server is
 neither able nor willing to let the client send write requests to
 data servers; the server can reply with NFS4ERR_BADIOMODE. The

 client would then send another LAYOUTGET with an iomode of
 LAYOUTIOMODE4_READ.

15.1.10.2. NFS4ERR_BADLAYOUT (Error Code 10050)

 The layout specified is invalid in some way. For LAYOUTCOMMIT, this
 indicates that the specified layout is not held by the client or is
 not of mode LAYOUTIOMODE4_RW. For LAYOUTGET, it indicates that a
 layout matching the client’s specification as to minimum length
 cannot be granted.

15.1.10.3. NFS4ERR_LAYOUTTRYLATER (Error Code 10058)

 Layouts are temporarily unavailable for the file. The client should
 re-send later (but not with the same slot ID and sequence ID; one or
 both MUST be different on the re-send).

15.1.10.4. NFS4ERR_LAYOUTUNAVAILABLE (Error Code 10059)

 Returned when layouts are not available for the current file system
 or the particular specified file.

15.1.10.5. NFS4ERR_NOMATCHING_LAYOUT (Error Code 10060)

 Returned when layouts are recalled and the client has no layouts
 matching the specification of the layouts being recalled.

15.1.10.6. NFS4ERR_PNFS_IO_HOLE (Error Code 10075)

 The pNFS client has attempted to read from or write to an illegal
 hole of a file of a data server that is using sparse packing. See
 Section 13.4.4.

15.1.10.7. NFS4ERR_PNFS_NO_LAYOUT (Error Code 10080)

 The pNFS client has attempted to read from or write to a file (using
 a request to a data server) without holding a valid layout. This
 includes the case where the client had a layout, but the iomode does
 not allow a WRITE.

15.1.10.8. NFS4ERR_RETURNCONFLICT (Error Code 10086)

 A layout is unavailable due to an attempt to perform the LAYOUTGET
 before a pending LAYOUTRETURN on the file has been received. See
 Section 12.5.5.2.1.3.

15.1.10.9. NFS4ERR_UNKNOWN_LAYOUTTYPE (Error Code 10062)

 The client has specified a layout type that is not supported by the
 server.

15.1.11. Session Use Errors

 This section deals with errors encountered when using sessions, that
 is, errors encountered when a request uses a Sequence (i.e., either
 SEQUENCE or CB_SEQUENCE) operation.

15.1.11.1. NFS4ERR_BADSESSION (Error Code 10052)

 The specified session ID is unknown to the server to which the
 operation is addressed.

15.1.11.2. NFS4ERR_BADSLOT (Error Code 10053)

 The requester sent a Sequence operation that attempted to use a slot
 the replier does not have in its slot table. It is possible the slot
 may have been retired.

15.1.11.3. NFS4ERR_BAD_HIGH_SLOT (Error Code 10077)

 The highest_slot argument in a Sequence operation exceeds the

 replier’s enforced highest_slotid.

15.1.11.4. NFS4ERR_CB_PATH_DOWN (Error Code 10048)

 There is a problem contacting the client via the callback path. The
 function of this error has been mostly superseded by the use of
 status flags in the reply to the SEQUENCE operation (see
 Section 18.46).

15.1.11.5. NFS4ERR_DEADSESSION (Error Code 10078)

 The specified session is a persistent session that is dead and does
 not accept new requests or perform new operations on existing
 requests (in the case in which a request was partially executed
 before server restart).

15.1.11.6. NFS4ERR_CONN_NOT_BOUND_TO_SESSION (Error Code 10055)

 A Sequence operation was sent on a connection that has not been
 associated with the specified session, where the client specified
 that connection association was to be enforced with SP4_MACH_CRED or
 SP4_SSV state protection.

15.1.11.7. NFS4ERR_SEQ_FALSE_RETRY (Error Code 10076)

 The requester sent a Sequence operation with a slot ID and sequence
 ID that are in the reply cache, but the replier has detected that the
 retried request is not the same as the original request. See
 Section 2.10.6.1.3.1.

15.1.11.8. NFS4ERR_SEQ_MISORDERED (Error Code 10063)

 The requester sent a Sequence operation with an invalid sequence ID.

15.1.12. Session Management Errors

 This section deals with errors associated with requests used in
 session management.

15.1.12.1. NFS4ERR_BACK_CHAN_BUSY (Error Code 10057)

 An attempt was made to destroy a session when the session cannot be
 destroyed because the server has callback requests outstanding.

15.1.12.2. NFS4ERR_BAD_SESSION_DIGEST (Error Code 10051)

 The digest used in a SET_SSV request is not valid.

15.1.13. Client Management Errors

 This section deals with errors associated with requests used to
 create and manage client IDs.

15.1.13.1. NFS4ERR_CLIENTID_BUSY (Error Code 10074)

 The DESTROY_CLIENTID operation has found there are sessions and/or
 unexpired state associated with the client ID to be destroyed.

15.1.13.2. NFS4ERR_CLID_INUSE (Error Code 10017)

 While processing an EXCHANGE_ID operation, the server was presented
 with a co_ownerid field that matches an existing client with valid
 leased state, but the principal sending the EXCHANGE_ID operation
 differs from the principal that established the existing client.
 This indicates a collision (most likely due to chance) between
 clients. The client should recover by changing the co_ownerid and
 re-sending EXCHANGE_ID (but not with the same slot ID and sequence
 ID; one or both MUST be different on the re-send).

15.1.13.3. NFS4ERR_ENCR_ALG_UNSUPP (Error Code 10079)

 An EXCHANGE_ID was sent that specified state protection via SSV, and
 where the set of encryption algorithms presented by the client did
 not include any supported by the server.

15.1.13.4. NFS4ERR_HASH_ALG_UNSUPP (Error Code 10072)

 An EXCHANGE_ID was sent that specified state protection via SSV, and
 where the set of hashing algorithms presented by the client did not
 include any supported by the server.

15.1.13.5. NFS4ERR_STALE_CLIENTID (Error Code 10022)

 A client ID not recognized by the server was passed to an operation.
 Note that unlike the case of NFSv4.0, client IDs are not passed
 explicitly to the server in ordinary locking operations and cannot
 result in this error. Instead, when there is a server restart, it is
 first manifested through an error on the associated session, and the
 staleness of the client ID is detected when trying to associate a
 client ID with a new session.

15.1.14. Delegation Errors

 This section deals with errors associated with requesting and
 returning delegations.

15.1.14.1. NFS4ERR_DELEG_ALREADY_WANTED (Error Code 10056)

 The client has requested a delegation when it had already registered
 that it wants that same delegation.

15.1.14.2. NFS4ERR_DIRDELEG_UNAVAIL (Error Code 10084)

 This error is returned when the server is unable or unwilling to
 provide a requested directory delegation.

15.1.14.3. NFS4ERR_RECALLCONFLICT (Error Code 10061)

 A recallable object (i.e., a layout or delegation) is unavailable due
 to a conflicting recall operation that is currently in progress for
 that object.

15.1.14.4. NFS4ERR_REJECT_DELEG (Error Code 10085)

 The callback operation invoked to deal with a new delegation has
 rejected it.

15.1.15. Attribute Handling Errors

 This section deals with errors specific to attribute handling within
 NFSv4.

15.1.15.1. NFS4ERR_ATTRNOTSUPP (Error Code 10032)

 An attribute specified is not supported by the server. This error
 MUST NOT be returned by the GETATTR operation.

15.1.15.2. NFS4ERR_BADOWNER (Error Code 10039)

 This error is returned when an owner or owner_group attribute value
 or the who field of an ACE within an ACL attribute value cannot be
 translated to a local representation.

15.1.15.3. NFS4ERR_NOT_SAME (Error Code 10027)

 This error is returned by the VERIFY operation to signify that the
 attributes compared were not the same as those provided in the
 client’s request.

15.1.15.4. NFS4ERR_SAME (Error Code 10009)

 This error is returned by the NVERIFY operation to signify that the

 attributes compared were the same as those provided in the client’s
 request.

15.1.16. Obsoleted Errors

 These errors MUST NOT be generated by any NFSv4.1 operation. This
 can be for a number of reasons.

 * The function provided by the error has been superseded by one of
 the status bits returned by the SEQUENCE operation.

 * The new session structure and associated change in locking have
 made the error unnecessary.

 * There has been a restructuring of some errors for NFSv4.1 that
 resulted in the elimination of certain errors.

15.1.16.1. NFS4ERR_BAD_SEQID (Error Code 10026)

 The sequence number (seqid) in a locking request is neither the next
 expected number or the last number processed. These seqids are
 ignored in NFSv4.1.

15.1.16.2. NFS4ERR_LEASE_MOVED (Error Code 10031)

 A lease being renewed is associated with a file system that has been
 migrated to a new server. The error has been superseded by the
 SEQ4_STATUS_LEASE_MOVED status bit (see Section 18.46).

15.1.16.3. NFS4ERR_NXIO (Error Code 5)

 I/O error. No such device or address. This error is for errors
 involving block and character device access, but because NFSv4.1 is
 not a device-access protocol, this error is not applicable.

15.1.16.4. NFS4ERR_RESTOREFH (Error Code 10030)

 The RESTOREFH operation does not have a saved filehandle (identified
 by SAVEFH) to operate upon. In NFSv4.1, this error has been
 superseded by NFS4ERR_NOFILEHANDLE.

15.1.16.5. NFS4ERR_STALE_STATEID (Error Code 10023)

 A stateid generated by an earlier server instance was used. This
 error is moot in NFSv4.1 because all operations that take a stateid
 MUST be preceded by the SEQUENCE operation, and the earlier server
 instance is detected by the session infrastructure that supports
 SEQUENCE.

15.2. Operations and Their Valid Errors

 This section contains a table that gives the valid error returns for
 each protocol operation. The error code NFS4_OK (indicating no
 error) is not listed but should be understood to be returnable by all
 operations with two important exceptions:

 * The operations that MUST NOT be implemented: OPEN_CONFIRM,
 RELEASE_LOCKOWNER, RENEW, SETCLIENTID, and SETCLIENTID_CONFIRM.

 * The invalid operation: ILLEGAL.

 +======================+==+
 | Operation | Errors |
 +======================+==+
 | ACCESS | NFS4ERR_ACCESS, NFS4ERR_BADXDR, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_INVAL, |
 | | NFS4ERR_IO, NFS4ERR_MOVED, |
 | | NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |

 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_TOO_MANY_OPS |
 +----------------------+--+
 | BACKCHANNEL_CTL | NFS4ERR_BADXDR, NFS4ERR_DEADSESSION, |
 | | NFS4ERR_DELAY, NFS4ERR_INVAL, |
 | | NFS4ERR_NOENT, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_TOO_MANY_OPS |
 +----------------------+--+
 | BIND_CONN_TO_SESSION | NFS4ERR_BADSESSION, NFS4ERR_BADXDR, |
 | | NFS4ERR_BAD_SESSION_DIGEST, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_INVAL, NFS4ERR_NOT_ONLY_OP, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_TOO_MANY_OPS |
 +----------------------+--+
 | CLOSE | NFS4ERR_ADMIN_REVOKED, NFS4ERR_BADXDR, |
 | | NFS4ERR_BAD_STATEID, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED, |
 | | NFS4ERR_LOCKS_HELD, NFS4ERR_MOVED, |
 | | NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_OLD_STATEID, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONG_CRED |
 +----------------------+--+
 | COMMIT | NFS4ERR_ACCESS, NFS4ERR_BADXDR, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_IO, |
 | | NFS4ERR_ISDIR, NFS4ERR_MOVED, |
 | | NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_SYMLINK, NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONG_TYPE |
 +----------------------+--+
 | CREATE | NFS4ERR_ACCESS, NFS4ERR_ATTRNOTSUPP, |
 | | NFS4ERR_BADCHAR, NFS4ERR_BADNAME, |
 | | NFS4ERR_BADOWNER, NFS4ERR_BADTYPE, |
 | | NFS4ERR_BADXDR, NFS4ERR_DEADSESSION, |
 | | NFS4ERR_DELAY, NFS4ERR_DQUOT, |
 | | NFS4ERR_EXIST, NFS4ERR_FHEXPIRED, |
 | | NFS4ERR_INVAL, NFS4ERR_IO, |
 | | NFS4ERR_MLINK, NFS4ERR_MOVED, |
 | | NFS4ERR_NAMETOOLONG, |
 | | NFS4ERR_NOFILEHANDLE, NFS4ERR_NOSPC, |
 | | NFS4ERR_NOTDIR, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_PERM, NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |

 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_ROFS, NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_UNSAFE_COMPOUND |
 +----------------------+--+
 | CREATE_SESSION | NFS4ERR_BADXDR, NFS4ERR_CLID_INUSE, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_INVAL, NFS4ERR_NOENT, |
 | | NFS4ERR_NOT_ONLY_OP, NFS4ERR_NOSPC, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SEQ_MISORDERED, |
 | | NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_STALE_CLIENTID, |
 | | NFS4ERR_TOOSMALL, |
 | | NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONG_CRED |
 +----------------------+--+
 | DELEGPURGE | NFS4ERR_BADXDR, NFS4ERR_DEADSESSION, |
 | | NFS4ERR_DELAY, NFS4ERR_NOTSUPP, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONG_CRED |
 +----------------------+--+
 | DELEGRETURN | NFS4ERR_ADMIN_REVOKED, NFS4ERR_BADXDR, |
 | | NFS4ERR_BAD_STATEID, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_DELEG_REVOKED, |
 | | NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED, |
 | | NFS4ERR_INVAL, NFS4ERR_MOVED, |
 | | NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTSUPP, |
 | | NFS4ERR_OLD_STATEID, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONG_CRED |
 +----------------------+--+
 | DESTROY_CLIENTID | NFS4ERR_BADXDR, NFS4ERR_CLIENTID_BUSY, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_NOT_ONLY_OP, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_STALE_CLIENTID, |
 | | NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONG_CRED |
 +----------------------+--+
 | DESTROY_SESSION | NFS4ERR_BACK_CHAN_BUSY, |
 | | NFS4ERR_BADSESSION, NFS4ERR_BADXDR, |
 | | NFS4ERR_CB_PATH_DOWN, |
 | | NFS4ERR_CONN_NOT_BOUND_TO_SESSION, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_NOT_ONLY_OP, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |

 | | NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_STALE_CLIENTID, |
 | | NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONG_CRED |
 +----------------------+--+
 | EXCHANGE_ID | NFS4ERR_BADCHAR, NFS4ERR_BADXDR, |
 | | NFS4ERR_CLID_INUSE, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_ENCR_ALG_UNSUPP, |
 | | NFS4ERR_HASH_ALG_UNSUPP, |
 | | NFS4ERR_INVAL, NFS4ERR_NOENT, |
 | | NFS4ERR_NOT_ONLY_OP, NFS4ERR_NOT_SAME, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_TOO_MANY_OPS |
 +----------------------+--+
 | FREE_STATEID | NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_LOCKS_HELD, |
 | | NFS4ERR_OLD_STATEID, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONG_CRED |
 +----------------------+--+
 | GET_DIR_DELEGATION | NFS4ERR_ACCESS, NFS4ERR_BADXDR, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_DIRDELEG_UNAVAIL, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, |
 | | NFS4ERR_INVAL, NFS4ERR_IO, |
 | | NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_NOTDIR, NFS4ERR_NOTSUPP, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_TOO_MANY_OPS |
 +----------------------+--+
 | GETATTR | NFS4ERR_ACCESS, NFS4ERR_BADXDR, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, |
 | | NFS4ERR_INVAL, NFS4ERR_IO, |
 | | NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONG_TYPE |
 +----------------------+--+
 | GETDEVICEINFO | NFS4ERR_BADXDR, NFS4ERR_DEADSESSION, |
 | | NFS4ERR_DELAY, NFS4ERR_INVAL, |
 | | NFS4ERR_NOENT, NFS4ERR_NOTSUPP, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_TOOSMALL, |
 | | NFS4ERR_TOO_MANY_OPS, |

 | | NFS4ERR_UNKNOWN_LAYOUTTYPE |
 +----------------------+--+
 | GETDEVICELIST | NFS4ERR_BADXDR, NFS4ERR_BAD_COOKIE, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_INVAL, |
 | | NFS4ERR_IO, NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_NOTSUPP, NFS4ERR_NOT_SAME, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_UNKNOWN_LAYOUTTYPE |
 +----------------------+--+
 | GETFH | NFS4ERR_FHEXPIRED, NFS4ERR_MOVED, |
 | | NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_STALE |
 +----------------------+--+
 | ILLEGAL | NFS4ERR_BADXDR, NFS4ERR_OP_ILLEGAL |
 +----------------------+--+
 | LAYOUTCOMMIT | NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED, |
 | | NFS4ERR_ATTRNOTSUPP, |
 | | NFS4ERR_BADIOMODE, NFS4ERR_BADLAYOUT, |
 | | NFS4ERR_BADXDR, NFS4ERR_DEADSESSION, |
 | | NFS4ERR_DELAY, NFS4ERR_DELEG_REVOKED, |
 | | NFS4ERR_EXPIRED, NFS4ERR_FBIG, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, |
 | | NFS4ERR_INVAL, NFS4ERR_IO, |
 | | NFS4ERR_ISDIR NFS4ERR_MOVED, |
 | | NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTSUPP, |
 | | NFS4ERR_NO_GRACE, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_RECLAIM_BAD, |
 | | NFS4ERR_RECLAIM_CONFLICT, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_SYMLINK, NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_UNKNOWN_LAYOUTTYPE, |
 | | NFS4ERR_WRONG_CRED |
 +----------------------+--+
 | LAYOUTGET | NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED, |
 | | NFS4ERR_BADIOMODE, NFS4ERR_BADLAYOUT, |
 | | NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_DELEG_REVOKED, NFS4ERR_DQUOT, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, |
 | | NFS4ERR_INVAL, NFS4ERR_IO, |
 | | NFS4ERR_LAYOUTTRYLATER, |
 | | NFS4ERR_LAYOUTUNAVAILABLE, |
 | | NFS4ERR_LOCKED, NFS4ERR_MOVED, |
 | | NFS4ERR_NOFILEHANDLE, NFS4ERR_NOSPC, |
 | | NFS4ERR_NOTSUPP, NFS4ERR_OLD_STATEID, |
 | | NFS4ERR_OPENMODE, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_RECALLCONFLICT, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_TOOSMALL, |
 | | NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_UNKNOWN_LAYOUTTYPE, |
 | | NFS4ERR_WRONG_TYPE |
 +----------------------+--+

 | LAYOUTRETURN | NFS4ERR_ADMIN_REVOKED, NFS4ERR_BADXDR, |
 | | NFS4ERR_BAD_STATEID, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_DELEG_REVOKED, |
 | | NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED, |
 | | NFS4ERR_GRACE, NFS4ERR_INVAL, |
 | | NFS4ERR_ISDIR, NFS4ERR_MOVED, |
 | | NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTSUPP, |
 | | NFS4ERR_NO_GRACE, NFS4ERR_OLD_STATEID, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_UNKNOWN_LAYOUTTYPE, |
 | | NFS4ERR_WRONG_CRED, NFS4ERR_WRONG_TYPE |
 +----------------------+--+
 | LINK | NFS4ERR_ACCESS, NFS4ERR_BADCHAR, |
 | | NFS4ERR_BADNAME, NFS4ERR_BADXDR, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_DQUOT, NFS4ERR_EXIST, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_FILE_OPEN, |
 | | NFS4ERR_GRACE, NFS4ERR_INVAL, |
 | | NFS4ERR_ISDIR, NFS4ERR_IO, |
 | | NFS4ERR_MLINK, NFS4ERR_MOVED, |
 | | NFS4ERR_NAMETOOLONG, |
 | | NFS4ERR_NOFILEHANDLE, NFS4ERR_NOSPC, |
 | | NFS4ERR_NOTDIR, NFS4ERR_NOTSUPP, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_ROFS, NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_STALE, NFS4ERR_SYMLINK, |
 | | NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONGSEC, NFS4ERR_WRONG_TYPE, |
 | | NFS4ERR_XDEV |
 +----------------------+--+
 | LOCK | NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED, |
 | | NFS4ERR_BADXDR, NFS4ERR_BAD_RANGE, |
 | | NFS4ERR_BAD_STATEID, NFS4ERR_DEADLOCK, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_DENIED, NFS4ERR_EXPIRED, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, |
 | | NFS4ERR_INVAL, NFS4ERR_ISDIR, |
 | | NFS4ERR_LOCK_NOTSUPP, |
 | | NFS4ERR_LOCK_RANGE, NFS4ERR_MOVED, |
 | | NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_NO_GRACE, NFS4ERR_OLD_STATEID, |
 | | NFS4ERR_OPENMODE, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_RECLAIM_BAD, |
 | | NFS4ERR_RECLAIM_CONFLICT, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_ROFS, NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_STALE, NFS4ERR_SYMLINK, |
 | | NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONG_CRED, NFS4ERR_WRONG_TYPE |
 +----------------------+--+
 | LOCKT | NFS4ERR_ACCESS, NFS4ERR_BADXDR, |
 | | NFS4ERR_BAD_RANGE, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_DENIED, NFS4ERR_FHEXPIRED, |
 | | NFS4ERR_GRACE, NFS4ERR_INVAL, |
 | | NFS4ERR_ISDIR, NFS4ERR_LOCK_RANGE, |

 | | NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_ROFS, NFS4ERR_STALE, |
 | | NFS4ERR_SYMLINK, NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONG_CRED, NFS4ERR_WRONG_TYPE |
 +----------------------+--+
 | LOCKU | NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED, |
 | | NFS4ERR_BADXDR, NFS4ERR_BAD_RANGE, |
 | | NFS4ERR_BAD_STATEID, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED, |
 | | NFS4ERR_INVAL, NFS4ERR_LOCK_RANGE, |
 | | NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_OLD_STATEID, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONG_CRED |
 +----------------------+--+
 | LOOKUP | NFS4ERR_ACCESS, NFS4ERR_BADCHAR, |
 | | NFS4ERR_BADNAME, NFS4ERR_BADXDR, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_INVAL, |
 | | NFS4ERR_IO, NFS4ERR_MOVED, |
 | | NFS4ERR_NAMETOOLONG, NFS4ERR_NOENT, |
 | | NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTDIR, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_SYMLINK, NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONGSEC |
 +----------------------+--+
 | LOOKUPP | NFS4ERR_ACCESS, NFS4ERR_DEADSESSION, |
 | | NFS4ERR_DELAY, NFS4ERR_FHEXPIRED, |
 | | NFS4ERR_IO, NFS4ERR_MOVED, |
 | | NFS4ERR_NOENT, NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_NOTDIR, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_SYMLINK, NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONGSEC |
 +----------------------+--+
 | NVERIFY | NFS4ERR_ACCESS, NFS4ERR_ATTRNOTSUPP, |
 | | NFS4ERR_BADCHAR, NFS4ERR_BADXDR, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, |
 | | NFS4ERR_INVAL, NFS4ERR_IO, |
 | | NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SAME, NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_UNKNOWN_LAYOUTTYPE, |

 | | NFS4ERR_WRONG_TYPE |
 +----------------------+--+
 | OPEN | NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED, |
 | | NFS4ERR_ATTRNOTSUPP, NFS4ERR_BADCHAR, |
 | | NFS4ERR_BADNAME, NFS4ERR_BADOWNER, |
 | | NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_DELEG_ALREADY_WANTED, |
 | | NFS4ERR_DELEG_REVOKED, NFS4ERR_DQUOT, |
 | | NFS4ERR_EXIST, NFS4ERR_EXPIRED, |
 | | NFS4ERR_FBIG, NFS4ERR_FHEXPIRED, |
 | | NFS4ERR_GRACE, NFS4ERR_INVAL, |
 | | NFS4ERR_ISDIR, NFS4ERR_IO, |
 | | NFS4ERR_MOVED, NFS4ERR_NAMETOOLONG, |
 | | NFS4ERR_NOENT, NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_NOSPC, NFS4ERR_NOTDIR, |
 | | NFS4ERR_NO_GRACE, NFS4ERR_OLD_STATEID, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_PERM, NFS4ERR_RECLAIM_BAD, |
 | | NFS4ERR_RECLAIM_CONFLICT, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_ROFS, NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_SHARE_DENIED, NFS4ERR_STALE, |
 | | NFS4ERR_SYMLINK, NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_UNSAFE_COMPOUND, |
 | | NFS4ERR_WRONGSEC, NFS4ERR_WRONG_TYPE |
 +----------------------+--+
 | OPEN_CONFIRM | NFS4ERR_NOTSUPP |
 +----------------------+--+
 | OPEN_DOWNGRADE | NFS4ERR_ADMIN_REVOKED, NFS4ERR_BADXDR, |
 | | NFS4ERR_BAD_STATEID, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED, |
 | | NFS4ERR_INVAL, NFS4ERR_MOVED, |
 | | NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_OLD_STATEID, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_ROFS, NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONG_CRED |
 +----------------------+--+
 | OPENATTR | NFS4ERR_ACCESS, NFS4ERR_BADXDR, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_DQUOT, NFS4ERR_FHEXPIRED, |
 | | NFS4ERR_IO, NFS4ERR_MOVED, |
 | | NFS4ERR_NOENT, NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_NOSPC, NFS4ERR_NOTSUPP, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_ROFS, NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_UNSAFE_COMPOUND, |
 | | NFS4ERR_WRONG_TYPE |
 +----------------------+--+
 | PUTFH | NFS4ERR_BADHANDLE, NFS4ERR_BADXDR, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_MOVED, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |

 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONGSEC |
 +----------------------+--+
 | PUTPUBFH | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONGSEC |
 +----------------------+--+
 | PUTROOTFH | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONGSEC |
 +----------------------+--+
 | READ | NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED, |
 | | NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_DELEG_REVOKED, |
 | | NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED, |
 | | NFS4ERR_GRACE, NFS4ERR_INVAL, |
 | | NFS4ERR_ISDIR, NFS4ERR_IO, |
 | | NFS4ERR_LOCKED, NFS4ERR_MOVED, |
 | | NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_OLD_STATEID, NFS4ERR_OPENMODE, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_PNFS_IO_HOLE, |
 | | NFS4ERR_PNFS_NO_LAYOUT, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_SYMLINK, NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONG_TYPE |
 +----------------------+--+
 | READDIR | NFS4ERR_ACCESS, NFS4ERR_BADXDR, |
 | | NFS4ERR_BAD_COOKIE, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_INVAL, |
 | | NFS4ERR_IO, NFS4ERR_MOVED, |
 | | NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTDIR, |
 | | NFS4ERR_NOT_SAME, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_TOOSMALL, NFS4ERR_TOO_MANY_OPS |
 +----------------------+--+
 | READLINK | NFS4ERR_ACCESS, NFS4ERR_DEADSESSION, |
 | | NFS4ERR_DELAY, NFS4ERR_FHEXPIRED, |
 | | NFS4ERR_INVAL, NFS4ERR_IO, |
 | | NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONG_TYPE |
 +----------------------+--+

 | RECLAIM_COMPLETE | NFS4ERR_BADXDR, |
 | | NFS4ERR_COMPLETE_ALREADY, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_INVAL, |
 | | NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONG_CRED, NFS4ERR_WRONG_TYPE |
 +----------------------+--+
 | RELEASE_LOCKOWNER | NFS4ERR_NOTSUPP |
 +----------------------+--+
 | REMOVE | NFS4ERR_ACCESS, NFS4ERR_BADCHAR, |
 | | NFS4ERR_BADNAME, NFS4ERR_BADXDR, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_FILE_OPEN, |
 | | NFS4ERR_GRACE, NFS4ERR_INVAL, |
 | | NFS4ERR_IO, NFS4ERR_MOVED, |
 | | NFS4ERR_NAMETOOLONG, NFS4ERR_NOENT, |
 | | NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTDIR, |
 | | NFS4ERR_NOTEMPTY, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_ROFS, NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS |
 +----------------------+--+
 | RENAME | NFS4ERR_ACCESS, NFS4ERR_BADCHAR, |
 | | NFS4ERR_BADNAME, NFS4ERR_BADXDR, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_DQUOT, NFS4ERR_EXIST, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_FILE_OPEN, |
 | | NFS4ERR_GRACE, NFS4ERR_INVAL, |
 | | NFS4ERR_IO, NFS4ERR_MLINK, |
 | | NFS4ERR_MOVED, NFS4ERR_NAMETOOLONG, |
 | | NFS4ERR_NOENT, NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_NOSPC, NFS4ERR_NOTDIR, |
 | | NFS4ERR_NOTEMPTY, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_ROFS, NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONGSEC, NFS4ERR_XDEV |
 +----------------------+--+
 | RENEW | NFS4ERR_NOTSUPP |
 +----------------------+--+
 | RESTOREFH | NFS4ERR_DEADSESSION, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_MOVED, |
 | | NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONGSEC |
 +----------------------+--+
 | SAVEFH | NFS4ERR_DEADSESSION, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_MOVED, |
 | | NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |

 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_TOO_MANY_OPS |
 +----------------------+--+
 | SECINFO | NFS4ERR_ACCESS, NFS4ERR_BADCHAR, |
 | | NFS4ERR_BADNAME, NFS4ERR_BADXDR, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_INVAL, |
 | | NFS4ERR_MOVED, NFS4ERR_NAMETOOLONG, |
 | | NFS4ERR_NOENT, NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_NOTDIR, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_TOO_MANY_OPS |
 +----------------------+--+
 | SECINFO_NO_NAME | NFS4ERR_ACCESS, NFS4ERR_BADXDR, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_INVAL, |
 | | NFS4ERR_MOVED, NFS4ERR_NOENT, |
 | | NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTDIR, |
 | | NFS4ERR_NOTSUPP, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_TOO_MANY_OPS |
 +----------------------+--+
 | SEQUENCE | NFS4ERR_BADSESSION, NFS4ERR_BADSLOT, |
 | | NFS4ERR_BADXDR, NFS4ERR_BAD_HIGH_SLOT, |
 | | NFS4ERR_CONN_NOT_BOUND_TO_SESSION, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SEQUENCE_POS, |
 | | NFS4ERR_SEQ_FALSE_RETRY, |
 | | NFS4ERR_SEQ_MISORDERED, |
 | | NFS4ERR_TOO_MANY_OPS |
 +----------------------+--+
 | SET_SSV | NFS4ERR_BADXDR, |
 | | NFS4ERR_BAD_SESSION_DIGEST, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_INVAL, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_TOO_MANY_OPS |
 +----------------------+--+
 | SETATTR | NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED, |
 | | NFS4ERR_ATTRNOTSUPP, NFS4ERR_BADCHAR, |
 | | NFS4ERR_BADOWNER, NFS4ERR_BADXDR, |
 | | NFS4ERR_BAD_STATEID, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_DELEG_REVOKED, NFS4ERR_DQUOT, |
 | | NFS4ERR_EXPIRED, NFS4ERR_FBIG, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, |
 | | NFS4ERR_INVAL, NFS4ERR_IO, |
 | | NFS4ERR_LOCKED, NFS4ERR_MOVED, |
 | | NFS4ERR_NOFILEHANDLE, NFS4ERR_NOSPC, |
 | | NFS4ERR_OLD_STATEID, NFS4ERR_OPENMODE, |

 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_PERM, NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_ROFS, NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_UNKNOWN_LAYOUTTYPE, |
 | | NFS4ERR_WRONG_TYPE |
 +----------------------+--+
 | SETCLIENTID | NFS4ERR_NOTSUPP |
 +----------------------+--+
 | SETCLIENTID_CONFIRM | NFS4ERR_NOTSUPP |
 +----------------------+--+
 | TEST_STATEID | NFS4ERR_BADXDR, NFS4ERR_DEADSESSION, |
 | | NFS4ERR_DELAY, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_TOO_MANY_OPS |
 +----------------------+--+
 | VERIFY | NFS4ERR_ACCESS, NFS4ERR_ATTRNOTSUPP, |
 | | NFS4ERR_BADCHAR, NFS4ERR_BADXDR, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, |
 | | NFS4ERR_INVAL, NFS4ERR_IO, |
 | | NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_NOT_SAME, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_UNKNOWN_LAYOUTTYPE, |
 | | NFS4ERR_WRONG_TYPE |
 +----------------------+--+
 | WANT_DELEGATION | NFS4ERR_BADXDR, NFS4ERR_DEADSESSION, |
 | | NFS4ERR_DELAY, |
 | | NFS4ERR_DELEG_ALREADY_WANTED, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, |
 | | NFS4ERR_INVAL, NFS4ERR_IO, |
 | | NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_NOTSUPP, NFS4ERR_NO_GRACE, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_RECALLCONFLICT, |
 | | NFS4ERR_RECLAIM_BAD, |
 | | NFS4ERR_RECLAIM_CONFLICT, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, NFS4ERR_STALE, |
 | | NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONG_TYPE |
 +----------------------+--+
 | WRITE | NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED, |
 | | NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID, |
 | | NFS4ERR_DEADSESSION, NFS4ERR_DELAY, |
 | | NFS4ERR_DELEG_REVOKED, NFS4ERR_DQUOT, |
 | | NFS4ERR_EXPIRED, NFS4ERR_FBIG, |
 | | NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, |
 | | NFS4ERR_INVAL, NFS4ERR_IO, |
 | | NFS4ERR_ISDIR, NFS4ERR_LOCKED, |
 | | NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE, |
 | | NFS4ERR_NOSPC, NFS4ERR_OLD_STATEID, |
 | | NFS4ERR_OPENMODE, |

 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_PNFS_IO_HOLE, |
 | | NFS4ERR_PNFS_NO_LAYOUT, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_ROFS, NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_STALE, NFS4ERR_SYMLINK, |
 | | NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONG_TYPE |
 +----------------------+--+

 Table 12: Valid Error Returns for Each Protocol Operation

15.3. Callback Operations and Their Valid Errors

 This section contains a table that gives the valid error returns for
 each callback operation. The error code NFS4_OK (indicating no
 error) is not listed but should be understood to be returnable by all
 callback operations with the exception of CB_ILLEGAL.

 +=========================+=======================================+
 | Callback Operation | Errors |
 +=========================+=======================================+
 | CB_GETATTR | NFS4ERR_BADHANDLE, NFS4ERR_BADXDR, |
 | | NFS4ERR_DELAY, NFS4ERR_INVAL, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_TOO_MANY_OPS, |
 +-------------------------+---------------------------------------+
 | CB_ILLEGAL | NFS4ERR_BADXDR, NFS4ERR_OP_ILLEGAL |
 +-------------------------+---------------------------------------+
 | CB_LAYOUTRECALL | NFS4ERR_BADHANDLE, NFS4ERR_BADIOMODE, |
 | | NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID, |
 | | NFS4ERR_DELAY, NFS4ERR_INVAL, |
 | | NFS4ERR_NOMATCHING_LAYOUT, |
 | | NFS4ERR_NOTSUPP, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_UNKNOWN_LAYOUTTYPE, |
 | | NFS4ERR_WRONG_TYPE |
 +-------------------------+---------------------------------------+
 | CB_NOTIFY | NFS4ERR_BADHANDLE, NFS4ERR_BADXDR, |
 | | NFS4ERR_BAD_STATEID, NFS4ERR_DELAY, |
 | | NFS4ERR_INVAL, NFS4ERR_NOTSUPP, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_TOO_MANY_OPS |
 +-------------------------+---------------------------------------+
 | CB_NOTIFY_DEVICEID | NFS4ERR_BADXDR, NFS4ERR_DELAY, |
 | | NFS4ERR_INVAL, NFS4ERR_NOTSUPP, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_TOO_MANY_OPS |

 +-------------------------+---------------------------------------+
 | CB_NOTIFY_LOCK | NFS4ERR_BADHANDLE, NFS4ERR_BADXDR, |
 | | NFS4ERR_BAD_STATEID, NFS4ERR_DELAY, |
 | | NFS4ERR_NOTSUPP, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_TOO_MANY_OPS |
 +-------------------------+---------------------------------------+
 | CB_PUSH_DELEG | NFS4ERR_BADHANDLE, NFS4ERR_BADXDR, |
 | | NFS4ERR_DELAY, NFS4ERR_INVAL, |
 | | NFS4ERR_NOTSUPP, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REJECT_DELEG, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_TOO_MANY_OPS, |
 | | NFS4ERR_WRONG_TYPE |
 +-------------------------+---------------------------------------+
 | CB_RECALL | NFS4ERR_BADHANDLE, NFS4ERR_BADXDR, |
 | | NFS4ERR_BAD_STATEID, NFS4ERR_DELAY, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_TOO_MANY_OPS |
 +-------------------------+---------------------------------------+
 | CB_RECALL_ANY | NFS4ERR_BADXDR, NFS4ERR_DELAY, |
 | | NFS4ERR_INVAL, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_TOO_MANY_OPS |
 +-------------------------+---------------------------------------+
 | CB_RECALLABLE_OBJ_AVAIL | NFS4ERR_BADXDR, NFS4ERR_DELAY, |
 | | NFS4ERR_INVAL, NFS4ERR_NOTSUPP, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_TOO_MANY_OPS |
 +-------------------------+---------------------------------------+
 | CB_RECALL_SLOT | NFS4ERR_BADXDR, |
 | | NFS4ERR_BAD_HIGH_SLOT, NFS4ERR_DELAY, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_TOO_MANY_OPS |
 +-------------------------+---------------------------------------+
 | CB_SEQUENCE | NFS4ERR_BADSESSION, NFS4ERR_BADSLOT, |
 | | NFS4ERR_BADXDR, |
 | | NFS4ERR_BAD_HIGH_SLOT, |
 | | NFS4ERR_CONN_NOT_BOUND_TO_SESSION, |
 | | NFS4ERR_DELAY, NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |

 | | NFS4ERR_SEQUENCE_POS, |
 | | NFS4ERR_SEQ_FALSE_RETRY, |
 | | NFS4ERR_SEQ_MISORDERED, |
 | | NFS4ERR_TOO_MANY_OPS |
 +-------------------------+---------------------------------------+
 | CB_WANTS_CANCELLED | NFS4ERR_BADXDR, NFS4ERR_DELAY, |
 | | NFS4ERR_NOTSUPP, |
 | | NFS4ERR_OP_NOT_IN_SESSION, |
 | | NFS4ERR_REP_TOO_BIG, |
 | | NFS4ERR_REP_TOO_BIG_TO_CACHE, |
 | | NFS4ERR_REQ_TOO_BIG, |
 | | NFS4ERR_RETRY_UNCACHED_REP, |
 | | NFS4ERR_SERVERFAULT, |
 | | NFS4ERR_TOO_MANY_OPS |
 +-------------------------+---------------------------------------+

 Table 13: Valid Error Returns for Each Protocol Callback Operation

15.4. Errors and the Operations That Use Them

 +===================================+===============================+
 | Error | Operations |
 +===================================+===============================+
NFS4ERR_ACCESS	ACCESS, COMMIT, CREATE,
	GETATTR, GET_DIR_DELEGATION,
	LAYOUTCOMMIT, LAYOUTGET,
	LINK, LOCK, LOCKT, LOCKU,
	LOOKUP, LOOKUPP, NVERIFY,
	OPEN, OPENATTR, READ,
	READDIR, READLINK, REMOVE,
	RENAME, SECINFO,
	SECINFO_NO_NAME, SETATTR,
	VERIFY, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_ADMIN_REVOKED	CLOSE, DELEGRETURN,
	LAYOUTCOMMIT, LAYOUTGET,
	LAYOUTRETURN, LOCK, LOCKU,
	OPEN, OPEN_DOWNGRADE, READ,
	SETATTR, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_ATTRNOTSUPP	CREATE, LAYOUTCOMMIT,
	NVERIFY, OPEN, SETATTR,
	VERIFY
+-----------------------------------+-------------------------------+	
NFS4ERR_BACK_CHAN_BUSY	DESTROY_SESSION
+-----------------------------------+-------------------------------+	
NFS4ERR_BADCHAR	CREATE, EXCHANGE_ID, LINK,
	LOOKUP, NVERIFY, OPEN,
	REMOVE, RENAME, SECINFO,
	SETATTR, VERIFY
+-----------------------------------+-------------------------------+	
NFS4ERR_BADHANDLE	CB_GETATTR, CB_LAYOUTRECALL,
	CB_NOTIFY, CB_NOTIFY_LOCK,
	CB_PUSH_DELEG, CB_RECALL,
	PUTFH
+-----------------------------------+-------------------------------+	
NFS4ERR_BADIOMODE	CB_LAYOUTRECALL,
	LAYOUTCOMMIT, LAYOUTGET
+-----------------------------------+-------------------------------+	
NFS4ERR_BADLAYOUT	LAYOUTCOMMIT, LAYOUTGET
+-----------------------------------+-------------------------------+	
NFS4ERR_BADNAME	CREATE, LINK, LOOKUP, OPEN,
	REMOVE, RENAME, SECINFO
+-----------------------------------+-------------------------------+	
NFS4ERR_BADOWNER	CREATE, OPEN, SETATTR
+-----------------------------------+-------------------------------+	
NFS4ERR_BADSESSION	BIND_CONN_TO_SESSION,
	CB_SEQUENCE,
	DESTROY_SESSION, SEQUENCE
+-----------------------------------+-------------------------------+	
NFS4ERR_BADSLOT	CB_SEQUENCE, SEQUENCE

 +-----------------------------------+-------------------------------+
 | NFS4ERR_BADTYPE | CREATE |
 +-----------------------------------+-------------------------------+
NFS4ERR_BADXDR	ACCESS, BACKCHANNEL_CTL,
	BIND_CONN_TO_SESSION,
	CB_GETATTR, CB_ILLEGAL,
	CB_LAYOUTRECALL, CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_NOTIFY_LOCK,
	CB_PUSH_DELEG, CB_RECALL,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_RECALL_ANY,
	CB_RECALL_SLOT, CB_SEQUENCE,
	CB_WANTS_CANCELLED, CLOSE,
	COMMIT, CREATE,
	CREATE_SESSION, DELEGPURGE,
	DELEGRETURN,
	DESTROY_CLIENTID,
	DESTROY_SESSION,
	EXCHANGE_ID, FREE_STATEID,
	GETATTR, GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION, ILLEGAL,
	LAYOUTCOMMIT, LAYOUTGET,
	LAYOUTRETURN, LINK, LOCK,
	LOCKT, LOCKU, LOOKUP,
	NVERIFY, OPEN, OPENATTR,
	OPEN_DOWNGRADE, PUTFH, READ,
	READDIR, RECLAIM_COMPLETE,
	REMOVE, RENAME, SECINFO,
	SECINFO_NO_NAME, SEQUENCE,
	SETATTR, SET_SSV,
	TEST_STATEID, VERIFY,
	WANT_DELEGATION, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_BAD_COOKIE	GETDEVICELIST, READDIR
+-----------------------------------+-------------------------------+	
NFS4ERR_BAD_HIGH_SLOT	CB_RECALL_SLOT, CB_SEQUENCE,
	SEQUENCE
+-----------------------------------+-------------------------------+	
NFS4ERR_BAD_RANGE	LOCK, LOCKT, LOCKU
+-----------------------------------+-------------------------------+	
NFS4ERR_BAD_SESSION_DIGEST	BIND_CONN_TO_SESSION,
	SET_SSV
+-----------------------------------+-------------------------------+	
NFS4ERR_BAD_STATEID	CB_LAYOUTRECALL, CB_NOTIFY,
	CB_NOTIFY_LOCK, CB_RECALL,
	CLOSE, DELEGRETURN,
	FREE_STATEID, LAYOUTGET,
	LAYOUTRETURN, LOCK, LOCKU,
	OPEN, OPEN_DOWNGRADE, READ,
	SETATTR, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_CB_PATH_DOWN	DESTROY_SESSION
+-----------------------------------+-------------------------------+	
NFS4ERR_CLID_INUSE	CREATE_SESSION, EXCHANGE_ID
+-----------------------------------+-------------------------------+	
NFS4ERR_CLIENTID_BUSY	DESTROY_CLIENTID
+-----------------------------------+-------------------------------+	
NFS4ERR_COMPLETE_ALREADY	RECLAIM_COMPLETE
+-----------------------------------+-------------------------------+	
NFS4ERR_CONN_NOT_BOUND_TO_SESSION	CB_SEQUENCE,
	DESTROY_SESSION, SEQUENCE
+-----------------------------------+-------------------------------+	
NFS4ERR_DEADLOCK	LOCK
+-----------------------------------+-------------------------------+	
NFS4ERR_DEADSESSION	ACCESS, BACKCHANNEL_CTL,
	BIND_CONN_TO_SESSION, CLOSE,
	COMMIT, CREATE,
	CREATE_SESSION, DELEGPURGE,
	DELEGRETURN,

	DESTROY_CLIENTID,
	DESTROY_SESSION,
	EXCHANGE_ID, FREE_STATEID,
	GETATTR, GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT, LAYOUTGET,
	LAYOUTRETURN, LINK, LOCK,
	LOCKT, LOCKU, LOOKUP,
	LOOKUPP, NVERIFY, OPEN,
	OPENATTR, OPEN_DOWNGRADE,
	PUTFH, PUTPUBFH, PUTROOTFH,
	READ, READDIR, READLINK,
	RECLAIM_COMPLETE, REMOVE,
	RENAME, RESTOREFH, SAVEFH,
	SECINFO, SECINFO_NO_NAME,
	SEQUENCE, SETATTR, SET_SSV,
	TEST_STATEID, VERIFY,
	WANT_DELEGATION, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_DELAY	ACCESS, BACKCHANNEL_CTL,
	BIND_CONN_TO_SESSION,
	CB_GETATTR, CB_LAYOUTRECALL,
	CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_NOTIFY_LOCK,
	CB_PUSH_DELEG, CB_RECALL,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_RECALL_ANY,
	CB_RECALL_SLOT, CB_SEQUENCE,
	CB_WANTS_CANCELLED, CLOSE,
	COMMIT, CREATE,
	CREATE_SESSION, DELEGPURGE,
	DELEGRETURN,
	DESTROY_CLIENTID,
	DESTROY_SESSION,
	EXCHANGE_ID, FREE_STATEID,
	GETATTR, GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT, LAYOUTGET,
	LAYOUTRETURN, LINK, LOCK,
	LOCKT, LOCKU, LOOKUP,
	LOOKUPP, NVERIFY, OPEN,
	OPENATTR, OPEN_DOWNGRADE,
	PUTFH, PUTPUBFH, PUTROOTFH,
	READ, READDIR, READLINK,
	RECLAIM_COMPLETE, REMOVE,
	RENAME, SECINFO,
	SECINFO_NO_NAME, SEQUENCE,
	SETATTR, SET_SSV,
	TEST_STATEID, VERIFY,
	WANT_DELEGATION, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_DELEG_ALREADY_WANTED	OPEN, WANT_DELEGATION
+-----------------------------------+-------------------------------+	
NFS4ERR_DELEG_REVOKED	DELEGRETURN, LAYOUTCOMMIT,
	LAYOUTGET, LAYOUTRETURN,
	OPEN, READ, SETATTR, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_DENIED	LOCK, LOCKT
+-----------------------------------+-------------------------------+	
NFS4ERR_DIRDELEG_UNAVAIL	GET_DIR_DELEGATION
+-----------------------------------+-------------------------------+	
NFS4ERR_DQUOT	CREATE, LAYOUTGET, LINK,
	OPEN, OPENATTR, RENAME,
	SETATTR, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_ENCR_ALG_UNSUPP	EXCHANGE_ID
+-----------------------------------+-------------------------------+	
NFS4ERR_EXIST	CREATE, LINK, OPEN, RENAME

 +-----------------------------------+-------------------------------+
NFS4ERR_EXPIRED	CLOSE, DELEGRETURN,
	LAYOUTCOMMIT, LAYOUTRETURN,
	LOCK, LOCKU, OPEN,
	OPEN_DOWNGRADE, READ,
	SETATTR, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_FBIG	LAYOUTCOMMIT, OPEN, SETATTR,
	WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_FHEXPIRED	ACCESS, CLOSE, COMMIT,
	CREATE, DELEGRETURN,
	GETATTR, GETDEVICELIST,
	GETFH, GET_DIR_DELEGATION,
	LAYOUTCOMMIT, LAYOUTGET,
	LAYOUTRETURN, LINK, LOCK,
	LOCKT, LOCKU, LOOKUP,
	LOOKUPP, NVERIFY, OPEN,
	OPENATTR, OPEN_DOWNGRADE,
	READ, READDIR, READLINK,
	RECLAIM_COMPLETE, REMOVE,
	RENAME, RESTOREFH, SAVEFH,
	SECINFO, SECINFO_NO_NAME,
	SETATTR, VERIFY,
	WANT_DELEGATION, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_FILE_OPEN	LINK, REMOVE, RENAME
+-----------------------------------+-------------------------------+	
NFS4ERR_GRACE	GETATTR, GET_DIR_DELEGATION,
	LAYOUTCOMMIT, LAYOUTGET,
	LAYOUTRETURN, LINK, LOCK,
	LOCKT, NVERIFY, OPEN, READ,
	REMOVE, RENAME, SETATTR,
	VERIFY, WANT_DELEGATION,
	WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_HASH_ALG_UNSUPP	EXCHANGE_ID
+-----------------------------------+-------------------------------+	
NFS4ERR_INVAL	ACCESS, BACKCHANNEL_CTL,
	BIND_CONN_TO_SESSION,
	CB_GETATTR, CB_LAYOUTRECALL,
	CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_PUSH_DELEG,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_RECALL_ANY, CREATE,
	CREATE_SESSION, DELEGRETURN,
	EXCHANGE_ID, GETATTR,
	GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT, LAYOUTGET,
	LAYOUTRETURN, LINK, LOCK,
	LOCKT, LOCKU, LOOKUP,
	NVERIFY, OPEN,
	OPEN_DOWNGRADE, READ,
	READDIR, READLINK,
	RECLAIM_COMPLETE, REMOVE,
	RENAME, SECINFO,
	SECINFO_NO_NAME, SETATTR,
	SET_SSV, VERIFY,
	WANT_DELEGATION, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_IO	ACCESS, COMMIT, CREATE,
	GETATTR, GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT, LAYOUTGET,
	LINK, LOOKUP, LOOKUPP,
	NVERIFY, OPEN, OPENATTR,
	READ, READDIR, READLINK,
	REMOVE, RENAME, SETATTR,

 | | VERIFY, WANT_DELEGATION, |
 | | WRITE |
 +-----------------------------------+-------------------------------+
NFS4ERR_ISDIR	COMMIT, LAYOUTCOMMIT,
	LAYOUTRETURN, LINK, LOCK,
	LOCKT, OPEN, READ, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_LAYOUTTRYLATER	LAYOUTGET
+-----------------------------------+-------------------------------+	
NFS4ERR_LAYOUTUNAVAILABLE	LAYOUTGET
+-----------------------------------+-------------------------------+	
NFS4ERR_LOCKED	LAYOUTGET, READ, SETATTR,
	WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_LOCKS_HELD	CLOSE, FREE_STATEID
+-----------------------------------+-------------------------------+	
NFS4ERR_LOCK_NOTSUPP	LOCK
+-----------------------------------+-------------------------------+	
NFS4ERR_LOCK_RANGE	LOCK, LOCKT, LOCKU
+-----------------------------------+-------------------------------+	
NFS4ERR_MLINK	CREATE, LINK, RENAME
+-----------------------------------+-------------------------------+	
NFS4ERR_MOVED	ACCESS, CLOSE, COMMIT,
	CREATE, DELEGRETURN,
	GETATTR, GETFH,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT, LAYOUTGET,
	LAYOUTRETURN, LINK, LOCK,
	LOCKT, LOCKU, LOOKUP,
	LOOKUPP, NVERIFY, OPEN,
	OPENATTR, OPEN_DOWNGRADE,
	PUTFH, READ, READDIR,
	READLINK, RECLAIM_COMPLETE,
	REMOVE, RENAME, RESTOREFH,
	SAVEFH, SECINFO,
	SECINFO_NO_NAME, SETATTR,
	VERIFY, WANT_DELEGATION,
	WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_NAMETOOLONG	CREATE, LINK, LOOKUP, OPEN,
	REMOVE, RENAME, SECINFO
+-----------------------------------+-------------------------------+	
NFS4ERR_NOENT	BACKCHANNEL_CTL,
	CREATE_SESSION, EXCHANGE_ID,
	GETDEVICEINFO, LOOKUP,
	LOOKUPP, OPEN, OPENATTR,
	REMOVE, RENAME, SECINFO,
	SECINFO_NO_NAME
+-----------------------------------+-------------------------------+	
NFS4ERR_NOFILEHANDLE	ACCESS, CLOSE, COMMIT,
	CREATE, DELEGRETURN,
	GETATTR, GETDEVICELIST,
	GETFH, GET_DIR_DELEGATION,
	LAYOUTCOMMIT, LAYOUTGET,
	LAYOUTRETURN, LINK, LOCK,
	LOCKT, LOCKU, LOOKUP,
	LOOKUPP, NVERIFY, OPEN,
	OPENATTR, OPEN_DOWNGRADE,
	READ, READDIR, READLINK,
	RECLAIM_COMPLETE, REMOVE,
	RENAME, RESTOREFH, SAVEFH,
	SECINFO, SECINFO_NO_NAME,
	SETATTR, VERIFY,
	WANT_DELEGATION, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_NOMATCHING_LAYOUT	CB_LAYOUTRECALL
+-----------------------------------+-------------------------------+	
NFS4ERR_NOSPC	CREATE, CREATE_SESSION,
	LAYOUTGET, LINK, OPEN,
	OPENATTR, RENAME, SETATTR,
	WRITE

 +-----------------------------------+-------------------------------+
NFS4ERR_NOTDIR	CREATE, GET_DIR_DELEGATION,
	LINK, LOOKUP, LOOKUPP, OPEN,
	READDIR, REMOVE, RENAME,
	SECINFO, SECINFO_NO_NAME
+-----------------------------------+-------------------------------+	
NFS4ERR_NOTEMPTY	REMOVE, RENAME
+-----------------------------------+-------------------------------+	
NFS4ERR_NOTSUPP	CB_LAYOUTRECALL, CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_NOTIFY_LOCK,
	CB_PUSH_DELEG,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_WANTS_CANCELLED,
	DELEGPURGE, DELEGRETURN,
	GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT, LAYOUTGET,
	LAYOUTRETURN, LINK,
	OPENATTR, OPEN_CONFIRM,
	RELEASE_LOCKOWNER, RENEW,
	SECINFO_NO_NAME,
	SETCLIENTID,
	SETCLIENTID_CONFIRM,
	WANT_DELEGATION
+-----------------------------------+-------------------------------+	
NFS4ERR_NOT_ONLY_OP	BIND_CONN_TO_SESSION,
	CREATE_SESSION,
	DESTROY_CLIENTID,
	DESTROY_SESSION, EXCHANGE_ID
+-----------------------------------+-------------------------------+	
NFS4ERR_NOT_SAME	EXCHANGE_ID, GETDEVICELIST,
	READDIR, VERIFY
+-----------------------------------+-------------------------------+	
NFS4ERR_NO_GRACE	LAYOUTCOMMIT, LAYOUTRETURN,
	LOCK, OPEN, WANT_DELEGATION
+-----------------------------------+-------------------------------+	
NFS4ERR_OLD_STATEID	CLOSE, DELEGRETURN,
	FREE_STATEID, LAYOUTGET,
	LAYOUTRETURN, LOCK, LOCKU,
	OPEN, OPEN_DOWNGRADE, READ,
	SETATTR, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_OPENMODE	LAYOUTGET, LOCK, READ,
	SETATTR, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_OP_ILLEGAL	CB_ILLEGAL, ILLEGAL
+-----------------------------------+-------------------------------+	
NFS4ERR_OP_NOT_IN_SESSION	ACCESS, BACKCHANNEL_CTL,
	CB_GETATTR, CB_LAYOUTRECALL,
	CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_NOTIFY_LOCK,
	CB_PUSH_DELEG, CB_RECALL,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_RECALL_ANY,
	CB_RECALL_SLOT,
	CB_WANTS_CANCELLED, CLOSE,
	COMMIT, CREATE, DELEGPURGE,
	DELEGRETURN, FREE_STATEID,
	GETATTR, GETDEVICEINFO,
	GETDEVICELIST, GETFH,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT, LAYOUTGET,
	LAYOUTRETURN, LINK, LOCK,
	LOCKT, LOCKU, LOOKUP,
	LOOKUPP, NVERIFY, OPEN,
	OPENATTR, OPEN_DOWNGRADE,
	PUTFH, PUTPUBFH, PUTROOTFH,
	READ, READDIR, READLINK,

	RECLAIM_COMPLETE, REMOVE,
	RENAME, RESTOREFH, SAVEFH,
	SECINFO, SECINFO_NO_NAME,
	SETATTR, SET_SSV,
	TEST_STATEID, VERIFY,
	WANT_DELEGATION, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_PERM	CREATE, OPEN, SETATTR
+-----------------------------------+-------------------------------+	
NFS4ERR_PNFS_IO_HOLE	READ, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_PNFS_NO_LAYOUT	READ, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_RECALLCONFLICT	LAYOUTGET, WANT_DELEGATION
+-----------------------------------+-------------------------------+	
NFS4ERR_RECLAIM_BAD	LAYOUTCOMMIT, LOCK, OPEN,
	WANT_DELEGATION
+-----------------------------------+-------------------------------+	
NFS4ERR_RECLAIM_CONFLICT	LAYOUTCOMMIT, LOCK, OPEN,
	WANT_DELEGATION
+-----------------------------------+-------------------------------+	
NFS4ERR_REJECT_DELEG	CB_PUSH_DELEG
+-----------------------------------+-------------------------------+	
NFS4ERR_REP_TOO_BIG	ACCESS, BACKCHANNEL_CTL,
	BIND_CONN_TO_SESSION,
	CB_GETATTR, CB_LAYOUTRECALL,
	CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_NOTIFY_LOCK,
	CB_PUSH_DELEG, CB_RECALL,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_RECALL_ANY,
	CB_RECALL_SLOT, CB_SEQUENCE,
	CB_WANTS_CANCELLED, CLOSE,
	COMMIT, CREATE,
	CREATE_SESSION, DELEGPURGE,
	DELEGRETURN,
	DESTROY_CLIENTID,
	DESTROY_SESSION,
	EXCHANGE_ID, FREE_STATEID,
	GETATTR, GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT, LAYOUTGET,
	LAYOUTRETURN, LINK, LOCK,
	LOCKT, LOCKU, LOOKUP,
	LOOKUPP, NVERIFY, OPEN,
	OPENATTR, OPEN_DOWNGRADE,
	PUTFH, PUTPUBFH, PUTROOTFH,
	READ, READDIR, READLINK,
	RECLAIM_COMPLETE, REMOVE,
	RENAME, RESTOREFH, SAVEFH,
	SECINFO, SECINFO_NO_NAME,
	SEQUENCE, SETATTR, SET_SSV,
	TEST_STATEID, VERIFY,
	WANT_DELEGATION, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_REP_TOO_BIG_TO_CACHE	ACCESS, BACKCHANNEL_CTL,
	BIND_CONN_TO_SESSION,
	CB_GETATTR, CB_LAYOUTRECALL,
	CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_NOTIFY_LOCK,
	CB_PUSH_DELEG, CB_RECALL,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_RECALL_ANY,
	CB_RECALL_SLOT, CB_SEQUENCE,
	CB_WANTS_CANCELLED, CLOSE,
	COMMIT, CREATE,
	CREATE_SESSION, DELEGPURGE,
	DELEGRETURN,

	DESTROY_CLIENTID,
	DESTROY_SESSION,
	EXCHANGE_ID, FREE_STATEID,
	GETATTR, GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT, LAYOUTGET,
	LAYOUTRETURN, LINK, LOCK,
	LOCKT, LOCKU, LOOKUP,
	LOOKUPP, NVERIFY, OPEN,
	OPENATTR, OPEN_DOWNGRADE,
	PUTFH, PUTPUBFH, PUTROOTFH,
	READ, READDIR, READLINK,
	RECLAIM_COMPLETE, REMOVE,
	RENAME, RESTOREFH, SAVEFH,
	SECINFO, SECINFO_NO_NAME,
	SEQUENCE, SETATTR, SET_SSV,
	TEST_STATEID, VERIFY,
	WANT_DELEGATION, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_REQ_TOO_BIG	ACCESS, BACKCHANNEL_CTL,
	BIND_CONN_TO_SESSION,
	CB_GETATTR, CB_LAYOUTRECALL,
	CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_NOTIFY_LOCK,
	CB_PUSH_DELEG, CB_RECALL,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_RECALL_ANY,
	CB_RECALL_SLOT, CB_SEQUENCE,
	CB_WANTS_CANCELLED, CLOSE,
	COMMIT, CREATE,
	CREATE_SESSION, DELEGPURGE,
	DELEGRETURN,
	DESTROY_CLIENTID,
	DESTROY_SESSION,
	EXCHANGE_ID, FREE_STATEID,
	GETATTR, GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT, LAYOUTGET,
	LAYOUTRETURN, LINK, LOCK,
	LOCKT, LOCKU, LOOKUP,
	LOOKUPP, NVERIFY, OPEN,
	OPENATTR, OPEN_DOWNGRADE,
	PUTFH, PUTPUBFH, PUTROOTFH,
	READ, READDIR, READLINK,
	RECLAIM_COMPLETE, REMOVE,
	RENAME, RESTOREFH, SAVEFH,
	SECINFO, SECINFO_NO_NAME,
	SEQUENCE, SETATTR, SET_SSV,
	TEST_STATEID, VERIFY,
	WANT_DELEGATION, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_RETRY_UNCACHED_REP	ACCESS, BACKCHANNEL_CTL,
	BIND_CONN_TO_SESSION,
	CB_GETATTR, CB_LAYOUTRECALL,
	CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_NOTIFY_LOCK,
	CB_PUSH_DELEG, CB_RECALL,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_RECALL_ANY,
	CB_RECALL_SLOT, CB_SEQUENCE,
	CB_WANTS_CANCELLED, CLOSE,
	COMMIT, CREATE,
	CREATE_SESSION, DELEGPURGE,
	DELEGRETURN,
	DESTROY_CLIENTID,
	DESTROY_SESSION,
	EXCHANGE_ID, FREE_STATEID,

	GETATTR, GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT, LAYOUTGET,
	LAYOUTRETURN, LINK, LOCK,
	LOCKT, LOCKU, LOOKUP,
	LOOKUPP, NVERIFY, OPEN,
	OPENATTR, OPEN_DOWNGRADE,
	PUTFH, PUTPUBFH, PUTROOTFH,
	READ, READDIR, READLINK,
	RECLAIM_COMPLETE, REMOVE,
	RENAME, RESTOREFH, SAVEFH,
	SECINFO, SECINFO_NO_NAME,
	SEQUENCE, SETATTR, SET_SSV,
	TEST_STATEID, VERIFY,
	WANT_DELEGATION, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_ROFS	CREATE, LINK, LOCK, LOCKT,
	OPEN, OPENATTR,
	OPEN_DOWNGRADE, REMOVE,
	RENAME, SETATTR, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_SAME	NVERIFY
+-----------------------------------+-------------------------------+	
NFS4ERR_SEQUENCE_POS	CB_SEQUENCE, SEQUENCE
+-----------------------------------+-------------------------------+	
NFS4ERR_SEQ_FALSE_RETRY	CB_SEQUENCE, SEQUENCE
+-----------------------------------+-------------------------------+	
NFS4ERR_SEQ_MISORDERED	CB_SEQUENCE, CREATE_SESSION,
	SEQUENCE
+-----------------------------------+-------------------------------+	
NFS4ERR_SERVERFAULT	ACCESS,
	BIND_CONN_TO_SESSION,
	CB_GETATTR, CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_NOTIFY_LOCK,
	CB_PUSH_DELEG, CB_RECALL,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_WANTS_CANCELLED, CLOSE,
	COMMIT, CREATE,
	CREATE_SESSION, DELEGPURGE,
	DELEGRETURN,
	DESTROY_CLIENTID,
	DESTROY_SESSION,
	EXCHANGE_ID, FREE_STATEID,
	GETATTR, GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT, LAYOUTGET,
	LAYOUTRETURN, LINK, LOCK,
	LOCKU, LOOKUP, LOOKUPP,
	NVERIFY, OPEN, OPENATTR,
	OPEN_DOWNGRADE, PUTFH,
	PUTPUBFH, PUTROOTFH, READ,
	READDIR, READLINK,
	RECLAIM_COMPLETE, REMOVE,
	RENAME, RESTOREFH, SAVEFH,
	SECINFO, SECINFO_NO_NAME,
	SETATTR, TEST_STATEID,
	VERIFY, WANT_DELEGATION,
	WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_SHARE_DENIED	OPEN
+-----------------------------------+-------------------------------+	
NFS4ERR_STALE	ACCESS, CLOSE, COMMIT,
	CREATE, DELEGRETURN,
	GETATTR, GETFH,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT, LAYOUTGET,
	LAYOUTRETURN, LINK, LOCK,
	LOCKT, LOCKU, LOOKUP,

	LOOKUPP, NVERIFY, OPEN,
	OPENATTR, OPEN_DOWNGRADE,
	PUTFH, READ, READDIR,
	READLINK, RECLAIM_COMPLETE,
	REMOVE, RENAME, RESTOREFH,
	SAVEFH, SECINFO,
	SECINFO_NO_NAME, SETATTR,
	VERIFY, WANT_DELEGATION,
	WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_STALE_CLIENTID	CREATE_SESSION,
	DESTROY_CLIENTID,
	DESTROY_SESSION
+-----------------------------------+-------------------------------+	
NFS4ERR_SYMLINK	COMMIT, LAYOUTCOMMIT, LINK,
	LOCK, LOCKT, LOOKUP,
	LOOKUPP, OPEN, READ, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_TOOSMALL	CREATE_SESSION,
	GETDEVICEINFO, LAYOUTGET,
	READDIR
+-----------------------------------+-------------------------------+	
NFS4ERR_TOO_MANY_OPS	ACCESS, BACKCHANNEL_CTL,
	BIND_CONN_TO_SESSION,
	CB_GETATTR, CB_LAYOUTRECALL,
	CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_NOTIFY_LOCK,
	CB_PUSH_DELEG, CB_RECALL,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_RECALL_ANY,
	CB_RECALL_SLOT, CB_SEQUENCE,
	CB_WANTS_CANCELLED, CLOSE,
	COMMIT, CREATE,
	CREATE_SESSION, DELEGPURGE,
	DELEGRETURN,
	DESTROY_CLIENTID,
	DESTROY_SESSION,
	EXCHANGE_ID, FREE_STATEID,
	GETATTR, GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT, LAYOUTGET,
	LAYOUTRETURN, LINK, LOCK,
	LOCKT, LOCKU, LOOKUP,
	LOOKUPP, NVERIFY, OPEN,
	OPENATTR, OPEN_DOWNGRADE,
	PUTFH, PUTPUBFH, PUTROOTFH,
	READ, READDIR, READLINK,
	RECLAIM_COMPLETE, REMOVE,
	RENAME, RESTOREFH, SAVEFH,
	SECINFO, SECINFO_NO_NAME,
	SEQUENCE, SETATTR, SET_SSV,
	TEST_STATEID, VERIFY,
	WANT_DELEGATION, WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_UNKNOWN_LAYOUTTYPE	CB_LAYOUTRECALL,
	GETDEVICEINFO,
	GETDEVICELIST, LAYOUTCOMMIT,
	LAYOUTGET, LAYOUTRETURN,
	NVERIFY, SETATTR, VERIFY
+-----------------------------------+-------------------------------+	
NFS4ERR_UNSAFE_COMPOUND	CREATE, OPEN, OPENATTR
+-----------------------------------+-------------------------------+	
NFS4ERR_WRONGSEC	LINK, LOOKUP, LOOKUPP, OPEN,
	PUTFH, PUTPUBFH, PUTROOTFH,
	RENAME, RESTOREFH
+-----------------------------------+-------------------------------+	
NFS4ERR_WRONG_CRED	CLOSE, CREATE_SESSION,
	DELEGPURGE, DELEGRETURN,
	DESTROY_CLIENTID,

	DESTROY_SESSION,
	FREE_STATEID, LAYOUTCOMMIT,
	LAYOUTRETURN, LOCK, LOCKT,
	LOCKU, OPEN_DOWNGRADE,
	RECLAIM_COMPLETE
+-----------------------------------+-------------------------------+	
NFS4ERR_WRONG_TYPE	CB_LAYOUTRECALL,
	CB_PUSH_DELEG, COMMIT,
	GETATTR, LAYOUTGET,
	LAYOUTRETURN, LINK, LOCK,
	LOCKT, NVERIFY, OPEN,
	OPENATTR, READ, READLINK,
	RECLAIM_COMPLETE, SETATTR,
	VERIFY, WANT_DELEGATION,
	WRITE
+-----------------------------------+-------------------------------+	
NFS4ERR_XDEV	LINK, RENAME
 +-----------------------------------+-------------------------------+

 Table 14: Errors and the Operations That Use Them

16. NFSv4.1 Procedures

 Both procedures, NULL and COMPOUND, MUST be implemented.

16.1. Procedure 0: NULL - No Operation

16.1.1. ARGUMENTS

 void;

16.1.2. RESULTS

 void;

16.1.3. DESCRIPTION

 This is the standard NULL procedure with the standard void argument
 and void response. This procedure has no functionality associated
 with it. Because of this, it is sometimes used to measure the
 overhead of processing a service request. Therefore, the server
 SHOULD ensure that no unnecessary work is done in servicing this
 procedure.

16.1.4. ERRORS

 None.

16.2. Procedure 1: COMPOUND - Compound Operations

16.2.1. ARGUMENTS

 enum nfs_opnum4 {
 OP_ACCESS = 3,
 OP_CLOSE = 4,
 OP_COMMIT = 5,
 OP_CREATE = 6,
 OP_DELEGPURGE = 7,
 OP_DELEGRETURN = 8,
 OP_GETATTR = 9,
 OP_GETFH = 10,
 OP_LINK = 11,
 OP_LOCK = 12,
 OP_LOCKT = 13,
 OP_LOCKU = 14,
 OP_LOOKUP = 15,
 OP_LOOKUPP = 16,
 OP_NVERIFY = 17,
 OP_OPEN = 18,
 OP_OPENATTR = 19,
 OP_OPEN_CONFIRM = 20, /* Mandatory not-to-implement */

 OP_OPEN_DOWNGRADE = 21,
 OP_PUTFH = 22,
 OP_PUTPUBFH = 23,
 OP_PUTROOTFH = 24,
 OP_READ = 25,
 OP_READDIR = 26,
 OP_READLINK = 27,
 OP_REMOVE = 28,
 OP_RENAME = 29,
 OP_RENEW = 30, /* Mandatory not-to-implement */
 OP_RESTOREFH = 31,
 OP_SAVEFH = 32,
 OP_SECINFO = 33,
 OP_SETATTR = 34,
 OP_SETCLIENTID = 35, /* Mandatory not-to-implement */
 OP_SETCLIENTID_CONFIRM = 36, /* Mandatory not-to-implement */
 OP_VERIFY = 37,
 OP_WRITE = 38,
 OP_RELEASE_LOCKOWNER = 39, /* Mandatory not-to-implement */

 /* new operations for NFSv4.1 */

 OP_BACKCHANNEL_CTL = 40,
 OP_BIND_CONN_TO_SESSION = 41,
 OP_EXCHANGE_ID = 42,
 OP_CREATE_SESSION = 43,
 OP_DESTROY_SESSION = 44,
 OP_FREE_STATEID = 45,
 OP_GET_DIR_DELEGATION = 46,
 OP_GETDEVICEINFO = 47,
 OP_GETDEVICELIST = 48,
 OP_LAYOUTCOMMIT = 49,
 OP_LAYOUTGET = 50,
 OP_LAYOUTRETURN = 51,
 OP_SECINFO_NO_NAME = 52,
 OP_SEQUENCE = 53,
 OP_SET_SSV = 54,
 OP_TEST_STATEID = 55,
 OP_WANT_DELEGATION = 56,
 OP_DESTROY_CLIENTID = 57,
 OP_RECLAIM_COMPLETE = 58,
 OP_ILLEGAL = 10044
 };

 union nfs_argop4 switch (nfs_opnum4 argop) {
 case OP_ACCESS: ACCESS4args opaccess;
 case OP_CLOSE: CLOSE4args opclose;
 case OP_COMMIT: COMMIT4args opcommit;
 case OP_CREATE: CREATE4args opcreate;
 case OP_DELEGPURGE: DELEGPURGE4args opdelegpurge;
 case OP_DELEGRETURN: DELEGRETURN4args opdelegreturn;
 case OP_GETATTR: GETATTR4args opgetattr;
 case OP_GETFH: void;
 case OP_LINK: LINK4args oplink;
 case OP_LOCK: LOCK4args oplock;
 case OP_LOCKT: LOCKT4args oplockt;
 case OP_LOCKU: LOCKU4args oplocku;
 case OP_LOOKUP: LOOKUP4args oplookup;
 case OP_LOOKUPP: void;
 case OP_NVERIFY: NVERIFY4args opnverify;
 case OP_OPEN: OPEN4args opopen;
 case OP_OPENATTR: OPENATTR4args opopenattr;

 /* Not for NFSv4.1 */
 case OP_OPEN_CONFIRM: OPEN_CONFIRM4args opopen_confirm;

 case OP_OPEN_DOWNGRADE:
 OPEN_DOWNGRADE4args opopen_downgrade;

 case OP_PUTFH: PUTFH4args opputfh;
 case OP_PUTPUBFH: void;

 case OP_PUTROOTFH: void;
 case OP_READ: READ4args opread;
 case OP_READDIR: READDIR4args opreaddir;
 case OP_READLINK: void;
 case OP_REMOVE: REMOVE4args opremove;
 case OP_RENAME: RENAME4args oprename;

 /* Not for NFSv4.1 */
 case OP_RENEW: RENEW4args oprenew;

 case OP_RESTOREFH: void;
 case OP_SAVEFH: void;
 case OP_SECINFO: SECINFO4args opsecinfo;
 case OP_SETATTR: SETATTR4args opsetattr;

 /* Not for NFSv4.1 */
 case OP_SETCLIENTID: SETCLIENTID4args opsetclientid;

 /* Not for NFSv4.1 */
 case OP_SETCLIENTID_CONFIRM: SETCLIENTID_CONFIRM4args
 opsetclientid_confirm;
 case OP_VERIFY: VERIFY4args opverify;
 case OP_WRITE: WRITE4args opwrite;

 /* Not for NFSv4.1 */
 case OP_RELEASE_LOCKOWNER:
 RELEASE_LOCKOWNER4args
 oprelease_lockowner;

 /* Operations new to NFSv4.1 */
 case OP_BACKCHANNEL_CTL:
 BACKCHANNEL_CTL4args opbackchannel_ctl;

 case OP_BIND_CONN_TO_SESSION:
 BIND_CONN_TO_SESSION4args
 opbind_conn_to_session;

 case OP_EXCHANGE_ID: EXCHANGE_ID4args opexchange_id;

 case OP_CREATE_SESSION:
 CREATE_SESSION4args opcreate_session;

 case OP_DESTROY_SESSION:
 DESTROY_SESSION4args opdestroy_session;

 case OP_FREE_STATEID: FREE_STATEID4args opfree_stateid;

 case OP_GET_DIR_DELEGATION:
 GET_DIR_DELEGATION4args
 opget_dir_delegation;

 case OP_GETDEVICEINFO: GETDEVICEINFO4args opgetdeviceinfo;
 case OP_GETDEVICELIST: GETDEVICELIST4args opgetdevicelist;
 case OP_LAYOUTCOMMIT: LAYOUTCOMMIT4args oplayoutcommit;
 case OP_LAYOUTGET: LAYOUTGET4args oplayoutget;
 case OP_LAYOUTRETURN: LAYOUTRETURN4args oplayoutreturn;

 case OP_SECINFO_NO_NAME:
 SECINFO_NO_NAME4args opsecinfo_no_name;

 case OP_SEQUENCE: SEQUENCE4args opsequence;
 case OP_SET_SSV: SET_SSV4args opset_ssv;
 case OP_TEST_STATEID: TEST_STATEID4args optest_stateid;

 case OP_WANT_DELEGATION:
 WANT_DELEGATION4args opwant_delegation;

 case OP_DESTROY_CLIENTID:
 DESTROY_CLIENTID4args
 opdestroy_clientid;

 case OP_RECLAIM_COMPLETE:
 RECLAIM_COMPLETE4args
 opreclaim_complete;

 /* Operations not new to NFSv4.1 */
 case OP_ILLEGAL: void;
 };

 struct COMPOUND4args {
 utf8str_cs tag;
 uint32_t minorversion;
 nfs_argop4 argarray<>;
 };

16.2.2. RESULTS

 union nfs_resop4 switch (nfs_opnum4 resop) {
 case OP_ACCESS: ACCESS4res opaccess;
 case OP_CLOSE: CLOSE4res opclose;
 case OP_COMMIT: COMMIT4res opcommit;
 case OP_CREATE: CREATE4res opcreate;
 case OP_DELEGPURGE: DELEGPURGE4res opdelegpurge;
 case OP_DELEGRETURN: DELEGRETURN4res opdelegreturn;
 case OP_GETATTR: GETATTR4res opgetattr;
 case OP_GETFH: GETFH4res opgetfh;
 case OP_LINK: LINK4res oplink;
 case OP_LOCK: LOCK4res oplock;
 case OP_LOCKT: LOCKT4res oplockt;
 case OP_LOCKU: LOCKU4res oplocku;
 case OP_LOOKUP: LOOKUP4res oplookup;
 case OP_LOOKUPP: LOOKUPP4res oplookupp;
 case OP_NVERIFY: NVERIFY4res opnverify;
 case OP_OPEN: OPEN4res opopen;
 case OP_OPENATTR: OPENATTR4res opopenattr;
 /* Not for NFSv4.1 */
 case OP_OPEN_CONFIRM: OPEN_CONFIRM4res opopen_confirm;

 case OP_OPEN_DOWNGRADE:
 OPEN_DOWNGRADE4res
 opopen_downgrade;

 case OP_PUTFH: PUTFH4res opputfh;
 case OP_PUTPUBFH: PUTPUBFH4res opputpubfh;
 case OP_PUTROOTFH: PUTROOTFH4res opputrootfh;
 case OP_READ: READ4res opread;
 case OP_READDIR: READDIR4res opreaddir;
 case OP_READLINK: READLINK4res opreadlink;
 case OP_REMOVE: REMOVE4res opremove;
 case OP_RENAME: RENAME4res oprename;
 /* Not for NFSv4.1 */
 case OP_RENEW: RENEW4res oprenew;
 case OP_RESTOREFH: RESTOREFH4res oprestorefh;
 case OP_SAVEFH: SAVEFH4res opsavefh;
 case OP_SECINFO: SECINFO4res opsecinfo;
 case OP_SETATTR: SETATTR4res opsetattr;
 /* Not for NFSv4.1 */
 case OP_SETCLIENTID: SETCLIENTID4res opsetclientid;

 /* Not for NFSv4.1 */
 case OP_SETCLIENTID_CONFIRM:
 SETCLIENTID_CONFIRM4res
 opsetclientid_confirm;
 case OP_VERIFY: VERIFY4res opverify;
 case OP_WRITE: WRITE4res opwrite;

 /* Not for NFSv4.1 */
 case OP_RELEASE_LOCKOWNER:
 RELEASE_LOCKOWNER4res
 oprelease_lockowner;

 /* Operations new to NFSv4.1 */

 case OP_BACKCHANNEL_CTL:
 BACKCHANNEL_CTL4res
 opbackchannel_ctl;

 case OP_BIND_CONN_TO_SESSION:
 BIND_CONN_TO_SESSION4res
 opbind_conn_to_session;

 case OP_EXCHANGE_ID: EXCHANGE_ID4res opexchange_id;

 case OP_CREATE_SESSION:
 CREATE_SESSION4res
 opcreate_session;

 case OP_DESTROY_SESSION:
 DESTROY_SESSION4res
 opdestroy_session;

 case OP_FREE_STATEID: FREE_STATEID4res
 opfree_stateid;

 case OP_GET_DIR_DELEGATION:
 GET_DIR_DELEGATION4res
 opget_dir_delegation;

 case OP_GETDEVICEINFO: GETDEVICEINFO4res
 opgetdeviceinfo;

 case OP_GETDEVICELIST: GETDEVICELIST4res
 opgetdevicelist;

 case OP_LAYOUTCOMMIT: LAYOUTCOMMIT4res oplayoutcommit;
 case OP_LAYOUTGET: LAYOUTGET4res oplayoutget;
 case OP_LAYOUTRETURN: LAYOUTRETURN4res oplayoutreturn;

 case OP_SECINFO_NO_NAME:
 SECINFO_NO_NAME4res
 opsecinfo_no_name;

 case OP_SEQUENCE: SEQUENCE4res opsequence;
 case OP_SET_SSV: SET_SSV4res opset_ssv;
 case OP_TEST_STATEID: TEST_STATEID4res optest_stateid;

 case OP_WANT_DELEGATION:
 WANT_DELEGATION4res
 opwant_delegation;

 case OP_DESTROY_CLIENTID:
 DESTROY_CLIENTID4res
 opdestroy_clientid;

 case OP_RECLAIM_COMPLETE:
 RECLAIM_COMPLETE4res
 opreclaim_complete;

 /* Operations not new to NFSv4.1 */
 case OP_ILLEGAL: ILLEGAL4res opillegal;
 };

 struct COMPOUND4res {
 nfsstat4 status;
 utf8str_cs tag;
 nfs_resop4 resarray<>;
 };

16.2.3. DESCRIPTION

 The COMPOUND procedure is used to combine one or more NFSv4
 operations into a single RPC request. The server interprets each of
 the operations in turn. If an operation is executed by the server
 and the status of that operation is NFS4_OK, then the next operation

 in the COMPOUND procedure is executed. The server continues this
 process until there are no more operations to be executed or until
 one of the operations has a status value other than NFS4_OK.

 In the processing of the COMPOUND procedure, the server may find that
 it does not have the available resources to execute any or all of the
 operations within the COMPOUND sequence. See Section 2.10.6.4 for a
 more detailed discussion.

 The server will generally choose between two methods of decoding the
 client’s request. The first would be the traditional one-pass XDR
 decode. If there is an XDR decoding error in this case, the RPC XDR
 decode error would be returned. The second method would be to make
 an initial pass to decode the basic COMPOUND request and then to XDR
 decode the individual operations; the most interesting is the decode
 of attributes. In this case, the server may encounter an XDR decode
 error during the second pass. If it does, the server would return
 the error NFS4ERR_BADXDR to signify the decode error.

 The COMPOUND arguments contain a "minorversion" field. For NFSv4.1,
 the value for this field is 1. If the server receives a COMPOUND
 procedure with a minorversion field value that it does not support,
 the server MUST return an error of NFS4ERR_MINOR_VERS_MISMATCH and a
 zero-length resultdata array.

 Contained within the COMPOUND results is a "status" field. If the
 results array length is non-zero, this status must be equivalent to
 the status of the last operation that was executed within the
 COMPOUND procedure. Therefore, if an operation incurred an error
 then the "status" value will be the same error value as is being
 returned for the operation that failed.

 Note that operations zero and one are not defined for the COMPOUND
 procedure. Operation 2 is not defined and is reserved for future
 definition and use with minor versioning. If the server receives an
 operation array that contains operation 2 and the minorversion field
 has a value of zero, an error of NFS4ERR_OP_ILLEGAL, as described in
 the next paragraph, is returned to the client. If an operation array
 contains an operation 2 and the minorversion field is non-zero and
 the server does not support the minor version, the server returns an
 error of NFS4ERR_MINOR_VERS_MISMATCH. Therefore, the
 NFS4ERR_MINOR_VERS_MISMATCH error takes precedence over all other
 errors.

 It is possible that the server receives a request that contains an
 operation that is less than the first legal operation (OP_ACCESS) or
 greater than the last legal operation (OP_RELEASE_LOCKOWNER). In
 this case, the server’s response will encode the opcode OP_ILLEGAL
 rather than the illegal opcode of the request. The status field in
 the ILLEGAL return results will be set to NFS4ERR_OP_ILLEGAL. The
 COMPOUND procedure’s return results will also be NFS4ERR_OP_ILLEGAL.

 The definition of the "tag" in the request is left to the
 implementor. It may be used to summarize the content of the Compound
 request for the benefit of packet-sniffers and engineers debugging
 implementations. However, the value of "tag" in the response SHOULD
 be the same value as provided in the request. This applies to the
 tag field of the CB_COMPOUND procedure as well.

16.2.3.1. Current Filehandle and Stateid

 The COMPOUND procedure offers a simple environment for the execution
 of the operations specified by the client. The first two relate to
 the filehandle while the second two relate to the current stateid.

16.2.3.1.1. Current Filehandle

 The current and saved filehandles are used throughout the protocol.
 Most operations implicitly use the current filehandle as an argument,
 and many set the current filehandle as part of the results. The
 combination of client-specified sequences of operations and current

 and saved filehandle arguments and results allows for greater
 protocol flexibility. The best or easiest example of current
 filehandle usage is a sequence like the following:

 PUTFH fh1 {fh1}
 LOOKUP "compA" {fh2}
 GETATTR {fh2}
 LOOKUP "compB" {fh3}
 GETATTR {fh3}
 LOOKUP "compC" {fh4}
 GETATTR {fh4}
 GETFH

 Figure 2

 In this example, the PUTFH (Section 18.19) operation explicitly sets
 the current filehandle value while the result of each LOOKUP
 operation sets the current filehandle value to the resultant file
 system object. Also, the client is able to insert GETATTR operations
 using the current filehandle as an argument.

 The PUTROOTFH (Section 18.21) and PUTPUBFH (Section 18.20) operations
 also set the current filehandle. The above example would replace
 "PUTFH fh1" with PUTROOTFH or PUTPUBFH with no filehandle argument in
 order to achieve the same effect (on the assumption that "compA" is
 directly below the root of the namespace).

 Along with the current filehandle, there is a saved filehandle.
 While the current filehandle is set as the result of operations like
 LOOKUP, the saved filehandle must be set directly with the use of the
 SAVEFH operation. The SAVEFH operation copies the current filehandle
 value to the saved value. The saved filehandle value is used in
 combination with the current filehandle value for the LINK and RENAME
 operations. The RESTOREFH operation will copy the saved filehandle
 value to the current filehandle value; as a result, the saved
 filehandle value may be used a sort of "scratch" area for the
 client’s series of operations.

16.2.3.1.2. Current Stateid

 With NFSv4.1, additions of a current stateid and a saved stateid have
 been made to the COMPOUND processing environment; this allows for the
 passing of stateids between operations. There are no changes to the
 syntax of the protocol, only changes to the semantics of a few
 operations.

 A "current stateid" is the stateid that is associated with the
 current filehandle. The current stateid may only be changed by an
 operation that modifies the current filehandle or returns a stateid.
 If an operation returns a stateid, it MUST set the current stateid to
 the returned value. If an operation sets the current filehandle but
 does not return a stateid, the current stateid MUST be set to the
 all-zeros special stateid, i.e., (seqid, other) = (0, 0). If an
 operation uses a stateid as an argument but does not return a
 stateid, the current stateid MUST NOT be changed. For example,
 PUTFH, PUTROOTFH, and PUTPUBFH will change the current server state
 from {ocfh, (osid)} to {cfh, (0, 0)}, while LOCK will change the
 current state from {cfh, (osid} to {cfh, (nsid)}. Operations like
 LOOKUP that transform a current filehandle and component name into a
 new current filehandle will also change the current state to {0, 0}.
 The SAVEFH and RESTOREFH operations will save and restore both the
 current filehandle and the current stateid as a set.

 The following example is the common case of a simple READ operation
 with a normal stateid showing that the PUTFH initializes the current
 stateid to (0, 0). The subsequent READ with stateid (sid1) leaves
 the current stateid unchanged.

 PUTFH fh1 - -> {fh1, (0, 0)}
 READ (sid1), 0, 1024 {fh1, (0, 0)} -> {fh1, (0, 0)}

 Figure 3

 This next example performs an OPEN with the root filehandle and, as a
 result, generates stateid (sid1). The next operation specifies the
 READ with the argument stateid set such that (seqid, other) are equal
 to (1, 0), but the current stateid set by the previous operation is
 actually used when the operation is evaluated. This allows correct
 interaction with any existing, potentially conflicting, locks.

 PUTROOTFH - -> {fh1, (0, 0)}
 OPEN "compA" {fh1, (0, 0)} -> {fh2, (sid1)}
 READ (1, 0), 0, 1024 {fh2, (sid1)} -> {fh2, (sid1)}
 CLOSE (1, 0) {fh2, (sid1)} -> {fh2, (sid2)}

 Figure 4

 This next example is similar to the second in how it passes the
 stateid sid2 generated by the LOCK operation to the next READ
 operation. This allows the client to explicitly surround a single I/
 O operation with a lock and its appropriate stateid to guarantee
 correctness with other client locks. The example also shows how
 SAVEFH and RESTOREFH can save and later reuse a filehandle and
 stateid, passing them as the current filehandle and stateid to a READ
 operation.

 PUTFH fh1 - -> {fh1, (0, 0)}
 LOCK 0, 1024, (sid1) {fh1, (sid1)} -> {fh1, (sid2)}
 READ (1, 0), 0, 1024 {fh1, (sid2)} -> {fh1, (sid2)}
 LOCKU 0, 1024, (1, 0) {fh1, (sid2)} -> {fh1, (sid3)}
 SAVEFH {fh1, (sid3)} -> {fh1, (sid3)}

 PUTFH fh2 {fh1, (sid3)} -> {fh2, (0, 0)}
 WRITE (1, 0), 0, 1024 {fh2, (0, 0)} -> {fh2, (0, 0)}

 RESTOREFH {fh2, (0, 0)} -> {fh1, (sid3)}
 READ (1, 0), 1024, 1024 {fh1, (sid3)} -> {fh1, (sid3)}

 Figure 5

 The final example shows a disallowed use of the current stateid. The
 client is attempting to implicitly pass an anonymous special stateid,
 (0,0), to the READ operation. The server MUST return
 NFS4ERR_BAD_STATEID in the reply to the READ operation.

 PUTFH fh1 - -> {fh1, (0, 0)}
 READ (1, 0), 0, 1024 {fh1, (0, 0)} -> NFS4ERR_BAD_STATEID

 Figure 6

16.2.4. ERRORS

 COMPOUND will of course return every error that each operation on the
 fore channel can return (see Table 12). However, if COMPOUND returns
 zero operations, obviously the error returned by COMPOUND has nothing
 to do with an error returned by an operation. The list of errors
 COMPOUND will return if it processes zero operations include:

 +==============================+==================================+
 | Error | Notes |
 +==============================+==================================+
 | NFS4ERR_BADCHAR | The tag argument has a character |
 | | the replier does not support. |
 +------------------------------+----------------------------------+
 | NFS4ERR_BADXDR | |
 +------------------------------+----------------------------------+
 | NFS4ERR_DELAY | |
 +------------------------------+----------------------------------+
 | NFS4ERR_INVAL | The tag argument is not in UTF-8 |
 | | encoding. |
 +------------------------------+----------------------------------+
 | NFS4ERR_MINOR_VERS_MISMATCH | |

 +------------------------------+----------------------------------+
 | NFS4ERR_SERVERFAULT | |
 +------------------------------+----------------------------------+
 | NFS4ERR_TOO_MANY_OPS | |
 +------------------------------+----------------------------------+
 | NFS4ERR_REP_TOO_BIG | |
 +------------------------------+----------------------------------+
 | NFS4ERR_REP_TOO_BIG_TO_CACHE | |
 +------------------------------+----------------------------------+
 | NFS4ERR_REQ_TOO_BIG | |
 +------------------------------+----------------------------------+

 Table 15: COMPOUND Error Returns

17. Operations: REQUIRED, RECOMMENDED, or OPTIONAL

 The following tables summarize the operations of the NFSv4.1 protocol
 and the corresponding designation of REQUIRED, RECOMMENDED, and
 OPTIONAL to implement or MUST NOT implement. The designation of MUST
 NOT implement is reserved for those operations that were defined in
 NFSv4.0 and MUST NOT be implemented in NFSv4.1.

 For the most part, the REQUIRED, RECOMMENDED, or OPTIONAL designation
 for operations sent by the client is for the server implementation.
 The client is generally required to implement the operations needed
 for the operating environment for which it serves. For example, a
 read-only NFSv4.1 client would have no need to implement the WRITE
 operation and is not required to do so.

 The REQUIRED or OPTIONAL designation for callback operations sent by
 the server is for both the client and server. Generally, the client
 has the option of creating the backchannel and sending the operations
 on the fore channel that will be a catalyst for the server sending
 callback operations. A partial exception is CB_RECALL_SLOT; the only
 way the client can avoid supporting this operation is by not creating
 a backchannel.

 Since this is a summary of the operations and their designation,
 there are subtleties that are not presented here. Therefore, if
 there is a question of the requirements of implementation, the
 operation descriptions themselves must be consulted along with other
 relevant explanatory text within this specification.

 The abbreviations used in the second and third columns of the table
 are defined as follows.

 REQ REQUIRED to implement

 REC RECOMMEND to implement

 OPT OPTIONAL to implement

 MNI MUST NOT implement

 For the NFSv4.1 features that are OPTIONAL, the operations that
 support those features are OPTIONAL, and the server would return
 NFS4ERR_NOTSUPP in response to the client’s use of those operations.
 If an OPTIONAL feature is supported, it is possible that a set of
 operations related to the feature become REQUIRED to implement. The
 third column of the table designates the feature(s) and if the
 operation is REQUIRED or OPTIONAL in the presence of support for the
 feature.

 The OPTIONAL features identified and their abbreviations are as
 follows:

 pNFS Parallel NFS

 FDELG File Delegations

 DDELG Directory Delegations

 +======================+=============+============+===============+
 | Operation | REQ, REC, | Feature | Definition |
 | | OPT, or MNI | (REQ, REC, | |
 | | | or OPT) | |
 +======================+=============+============+===============+
 | ACCESS | REQ | | Section 18.1 |
 +----------------------+-------------+------------+---------------+
 | BACKCHANNEL_CTL | REQ | | Section 18.33 |
 +----------------------+-------------+------------+---------------+
 | BIND_CONN_TO_SESSION | REQ | | Section 18.34 |
 +----------------------+-------------+------------+---------------+
 | CLOSE | REQ | | Section 18.2 |
 +----------------------+-------------+------------+---------------+
 | COMMIT | REQ | | Section 18.3 |
 +----------------------+-------------+------------+---------------+
 | CREATE | REQ | | Section 18.4 |
 +----------------------+-------------+------------+---------------+
 | CREATE_SESSION | REQ | | Section 18.36 |
 +----------------------+-------------+------------+---------------+
 | DELEGPURGE | OPT | FDELG | Section 18.5 |
 | | | (REQ) | |
 +----------------------+-------------+------------+---------------+
 | DELEGRETURN | OPT | FDELG, | Section 18.6 |
 | | | DDELG, | |
 | | | pNFS (REQ) | |
 +----------------------+-------------+------------+---------------+
 | DESTROY_CLIENTID | REQ | | Section 18.50 |
 +----------------------+-------------+------------+---------------+
 | DESTROY_SESSION | REQ | | Section 18.37 |
 +----------------------+-------------+------------+---------------+
 | EXCHANGE_ID | REQ | | Section 18.35 |
 +----------------------+-------------+------------+---------------+
 | FREE_STATEID | REQ | | Section 18.38 |
 +----------------------+-------------+------------+---------------+
 | GETATTR | REQ | | Section 18.7 |
 +----------------------+-------------+------------+---------------+
 | GETDEVICEINFO | OPT | pNFS (REQ) | Section 18.40 |
 +----------------------+-------------+------------+---------------+
 | GETDEVICELIST | OPT | pNFS (OPT) | Section 18.41 |
 +----------------------+-------------+------------+---------------+
 | GETFH | REQ | | Section 18.8 |
 +----------------------+-------------+------------+---------------+
 | GET_DIR_DELEGATION | OPT | DDELG | Section 18.39 |
 | | | (REQ) | |
 +----------------------+-------------+------------+---------------+
 | LAYOUTCOMMIT | OPT | pNFS (REQ) | Section 18.42 |
 +----------------------+-------------+------------+---------------+
 | LAYOUTGET | OPT | pNFS (REQ) | Section 18.43 |
 +----------------------+-------------+------------+---------------+
 | LAYOUTRETURN | OPT | pNFS (REQ) | Section 18.44 |
 +----------------------+-------------+------------+---------------+
 | LINK | OPT | | Section 18.9 |
 +----------------------+-------------+------------+---------------+
 | LOCK | REQ | | Section 18.10 |
 +----------------------+-------------+------------+---------------+
 | LOCKT | REQ | | Section 18.11 |
 +----------------------+-------------+------------+---------------+
 | LOCKU | REQ | | Section 18.12 |
 +----------------------+-------------+------------+---------------+
 | LOOKUP | REQ | | Section 18.13 |
 +----------------------+-------------+------------+---------------+
 | LOOKUPP | REQ | | Section 18.14 |
 +----------------------+-------------+------------+---------------+
 | NVERIFY | REQ | | Section 18.15 |
 +----------------------+-------------+------------+---------------+
 | OPEN | REQ | | Section 18.16 |
 +----------------------+-------------+------------+---------------+
 | OPENATTR | OPT | | Section 18.17 |
 +----------------------+-------------+------------+---------------+
 | OPEN_CONFIRM | MNI | | N/A |

 +----------------------+-------------+------------+---------------+
 | OPEN_DOWNGRADE | REQ | | Section 18.18 |
 +----------------------+-------------+------------+---------------+
 | PUTFH | REQ | | Section 18.19 |
 +----------------------+-------------+------------+---------------+
 | PUTPUBFH | REQ | | Section 18.20 |
 +----------------------+-------------+------------+---------------+
 | PUTROOTFH | REQ | | Section 18.21 |
 +----------------------+-------------+------------+---------------+
 | READ | REQ | | Section 18.22 |
 +----------------------+-------------+------------+---------------+
 | READDIR | REQ | | Section 18.23 |
 +----------------------+-------------+------------+---------------+
 | READLINK | OPT | | Section 18.24 |
 +----------------------+-------------+------------+---------------+
 | RECLAIM_COMPLETE | REQ | | Section 18.51 |
 +----------------------+-------------+------------+---------------+
 | RELEASE_LOCKOWNER | MNI | | N/A |
 +----------------------+-------------+------------+---------------+
 | REMOVE | REQ | | Section 18.25 |
 +----------------------+-------------+------------+---------------+
 | RENAME | REQ | | Section 18.26 |
 +----------------------+-------------+------------+---------------+
 | RENEW | MNI | | N/A |
 +----------------------+-------------+------------+---------------+
 | RESTOREFH | REQ | | Section 18.27 |
 +----------------------+-------------+------------+---------------+
 | SAVEFH | REQ | | Section 18.28 |
 +----------------------+-------------+------------+---------------+
 | SECINFO | REQ | | Section 18.29 |
 +----------------------+-------------+------------+---------------+
 | SECINFO_NO_NAME | REC | pNFS file | Section |
 | | | layout | 18.45, |
 | | | (REQ) | Section 13.12 |
 +----------------------+-------------+------------+---------------+
 | SEQUENCE | REQ | | Section 18.46 |
 +----------------------+-------------+------------+---------------+
 | SETATTR | REQ | | Section 18.30 |
 +----------------------+-------------+------------+---------------+
 | SETCLIENTID | MNI | | N/A |
 +----------------------+-------------+------------+---------------+
 | SETCLIENTID_CONFIRM | MNI | | N/A |
 +----------------------+-------------+------------+---------------+
 | SET_SSV | REQ | | Section 18.47 |
 +----------------------+-------------+------------+---------------+
 | TEST_STATEID | REQ | | Section 18.48 |
 +----------------------+-------------+------------+---------------+
 | VERIFY | REQ | | Section 18.31 |
 +----------------------+-------------+------------+---------------+
 | WANT_DELEGATION | OPT | FDELG | Section 18.49 |
 | | | (OPT) | |
 +----------------------+-------------+------------+---------------+
 | WRITE | REQ | | Section 18.32 |
 +----------------------+-------------+------------+---------------+

 Table 16: Operations

 +=========================+=============+============+============+
 | Operation | REQ, REC, | Feature | Definition |
 | | OPT, or MNI | (REQ, REC, | |
 | | | or OPT) | |
 +=========================+=============+============+============+
 | CB_GETATTR | OPT | FDELG | Section |
 | | | (REQ) | 20.1 |
 +-------------------------+-------------+------------+------------+
 | CB_LAYOUTRECALL | OPT | pNFS (REQ) | Section |
 | | | | 20.3 |
 +-------------------------+-------------+------------+------------+
 | CB_NOTIFY | OPT | DDELG | Section |
 | | | (REQ) | 20.4 |
 +-------------------------+-------------+------------+------------+

 | CB_NOTIFY_DEVICEID | OPT | pNFS (OPT) | Section |
 | | | | 20.12 |
 +-------------------------+-------------+------------+------------+
 | CB_NOTIFY_LOCK | OPT | | Section |
 | | | | 20.11 |
 +-------------------------+-------------+------------+------------+
 | CB_PUSH_DELEG | OPT | FDELG | Section |
 | | | (OPT) | 20.5 |
 +-------------------------+-------------+------------+------------+
 | CB_RECALL | OPT | FDELG, | Section |
 | | | DDELG, | 20.2 |
 | | | pNFS (REQ) | |
 +-------------------------+-------------+------------+------------+
 | CB_RECALL_ANY | OPT | FDELG, | Section |
 | | | DDELG, | 20.6 |
 | | | pNFS (REQ) | |
 +-------------------------+-------------+------------+------------+
 | CB_RECALL_SLOT | REQ | | Section |
 | | | | 20.8 |
 +-------------------------+-------------+------------+------------+
 | CB_RECALLABLE_OBJ_AVAIL | OPT | DDELG, | Section |
 | | | pNFS (REQ) | 20.7 |
 +-------------------------+-------------+------------+------------+
 | CB_SEQUENCE | OPT | FDELG, | Section |
 | | | DDELG, | 20.9 |
 | | | pNFS (REQ) | |
 +-------------------------+-------------+------------+------------+
 | CB_WANTS_CANCELLED | OPT | FDELG, | Section |
 | | | DDELG, | 20.10 |
 | | | pNFS (REQ) | |
 +-------------------------+-------------+------------+------------+

 Table 17: Callback Operations

18. NFSv4.1 Operations

18.1. Operation 3: ACCESS - Check Access Rights

18.1.1. ARGUMENTS

 const ACCESS4_READ = 0x00000001;
 const ACCESS4_LOOKUP = 0x00000002;
 const ACCESS4_MODIFY = 0x00000004;
 const ACCESS4_EXTEND = 0x00000008;
 const ACCESS4_DELETE = 0x00000010;
 const ACCESS4_EXECUTE = 0x00000020;

 struct ACCESS4args {
 /* CURRENT_FH: object */
 uint32_t access;
 };

18.1.2. RESULTS

 struct ACCESS4resok {
 uint32_t supported;
 uint32_t access;
 };

 union ACCESS4res switch (nfsstat4 status) {
 case NFS4_OK:
 ACCESS4resok resok4;
 default:
 void;
 };

18.1.3. DESCRIPTION

 ACCESS determines the access rights that a user, as identified by the
 credentials in the RPC request, has with respect to the file system
 object specified by the current filehandle. The client encodes the

 set of access rights that are to be checked in the bit mask "access".
 The server checks the permissions encoded in the bit mask. If a
 status of NFS4_OK is returned, two bit masks are included in the
 response. The first, "supported", represents the access rights for
 which the server can verify reliably. The second, "access",
 represents the access rights available to the user for the filehandle
 provided. On success, the current filehandle retains its value.

 Note that the reply’s supported and access fields MUST NOT contain
 more values than originally set in the request’s access field. For
 example, if the client sends an ACCESS operation with just the
 ACCESS4_READ value set and the server supports this value, the server
 MUST NOT set more than ACCESS4_READ in the supported field even if it
 could have reliably checked other values.

 The reply’s access field MUST NOT contain more values than the
 supported field.

 The results of this operation are necessarily advisory in nature. A
 return status of NFS4_OK and the appropriate bit set in the bit mask
 do not imply that such access will be allowed to the file system
 object in the future. This is because access rights can be revoked
 by the server at any time.

 The following access permissions may be requested:

 ACCESS4_READ Read data from file or read a directory.

 ACCESS4_LOOKUP Look up a name in a directory (no meaning for non-
 directory objects).

 ACCESS4_MODIFY Rewrite existing file data or modify existing
 directory entries.

 ACCESS4_EXTEND Write new data or add directory entries.

 ACCESS4_DELETE Delete an existing directory entry.

 ACCESS4_EXECUTE Execute a regular file (no meaning for a directory).

 On success, the current filehandle retains its value.

 ACCESS4_EXECUTE is a challenging semantic to implement because NFS
 provides remote file access, not remote execution. This leads to the
 following:

 * Whether or not a regular file is executable ought to be the
 responsibility of the NFS client and not the server. And yet the
 ACCESS operation is specified to seemingly require a server to own
 that responsibility.

 * When a client executes a regular file, it has to read the file
 from the server. Strictly speaking, the server should not allow
 the client to read a file being executed unless the user has read
 permissions on the file. Requiring explicit read permissions on
 executable files in order to access them over NFS is not going to
 be acceptable to some users and storage administrators.
 Historically, NFS servers have allowed a user to READ a file if
 the user has execute access to the file.

 As a practical example, the UNIX specification [60] states that an
 implementation claiming conformance to UNIX may indicate in the
 access() programming interface’s result that a privileged user has
 execute rights, even if no execute permission bits are set on the
 regular file’s attributes. It is possible to claim conformance to
 the UNIX specification and instead not indicate execute rights in
 that situation, which is true for some operating environments.
 Suppose the operating environments of the client and server are
 implementing the access() semantics for privileged users differently,
 and the ACCESS operation implementations of the client and server
 follow their respective access() semantics. This can cause undesired

 behavior:

 * Suppose the client’s access() interface returns X_OK if the user
 is privileged and no execute permission bits are set on the
 regular file’s attribute, and the server’s access() interface does
 not return X_OK in that situation. Then the client will be unable
 to execute files stored on the NFS server that could be executed
 if stored on a non-NFS file system.

 * Suppose the client’s access() interface does not return X_OK if
 the user is privileged, and no execute permission bits are set on
 the regular file’s attribute, and the server’s access() interface
 does return X_OK in that situation. Then:

 - The client will be able to execute files stored on the NFS
 server that could be executed if stored on a non-NFS file
 system, unless the client’s execution subsystem also checks for
 execute permission bits.

 - Even if the execution subsystem is checking for execute
 permission bits, there are more potential issues. For example,
 suppose the client is invoking access() to build a "path search
 table" of all executable files in the user’s "search path",
 where the path is a list of directories each containing
 executable files. Suppose there are two files each in separate
 directories of the search path, such that files have the same
 component name. In the first directory the file has no execute
 permission bits set, and in the second directory the file has
 execute bits set. The path search table will indicate that the
 first directory has the executable file, but the execute
 subsystem will fail to execute it. The command shell might
 fail to try the second file in the second directory. And even
 if it did, this is a potential performance issue. Clearly, the
 desired outcome for the client is for the path search table to
 not contain the first file.

 To deal with the problems described above, the "smart client, stupid
 server" principle is used. The client owns overall responsibility
 for determining execute access and relies on the server to parse the
 execution permissions within the file’s mode, acl, and dacl
 attributes. The rules for the client and server follow:

 * If the client is sending ACCESS in order to determine if the user
 can read the file, the client SHOULD set ACCESS4_READ in the
 request’s access field.

 * If the client’s operating environment only grants execution to the
 user if the user has execute access according to the execute
 permissions in the mode, acl, and dacl attributes, then if the
 client wants to determine execute access, the client SHOULD send
 an ACCESS request with ACCESS4_EXECUTE bit set in the request’s
 access field.

 * If the client’s operating environment grants execution to the user
 even if the user does not have execute access according to the
 execute permissions in the mode, acl, and dacl attributes, then if
 the client wants to determine execute access, it SHOULD send an
 ACCESS request with both the ACCESS4_EXECUTE and ACCESS4_READ bits
 set in the request’s access field. This way, if any read or
 execute permission grants the user read or execute access (or if
 the server interprets the user as privileged), as indicated by the
 presence of ACCESS4_EXECUTE and/or ACCESS4_READ in the reply’s
 access field, the client will be able to grant the user execute
 access to the file.

 * If the server supports execute permission bits, or some other
 method for denoting executability (e.g., the suffix of the name of
 the file might indicate execute), it MUST check only execute
 permissions, not read permissions, when determining whether or not
 the reply will have ACCESS4_EXECUTE set in the access field. The
 server MUST NOT also examine read permission bits when determining

 whether or not the reply will have ACCESS4_EXECUTE set in the
 access field. Even if the server’s operating environment would
 grant execute access to the user (e.g., the user is privileged),
 the server MUST NOT reply with ACCESS4_EXECUTE set in reply’s
 access field unless there is at least one execute permission bit
 set in the mode, acl, or dacl attributes. In the case of acl and
 dacl, the "one execute permission bit" MUST be an ACE4_EXECUTE bit
 set in an ALLOW ACE.

 * If the server does not support execute permission bits or some
 other method for denoting executability, it MUST NOT set
 ACCESS4_EXECUTE in the reply’s supported and access fields. If
 the client set ACCESS4_EXECUTE in the ACCESS request’s access
 field, and ACCESS4_EXECUTE is not set in the reply’s supported
 field, then the client will have to send an ACCESS request with
 the ACCESS4_READ bit set in the request’s access field.

 * If the server supports read permission bits, it MUST only check
 for read permissions in the mode, acl, and dacl attributes when it
 receives an ACCESS request with ACCESS4_READ set in the access
 field. The server MUST NOT also examine execute permission bits
 when determining whether the reply will have ACCESS4_READ set in
 the access field or not.

 Note that if the ACCESS reply has ACCESS4_READ or ACCESS_EXECUTE set,
 then the user also has permissions to OPEN (Section 18.16) or READ
 (Section 18.22) the file. In other words, if the client sends an
 ACCESS request with the ACCESS4_READ and ACCESS_EXECUTE set in the
 access field (or two separate requests, one with ACCESS4_READ set and
 the other with ACCESS4_EXECUTE set), and the reply has just
 ACCESS4_EXECUTE set in the access field (or just one reply has
 ACCESS4_EXECUTE set), then the user has authorization to OPEN or READ
 the file.

18.1.4. IMPLEMENTATION

 In general, it is not sufficient for the client to attempt to deduce
 access permissions by inspecting the uid, gid, and mode fields in the
 file attributes or by attempting to interpret the contents of the ACL
 attribute. This is because the server may perform uid or gid mapping
 or enforce additional access-control restrictions. It is also
 possible that the server may not be in the same ID space as the
 client. In these cases (and perhaps others), the client cannot
 reliably perform an access check with only current file attributes.

 In the NFSv2 protocol, the only reliable way to determine whether an
 operation was allowed was to try it and see if it succeeded or
 failed. Using the ACCESS operation in the NFSv4.1 protocol, the
 client can ask the server to indicate whether or not one or more
 classes of operations are permitted. The ACCESS operation is
 provided to allow clients to check before doing a series of
 operations that will result in an access failure. The OPEN operation
 provides a point where the server can verify access to the file
 object and a method to return that information to the client. The
 ACCESS operation is still useful for directory operations or for use
 in the case that the UNIX interface access() is used on the client.

 The information returned by the server in response to an ACCESS call
 is not permanent. It was correct at the exact time that the server
 performed the checks, but not necessarily afterwards. The server can
 revoke access permission at any time.

 The client should use the effective credentials of the user to build
 the authentication information in the ACCESS request used to
 determine access rights. It is the effective user and group
 credentials that are used in subsequent READ and WRITE operations.

 Many implementations do not directly support the ACCESS4_DELETE
 permission. Operating systems like UNIX will ignore the
 ACCESS4_DELETE bit if set on an access request on a non-directory
 object. In these systems, delete permission on a file is determined

 by the access permissions on the directory in which the file resides,
 instead of being determined by the permissions of the file itself.
 Therefore, the mask returned enumerating which access rights can be
 determined will have the ACCESS4_DELETE value set to 0. This
 indicates to the client that the server was unable to check that
 particular access right. The ACCESS4_DELETE bit in the access mask
 returned will then be ignored by the client.

18.2. Operation 4: CLOSE - Close File

18.2.1. ARGUMENTS

 struct CLOSE4args {
 /* CURRENT_FH: object */
 seqid4 seqid;
 stateid4 open_stateid;
 };

18.2.2. RESULTS

 union CLOSE4res switch (nfsstat4 status) {
 case NFS4_OK:
 stateid4 open_stateid;
 default:
 void;
 };

18.2.3. DESCRIPTION

 The CLOSE operation releases share reservations for the regular or
 named attribute file as specified by the current filehandle. The
 share reservations and other state information released at the server
 as a result of this CLOSE are only those associated with the supplied
 stateid. State associated with other OPENs is not affected.

 If byte-range locks are held, the client SHOULD release all locks
 before sending a CLOSE. The server MAY free all outstanding locks on
 CLOSE, but some servers may not support the CLOSE of a file that
 still has byte-range locks held. The server MUST return failure if
 any locks would exist after the CLOSE.

 The argument seqid MAY have any value, and the server MUST ignore
 seqid.

 On success, the current filehandle retains its value.

 The server MAY require that the combination of principal, security
 flavor, and, if applicable, GSS mechanism that sent the OPEN request
 also be the one to CLOSE the file. This might not be possible if
 credentials for the principal are no longer available. The server
 MAY allow the machine credential or SSV credential (see
 Section 18.35) to send CLOSE.

18.2.4. IMPLEMENTATION

 Even though CLOSE returns a stateid, this stateid is not useful to
 the client and should be treated as deprecated. CLOSE "shuts down"
 the state associated with all OPENs for the file by a single open-
 owner. As noted above, CLOSE will either release all file-locking
 state or return an error. Therefore, the stateid returned by CLOSE
 is not useful for operations that follow. To help find any uses of
 this stateid by clients, the server SHOULD return the invalid special
 stateid (the "other" value is zero and the "seqid" field is
 NFS4_UINT32_MAX, see Section 8.2.3).

 A CLOSE operation may make delegations grantable where they were not
 previously. Servers may choose to respond immediately if there are
 pending delegation want requests or may respond to the situation at a
 later time.

18.3. Operation 5: COMMIT - Commit Cached Data

18.3.1. ARGUMENTS

 struct COMMIT4args {
 /* CURRENT_FH: file */
 offset4 offset;
 count4 count;
 };

18.3.2. RESULTS

 struct COMMIT4resok {
 verifier4 writeverf;
 };

 union COMMIT4res switch (nfsstat4 status) {
 case NFS4_OK:
 COMMIT4resok resok4;
 default:
 void;
 };

18.3.3. DESCRIPTION

 The COMMIT operation forces or flushes uncommitted, modified data to
 stable storage for the file specified by the current filehandle. The
 flushed data is that which was previously written with one or more
 WRITE operations that had the "committed" field of their results
 field set to UNSTABLE4.

 The offset specifies the position within the file where the flush is
 to begin. An offset value of zero means to flush data starting at
 the beginning of the file. The count specifies the number of bytes
 of data to flush. If the count is zero, a flush from the offset to
 the end of the file is done.

 The server returns a write verifier upon successful completion of the
 COMMIT. The write verifier is used by the client to determine if the
 server has restarted between the initial WRITE operations and the
 COMMIT. The client does this by comparing the write verifier
 returned from the initial WRITE operations and the verifier returned
 by the COMMIT operation. The server must vary the value of the write
 verifier at each server event or instantiation that may lead to a
 loss of uncommitted data. Most commonly this occurs when the server
 is restarted; however, other events at the server may result in
 uncommitted data loss as well.

 On success, the current filehandle retains its value.

18.3.4. IMPLEMENTATION

 The COMMIT operation is similar in operation and semantics to the
 POSIX fsync() [22] system interface that synchronizes a file’s state
 with the disk (file data and metadata is flushed to disk or stable
 storage). COMMIT performs the same operation for a client, flushing
 any unsynchronized data and metadata on the server to the server’s
 disk or stable storage for the specified file. Like fsync(), it may
 be that there is some modified data or no modified data to
 synchronize. The data may have been synchronized by the server’s
 normal periodic buffer synchronization activity. COMMIT should
 return NFS4_OK, unless there has been an unexpected error.

 COMMIT differs from fsync() in that it is possible for the client to
 flush a range of the file (most likely triggered by a buffer-
 reclamation scheme on the client before the file has been completely
 written).

 The server implementation of COMMIT is reasonably simple. If the
 server receives a full file COMMIT request, that is, starting at
 offset zero and count zero, it should do the equivalent of applying
 fsync() to the entire file. Otherwise, it should arrange to have the

 modified data in the range specified by offset and count to be
 flushed to stable storage. In both cases, any metadata associated
 with the file must be flushed to stable storage before returning. It
 is not an error for there to be nothing to flush on the server. This
 means that the data and metadata that needed to be flushed have
 already been flushed or lost during the last server failure.

 The client implementation of COMMIT is a little more complex. There
 are two reasons for wanting to commit a client buffer to stable
 storage. The first is that the client wants to reuse a buffer. In
 this case, the offset and count of the buffer are sent to the server
 in the COMMIT request. The server then flushes any modified data
 based on the offset and count, and flushes any modified metadata
 associated with the file. It then returns the status of the flush
 and the write verifier. The second reason for the client to generate
 a COMMIT is for a full file flush, such as may be done at close. In
 this case, the client would gather all of the buffers for this file
 that contain uncommitted data, do the COMMIT operation with an offset
 of zero and count of zero, and then free all of those buffers. Any
 other dirty buffers would be sent to the server in the normal
 fashion.

 After a buffer is written (via the WRITE operation) by the client
 with the "committed" field in the result of WRITE set to UNSTABLE4,
 the buffer must be considered as modified by the client until the
 buffer has either been flushed via a COMMIT operation or written via
 a WRITE operation with the "committed" field in the result set to
 FILE_SYNC4 or DATA_SYNC4. This is done to prevent the buffer from
 being freed and reused before the data can be flushed to stable
 storage on the server.

 When a response is returned from either a WRITE or a COMMIT operation
 and it contains a write verifier that differs from that previously
 returned by the server, the client will need to retransmit all of the
 buffers containing uncommitted data to the server. How this is to be
 done is up to the implementor. If there is only one buffer of
 interest, then it should be sent in a WRITE request with the
 FILE_SYNC4 stable parameter. If there is more than one buffer, it
 might be worthwhile retransmitting all of the buffers in WRITE
 operations with the stable parameter set to UNSTABLE4 and then
 retransmitting the COMMIT operation to flush all of the data on the
 server to stable storage. However, if the server repeatably returns
 from COMMIT a verifier that differs from that returned by WRITE, the
 only way to ensure progress is to retransmit all of the buffers with
 WRITE requests with the FILE_SYNC4 stable parameter.

 The above description applies to page-cache-based systems as well as
 buffer-cache-based systems. In the former systems, the virtual
 memory system will need to be modified instead of the buffer cache.

18.4. Operation 6: CREATE - Create a Non-Regular File Object

18.4.1. ARGUMENTS

 union createtype4 switch (nfs_ftype4 type) {
 case NF4LNK:
 linktext4 linkdata;
 case NF4BLK:
 case NF4CHR:
 specdata4 devdata;
 case NF4SOCK:
 case NF4FIFO:
 case NF4DIR:
 void;
 default:
 void; /* server should return NFS4ERR_BADTYPE */
 };

 struct CREATE4args {
 /* CURRENT_FH: directory for creation */
 createtype4 objtype;

 component4 objname;
 fattr4 createattrs;
 };

18.4.2. RESULTS

 struct CREATE4resok {
 change_info4 cinfo;
 bitmap4 attrset; /* attributes set */
 };

 union CREATE4res switch (nfsstat4 status) {
 case NFS4_OK:
 /* new CURRENTFH: created object */
 CREATE4resok resok4;
 default:
 void;
 };

18.4.3. DESCRIPTION

 The CREATE operation creates a file object other than an ordinary
 file in a directory with a given name. The OPEN operation MUST be
 used to create a regular file or a named attribute.

 The current filehandle must be a directory: an object of type NF4DIR.
 If the current filehandle is an attribute directory (type
 NF4ATTRDIR), the error NFS4ERR_WRONG_TYPE is returned. If the
 current filehandle designates any other type of object, the error
 NFS4ERR_NOTDIR results.

 The objname specifies the name for the new object. The objtype
 determines the type of object to be created: directory, symlink, etc.
 If the object type specified is that of an ordinary file, a named
 attribute, or a named attribute directory, the error NFS4ERR_BADTYPE
 results.

 If an object of the same name already exists in the directory, the
 server will return the error NFS4ERR_EXIST.

 For the directory where the new file object was created, the server
 returns change_info4 information in cinfo. With the atomic field of
 the change_info4 data type, the server will indicate if the before
 and after change attributes were obtained atomically with respect to
 the file object creation.

 If the objname has a length of zero, or if objname does not obey the
 UTF-8 definition, the error NFS4ERR_INVAL will be returned.

 The current filehandle is replaced by that of the new object.

 The createattrs specifies the initial set of attributes for the
 object. The set of attributes may include any writable attribute
 valid for the object type. When the operation is successful, the
 server will return to the client an attribute mask signifying which
 attributes were successfully set for the object.

 If createattrs includes neither the owner attribute nor an ACL with
 an ACE for the owner, and if the server’s file system both supports
 and requires an owner attribute (or an owner ACE), then the server
 MUST derive the owner (or the owner ACE). This would typically be
 from the principal indicated in the RPC credentials of the call, but
 the server’s operating environment or file system semantics may
 dictate other methods of derivation. Similarly, if createattrs
 includes neither the group attribute nor a group ACE, and if the
 server’s file system both supports and requires the notion of a group
 attribute (or group ACE), the server MUST derive the group attribute
 (or the corresponding owner ACE) for the file. This could be from
 the RPC call’s credentials, such as the group principal if the
 credentials include it (such as with AUTH_SYS), from the group
 identifier associated with the principal in the credentials (e.g.,

 POSIX systems have a user database [23] that has a group identifier
 for every user identifier), inherited from the directory in which the
 object is created, or whatever else the server’s operating
 environment or file system semantics dictate. This applies to the
 OPEN operation too.

 Conversely, it is possible that the client will specify in
 createattrs an owner attribute, group attribute, or ACL that the
 principal indicated the RPC call’s credentials does not have
 permissions to create files for. The error to be returned in this
 instance is NFS4ERR_PERM. This applies to the OPEN operation too.

 If the current filehandle designates a directory for which another
 client holds a directory delegation, then, unless the delegation is
 such that the situation can be resolved by sending a notification,
 the delegation MUST be recalled, and the CREATE operation MUST NOT
 proceed until the delegation is returned or revoked. Except where
 this happens very quickly, one or more NFS4ERR_DELAY errors will be
 returned to requests made while delegation remains outstanding.

 When the current filehandle designates a directory for which one or
 more directory delegations exist, then, when those delegations
 request such notifications, NOTIFY4_ADD_ENTRY will be generated as a
 result of this operation.

 If the capability FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 is set
 (Section 14.4), and a symbolic link is being created, then the
 content of the symbolic link MUST be in UTF-8 encoding.

18.4.4. IMPLEMENTATION

 If the client desires to set attribute values after the create, a
 SETATTR operation can be added to the COMPOUND request so that the
 appropriate attributes will be set.

18.5. Operation 7: DELEGPURGE - Purge Delegations Awaiting Recovery

18.5.1. ARGUMENTS

 struct DELEGPURGE4args {
 clientid4 clientid;
 };

18.5.2. RESULTS

 struct DELEGPURGE4res {
 nfsstat4 status;
 };

18.5.3. DESCRIPTION

 This operation purges all of the delegations awaiting recovery for a
 given client. This is useful for clients that do not commit
 delegation information to stable storage to indicate that conflicting
 requests need not be delayed by the server awaiting recovery of
 delegation information.

 The client is NOT specified by the clientid field of the request.
 The client SHOULD set the client field to zero, and the server MUST
 ignore the clientid field. Instead, the server MUST derive the
 client ID from the value of the session ID in the arguments of the
 SEQUENCE operation that precedes DELEGPURGE in the COMPOUND request.

 The DELEGPURGE operation should be used by clients that record
 delegation information on stable storage on the client. In this
 case, after the client recovers all delegations it knows of, it
 should immediately send a DELEGPURGE operation. Doing so will notify
 the server that no additional delegations for the client will be
 recovered allowing it to free resources, and avoid delaying other
 clients which make requests that conflict with the unrecovered
 delegations. The set of delegations known to the server and the

 client might be different. The reason for this is that after sending
 a request that resulted in a delegation, the client might experience
 a failure before it both received the delegation and committed the
 delegation to the client’s stable storage.

 The server MAY support DELEGPURGE, but if it does not, it MUST NOT
 support CLAIM_DELEGATE_PREV and MUST NOT support CLAIM_DELEG_PREV_FH.

18.6. Operation 8: DELEGRETURN - Return Delegation

18.6.1. ARGUMENTS

 struct DELEGRETURN4args {
 /* CURRENT_FH: delegated object */
 stateid4 deleg_stateid;
 };

18.6.2. RESULTS

 struct DELEGRETURN4res {
 nfsstat4 status;
 };

18.6.3. DESCRIPTION

 The DELEGRETURN operation returns the delegation represented by the
 current filehandle and stateid.

 Delegations may be returned voluntarily (i.e., before the server has
 recalled them) or when recalled. In either case, the client must
 properly propagate state changed under the context of the delegation
 to the server before returning the delegation.

 The server MAY require that the principal, security flavor, and if
 applicable, the GSS mechanism, combination that acquired the
 delegation also be the one to send DELEGRETURN on the file. This
 might not be possible if credentials for the principal are no longer
 available. The server MAY allow the machine credential or SSV
 credential (see Section 18.35) to send DELEGRETURN.

18.7. Operation 9: GETATTR - Get Attributes

18.7.1. ARGUMENTS

 struct GETATTR4args {
 /* CURRENT_FH: object */
 bitmap4 attr_request;
 };

18.7.2. RESULTS

 struct GETATTR4resok {
 fattr4 obj_attributes;
 };

 union GETATTR4res switch (nfsstat4 status) {
 case NFS4_OK:
 GETATTR4resok resok4;
 default:
 void;
 };

18.7.3. DESCRIPTION

 The GETATTR operation will obtain attributes for the file system
 object specified by the current filehandle. The client sets a bit in
 the bitmap argument for each attribute value that it would like the
 server to return. The server returns an attribute bitmap that
 indicates the attribute values that it was able to return, which will
 include all attributes requested by the client that are attributes
 supported by the server for the target file system. This bitmap is

 followed by the attribute values ordered lowest attribute number
 first.

 The server MUST return a value for each attribute that the client
 requests if the attribute is supported by the server for the target
 file system. If the server does not support a particular attribute
 on the target file system, then it MUST NOT return the attribute
 value and MUST NOT set the attribute bit in the result bitmap. The
 server MUST return an error if it supports an attribute on the target
 but cannot obtain its value. In that case, no attribute values will
 be returned.

 File systems that are absent should be treated as having support for
 a very small set of attributes as described in Section 11.4.1, even
 if previously, when the file system was present, more attributes were
 supported.

 All servers MUST support the REQUIRED attributes as specified in
 Section 5.6, for all file systems, with the exception of absent file
 systems.

 On success, the current filehandle retains its value.

18.7.4. IMPLEMENTATION

 Suppose there is an OPEN_DELEGATE_WRITE delegation held by another
 client for the file in question and size and/or change are among the
 set of attributes being interrogated. The server has two choices.
 First, the server can obtain the actual current value of these
 attributes from the client holding the delegation by using the
 CB_GETATTR callback. Second, the server, particularly when the
 delegated client is unresponsive, can recall the delegation in
 question. The GETATTR MUST NOT proceed until one of the following
 occurs:

 * The requested attribute values are returned in the response to
 CB_GETATTR.

 * The OPEN_DELEGATE_WRITE delegation is returned.

 * The OPEN_DELEGATE_WRITE delegation is revoked.

 Unless one of the above happens very quickly, one or more
 NFS4ERR_DELAY errors will be returned while a delegation is
 outstanding.

18.8. Operation 10: GETFH - Get Current Filehandle

18.8.1. ARGUMENTS

 /* CURRENT_FH: */
 void;

18.8.2. RESULTS

 struct GETFH4resok {
 nfs_fh4 object;
 };

 union GETFH4res switch (nfsstat4 status) {
 case NFS4_OK:
 GETFH4resok resok4;
 default:
 void;
 };

18.8.3. DESCRIPTION

 This operation returns the current filehandle value.

 On success, the current filehandle retains its value.

 As described in Section 2.10.6.4, GETFH is REQUIRED or RECOMMENDED to
 immediately follow certain operations, and servers are free to reject
 such operations if the client fails to insert GETFH in the request as
 REQUIRED or RECOMMENDED. Section 18.16.4.1 provides additional
 justification for why GETFH MUST follow OPEN.

18.8.4. IMPLEMENTATION

 Operations that change the current filehandle like LOOKUP or CREATE
 do not automatically return the new filehandle as a result. For
 instance, if a client needs to look up a directory entry and obtain
 its filehandle, then the following request is needed.

 PUTFH (directory filehandle)

 LOOKUP (entry name)

 GETFH

18.9. Operation 11: LINK - Create Link to a File

18.9.1. ARGUMENTS

 struct LINK4args {
 /* SAVED_FH: source object */
 /* CURRENT_FH: target directory */
 component4 newname;
 };

18.9.2. RESULTS

 struct LINK4resok {
 change_info4 cinfo;
 };

 union LINK4res switch (nfsstat4 status) {
 case NFS4_OK:
 LINK4resok resok4;
 default:
 void;
 };

18.9.3. DESCRIPTION

 The LINK operation creates an additional newname for the file
 represented by the saved filehandle, as set by the SAVEFH operation,
 in the directory represented by the current filehandle. The existing
 file and the target directory must reside within the same file system
 on the server. On success, the current filehandle will continue to
 be the target directory. If an object exists in the target directory
 with the same name as newname, the server must return NFS4ERR_EXIST.

 For the target directory, the server returns change_info4 information
 in cinfo. With the atomic field of the change_info4 data type, the
 server will indicate if the before and after change attributes were
 obtained atomically with respect to the link creation.

 If the newname has a length of zero, or if newname does not obey the
 UTF-8 definition, the error NFS4ERR_INVAL will be returned.

18.9.4. IMPLEMENTATION

 The server MAY impose restrictions on the LINK operation such that
 LINK may not be done when the file is open or when that open is done
 by particular protocols, or with particular options or access modes.
 When LINK is rejected because of such restrictions, the error
 NFS4ERR_FILE_OPEN is returned.

 If a server does implement such restrictions and those restrictions
 include cases of NFSv4 opens preventing successful execution of a

 link, the server needs to recall any delegations that could hide the
 existence of opens relevant to that decision. The reason is that
 when a client holds a delegation, the server might not have an
 accurate account of the opens for that client, since the client may
 execute OPENs and CLOSEs locally. The LINK operation must be delayed
 only until a definitive result can be obtained. For example, suppose
 there are multiple delegations and one of them establishes an open
 whose presence would prevent the link. Given the server’s semantics,
 NFS4ERR_FILE_OPEN may be returned to the caller as soon as that
 delegation is returned without waiting for other delegations to be
 returned. Similarly, if such opens are not associated with
 delegations, NFS4ERR_FILE_OPEN can be returned immediately with no
 delegation recall being done.

 If the current filehandle designates a directory for which another
 client holds a directory delegation, then, unless the delegation is
 such that the situation can be resolved by sending a notification,
 the delegation MUST be recalled, and the operation cannot be
 performed successfully until the delegation is returned or revoked.
 Except where this happens very quickly, one or more NFS4ERR_DELAY
 errors will be returned to requests made while delegation remains
 outstanding.

 When the current filehandle designates a directory for which one or
 more directory delegations exist, then, when those delegations
 request such notifications, instead of a recall, NOTIFY4_ADD_ENTRY
 will be generated as a result of the LINK operation.

 If the current file system supports the numlinks attribute, and other
 clients have delegations to the file being linked, then those
 delegations MUST be recalled and the LINK operation MUST NOT proceed
 until all delegations are returned or revoked. Except where this
 happens very quickly, one or more NFS4ERR_DELAY errors will be
 returned to requests made while delegation remains outstanding.

 Changes to any property of the "hard" linked files are reflected in
 all of the linked files. When a link is made to a file, the
 attributes for the file should have a value for numlinks that is one
 greater than the value before the LINK operation.

 The statement "file and the target directory must reside within the
 same file system on the server" means that the fsid fields in the
 attributes for the objects are the same. If they reside on different
 file systems, the error NFS4ERR_XDEV is returned. This error may be
 returned by some servers when there is an internal partitioning of a
 file system that the LINK operation would violate.

 On some servers, "." and ".." are illegal values for newname and the
 error NFS4ERR_BADNAME will be returned if they are specified.

 When the current filehandle designates a named attribute directory
 and the object to be linked (the saved filehandle) is not a named
 attribute for the same object, the error NFS4ERR_XDEV MUST be
 returned. When the saved filehandle designates a named attribute and
 the current filehandle is not the appropriate named attribute
 directory, the error NFS4ERR_XDEV MUST also be returned.

 When the current filehandle designates a named attribute directory
 and the object to be linked (the saved filehandle) is a named
 attribute within that directory, the server may return the error
 NFS4ERR_NOTSUPP.

 In the case that newname is already linked to the file represented by
 the saved filehandle, the server will return NFS4ERR_EXIST.

 Note that symbolic links are created with the CREATE operation.

18.10. Operation 12: LOCK - Create Lock

18.10.1. ARGUMENTS

 /*
 * For LOCK, transition from open_stateid and lock_owner
 * to a lock stateid.
 */
 struct open_to_lock_owner4 {
 seqid4 open_seqid;
 stateid4 open_stateid;
 seqid4 lock_seqid;
 lock_owner4 lock_owner;
 };

 /*
 * For LOCK, existing lock stateid continues to request new
 * file lock for the same lock_owner and open_stateid.
 */
 struct exist_lock_owner4 {
 stateid4 lock_stateid;
 seqid4 lock_seqid;
 };

 union locker4 switch (bool new_lock_owner) {
 case TRUE:
 open_to_lock_owner4 open_owner;
 case FALSE:
 exist_lock_owner4 lock_owner;
 };

 /*
 * LOCK/LOCKT/LOCKU: Record lock management
 */
 struct LOCK4args {
 /* CURRENT_FH: file */
 nfs_lock_type4 locktype;
 bool reclaim;
 offset4 offset;
 length4 length;
 locker4 locker;
 };

18.10.2. RESULTS

 struct LOCK4denied {
 offset4 offset;
 length4 length;
 nfs_lock_type4 locktype;
 lock_owner4 owner;
 };

 struct LOCK4resok {
 stateid4 lock_stateid;
 };

 union LOCK4res switch (nfsstat4 status) {
 case NFS4_OK:
 LOCK4resok resok4;
 case NFS4ERR_DENIED:
 LOCK4denied denied;
 default:
 void;
 };

18.10.3. DESCRIPTION

 The LOCK operation requests a byte-range lock for the byte-range
 specified by the offset and length parameters, and lock type
 specified in the locktype parameter. If this is a reclaim request,
 the reclaim parameter will be TRUE.

 Bytes in a file may be locked even if those bytes are not currently
 allocated to the file. To lock the file from a specific offset
 through the end-of-file (no matter how long the file actually is) use

 a length field equal to NFS4_UINT64_MAX. The server MUST return
 NFS4ERR_INVAL under the following combinations of length and offset:

 * Length is equal to zero.

 * Length is not equal to NFS4_UINT64_MAX, and the sum of length and
 offset exceeds NFS4_UINT64_MAX.

 32-bit servers are servers that support locking for byte offsets that
 fit within 32 bits (i.e., less than or equal to NFS4_UINT32_MAX). If
 the client specifies a range that overlaps one or more bytes beyond
 offset NFS4_UINT32_MAX but does not end at offset NFS4_UINT64_MAX,
 then such a 32-bit server MUST return the error NFS4ERR_BAD_RANGE.

 If the server returns NFS4ERR_DENIED, the owner, offset, and length
 of a conflicting lock are returned.

 The locker argument specifies the lock-owner that is associated with
 the LOCK operation. The locker4 structure is a switched union that
 indicates whether the client has already created byte-range locking
 state associated with the current open file and lock-owner. In the
 case in which it has, the argument is just a stateid representing the
 set of locks associated with that open file and lock-owner, together
 with a lock_seqid value that MAY be any value and MUST be ignored by
 the server. In the case where no byte-range locking state has been
 established, or the client does not have the stateid available, the
 argument contains the stateid of the open file with which this lock
 is to be associated, together with the lock-owner with which the lock
 is to be associated. The open_to_lock_owner case covers the very
 first lock done by a lock-owner for a given open file and offers a
 method to use the established state of the open_stateid to transition
 to the use of a lock stateid.

 The following fields of the locker parameter MAY be set to any value
 by the client and MUST be ignored by the server:

 * The clientid field of the lock_owner field of the open_owner field
 (locker.open_owner.lock_owner.clientid). The reason the server
 MUST ignore the clientid field is that the server MUST derive the
 client ID from the session ID from the SEQUENCE operation of the
 COMPOUND request.

 * The open_seqid and lock_seqid fields of the open_owner field
 (locker.open_owner.open_seqid and locker.open_owner.lock_seqid).

 * The lock_seqid field of the lock_owner field
 (locker.lock_owner.lock_seqid).

 Note that the client ID appearing in a LOCK4denied structure is the
 actual client associated with the conflicting lock, whether this is
 the client ID associated with the current session or a different one.
 Thus, if the server returns NFS4ERR_DENIED, it MUST set the clientid
 field of the owner field of the denied field.

 If the current filehandle is not an ordinary file, an error will be
 returned to the client. In the case that the current filehandle
 represents an object of type NF4DIR, NFS4ERR_ISDIR is returned. If
 the current filehandle designates a symbolic link, NFS4ERR_SYMLINK is
 returned. In all other cases, NFS4ERR_WRONG_TYPE is returned.

 On success, the current filehandle retains its value.

18.10.4. IMPLEMENTATION

 If the server is unable to determine the exact offset and length of
 the conflicting byte-range lock, the same offset and length that were
 provided in the arguments should be returned in the denied results.

 LOCK operations are subject to permission checks and to checks
 against the access type of the associated file. However, the
 specific right and modes required for various types of locks reflect

 the semantics of the server-exported file system, and are not
 specified by the protocol. For example, Windows 2000 allows a write
 lock of a file open for read access, while a POSIX-compliant system
 does not.

 When the client sends a LOCK operation that corresponds to a range
 that the lock-owner has locked already (with the same or different
 lock type), or to a sub-range of such a range, or to a byte-range
 that includes multiple locks already granted to that lock-owner, in
 whole or in part, and the server does not support such locking
 operations (i.e., does not support POSIX locking semantics), the
 server will return the error NFS4ERR_LOCK_RANGE. In that case, the
 client may return an error, or it may emulate the required
 operations, using only LOCK for ranges that do not include any bytes
 already locked by that lock-owner and LOCKU of locks held by that
 lock-owner (specifying an exactly matching range and type).
 Similarly, when the client sends a LOCK operation that amounts to
 upgrading (changing from a READ_LT lock to a WRITE_LT lock) or
 downgrading (changing from WRITE_LT lock to a READ_LT lock) an
 existing byte-range lock, and the server does not support such a
 lock, the server will return NFS4ERR_LOCK_NOTSUPP. Such operations
 may not perfectly reflect the required semantics in the face of
 conflicting LOCK operations from other clients.

 When a client holds an OPEN_DELEGATE_WRITE delegation, the client
 holding that delegation is assured that there are no opens by other
 clients. Thus, there can be no conflicting LOCK operations from such
 clients. Therefore, the client may be handling locking requests
 locally, without doing LOCK operations on the server. If it does
 that, it must be prepared to update the lock status on the server, by
 sending appropriate LOCK and LOCKU operations before returning the
 delegation.

 When one or more clients hold OPEN_DELEGATE_READ delegations, any
 LOCK operation where the server is implementing mandatory locking
 semantics MUST result in the recall of all such delegations. The
 LOCK operation may not be granted until all such delegations are
 returned or revoked. Except where this happens very quickly, one or
 more NFS4ERR_DELAY errors will be returned to requests made while the
 delegation remains outstanding.

18.11. Operation 13: LOCKT - Test for Lock

18.11.1. ARGUMENTS

 struct LOCKT4args {
 /* CURRENT_FH: file */
 nfs_lock_type4 locktype;
 offset4 offset;
 length4 length;
 lock_owner4 owner;
 };

18.11.2. RESULTS

 union LOCKT4res switch (nfsstat4 status) {
 case NFS4ERR_DENIED:
 LOCK4denied denied;
 case NFS4_OK:
 void;
 default:
 void;
 };

18.11.3. DESCRIPTION

 The LOCKT operation tests the lock as specified in the arguments. If
 a conflicting lock exists, the owner, offset, length, and type of the
 conflicting lock are returned. The owner field in the results
 includes the client ID of the owner of the conflicting lock, whether
 this is the client ID associated with the current session or a

 different client ID. If no lock is held, nothing other than NFS4_OK
 is returned. Lock types READ_LT and READW_LT are processed in the
 same way in that a conflicting lock test is done without regard to
 blocking or non-blocking. The same is true for WRITE_LT and
 WRITEW_LT.

 The ranges are specified as for LOCK. The NFS4ERR_INVAL and
 NFS4ERR_BAD_RANGE errors are returned under the same circumstances as
 for LOCK.

 The clientid field of the owner MAY be set to any value by the client
 and MUST be ignored by the server. The reason the server MUST ignore
 the clientid field is that the server MUST derive the client ID from
 the session ID from the SEQUENCE operation of the COMPOUND request.

 If the current filehandle is not an ordinary file, an error will be
 returned to the client. In the case that the current filehandle
 represents an object of type NF4DIR, NFS4ERR_ISDIR is returned. If
 the current filehandle designates a symbolic link, NFS4ERR_SYMLINK is
 returned. In all other cases, NFS4ERR_WRONG_TYPE is returned.

 On success, the current filehandle retains its value.

18.11.4. IMPLEMENTATION

 If the server is unable to determine the exact offset and length of
 the conflicting lock, the same offset and length that were provided
 in the arguments should be returned in the denied results.

 LOCKT uses a lock_owner4 rather a stateid4, as is used in LOCK to
 identify the owner. This is because the client does not have to open
 the file to test for the existence of a lock, so a stateid might not
 be available.

 As noted in Section 18.10.4, some servers may return
 NFS4ERR_LOCK_RANGE to certain (otherwise non-conflicting) LOCK
 operations that overlap ranges already granted to the current lock-
 owner.

 The LOCKT operation’s test for conflicting locks SHOULD exclude locks
 for the current lock-owner, and thus should return NFS4_OK in such
 cases. Note that this means that a server might return NFS4_OK to a
 LOCKT request even though a LOCK operation for the same range and
 lock-owner would fail with NFS4ERR_LOCK_RANGE.

 When a client holds an OPEN_DELEGATE_WRITE delegation, it may choose
 (see Section 18.10.4) to handle LOCK requests locally. In such a
 case, LOCKT requests will similarly be handled locally.

18.12. Operation 14: LOCKU - Unlock File

18.12.1. ARGUMENTS

 struct LOCKU4args {
 /* CURRENT_FH: file */
 nfs_lock_type4 locktype;
 seqid4 seqid;
 stateid4 lock_stateid;
 offset4 offset;
 length4 length;
 };

18.12.2. RESULTS

 union LOCKU4res switch (nfsstat4 status) {
 case NFS4_OK:
 stateid4 lock_stateid;
 default:
 void;
 };

18.12.3. DESCRIPTION

 The LOCKU operation unlocks the byte-range lock specified by the
 parameters. The client may set the locktype field to any value that
 is legal for the nfs_lock_type4 enumerated type, and the server MUST
 accept any legal value for locktype. Any legal value for locktype
 has no effect on the success or failure of the LOCKU operation.

 The ranges are specified as for LOCK. The NFS4ERR_INVAL and
 NFS4ERR_BAD_RANGE errors are returned under the same circumstances as
 for LOCK.

 The seqid parameter MAY be any value and the server MUST ignore it.

 If the current filehandle is not an ordinary file, an error will be
 returned to the client. In the case that the current filehandle
 represents an object of type NF4DIR, NFS4ERR_ISDIR is returned. If
 the current filehandle designates a symbolic link, NFS4ERR_SYMLINK is
 returned. In all other cases, NFS4ERR_WRONG_TYPE is returned.

 On success, the current filehandle retains its value.

 The server MAY require that the principal, security flavor, and if
 applicable, the GSS mechanism, combination that sent a LOCK operation
 also be the one to send LOCKU on the file. This might not be
 possible if credentials for the principal are no longer available.
 The server MAY allow the machine credential or SSV credential (see
 Section 18.35) to send LOCKU.

18.12.4. IMPLEMENTATION

 If the area to be unlocked does not correspond exactly to a lock
 actually held by the lock-owner, the server may return the error
 NFS4ERR_LOCK_RANGE. This includes the case in which the area is not
 locked, where the area is a sub-range of the area locked, where it
 overlaps the area locked without matching exactly, or the area
 specified includes multiple locks held by the lock-owner. In all of
 these cases, allowed by POSIX locking [21] semantics, a client
 receiving this error should, if it desires support for such
 operations, simulate the operation using LOCKU on ranges
 corresponding to locks it actually holds, possibly followed by LOCK
 operations for the sub-ranges not being unlocked.

 When a client holds an OPEN_DELEGATE_WRITE delegation, it may choose
 (see Section 18.10.4) to handle LOCK requests locally. In such a
 case, LOCKU operations will similarly be handled locally.

18.13. Operation 15: LOOKUP - Lookup Filename

18.13.1. ARGUMENTS

 struct LOOKUP4args {
 /* CURRENT_FH: directory */
 component4 objname;
 };

18.13.2. RESULTS

 struct LOOKUP4res {
 /* New CURRENT_FH: object */
 nfsstat4 status;
 };

18.13.3. DESCRIPTION

 The LOOKUP operation looks up or finds a file system object using the
 directory specified by the current filehandle. LOOKUP evaluates the
 component and if the object exists, the current filehandle is
 replaced with the component’s filehandle.

 If the component cannot be evaluated either because it does not exist

 or because the client does not have permission to evaluate the
 component, then an error will be returned and the current filehandle
 will be unchanged.

 If the component is a zero-length string or if any component does not
 obey the UTF-8 definition, the error NFS4ERR_INVAL will be returned.

18.13.4. IMPLEMENTATION

 If the client wants to achieve the effect of a multi-component look
 up, it may construct a COMPOUND request such as (and obtain each
 filehandle):

 PUTFH (directory filehandle)
 LOOKUP "pub"
 GETFH
 LOOKUP "foo"
 GETFH
 LOOKUP "bar"
 GETFH

 Unlike NFSv3, NFSv4.1 allows LOOKUP requests to cross mountpoints on
 the server. The client can detect a mountpoint crossing by comparing
 the fsid attribute of the directory with the fsid attribute of the
 directory looked up. If the fsids are different, then the new
 directory is a server mountpoint. UNIX clients that detect a
 mountpoint crossing will need to mount the server’s file system.
 This needs to be done to maintain the file object identity checking
 mechanisms common to UNIX clients.

 Servers that limit NFS access to "shared" or "exported" file systems
 should provide a pseudo file system into which the exported file
 systems can be integrated, so that clients can browse the server’s
 namespace. The clients view of a pseudo file system will be limited
 to paths that lead to exported file systems.

 Note: previous versions of the protocol assigned special semantics to
 the names "." and "..". NFSv4.1 assigns no special semantics to
 these names. The LOOKUPP operator must be used to look up a parent
 directory.

 Note that this operation does not follow symbolic links. The client
 is responsible for all parsing of filenames including filenames that
 are modified by symbolic links encountered during the look up
 process.

 If the current filehandle supplied is not a directory but a symbolic
 link, the error NFS4ERR_SYMLINK is returned as the error. For all
 other non-directory file types, the error NFS4ERR_NOTDIR is returned.

18.14. Operation 16: LOOKUPP - Lookup Parent Directory

18.14.1. ARGUMENTS

 /* CURRENT_FH: object */
 void;

18.14.2. RESULTS

 struct LOOKUPP4res {
 /* new CURRENT_FH: parent directory */
 nfsstat4 status;
 };

18.14.3. DESCRIPTION

 The current filehandle is assumed to refer to a regular directory or
 a named attribute directory. LOOKUPP assigns the filehandle for its
 parent directory to be the current filehandle. If there is no parent
 directory, an NFS4ERR_NOENT error must be returned. Therefore,
 NFS4ERR_NOENT will be returned by the server when the current

 filehandle is at the root or top of the server’s file tree.

 As is the case with LOOKUP, LOOKUPP will also cross mountpoints.

 If the current filehandle is not a directory or named attribute
 directory, the error NFS4ERR_NOTDIR is returned.

 If the requester’s security flavor does not match that configured for
 the parent directory, then the server SHOULD return NFS4ERR_WRONGSEC
 (a future minor revision of NFSv4 may upgrade this to MUST) in the
 LOOKUPP response. However, if the server does so, it MUST support
 the SECINFO_NO_NAME operation (Section 18.45), so that the client can
 gracefully determine the correct security flavor.

 If the current filehandle is a named attribute directory that is
 associated with a file system object via OPENATTR (i.e., not a sub-
 directory of a named attribute directory), LOOKUPP SHOULD return the
 filehandle of the associated file system object.

18.14.4. IMPLEMENTATION

 An issue to note is upward navigation from named attribute
 directories. The named attribute directories are essentially
 detached from the namespace, and this property should be safely
 represented in the client operating environment. LOOKUPP on a named
 attribute directory may return the filehandle of the associated file,
 and conveying this to applications might be unsafe as many
 applications expect the parent of an object to always be a directory.
 Therefore, the client may want to hide the parent of named attribute
 directories (represented as ".." in UNIX) or represent the named
 attribute directory as its own parent (as is typically done for the
 file system root directory in UNIX).

18.15. Operation 17: NVERIFY - Verify Difference in Attributes

18.15.1. ARGUMENTS

 struct NVERIFY4args {
 /* CURRENT_FH: object */
 fattr4 obj_attributes;
 };

18.15.2. RESULTS

 struct NVERIFY4res {
 nfsstat4 status;
 };

18.15.3. DESCRIPTION

 This operation is used to prefix a sequence of operations to be
 performed if one or more attributes have changed on some file system
 object. If all the attributes match, then the error NFS4ERR_SAME
 MUST be returned.

 On success, the current filehandle retains its value.

18.15.4. IMPLEMENTATION

 This operation is useful as a cache validation operator. If the
 object to which the attributes belong has changed, then the following
 operations may obtain new data associated with that object, for
 instance, to check if a file has been changed and obtain new data if
 it has:

 SEQUENCE
 PUTFH fh
 NVERIFY attrbits attrs
 READ 0 32767

 Contrast this with NFSv3, which would first send a GETATTR in one

 request/reply round trip, and then if attributes indicated that the
 client’s cache was stale, then send a READ in another request/reply
 round trip.

 In the case that a RECOMMENDED attribute is specified in the NVERIFY
 operation and the server does not support that attribute for the file
 system object, the error NFS4ERR_ATTRNOTSUPP is returned to the
 client.

 When the attribute rdattr_error or any set-only attribute (e.g.,
 time_modify_set) is specified, the error NFS4ERR_INVAL is returned to
 the client.

18.16. Operation 18: OPEN - Open a Regular File

18.16.1. ARGUMENTS

 /*
 * Various definitions for OPEN
 */
 enum createmode4 {
 UNCHECKED4 = 0,
 GUARDED4 = 1,
 /* Deprecated in NFSv4.1. */
 EXCLUSIVE4 = 2,
 /*
 * New to NFSv4.1. If session is persistent,
 * GUARDED4 MUST be used. Otherwise, use
 * EXCLUSIVE4_1 instead of EXCLUSIVE4.
 */
 EXCLUSIVE4_1 = 3
 };

 struct creatverfattr {
 verifier4 cva_verf;
 fattr4 cva_attrs;
 };

 union createhow4 switch (createmode4 mode) {
 case UNCHECKED4:
 case GUARDED4:
 fattr4 createattrs;
 case EXCLUSIVE4:
 verifier4 createverf;
 case EXCLUSIVE4_1:
 creatverfattr ch_createboth;
 };

 enum opentype4 {
 OPEN4_NOCREATE = 0,
 OPEN4_CREATE = 1
 };

 union openflag4 switch (opentype4 opentype) {
 case OPEN4_CREATE:
 createhow4 how;
 default:
 void;
 };

 /* Next definitions used for OPEN delegation */
 enum limit_by4 {
 NFS_LIMIT_SIZE = 1,
 NFS_LIMIT_BLOCKS = 2
 /* others as needed */
 };

 struct nfs_modified_limit4 {
 uint32_t num_blocks;
 uint32_t bytes_per_block;
 };

 union nfs_space_limit4 switch (limit_by4 limitby) {
 /* limit specified as file size */
 case NFS_LIMIT_SIZE:
 uint64_t filesize;
 /* limit specified by number of blocks */
 case NFS_LIMIT_BLOCKS:
 nfs_modified_limit4 mod_blocks;
 } ;

 /*
 * Share Access and Deny constants for open argument
 */
 const OPEN4_SHARE_ACCESS_READ = 0x00000001;
 const OPEN4_SHARE_ACCESS_WRITE = 0x00000002;
 const OPEN4_SHARE_ACCESS_BOTH = 0x00000003;

 const OPEN4_SHARE_DENY_NONE = 0x00000000;
 const OPEN4_SHARE_DENY_READ = 0x00000001;
 const OPEN4_SHARE_DENY_WRITE = 0x00000002;
 const OPEN4_SHARE_DENY_BOTH = 0x00000003;

 /* new flags for share_access field of OPEN4args */
 const OPEN4_SHARE_ACCESS_WANT_DELEG_MASK = 0xFF00;
 const OPEN4_SHARE_ACCESS_WANT_NO_PREFERENCE = 0x0000;
 const OPEN4_SHARE_ACCESS_WANT_READ_DELEG = 0x0100;
 const OPEN4_SHARE_ACCESS_WANT_WRITE_DELEG = 0x0200;
 const OPEN4_SHARE_ACCESS_WANT_ANY_DELEG = 0x0300;
 const OPEN4_SHARE_ACCESS_WANT_NO_DELEG = 0x0400;
 const OPEN4_SHARE_ACCESS_WANT_CANCEL = 0x0500;

 const
 OPEN4_SHARE_ACCESS_WANT_SIGNAL_DELEG_WHEN_RESRC_AVAIL
 = 0x10000;

 const
 OPEN4_SHARE_ACCESS_WANT_PUSH_DELEG_WHEN_UNCONTENDED
 = 0x20000;

 enum open_delegation_type4 {
 OPEN_DELEGATE_NONE = 0,
 OPEN_DELEGATE_READ = 1,
 OPEN_DELEGATE_WRITE = 2,
 OPEN_DELEGATE_NONE_EXT = 3 /* new to v4.1 */
 };

 enum open_claim_type4 {
 /*
 * Not a reclaim.
 */
 CLAIM_NULL = 0,

 CLAIM_PREVIOUS = 1,
 CLAIM_DELEGATE_CUR = 2,
 CLAIM_DELEGATE_PREV = 3,

 /*
 * Not a reclaim.
 *
 * Like CLAIM_NULL, but object identified
 * by the current filehandle.
 */
 CLAIM_FH = 4, /* new to v4.1 */

 /*
 * Like CLAIM_DELEGATE_CUR, but object identified
 * by current filehandle.
 */
 CLAIM_DELEG_CUR_FH = 5, /* new to v4.1 */

 /*
 * Like CLAIM_DELEGATE_PREV, but object identified
 * by current filehandle.
 */
 CLAIM_DELEG_PREV_FH = 6 /* new to v4.1 */
 };

 struct open_claim_delegate_cur4 {
 stateid4 delegate_stateid;
 component4 file;
 };

 union open_claim4 switch (open_claim_type4 claim) {
 /*
 * No special rights to file.
 * Ordinary OPEN of the specified file.
 */
 case CLAIM_NULL:
 /* CURRENT_FH: directory */
 component4 file;
 /*
 * Right to the file established by an
 * open previous to server reboot. File
 * identified by filehandle obtained at
 * that time rather than by name.
 */
 case CLAIM_PREVIOUS:
 /* CURRENT_FH: file being reclaimed */
 open_delegation_type4 delegate_type;

 /*
 * Right to file based on a delegation
 * granted by the server. File is
 * specified by name.
 */
 case CLAIM_DELEGATE_CUR:
 /* CURRENT_FH: directory */
 open_claim_delegate_cur4 delegate_cur_info;

 /*
 * Right to file based on a delegation
 * granted to a previous boot instance
 * of the client. File is specified by name.
 */
 case CLAIM_DELEGATE_PREV:
 /* CURRENT_FH: directory */
 component4 file_delegate_prev;

 /*
 * Like CLAIM_NULL. No special rights
 * to file. Ordinary OPEN of the
 * specified file by current filehandle.
 */
 case CLAIM_FH: /* new to v4.1 */
 /* CURRENT_FH: regular file to open */
 void;

 /*
 * Like CLAIM_DELEGATE_PREV. Right to file based on a
 * delegation granted to a previous boot
 * instance of the client. File is identified
 * by filehandle.
 */
 case CLAIM_DELEG_PREV_FH: /* new to v4.1 */
 /* CURRENT_FH: file being opened */
 void;

 /*
 * Like CLAIM_DELEGATE_CUR. Right to file based on
 * a delegation granted by the server.
 * File is identified by filehandle.

 */
 case CLAIM_DELEG_CUR_FH: /* new to v4.1 */
 /* CURRENT_FH: file being opened */
 stateid4 oc_delegate_stateid;

 };

 /*
 * OPEN: Open a file, potentially receiving an OPEN delegation
 */
 struct OPEN4args {
 seqid4 seqid;
 uint32_t share_access;
 uint32_t share_deny;
 open_owner4 owner;
 openflag4 openhow;
 open_claim4 claim;
 };

18.16.2. RESULTS

 struct open_read_delegation4 {
 stateid4 stateid; /* Stateid for delegation*/
 bool recall; /* Pre-recalled flag for
 delegations obtained
 by reclaim (CLAIM_PREVIOUS) */

 nfsace4 permissions; /* Defines users who don’t
 need an ACCESS call to
 open for read */
 };

 struct open_write_delegation4 {
 stateid4 stateid; /* Stateid for delegation */
 bool recall; /* Pre-recalled flag for
 delegations obtained
 by reclaim
 (CLAIM_PREVIOUS) */

 nfs_space_limit4
 space_limit; /* Defines condition that
 the client must check to
 determine whether the
 file needs to be flushed
 to the server on close. */

 nfsace4 permissions; /* Defines users who don’t
 need an ACCESS call as
 part of a delegated
 open. */
 };

 enum why_no_delegation4 { /* new to v4.1 */
 WND4_NOT_WANTED = 0,
 WND4_CONTENTION = 1,
 WND4_RESOURCE = 2,
 WND4_NOT_SUPP_FTYPE = 3,
 WND4_WRITE_DELEG_NOT_SUPP_FTYPE = 4,
 WND4_NOT_SUPP_UPGRADE = 5,
 WND4_NOT_SUPP_DOWNGRADE = 6,
 WND4_CANCELLED = 7,
 WND4_IS_DIR = 8
 };

 union open_none_delegation4 /* new to v4.1 */
 switch (why_no_delegation4 ond_why) {
 case WND4_CONTENTION:
 bool ond_server_will_push_deleg;
 case WND4_RESOURCE:
 bool ond_server_will_signal_avail;

 default:
 void;
 };

 union open_delegation4
 switch (open_delegation_type4 delegation_type) {
 case OPEN_DELEGATE_NONE:
 void;
 case OPEN_DELEGATE_READ:
 open_read_delegation4 read;
 case OPEN_DELEGATE_WRITE:
 open_write_delegation4 write;
 case OPEN_DELEGATE_NONE_EXT: /* new to v4.1 */
 open_none_delegation4 od_whynone;
 };

 /*
 * Result flags
 */

 /* Client must confirm open */
 const OPEN4_RESULT_CONFIRM = 0x00000002;
 /* Type of file locking behavior at the server */
 const OPEN4_RESULT_LOCKTYPE_POSIX = 0x00000004;
 /* Server will preserve file if removed while open */
 const OPEN4_RESULT_PRESERVE_UNLINKED = 0x00000008;

 /*
 * Server may use CB_NOTIFY_LOCK on locks
 * derived from this open
 */
 const OPEN4_RESULT_MAY_NOTIFY_LOCK = 0x00000020;

 struct OPEN4resok {
 stateid4 stateid; /* Stateid for open */
 change_info4 cinfo; /* Directory Change Info */
 uint32_t rflags; /* Result flags */
 bitmap4 attrset; /* attribute set for create*/
 open_delegation4 delegation; /* Info on any open
 delegation */
 };

 union OPEN4res switch (nfsstat4 status) {
 case NFS4_OK:
 /* New CURRENT_FH: opened file */
 OPEN4resok resok4;
 default:
 void;
 };

18.16.3. DESCRIPTION

 The OPEN operation opens a regular file in a directory with the
 provided name or filehandle. OPEN can also create a file if a name
 is provided, and the client specifies it wants to create a file.
 Specification of whether or not a file is to be created, and the
 method of creation is via the openhow parameter. The openhow
 parameter consists of a switched union (data type opengflag4), which
 switches on the value of opentype (OPEN4_NOCREATE or OPEN4_CREATE).
 If OPEN4_CREATE is specified, this leads to another switched union
 (data type createhow4) that supports four cases of creation methods:
 UNCHECKED4, GUARDED4, EXCLUSIVE4, or EXCLUSIVE4_1. If opentype is
 OPEN4_CREATE, then the claim field of the claim field MUST be one of
 CLAIM_NULL, CLAIM_DELEGATE_CUR, or CLAIM_DELEGATE_PREV, because these
 claim methods include a component of a file name.

 Upon success (which might entail creation of a new file), the current
 filehandle is replaced by that of the created or existing object.

 If the current filehandle is a named attribute directory, OPEN will
 then create or open a named attribute file. Note that exclusive

 create of a named attribute is not supported. If the createmode is
 EXCLUSIVE4 or EXCLUSIVE4_1 and the current filehandle is a named
 attribute directory, the server will return EINVAL.

 UNCHECKED4 means that the file should be created if a file of that
 name does not exist and encountering an existing regular file of that
 name is not an error. For this type of create, createattrs specifies
 the initial set of attributes for the file. The set of attributes
 may include any writable attribute valid for regular files. When an
 UNCHECKED4 create encounters an existing file, the attributes
 specified by createattrs are not used, except that when createattrs
 specifies the size attribute with a size of zero, the existing file
 is truncated.

 If GUARDED4 is specified, the server checks for the presence of a
 duplicate object by name before performing the create. If a
 duplicate exists, NFS4ERR_EXIST is returned. If the object does not
 exist, the request is performed as described for UNCHECKED4.

 For the UNCHECKED4 and GUARDED4 cases, where the operation is
 successful, the server will return to the client an attribute mask
 signifying which attributes were successfully set for the object.

 EXCLUSIVE4_1 and EXCLUSIVE4 specify that the server is to follow
 exclusive creation semantics, using the verifier to ensure exclusive
 creation of the target. The server should check for the presence of
 a duplicate object by name. If the object does not exist, the server
 creates the object and stores the verifier with the object. If the
 object does exist and the stored verifier matches the client provided
 verifier, the server uses the existing object as the newly created
 object. If the stored verifier does not match, then an error of
 NFS4ERR_EXIST is returned.

 If using EXCLUSIVE4, and if the server uses attributes to store the
 exclusive create verifier, the server will signify which attributes
 it used by setting the appropriate bits in the attribute mask that is
 returned in the results. Unlike UNCHECKED4, GUARDED4, and
 EXCLUSIVE4_1, EXCLUSIVE4 does not support the setting of attributes
 at file creation, and after a successful OPEN via EXCLUSIVE4, the
 client MUST send a SETATTR to set attributes to a known state.

 In NFSv4.1, EXCLUSIVE4 has been deprecated in favor of EXCLUSIVE4_1.
 Unlike EXCLUSIVE4, attributes may be provided in the EXCLUSIVE4_1
 case, but because the server may use attributes of the target object
 to store the verifier, the set of allowable attributes may be fewer
 than the set of attributes SETATTR allows. The allowable attributes
 for EXCLUSIVE4_1 are indicated in the suppattr_exclcreat
 (Section 5.8.1.14) attribute. If the client attempts to set in
 cva_attrs an attribute that is not in suppattr_exclcreat, the server
 MUST return NFS4ERR_INVAL. The response field, attrset, indicates
 both which attributes the server set from cva_attrs and which
 attributes the server used to store the verifier. As described in
 Section 18.16.4, the client can compare cva_attrs.attrmask with
 attrset to determine which attributes were used to store the
 verifier.

 With the addition of persistent sessions and pNFS, under some
 conditions EXCLUSIVE4 MUST NOT be used by the client or supported by
 the server. The following table summarizes the appropriate and
 mandated exclusive create methods for implementations of NFSv4.1:

 +=============+==========+==============+=======================+
 | Persistent | Server | Server | Client Allowed |
 | Reply Cache | Supports | REQUIRED | |
 | Enabled | pNFS | | |
 +=============+==========+==============+=======================+
 | no | no | EXCLUSIVE4_1 | EXCLUSIVE4_1 (SHOULD) |
 | | | and | or EXCLUSIVE4 (SHOULD |
 | | | EXCLUSIVE4 | NOT) |
 +-------------+----------+--------------+-----------------------+
 | no | yes | EXCLUSIVE4_1 | EXCLUSIVE4_1 |

 +-------------+----------+--------------+-----------------------+
 | yes | no | GUARDED4 | GUARDED4 |
 +-------------+----------+--------------+-----------------------+
 | yes | yes | GUARDED4 | GUARDED4 |
 +-------------+----------+--------------+-----------------------+

 Table 18: Required Methods for Exclusive Create

 If CREATE_SESSION4_FLAG_PERSIST is set in the results of
 CREATE_SESSION, the reply cache is persistent (see Section 18.36).
 If the EXCHGID4_FLAG_USE_PNFS_MDS flag is set in the results from
 EXCHANGE_ID, the server is a pNFS server (see Section 18.35). If the
 client attempts to use EXCLUSIVE4 on a persistent session, or a
 session derived from an EXCHGID4_FLAG_USE_PNFS_MDS client ID, the
 server MUST return NFS4ERR_INVAL.

 With persistent sessions, exclusive create semantics are fully
 achievable via GUARDED4, and so EXCLUSIVE4 or EXCLUSIVE4_1 MUST NOT
 be used. When pNFS is being used, the layout_hint attribute might
 not be supported after the file is created. Only the EXCLUSIVE4_1
 and GUARDED methods of exclusive file creation allow the atomic
 setting of attributes.

 For the target directory, the server returns change_info4 information
 in cinfo. With the atomic field of the change_info4 data type, the
 server will indicate if the before and after change attributes were
 obtained atomically with respect to the link creation.

 The OPEN operation provides for Windows share reservation capability
 with the use of the share_access and share_deny fields of the OPEN
 arguments. The client specifies at OPEN the required share_access
 and share_deny modes. For clients that do not directly support
 SHAREs (i.e., UNIX), the expected deny value is
 OPEN4_SHARE_DENY_NONE. In the case that there is an existing SHARE
 reservation that conflicts with the OPEN request, the server returns
 the error NFS4ERR_SHARE_DENIED. For additional discussion of SHARE
 semantics, see Section 9.7.

 For each OPEN, the client provides a value for the owner field of the
 OPEN argument. The owner field is of data type open_owner4, and
 contains a field called clientid and a field called owner. The
 client can set the clientid field to any value and the server MUST
 ignore it. Instead, the server MUST derive the client ID from the
 session ID of the SEQUENCE operation of the COMPOUND request.

 The "seqid" field of the request is not used in NFSv4.1, but it MAY
 be any value and the server MUST ignore it.

 In the case that the client is recovering state from a server
 failure, the claim field of the OPEN argument is used to signify that
 the request is meant to reclaim state previously held.

 The "claim" field of the OPEN argument is used to specify the file to
 be opened and the state information that the client claims to
 possess. There are seven claim types as follows:

 +======================+==+
 | open type | description |
 +======================+==+
CLAIM_NULL, CLAIM_FH	For the client, this is a new OPEN
	request and there is no previous state
	associated with the file for the
	client. With CLAIM_NULL, the file is
	identified by the current filehandle
	and the specified component name.
	With CLAIM_FH (new to NFSv4.1), the
	file is identified by just the current
	filehandle.
+----------------------+--+	
CLAIM_PREVIOUS	The client is claiming basic OPEN
	state for a file that was held

	previous to a server restart.
	Generally used when a server is
	returning persistent filehandles; the
	client may not have the file name to
	reclaim the OPEN.
+----------------------+--+	
CLAIM_DELEGATE_CUR,	The client is claiming a delegation
CLAIM_DELEG_CUR_FH	for OPEN as granted by the server.
	Generally, this is done as part of
	recalling a delegation. With
	CLAIM_DELEGATE_CUR, the file is
	identified by the current filehandle
	and the specified component name.
	With CLAIM_DELEG_CUR_FH (new to
	NFSv4.1), the file is identified by
	just the current filehandle.
+----------------------+--+	
CLAIM_DELEGATE_PREV,	The client is claiming a delegation
CLAIM_DELEG_PREV_FH	granted to a previous client instance;
	used after the client restarts. The
	server MAY support CLAIM_DELEGATE_PREV
	and/or CLAIM_DELEG_PREV_FH (new to
	NFSv4.1). If it does support either
	claim type, CREATE_SESSION MUST NOT
	remove the client’s delegation state,
	and the server MUST support the
	DELEGPURGE operation.
 +----------------------+--+

 Table 19

 For OPEN requests that reach the server during the grace period, the
 server returns an error of NFS4ERR_GRACE. The following claim types
 are exceptions:

 * OPEN requests specifying the claim type CLAIM_PREVIOUS are devoted
 to reclaiming opens after a server restart and are typically only
 valid during the grace period.

 * OPEN requests specifying the claim types CLAIM_DELEGATE_CUR and
 CLAIM_DELEG_CUR_FH are valid both during and after the grace
 period. Since the granting of the delegation that they are
 subordinate to assures that there is no conflict with locks to be
 reclaimed by other clients, the server need not return
 NFS4ERR_GRACE when these are received during the grace period.

 For any OPEN request, the server may return an OPEN delegation, which
 allows further opens and closes to be handled locally on the client
 as described in Section 10.4. Note that delegation is up to the
 server to decide. The client should never assume that delegation
 will or will not be granted in a particular instance. It should
 always be prepared for either case. A partial exception is the
 reclaim (CLAIM_PREVIOUS) case, in which a delegation type is claimed.
 In this case, delegation will always be granted, although the server
 may specify an immediate recall in the delegation structure.

 The rflags returned by a successful OPEN allow the server to return
 information governing how the open file is to be handled.

 * OPEN4_RESULT_CONFIRM is deprecated and MUST NOT be returned by an
 NFSv4.1 server.

 * OPEN4_RESULT_LOCKTYPE_POSIX indicates that the server’s byte-range
 locking behavior supports the complete set of POSIX locking
 techniques [21]. From this, the client can choose to manage byte-
 range locking state in a way to handle a mismatch of byte-range
 locking management.

 * OPEN4_RESULT_PRESERVE_UNLINKED indicates that the server will
 preserve the open file if the client (or any other client) removes
 the file as long as it is open. Furthermore, the server promises

 to preserve the file through the grace period after server
 restart, thereby giving the client the opportunity to reclaim its
 open.

 * OPEN4_RESULT_MAY_NOTIFY_LOCK indicates that the server may attempt
 CB_NOTIFY_LOCK callbacks for locks on this file. This flag is a
 hint only, and may be safely ignored by the client.

 If the component is of zero length, NFS4ERR_INVAL will be returned.
 The component is also subject to the normal UTF-8, character support,
 and name checks. See Section 14.5 for further discussion.

 When an OPEN is done and the specified open-owner already has the
 resulting filehandle open, the result is to "OR" together the new
 share and deny status together with the existing status. In this
 case, only a single CLOSE need be done, even though multiple OPENs
 were completed. When such an OPEN is done, checking of share
 reservations for the new OPEN proceeds normally, with no exception
 for the existing OPEN held by the same open-owner. In this case, the
 stateid returned as an "other" field that matches that of the
 previous open while the "seqid" field is incremented to reflect the
 change status due to the new open.

 If the underlying file system at the server is only accessible in a
 read-only mode and the OPEN request has specified ACCESS_WRITE or
 ACCESS_BOTH, the server will return NFS4ERR_ROFS to indicate a read-
 only file system.

 As with the CREATE operation, the server MUST derive the owner, owner
 ACE, group, or group ACE if any of the four attributes are required
 and supported by the server’s file system. For an OPEN with the
 EXCLUSIVE4 createmode, the server has no choice, since such OPEN
 calls do not include the createattrs field. Conversely, if
 createattrs (UNCHECKED4 or GUARDED4) or cva_attrs (EXCLUSIVE4_1) is
 specified, and includes an owner, owner_group, or ACE that the
 principal in the RPC call’s credentials does not have authorization
 to create files for, then the server may return NFS4ERR_PERM.

 In the case of an OPEN that specifies a size of zero (e.g.,
 truncation) and the file has named attributes, the named attributes
 are left as is and are not removed.

 NFSv4.1 gives more precise control to clients over acquisition of
 delegations via the following new flags for the share_access field of
 OPEN4args:

 OPEN4_SHARE_ACCESS_WANT_READ_DELEG

 OPEN4_SHARE_ACCESS_WANT_WRITE_DELEG

 OPEN4_SHARE_ACCESS_WANT_ANY_DELEG

 OPEN4_SHARE_ACCESS_WANT_NO_DELEG

 OPEN4_SHARE_ACCESS_WANT_CANCEL

 OPEN4_SHARE_ACCESS_WANT_SIGNAL_DELEG_WHEN_RESRC_AVAIL

 OPEN4_SHARE_ACCESS_WANT_PUSH_DELEG_WHEN_UNCONTENDED

 If (share_access & OPEN4_SHARE_ACCESS_WANT_DELEG_MASK) is not zero,
 then the client will have specified one and only one of:

 OPEN4_SHARE_ACCESS_WANT_READ_DELEG

 OPEN4_SHARE_ACCESS_WANT_WRITE_DELEG

 OPEN4_SHARE_ACCESS_WANT_ANY_DELEG

 OPEN4_SHARE_ACCESS_WANT_NO_DELEG

 OPEN4_SHARE_ACCESS_WANT_CANCEL

 Otherwise, the client is neither indicating a desire nor a non-desire
 for a delegation, and the server MAY or MAY not return a delegation
 in the OPEN response.

 If the server supports the new _WANT_ flags and the client sends one
 or more of the new flags, then in the event the server does not
 return a delegation, it MUST return a delegation type of
 OPEN_DELEGATE_NONE_EXT. The field ond_why in the reply indicates why
 no delegation was returned and will be one of:

 WND4_NOT_WANTED
 The client specified OPEN4_SHARE_ACCESS_WANT_NO_DELEG.

 WND4_CONTENTION
 There is a conflicting delegation or open on the file.

 WND4_RESOURCE
 Resource limitations prevent the server from granting a
 delegation.

 WND4_NOT_SUPP_FTYPE
 The server does not support delegations on this file type.

 WND4_WRITE_DELEG_NOT_SUPP_FTYPE
 The server does not support OPEN_DELEGATE_WRITE delegations on
 this file type.

 WND4_NOT_SUPP_UPGRADE
 The server does not support atomic upgrade of an
 OPEN_DELEGATE_READ delegation to an OPEN_DELEGATE_WRITE
 delegation.

 WND4_NOT_SUPP_DOWNGRADE
 The server does not support atomic downgrade of an
 OPEN_DELEGATE_WRITE delegation to an OPEN_DELEGATE_READ
 delegation.

 WND4_CANCELED
 The client specified OPEN4_SHARE_ACCESS_WANT_CANCEL and now any
 "want" for this file object is cancelled.

 WND4_IS_DIR
 The specified file object is a directory, and the operation is
 OPEN or WANT_DELEGATION, which do not support delegations on
 directories.

 OPEN4_SHARE_ACCESS_WANT_READ_DELEG,
 OPEN_SHARE_ACCESS_WANT_WRITE_DELEG, or
 OPEN_SHARE_ACCESS_WANT_ANY_DELEG mean, respectively, the client wants
 an OPEN_DELEGATE_READ, OPEN_DELEGATE_WRITE, or any delegation
 regardless which of OPEN4_SHARE_ACCESS_READ,
 OPEN4_SHARE_ACCESS_WRITE, or OPEN4_SHARE_ACCESS_BOTH is set. If the
 client has an OPEN_DELEGATE_READ delegation on a file and requests an
 OPEN_DELEGATE_WRITE delegation, then the client is requesting atomic
 upgrade of its OPEN_DELEGATE_READ delegation to an
 OPEN_DELEGATE_WRITE delegation. If the client has an
 OPEN_DELEGATE_WRITE delegation on a file and requests an
 OPEN_DELEGATE_READ delegation, then the client is requesting atomic
 downgrade to an OPEN_DELEGATE_READ delegation. A server MAY support
 atomic upgrade or downgrade. If it does, then the returned
 delegation_type of OPEN_DELEGATE_READ or OPEN_DELEGATE_WRITE that is
 different from the delegation type the client currently has,
 indicates successful upgrade or downgrade. If the server does not
 support atomic delegation upgrade or downgrade, then ond_why will be
 set to WND4_NOT_SUPP_UPGRADE or WND4_NOT_SUPP_DOWNGRADE.

 OPEN4_SHARE_ACCESS_WANT_NO_DELEG means that the client wants no
 delegation.

 OPEN4_SHARE_ACCESS_WANT_CANCEL means that the client wants no
 delegation and wants to cancel any previously registered "want" for a
 delegation.

 The client may set one or both of
 OPEN4_SHARE_ACCESS_WANT_SIGNAL_DELEG_WHEN_RESRC_AVAIL and
 OPEN4_SHARE_ACCESS_WANT_PUSH_DELEG_WHEN_UNCONTENDED. However, they
 will have no effect unless one of following is set:

 * OPEN4_SHARE_ACCESS_WANT_READ_DELEG

 * OPEN4_SHARE_ACCESS_WANT_WRITE_DELEG

 * OPEN4_SHARE_ACCESS_WANT_ANY_DELEG

 If the client specifies
 OPEN4_SHARE_ACCESS_WANT_SIGNAL_DELEG_WHEN_RESRC_AVAIL, then it wishes
 to register a "want" for a delegation, in the event the OPEN results
 do not include a delegation. If so and the server denies the
 delegation due to insufficient resources, the server MAY later inform
 the client, via the CB_RECALLABLE_OBJ_AVAIL operation, that the
 resource limitation condition has eased. The server will tell the
 client that it intends to send a future CB_RECALLABLE_OBJ_AVAIL
 operation by setting delegation_type in the results to
 OPEN_DELEGATE_NONE_EXT, ond_why to WND4_RESOURCE, and
 ond_server_will_signal_avail set to TRUE. If
 ond_server_will_signal_avail is set to TRUE, the server MUST later
 send a CB_RECALLABLE_OBJ_AVAIL operation.

 If the client specifies
 OPEN4_SHARE_ACCESS_WANT_SIGNAL_DELEG_WHEN_UNCONTENDED, then it wishes
 to register a "want" for a delegation, in the event the OPEN results
 do not include a delegation. If so and the server denies the
 delegation due to contention, the server MAY later inform the client,
 via the CB_PUSH_DELEG operation, that the contention condition has
 eased. The server will tell the client that it intends to send a
 future CB_PUSH_DELEG operation by setting delegation_type in the
 results to OPEN_DELEGATE_NONE_EXT, ond_why to WND4_CONTENTION, and
 ond_server_will_push_deleg to TRUE. If ond_server_will_push_deleg is
 TRUE, the server MUST later send a CB_PUSH_DELEG operation.

 If the client has previously registered a want for a delegation on a
 file, and then sends a request to register a want for a delegation on
 the same file, the server MUST return a new error:
 NFS4ERR_DELEG_ALREADY_WANTED. If the client wishes to register a
 different type of delegation want for the same file, it MUST cancel
 the existing delegation WANT.

18.16.4. IMPLEMENTATION

 In absence of a persistent session, the client invokes exclusive
 create by setting the how parameter to EXCLUSIVE4 or EXCLUSIVE4_1.
 In these cases, the client provides a verifier that can reasonably be
 expected to be unique. A combination of a client identifier, perhaps
 the client network address, and a unique number generated by the
 client, perhaps the RPC transaction identifier, may be appropriate.

 If the object does not exist, the server creates the object and
 stores the verifier in stable storage. For file systems that do not
 provide a mechanism for the storage of arbitrary file attributes, the
 server may use one or more elements of the object’s metadata to store
 the verifier. The verifier MUST be stored in stable storage to
 prevent erroneous failure on retransmission of the request. It is
 assumed that an exclusive create is being performed because exclusive
 semantics are critical to the application. Because of the expected
 usage, exclusive CREATE does not rely solely on the server’s reply
 cache for storage of the verifier. A nonpersistent reply cache does
 not survive a crash and the session and reply cache may be deleted
 after a network partition that exceeds the lease time, thus opening
 failure windows.

 An NFSv4.1 server SHOULD NOT store the verifier in any of the file’s
 RECOMMENDED or REQUIRED attributes. If it does, the server SHOULD
 use time_modify_set or time_access_set to store the verifier. The
 server SHOULD NOT store the verifier in the following attributes:

 acl (it is desirable for access control to be established at
 creation),

 dacl (ditto),

 mode (ditto),

 owner (ditto),

 owner_group (ditto),

 retentevt_set (it may be desired to establish retention at
 creation)

 retention_hold (ditto),

 retention_set (ditto),

 sacl (it is desirable for auditing control to be established at
 creation),

 size (on some servers, size may have a limited range of values),

 mode_set_masked (as with mode),

 and

 time_creation (a meaningful file creation should be set when the
 file is created).

 Another alternative for the server is to use a named attribute to
 store the verifier.

 Because the EXCLUSIVE4 create method does not specify initial
 attributes when processing an EXCLUSIVE4 create, the server

 * SHOULD set the owner of the file to that corresponding to the
 credential of request’s RPC header.

 * SHOULD NOT leave the file’s access control to anyone but the owner
 of the file.

 If the server cannot support exclusive create semantics, possibly
 because of the requirement to commit the verifier to stable storage,
 it should fail the OPEN request with the error NFS4ERR_NOTSUPP.

 During an exclusive CREATE request, if the object already exists, the
 server reconstructs the object’s verifier and compares it with the
 verifier in the request. If they match, the server treats the
 request as a success. The request is presumed to be a duplicate of
 an earlier, successful request for which the reply was lost and that
 the server duplicate request cache mechanism did not detect. If the
 verifiers do not match, the request is rejected with the status
 NFS4ERR_EXIST.

 After the client has performed a successful exclusive create, the
 attrset response indicates which attributes were used to store the
 verifier. If EXCLUSIVE4 was used, the attributes set in attrset were
 used for the verifier. If EXCLUSIVE4_1 was used, the client
 determines the attributes used for the verifier by comparing attrset
 with cva_attrs.attrmask; any bits set in the former but not the
 latter identify the attributes used to store the verifier. The
 client MUST immediately send a SETATTR to set attributes used to
 store the verifier. Until it does so, the attributes used to store
 the verifier cannot be relied upon. The subsequent SETATTR MUST NOT
 occur in the same COMPOUND request as the OPEN.

 Unless a persistent session is used, use of the GUARDED4 attribute
 does not provide exactly once semantics. In particular, if a reply
 is lost and the server does not detect the retransmission of the
 request, the operation can fail with NFS4ERR_EXIST, even though the
 create was performed successfully. The client would use this
 behavior in the case that the application has not requested an
 exclusive create but has asked to have the file truncated when the
 file is opened. In the case of the client timing out and
 retransmitting the create request, the client can use GUARDED4 to
 prevent against a sequence like create, write, create (retransmitted)
 from occurring.

 For SHARE reservations, the value of the expression (share_access &
 ˜OPEN4_SHARE_ACCESS_WANT_DELEG_MASK) MUST be one of
 OPEN4_SHARE_ACCESS_READ, OPEN4_SHARE_ACCESS_WRITE, or
 OPEN4_SHARE_ACCESS_BOTH. If not, the server MUST return
 NFS4ERR_INVAL. The value of share_deny MUST be one of
 OPEN4_SHARE_DENY_NONE, OPEN4_SHARE_DENY_READ, OPEN4_SHARE_DENY_WRITE,
 or OPEN4_SHARE_DENY_BOTH. If not, the server MUST return
 NFS4ERR_INVAL.

 Based on the share_access value (OPEN4_SHARE_ACCESS_READ,
 OPEN4_SHARE_ACCESS_WRITE, or OPEN4_SHARE_ACCESS_BOTH), the client
 should check that the requester has the proper access rights to
 perform the specified operation. This would generally be the results
 of applying the ACL access rules to the file for the current
 requester. However, just as with the ACCESS operation, the client
 should not attempt to second-guess the server’s decisions, as access
 rights may change and may be subject to server administrative
 controls outside the ACL framework. If the requester’s READ or WRITE
 operation is not authorized (depending on the share_access value),
 the server MUST return NFS4ERR_ACCESS.

 Note that if the client ID was not created with the
 EXCHGID4_FLAG_BIND_PRINC_STATEID capability set in the reply to
 EXCHANGE_ID, then the server MUST NOT impose any requirement that
 READs and WRITEs sent for an open file have the same credentials as
 the OPEN itself, and the server is REQUIRED to perform access
 checking on the READs and WRITEs themselves. Otherwise, if the reply
 to EXCHANGE_ID did have EXCHGID4_FLAG_BIND_PRINC_STATEID set, then
 with one exception, the credentials used in the OPEN request MUST
 match those used in the READs and WRITEs, and the stateids in the
 READs and WRITEs MUST match, or be derived from the stateid from the
 reply to OPEN. The exception is if SP4_SSV or SP4_MACH_CRED state
 protection is used, and the spo_must_allow result of EXCHANGE_ID
 includes the READ and/or WRITE operations. In that case, the machine
 or SSV credential will be allowed to send READ and/or WRITE. See
 Section 18.35.

 If the component provided to OPEN is a symbolic link, the error
 NFS4ERR_SYMLINK will be returned to the client, while if it is a
 directory the error NFS4ERR_ISDIR will be returned. If the component
 is neither of those but not an ordinary file, the error
 NFS4ERR_WRONG_TYPE is returned. If the current filehandle is not a
 directory, the error NFS4ERR_NOTDIR will be returned.

 The use of the OPEN4_RESULT_PRESERVE_UNLINKED result flag allows a
 client to avoid the common implementation practice of renaming an
 open file to ".nfs<unique value>" after it removes the file. After
 the server returns OPEN4_RESULT_PRESERVE_UNLINKED, if a client sends
 a REMOVE operation that would reduce the file’s link count to zero,
 the server SHOULD report a value of zero for the numlinks attribute
 on the file.

 If another client has a delegation of the file being opened that
 conflicts with open being done (sometimes depending on the
 share_access or share_deny value specified), the delegation(s) MUST
 be recalled, and the operation cannot proceed until each such
 delegation is returned or revoked. Except where this happens very
 quickly, one or more NFS4ERR_DELAY errors will be returned to

 requests made while delegation remains outstanding. In the case of
 an OPEN_DELEGATE_WRITE delegation, any open by a different client
 will conflict, while for an OPEN_DELEGATE_READ delegation, only opens
 with one of the following characteristics will be considered
 conflicting:

 * The value of share_access includes the bit
 OPEN4_SHARE_ACCESS_WRITE.

 * The value of share_deny specifies OPEN4_SHARE_DENY_READ or
 OPEN4_SHARE_DENY_BOTH.

 * OPEN4_CREATE is specified together with UNCHECKED4, the size
 attribute is specified as zero (for truncation), and an existing
 file is truncated.

 If OPEN4_CREATE is specified and the file does not exist and the
 current filehandle designates a directory for which another client
 holds a directory delegation, then, unless the delegation is such
 that the situation can be resolved by sending a notification, the
 delegation MUST be recalled, and the operation cannot proceed until
 the delegation is returned or revoked. Except where this happens
 very quickly, one or more NFS4ERR_DELAY errors will be returned to
 requests made while delegation remains outstanding.

 If OPEN4_CREATE is specified and the file does not exist and the
 current filehandle designates a directory for which one or more
 directory delegations exist, then, when those delegations request
 such notifications, NOTIFY4_ADD_ENTRY will be generated as a result
 of this operation.

18.16.4.1. Warning to Client Implementors

 OPEN resembles LOOKUP in that it generates a filehandle for the
 client to use. Unlike LOOKUP though, OPEN creates server state on
 the filehandle. In normal circumstances, the client can only release
 this state with a CLOSE operation. CLOSE uses the current filehandle
 to determine which file to close. Therefore, the client MUST follow
 every OPEN operation with a GETFH operation in the same COMPOUND
 procedure. This will supply the client with the filehandle such that
 CLOSE can be used appropriately.

 Simply waiting for the lease on the file to expire is insufficient
 because the server may maintain the state indefinitely as long as
 another client does not attempt to make a conflicting access to the
 same file.

 See also Section 2.10.6.4.

18.17. Operation 19: OPENATTR - Open Named Attribute Directory

18.17.1. ARGUMENTS

 struct OPENATTR4args {
 /* CURRENT_FH: object */
 bool createdir;
 };

18.17.2. RESULTS

 struct OPENATTR4res {
 /*
 * If status is NFS4_OK,
 * new CURRENT_FH: named attribute
 * directory
 */
 nfsstat4 status;
 };

18.17.3. DESCRIPTION

 The OPENATTR operation is used to obtain the filehandle of the named
 attribute directory associated with the current filehandle. The
 result of the OPENATTR will be a filehandle to an object of type
 NF4ATTRDIR. From this filehandle, READDIR and LOOKUP operations can
 be used to obtain filehandles for the various named attributes
 associated with the original file system object. Filehandles
 returned within the named attribute directory will designate objects
 of type of NF4NAMEDATTR.

 The createdir argument allows the client to signify if a named
 attribute directory should be created as a result of the OPENATTR
 operation. Some clients may use the OPENATTR operation with a value
 of FALSE for createdir to determine if any named attributes exist for
 the object. If none exist, then NFS4ERR_NOENT will be returned. If
 createdir has a value of TRUE and no named attribute directory
 exists, one is created and its filehandle becomes the current
 filehandle. On the other hand, if createdir has a value of TRUE and
 the named attribute directory already exists, no error results and
 the filehandle of the existing directory becomes the current
 filehandle. The creation of a named attribute directory assumes that
 the server has implemented named attribute support in this fashion
 and is not required to do so by this definition.

 If the current filehandle designates an object of type NF4NAMEDATTR
 (a named attribute) or NF4ATTRDIR (a named attribute directory), an
 error of NFS4ERR_WRONG_TYPE is returned to the client. Named
 attributes or a named attribute directory MUST NOT have their own
 named attributes.

18.17.4. IMPLEMENTATION

 If the server does not support named attributes for the current
 filehandle, an error of NFS4ERR_NOTSUPP will be returned to the
 client.

18.18. Operation 21: OPEN_DOWNGRADE - Reduce Open File Access

18.18.1. ARGUMENTS

 struct OPEN_DOWNGRADE4args {
 /* CURRENT_FH: opened file */
 stateid4 open_stateid;
 seqid4 seqid;
 uint32_t share_access;
 uint32_t share_deny;
 };

18.18.2. RESULTS

 struct OPEN_DOWNGRADE4resok {
 stateid4 open_stateid;
 };

 union OPEN_DOWNGRADE4res switch(nfsstat4 status) {
 case NFS4_OK:
 OPEN_DOWNGRADE4resok resok4;
 default:
 void;
 };

18.18.3. DESCRIPTION

 This operation is used to adjust the access and deny states for a
 given open. This is necessary when a given open-owner opens the same
 file multiple times with different access and deny values. In this
 situation, a close of one of the opens may change the appropriate
 share_access and share_deny flags to remove bits associated with
 opens no longer in effect.

 Valid values for the expression (share_access &
 ˜OPEN4_SHARE_ACCESS_WANT_DELEG_MASK) are OPEN4_SHARE_ACCESS_READ,

 OPEN4_SHARE_ACCESS_WRITE, or OPEN4_SHARE_ACCESS_BOTH. If the client
 specifies other values, the server MUST reply with NFS4ERR_INVAL.

 Valid values for the share_deny field are OPEN4_SHARE_DENY_NONE,
 OPEN4_SHARE_DENY_READ, OPEN4_SHARE_DENY_WRITE, or
 OPEN4_SHARE_DENY_BOTH. If the client specifies other values, the
 server MUST reply with NFS4ERR_INVAL.

 After checking for valid values of share_access and share_deny, the
 server replaces the current access and deny modes on the file with
 share_access and share_deny subject to the following constraints:

 * The bits in share_access SHOULD equal the union of the
 share_access bits (not including OPEN4_SHARE_WANT_* bits)
 specified for some subset of the OPENs in effect for the current
 open-owner on the current file.

 * The bits in share_deny SHOULD equal the union of the share_deny
 bits specified for some subset of the OPENs in effect for the
 current open-owner on the current file.

 If the above constraints are not respected, the server SHOULD return
 the error NFS4ERR_INVAL. Since share_access and share_deny bits
 should be subsets of those already granted, short of a defect in the
 client or server implementation, it is not possible for the
 OPEN_DOWNGRADE request to be denied because of conflicting share
 reservations.

 The seqid argument is not used in NFSv4.1, MAY be any value, and MUST
 be ignored by the server.

 On success, the current filehandle retains its value.

18.18.4. IMPLEMENTATION

 An OPEN_DOWNGRADE operation may make OPEN_DELEGATE_READ delegations
 grantable where they were not previously. Servers may choose to
 respond immediately if there are pending delegation want requests or
 may respond to the situation at a later time.

18.19. Operation 22: PUTFH - Set Current Filehandle

18.19.1. ARGUMENTS

 struct PUTFH4args {
 nfs_fh4 object;
 };

18.19.2. RESULTS

 struct PUTFH4res {
 /*
 * If status is NFS4_OK,
 * new CURRENT_FH: argument to PUTFH
 */
 nfsstat4 status;
 };

18.19.3. DESCRIPTION

 This operation replaces the current filehandle with the filehandle
 provided as an argument. It clears the current stateid.

 If the security mechanism used by the requester does not meet the
 requirements of the filehandle provided to this operation, the server
 MUST return NFS4ERR_WRONGSEC.

 See Section 16.2.3.1.1 for more details on the current filehandle.

 See Section 16.2.3.1.2 for more details on the current stateid.

18.19.4. IMPLEMENTATION

 This operation is used in an NFS request to set the context for file
 accessing operations that follow in the same COMPOUND request.

18.20. Operation 23: PUTPUBFH - Set Public Filehandle

18.20.1. ARGUMENT

 void;

18.20.2. RESULT

 struct PUTPUBFH4res {
 /*
 * If status is NFS4_OK,
 * new CURRENT_FH: public fh
 */
 nfsstat4 status;
 };

18.20.3. DESCRIPTION

 This operation replaces the current filehandle with the filehandle
 that represents the public filehandle of the server’s namespace.
 This filehandle may be different from the "root" filehandle that may
 be associated with some other directory on the server.

 PUTPUBFH also clears the current stateid.

 The public filehandle represents the concepts embodied in RFC 2054
 [49], RFC 2055 [50], and RFC 2224 [61]. The intent for NFSv4.1 is
 that the public filehandle (represented by the PUTPUBFH operation) be
 used as a method of providing WebNFS server compatibility with NFSv3.

 The public filehandle and the root filehandle (represented by the
 PUTROOTFH operation) SHOULD be equivalent. If the public and root
 filehandles are not equivalent, then the directory corresponding to
 the public filehandle MUST be a descendant of the directory
 corresponding to the root filehandle.

 See Section 16.2.3.1.1 for more details on the current filehandle.

 See Section 16.2.3.1.2 for more details on the current stateid.

18.20.4. IMPLEMENTATION

 This operation is used in an NFS request to set the context for file
 accessing operations that follow in the same COMPOUND request.

 With the NFSv3 public filehandle, the client is able to specify
 whether the pathname provided in the LOOKUP should be evaluated as
 either an absolute path relative to the server’s root or relative to
 the public filehandle. RFC 2224 [61] contains further discussion of
 the functionality. With NFSv4.1, that type of specification is not
 directly available in the LOOKUP operation. The reason for this is
 because the component separators needed to specify absolute vs.
 relative are not allowed in NFSv4. Therefore, the client is
 responsible for constructing its request such that the use of either
 PUTROOTFH or PUTPUBFH signifies absolute or relative evaluation of an
 NFS URL, respectively.

 Note that there are warnings mentioned in RFC 2224 [61] with respect
 to the use of absolute evaluation and the restrictions the server may
 place on that evaluation with respect to how much of its namespace
 has been made available. These same warnings apply to NFSv4.1. It
 is likely, therefore, that because of server implementation details,
 an NFSv3 absolute public filehandle look up may behave differently
 than an NFSv4.1 absolute resolution.

 There is a form of security negotiation as described in RFC 2755 [62]

 that uses the public filehandle and an overloading of the pathname.
 This method is not available with NFSv4.1 as filehandles are not
 overloaded with special meaning and therefore do not provide the same
 framework as NFSv3. Clients should therefore use the security
 negotiation mechanisms described in Section 2.6.

18.21. Operation 24: PUTROOTFH - Set Root Filehandle

18.21.1. ARGUMENTS

 void;

18.21.2. RESULTS

 struct PUTROOTFH4res {
 /*
 * If status is NFS4_OK,
 * new CURRENT_FH: root fh
 */
 nfsstat4 status;
 };

18.21.3. DESCRIPTION

 This operation replaces the current filehandle with the filehandle
 that represents the root of the server’s namespace. From this
 filehandle, a LOOKUP operation can locate any other filehandle on the
 server. This filehandle may be different from the "public"
 filehandle that may be associated with some other directory on the
 server.

 PUTROOTFH also clears the current stateid.

 See Section 16.2.3.1.1 for more details on the current filehandle.

 See Section 16.2.3.1.2 for more details on the current stateid.

18.21.4. IMPLEMENTATION

 This operation is used in an NFS request to set the context for file
 accessing operations that follow in the same COMPOUND request.

18.22. Operation 25: READ - Read from File

18.22.1. ARGUMENTS

 struct READ4args {
 /* CURRENT_FH: file */
 stateid4 stateid;
 offset4 offset;
 count4 count;
 };

18.22.2. RESULTS

 struct READ4resok {
 bool eof;
 opaque data<>;
 };

 union READ4res switch (nfsstat4 status) {
 case NFS4_OK:
 READ4resok resok4;
 default:
 void;
 };

18.22.3. DESCRIPTION

 The READ operation reads data from the regular file identified by the
 current filehandle.

 The client provides an offset of where the READ is to start and a
 count of how many bytes are to be read. An offset of zero means to
 read data starting at the beginning of the file. If offset is
 greater than or equal to the size of the file, the status NFS4_OK is
 returned with a data length set to zero and eof is set to TRUE. The
 READ is subject to access permissions checking.

 If the client specifies a count value of zero, the READ succeeds and
 returns zero bytes of data again subject to access permissions
 checking. The server may choose to return fewer bytes than specified
 by the client. The client needs to check for this condition and
 handle the condition appropriately.

 Except when special stateids are used, the stateid value for a READ
 request represents a value returned from a previous byte-range lock
 or share reservation request or the stateid associated with a
 delegation. The stateid identifies the associated owners if any and
 is used by the server to verify that the associated locks are still
 valid (e.g., have not been revoked).

 If the read ended at the end-of-file (formally, in a correctly formed
 READ operation, if offset + count is equal to the size of the file),
 or the READ operation extends beyond the size of the file (if offset
 + count is greater than the size of the file), eof is returned as
 TRUE; otherwise, it is FALSE. A successful READ of an empty file
 will always return eof as TRUE.

 If the current filehandle is not an ordinary file, an error will be
 returned to the client. In the case that the current filehandle
 represents an object of type NF4DIR, NFS4ERR_ISDIR is returned. If
 the current filehandle designates a symbolic link, NFS4ERR_SYMLINK is
 returned. In all other cases, NFS4ERR_WRONG_TYPE is returned.

 For a READ with a stateid value of all bits equal to zero, the server
 MAY allow the READ to be serviced subject to mandatory byte-range
 locks or the current share deny modes for the file. For a READ with
 a stateid value of all bits equal to one, the server MAY allow READ
 operations to bypass locking checks at the server.

 On success, the current filehandle retains its value.

18.22.4. IMPLEMENTATION

 If the server returns a "short read" (i.e., fewer data than requested
 and eof is set to FALSE), the client should send another READ to get
 the remaining data. A server may return less data than requested
 under several circumstances. The file may have been truncated by
 another client or perhaps on the server itself, changing the file
 size from what the requesting client believes to be the case. This
 would reduce the actual amount of data available to the client. It
 is possible that the server reduce the transfer size and so return a
 short read result. Server resource exhaustion may also occur in a
 short read.

 If mandatory byte-range locking is in effect for the file, and if the
 byte-range corresponding to the data to be read from the file is
 WRITE_LT locked by an owner not associated with the stateid, the
 server will return the NFS4ERR_LOCKED error. The client should try
 to get the appropriate READ_LT via the LOCK operation before re-
 attempting the READ. When the READ completes, the client should
 release the byte-range lock via LOCKU.

 If another client has an OPEN_DELEGATE_WRITE delegation for the file
 being read, the delegation must be recalled, and the operation cannot
 proceed until that delegation is returned or revoked. Except where
 this happens very quickly, one or more NFS4ERR_DELAY errors will be
 returned to requests made while the delegation remains outstanding.
 Normally, delegations will not be recalled as a result of a READ
 operation since the recall will occur as a result of an earlier OPEN.
 However, since it is possible for a READ to be done with a special

 stateid, the server needs to check for this case even though the
 client should have done an OPEN previously.

18.23. Operation 26: READDIR - Read Directory

18.23.1. ARGUMENTS

 struct READDIR4args {
 /* CURRENT_FH: directory */
 nfs_cookie4 cookie;
 verifier4 cookieverf;
 count4 dircount;
 count4 maxcount;
 bitmap4 attr_request;
 };

18.23.2. RESULTS

 struct entry4 {
 nfs_cookie4 cookie;
 component4 name;
 fattr4 attrs;
 entry4 *nextentry;
 };

 struct dirlist4 {
 entry4 *entries;
 bool eof;
 };

 struct READDIR4resok {
 verifier4 cookieverf;
 dirlist4 reply;
 };

 union READDIR4res switch (nfsstat4 status) {
 case NFS4_OK:
 READDIR4resok resok4;
 default:
 void;
 };

18.23.3. DESCRIPTION

 The READDIR operation retrieves a variable number of entries from a
 file system directory and returns client-requested attributes for
 each entry along with information to allow the client to request
 additional directory entries in a subsequent READDIR.

 The arguments contain a cookie value that represents where the
 READDIR should start within the directory. A value of zero for the
 cookie is used to start reading at the beginning of the directory.
 For subsequent READDIR requests, the client specifies a cookie value
 that is provided by the server on a previous READDIR request.

 The request’s cookieverf field should be set to 0 zero) when the
 request’s cookie field is zero (first read of the directory). On
 subsequent requests, the cookieverf field must match the cookieverf
 returned by the READDIR in which the cookie was acquired. If the
 server determines that the cookieverf is no longer valid for the
 directory, the error NFS4ERR_NOT_SAME must be returned.

 The dircount field of the request is a hint of the maximum number of
 bytes of directory information that should be returned. This value
 represents the total length of the names of the directory entries and
 the cookie value for these entries. This length represents the XDR
 encoding of the data (names and cookies) and not the length in the
 native format of the server.

 The maxcount field of the request represents the maximum total size

 of all of the data being returned within the READDIR4resok structure
 and includes the XDR overhead. The server MAY return less data. If
 the server is unable to return a single directory entry within the
 maxcount limit, the error NFS4ERR_TOOSMALL MUST be returned to the
 client.

 Finally, the request’s attr_request field represents the list of
 attributes to be returned for each directory entry supplied by the
 server.

 A successful reply consists of a list of directory entries. Each of
 these entries contains the name of the directory entry, a cookie
 value for that entry, and the associated attributes as requested.
 The "eof" flag has a value of TRUE if there are no more entries in
 the directory.

 The cookie value is only meaningful to the server and is used as a
 cursor for the directory entry. As mentioned, this cookie is used by
 the client for subsequent READDIR operations so that it may continue
 reading a directory. The cookie is similar in concept to a READ
 offset but MUST NOT be interpreted as such by the client. Ideally,
 the cookie value SHOULD NOT change if the directory is modified since
 the client may be caching these values.

 In some cases, the server may encounter an error while obtaining the
 attributes for a directory entry. Instead of returning an error for
 the entire READDIR operation, the server can instead return the
 attribute rdattr_error (Section 5.8.1.12). With this, the server is
 able to communicate the failure to the client and not fail the entire
 operation in the instance of what might be a transient failure.
 Obviously, the client must request the fattr4_rdattr_error attribute
 for this method to work properly. If the client does not request the
 attribute, the server has no choice but to return failure for the
 entire READDIR operation.

 For some file system environments, the directory entries "." and ".."
 have special meaning, and in other environments, they do not. If the
 server supports these special entries within a directory, they SHOULD
 NOT be returned to the client as part of the READDIR response. To
 enable some client environments, the cookie values of zero, 1, and 2
 are to be considered reserved. Note that the UNIX client will use
 these values when combining the server’s response and local
 representations to enable a fully formed UNIX directory presentation
 to the application.

 For READDIR arguments, cookie values of one and two SHOULD NOT be
 used, and for READDIR results, cookie values of zero, one, and two
 SHOULD NOT be returned.

 On success, the current filehandle retains its value.

18.23.4. IMPLEMENTATION

 The server’s file system directory representations can differ
 greatly. A client’s programming interfaces may also be bound to the
 local operating environment in a way that does not translate well
 into the NFS protocol. Therefore, the use of the dircount and
 maxcount fields are provided to enable the client to provide hints to
 the server. If the client is aggressive about attribute collection
 during a READDIR, the server has an idea of how to limit the encoded
 response.

 If dircount is zero, the server bounds the reply’s size based on the
 request’s maxcount field.

 The cookieverf may be used by the server to help manage cookie values
 that may become stale. It should be a rare occurrence that a server
 is unable to continue properly reading a directory with the provided
 cookie/cookieverf pair. The server SHOULD make every effort to avoid
 this condition since the application at the client might be unable to
 properly handle this type of failure.

 The use of the cookieverf will also protect the client from using
 READDIR cookie values that might be stale. For example, if the file
 system has been migrated, the server might or might not be able to
 use the same cookie values to service READDIR as the previous server
 used. With the client providing the cookieverf, the server is able
 to provide the appropriate response to the client. This prevents the
 case where the server accepts a cookie value but the underlying
 directory has changed and the response is invalid from the client’s
 context of its previous READDIR.

 Since some servers will not be returning "." and ".." entries as has
 been done with previous versions of the NFS protocol, the client that
 requires these entries be present in READDIR responses must fabricate
 them.

18.24. Operation 27: READLINK - Read Symbolic Link

18.24.1. ARGUMENTS

 /* CURRENT_FH: symlink */
 void;

18.24.2. RESULTS

 struct READLINK4resok {
 linktext4 link;
 };

 union READLINK4res switch (nfsstat4 status) {
 case NFS4_OK:
 READLINK4resok resok4;
 default:
 void;
 };

18.24.3. DESCRIPTION

 READLINK reads the data associated with a symbolic link. Depending
 on the value of the UTF-8 capability attribute (Section 14.4), the
 data is encoded in UTF-8. Whether created by an NFS client or
 created locally on the server, the data in a symbolic link is not
 interpreted (except possibly to check for proper UTF-8 encoding) when
 created, but is simply stored.

 On success, the current filehandle retains its value.

18.24.4. IMPLEMENTATION

 A symbolic link is nominally a pointer to another file. The data is
 not necessarily interpreted by the server, just stored in the file.
 It is possible for a client implementation to store a pathname that
 is not meaningful to the server operating system in a symbolic link.
 A READLINK operation returns the data to the client for
 interpretation. If different implementations want to share access to
 symbolic links, then they must agree on the interpretation of the
 data in the symbolic link.

 The READLINK operation is only allowed on objects of type NF4LNK.
 The server should return the error NFS4ERR_WRONG_TYPE if the object
 is not of type NF4LNK.

18.25. Operation 28: REMOVE - Remove File System Object

18.25.1. ARGUMENTS

 struct REMOVE4args {
 /* CURRENT_FH: directory */
 component4 target;
 };

18.25.2. RESULTS

 struct REMOVE4resok {
 change_info4 cinfo;
 };

 union REMOVE4res switch (nfsstat4 status) {
 case NFS4_OK:
 REMOVE4resok resok4;
 default:
 void;
 };

18.25.3. DESCRIPTION

 The REMOVE operation removes (deletes) a directory entry named by
 filename from the directory corresponding to the current filehandle.
 If the entry in the directory was the last reference to the
 corresponding file system object, the object may be destroyed. The
 directory may be either of type NF4DIR or NF4ATTRDIR.

 For the directory where the filename was removed, the server returns
 change_info4 information in cinfo. With the atomic field of the
 change_info4 data type, the server will indicate if the before and
 after change attributes were obtained atomically with respect to the
 removal.

 If the target has a length of zero, or if the target does not obey
 the UTF-8 definition (and the server is enforcing UTF-8 encoding; see
 Section 14.4), the error NFS4ERR_INVAL will be returned.

 On success, the current filehandle retains its value.

18.25.4. IMPLEMENTATION

 NFSv3 required a different operator RMDIR for directory removal and
 REMOVE for non-directory removal. This allowed clients to skip
 checking the file type when being passed a non-directory delete
 system call (e.g., unlink() [24] in POSIX) to remove a directory, as
 well as the converse (e.g., a rmdir() on a non-directory) because
 they knew the server would check the file type. NFSv4.1 REMOVE can
 be used to delete any directory entry independent of its file type.
 The implementor of an NFSv4.1 client’s entry points from the unlink()
 and rmdir() system calls should first check the file type against the
 types the system call is allowed to remove before sending a REMOVE
 operation. Alternatively, the implementor can produce a COMPOUND
 call that includes a LOOKUP/VERIFY sequence of operations to verify
 the file type before a REMOVE operation in the same COMPOUND call.

 The concept of last reference is server specific. However, if the
 numlinks field in the previous attributes of the object had the value
 1, the client should not rely on referring to the object via a
 filehandle. Likewise, the client should not rely on the resources
 (disk space, directory entry, and so on) formerly associated with the
 object becoming immediately available. Thus, if a client needs to be
 able to continue to access a file after using REMOVE to remove it,
 the client should take steps to make sure that the file will still be
 accessible. While the traditional mechanism used is to RENAME the
 file from its old name to a new hidden name, the NFSv4.1 OPEN
 operation MAY return a result flag, OPEN4_RESULT_PRESERVE_UNLINKED,
 which indicates to the client that the file will be preserved if the
 file has an outstanding open (see Section 18.16).

 If the server finds that the file is still open when the REMOVE
 arrives:

 * The server SHOULD NOT delete the file’s directory entry if the
 file was opened with OPEN4_SHARE_DENY_WRITE or
 OPEN4_SHARE_DENY_BOTH.

 * If the file was not opened with OPEN4_SHARE_DENY_WRITE or

 OPEN4_SHARE_DENY_BOTH, the server SHOULD delete the file’s
 directory entry. However, until last CLOSE of the file, the
 server MAY continue to allow access to the file via its
 filehandle.

 * The server MUST NOT delete the directory entry if the reply from
 OPEN had the flag OPEN4_RESULT_PRESERVE_UNLINKED set.

 The server MAY implement its own restrictions on removal of a file
 while it is open. The server might disallow such a REMOVE (or a
 removal that occurs as part of RENAME). The conditions that
 influence the restrictions on removal of a file while it is still
 open include:

 * Whether certain access protocols (i.e., not just NFS) are holding
 the file open.

 * Whether particular options, access modes, or policies on the
 server are enabled.

 If a file has an outstanding OPEN and this prevents the removal of
 the file’s directory entry, the error NFS4ERR_FILE_OPEN is returned.

 Where the determination above cannot be made definitively because
 delegations are being held, they MUST be recalled to allow processing
 of the REMOVE to continue. When a delegation is held, the server has
 no reliable knowledge of the status of OPENs for that client, so
 unless there are files opened with the particular deny modes by
 clients without delegations, the determination cannot be made until
 delegations are recalled, and the operation cannot proceed until each
 sufficient delegation has been returned or revoked to allow the
 server to make a correct determination.

 In all cases in which delegations are recalled, the server is likely
 to return one or more NFS4ERR_DELAY errors while delegations remain
 outstanding.

 If the current filehandle designates a directory for which another
 client holds a directory delegation, then, unless the situation can
 be resolved by sending a notification, the directory delegation MUST
 be recalled, and the operation MUST NOT proceed until the delegation
 is returned or revoked. Except where this happens very quickly, one
 or more NFS4ERR_DELAY errors will be returned to requests made while
 delegation remains outstanding.

 When the current filehandle designates a directory for which one or
 more directory delegations exist, then, when those delegations
 request such notifications, NOTIFY4_REMOVE_ENTRY will be generated as
 a result of this operation.

 Note that when a remove occurs as a result of a RENAME,
 NOTIFY4_REMOVE_ENTRY will only be generated if the removal happens as
 a separate operation. In the case in which the removal is integrated
 and atomic with RENAME, the notification of the removal is integrated
 with notification for the RENAME. See the discussion of the
 NOTIFY4_RENAME_ENTRY notification in Section 20.4.

18.26. Operation 29: RENAME - Rename Directory Entry

18.26.1. ARGUMENTS

 struct RENAME4args {
 /* SAVED_FH: source directory */
 component4 oldname;
 /* CURRENT_FH: target directory */
 component4 newname;
 };

18.26.2. RESULTS

 struct RENAME4resok {

 change_info4 source_cinfo;
 change_info4 target_cinfo;
 };

 union RENAME4res switch (nfsstat4 status) {
 case NFS4_OK:
 RENAME4resok resok4;
 default:
 void;
 };

18.26.3. DESCRIPTION

 The RENAME operation renames the object identified by oldname in the
 source directory corresponding to the saved filehandle, as set by the
 SAVEFH operation, to newname in the target directory corresponding to
 the current filehandle. The operation is required to be atomic to
 the client. Source and target directories MUST reside on the same
 file system on the server. On success, the current filehandle will
 continue to be the target directory.

 If the target directory already contains an entry with the name
 newname, the source object MUST be compatible with the target: either
 both are non-directories or both are directories and the target MUST
 be empty. If compatible, the existing target is removed before the
 rename occurs or, preferably, the target is removed atomically as
 part of the rename. See Section 18.25.4 for client and server
 actions whenever a target is removed. Note however that when the
 removal is performed atomically with the rename, certain parts of the
 removal described there are integrated with the rename. For example,
 notification of the removal will not be via a NOTIFY4_REMOVE_ENTRY
 but will be indicated as part of the NOTIFY4_ADD_ENTRY or
 NOTIFY4_RENAME_ENTRY generated by the rename.

 If the source object and the target are not compatible or if the
 target is a directory but not empty, the server will return the error
 NFS4ERR_EXIST.

 If oldname and newname both refer to the same file (e.g., they might
 be hard links of each other), then unless the file is open (see
 Section 18.26.4), RENAME MUST perform no action and return NFS4_OK.

 For both directories involved in the RENAME, the server returns
 change_info4 information. With the atomic field of the change_info4
 data type, the server will indicate if the before and after change
 attributes were obtained atomically with respect to the rename.

 If oldname refers to a named attribute and the saved and current
 filehandles refer to different file system objects, the server will
 return NFS4ERR_XDEV just as if the saved and current filehandles
 represented directories on different file systems.

 If oldname or newname has a length of zero, or if oldname or newname
 does not obey the UTF-8 definition, the error NFS4ERR_INVAL will be
 returned.

18.26.4. IMPLEMENTATION

 The server MAY impose restrictions on the RENAME operation such that
 RENAME may not be done when the file being renamed is open or when
 that open is done by particular protocols, or with particular options
 or access modes. Similar restrictions may be applied when a file
 exists with the target name and is open. When RENAME is rejected
 because of such restrictions, the error NFS4ERR_FILE_OPEN is
 returned.

 When oldname and rename refer to the same file and that file is open
 in a fashion such that RENAME would normally be rejected with
 NFS4ERR_FILE_OPEN if oldname and newname were different files, then
 RENAME SHOULD be rejected with NFS4ERR_FILE_OPEN.

 If a server does implement such restrictions and those restrictions
 include cases of NFSv4 opens preventing successful execution of a
 rename, the server needs to recall any delegations that could hide
 the existence of opens relevant to that decision. This is because
 when a client holds a delegation, the server might not have an
 accurate account of the opens for that client, since the client may
 execute OPENs and CLOSEs locally. The RENAME operation need only be
 delayed until a definitive result can be obtained. For example, if
 there are multiple delegations and one of them establishes an open
 whose presence would prevent the rename, given the server’s
 semantics, NFS4ERR_FILE_OPEN may be returned to the caller as soon as
 that delegation is returned without waiting for other delegations to
 be returned. Similarly, if such opens are not associated with
 delegations, NFS4ERR_FILE_OPEN can be returned immediately with no
 delegation recall being done.

 If the current filehandle or the saved filehandle designates a
 directory for which another client holds a directory delegation,
 then, unless the situation can be resolved by sending a notification,
 the delegation MUST be recalled, and the operation cannot proceed
 until the delegation is returned or revoked. Except where this
 happens very quickly, one or more NFS4ERR_DELAY errors will be
 returned to requests made while delegation remains outstanding.

 When the current and saved filehandles are the same and they
 designate a directory for which one or more directory delegations
 exist, then, when those delegations request such notifications, a
 notification of type NOTIFY4_RENAME_ENTRY will be generated as a
 result of this operation. When oldname and rename refer to the same
 file, no notification is generated (because, as Section 18.26.3
 states, the server MUST take no action). When a file is removed
 because it has the same name as the target, if that removal is done
 atomically with the rename, a NOTIFY4_REMOVE_ENTRY notification will
 not be generated. Instead, the deletion of the file will be reported
 as part of the NOTIFY4_RENAME_ENTRY notification.

 When the current and saved filehandles are not the same:

 * If the current filehandle designates a directory for which one or
 more directory delegations exist, then, when those delegations
 request such notifications, NOTIFY4_ADD_ENTRY will be generated as
 a result of this operation. When a file is removed because it has
 the same name as the target, if that removal is done atomically
 with the rename, a NOTIFY4_REMOVE_ENTRY notification will not be
 generated. Instead, the deletion of the file will be reported as
 part of the NOTIFY4_ADD_ENTRY notification.

 * If the saved filehandle designates a directory for which one or
 more directory delegations exist, then, when those delegations
 request such notifications, NOTIFY4_REMOVE_ENTRY will be generated
 as a result of this operation.

 If the object being renamed has file delegations held by clients
 other than the one doing the RENAME, the delegations MUST be
 recalled, and the operation cannot proceed until each such delegation
 is returned or revoked. Note that in the case of multiply linked
 files, the delegation recall requirement applies even if the
 delegation was obtained through a different name than the one being
 renamed. In all cases in which delegations are recalled, the server
 is likely to return one or more NFS4ERR_DELAY errors while the
 delegation(s) remains outstanding, although it might not do that if
 the delegations are returned quickly.

 The RENAME operation must be atomic to the client. The statement
 "source and target directories MUST reside on the same file system on
 the server" means that the fsid fields in the attributes for the
 directories are the same. If they reside on different file systems,
 the error NFS4ERR_XDEV is returned.

 Based on the value of the fh_expire_type attribute for the object,
 the filehandle may or may not expire on a RENAME. However, server

 implementors are strongly encouraged to attempt to keep filehandles
 from expiring in this fashion.

 On some servers, the file names "." and ".." are illegal as either
 oldname or newname, and will result in the error NFS4ERR_BADNAME. In
 addition, on many servers the case of oldname or newname being an
 alias for the source directory will be checked for. Such servers
 will return the error NFS4ERR_INVAL in these cases.

 If either of the source or target filehandles are not directories,
 the server will return NFS4ERR_NOTDIR.

18.27. Operation 31: RESTOREFH - Restore Saved Filehandle

18.27.1. ARGUMENTS

 /* SAVED_FH: */
 void;

18.27.2. RESULTS

 struct RESTOREFH4res {
 /*
 * If status is NFS4_OK,
 * new CURRENT_FH: value of saved fh
 */
 nfsstat4 status;
 };

18.27.3. DESCRIPTION

 The RESTOREFH operation sets the current filehandle and stateid to
 the values in the saved filehandle and stateid. If there is no saved
 filehandle, then the server will return the error
 NFS4ERR_NOFILEHANDLE.

 See Section 16.2.3.1.1 for more details on the current filehandle.

 See Section 16.2.3.1.2 for more details on the current stateid.

18.27.4. IMPLEMENTATION

 Operations like OPEN and LOOKUP use the current filehandle to
 represent a directory and replace it with a new filehandle. Assuming
 that the previous filehandle was saved with a SAVEFH operator, the
 previous filehandle can be restored as the current filehandle. This
 is commonly used to obtain post-operation attributes for the
 directory, e.g.,

 PUTFH (directory filehandle)
 SAVEFH
 GETATTR attrbits (pre-op dir attrs)
 CREATE optbits "foo" attrs
 GETATTR attrbits (file attributes)
 RESTOREFH
 GETATTR attrbits (post-op dir attrs)

18.28. Operation 32: SAVEFH - Save Current Filehandle

18.28.1. ARGUMENTS

 /* CURRENT_FH: */
 void;

18.28.2. RESULTS

 struct SAVEFH4res {
 /*
 * If status is NFS4_OK,
 * new SAVED_FH: value of current fh
 */

 nfsstat4 status;
 };

18.28.3. DESCRIPTION

 The SAVEFH operation saves the current filehandle and stateid. If a
 previous filehandle was saved, then it is no longer accessible. The
 saved filehandle can be restored as the current filehandle with the
 RESTOREFH operator.

 On success, the current filehandle retains its value.

 See Section 16.2.3.1.1 for more details on the current filehandle.

 See Section 16.2.3.1.2 for more details on the current stateid.

18.28.4. IMPLEMENTATION

18.29. Operation 33: SECINFO - Obtain Available Security

18.29.1. ARGUMENTS

 struct SECINFO4args {
 /* CURRENT_FH: directory */
 component4 name;
 };

18.29.2. RESULTS

 /*
 * From RFC 2203
 */
 enum rpc_gss_svc_t {
 RPC_GSS_SVC_NONE = 1,
 RPC_GSS_SVC_INTEGRITY = 2,
 RPC_GSS_SVC_PRIVACY = 3
 };

 struct rpcsec_gss_info {
 sec_oid4 oid;
 qop4 qop;
 rpc_gss_svc_t service;
 };

 /* RPCSEC_GSS has a value of ’6’ - See RFC 2203 */
 union secinfo4 switch (uint32_t flavor) {
 case RPCSEC_GSS:
 rpcsec_gss_info flavor_info;
 default:
 void;
 };

 typedef secinfo4 SECINFO4resok<>;

 union SECINFO4res switch (nfsstat4 status) {
 case NFS4_OK:
 /* CURRENTFH: consumed */
 SECINFO4resok resok4;
 default:
 void;
 };

18.29.3. DESCRIPTION

 The SECINFO operation is used by the client to obtain a list of valid
 RPC authentication flavors for a specific directory filehandle, file
 name pair. SECINFO should apply the same access methodology used for
 LOOKUP when evaluating the name. Therefore, if the requester does
 not have the appropriate access to LOOKUP the name, then SECINFO MUST
 behave the same way and return NFS4ERR_ACCESS.

 The result will contain an array that represents the security
 mechanisms available, with an order corresponding to the server’s
 preferences, the most preferred being first in the array. The client
 is free to pick whatever security mechanism it both desires and
 supports, or to pick in the server’s preference order the first one
 it supports. The array entries are represented by the secinfo4
 structure. The field ’flavor’ will contain a value of AUTH_NONE,
 AUTH_SYS (as defined in RFC 5531 [3]), or RPCSEC_GSS (as defined in
 RFC 2203 [4]). The field flavor can also be any other security
 flavor registered with IANA.

 For the flavors AUTH_NONE and AUTH_SYS, no additional security
 information is returned. The same is true of many (if not most)
 other security flavors, including AUTH_DH. For a return value of
 RPCSEC_GSS, a security triple is returned that contains the mechanism
 object identifier (OID, as defined in RFC 2743 [7]), the quality of
 protection (as defined in RFC 2743 [7]), and the service type (as
 defined in RFC 2203 [4]). It is possible for SECINFO to return
 multiple entries with flavor equal to RPCSEC_GSS with different
 security triple values.

 On success, the current filehandle is consumed (see
 Section 2.6.3.1.1.8), and if the next operation after SECINFO tries
 to use the current filehandle, that operation will fail with the
 status NFS4ERR_NOFILEHANDLE.

 If the name has a length of zero, or if the name does not obey the
 UTF-8 definition (assuming UTF-8 capabilities are enabled; see
 Section 14.4), the error NFS4ERR_INVAL will be returned.

 See Section 2.6 for additional information on the use of SECINFO.

18.29.4. IMPLEMENTATION

 The SECINFO operation is expected to be used by the NFS client when
 the error value of NFS4ERR_WRONGSEC is returned from another NFS
 operation. This signifies to the client that the server’s security
 policy is different from what the client is currently using. At this
 point, the client is expected to obtain a list of possible security
 flavors and choose what best suits its policies.

 As mentioned, the server’s security policies will determine when a
 client request receives NFS4ERR_WRONGSEC. See Table 14 for a list of
 operations that can return NFS4ERR_WRONGSEC. In addition, when
 READDIR returns attributes, the rdattr_error (Section 5.8.1.12) can
 contain NFS4ERR_WRONGSEC. Note that CREATE and REMOVE MUST NOT
 return NFS4ERR_WRONGSEC. The rationale for CREATE is that unless the
 target name exists, it cannot have a separate security policy from
 the parent directory, and the security policy of the parent was
 checked when its filehandle was injected into the COMPOUND request’s
 operations stream (for similar reasons, an OPEN operation that
 creates the target MUST NOT return NFS4ERR_WRONGSEC). If the target
 name exists, while it might have a separate security policy, that is
 irrelevant because CREATE MUST return NFS4ERR_EXIST. The rationale
 for REMOVE is that while that target might have a separate security
 policy, the target is going to be removed, and so the security policy
 of the parent trumps that of the object being removed. RENAME and
 LINK MAY return NFS4ERR_WRONGSEC, but the NFS4ERR_WRONGSEC error
 applies only to the saved filehandle (see Section 2.6.3.1.2). Any
 NFS4ERR_WRONGSEC error on the current filehandle used by LINK and
 RENAME MUST be returned by the PUTFH, PUTPUBFH, PUTROOTFH, or
 RESTOREFH operation that injected the current filehandle.

 With the exception of LINK and RENAME, the set of operations that can
 return NFS4ERR_WRONGSEC represents the point at which the client can
 inject a filehandle into the "current filehandle" at the server. The
 filehandle is either provided by the client (PUTFH, PUTPUBFH,
 PUTROOTFH), generated as a result of a name-to-filehandle translation
 (LOOKUP and OPEN), or generated from the saved filehandle via
 RESTOREFH. As Section 2.6.3.1.1.1 states, a put filehandle operation
 followed by SAVEFH MUST NOT return NFS4ERR_WRONGSEC. Thus, the

 RESTOREFH operation, under certain conditions (see
 Section 2.6.3.1.1), is permitted to return NFS4ERR_WRONGSEC so that
 security policies can be honored.

 The READDIR operation will not directly return the NFS4ERR_WRONGSEC
 error. However, if the READDIR request included a request for
 attributes, it is possible that the READDIR request’s security triple
 did not match that of a directory entry. If this is the case and the
 client has requested the rdattr_error attribute, the server will
 return the NFS4ERR_WRONGSEC error in rdattr_error for the entry.

 To resolve an error return of NFS4ERR_WRONGSEC, the client does the
 following:

 * For LOOKUP and OPEN, the client will use SECINFO with the same
 current filehandle and name as provided in the original LOOKUP or
 OPEN to enumerate the available security triples.

 * For the rdattr_error, the client will use SECINFO with the same
 current filehandle as provided in the original READDIR. The name
 passed to SECINFO will be that of the directory entry (as returned
 from READDIR) that had the NFS4ERR_WRONGSEC error in the
 rdattr_error attribute.

 * For PUTFH, PUTROOTFH, PUTPUBFH, RESTOREFH, LINK, and RENAME, the
 client will use SECINFO_NO_NAME { style =
 SECINFO_STYLE4_CURRENT_FH }. The client will prefix the
 SECINFO_NO_NAME operation with the appropriate PUTFH, PUTPUBFH, or
 PUTROOTFH operation that provides the filehandle originally
 provided by the PUTFH, PUTPUBFH, PUTROOTFH, or RESTOREFH
 operation.

 NOTE: In NFSv4.0, the client was required to use SECINFO, and had
 to reconstruct the parent of the original filehandle and the
 component name of the original filehandle. The introduction in
 NFSv4.1 of SECINFO_NO_NAME obviates the need for reconstruction.

 * For LOOKUPP, the client will use SECINFO_NO_NAME { style =
 SECINFO_STYLE4_PARENT } and provide the filehandle that equals the
 filehandle originally provided to LOOKUPP.

 See Section 21 for a discussion on the recommendations for the
 security flavor used by SECINFO and SECINFO_NO_NAME.

18.30. Operation 34: SETATTR - Set Attributes

18.30.1. ARGUMENTS

 struct SETATTR4args {
 /* CURRENT_FH: target object */
 stateid4 stateid;
 fattr4 obj_attributes;
 };

18.30.2. RESULTS

 struct SETATTR4res {
 nfsstat4 status;
 bitmap4 attrsset;
 };

18.30.3. DESCRIPTION

 The SETATTR operation changes one or more of the attributes of a file
 system object. The new attributes are specified with a bitmap and
 the attributes that follow the bitmap in bit order.

 The stateid argument for SETATTR is used to provide byte-range
 locking context that is necessary for SETATTR requests that set the
 size attribute. Since setting the size attribute modifies the file’s
 data, it has the same locking requirements as a corresponding WRITE.

 Any SETATTR that sets the size attribute is incompatible with a share
 reservation that specifies OPEN4_SHARE_DENY_WRITE. The area between
 the old end-of-file and the new end-of-file is considered to be
 modified just as would have been the case had the area in question
 been specified as the target of WRITE, for the purpose of checking
 conflicts with byte-range locks, for those cases in which a server is
 implementing mandatory byte-range locking behavior. A valid stateid
 SHOULD always be specified. When the file size attribute is not set,
 the special stateid consisting of all bits equal to zero MAY be
 passed.

 On either success or failure of the operation, the server will return
 the attrsset bitmask to represent what (if any) attributes were
 successfully set. The attrsset in the response is a subset of the
 attrmask field of the obj_attributes field in the argument.

 On success, the current filehandle retains its value.

18.30.4. IMPLEMENTATION

 If the request specifies the owner attribute to be set, the server
 SHOULD allow the operation to succeed if the current owner of the
 object matches the value specified in the request. Some servers may
 be implemented in a way as to prohibit the setting of the owner
 attribute unless the requester has privilege to do so. If the server
 is lenient in this one case of matching owner values, the client
 implementation may be simplified in cases of creation of an object
 (e.g., an exclusive create via OPEN) followed by a SETATTR.

 The file size attribute is used to request changes to the size of a
 file. A value of zero causes the file to be truncated, a value less
 than the current size of the file causes data from new size to the
 end of the file to be discarded, and a size greater than the current
 size of the file causes logically zeroed data bytes to be added to
 the end of the file. Servers are free to implement this using
 unallocated bytes (holes) or allocated data bytes set to zero.
 Clients should not make any assumptions regarding a server’s
 implementation of this feature, beyond that the bytes in the affected
 byte-range returned by READ will be zeroed. Servers MUST support
 extending the file size via SETATTR.

 SETATTR is not guaranteed to be atomic. A failed SETATTR may
 partially change a file’s attributes, hence the reason why the reply
 always includes the status and the list of attributes that were set.

 If the object whose attributes are being changed has a file
 delegation that is held by a client other than the one doing the
 SETATTR, the delegation(s) must be recalled, and the operation cannot
 proceed to actually change an attribute until each such delegation is
 returned or revoked. In all cases in which delegations are recalled,
 the server is likely to return one or more NFS4ERR_DELAY errors while
 the delegation(s) remains outstanding, although it might not do that
 if the delegations are returned quickly.

 If the object whose attributes are being set is a directory and
 another client holds a directory delegation for that directory, then
 if enabled, asynchronous notifications will be generated when the set
 of attributes changed has a non-null intersection with the set of
 attributes for which notification is requested. Notifications of
 type NOTIFY4_CHANGE_DIR_ATTRS will be sent to the appropriate
 client(s), but the SETATTR is not delayed by waiting for these
 notifications to be sent.

 If the object whose attributes are being set is a member of the
 directory for which another client holds a directory delegation, then
 asynchronous notifications will be generated when the set of
 attributes changed has a non-null intersection with the set of
 attributes for which notification is requested. Notifications of
 type NOTIFY4_CHANGE_CHILD_ATTRS will be sent to the appropriate
 clients, but the SETATTR is not delayed by waiting for these
 notifications to be sent.

 Changing the size of a file with SETATTR indirectly changes the
 time_modify and change attributes. A client must account for this as
 size changes can result in data deletion.

 The attributes time_access_set and time_modify_set are write-only
 attributes constructed as a switched union so the client can direct
 the server in setting the time values. If the switched union
 specifies SET_TO_CLIENT_TIME4, the client has provided an nfstime4 to
 be used for the operation. If the switch union does not specify
 SET_TO_CLIENT_TIME4, the server is to use its current time for the
 SETATTR operation.

 If server and client times differ, programs that compare client time
 to file times can break. A time synchronization protocol should be
 used to limit client/server time skew.

 Use of a COMPOUND containing a VERIFY operation specifying only the
 change attribute, immediately followed by a SETATTR, provides a means
 whereby a client may specify a request that emulates the
 functionality of the SETATTR guard mechanism of NFSv3. Since the
 function of the guard mechanism is to avoid changes to the file
 attributes based on stale information, delays between checking of the
 guard condition and the setting of the attributes have the potential
 to compromise this function, as would the corresponding delay in the
 NFSv4 emulation. Therefore, NFSv4.1 servers SHOULD take care to
 avoid such delays, to the degree possible, when executing such a
 request.

 If the server does not support an attribute as requested by the
 client, the server SHOULD return NFS4ERR_ATTRNOTSUPP.

 A mask of the attributes actually set is returned by SETATTR in all
 cases. That mask MUST NOT include attribute bits not requested to be
 set by the client. If the attribute masks in the request and reply
 are equal, the status field in the reply MUST be NFS4_OK.

18.31. Operation 37: VERIFY - Verify Same Attributes

18.31.1. ARGUMENTS

 struct VERIFY4args {
 /* CURRENT_FH: object */
 fattr4 obj_attributes;
 };

18.31.2. RESULTS

 struct VERIFY4res {
 nfsstat4 status;
 };

18.31.3. DESCRIPTION

 The VERIFY operation is used to verify that attributes have the value
 assumed by the client before proceeding with the following operations
 in the COMPOUND request. If any of the attributes do not match, then
 the error NFS4ERR_NOT_SAME must be returned. The current filehandle
 retains its value after successful completion of the operation.

18.31.4. IMPLEMENTATION

 One possible use of the VERIFY operation is the following series of
 operations. With this, the client is attempting to verify that the
 file being removed will match what the client expects to be removed.
 This series can help prevent the unintended deletion of a file.

 PUTFH (directory filehandle)
 LOOKUP (file name)
 VERIFY (filehandle == fh)
 PUTFH (directory filehandle)

 REMOVE (file name)

 This series does not prevent a second client from removing and
 creating a new file in the middle of this sequence, but it does help
 avoid the unintended result.

 In the case that a RECOMMENDED attribute is specified in the VERIFY
 operation and the server does not support that attribute for the file
 system object, the error NFS4ERR_ATTRNOTSUPP is returned to the
 client.

 When the attribute rdattr_error or any set-only attribute (e.g.,
 time_modify_set) is specified, the error NFS4ERR_INVAL is returned to
 the client.

18.32. Operation 38: WRITE - Write to File

18.32.1. ARGUMENTS

 enum stable_how4 {
 UNSTABLE4 = 0,
 DATA_SYNC4 = 1,
 FILE_SYNC4 = 2
 };

 struct WRITE4args {
 /* CURRENT_FH: file */
 stateid4 stateid;
 offset4 offset;
 stable_how4 stable;
 opaque data<>;
 };

18.32.2. RESULTS

 struct WRITE4resok {
 count4 count;
 stable_how4 committed;
 verifier4 writeverf;
 };

 union WRITE4res switch (nfsstat4 status) {
 case NFS4_OK:
 WRITE4resok resok4;
 default:
 void;
 };

18.32.3. DESCRIPTION

 The WRITE operation is used to write data to a regular file. The
 target file is specified by the current filehandle. The offset
 specifies the offset where the data should be written. An offset of
 zero specifies that the write should start at the beginning of the
 file. The count, as encoded as part of the opaque data parameter,
 represents the number of bytes of data that are to be written. If
 the count is zero, the WRITE will succeed and return a count of zero
 subject to permissions checking. The server MAY write fewer bytes
 than requested by the client.

 The client specifies with the stable parameter the method of how the
 data is to be processed by the server. If stable is FILE_SYNC4, the
 server MUST commit the data written plus all file system metadata to
 stable storage before returning results. This corresponds to the
 NFSv2 protocol semantics. Any other behavior constitutes a protocol
 violation. If stable is DATA_SYNC4, then the server MUST commit all
 of the data to stable storage and enough of the metadata to retrieve
 the data before returning. The server implementor is free to
 implement DATA_SYNC4 in the same fashion as FILE_SYNC4, but with a
 possible performance drop. If stable is UNSTABLE4, the server is
 free to commit any part of the data and the metadata to stable

 storage, including all or none, before returning a reply to the
 client. There is no guarantee whether or when any uncommitted data
 will subsequently be committed to stable storage. The only
 guarantees made by the server are that it will not destroy any data
 without changing the value of writeverf and that it will not commit
 the data and metadata at a level less than that requested by the
 client.

 Except when special stateids are used, the stateid value for a WRITE
 request represents a value returned from a previous byte-range LOCK
 or OPEN request or the stateid associated with a delegation. The
 stateid identifies the associated owners if any and is used by the
 server to verify that the associated locks are still valid (e.g.,
 have not been revoked).

 Upon successful completion, the following results are returned. The
 count result is the number of bytes of data written to the file. The
 server may write fewer bytes than requested. If so, the actual
 number of bytes written starting at location, offset, is returned.

 The server also returns an indication of the level of commitment of
 the data and metadata via committed. Per Table 20,

 * The server MAY commit the data at a stronger level than requested.

 * The server MUST commit the data at a level at least as high as
 that committed.

 +============+===================================+
 | stable | committed |
 +============+===================================+
 | UNSTABLE4 | FILE_SYNC4, DATA_SYNC4, UNSTABLE4 |
 +------------+-----------------------------------+
 | DATA_SYNC4 | FILE_SYNC4, DATA_SYNC4 |
 +------------+-----------------------------------+
 | FILE_SYNC4 | FILE_SYNC4 |
 +------------+-----------------------------------+

 Table 20: Valid Combinations of the Fields
 Stable in the Request and Committed in the
 Reply

 The final portion of the result is the field writeverf. This field
 is the write verifier and is a cookie that the client can use to
 determine whether a server has changed instance state (e.g., server
 restart) between a call to WRITE and a subsequent call to either
 WRITE or COMMIT. This cookie MUST be unchanged during a single
 instance of the NFSv4.1 server and MUST be unique between instances
 of the NFSv4.1 server. If the cookie changes, then the client MUST
 assume that any data written with an UNSTABLE4 value for committed
 and an old writeverf in the reply has been lost and will need to be
 recovered.

 If a client writes data to the server with the stable argument set to
 UNSTABLE4 and the reply yields a committed response of DATA_SYNC4 or
 UNSTABLE4, the client will follow up some time in the future with a
 COMMIT operation to synchronize outstanding asynchronous data and
 metadata with the server’s stable storage, barring client error. It
 is possible that due to client crash or other error that a subsequent
 COMMIT will not be received by the server.

 For a WRITE with a stateid value of all bits equal to zero, the
 server MAY allow the WRITE to be serviced subject to mandatory byte-
 range locks or the current share deny modes for the file. For a
 WRITE with a stateid value of all bits equal to 1, the server MUST
 NOT allow the WRITE operation to bypass locking checks at the server
 and otherwise is treated as if a stateid of all bits equal to zero
 were used.

 On success, the current filehandle retains its value.

18.32.4. IMPLEMENTATION

 It is possible for the server to write fewer bytes of data than
 requested by the client. In this case, the server SHOULD NOT return
 an error unless no data was written at all. If the server writes
 less than the number of bytes specified, the client will need to send
 another WRITE to write the remaining data.

 It is assumed that the act of writing data to a file will cause the
 time_modified and change attributes of the file to be updated.
 However, these attributes SHOULD NOT be changed unless the contents
 of the file are changed. Thus, a WRITE request with count set to
 zero SHOULD NOT cause the time_modified and change attributes of the
 file to be updated.

 Stable storage is persistent storage that survives:

 1. Repeated power failures.

 2. Hardware failures (of any board, power supply, etc.).

 3. Repeated software crashes and restarts.

 This definition does not address failure of the stable storage module
 itself.

 The verifier is defined to allow a client to detect different
 instances of an NFSv4.1 protocol server over which cached,
 uncommitted data may be lost. In the most likely case, the verifier
 allows the client to detect server restarts. This information is
 required so that the client can safely determine whether the server
 could have lost cached data. If the server fails unexpectedly and
 the client has uncommitted data from previous WRITE requests (done
 with the stable argument set to UNSTABLE4 and in which the result
 committed was returned as UNSTABLE4 as well), the server might not
 have flushed cached data to stable storage. The burden of recovery
 is on the client, and the client will need to retransmit the data to
 the server.

 A suggested verifier would be to use the time that the server was
 last started (if restarting the server results in lost buffers).

 The reply’s committed field allows the client to do more effective
 caching. If the server is committing all WRITE requests to stable
 storage, then it SHOULD return with committed set to FILE_SYNC4,
 regardless of the value of the stable field in the arguments. A
 server that uses an NVRAM accelerator may choose to implement this
 policy. The client can use this to increase the effectiveness of the
 cache by discarding cached data that has already been committed on
 the server.

 Some implementations may return NFS4ERR_NOSPC instead of
 NFS4ERR_DQUOT when a user’s quota is exceeded.

 In the case that the current filehandle is of type NF4DIR, the server
 will return NFS4ERR_ISDIR. If the current file is a symbolic link,
 the error NFS4ERR_SYMLINK will be returned. Otherwise, if the
 current filehandle does not designate an ordinary file, the server
 will return NFS4ERR_WRONG_TYPE.

 If mandatory byte-range locking is in effect for the file, and the
 corresponding byte-range of the data to be written to the file is
 READ_LT or WRITE_LT locked by an owner that is not associated with
 the stateid, the server MUST return NFS4ERR_LOCKED. If so, the
 client MUST check if the owner corresponding to the stateid used with
 the WRITE operation has a conflicting READ_LT lock that overlaps with
 the byte-range that was to be written. If the stateid’s owner has no
 conflicting READ_LT lock, then the client SHOULD try to get the
 appropriate write byte-range lock via the LOCK operation before re-
 attempting the WRITE. When the WRITE completes, the client SHOULD
 release the byte-range lock via LOCKU.

 If the stateid’s owner had a conflicting READ_LT lock, then the
 client has no choice but to return an error to the application that
 attempted the WRITE. The reason is that since the stateid’s owner
 had a READ_LT lock, either the server attempted to temporarily
 effectively upgrade this READ_LT lock to a WRITE_LT lock or the
 server has no upgrade capability. If the server attempted to upgrade
 the READ_LT lock and failed, it is pointless for the client to re-
 attempt the upgrade via the LOCK operation, because there might be
 another client also trying to upgrade. If two clients are blocked
 trying to upgrade the same lock, the clients deadlock. If the server
 has no upgrade capability, then it is pointless to try a LOCK
 operation to upgrade.

 If one or more other clients have delegations for the file being
 written, those delegations MUST be recalled, and the operation cannot
 proceed until those delegations are returned or revoked. Except
 where this happens very quickly, one or more NFS4ERR_DELAY errors
 will be returned to requests made while the delegation remains
 outstanding. Normally, delegations will not be recalled as a result
 of a WRITE operation since the recall will occur as a result of an
 earlier OPEN. However, since it is possible for a WRITE to be done
 with a special stateid, the server needs to check for this case even
 though the client should have done an OPEN previously.

18.33. Operation 40: BACKCHANNEL_CTL - Backchannel Control

18.33.1. ARGUMENT

 typedef opaque gsshandle4_t<>;

 struct gss_cb_handles4 {
 rpc_gss_svc_t gcbp_service; /* RFC 2203 */
 gsshandle4_t gcbp_handle_from_server;
 gsshandle4_t gcbp_handle_from_client;
 };

 union callback_sec_parms4 switch (uint32_t cb_secflavor) {
 case AUTH_NONE:
 void;
 case AUTH_SYS:
 authsys_parms cbsp_sys_cred; /* RFC 5531 */
 case RPCSEC_GSS:
 gss_cb_handles4 cbsp_gss_handles;
 };

 struct BACKCHANNEL_CTL4args {
 uint32_t bca_cb_program;
 callback_sec_parms4 bca_sec_parms<>;
 };

18.33.2. RESULT

 struct BACKCHANNEL_CTL4res {
 nfsstat4 bcr_status;
 };

18.33.3. DESCRIPTION

 The BACKCHANNEL_CTL operation replaces the backchannel’s callback
 program number and adds (not replaces) RPCSEC_GSS handles for use by
 the backchannel.

 The arguments of the BACKCHANNEL_CTL call are a subset of the
 CREATE_SESSION parameters. In the arguments of BACKCHANNEL_CTL, the
 bca_cb_program field and bca_sec_parms fields correspond respectively
 to the csa_cb_program and csa_sec_parms fields of the arguments of
 CREATE_SESSION (Section 18.36).

 BACKCHANNEL_CTL MUST appear in a COMPOUND that starts with SEQUENCE.

 If the RPCSEC_GSS handle identified by gcbp_handle_from_server does
 not exist on the server, the server MUST return NFS4ERR_NOENT.

 If an RPCSEC_GSS handle is using the SSV context (see
 Section 2.10.9), then because each SSV RPCSEC_GSS handle shares a
 common SSV GSS context, there are security considerations specific to
 this situation discussed in Section 2.10.10.

18.34. Operation 41: BIND_CONN_TO_SESSION - Associate Connection with
 Session

18.34.1. ARGUMENT

 enum channel_dir_from_client4 {
 CDFC4_FORE = 0x1,
 CDFC4_BACK = 0x2,
 CDFC4_FORE_OR_BOTH = 0x3,
 CDFC4_BACK_OR_BOTH = 0x7
 };

 struct BIND_CONN_TO_SESSION4args {
 sessionid4 bctsa_sessid;

 channel_dir_from_client4
 bctsa_dir;

 bool bctsa_use_conn_in_rdma_mode;
 };

18.34.2. RESULT

 enum channel_dir_from_server4 {
 CDFS4_FORE = 0x1,
 CDFS4_BACK = 0x2,
 CDFS4_BOTH = 0x3
 };

 struct BIND_CONN_TO_SESSION4resok {
 sessionid4 bctsr_sessid;

 channel_dir_from_server4
 bctsr_dir;

 bool bctsr_use_conn_in_rdma_mode;
 };

 union BIND_CONN_TO_SESSION4res
 switch (nfsstat4 bctsr_status) {

 case NFS4_OK:
 BIND_CONN_TO_SESSION4resok
 bctsr_resok4;

 default: void;
 };

18.34.3. DESCRIPTION

 BIND_CONN_TO_SESSION is used to associate additional connections with
 a session. It MUST be used on the connection being associated with
 the session. It MUST be the only operation in the COMPOUND
 procedure. If SP4_NONE (Section 18.35) state protection is used, any
 principal, security flavor, or RPCSEC_GSS context MAY be used to
 invoke the operation. If SP4_MACH_CRED is used, RPCSEC_GSS MUST be
 used with the integrity or privacy services, using the principal that
 created the client ID. If SP4_SSV is used, RPCSEC_GSS with the SSV
 GSS mechanism (Section 2.10.9) and integrity or privacy MUST be used.

 If, when the client ID was created, the client opted for SP4_NONE
 state protection, the client is not required to use
 BIND_CONN_TO_SESSION to associate the connection with the session,

 unless the client wishes to associate the connection with the
 backchannel. When SP4_NONE protection is used, simply sending a
 COMPOUND request with a SEQUENCE operation is sufficient to associate
 the connection with the session specified in SEQUENCE.

 The field bctsa_dir indicates whether the client wants to associate
 the connection with the fore channel or the backchannel or both
 channels. The value CDFC4_FORE_OR_BOTH indicates that the client
 wants to associate the connection with both the fore channel and
 backchannel, but will accept the connection being associated to just
 the fore channel. The value CDFC4_BACK_OR_BOTH indicates that the
 client wants to associate with both the fore channel and backchannel,
 but will accept the connection being associated with just the
 backchannel. The server replies in bctsr_dir which channel(s) the
 connection is associated with. If the client specified CDFC4_FORE,
 the server MUST return CDFS4_FORE. If the client specified
 CDFC4_BACK, the server MUST return CDFS4_BACK. If the client
 specified CDFC4_FORE_OR_BOTH, the server MUST return CDFS4_FORE or
 CDFS4_BOTH. If the client specified CDFC4_BACK_OR_BOTH, the server
 MUST return CDFS4_BACK or CDFS4_BOTH.

 See the CREATE_SESSION operation (Section 18.36), and the description
 of the argument csa_use_conn_in_rdma_mode to understand
 bctsa_use_conn_in_rdma_mode, and the description of
 csr_use_conn_in_rdma_mode to understand bctsr_use_conn_in_rdma_mode.

 Invoking BIND_CONN_TO_SESSION on a connection already associated with
 the specified session has no effect, and the server MUST respond with
 NFS4_OK, unless the client is demanding changes to the set of
 channels the connection is associated with. If so, the server MUST
 return NFS4ERR_INVAL.

18.34.4. IMPLEMENTATION

 If a session’s channel loses all connections, depending on the client
 ID’s state protection and type of channel, the client might need to
 use BIND_CONN_TO_SESSION to associate a new connection. If the
 server restarted and does not keep the reply cache in stable storage,
 the server will not recognize the session ID. The client will
 ultimately have to invoke EXCHANGE_ID to create a new client ID and
 session.

 Suppose SP4_SSV state protection is being used, and
 BIND_CONN_TO_SESSION is among the operations included in the
 spo_must_enforce set when the client ID was created (Section 18.35).
 If so, there is an issue if SET_SSV is sent, no response is returned,
 and the last connection associated with the client ID drops. The
 client, per the sessions model, MUST retry the SET_SSV. But it needs
 a new connection to do so, and MUST associate that connection with
 the session via a BIND_CONN_TO_SESSION authenticated with the SSV GSS
 mechanism. The problem is that the RPCSEC_GSS message integrity
 codes use a subkey derived from the SSV as the key and the SSV may
 have changed. While there are multiple recovery strategies, a
 single, general strategy is described here.

 * The client reconnects.

 * The client assumes that the SET_SSV was executed, and so sends
 BIND_CONN_TO_SESSION with the subkey (derived from the new SSV,
 i.e., what SET_SSV would have set the SSV to) used as the key for
 the RPCSEC_GSS credential message integrity codes.

 * If the request succeeds, this means that the original attempted
 SET_SSV did execute successfully. The client re-sends the
 original SET_SSV, which the server will reply to via the reply
 cache.

 * If the server returns an RPC authentication error, this means that
 the server’s current SSV was not changed (and the SET_SSV was
 likely not executed). The client then tries BIND_CONN_TO_SESSION
 with the subkey derived from the old SSV as the key for the

 RPCSEC_GSS message integrity codes.

 * The attempted BIND_CONN_TO_SESSION with the old SSV should
 succeed. If so, the client re-sends the original SET_SSV. If the
 original SET_SSV was not executed, then the server executes it.
 If the original SET_SSV was executed but failed, the server will
 return the SET_SSV from the reply cache.

18.35. Operation 42: EXCHANGE_ID - Instantiate Client ID

 The EXCHANGE_ID operation exchanges long-hand client and server
 identifiers (owners) and provides access to a client ID, creating one
 if necessary. This client ID becomes associated with the connection
 on which the operation is done, so that it is available when a
 CREATE_SESSION is done or when the connection is used to issue a
 request on an existing session associated with the current client.

18.35.1. ARGUMENT

 const EXCHGID4_FLAG_SUPP_MOVED_REFER = 0x00000001;
 const EXCHGID4_FLAG_SUPP_MOVED_MIGR = 0x00000002;

 const EXCHGID4_FLAG_BIND_PRINC_STATEID = 0x00000100;

 const EXCHGID4_FLAG_USE_NON_PNFS = 0x00010000;
 const EXCHGID4_FLAG_USE_PNFS_MDS = 0x00020000;
 const EXCHGID4_FLAG_USE_PNFS_DS = 0x00040000;

 const EXCHGID4_FLAG_MASK_PNFS = 0x00070000;

 const EXCHGID4_FLAG_UPD_CONFIRMED_REC_A = 0x40000000;
 const EXCHGID4_FLAG_CONFIRMED_R = 0x80000000;

 struct state_protect_ops4 {
 bitmap4 spo_must_enforce;
 bitmap4 spo_must_allow;
 };

 struct ssv_sp_parms4 {
 state_protect_ops4 ssp_ops;
 sec_oid4 ssp_hash_algs<>;
 sec_oid4 ssp_encr_algs<>;
 uint32_t ssp_window;
 uint32_t ssp_num_gss_handles;
 };

 enum state_protect_how4 {
 SP4_NONE = 0,
 SP4_MACH_CRED = 1,
 SP4_SSV = 2
 };

 union state_protect4_a switch(state_protect_how4 spa_how) {
 case SP4_NONE:
 void;
 case SP4_MACH_CRED:
 state_protect_ops4 spa_mach_ops;
 case SP4_SSV:
 ssv_sp_parms4 spa_ssv_parms;
 };

 struct EXCHANGE_ID4args {
 client_owner4 eia_clientowner;
 uint32_t eia_flags;
 state_protect4_a eia_state_protect;
 nfs_impl_id4 eia_client_impl_id<1>;
 };

18.35.2. RESULT

 struct ssv_prot_info4 {

 state_protect_ops4 spi_ops;
 uint32_t spi_hash_alg;
 uint32_t spi_encr_alg;
 uint32_t spi_ssv_len;
 uint32_t spi_window;
 gsshandle4_t spi_handles<>;
 };

 union state_protect4_r switch(state_protect_how4 spr_how) {
 case SP4_NONE:
 void;
 case SP4_MACH_CRED:
 state_protect_ops4 spr_mach_ops;
 case SP4_SSV:
 ssv_prot_info4 spr_ssv_info;
 };

 struct EXCHANGE_ID4resok {
 clientid4 eir_clientid;
 sequenceid4 eir_sequenceid;
 uint32_t eir_flags;
 state_protect4_r eir_state_protect;
 server_owner4 eir_server_owner;
 opaque eir_server_scope<NFS4_OPAQUE_LIMIT>;
 nfs_impl_id4 eir_server_impl_id<1>;
 };

 union EXCHANGE_ID4res switch (nfsstat4 eir_status) {
 case NFS4_OK:
 EXCHANGE_ID4resok eir_resok4;

 default:
 void;
 };

18.35.3. DESCRIPTION

 The client uses the EXCHANGE_ID operation to register a particular
 instance of that client with the server, as represented by a
 client_owner4. However, when the client_owner4 has already been
 registered by other means (e.g., Transparent State Migration), the
 client may still use EXCHANGE_ID to obtain the client ID assigned
 previously.

 The client ID returned from this operation will be associated with
 the connection on which the EXCHANGE_ID is received and will serve as
 a parent object for sessions created by the client on this connection
 or to which the connection is bound. As a result of using those
 sessions to make requests involving the creation of state, that state
 will become associated with the client ID returned.

 In situations in which the registration of the client_owner has not
 occurred previously, the client ID must first be used, along with the
 returned eir_sequenceid, in creating an associated session using
 CREATE_SESSION.

 If the flag EXCHGID4_FLAG_CONFIRMED_R is set in the result,
 eir_flags, then it is an indication that the registration of the
 client_owner has already occurred and that a further CREATE_SESSION
 is not needed to confirm it. Of course, subsequent CREATE_SESSION
 operations may be needed for other reasons.

 The value eir_sequenceid is used to establish an initial sequence
 value associated with the client ID returned. In cases in which a
 CREATE_SESSION has already been done, there is no need for this
 value, since sequencing of such request has already been established,
 and the client has no need for this value and will ignore it.

 EXCHANGE_ID MAY be sent in a COMPOUND procedure that starts with
 SEQUENCE. However, when a client communicates with a server for the
 first time, it will not have a session, so using SEQUENCE will not be

 possible. If EXCHANGE_ID is sent without a preceding SEQUENCE, then
 it MUST be the only operation in the COMPOUND procedure’s request.
 If it is not, the server MUST return NFS4ERR_NOT_ONLY_OP.

 The eia_clientowner field is composed of a co_verifier field and a
 co_ownerid string. As noted in Section 2.4, the co_ownerid
 identifies the client, and the co_verifier specifies a particular
 incarnation of that client. An EXCHANGE_ID sent with a new
 incarnation of the client will lead to the server removing lock state
 of the old incarnation. On the other hand, when an EXCHANGE_ID sent
 with the current incarnation and co_ownerid does not result in an
 unrelated error, it will potentially update an existing client ID’s
 properties or simply return information about the existing client_id.
 The latter would happen when this operation is done to the same
 server using different network addresses as part of creating trunked
 connections.

 A server MUST NOT provide the same client ID to two different
 incarnations of an eia_clientowner.

 In addition to the client ID and sequence ID, the server returns a
 server owner (eir_server_owner) and server scope (eir_server_scope).
 The former field is used in connection with network trunking as
 described in Section 2.10.5. The latter field is used to allow
 clients to determine when client IDs sent by one server may be
 recognized by another in the event of file system migration (see
 Section 11.11.9 of the current document).

 The client ID returned by EXCHANGE_ID is only unique relative to the
 combination of eir_server_owner.so_major_id and eir_server_scope.
 Thus, if two servers return the same client ID, the onus is on the
 client to distinguish the client IDs on the basis of
 eir_server_owner.so_major_id and eir_server_scope. In the event two
 different servers claim matching server_owner.so_major_id and
 eir_server_scope, the client can use the verification techniques
 discussed in Section 2.10.5.1 to determine if the servers are
 distinct. If they are distinct, then the client will need to note
 the destination network addresses of the connections used with each
 server and use the network address as the final discriminator.

 The server, as defined by the unique identity expressed in the
 so_major_id of the server owner and the server scope, needs to track
 several properties of each client ID it hands out. The properties
 apply to the client ID and all sessions associated with the client
 ID. The properties are derived from the arguments and results of
 EXCHANGE_ID. The client ID properties include:

 * The capabilities expressed by the following bits, which come from
 the results of EXCHANGE_ID:

 - EXCHGID4_FLAG_SUPP_MOVED_REFER

 - EXCHGID4_FLAG_SUPP_MOVED_MIGR

 - EXCHGID4_FLAG_BIND_PRINC_STATEID

 - EXCHGID4_FLAG_USE_NON_PNFS

 - EXCHGID4_FLAG_USE_PNFS_MDS

 - EXCHGID4_FLAG_USE_PNFS_DS

 These properties may be updated by subsequent EXCHANGE_ID
 operations on confirmed client IDs though the server MAY refuse to
 change them.

 * The state protection method used, one of SP4_NONE, SP4_MACH_CRED,
 or SP4_SSV, as set by the spa_how field of the arguments to
 EXCHANGE_ID. Once the client ID is confirmed, this property
 cannot be updated by subsequent EXCHANGE_ID operations.

 * For SP4_MACH_CRED or SP4_SSV state protection:

 - The list of operations (spo_must_enforce) that MUST use the
 specified state protection. This list comes from the results
 of EXCHANGE_ID.

 - The list of operations (spo_must_allow) that MAY use the
 specified state protection. This list comes from the results
 of EXCHANGE_ID.

 Once the client ID is confirmed, these properties cannot be
 updated by subsequent EXCHANGE_ID requests.

 * For SP4_SSV protection:

 - The OID of the hash algorithm. This property is represented by
 one of the algorithms in the ssp_hash_algs field of the
 EXCHANGE_ID arguments. Once the client ID is confirmed, this
 property cannot be updated by subsequent EXCHANGE_ID requests.

 - The OID of the encryption algorithm. This property is
 represented by one of the algorithms in the ssp_encr_algs field
 of the EXCHANGE_ID arguments. Once the client ID is confirmed,
 this property cannot be updated by subsequent EXCHANGE_ID
 requests.

 - The length of the SSV. This property is represented by the
 spi_ssv_len field in the EXCHANGE_ID results. Once the client
 ID is confirmed, this property cannot be updated by subsequent
 EXCHANGE_ID operations.

 There are REQUIRED and RECOMMENDED relationships among the
 length of the key of the encryption algorithm ("key length"),
 the length of the output of hash algorithm ("hash length"), and
 the length of the SSV ("SSV length").

 o key length MUST be <= hash length. This is because the keys
 used for the encryption algorithm are actually subkeys
 derived from the SSV, and the derivation is via the hash
 algorithm. The selection of an encryption algorithm with a
 key length that exceeded the length of the output of the
 hash algorithm would require padding, and thus weaken the
 use of the encryption algorithm.

 o hash length SHOULD be <= SSV length. This is because the
 SSV is a key used to derive subkeys via an HMAC, and it is
 recommended that the key used as input to an HMAC be at
 least as long as the length of the HMAC’s hash algorithm’s
 output (see Section 3 of [52]).

 o key length SHOULD be <= SSV length. This is a transitive
 result of the above two invariants.

 o key length SHOULD be >= hash length / 2. This is because
 the subkey derivation is via an HMAC and it is recommended
 that if the HMAC has to be truncated, it should not be
 truncated to less than half the hash length (see Section 4
 of RFC 2104 [52]).

 - Number of concurrent versions of the SSV the client and server
 will support (see Section 2.10.9). This property is
 represented by spi_window in the EXCHANGE_ID results. The
 property may be updated by subsequent EXCHANGE_ID operations.

 * The client’s implementation ID as represented by the
 eia_client_impl_id field of the arguments. The property may be
 updated by subsequent EXCHANGE_ID requests.

 * The server’s implementation ID as represented by the
 eir_server_impl_id field of the reply. The property may be
 updated by replies to subsequent EXCHANGE_ID requests.

 The eia_flags passed as part of the arguments and the eir_flags
 results allow the client and server to inform each other of their
 capabilities as well as indicate how the client ID will be used.
 Whether a bit is set or cleared on the arguments’ flags does not
 force the server to set or clear the same bit on the results’ side.
 Bits not defined above cannot be set in the eia_flags field. If they
 are, the server MUST reject the operation with NFS4ERR_INVAL.

 The EXCHGID4_FLAG_UPD_CONFIRMED_REC_A bit can only be set in
 eia_flags; it is always off in eir_flags. The
 EXCHGID4_FLAG_CONFIRMED_R bit can only be set in eir_flags; it is
 always off in eia_flags. If the server recognizes the co_ownerid and
 co_verifier as mapping to a confirmed client ID, it sets
 EXCHGID4_FLAG_CONFIRMED_R in eir_flags. The
 EXCHGID4_FLAG_CONFIRMED_R flag allows a client to tell if the client
 ID it is trying to create already exists and is confirmed.

 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is set in eia_flags, this means
 that the client is attempting to update properties of an existing
 confirmed client ID (if the client wants to update properties of an
 unconfirmed client ID, it MUST NOT set
 EXCHGID4_FLAG_UPD_CONFIRMED_REC_A). If so, it is RECOMMENDED that
 the client send the update EXCHANGE_ID operation in the same COMPOUND
 as a SEQUENCE so that the EXCHANGE_ID is executed exactly once.
 Whether the client can update the properties of client ID depends on
 the state protection it selected when the client ID was created, and
 the principal and security flavor it used when sending the
 EXCHANGE_ID operation. The situations described in items 6, 7, 8, or
 9 of the second numbered list of Section 18.35.4 below will apply.
 Note that if the operation succeeds and returns a client ID that is
 already confirmed, the server MUST set the EXCHGID4_FLAG_CONFIRMED_R
 bit in eir_flags.

 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is not set in eia_flags, this
 means that the client is trying to establish a new client ID; it is
 attempting to trunk data communication to the server (See
 Section 2.10.5); or it is attempting to update properties of an
 unconfirmed client ID. The situations described in items 1, 2, 3, 4,
 or 5 of the second numbered list of Section 18.35.4 below will apply.
 Note that if the operation succeeds and returns a client ID that was
 previously confirmed, the server MUST set the
 EXCHGID4_FLAG_CONFIRMED_R bit in eir_flags.

 When the EXCHGID4_FLAG_SUPP_MOVED_REFER flag bit is set, the client
 indicates that it is capable of dealing with an NFS4ERR_MOVED error
 as part of a referral sequence. When this bit is not set, it is
 still legal for the server to perform a referral sequence. However,
 a server may use the fact that the client is incapable of correctly
 responding to a referral, by avoiding it for that particular client.
 It may, for instance, act as a proxy for that particular file system,
 at some cost in performance, although it is not obligated to do so.
 If the server will potentially perform a referral, it MUST set
 EXCHGID4_FLAG_SUPP_MOVED_REFER in eir_flags.

 When the EXCHGID4_FLAG_SUPP_MOVED_MIGR is set, the client indicates
 that it is capable of dealing with an NFS4ERR_MOVED error as part of
 a file system migration sequence. When this bit is not set, it is
 still legal for the server to indicate that a file system has moved,
 when this in fact happens. However, a server may use the fact that
 the client is incapable of correctly responding to a migration in its
 scheduling of file systems to migrate so as to avoid migration of
 file systems being actively used. It may also hide actual migrations
 from clients unable to deal with them by acting as a proxy for a
 migrated file system for particular clients, at some cost in
 performance, although it is not obligated to do so. If the server
 will potentially perform a migration, it MUST set
 EXCHGID4_FLAG_SUPP_MOVED_MIGR in eir_flags.

 When EXCHGID4_FLAG_BIND_PRINC_STATEID is set, the client indicates
 that it wants the server to bind the stateid to the principal. This

 means that when a principal creates a stateid, it has to be the one
 to use the stateid. If the server will perform binding, it will
 return EXCHGID4_FLAG_BIND_PRINC_STATEID. The server MAY return
 EXCHGID4_FLAG_BIND_PRINC_STATEID even if the client does not request
 it. If an update to the client ID changes the value of
 EXCHGID4_FLAG_BIND_PRINC_STATEID’s client ID property, the effect
 applies only to new stateids. Existing stateids (and all stateids
 with the same "other" field) that were created with stateid to
 principal binding in force will continue to have binding in force.
 Existing stateids (and all stateids with the same "other" field) that
 were created with stateid to principal not in force will continue to
 have binding not in force.

 The EXCHGID4_FLAG_USE_NON_PNFS, EXCHGID4_FLAG_USE_PNFS_MDS, and
 EXCHGID4_FLAG_USE_PNFS_DS bits are described in Section 13.1 and
 convey roles the client ID is to be used for in a pNFS environment.
 The server MUST set one of the acceptable combinations of these bits
 (roles) in eir_flags, as specified in that section. Note that the
 same client owner/server owner pair can have multiple roles.
 Multiple roles can be associated with the same client ID or with
 different client IDs. Thus, if a client sends EXCHANGE_ID from the
 same client owner to the same server owner multiple times, but
 specifies different pNFS roles each time, the server might return
 different client IDs. Given that different pNFS roles might have
 different client IDs, the client may ask for different properties for
 each role/client ID.

 The spa_how field of the eia_state_protect field specifies how the
 client wants to protect its client, locking, and session states from
 unauthorized changes (Section 2.10.8.3):

 * SP4_NONE. The client does not request the NFSv4.1 server to
 enforce state protection. The NFSv4.1 server MUST NOT enforce
 state protection for the returned client ID.

 * SP4_MACH_CRED. If spa_how is SP4_MACH_CRED, then the client MUST
 send the EXCHANGE_ID operation with RPCSEC_GSS as the security
 flavor, and with a service of RPC_GSS_SVC_INTEGRITY or
 RPC_GSS_SVC_PRIVACY. If SP4_MACH_CRED is specified, then the
 client wants to use an RPCSEC_GSS-based machine credential to
 protect its state. The server MUST note the principal the
 EXCHANGE_ID operation was sent with, and the GSS mechanism used.
 These notes collectively comprise the machine credential.

 After the client ID is confirmed, as long as the lease associated
 with the client ID is unexpired, a subsequent EXCHANGE_ID
 operation that uses the same eia_clientowner.co_owner as the first
 EXCHANGE_ID MUST also use the same machine credential as the first
 EXCHANGE_ID. The server returns the same client ID for the
 subsequent EXCHANGE_ID as that returned from the first
 EXCHANGE_ID.

 * SP4_SSV. If spa_how is SP4_SSV, then the client MUST send the
 EXCHANGE_ID operation with RPCSEC_GSS as the security flavor, and
 with a service of RPC_GSS_SVC_INTEGRITY or RPC_GSS_SVC_PRIVACY.
 If SP4_SSV is specified, then the client wants to use the SSV to
 protect its state. The server records the credential used in the
 request as the machine credential (as defined above) for the
 eia_clientowner.co_owner. The CREATE_SESSION operation that
 confirms the client ID MUST use the same machine credential.

 When a client specifies SP4_MACH_CRED or SP4_SSV, it also provides
 two lists of operations (each expressed as a bitmap). The first list
 is spo_must_enforce and consists of those operations the client MUST
 send (subject to the server confirming the list of operations in the
 result of EXCHANGE_ID) with the machine credential (if SP4_MACH_CRED
 protection is specified) or the SSV-based credential (if SP4_SSV
 protection is used). The client MUST send the operations with
 RPCSEC_GSS credentials that specify the RPC_GSS_SVC_INTEGRITY or
 RPC_GSS_SVC_PRIVACY security service. Typically, the first list of
 operations includes EXCHANGE_ID, CREATE_SESSION, DELEGPURGE,

 DESTROY_SESSION, BIND_CONN_TO_SESSION, and DESTROY_CLIENTID. The
 client SHOULD NOT specify in this list any operations that require a
 filehandle because the server’s access policies MAY conflict with the
 client’s choice, and thus the client would then be unable to access a
 subset of the server’s namespace.

 Note that if SP4_SSV protection is specified, and the client
 indicates that CREATE_SESSION must be protected with SP4_SSV, because
 the SSV cannot exist without a confirmed client ID, the first
 CREATE_SESSION MUST instead be sent using the machine credential, and
 the server MUST accept the machine credential.

 There is a corresponding result, also called spo_must_enforce, of the
 operations for which the server will require SP4_MACH_CRED or SP4_SSV
 protection. Normally, the server’s result equals the client’s
 argument, but the result MAY be different. If the client requests
 one or more operations in the set { EXCHANGE_ID, CREATE_SESSION,
 DELEGPURGE, DESTROY_SESSION, BIND_CONN_TO_SESSION, DESTROY_CLIENTID
 }, then the result spo_must_enforce MUST include the operations the
 client requested from that set.

 If spo_must_enforce in the results has BIND_CONN_TO_SESSION set, then
 connection binding enforcement is enabled, and the client MUST use
 the machine (if SP4_MACH_CRED protection is used) or SSV (if SP4_SSV
 protection is used) credential on calls to BIND_CONN_TO_SESSION.

 The second list is spo_must_allow and consists of those operations
 the client wants to have the option of sending with the machine
 credential or the SSV-based credential, even if the object the
 operations are performed on is not owned by the machine or SSV
 credential.

 The corresponding result, also called spo_must_allow, consists of the
 operations the server will allow the client to use SP4_SSV or
 SP4_MACH_CRED credentials with. Normally, the server’s result equals
 the client’s argument, but the result MAY be different.

 The purpose of spo_must_allow is to allow clients to solve the
 following conundrum. Suppose the client ID is confirmed with
 EXCHGID4_FLAG_BIND_PRINC_STATEID, and it calls OPEN with the
 RPCSEC_GSS credentials of a normal user. Now suppose the user’s
 credentials expire, and cannot be renewed (e.g., a Kerberos ticket
 granting ticket expires, and the user has logged off and will not be
 acquiring a new ticket granting ticket). The client will be unable
 to send CLOSE without the user’s credentials, which is to say the
 client has to either leave the state on the server or re-send
 EXCHANGE_ID with a new verifier to clear all state, that is, unless
 the client includes CLOSE on the list of operations in spo_must_allow
 and the server agrees.

 The SP4_SSV protection parameters also have:

 ssp_hash_algs:
 This is the set of algorithms the client supports for the purpose
 of computing the digests needed for the internal SSV GSS mechanism
 and for the SET_SSV operation. Each algorithm is specified as an
 object identifier (OID). The REQUIRED algorithms for a server are
 id-sha1, id-sha224, id-sha256, id-sha384, and id-sha512 [25].

 Due to known weaknesses in id-sha1, it is RECOMMENDED that the
 client specify at least one algorithm within ssp_hash_algs other
 than id-sha1.

 The algorithm the server selects among the set is indicated in
 spi_hash_alg, a field of spr_ssv_prot_info. The field
 spi_hash_alg is an index into the array ssp_hash_algs. Because of
 known the weaknesses in id-sha1, it is RECOMMENDED that it not be
 selected by the server as long as ssp_hash_algs contains any other
 supported algorithm.

 If the server does not support any of the offered algorithms, it

 returns NFS4ERR_HASH_ALG_UNSUPP. If ssp_hash_algs is empty, the
 server MUST return NFS4ERR_INVAL.

 ssp_encr_algs:
 This is the set of algorithms the client supports for the purpose
 of providing privacy protection for the internal SSV GSS
 mechanism. Each algorithm is specified as an OID. The REQUIRED
 algorithm for a server is id-aes256-CBC. The RECOMMENDED
 algorithms are id-aes192-CBC and id-aes128-CBC [26]. The selected
 algorithm is returned in spi_encr_alg, an index into
 ssp_encr_algs. If the server does not support any of the offered
 algorithms, it returns NFS4ERR_ENCR_ALG_UNSUPP. If ssp_encr_algs
 is empty, the server MUST return NFS4ERR_INVAL. Note that due to
 previously stated requirements and recommendations on the
 relationships between key length and hash length, some
 combinations of RECOMMENDED and REQUIRED encryption algorithm and
 hash algorithm either SHOULD NOT or MUST NOT be used. Table 21
 summarizes the illegal and discouraged combinations.

 ssp_window:
 This is the number of SSV versions the client wants the server to
 maintain (i.e., each successful call to SET_SSV produces a new
 version of the SSV). If ssp_window is zero, the server MUST
 return NFS4ERR_INVAL. The server responds with spi_window, which
 MUST NOT exceed ssp_window and MUST be at least one. Any requests
 on the backchannel or fore channel that are using a version of the
 SSV that is outside the window will fail with an ONC RPC
 authentication error, and the requester will have to retry them
 with the same slot ID and sequence ID.

 ssp_num_gss_handles:
 This is the number of RPCSEC_GSS handles the server should create
 that are based on the GSS SSV mechanism (see Section 2.10.9). It
 is not the total number of RPCSEC_GSS handles for the client ID.
 Indeed, subsequent calls to EXCHANGE_ID will add RPCSEC_GSS
 handles. The server responds with a list of handles in
 spi_handles. If the client asks for at least one handle and the
 server cannot create it, the server MUST return an error. The
 handles in spi_handles are not available for use until the client
 ID is confirmed, which could be immediately if EXCHANGE_ID returns
 EXCHGID4_FLAG_CONFIRMED_R, or upon successful confirmation from
 CREATE_SESSION.

 While a client ID can span all the connections that are connected
 to a server sharing the same eir_server_owner.so_major_id, the
 RPCSEC_GSS handles returned in spi_handles can only be used on
 connections connected to a server that returns the same the
 eir_server_owner.so_major_id and eir_server_owner.so_minor_id on
 each connection. It is permissible for the client to set
 ssp_num_gss_handles to zero; the client can create more handles
 with another EXCHANGE_ID call.

 Because each SSV RPCSEC_GSS handle shares a common SSV GSS
 context, there are security considerations specific to this
 situation discussed in Section 2.10.10.

 The seq_window (see Section 5.2.3.1 of RFC 2203 [4]) of each
 RPCSEC_GSS handle in spi_handle MUST be the same as the seq_window
 of the RPCSEC_GSS handle used for the credential of the RPC
 request of which the EXCHANGE_ID operation was sent as a part.

 +======================+===========================+===============+
 | Encryption Algorithm | MUST NOT be combined with | SHOULD NOT be |
 | | | combined with |
 +======================+===========================+===============+
 | id-aes128-CBC | | id-sha384, |
 | | | id-sha512 |
 +----------------------+---------------------------+---------------+
 | id-aes192-CBC | id-sha1 | id-sha512 |
 +----------------------+---------------------------+---------------+
 | id-aes256-CBC | id-sha1, id-sha224 | |

 +----------------------+---------------------------+---------------+

 Table 21

 The arguments include an array of up to one element in length called
 eia_client_impl_id. If eia_client_impl_id is present, it contains
 the information identifying the implementation of the client.
 Similarly, the results include an array of up to one element in
 length called eir_server_impl_id that identifies the implementation
 of the server. Servers MUST accept a zero-length eia_client_impl_id
 array, and clients MUST accept a zero-length eir_server_impl_id
 array.

 A possible use for implementation identifiers would be in diagnostic
 software that extracts this information in an attempt to identify
 interoperability problems, performance workload behaviors, or general
 usage statistics. Since the intent of having access to this
 information is for planning or general diagnosis only, the client and
 server MUST NOT interpret this implementation identity information in
 a way that affects how the implementation interacts with its peer.
 The client and server are not allowed to depend on the peer’s
 manifesting a particular allowed behavior based on an implementation
 identifier but are required to interoperate as specified elsewhere in
 the protocol specification.

 Because it is possible that some implementations might violate the
 protocol specification and interpret the identity information,
 implementations MUST provide facilities to allow the NFSv4 client and
 server to be configured to set the contents of the nfs_impl_id
 structures sent to any specified value.

18.35.4. IMPLEMENTATION

 A server’s client record is a 5-tuple:

 1. co_ownerid:

 The client identifier string, from the eia_clientowner structure
 of the EXCHANGE_ID4args structure.

 2. co_verifier:

 A client-specific value used to indicate incarnations (where a
 client restart represents a new incarnation), from the
 eia_clientowner structure of the EXCHANGE_ID4args structure.

 3. principal:

 The principal that was defined in the RPC header’s credential
 and/or verifier at the time the client record was established.

 4. client ID:

 The shorthand client identifier, generated by the server and
 returned via the eir_clientid field in the EXCHANGE_ID4resok
 structure.

 5. confirmed:

 A private field on the server indicating whether or not a client
 record has been confirmed. A client record is confirmed if there
 has been a successful CREATE_SESSION operation to confirm it.
 Otherwise, it is unconfirmed. An unconfirmed record is
 established by an EXCHANGE_ID call. Any unconfirmed record that
 is not confirmed within a lease period SHOULD be removed.

 The following identifiers represent special values for the fields in
 the records.

 ownerid_arg:
 The value of the eia_clientowner.co_ownerid subfield of the

 EXCHANGE_ID4args structure of the current request.

 verifier_arg:
 The value of the eia_clientowner.co_verifier subfield of the
 EXCHANGE_ID4args structure of the current request.

 old_verifier_arg:
 A value of the eia_clientowner.co_verifier field of a client
 record received in a previous request; this is distinct from
 verifier_arg.

 principal_arg:
 The value of the RPCSEC_GSS principal for the current request.

 old_principal_arg:
 A value of the principal of a client record as defined by the RPC
 header’s credential or verifier of a previous request. This is
 distinct from principal_arg.

 clientid_ret:
 The value of the eir_clientid field the server will return in the
 EXCHANGE_ID4resok structure for the current request.

 old_clientid_ret:
 The value of the eir_clientid field the server returned in the
 EXCHANGE_ID4resok structure for a previous request. This is
 distinct from clientid_ret.

 confirmed:
 The client ID has been confirmed.

 unconfirmed:
 The client ID has not been confirmed.

 Since EXCHANGE_ID is a non-idempotent operation, we must consider the
 possibility that retries occur as a result of a client restart,
 network partition, malfunctioning router, etc. Retries are
 identified by the value of the eia_clientowner field of
 EXCHANGE_ID4args, and the method for dealing with them is outlined in
 the scenarios below.

 The scenarios are described in terms of the client record(s) a server
 has for a given co_ownerid. Note that if the client ID was created
 specifying SP4_SSV state protection and EXCHANGE_ID as the one of the
 operations in spo_must_allow, then the server MUST authorize
 EXCHANGE_IDs with the SSV principal in addition to the principal that
 created the client ID.

 1. New Owner ID

 If the server has no client records with
 eia_clientowner.co_ownerid matching ownerid_arg, and
 EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is not set in the EXCHANGE_ID,
 then a new shorthand client ID (let us call it clientid_ret) is
 generated, and the following unconfirmed record is added to the
 server’s state.

 { ownerid_arg, verifier_arg, principal_arg, clientid_ret,
 unconfirmed }

 Subsequently, the server returns clientid_ret.

 2. Non-Update on Existing Client ID

 If the server has the following confirmed record, and the request
 does not have EXCHGID4_FLAG_UPD_CONFIRMED_REC_A set, then the
 request is the result of a retried request due to a faulty router
 or lost connection, or the client is trying to determine if it
 can perform trunking.

 { ownerid_arg, verifier_arg, principal_arg, clientid_ret,

 confirmed }

 Since the record has been confirmed, the client must have
 received the server’s reply from the initial EXCHANGE_ID request.
 Since the server has a confirmed record, and since
 EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is not set, with the possible
 exception of eir_server_owner.so_minor_id, the server returns the
 same result it did when the client ID’s properties were last
 updated (or if never updated, the result when the client ID was
 created). The confirmed record is unchanged.

 3. Client Collision

 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is not set, and if the
 server has the following confirmed record, then this request is
 likely the result of a chance collision between the values of the
 eia_clientowner.co_ownerid subfield of EXCHANGE_ID4args for two
 different clients.

 { ownerid_arg, *, old_principal_arg, old_clientid_ret, confirmed
 }

 If there is currently no state associated with old_clientid_ret,
 or if there is state but the lease has expired, then this case is
 effectively equivalent to the New Owner ID case of
 Section 18.35.4, Paragraph 7, Item 1. The confirmed record is
 deleted, the old_clientid_ret and its lock state are deleted, a
 new shorthand client ID is generated, and the following
 unconfirmed record is added to the server’s state.

 { ownerid_arg, verifier_arg, principal_arg, clientid_ret,
 unconfirmed }

 Subsequently, the server returns clientid_ret.

 If old_clientid_ret has an unexpired lease with state, then no
 state of old_clientid_ret is changed or deleted. The server
 returns NFS4ERR_CLID_INUSE to indicate that the client should
 retry with a different value for the eia_clientowner.co_ownerid
 subfield of EXCHANGE_ID4args. The client record is not changed.

 4. Replacement of Unconfirmed Record

 If the EXCHGID4_FLAG_UPD_CONFIRMED_REC_A flag is not set, and the
 server has the following unconfirmed record, then the client is
 attempting EXCHANGE_ID again on an unconfirmed client ID, perhaps
 due to a retry, a client restart before client ID confirmation
 (i.e., before CREATE_SESSION was called), or some other reason.

 { ownerid_arg, *, *, old_clientid_ret, unconfirmed }

 It is possible that the properties of old_clientid_ret are
 different than those specified in the current EXCHANGE_ID.
 Whether or not the properties are being updated, to eliminate
 ambiguity, the server deletes the unconfirmed record, generates a
 new client ID (clientid_ret), and establishes the following
 unconfirmed record:

 { ownerid_arg, verifier_arg, principal_arg, clientid_ret,
 unconfirmed }

 5. Client Restart

 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is not set, and if the
 server has the following confirmed client record, then this
 request is likely from a previously confirmed client that has
 restarted.

 { ownerid_arg, old_verifier_arg, principal_arg, old_clientid_ret,
 confirmed }

 Since the previous incarnation of the same client will no longer
 be making requests, once the new client ID is confirmed by
 CREATE_SESSION, byte-range locks and share reservations should be
 released immediately rather than forcing the new incarnation to
 wait for the lease time on the previous incarnation to expire.
 Furthermore, session state should be removed since if the client
 had maintained that information across restart, this request
 would not have been sent. If the server supports neither the
 CLAIM_DELEGATE_PREV nor CLAIM_DELEG_PREV_FH claim types,
 associated delegations should be purged as well; otherwise,
 delegations are retained and recovery proceeds according to
 Section 10.2.1.

 After processing, clientid_ret is returned to the client and this
 client record is added:

 { ownerid_arg, verifier_arg, principal_arg, clientid_ret,
 unconfirmed }

 The previously described confirmed record continues to exist, and
 thus the same ownerid_arg exists in both a confirmed and
 unconfirmed state at the same time. The number of states can
 collapse to one once the server receives an applicable
 CREATE_SESSION or EXCHANGE_ID.

 * If the server subsequently receives a successful
 CREATE_SESSION that confirms clientid_ret, then the server
 atomically destroys the confirmed record and makes the
 unconfirmed record confirmed as described in Section 18.36.3.

 * If the server instead subsequently receives an EXCHANGE_ID
 with the client owner equal to ownerid_arg, one strategy is to
 simply delete the unconfirmed record, and process the
 EXCHANGE_ID as described in the entirety of Section 18.35.4.

 6. Update

 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is set, and the server has
 the following confirmed record, then this request is an attempt
 at an update.

 { ownerid_arg, verifier_arg, principal_arg, clientid_ret,
 confirmed }

 Since the record has been confirmed, the client must have
 received the server’s reply from the initial EXCHANGE_ID request.
 The server allows the update, and the client record is left
 intact.

 7. Update but No Confirmed Record

 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is set, and the server has
 no confirmed record corresponding ownerid_arg, then the server
 returns NFS4ERR_NOENT and leaves any unconfirmed record intact.

 8. Update but Wrong Verifier

 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is set, and the server has
 the following confirmed record, then this request is an illegal
 attempt at an update, perhaps because of a retry from a previous
 client incarnation.

 { ownerid_arg, old_verifier_arg, *, clientid_ret, confirmed }

 The server returns NFS4ERR_NOT_SAME and leaves the client record
 intact.

 9. Update but Wrong Principal

 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is set, and the server has
 the following confirmed record, then this request is an illegal

 attempt at an update by an unauthorized principal.

 { ownerid_arg, verifier_arg, old_principal_arg, clientid_ret,
 confirmed }

 The server returns NFS4ERR_PERM and leaves the client record
 intact.

18.36. Operation 43: CREATE_SESSION - Create New Session and Confirm
 Client ID

18.36.1. ARGUMENT

 struct channel_attrs4 {
 count4 ca_headerpadsize;
 count4 ca_maxrequestsize;
 count4 ca_maxresponsesize;
 count4 ca_maxresponsesize_cached;
 count4 ca_maxoperations;
 count4 ca_maxrequests;
 uint32_t ca_rdma_ird<1>;
 };

 const CREATE_SESSION4_FLAG_PERSIST = 0x00000001;
 const CREATE_SESSION4_FLAG_CONN_BACK_CHAN = 0x00000002;
 const CREATE_SESSION4_FLAG_CONN_RDMA = 0x00000004;

 struct CREATE_SESSION4args {
 clientid4 csa_clientid;
 sequenceid4 csa_sequence;

 uint32_t csa_flags;

 channel_attrs4 csa_fore_chan_attrs;
 channel_attrs4 csa_back_chan_attrs;

 uint32_t csa_cb_program;
 callback_sec_parms4 csa_sec_parms<>;
 };

18.36.2. RESULT

 struct CREATE_SESSION4resok {
 sessionid4 csr_sessionid;
 sequenceid4 csr_sequence;

 uint32_t csr_flags;

 channel_attrs4 csr_fore_chan_attrs;
 channel_attrs4 csr_back_chan_attrs;
 };

 union CREATE_SESSION4res switch (nfsstat4 csr_status) {
 case NFS4_OK:
 CREATE_SESSION4resok csr_resok4;
 default:
 void;
 };

18.36.3. DESCRIPTION

 This operation is used by the client to create new session objects on
 the server.

 CREATE_SESSION can be sent with or without a preceding SEQUENCE
 operation in the same COMPOUND procedure. If CREATE_SESSION is sent
 with a preceding SEQUENCE operation, any session created by
 CREATE_SESSION has no direct relation to the session specified in the
 SEQUENCE operation, although the two sessions might be associated
 with the same client ID. If CREATE_SESSION is sent without a
 preceding SEQUENCE, then it MUST be the only operation in the

 COMPOUND procedure’s request. If it is not, the server MUST return
 NFS4ERR_NOT_ONLY_OP.

 In addition to creating a session, CREATE_SESSION has the following
 effects:

 * The first session created with a new client ID serves to confirm
 the creation of that client’s state on the server. The server
 returns the parameter values for the new session.

 * The connection CREATE_SESSION that is sent over is associated with
 the session’s fore channel.

 The arguments and results of CREATE_SESSION are described as follows:

 csa_clientid: This is the client ID with which the new session will
 be associated. The corresponding result is csr_sessionid, the
 session ID of the new session.

 csa_sequence: Each client ID serializes CREATE_SESSION via a per-
 client ID sequence number (see Section 18.36.4). The
 corresponding result is csr_sequence, which MUST be equal to
 csa_sequence.

 In the next three arguments, the client offers a value that is to be
 a property of the session. Except where stated otherwise, it is
 RECOMMENDED that the server accept the value. If it is not
 acceptable, the server MAY use a different value. Regardless, the
 server MUST return the value the session will use (which will be
 either what the client offered, or what the server is insisting on)
 to the client.

 csa_flags: The csa_flags field contains a list of the following flag
 bits:

 CREATE_SESSION4_FLAG_PERSIST:
 If CREATE_SESSION4_FLAG_PERSIST is set, the client wants the
 server to provide a persistent reply cache. For sessions in
 which only idempotent operations will be used (e.g., a read-
 only session), clients SHOULD NOT set
 CREATE_SESSION4_FLAG_PERSIST. If the server does not or cannot
 provide a persistent reply cache, the server MUST NOT set
 CREATE_SESSION4_FLAG_PERSIST in the field csr_flags.

 If the server is a pNFS metadata server, for reasons described
 in Section 12.5.2 it SHOULD support
 CREATE_SESSION4_FLAG_PERSIST if it supports the layout_hint
 (Section 5.12.4) attribute.

 CREATE_SESSION4_FLAG_CONN_BACK_CHAN:
 If CREATE_SESSION4_FLAG_CONN_BACK_CHAN is set in csa_flags, the
 client is requesting that the connection over which the
 CREATE_SESSION operation arrived be associated with the
 session’s backchannel in addition to its fore channel. If the
 server agrees, it sets CREATE_SESSION4_FLAG_CONN_BACK_CHAN in
 the result field csr_flags. If
 CREATE_SESSION4_FLAG_CONN_BACK_CHAN is not set in csa_flags,
 then CREATE_SESSION4_FLAG_CONN_BACK_CHAN MUST NOT be set in
 csr_flags.

 CREATE_SESSION4_FLAG_CONN_RDMA:
 If CREATE_SESSION4_FLAG_CONN_RDMA is set in csa_flags, and if
 the connection over which the CREATE_SESSION operation arrived
 is currently in non-RDMA mode but has the capability to operate
 in RDMA mode, then the client is requesting that the server
 "step up" to RDMA mode on the connection. If the server
 agrees, it sets CREATE_SESSION4_FLAG_CONN_RDMA in the result
 field csr_flags. If CREATE_SESSION4_FLAG_CONN_RDMA is not set
 in csa_flags, then CREATE_SESSION4_FLAG_CONN_RDMA MUST NOT be
 set in csr_flags. Note that once the server agrees to step up,
 it and the client MUST exchange all future traffic on the

 connection with RPC RDMA framing and not Record Marking ([32]).

 csa_fore_chan_attrs, csa_back_chan_attrs: The csa_fore_chan_attrs
 and csa_back_chan_attrs fields apply to attributes of the fore
 channel (which conveys requests originating from the client to the
 server), and the backchannel (the channel that conveys callback
 requests originating from the server to the client), respectively.
 The results are in corresponding structures called
 csr_fore_chan_attrs and csr_back_chan_attrs. The results
 establish attributes for each channel, and on all subsequent use
 of each channel of the session. Each structure has the following
 fields:

 ca_headerpadsize:
 The maximum amount of padding the requester is willing to apply
 to ensure that write payloads are aligned on some boundary at
 the replier. For each channel, the server

 * will reply in ca_headerpadsize with its preferred value, or
 zero if padding is not in use, and

 * MAY decrease this value but MUST NOT increase it.

 ca_maxrequestsize:
 The maximum size of a COMPOUND or CB_COMPOUND request that will
 be sent. This size represents the XDR encoded size of the
 request, including the RPC headers (including security flavor
 credentials and verifiers) but excludes any RPC transport
 framing headers. Imagine a request coming over a non-RDMA TCP/
 IP connection, and that it has a single Record Marking header
 preceding it. The maximum allowable count encoded in the
 header will be ca_maxrequestsize. If a requester sends a
 request that exceeds ca_maxrequestsize, the error
 NFS4ERR_REQ_TOO_BIG will be returned per the description in
 Section 2.10.6.4. For each channel, the server MAY decrease
 this value but MUST NOT increase it.

 ca_maxresponsesize:
 The maximum size of a COMPOUND or CB_COMPOUND reply that the
 requester will accept from the replier including RPC headers
 (see the ca_maxrequestsize definition). For each channel, the
 server MAY decrease this value, but MUST NOT increase it.
 However, if the client selects a value for ca_maxresponsesize
 such that a replier on a channel could never send a response,
 the server SHOULD return NFS4ERR_TOOSMALL in the CREATE_SESSION
 reply. After the session is created, if a requester sends a
 request for which the size of the reply would exceed this
 value, the replier will return NFS4ERR_REP_TOO_BIG, per the
 description in Section 2.10.6.4.

 ca_maxresponsesize_cached:
 Like ca_maxresponsesize, but the maximum size of a reply that
 will be stored in the reply cache (Section 2.10.6.1). For each
 channel, the server MAY decrease this value, but MUST NOT
 increase it. If, in the reply to CREATE_SESSION, the value of
 ca_maxresponsesize_cached of a channel is less than the value
 of ca_maxresponsesize of the same channel, then this is an
 indication to the requester that it needs to be selective about
 which replies it directs the replier to cache; for example,
 large replies from non-idempotent operations (e.g., COMPOUND
 requests with a READ operation) should not be cached. The
 requester decides which replies to cache via an argument to the
 SEQUENCE (the sa_cachethis field, see Section 18.46) or
 CB_SEQUENCE (the csa_cachethis field, see Section 20.9)
 operations. After the session is created, if a requester sends
 a request for which the size of the reply would exceed
 ca_maxresponsesize_cached, the replier will return
 NFS4ERR_REP_TOO_BIG_TO_CACHE, per the description in
 Section 2.10.6.4.

 ca_maxoperations:

 The maximum number of operations the replier will accept in a
 COMPOUND or CB_COMPOUND. For the backchannel, the server MUST
 NOT change the value the client offers. For the fore channel,
 the server MAY change the requested value. After the session
 is created, if a requester sends a COMPOUND or CB_COMPOUND with
 more operations than ca_maxoperations, the replier MUST return
 NFS4ERR_TOO_MANY_OPS.

 ca_maxrequests:
 The maximum number of concurrent COMPOUND or CB_COMPOUND
 requests the requester will send on the session. Subsequent
 requests will each be assigned a slot identifier by the
 requester within the range zero to ca_maxrequests - 1
 inclusive. For the backchannel, the server MUST NOT change the
 value the client offers. For the fore channel, the server MAY
 change the requested value.

 ca_rdma_ird:
 This array has a maximum of one element. If this array has one
 element, then the element contains the inbound RDMA read queue
 depth (IRD). For each channel, the server MAY decrease this
 value, but MUST NOT increase it.

 csa_cb_program This is the ONC RPC program number the server MUST
 use in any callbacks sent through the backchannel to the client.
 The server MUST specify an ONC RPC program number equal to
 csa_cb_program and an ONC RPC version number equal to 4 in
 callbacks sent to the client. If a CB_COMPOUND is sent to the
 client, the server MUST use a minor version number of 1. There is
 no corresponding result.

 csa_sec_parms The field csa_sec_parms is an array of acceptable
 security credentials the server can use on the session’s
 backchannel. Three security flavors are supported: AUTH_NONE,
 AUTH_SYS, and RPCSEC_GSS. If AUTH_NONE is specified for a
 credential, then this says the client is authorizing the server to
 use AUTH_NONE on all callbacks for the session. If AUTH_SYS is
 specified, then the client is authorizing the server to use
 AUTH_SYS on all callbacks, using the credential specified
 cbsp_sys_cred. If RPCSEC_GSS is specified, then the server is
 allowed to use the RPCSEC_GSS context specified in cbsp_gss_parms
 as the RPCSEC_GSS context in the credential of the RPC header of
 callbacks to the client. There is no corresponding result.

 The RPCSEC_GSS context for the backchannel is specified via a pair
 of values of data type gsshandle4_t. The data type gsshandle4_t
 represents an RPCSEC_GSS handle, and is precisely the same as the
 data type of the "handle" field of the rpc_gss_init_res data type
 defined in "Context Creation Response - Successful Acceptance",
 Section 5.2.3.1 of [4].

 The first RPCSEC_GSS handle, gcbp_handle_from_server, is the fore
 handle the server returned to the client (either in the handle
 field of data type rpc_gss_init_res or as one of the elements of
 the spi_handles field returned in the reply to EXCHANGE_ID) when
 the RPCSEC_GSS context was created on the server. The second
 handle, gcbp_handle_from_client, is the back handle to which the
 client will map the RPCSEC_GSS context. The server can
 immediately use the value of gcbp_handle_from_client in the
 RPCSEC_GSS credential in callback RPCs. That is, the value in
 gcbp_handle_from_client can be used as the value of the field
 "handle" in data type rpc_gss_cred_t (see "Elements of the
 RPCSEC_GSS Security Protocol", Section 5 of [4]) in callback RPCs.
 The server MUST use the RPCSEC_GSS security service specified in
 gcbp_service, i.e., it MUST set the "service" field of the
 rpc_gss_cred_t data type in RPCSEC_GSS credential to the value of
 gcbp_service (see "RPC Request Header", Section 5.3.1 of [4]).

 If the RPCSEC_GSS handle identified by gcbp_handle_from_server
 does not exist on the server, the server will return
 NFS4ERR_NOENT.

 Within each element of csa_sec_parms, the fore and back RPCSEC_GSS
 contexts MUST share the same GSS context and MUST have the same
 seq_window (see Section 5.2.3.1 of RFC 2203 [4]). The fore and
 back RPCSEC_GSS context state are independent of each other as far
 as the RPCSEC_GSS sequence number (see the seq_num field in the
 rpc_gss_cred_t data type of Sections 5 and 5.3.1 of [4]).

 If an RPCSEC_GSS handle is using the SSV context (see
 Section 2.10.9), then because each SSV RPCSEC_GSS handle shares a
 common SSV GSS context, there are security considerations specific
 to this situation discussed in Section 2.10.10.

 Once the session is created, the first SEQUENCE or CB_SEQUENCE
 received on a slot MUST have a sequence ID equal to 1; if not, the
 replier MUST return NFS4ERR_SEQ_MISORDERED.

18.36.4. IMPLEMENTATION

 To describe a possible implementation, the same notation for client
 records introduced in the description of EXCHANGE_ID is used with the
 following addition:

 clientid_arg: The value of the csa_clientid field of the
 CREATE_SESSION4args structure of the current request.

 Since CREATE_SESSION is a non-idempotent operation, we need to
 consider the possibility that retries may occur as a result of a
 client restart, network partition, malfunctioning router, etc. For
 each client ID created by EXCHANGE_ID, the server maintains a
 separate reply cache (called the CREATE_SESSION reply cache) similar
 to the session reply cache used for SEQUENCE operations, with two
 distinctions.

 * First, this is a reply cache just for detecting and processing
 CREATE_SESSION requests for a given client ID.

 * Second, the size of the client ID reply cache is of one slot (and
 as a result, the CREATE_SESSION request does not carry a slot
 number). This means that at most one CREATE_SESSION request for a
 given client ID can be outstanding.

 As previously stated, CREATE_SESSION can be sent with or without a
 preceding SEQUENCE operation. Even if a SEQUENCE precedes
 CREATE_SESSION, the server MUST maintain the CREATE_SESSION reply
 cache, which is separate from the reply cache for the session
 associated with a SEQUENCE. If CREATE_SESSION was originally sent by
 itself, the client MAY send a retry of the CREATE_SESSION operation
 within a COMPOUND preceded by a SEQUENCE. If CREATE_SESSION was
 originally sent in a COMPOUND that started with a SEQUENCE, then the
 client SHOULD send a retry in a COMPOUND that starts with a SEQUENCE
 that has the same session ID as the SEQUENCE of the original request.
 However, the client MAY send a retry in a COMPOUND that either has no
 preceding SEQUENCE, or has a preceding SEQUENCE that refers to a
 different session than the original CREATE_SESSION. This might be
 necessary if the client sends a CREATE_SESSION in a COMPOUND preceded
 by a SEQUENCE with session ID X, and session X no longer exists.
 Regardless, any retry of CREATE_SESSION, with or without a preceding
 SEQUENCE, MUST use the same value of csa_sequence as the original.

 After the client received a reply to an EXCHANGE_ID operation that
 contains a new, unconfirmed client ID, the server expects the client
 to follow with a CREATE_SESSION operation to confirm the client ID.
 The server expects value of csa_sequenceid in the arguments to that
 CREATE_SESSION to be to equal the value of the field eir_sequenceid
 that was returned in results of the EXCHANGE_ID that returned the
 unconfirmed client ID. Before the server replies to that EXCHANGE_ID
 operation, it initializes the client ID slot to be equal to
 eir_sequenceid - 1 (accounting for underflow), and records a
 contrived CREATE_SESSION result with a "cached" result of
 NFS4ERR_SEQ_MISORDERED. With the client ID slot thus initialized,

 the processing of the CREATE_SESSION operation is divided into four
 phases:

 1. Client record look up. The server looks up the client ID in its
 client record table. If the server contains no records with
 client ID equal to clientid_arg, then most likely the client’s
 state has been purged during a period of inactivity, possibly due
 to a loss of connectivity. NFS4ERR_STALE_CLIENTID is returned,
 and no changes are made to any client records on the server.
 Otherwise, the server goes to phase 2.

 2. Sequence ID processing. If csa_sequenceid is equal to the
 sequence ID in the client ID’s slot, then this is a replay of the
 previous CREATE_SESSION request, and the server returns the
 cached result. If csa_sequenceid is not equal to the sequence ID
 in the slot, and is more than one greater (accounting for
 wraparound), then the server returns the error
 NFS4ERR_SEQ_MISORDERED, and does not change the slot. If
 csa_sequenceid is equal to the slot’s sequence ID + 1 (accounting
 for wraparound), then the slot’s sequence ID is set to
 csa_sequenceid, and the CREATE_SESSION processing goes to the
 next phase. A subsequent new CREATE_SESSION call over the same
 client ID MUST use a csa_sequenceid that is one greater than the
 sequence ID in the slot.

 3. Client ID confirmation. If this would be the first session for
 the client ID, the CREATE_SESSION operation serves to confirm the
 client ID. Otherwise, the client ID confirmation phase is
 skipped and only the session creation phase occurs. Any case in
 which there is more than one record with identical values for
 client ID represents a server implementation error. Operation in
 the potential valid cases is summarized as follows.

 * Successful Confirmation

 If the server has the following unconfirmed record, then
 this is the expected confirmation of an unconfirmed record.

 { ownerid, verifier, principal_arg, clientid_arg,
 unconfirmed }

 As noted in Section 18.35.4, the server might also have the
 following confirmed record.

 { ownerid, old_verifier, principal_arg, old_clientid,
 confirmed }

 The server schedules the replacement of both records with:

 { ownerid, verifier, principal_arg, clientid_arg, confirmed
 }

 The processing of CREATE_SESSION continues on to session
 creation. Once the session is successfully created, the
 scheduled client record replacement is committed. If the
 session is not successfully created, then no changes are
 made to any client records on the server.

 * Unsuccessful Confirmation

 If the server has the following record, then the client has
 changed principals after the previous EXCHANGE_ID request,
 or there has been a chance collision between shorthand
 client identifiers.

 { *, *, old_principal_arg, clientid_arg, * }

 Neither of these cases is permissible. Processing stops
 and NFS4ERR_CLID_INUSE is returned to the client. No
 changes are made to any client records on the server.

 4. Session creation. The server confirmed the client ID, either in
 this CREATE_SESSION operation, or a previous CREATE_SESSION
 operation. The server examines the remaining fields of the
 arguments.

 The server creates the session by recording the parameter values
 used (including whether the CREATE_SESSION4_FLAG_PERSIST flag is
 set and has been accepted by the server) and allocating space for
 the session reply cache (if there is not enough space, the server
 returns NFS4ERR_NOSPC). For each slot in the reply cache, the
 server sets the sequence ID to zero, and records an entry
 containing a COMPOUND reply with zero operations and the error
 NFS4ERR_SEQ_MISORDERED. This way, if the first SEQUENCE request
 sent has a sequence ID equal to zero, the server can simply
 return what is in the reply cache: NFS4ERR_SEQ_MISORDERED. The
 client initializes its reply cache for receiving callbacks in the
 same way, and similarly, the first CB_SEQUENCE operation on a
 slot after session creation MUST have a sequence ID of one.

 If the session state is created successfully, the server
 associates the session with the client ID provided by the client.

 When a request that had CREATE_SESSION4_FLAG_CONN_RDMA set needs
 to be retried, the retry MUST be done on a new connection that is
 in non-RDMA mode. If properties of the new connection are
 different enough that the arguments to CREATE_SESSION need to
 change, then a non-retry MUST be sent. The server will
 eventually dispose of any session that was created on the
 original connection.

 On the backchannel, the client and server might wish to have many
 slots, in some cases perhaps more that the fore channel, in order to
 deal with the situations where the network link has high latency and
 is the primary bottleneck for response to recalls. If so, and if the
 client provides too few slots to the backchannel, the server might
 limit the number of recallable objects it gives to the client.

 Implementing RPCSEC_GSS callback support requires changes to both the
 client and server implementations of RPCSEC_GSS. One possible set of
 changes includes:

 * Adding a data structure that wraps the GSS-API context with a
 reference count.

 * New functions to increment and decrement the reference count. If
 the reference count is decremented to zero, the wrapper data
 structure and the GSS-API context it refers to would be freed.

 * Change RPCSEC_GSS to create the wrapper data structure upon
 receiving GSS-API context from gss_accept_sec_context() and
 gss_init_sec_context(). The reference count would be initialized
 to 1.

 * Adding a function to map an existing RPCSEC_GSS handle to a
 pointer to the wrapper data structure. The reference count would
 be incremented.

 * Adding a function to create a new RPCSEC_GSS handle from a pointer
 to the wrapper data structure. The reference count would be
 incremented.

 * Replacing calls from RPCSEC_GSS that free GSS-API contexts, with
 calls to decrement the reference count on the wrapper data
 structure.

18.37. Operation 44: DESTROY_SESSION - Destroy a Session

18.37.1. ARGUMENT

 struct DESTROY_SESSION4args {
 sessionid4 dsa_sessionid;

 };

18.37.2. RESULT

 struct DESTROY_SESSION4res {
 nfsstat4 dsr_status;
 };

18.37.3. DESCRIPTION

 The DESTROY_SESSION operation closes the session and discards the
 session’s reply cache, if any. Any remaining connections associated
 with the session are immediately disassociated. If the connection
 has no remaining associated sessions, the connection MAY be closed by
 the server. Locks, delegations, layouts, wants, and the lease, which
 are all tied to the client ID, are not affected by DESTROY_SESSION.

 DESTROY_SESSION MUST be invoked on a connection that is associated
 with the session being destroyed. In addition, if SP4_MACH_CRED
 state protection was specified when the client ID was created, the
 RPCSEC_GSS principal that created the session MUST be the one that
 destroys the session, using RPCSEC_GSS privacy or integrity. If
 SP4_SSV state protection was specified when the client ID was
 created, RPCSEC_GSS using the SSV mechanism (Section 2.10.9) MUST be
 used, with integrity or privacy.

 If the COMPOUND request starts with SEQUENCE, and if the sessionids
 specified in SEQUENCE and DESTROY_SESSION are the same, then

 * DESTROY_SESSION MUST be the final operation in the COMPOUND
 request.

 * It is advisable to avoid placing DESTROY_SESSION in a COMPOUND
 request with other state-modifying operations, because the
 DESTROY_SESSION will destroy the reply cache.

 * Because the session and its reply cache are destroyed, a client
 that retries the request may receive an error in reply to the
 retry, even though the original request was successful.

 If the COMPOUND request starts with SEQUENCE, and if the sessionids
 specified in SEQUENCE and DESTROY_SESSION are different, then
 DESTROY_SESSION can appear in any position of the COMPOUND request
 (except for the first position). The two sessionids can belong to
 different client IDs.

 If the COMPOUND request does not start with SEQUENCE, and if
 DESTROY_SESSION is not the sole operation, then server MUST return
 NFS4ERR_NOT_ONLY_OP.

 If there is a backchannel on the session and the server has
 outstanding CB_COMPOUND operations for the session which have not
 been replied to, then the server MAY refuse to destroy the session
 and return an error. If so, then in the event the backchannel is
 down, the server SHOULD return NFS4ERR_CB_PATH_DOWN to inform the
 client that the backchannel needs to be repaired before the server
 will allow the session to be destroyed. Otherwise, the error
 CB_BACK_CHAN_BUSY SHOULD be returned to indicate that there are
 CB_COMPOUNDs that need to be replied to. The client SHOULD reply to
 all outstanding CB_COMPOUNDs before re-sending DESTROY_SESSION.

18.38. Operation 45: FREE_STATEID - Free Stateid with No Locks

18.38.1. ARGUMENT

 struct FREE_STATEID4args {
 stateid4 fsa_stateid;
 };

18.38.2. RESULT

 struct FREE_STATEID4res {
 nfsstat4 fsr_status;
 };

18.38.3. DESCRIPTION

 The FREE_STATEID operation is used to free a stateid that no longer
 has any associated locks (including opens, byte-range locks,
 delegations, and layouts). This may be because of client LOCKU
 operations or because of server revocation. If there are valid locks
 (of any kind) associated with the stateid in question, the error
 NFS4ERR_LOCKS_HELD will be returned, and the associated stateid will
 not be freed.

 When a stateid is freed that had been associated with revoked locks,
 by sending the FREE_STATEID operation, the client acknowledges the
 loss of those locks. This allows the server, once all such revoked
 state is acknowledged, to allow that client again to reclaim locks,
 without encountering the edge conditions discussed in Section 8.4.2.

 Once a successful FREE_STATEID is done for a given stateid, any
 subsequent use of that stateid will result in an NFS4ERR_BAD_STATEID
 error.

18.39. Operation 46: GET_DIR_DELEGATION - Get a Directory Delegation

18.39.1. ARGUMENT

 typedef nfstime4 attr_notice4;

 struct GET_DIR_DELEGATION4args {
 /* CURRENT_FH: delegated directory */
 bool gdda_signal_deleg_avail;
 bitmap4 gdda_notification_types;
 attr_notice4 gdda_child_attr_delay;
 attr_notice4 gdda_dir_attr_delay;
 bitmap4 gdda_child_attributes;
 bitmap4 gdda_dir_attributes;
 };

18.39.2. RESULT

 struct GET_DIR_DELEGATION4resok {
 verifier4 gddr_cookieverf;
 /* Stateid for get_dir_delegation */
 stateid4 gddr_stateid;
 /* Which notifications can the server support */
 bitmap4 gddr_notification;
 bitmap4 gddr_child_attributes;
 bitmap4 gddr_dir_attributes;
 };

 enum gddrnf4_status {
 GDD4_OK = 0,
 GDD4_UNAVAIL = 1
 };

 union GET_DIR_DELEGATION4res_non_fatal
 switch (gddrnf4_status gddrnf_status) {
 case GDD4_OK:
 GET_DIR_DELEGATION4resok gddrnf_resok4;
 case GDD4_UNAVAIL:
 bool gddrnf_will_signal_deleg_avail;
 };

 union GET_DIR_DELEGATION4res
 switch (nfsstat4 gddr_status) {
 case NFS4_OK:
 GET_DIR_DELEGATION4res_non_fatal gddr_res_non_fatal4;
 default:
 void;

 };

18.39.3. DESCRIPTION

 The GET_DIR_DELEGATION operation is used by a client to request a
 directory delegation. The directory is represented by the current
 filehandle. The client also specifies whether it wants the server to
 notify it when the directory changes in certain ways by setting one
 or more bits in a bitmap. The server may refuse to grant the
 delegation. In that case, the server will return
 NFS4ERR_DIRDELEG_UNAVAIL. If the server decides to hand out the
 delegation, it will return a cookie verifier for that directory. If
 the cookie verifier changes when the client is holding the
 delegation, the delegation will be recalled unless the client has
 asked for notification for this event.

 The server will also return a directory delegation stateid,
 gddr_stateid, as a result of the GET_DIR_DELEGATION operation. This
 stateid will appear in callback messages related to the delegation,
 such as notifications and delegation recalls. The client will use
 this stateid to return the delegation voluntarily or upon recall. A
 delegation is returned by calling the DELEGRETURN operation.

 The server might not be able to support notifications of certain
 events. If the client asks for such notifications, the server MUST
 inform the client of its inability to do so as part of the
 GET_DIR_DELEGATION reply by not setting the appropriate bits in the
 supported notifications bitmask, gddr_notification, contained in the
 reply. The server MUST NOT add bits to gddr_notification that the
 client did not request.

 The GET_DIR_DELEGATION operation can be used for both normal and
 named attribute directories.

 If client sets gdda_signal_deleg_avail to TRUE, then it is
 registering with the client a "want" for a directory delegation. If
 the delegation is not available, and the server supports and will
 honor the "want", the results will have
 gddrnf_will_signal_deleg_avail set to TRUE and no error will be
 indicated on return. If so, the client should expect a future
 CB_RECALLABLE_OBJ_AVAIL operation to indicate that a directory
 delegation is available. If the server does not wish to honor the
 "want" or is not able to do so, it returns the error
 NFS4ERR_DIRDELEG_UNAVAIL. If the delegation is immediately
 available, the server SHOULD return it with the response to the
 operation, rather than via a callback.

 When a client makes a request for a directory delegation while it
 already holds a directory delegation for that directory (including
 the case where it has been recalled but not yet returned by the
 client or revoked by the server), the server MUST reply with the
 value of gddr_status set to NFS4_OK, the value of gddrnf_status set
 to GDD4_UNAVAIL, and the value of gddrnf_will_signal_deleg_avail set
 to FALSE. The delegation the client held before the request remains
 intact, and its state is unchanged. The current stateid is not
 changed (see Section 16.2.3.1.2 for a description of the current
 stateid).

18.39.4. IMPLEMENTATION

 Directory delegations provide the benefit of improving cache
 consistency of namespace information. This is done through
 synchronous callbacks. A server must support synchronous callbacks
 in order to support directory delegations. In addition to that,
 asynchronous notifications provide a way to reduce network traffic as
 well as improve client performance in certain conditions.

 Notifications are specified in terms of potential changes to the
 directory. A client can ask to be notified of events by setting one
 or more bits in gdda_notification_types. The client can ask for
 notifications on addition of entries to a directory (by setting the

 NOTIFY4_ADD_ENTRY in gdda_notification_types), notifications on entry
 removal (NOTIFY4_REMOVE_ENTRY), renames (NOTIFY4_RENAME_ENTRY),
 directory attribute changes (NOTIFY4_CHANGE_DIR_ATTRIBUTES), and
 cookie verifier changes (NOTIFY4_CHANGE_COOKIE_VERIFIER) by setting
 one or more corresponding bits in the gdda_notification_types field.

 The client can also ask for notifications of changes to attributes of
 directory entries (NOTIFY4_CHANGE_CHILD_ATTRIBUTES) in order to keep
 its attribute cache up to date. However, any changes made to child
 attributes do not cause the delegation to be recalled. If a client
 is interested in directory entry caching or negative name caching, it
 can set the gdda_notification_types appropriately to its particular
 need and the server will notify it of all changes that would
 otherwise invalidate its name cache. The kind of notification a
 client asks for may depend on the directory size, its rate of change,
 and the applications being used to access that directory. The
 enumeration of the conditions under which a client might ask for a
 notification is out of the scope of this specification.

 For attribute notifications, the client will set bits in the
 gdda_dir_attributes bitmap to indicate which attributes it wants to
 be notified of. If the server does not support notifications for
 changes to a certain attribute, it SHOULD NOT set that attribute in
 the supported attribute bitmap specified in the reply
 (gddr_dir_attributes). The client will also set in the
 gdda_child_attributes bitmap the attributes of directory entries it
 wants to be notified of, and the server will indicate in
 gddr_child_attributes which attributes of directory entries it will
 notify the client of.

 The client will also let the server know if it wants to get the
 notification as soon as the attribute change occurs or after a
 certain delay by setting a delay factor; gdda_child_attr_delay is for
 attribute changes to directory entries and gdda_dir_attr_delay is for
 attribute changes to the directory. If this delay factor is set to
 zero, that indicates to the server that the client wants to be
 notified of any attribute changes as soon as they occur. If the
 delay factor is set to N seconds, the server will make a best-effort
 guarantee that attribute updates are synchronized within N seconds.
 If the client asks for a delay factor that the server does not
 support or that may cause significant resource consumption on the
 server by causing the server to send a lot of notifications, the
 server should not commit to sending out notifications for attributes
 and therefore must not set the appropriate bit in the
 gddr_child_attributes and gddr_dir_attributes bitmaps in the
 response.

 The client MUST use a security tuple (Section 2.6.1) that the
 directory or its applicable ancestor (Section 2.6) is exported with.
 If not, the server MUST return NFS4ERR_WRONGSEC to the operation that
 both precedes GET_DIR_DELEGATION and sets the current filehandle (see
 Section 2.6.3.1).

 The directory delegation covers all the entries in the directory
 except the parent entry. That means if a directory and its parent
 both hold directory delegations, any changes to the parent will not
 cause a notification to be sent for the child even though the child’s
 parent entry points to the parent directory.

18.40. Operation 47: GETDEVICEINFO - Get Device Information

18.40.1. ARGUMENT

 struct GETDEVICEINFO4args {
 deviceid4 gdia_device_id;
 layouttype4 gdia_layout_type;
 count4 gdia_maxcount;
 bitmap4 gdia_notify_types;
 };

18.40.2. RESULT

 struct GETDEVICEINFO4resok {
 device_addr4 gdir_device_addr;
 bitmap4 gdir_notification;
 };

 union GETDEVICEINFO4res switch (nfsstat4 gdir_status) {
 case NFS4_OK:
 GETDEVICEINFO4resok gdir_resok4;
 case NFS4ERR_TOOSMALL:
 count4 gdir_mincount;
 default:
 void;
 };

18.40.3. DESCRIPTION

 The GETDEVICEINFO operation returns pNFS storage device address
 information for the specified device ID. The client identifies the
 device information to be returned by providing the gdia_device_id and
 gdia_layout_type that uniquely identify the device. The client
 provides gdia_maxcount to limit the number of bytes for the result.
 This maximum size represents all of the data being returned within
 the GETDEVICEINFO4resok structure and includes the XDR overhead. The
 server may return less data. If the server is unable to return any
 information within the gdia_maxcount limit, the error
 NFS4ERR_TOOSMALL will be returned. However, if gdia_maxcount is
 zero, NFS4ERR_TOOSMALL MUST NOT be returned.

 The da_layout_type field of the gdir_device_addr returned by the
 server MUST be equal to the gdia_layout_type specified by the client.
 If it is not equal, the client SHOULD ignore the response as invalid
 and behave as if the server returned an error, even if the client
 does have support for the layout type returned.

 The client also provides a notification bitmap, gdia_notify_types,
 for the device ID mapping notification for which it is interested in
 receiving; the server must support device ID notifications for the
 notification request to have affect. The notification mask is
 composed in the same manner as the bitmap for file attributes
 (Section 3.3.7). The numbers of bit positions are listed in the
 notify_device_type4 enumeration type (Section 20.12). Only two
 enumerated values of notify_device_type4 currently apply to
 GETDEVICEINFO: NOTIFY_DEVICEID4_CHANGE and NOTIFY_DEVICEID4_DELETE
 (see Section 20.12).

 The notification bitmap applies only to the specified device ID. If
 a client sends a GETDEVICEINFO operation on a deviceID multiple
 times, the last notification bitmap is used by the server for
 subsequent notifications. If the bitmap is zero or empty, then the
 device ID’s notifications are turned off.

 If the client wants to just update or turn off notifications, it MAY
 send a GETDEVICEINFO operation with gdia_maxcount set to zero. In
 that event, if the device ID is valid, the reply’s da_addr_body field
 of the gdir_device_addr field will be of zero length.

 If an unknown device ID is given in gdia_device_id, the server
 returns NFS4ERR_NOENT. Otherwise, the device address information is
 returned in gdir_device_addr. Finally, if the server supports
 notifications for device ID mappings, the gdir_notification result
 will contain a bitmap of which notifications it will actually send to
 the client (via CB_NOTIFY_DEVICEID, see Section 20.12).

 If NFS4ERR_TOOSMALL is returned, the results also contain
 gdir_mincount. The value of gdir_mincount represents the minimum
 size necessary to obtain the device information.

18.40.4. IMPLEMENTATION

 Aside from updating or turning off notifications, another use case

 for gdia_maxcount being set to zero is to validate a device ID.

 The client SHOULD request a notification for changes or deletion of a
 device ID to device address mapping so that the server can allow the
 client gracefully use a new mapping, without having pending I/O fail
 abruptly, or force layouts using the device ID to be recalled or
 revoked.

 It is possible that GETDEVICEINFO (and GETDEVICELIST) will race with
 CB_NOTIFY_DEVICEID, i.e., CB_NOTIFY_DEVICEID arrives before the
 client gets and processes the response to GETDEVICEINFO or
 GETDEVICELIST. The analysis of the race leverages the fact that the
 server MUST NOT delete a device ID that is referred to by a layout
 the client has.

 * CB_NOTIFY_DEVICEID deletes a device ID. If the client believes it
 has layouts that refer to the device ID, then it is possible that
 layouts referring to the deleted device ID have been revoked. The
 client should send a TEST_STATEID request using the stateid for
 each layout that might have been revoked. If TEST_STATEID
 indicates that any layouts have been revoked, the client must
 recover from layout revocation as described in Section 12.5.6. If
 TEST_STATEID indicates that at least one layout has not been
 revoked, the client should send a GETDEVICEINFO operation on the
 supposedly deleted device ID to verify that the device ID has been
 deleted.

 If GETDEVICEINFO indicates that the device ID does not exist, then
 the client assumes the server is faulty and recovers by sending an
 EXCHANGE_ID operation. If GETDEVICEINFO indicates that the device
 ID does exist, then while the server is faulty for sending an
 erroneous device ID deletion notification, the degree to which it
 is faulty does not require the client to create a new client ID.

 If the client does not have layouts that refer to the device ID,
 no harm is done. The client should mark the device ID as deleted,
 and when GETDEVICEINFO or GETDEVICELIST results are received that
 indicate that the device ID has been in fact deleted, the device
 ID should be removed from the client’s cache.

 * CB_NOTIFY_DEVICEID indicates that a device ID’s device addressing
 mappings have changed. The client should assume that the results
 from the in-progress GETDEVICEINFO will be stale for the device ID
 once received, and so it should send another GETDEVICEINFO on the
 device ID.

18.41. Operation 48: GETDEVICELIST - Get All Device Mappings for a File
 System

18.41.1. ARGUMENT

 struct GETDEVICELIST4args {
 /* CURRENT_FH: object belonging to the file system */
 layouttype4 gdla_layout_type;

 /* number of deviceIDs to return */
 count4 gdla_maxdevices;

 nfs_cookie4 gdla_cookie;
 verifier4 gdla_cookieverf;
 };

18.41.2. RESULT

 struct GETDEVICELIST4resok {
 nfs_cookie4 gdlr_cookie;
 verifier4 gdlr_cookieverf;
 deviceid4 gdlr_deviceid_list<>;
 bool gdlr_eof;
 };

 union GETDEVICELIST4res switch (nfsstat4 gdlr_status) {
 case NFS4_OK:
 GETDEVICELIST4resok gdlr_resok4;
 default:
 void;
 };

18.41.3. DESCRIPTION

 This operation is used by the client to enumerate all of the device
 IDs that a server’s file system uses.

 The client provides a current filehandle of a file object that
 belongs to the file system (i.e., all file objects sharing the same
 fsid as that of the current filehandle) and the layout type in
 gdia_layout_type. Since this operation might require multiple calls
 to enumerate all the device IDs (and is thus similar to the READDIR
 (Section 18.23) operation), the client also provides gdia_cookie and
 gdia_cookieverf to specify the current cursor position in the list.
 When the client wants to read from the beginning of the file system’s
 device mappings, it sets gdla_cookie to zero. The field
 gdla_cookieverf MUST be ignored by the server when gdla_cookie is
 zero. The client provides gdla_maxdevices to limit the number of
 device IDs in the result. If gdla_maxdevices is zero, the server
 MUST return NFS4ERR_INVAL. The server MAY return fewer device IDs.

 The successful response to the operation will contain the cookie,
 gdlr_cookie, and the cookie verifier, gdlr_cookieverf, to be used on
 the subsequent GETDEVICELIST. A gdlr_eof value of TRUE signifies
 that there are no remaining entries in the server’s device list.
 Each element of gdlr_deviceid_list contains a device ID.

18.41.4. IMPLEMENTATION

 An example of the use of this operation is for pNFS clients and
 servers that use LAYOUT4_BLOCK_VOLUME layouts. In these environments
 it may be helpful for a client to determine device accessibility upon
 first file system access.

18.42. Operation 49: LAYOUTCOMMIT - Commit Writes Made Using a Layout

18.42.1. ARGUMENT

 union newtime4 switch (bool nt_timechanged) {
 case TRUE:
 nfstime4 nt_time;
 case FALSE:
 void;
 };

 union newoffset4 switch (bool no_newoffset) {
 case TRUE:
 offset4 no_offset;
 case FALSE:
 void;
 };

 struct LAYOUTCOMMIT4args {
 /* CURRENT_FH: file */
 offset4 loca_offset;
 length4 loca_length;
 bool loca_reclaim;
 stateid4 loca_stateid;
 newoffset4 loca_last_write_offset;
 newtime4 loca_time_modify;
 layoutupdate4 loca_layoutupdate;
 };

18.42.2. RESULT

 union newsize4 switch (bool ns_sizechanged) {

 case TRUE:
 length4 ns_size;
 case FALSE:
 void;
 };

 struct LAYOUTCOMMIT4resok {
 newsize4 locr_newsize;
 };

 union LAYOUTCOMMIT4res switch (nfsstat4 locr_status) {
 case NFS4_OK:
 LAYOUTCOMMIT4resok locr_resok4;
 default:
 void;
 };

18.42.3. DESCRIPTION

 The LAYOUTCOMMIT operation commits changes in the layout represented
 by the current filehandle, client ID (derived from the session ID in
 the preceding SEQUENCE operation), byte-range, and stateid. Since
 layouts are sub-dividable, a smaller portion of a layout, retrieved
 via LAYOUTGET, can be committed. The byte-range being committed is
 specified through the byte-range (loca_offset and loca_length). This
 byte-range MUST overlap with one or more existing layouts previously
 granted via LAYOUTGET (Section 18.43), each with an iomode of
 LAYOUTIOMODE4_RW. In the case where the iomode of any held layout
 segment is not LAYOUTIOMODE4_RW, the server should return the error
 NFS4ERR_BAD_IOMODE. For the case where the client does not hold
 matching layout segment(s) for the defined byte-range, the server
 should return the error NFS4ERR_BAD_LAYOUT.

 The LAYOUTCOMMIT operation indicates that the client has completed
 writes using a layout obtained by a previous LAYOUTGET. The client
 may have only written a subset of the data range it previously
 requested. LAYOUTCOMMIT allows it to commit or discard provisionally
 allocated space and to update the server with a new end-of-file. The
 layout referenced by LAYOUTCOMMIT is still valid after the operation
 completes and can be continued to be referenced by the client ID,
 filehandle, byte-range, layout type, and stateid.

 If the loca_reclaim field is set to TRUE, this indicates that the
 client is attempting to commit changes to a layout after the restart
 of the metadata server during the metadata server’s recovery grace
 period (see Section 12.7.4). This type of request may be necessary
 when the client has uncommitted writes to provisionally allocated
 byte-ranges of a file that were sent to the storage devices before
 the restart of the metadata server. In this case, the layout
 provided by the client MUST be a subset of a writable layout that the
 client held immediately before the restart of the metadata server.
 The value of the field loca_stateid MUST be a value that the metadata
 server returned before it restarted. The metadata server is free to
 accept or reject this request based on its own internal metadata
 consistency checks. If the metadata server finds that the layout
 provided by the client does not pass its consistency checks, it MUST
 reject the request with the status NFS4ERR_RECLAIM_BAD. The
 successful completion of the LAYOUTCOMMIT request with loca_reclaim
 set to TRUE does NOT provide the client with a layout for the file.
 It simply commits the changes to the layout specified in the
 loca_layoutupdate field. To obtain a layout for the file, the client
 must send a LAYOUTGET request to the server after the server’s grace
 period has expired. If the metadata server receives a LAYOUTCOMMIT
 request with loca_reclaim set to TRUE when the metadata server is not
 in its recovery grace period, it MUST reject the request with the
 status NFS4ERR_NO_GRACE.

 Setting the loca_reclaim field to TRUE is required if and only if the
 committed layout was acquired before the metadata server restart. If
 the client is committing a layout that was acquired during the
 metadata server’s grace period, it MUST set the "reclaim" field to

 FALSE.

 The loca_stateid is a layout stateid value as returned by previously
 successful layout operations (see Section 12.5.3).

 The loca_last_write_offset field specifies the offset of the last
 byte written by the client previous to the LAYOUTCOMMIT. Note that
 this value is never equal to the file’s size (at most it is one byte
 less than the file’s size) and MUST be less than or equal to
 NFS4_MAXFILEOFF. Also, loca_last_write_offset MUST overlap the range
 described by loca_offset and loca_length. The metadata server may
 use this information to determine whether the file’s size needs to be
 updated. If the metadata server updates the file’s size as the
 result of the LAYOUTCOMMIT operation, it must return the new size
 (locr_newsize.ns_size) as part of the results.

 The loca_time_modify field allows the client to suggest a
 modification time it would like the metadata server to set. The
 metadata server may use the suggestion or it may use the time of the
 LAYOUTCOMMIT operation to set the modification time. If the metadata
 server uses the client-provided modification time, it should ensure
 that time does not flow backwards. If the client wants to force the
 metadata server to set an exact time, the client should use a SETATTR
 operation in a COMPOUND right after LAYOUTCOMMIT. See Section 12.5.4
 for more details. If the client desires the resultant modification
 time, it should construct the COMPOUND so that a GETATTR follows the
 LAYOUTCOMMIT.

 The loca_layoutupdate argument to LAYOUTCOMMIT provides a mechanism
 for a client to provide layout-specific updates to the metadata
 server. For example, the layout update can describe what byte-ranges
 of the original layout have been used and what byte-ranges can be
 deallocated. There is no NFSv4.1 file layout-specific layoutupdate4
 structure.

 The layout information is more verbose for block devices than for
 objects and files because the latter two hide the details of block
 allocation behind their storage protocols. At the minimum, the
 client needs to communicate changes to the end-of-file location back
 to the server, and, if desired, its view of the file’s modification
 time. For block/volume layouts, it needs to specify precisely which
 blocks have been used.

 If the layout identified in the arguments does not exist, the error
 NFS4ERR_BADLAYOUT is returned. The layout being committed may also
 be rejected if it does not correspond to an existing layout with an
 iomode of LAYOUTIOMODE4_RW.

 On success, the current filehandle retains its value and the current
 stateid retains its value.

18.42.4. IMPLEMENTATION

 The client MAY also use LAYOUTCOMMIT with the loca_reclaim field set
 to TRUE to convey hints to modified file attributes or to report
 layout-type specific information such as I/O errors for object-based
 storage layouts, as normally done during normal operation. Doing so
 may help the metadata server to recover files more efficiently after
 restart. For example, some file system implementations may require
 expansive recovery of file system objects if the metadata server does
 not get a positive indication from all clients holding a
 LAYOUTIOMODE4_RW layout that they have successfully completed all
 their writes. Sending a LAYOUTCOMMIT (if required) and then
 following with LAYOUTRETURN can provide such an indication and allow
 for graceful and efficient recovery.

 If loca_reclaim is TRUE, the metadata server is free to either
 examine or ignore the value in the field loca_stateid. The metadata
 server implementation might or might not encode in its layout stateid
 information that allows the metadata server to perform a consistency
 check on the LAYOUTCOMMIT request.

18.43. Operation 50: LAYOUTGET - Get Layout Information

18.43.1. ARGUMENT

 struct LAYOUTGET4args {
 /* CURRENT_FH: file */
 bool loga_signal_layout_avail;
 layouttype4 loga_layout_type;
 layoutiomode4 loga_iomode;
 offset4 loga_offset;
 length4 loga_length;
 length4 loga_minlength;
 stateid4 loga_stateid;
 count4 loga_maxcount;
 };

18.43.2. RESULT

 struct LAYOUTGET4resok {
 bool logr_return_on_close;
 stateid4 logr_stateid;
 layout4 logr_layout<>;
 };

 union LAYOUTGET4res switch (nfsstat4 logr_status) {
 case NFS4_OK:
 LAYOUTGET4resok logr_resok4;
 case NFS4ERR_LAYOUTTRYLATER:
 bool logr_will_signal_layout_avail;
 default:
 void;
 };

18.43.3. DESCRIPTION

 The LAYOUTGET operation requests a layout from the metadata server
 for reading or writing the file given by the filehandle at the byte-
 range specified by offset and length. Layouts are identified by the
 client ID (derived from the session ID in the preceding SEQUENCE
 operation), current filehandle, layout type (loga_layout_type), and
 the layout stateid (loga_stateid). The use of the loga_iomode field
 depends upon the layout type, but should reflect the client’s data
 access intent.

 If the metadata server is in a grace period, and does not persist
 layouts and device ID to device address mappings, then it MUST return
 NFS4ERR_GRACE (see Section 8.4.2.1).

 The LAYOUTGET operation returns layout information for the specified
 byte-range: a layout. The client actually specifies two ranges, both
 starting at the offset in the loga_offset field. The first range is
 between loga_offset and loga_offset + loga_length - 1 inclusive.
 This range indicates the desired range the client wants the layout to
 cover. The second range is between loga_offset and loga_offset +
 loga_minlength - 1 inclusive. This range indicates the required
 range the client needs the layout to cover. Thus, loga_minlength
 MUST be less than or equal to loga_length.

 When a length field is set to NFS4_UINT64_MAX, this indicates a
 desire (when loga_length is NFS4_UINT64_MAX) or requirement (when
 loga_minlength is NFS4_UINT64_MAX) to get a layout from loga_offset
 through the end-of-file, regardless of the file’s length.

 The following rules govern the relationships among, and the minima
 of, loga_length, loga_minlength, and loga_offset.

 * If loga_length is less than loga_minlength, the metadata server
 MUST return NFS4ERR_INVAL.

 * If loga_minlength is zero, this is an indication to the metadata

 server that the client desires any layout at offset loga_offset or
 less that the metadata server has "readily available". Readily is
 subjective, and depends on the layout type and the pNFS server
 implementation. For example, some metadata servers might have to
 pre-allocate stable storage when they receive a request for a
 range of a file that goes beyond the file’s current length. If
 loga_minlength is zero and loga_length is greater than zero, this
 tells the metadata server what range of the layout the client
 would prefer to have. If loga_length and loga_minlength are both
 zero, then the client is indicating that it desires a layout of
 any length with the ending offset of the range no less than the
 value specified loga_offset, and the starting offset at or below
 loga_offset. If the metadata server does not have a layout that
 is readily available, then it MUST return NFS4ERR_LAYOUTTRYLATER.

 * If the sum of loga_offset and loga_minlength exceeds
 NFS4_UINT64_MAX, and loga_minlength is not NFS4_UINT64_MAX, the
 error NFS4ERR_INVAL MUST result.

 * If the sum of loga_offset and loga_length exceeds NFS4_UINT64_MAX,
 and loga_length is not NFS4_UINT64_MAX, the error NFS4ERR_INVAL
 MUST result.

 After the metadata server has performed the above checks on
 loga_offset, loga_minlength, and loga_offset, the metadata server
 MUST return a layout according to the rules in Table 22.

 Acceptable layouts based on loga_minlength. Note: u64m =
 NFS4_UINT64_MAX; a_off = loga_offset; a_minlen = loga_minlength.

 +===========+============+==========+==========+===================+
Layout	Layout	Layout	Layout	Layout length of
iomode of	a_minlen	iomode	offset	reply
request	of request	of reply	of reply	
+===========+============+==========+==========+===================+				
_READ	u64m	MAY be	MUST be	MUST be >= file
		_READ	<= a_off	length - layout
				offset
+-----------+------------+----------+----------+-------------------+				
_READ	u64m	MAY be	MUST be	MUST be u64m
		_RW	<= a_off	
+-----------+------------+----------+----------+-------------------+				
_READ	> 0 and <	MAY be	MUST be	MUST be >=
	u64m	_READ	<= a_off	MIN(file length,
				a_minlen + a_off)
				- layout offset
+-----------+------------+----------+----------+-------------------+				
_READ	> 0 and <	MAY be	MUST be	MUST be >= a_off
	u64m	_RW	<= a_off	- layout offset +
				a_minlen
+-----------+------------+----------+----------+-------------------+				
_READ	0	MAY be	MUST be	MUST be > 0
		_READ	<= a_off	
+-----------+------------+----------+----------+-------------------+				
_READ	0	MAY be	MUST be	MUST be > 0
		_RW	<= a_off	
+-----------+------------+----------+----------+-------------------+				
_RW	u64m	MUST be	MUST be	MUST be u64m
		_RW	<= a_off	
+-----------+------------+----------+----------+-------------------+				
_RW	> 0 and <	MUST be	MUST be	MUST be >= a_off
	u64m	_RW	<= a_off	- layout offset +
				a_minlen
+-----------+------------+----------+----------+-------------------+				
_RW	0	MUST be	MUST be	MUST be > 0
		_RW	<= a_off	
 +-----------+------------+----------+----------+-------------------+

 Table 22

 If loga_minlength is not zero and the metadata server cannot return a

 layout according to the rules in Table 22, then the metadata server
 MUST return the error NFS4ERR_BADLAYOUT. If loga_minlength is zero
 and the metadata server cannot or will not return a layout according
 to the rules in Table 22, then the metadata server MUST return the
 error NFS4ERR_LAYOUTTRYLATER. Assuming that loga_length is greater
 than loga_minlength or equal to zero, the metadata server SHOULD
 return a layout according to the rules in Table 23.

 Desired layouts based on loga_length. The rules of Table 22 MUST be
 applied first. Note: u64m = NFS4_UINT64_MAX; a_off = loga_offset;
 a_len = loga_length.

 +===============+==========+==========+==========+================+
 | Layout iomode | Layout | Layout | Layout | Layout length |
 | of request | a_len of | iomode | offset | of reply |
 | | request | of reply | of reply | |
 +===============+==========+==========+==========+================+
 | _READ | u64m | MAY be | MUST be | SHOULD be u64m |
 | | | _READ | <= a_off | |
 +---------------+----------+----------+----------+----------------+
 | _READ | u64m | MAY be | MUST be | SHOULD be u64m |
 | | | _RW | <= a_off | |
 +---------------+----------+----------+----------+----------------+
 | _READ | > 0 and | MAY be | MUST be | SHOULD be >= |
 | | < u64m | _READ | <= a_off | a_off - layout |
 | | | | | offset + a_len |
 +---------------+----------+----------+----------+----------------+
 | _READ | > 0 and | MAY be | MUST be | SHOULD be >= |
 | | < u64m | _RW | <= a_off | a_off - layout |
 | | | | | offset + a_len |
 +---------------+----------+----------+----------+----------------+
 | _READ | 0 | MAY be | MUST be | SHOULD be > |
 | | | _READ | <= a_off | a_off - layout |
 | | | | | offset |
 +---------------+----------+----------+----------+----------------+
 | _READ | 0 | MAY be | MUST be | SHOULD be > |
 | | | _READ | <= a_off | a_off - layout |
 | | | | | offset |
 +---------------+----------+----------+----------+----------------+
 | _RW | u64m | MUST be | MUST be | SHOULD be u64m |
 | | | _RW | <= a_off | |
 +---------------+----------+----------+----------+----------------+
 | _RW | > 0 and | MUST be | MUST be | SHOULD be >= |
 | | < u64m | _RW | <= a_off | a_off - layout |
 | | | | | offset + a_len |
 +---------------+----------+----------+----------+----------------+
 | _RW | 0 | MUST be | MUST be | SHOULD be > |
 | | | _RW | <= a_off | a_off - layout |
 | | | | | offset |
 +---------------+----------+----------+----------+----------------+

 Table 23

 The loga_stateid field specifies a valid stateid. If a layout is not
 currently held by the client, the loga_stateid field represents a
 stateid reflecting the correspondingly valid open, byte-range lock,
 or delegation stateid. Once a layout is held on the file by the
 client, the loga_stateid field MUST be a stateid as returned from a
 previous LAYOUTGET or LAYOUTRETURN operation or provided by a
 CB_LAYOUTRECALL operation (see Section 12.5.3).

 The loga_maxcount field specifies the maximum layout size (in bytes)
 that the client can handle. If the size of the layout structure
 exceeds the size specified by maxcount, the metadata server will
 return the NFS4ERR_TOOSMALL error.

 The returned layout is expressed as an array, logr_layout, with each
 element of type layout4. If a file has a single striping pattern,
 then logr_layout SHOULD contain just one entry. Otherwise, if the
 requested range overlaps more than one striping pattern, logr_layout
 will contain the required number of entries. The elements of

 logr_layout MUST be sorted in ascending order of the value of the
 lo_offset field of each element. There MUST be no gaps or overlaps
 in the range between two successive elements of logr_layout. The
 lo_iomode field in each element of logr_layout MUST be the same.

 Table 22 and Table 23 both refer to a returned layout iomode, offset,
 and length. Because the returned layout is encoded in the
 logr_layout array, more description is required.

 iomode The value of the returned layout iomode listed in Table 22
 and Table 23 is equal to the value of the lo_iomode field in each
 element of logr_layout. As shown in Table 22 and Table 23, the
 metadata server MAY return a layout with an lo_iomode different
 from the requested iomode (field loga_iomode of the request). If
 it does so, it MUST ensure that the lo_iomode is more permissive
 than the loga_iomode requested. For example, this behavior allows
 an implementation to upgrade LAYOUTIOMODE4_READ requests to
 LAYOUTIOMODE4_RW requests at its discretion, within the limits of
 the layout type specific protocol. A lo_iomode of either
 LAYOUTIOMODE4_READ or LAYOUTIOMODE4_RW MUST be returned.

 offset The value of the returned layout offset listed in Table 22
 and Table 23 is always equal to the lo_offset field of the first
 element logr_layout.

 length When setting the value of the returned layout length, the
 situation is complicated by the possibility that the special
 layout length value NFS4_UINT64_MAX is involved. For a
 logr_layout array of N elements, the lo_length field in the first
 N-1 elements MUST NOT be NFS4_UINT64_MAX. The lo_length field of
 the last element of logr_layout can be NFS4_UINT64_MAX under some
 conditions as described in the following list.

 * If an applicable rule of Table 22 states that the metadata
 server MUST return a layout of length NFS4_UINT64_MAX, then the
 lo_length field of the last element of logr_layout MUST be
 NFS4_UINT64_MAX.

 * If an applicable rule of Table 22 states that the metadata
 server MUST NOT return a layout of length NFS4_UINT64_MAX, then
 the lo_length field of the last element of logr_layout MUST NOT
 be NFS4_UINT64_MAX.

 * If an applicable rule of Table 23 states that the metadata
 server SHOULD return a layout of length NFS4_UINT64_MAX, then
 the lo_length field of the last element of logr_layout SHOULD
 be NFS4_UINT64_MAX.

 * When the value of the returned layout length of Table 22 and
 Table 23 is not NFS4_UINT64_MAX, then the returned layout
 length is equal to the sum of the lo_length fields of each
 element of logr_layout.

 The logr_return_on_close result field is a directive to return the
 layout before closing the file. When the metadata server sets this
 return value to TRUE, it MUST be prepared to recall the layout in the
 case in which the client fails to return the layout before close.
 For the metadata server that knows a layout must be returned before a
 close of the file, this return value can be used to communicate the
 desired behavior to the client and thus remove one extra step from
 the client’s and metadata server’s interaction.

 The logr_stateid stateid is returned to the client for use in
 subsequent layout related operations. See Sections 8.2, 12.5.3, and
 12.5.5.2 for a further discussion and requirements.

 The format of the returned layout (lo_content) is specific to the
 layout type. The value of the layout type (lo_content.loc_type) for
 each of the elements of the array of layouts returned by the metadata
 server (logr_layout) MUST be equal to the loga_layout_type specified
 by the client. If it is not equal, the client SHOULD ignore the

 response as invalid and behave as if the metadata server returned an
 error, even if the client does have support for the layout type
 returned.

 If neither the requested file nor its containing file system support
 layouts, the metadata server MUST return NFS4ERR_LAYOUTUNAVAILABLE.
 If the layout type is not supported, the metadata server MUST return
 NFS4ERR_UNKNOWN_LAYOUTTYPE. If layouts are supported but no layout
 matches the client provided layout identification, the metadata
 server MUST return NFS4ERR_BADLAYOUT. If an invalid loga_iomode is
 specified, or a loga_iomode of LAYOUTIOMODE4_ANY is specified, the
 metadata server MUST return NFS4ERR_BADIOMODE.

 If the layout for the file is unavailable due to transient
 conditions, e.g., file sharing prohibits layouts, the metadata server
 MUST return NFS4ERR_LAYOUTTRYLATER.

 If the layout request is rejected due to an overlapping layout
 recall, the metadata server MUST return NFS4ERR_RECALLCONFLICT. See
 Section 12.5.5.2 for details.

 If the layout conflicts with a mandatory byte-range lock held on the
 file, and if the storage devices have no method of enforcing
 mandatory locks, other than through the restriction of layouts, the
 metadata server SHOULD return NFS4ERR_LOCKED.

 If client sets loga_signal_layout_avail to TRUE, then it is
 registering with the client a "want" for a layout in the event the
 layout cannot be obtained due to resource exhaustion. If the
 metadata server supports and will honor the "want", the results will
 have logr_will_signal_layout_avail set to TRUE. If so, the client
 should expect a CB_RECALLABLE_OBJ_AVAIL operation to indicate that a
 layout is available.

 On success, the current filehandle retains its value and the current
 stateid is updated to match the value as returned in the results.

18.43.4. IMPLEMENTATION

 Typically, LAYOUTGET will be called as part of a COMPOUND request
 after an OPEN operation and results in the client having location
 information for the file. This requires that loga_stateid be set to
 the special stateid that tells the metadata server to use the current
 stateid, which is set by OPEN (see Section 16.2.3.1.2). A client may
 also hold a layout across multiple OPENs. The client specifies a
 layout type that limits what kind of layout the metadata server will
 return. This prevents metadata servers from granting layouts that
 are unusable by the client.

 As indicated by Table 22 and Table 23, the specification of LAYOUTGET
 allows a pNFS client and server considerable flexibility. A pNFS
 client can take several strategies for sending LAYOUTGET. Some
 examples are as follows.

 * If LAYOUTGET is preceded by OPEN in the same COMPOUND request and
 the OPEN requests OPEN4_SHARE_ACCESS_READ access, the client might
 opt to request a _READ layout with loga_offset set to zero,
 loga_minlength set to zero, and loga_length set to
 NFS4_UINT64_MAX. If the file has space allocated to it, that
 space is striped over one or more storage devices, and there is
 either no conflicting layout or the concept of a conflicting
 layout does not apply to the pNFS server’s layout type or
 implementation, then the metadata server might return a layout
 with a starting offset of zero, and a length equal to the length
 of the file, if not NFS4_UINT64_MAX. If the length of the file is
 not a multiple of the pNFS server’s stripe width (see Section 13.2
 for a formal definition), the metadata server might round up the
 returned layout’s length.

 * If LAYOUTGET is preceded by OPEN in the same COMPOUND request, and
 the OPEN requests OPEN4_SHARE_ACCESS_WRITE access and does not

 truncate the file, the client might opt to request a _RW layout
 with loga_offset set to zero, loga_minlength set to zero, and
 loga_length set to the file’s current length (if known), or
 NFS4_UINT64_MAX. As with the previous case, under some conditions
 the metadata server might return a layout that covers the entire
 length of the file or beyond.

 * This strategy is as above, but the OPEN truncates the file. In
 this case, the client might anticipate it will be writing to the
 file from offset zero, and so loga_offset and loga_minlength are
 set to zero, and loga_length is set to the value of
 threshold4_write_iosize. The metadata server might return a
 layout from offset zero with a length at least as long as
 threshold4_write_iosize.

 * A process on the client invokes a request to read from offset
 10000 for length 50000. The client is using buffered I/O, and has
 buffer sizes of 4096 bytes. The client intends to map the request
 of the process into a series of READ requests starting at offset
 8192. The end offset needs to be higher than 10000 + 50000 =
 60000, and the next offset that is a multiple of 4096 is 61440.
 The difference between 61440 and that starting offset of the
 layout is 53248 (which is the product of 4096 and 15). The value
 of threshold4_read_iosize is less than 53248, so the client sends
 a LAYOUTGET request with loga_offset set to 8192, loga_minlength
 set to 53248, and loga_length set to the file’s length (if known)
 minus 8192 or NFS4_UINT64_MAX (if the file’s length is not known).
 Since this LAYOUTGET request exceeds the metadata server’s
 threshold, it grants the layout, possibly with an initial offset
 of zero, with an end offset of at least 8192 + 53248 - 1 = 61439,
 but preferably a layout with an offset aligned on the stripe width
 and a length that is a multiple of the stripe width.

 * This strategy is as above, but the client is not using buffered I/
 O, and instead all internal I/O requests are sent directly to the
 server. The LAYOUTGET request has loga_offset equal to 10000 and
 loga_minlength set to 50000. The value of loga_length is set to
 the length of the file. The metadata server is free to return a
 layout that fully overlaps the requested range, with a starting
 offset and length aligned on the stripe width.

 * Again, a process on the client invokes a request to read from
 offset 10000 for length 50000 (i.e. a range with a starting offset
 of 10000 and an ending offset of 69999), and buffered I/O is in
 use. The client is expecting that the server might not be able to
 return the layout for the full I/O range. The client intends to
 map the request of the process into a series of thirteen READ
 requests starting at offset 8192, each with length 4096, with a
 total length of 53248 (which equals 13 * 4096), which fully
 contains the range that client’s process wants to read. Because
 the value of threshold4_read_iosize is equal to 4096, it is
 practical and reasonable for the client to use several LAYOUTGET
 operations to complete the series of READs. The client sends a
 LAYOUTGET request with loga_offset set to 8192, loga_minlength set
 to 4096, and loga_length set to 53248 or higher. The server will
 grant a layout possibly with an initial offset of zero, with an
 end offset of at least 8192 + 4096 - 1 = 12287, but preferably a
 layout with an offset aligned on the stripe width and a length
 that is a multiple of the stripe width. This will allow the
 client to make forward progress, possibly sending more LAYOUTGET
 operations for the remainder of the range.

 * An NFS client detects a sequential read pattern, and so sends a
 LAYOUTGET operation that goes well beyond any current or pending
 read requests to the server. The server might likewise detect
 this pattern, and grant the LAYOUTGET request. Once the client
 reads from an offset of the file that represents 50% of the way
 through the range of the last layout it received, in order to
 avoid stalling I/O that would wait for a layout, the client sends
 more operations from an offset of the file that represents 50% of
 the way through the last layout it received. The client continues

 to request layouts with byte-ranges that are well in advance of
 the byte-ranges of recent and/or read requests of processes
 running on the client.

 * This strategy is as above, but the client fails to detect the
 pattern, but the server does. The next time the metadata server
 gets a LAYOUTGET, it returns a layout with a length that is well
 beyond loga_minlength.

 * A client is using buffered I/O, and has a long queue of write-
 behinds to process and also detects a sequential write pattern.
 It sends a LAYOUTGET for a layout that spans the range of the
 queued write-behinds and well beyond, including ranges beyond the
 filer’s current length. The client continues to send LAYOUTGET
 operations once the write-behind queue reaches 50% of the maximum
 queue length.

 Once the client has obtained a layout referring to a particular
 device ID, the metadata server MUST NOT delete the device ID until
 the layout is returned or revoked.

 CB_NOTIFY_DEVICEID can race with LAYOUTGET. One race scenario is
 that LAYOUTGET returns a device ID for which the client does not have
 device address mappings, and the metadata server sends a
 CB_NOTIFY_DEVICEID to add the device ID to the client’s awareness and
 meanwhile the client sends GETDEVICEINFO on the device ID. This
 scenario is discussed in Section 18.40.4. Another scenario is that
 the CB_NOTIFY_DEVICEID is processed by the client before it processes
 the results from LAYOUTGET. The client will send a GETDEVICEINFO on
 the device ID. If the results from GETDEVICEINFO are received before
 the client gets results from LAYOUTGET, then there is no longer a
 race. If the results from LAYOUTGET are received before the results
 from GETDEVICEINFO, the client can either wait for results of
 GETDEVICEINFO or send another one to get possibly more up-to-date
 device address mappings for the device ID.

18.44. Operation 51: LAYOUTRETURN - Release Layout Information

18.44.1. ARGUMENT

 /* Constants used for LAYOUTRETURN and CB_LAYOUTRECALL */
 const LAYOUT4_RET_REC_FILE = 1;
 const LAYOUT4_RET_REC_FSID = 2;
 const LAYOUT4_RET_REC_ALL = 3;

 enum layoutreturn_type4 {
 LAYOUTRETURN4_FILE = LAYOUT4_RET_REC_FILE,
 LAYOUTRETURN4_FSID = LAYOUT4_RET_REC_FSID,
 LAYOUTRETURN4_ALL = LAYOUT4_RET_REC_ALL
 };

 struct layoutreturn_file4 {
 offset4 lrf_offset;
 length4 lrf_length;
 stateid4 lrf_stateid;
 /* layouttype4 specific data */
 opaque lrf_body<>;
 };

 union layoutreturn4 switch(layoutreturn_type4 lr_returntype) {
 case LAYOUTRETURN4_FILE:
 layoutreturn_file4 lr_layout;
 default:
 void;
 };

 struct LAYOUTRETURN4args {
 /* CURRENT_FH: file */
 bool lora_reclaim;
 layouttype4 lora_layout_type;
 layoutiomode4 lora_iomode;

 layoutreturn4 lora_layoutreturn;
 };

18.44.2. RESULT

 union layoutreturn_stateid switch (bool lrs_present) {
 case TRUE:
 stateid4 lrs_stateid;
 case FALSE:
 void;
 };

 union LAYOUTRETURN4res switch (nfsstat4 lorr_status) {
 case NFS4_OK:
 layoutreturn_stateid lorr_stateid;
 default:
 void;
 };

18.44.3. DESCRIPTION

 This operation returns from the client to the server one or more
 layouts represented by the client ID (derived from the session ID in
 the preceding SEQUENCE operation), lora_layout_type, and lora_iomode.
 When lr_returntype is LAYOUTRETURN4_FILE, the returned layout is
 further identified by the current filehandle, lrf_offset, lrf_length,
 and lrf_stateid. If the lrf_length field is NFS4_UINT64_MAX, all
 bytes of the layout, starting at lrf_offset, are returned. When
 lr_returntype is LAYOUTRETURN4_FSID, the current filehandle is used
 to identify the file system and all layouts matching the client ID,
 the fsid of the file system, lora_layout_type, and lora_iomode are
 returned. When lr_returntype is LAYOUTRETURN4_ALL, all layouts
 matching the client ID, lora_layout_type, and lora_iomode are
 returned and the current filehandle is not used. After this call,
 the client MUST NOT use the returned layout(s) and the associated
 storage protocol to access the file data.

 If the set of layouts designated in the case of LAYOUTRETURN4_FSID or
 LAYOUTRETURN4_ALL is empty, then no error results. In the case of
 LAYOUTRETURN4_FILE, the byte-range specified is returned even if it
 is a subdivision of a layout previously obtained with LAYOUTGET, a
 combination of multiple layouts previously obtained with LAYOUTGET,
 or a combination including some layouts previously obtained with
 LAYOUTGET, and one or more subdivisions of such layouts. When the
 byte-range does not designate any bytes for which a layout is held
 for the specified file, client ID, layout type and mode, no error
 results. See Section 12.5.5.2.1.5 for considerations with "bulk"
 return of layouts.

 The layout being returned may be a subset or superset of a layout
 specified by CB_LAYOUTRECALL. However, if it is a subset, the recall
 is not complete until the full recalled scope has been returned.
 Recalled scope refers to the byte-range in the case of
 LAYOUTRETURN4_FILE, the use of LAYOUTRETURN4_FSID, or the use of
 LAYOUTRETURN4_ALL. There must be a LAYOUTRETURN with a matching
 scope to complete the return even if all current layout ranges have
 been previously individually returned.

 For all lr_returntype values, an iomode of LAYOUTIOMODE4_ANY
 specifies that all layouts that match the other arguments to
 LAYOUTRETURN (i.e., client ID, lora_layout_type, and one of current
 filehandle and range; fsid derived from current filehandle; or
 LAYOUTRETURN4_ALL) are being returned.

 In the case that lr_returntype is LAYOUTRETURN4_FILE, the lrf_stateid
 provided by the client is a layout stateid as returned from previous
 layout operations. Note that the "seqid" field of lrf_stateid MUST
 NOT be zero. See Sections 8.2, 12.5.3, and 12.5.5.2 for a further
 discussion and requirements.

 Return of a layout or all layouts does not invalidate the mapping of

 storage device ID to a storage device address. The mapping remains
 in effect until specifically changed or deleted via device ID
 notification callbacks. Of course if there are no remaining layouts
 that refer to a previously used device ID, the server is free to
 delete a device ID without a notification callback, which will be the
 case when notifications are not in effect.

 If the lora_reclaim field is set to TRUE, the client is attempting to
 return a layout that was acquired before the restart of the metadata
 server during the metadata server’s grace period. When returning
 layouts that were acquired during the metadata server’s grace period,
 the client MUST set the lora_reclaim field to FALSE. The
 lora_reclaim field MUST be set to FALSE also when lr_layoutreturn is
 LAYOUTRETURN4_FSID or LAYOUTRETURN4_ALL. See LAYOUTCOMMIT
 (Section 18.42) for more details.

 Layouts may be returned when recalled or voluntarily (i.e., before
 the server has recalled them). In either case, the client must
 properly propagate state changed under the context of the layout to
 the storage device(s) or to the metadata server before returning the
 layout.

 If the client returns the layout in response to a CB_LAYOUTRECALL
 where the lor_recalltype field of the clora_recall field was
 LAYOUTRECALL4_FILE, the client should use the lor_stateid value from
 CB_LAYOUTRECALL as the value for lrf_stateid. Otherwise, it should
 use logr_stateid (from a previous LAYOUTGET result) or lorr_stateid
 (from a previous LAYRETURN result). This is done to indicate the
 point in time (in terms of layout stateid transitions) when the
 recall was sent. The client uses the precise lora_recallstateid
 value and MUST NOT set the stateid’s seqid to zero; otherwise,
 NFS4ERR_BAD_STATEID MUST be returned. NFS4ERR_OLD_STATEID can be
 returned if the client is using an old seqid, and the server knows
 the client should not be using the old seqid. For example, the
 client uses the seqid on slot 1 of the session, receives the response
 with the new seqid, and uses the slot to send another request with
 the old seqid.

 If a client fails to return a layout in a timely manner, then the
 metadata server SHOULD use its control protocol with the storage
 devices to fence the client from accessing the data referenced by the
 layout. See Section 12.5.5 for more details.

 If the LAYOUTRETURN request sets the lora_reclaim field to TRUE after
 the metadata server’s grace period, NFS4ERR_NO_GRACE is returned.

 If the LAYOUTRETURN request sets the lora_reclaim field to TRUE and
 lr_returntype is set to LAYOUTRETURN4_FSID or LAYOUTRETURN4_ALL,
 NFS4ERR_INVAL is returned.

 If the client sets the lr_returntype field to LAYOUTRETURN4_FILE,
 then the lrs_stateid field will represent the layout stateid as
 updated for this operation’s processing; the current stateid will
 also be updated to match the returned value. If the last byte of any
 layout for the current file, client ID, and layout type is being
 returned and there are no remaining pending CB_LAYOUTRECALL
 operations for which a LAYOUTRETURN operation must be done,
 lrs_present MUST be FALSE, and no stateid will be returned. In
 addition, the COMPOUND request’s current stateid will be set to the
 all-zeroes special stateid (see Section 16.2.3.1.2). The server MUST
 reject with NFS4ERR_BAD_STATEID any further use of the current
 stateid in that COMPOUND until the current stateid is re-established
 by a later stateid-returning operation.

 On success, the current filehandle retains its value.

 If the EXCHGID4_FLAG_BIND_PRINC_STATEID capability is set on the
 client ID (see Section 18.35), the server will require that the
 principal, security flavor, and if applicable, the GSS mechanism,
 combination that acquired the layout also be the one to send
 LAYOUTRETURN. This might not be possible if credentials for the

 principal are no longer available. The server will allow the machine
 credential or SSV credential (see Section 18.35) to send LAYOUTRETURN
 if LAYOUTRETURN’s operation code was set in the spo_must_allow result
 of EXCHANGE_ID.

18.44.4. IMPLEMENTATION

 The final LAYOUTRETURN operation in response to a CB_LAYOUTRECALL
 callback MUST be serialized with any outstanding, intersecting
 LAYOUTRETURN operations. Note that it is possible that while a
 client is returning the layout for some recalled range, the server
 may recall a superset of that range (e.g., LAYOUTRECALL4_ALL); the
 final return operation for the latter must block until the former
 layout recall is done.

 Returning all layouts in a file system using LAYOUTRETURN4_FSID is
 typically done in response to a CB_LAYOUTRECALL for that file system
 as the final return operation. Similarly, LAYOUTRETURN4_ALL is used
 in response to a recall callback for all layouts. It is possible
 that the client already returned some outstanding layouts via
 individual LAYOUTRETURN calls and the call for LAYOUTRETURN4_FSID or
 LAYOUTRETURN4_ALL marks the end of the LAYOUTRETURN sequence. See
 Section 12.5.5.1 for more details.

 Once the client has returned all layouts referring to a particular
 device ID, the server MAY delete the device ID.

18.45. Operation 52: SECINFO_NO_NAME - Get Security on Unnamed Object

18.45.1. ARGUMENT

 enum secinfo_style4 {
 SECINFO_STYLE4_CURRENT_FH = 0,
 SECINFO_STYLE4_PARENT = 1
 };

 /* CURRENT_FH: object or child directory */
 typedef secinfo_style4 SECINFO_NO_NAME4args;

18.45.2. RESULT

 /* CURRENTFH: consumed if status is NFS4_OK */
 typedef SECINFO4res SECINFO_NO_NAME4res;

18.45.3. DESCRIPTION

 Like the SECINFO operation, SECINFO_NO_NAME is used by the client to
 obtain a list of valid RPC authentication flavors for a specific file
 object. Unlike SECINFO, SECINFO_NO_NAME only works with objects that
 are accessed by filehandle.

 There are two styles of SECINFO_NO_NAME, as determined by the value
 of the secinfo_style4 enumeration. If SECINFO_STYLE4_CURRENT_FH is
 passed, then SECINFO_NO_NAME is querying for the required security
 for the current filehandle. If SECINFO_STYLE4_PARENT is passed, then
 SECINFO_NO_NAME is querying for the required security of the current
 filehandle’s parent. If the style selected is SECINFO_STYLE4_PARENT,
 then SECINFO should apply the same access methodology used for
 LOOKUPP when evaluating the traversal to the parent directory.
 Therefore, if the requester does not have the appropriate access to
 LOOKUPP the parent, then SECINFO_NO_NAME must behave the same way and
 return NFS4ERR_ACCESS.

 If PUTFH, PUTPUBFH, PUTROOTFH, or RESTOREFH returns NFS4ERR_WRONGSEC,
 then the client resolves the situation by sending a COMPOUND request
 that consists of PUTFH, PUTPUBFH, or PUTROOTFH immediately followed
 by SECINFO_NO_NAME, style SECINFO_STYLE4_CURRENT_FH. See Section 2.6
 for instructions on dealing with NFS4ERR_WRONGSEC error returns from
 PUTFH, PUTROOTFH, PUTPUBFH, or RESTOREFH.

 If SECINFO_STYLE4_PARENT is specified and there is no parent

 directory, SECINFO_NO_NAME MUST return NFS4ERR_NOENT.

 On success, the current filehandle is consumed (see
 Section 2.6.3.1.1.8), and if the next operation after SECINFO_NO_NAME
 tries to use the current filehandle, that operation will fail with
 the status NFS4ERR_NOFILEHANDLE.

 Everything else about SECINFO_NO_NAME is the same as SECINFO. See
 the discussion on SECINFO (Section 18.29.3).

18.45.4. IMPLEMENTATION

 See the discussion on SECINFO (Section 18.29.4).

18.46. Operation 53: SEQUENCE - Supply Per-Procedure Sequencing and
 Control

18.46.1. ARGUMENT

 struct SEQUENCE4args {
 sessionid4 sa_sessionid;
 sequenceid4 sa_sequenceid;
 slotid4 sa_slotid;
 slotid4 sa_highest_slotid;
 bool sa_cachethis;
 };

18.46.2. RESULT

 const SEQ4_STATUS_CB_PATH_DOWN = 0x00000001;
 const SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRING = 0x00000002;
 const SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRED = 0x00000004;
 const SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED = 0x00000008;
 const SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED = 0x00000010;
 const SEQ4_STATUS_ADMIN_STATE_REVOKED = 0x00000020;
 const SEQ4_STATUS_RECALLABLE_STATE_REVOKED = 0x00000040;
 const SEQ4_STATUS_LEASE_MOVED = 0x00000080;
 const SEQ4_STATUS_RESTART_RECLAIM_NEEDED = 0x00000100;
 const SEQ4_STATUS_CB_PATH_DOWN_SESSION = 0x00000200;
 const SEQ4_STATUS_BACKCHANNEL_FAULT = 0x00000400;
 const SEQ4_STATUS_DEVID_CHANGED = 0x00000800;
 const SEQ4_STATUS_DEVID_DELETED = 0x00001000;

 struct SEQUENCE4resok {
 sessionid4 sr_sessionid;
 sequenceid4 sr_sequenceid;
 slotid4 sr_slotid;
 slotid4 sr_highest_slotid;
 slotid4 sr_target_highest_slotid;
 uint32_t sr_status_flags;
 };

 union SEQUENCE4res switch (nfsstat4 sr_status) {
 case NFS4_OK:
 SEQUENCE4resok sr_resok4;
 default:
 void;
 };

18.46.3. DESCRIPTION

 The SEQUENCE operation is used by the server to implement session
 request control and the reply cache semantics.

 SEQUENCE MUST appear as the first operation of any COMPOUND in which
 it appears. The error NFS4ERR_SEQUENCE_POS will be returned when it
 is found in any position in a COMPOUND beyond the first. Operations
 other than SEQUENCE, BIND_CONN_TO_SESSION, EXCHANGE_ID,
 CREATE_SESSION, and DESTROY_SESSION, MUST NOT appear as the first
 operation in a COMPOUND. Such operations MUST yield the error
 NFS4ERR_OP_NOT_IN_SESSION if they do appear at the start of a

 COMPOUND.

 If SEQUENCE is received on a connection not associated with the
 session via CREATE_SESSION or BIND_CONN_TO_SESSION, and connection
 association enforcement is enabled (see Section 18.35), then the
 server returns NFS4ERR_CONN_NOT_BOUND_TO_SESSION.

 The sa_sessionid argument identifies the session to which this
 request applies. The sr_sessionid result MUST equal sa_sessionid.

 The sa_slotid argument is the index in the reply cache for the
 request. The sa_sequenceid field is the sequence number of the
 request for the reply cache entry (slot). The sr_slotid result MUST
 equal sa_slotid. The sr_sequenceid result MUST equal sa_sequenceid.

 The sa_highest_slotid argument is the highest slot ID for which the
 client has a request outstanding; it could be equal to sa_slotid.
 The server returns two "highest_slotid" values: sr_highest_slotid and
 sr_target_highest_slotid. The former is the highest slot ID the
 server will accept in future SEQUENCE operation, and SHOULD NOT be
 less than the value of sa_highest_slotid (but see Section 2.10.6.1
 for an exception). The latter is the highest slot ID the server
 would prefer the client use on a future SEQUENCE operation.

 If sa_cachethis is TRUE, then the client is requesting that the
 server cache the entire reply in the server’s reply cache; therefore,
 the server MUST cache the reply (see Section 2.10.6.1.3). The server
 MAY cache the reply if sa_cachethis is FALSE. If the server does not
 cache the entire reply, it MUST still record that it executed the
 request at the specified slot and sequence ID.

 The response to the SEQUENCE operation contains a word of status
 flags (sr_status_flags) that can provide to the client information
 related to the status of the client’s lock state and communications
 paths. Note that any status bits relating to lock state MAY be reset
 when lock state is lost due to a server restart (even if the session
 is persistent across restarts; session persistence does not imply
 lock state persistence) or the establishment of a new client
 instance.

 SEQ4_STATUS_CB_PATH_DOWN
 When set, indicates that the client has no operational backchannel
 path for any session associated with the client ID, making it
 necessary for the client to re-establish one. This bit remains
 set on all SEQUENCE responses on all sessions associated with the
 client ID until at least one backchannel is available on any
 session associated with the client ID. If the client fails to re-
 establish a backchannel for the client ID, it is subject to having
 recallable state revoked.

 SEQ4_STATUS_CB_PATH_DOWN_SESSION
 When set, indicates that the session has no operational
 backchannel. There are two reasons why
 SEQ4_STATUS_CB_PATH_DOWN_SESSION may be set and not
 SEQ4_STATUS_CB_PATH_DOWN. First is that a callback operation that
 applies specifically to the session (e.g., CB_RECALL_SLOT, see
 Section 20.8) needs to be sent. Second is that the server did
 send a callback operation, but the connection was lost before the
 reply. The server cannot be sure whether or not the client
 received the callback operation, and so, per rules on request
 retry, the server MUST retry the callback operation over the same
 session. The SEQ4_STATUS_CB_PATH_DOWN_SESSION bit is the
 indication to the client that it needs to associate a connection
 to the session’s backchannel. This bit remains set on all
 SEQUENCE responses of the session until a connection is associated
 with the session’s a backchannel. If the client fails to re-
 establish a backchannel for the session, it is subject to having
 recallable state revoked.

 SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRING
 When set, indicates that all GSS contexts or RPCSEC_GSS handles

 assigned to the session’s backchannel will expire within a period
 equal to the lease time. This bit remains set on all SEQUENCE
 replies until at least one of the following are true:

 * All SSV RPCSEC_GSS handles on the session’s backchannel have
 been destroyed and all non-SSV GSS contexts have expired.

 * At least one more SSV RPCSEC_GSS handle has been added to the
 backchannel.

 * The expiration time of at least one non-SSV GSS context of an
 RPCSEC_GSS handle is beyond the lease period from the current
 time (relative to the time of when a SEQUENCE response was
 sent)

 SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRED
 When set, indicates all non-SSV GSS contexts and all SSV
 RPCSEC_GSS handles assigned to the session’s backchannel have
 expired or have been destroyed. This bit remains set on all
 SEQUENCE replies until at least one non-expired non-SSV GSS
 context for the session’s backchannel has been established or at
 least one SSV RPCSEC_GSS handle has been assigned to the
 backchannel.

 SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED
 When set, indicates that the lease has expired and as a result the
 server released all of the client’s locking state. This status
 bit remains set on all SEQUENCE replies until the loss of all such
 locks has been acknowledged by use of FREE_STATEID (see
 Section 18.38), or by establishing a new client instance by
 destroying all sessions (via DESTROY_SESSION), the client ID (via
 DESTROY_CLIENTID), and then invoking EXCHANGE_ID and
 CREATE_SESSION to establish a new client ID.

 SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED
 When set, indicates that some subset of the client’s locks have
 been revoked due to expiration of the lease period followed by
 another client’s conflicting LOCK operation. This status bit
 remains set on all SEQUENCE replies until the loss of all such
 locks has been acknowledged by use of FREE_STATEID.

 SEQ4_STATUS_ADMIN_STATE_REVOKED
 When set, indicates that one or more locks have been revoked
 without expiration of the lease period, due to administrative
 action. This status bit remains set on all SEQUENCE replies until
 the loss of all such locks has been acknowledged by use of
 FREE_STATEID.

 SEQ4_STATUS_RECALLABLE_STATE_REVOKED
 When set, indicates that one or more recallable objects have been
 revoked without expiration of the lease period, due to the
 client’s failure to return them when recalled, which may be a
 consequence of there being no working backchannel and the client
 failing to re-establish a backchannel per the
 SEQ4_STATUS_CB_PATH_DOWN, SEQ4_STATUS_CB_PATH_DOWN_SESSION, or
 SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRED status flags. This status bit
 remains set on all SEQUENCE replies until the loss of all such
 locks has been acknowledged by use of FREE_STATEID.

 SEQ4_STATUS_LEASE_MOVED
 When set, indicates that responsibility for lease renewal has been
 transferred to one or more new servers. This condition will
 continue until the client receives an NFS4ERR_MOVED error and the
 server receives the subsequent GETATTR for the fs_locations or
 fs_locations_info attribute for an access to each file system for
 which a lease has been moved to a new server. See
 Section 11.11.9.2.

 SEQ4_STATUS_RESTART_RECLAIM_NEEDED
 When set, indicates that due to server restart, the client must
 reclaim locking state. Until the client sends a global

 RECLAIM_COMPLETE (Section 18.51), every SEQUENCE operation will
 return SEQ4_STATUS_RESTART_RECLAIM_NEEDED.

 SEQ4_STATUS_BACKCHANNEL_FAULT
 The server has encountered an unrecoverable fault with the
 backchannel (e.g., it has lost track of the sequence ID for a slot
 in the backchannel). The client MUST stop sending more requests
 on the session’s fore channel, wait for all outstanding requests
 to complete on the fore and back channel, and then destroy the
 session.

 SEQ4_STATUS_DEVID_CHANGED
 The client is using device ID notifications and the server has
 changed a device ID mapping held by the client. This flag will
 stay present until the client has obtained the new mapping with
 GETDEVICEINFO.

 SEQ4_STATUS_DEVID_DELETED
 The client is using device ID notifications and the server has
 deleted a device ID mapping held by the client. This flag will
 stay in effect until the client sends a GETDEVICEINFO on the
 device ID with a null value in the argument gdia_notify_types.

 The value of the sa_sequenceid argument relative to the cached
 sequence ID on the slot falls into one of three cases.

 * If the difference between sa_sequenceid and the server’s cached
 sequence ID at the slot ID is two (2) or more, or if sa_sequenceid
 is less than the cached sequence ID (accounting for wraparound of
 the unsigned sequence ID value), then the server MUST return
 NFS4ERR_SEQ_MISORDERED.

 * If sa_sequenceid and the cached sequence ID are the same, this is
 a retry, and the server replies with what is recorded in the reply
 cache. The lease is possibly renewed as described below.

 * If sa_sequenceid is one greater (accounting for wraparound) than
 the cached sequence ID, then this is a new request, and the slot’s
 sequence ID is incremented. The operations subsequent to
 SEQUENCE, if any, are processed. If there are no other
 operations, the only other effects are to cache the SEQUENCE reply
 in the slot, maintain the session’s activity, and possibly renew
 the lease.

 If the client reuses a slot ID and sequence ID for a completely
 different request, the server MAY treat the request as if it is a
 retry of what it has already executed. The server MAY however detect
 the client’s illegal reuse and return NFS4ERR_SEQ_FALSE_RETRY.

 If SEQUENCE returns an error, then the state of the slot (sequence
 ID, cached reply) MUST NOT change, and the associated lease MUST NOT
 be renewed.

 If SEQUENCE returns NFS4_OK, then the associated lease MUST be
 renewed (see Section 8.3), except if
 SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED is returned in sr_status_flags.

18.46.4. IMPLEMENTATION

 The server MUST maintain a mapping of session ID to client ID in
 order to validate any operations that follow SEQUENCE that take a
 stateid as an argument and/or result.

 If the client establishes a persistent session, then a SEQUENCE
 received after a server restart might encounter requests performed
 and recorded in a persistent reply cache before the server restart.
 In this case, SEQUENCE will be processed successfully, while requests
 that were not previously performed and recorded are rejected with
 NFS4ERR_DEADSESSION.

 Depending on which of the operations within the COMPOUND were

 successfully performed before the server restart, these operations
 will also have replies sent from the server reply cache. Note that
 when these operations establish locking state, it is locking state
 that applies to the previous server instance and to the previous
 client ID, even though the server restart, which logically happened
 after these operations, eliminated that state. In the case of a
 partially executed COMPOUND, processing may reach an operation not
 processed during the earlier server instance, making this operation a
 new one and not performable on the existing session. In this case,
 NFS4ERR_DEADSESSION will be returned from that operation.

18.47. Operation 54: SET_SSV - Update SSV for a Client ID

18.47.1. ARGUMENT

 struct ssa_digest_input4 {
 SEQUENCE4args sdi_seqargs;
 };

 struct SET_SSV4args {
 opaque ssa_ssv<>;
 opaque ssa_digest<>;
 };

18.47.2. RESULT

 struct ssr_digest_input4 {
 SEQUENCE4res sdi_seqres;
 };

 struct SET_SSV4resok {
 opaque ssr_digest<>;
 };

 union SET_SSV4res switch (nfsstat4 ssr_status) {
 case NFS4_OK:
 SET_SSV4resok ssr_resok4;
 default:
 void;
 };

18.47.3. DESCRIPTION

 This operation is used to update the SSV for a client ID. Before
 SET_SSV is called the first time on a client ID, the SSV is zero.
 The SSV is the key used for the SSV GSS mechanism (Section 2.10.9)

 SET_SSV MUST be preceded by a SEQUENCE operation in the same
 COMPOUND. It MUST NOT be used if the client did not opt for SP4_SSV
 state protection when the client ID was created (see Section 18.35);
 the server returns NFS4ERR_INVAL in that case.

 The field ssa_digest is computed as the output of the HMAC (RFC 2104
 [52]) using the subkey derived from the SSV4_SUBKEY_MIC_I2T and
 current SSV as the key (see Section 2.10.9 for a description of
 subkeys), and an XDR encoded value of data type ssa_digest_input4.
 The field sdi_seqargs is equal to the arguments of the SEQUENCE
 operation for the COMPOUND procedure that SET_SSV is within.

 The argument ssa_ssv is XORed with the current SSV to produce the new
 SSV. The argument ssa_ssv SHOULD be generated randomly.

 In the response, ssr_digest is the output of the HMAC using the
 subkey derived from SSV4_SUBKEY_MIC_T2I and new SSV as the key, and
 an XDR encoded value of data type ssr_digest_input4. The field
 sdi_seqres is equal to the results of the SEQUENCE operation for the
 COMPOUND procedure that SET_SSV is within.

 As noted in Section 18.35, the client and server can maintain
 multiple concurrent versions of the SSV. The client and server each
 MUST maintain an internal SSV version number, which is set to one the

 first time SET_SSV executes on the server and the client receives the
 first SET_SSV reply. Each subsequent SET_SSV increases the internal
 SSV version number by one. The value of this version number
 corresponds to the smpt_ssv_seq, smt_ssv_seq, sspt_ssv_seq, and
 ssct_ssv_seq fields of the SSV GSS mechanism tokens (see
 Section 2.10.9).

18.47.4. IMPLEMENTATION

 When the server receives ssa_digest, it MUST verify the digest by
 computing the digest the same way the client did and comparing it
 with ssa_digest. If the server gets a different result, this is an
 error, NFS4ERR_BAD_SESSION_DIGEST. This error might be the result of
 another SET_SSV from the same client ID changing the SSV. If so, the
 client recovers by sending a SET_SSV operation again with a
 recomputed digest based on the subkey of the new SSV. If the
 transport connection is dropped after the SET_SSV request is sent,
 but before the SET_SSV reply is received, then there are special
 considerations for recovery if the client has no more connections
 associated with sessions associated with the client ID of the SSV.
 See Section 18.34.4.

 Clients SHOULD NOT send an ssa_ssv that is equal to a previous
 ssa_ssv, nor equal to a previous or current SSV (including an ssa_ssv
 equal to zero since the SSV is initialized to zero when the client ID
 is created).

 Clients SHOULD send SET_SSV with RPCSEC_GSS privacy. Servers MUST
 support RPCSEC_GSS with privacy for any COMPOUND that has { SEQUENCE,
 SET_SSV }.

 A client SHOULD NOT send SET_SSV with the SSV GSS mechanism’s
 credential because the purpose of SET_SSV is to seed the SSV from
 non-SSV credentials. Instead, SET_SSV SHOULD be sent with the
 credential of a user that is accessing the client ID for the first
 time (Section 2.10.8.3). However, if the client does send SET_SSV
 with SSV credentials, the digest protecting the arguments uses the
 value of the SSV before ssa_ssv is XORed in, and the digest
 protecting the results uses the value of the SSV after the ssa_ssv is
 XORed in.

18.48. Operation 55: TEST_STATEID - Test Stateids for Validity

18.48.1. ARGUMENT

 struct TEST_STATEID4args {
 stateid4 ts_stateids<>;
 };

18.48.2. RESULT

 struct TEST_STATEID4resok {
 nfsstat4 tsr_status_codes<>;
 };

 union TEST_STATEID4res switch (nfsstat4 tsr_status) {
 case NFS4_OK:
 TEST_STATEID4resok tsr_resok4;
 default:
 void;
 };

18.48.3. DESCRIPTION

 The TEST_STATEID operation is used to check the validity of a set of
 stateids. It can be used at any time, but the client should
 definitely use it when it receives an indication that one or more of
 its stateids have been invalidated due to lock revocation. This
 occurs when the SEQUENCE operation returns with one of the following
 sr_status_flags set:

 * SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED

 * SEQ4_STATUS_EXPIRED_ADMIN_STATE_REVOKED

 * SEQ4_STATUS_EXPIRED_RECALLABLE_STATE_REVOKED

 The client can use TEST_STATEID one or more times to test the
 validity of its stateids. Each use of TEST_STATEID allows a large
 set of such stateids to be tested and avoids problems with earlier
 stateids in a COMPOUND request from interfering with the checking of
 subsequent stateids, as would happen if individual stateids were
 tested by a series of corresponding by operations in a COMPOUND
 request.

 For each stateid, the server returns the status code that would be
 returned if that stateid were to be used in normal operation.
 Returning such a status indication is not an error and does not cause
 COMPOUND processing to terminate. Checks for the validity of the
 stateid proceed as they would for normal operations with a number of
 exceptions:

 * There is no check for the type of stateid object, as would be the
 case for normal use of a stateid.

 * There is no reference to the current filehandle.

 * Special stateids are always considered invalid (they result in the
 error code NFS4ERR_BAD_STATEID).

 All stateids are interpreted as being associated with the client for
 the current session. Any possible association with a previous
 instance of the client (as stale stateids) is not considered.

 The valid status values in the returned status_code array are
 NFS4ERR_OK, NFS4ERR_BAD_STATEID, NFS4ERR_OLD_STATEID,
 NFS4ERR_EXPIRED, NFS4ERR_ADMIN_REVOKED, and NFS4ERR_DELEG_REVOKED.

18.48.4. IMPLEMENTATION

 See Sections 8.2.2 and 8.2.4 for a discussion of stateid structure,
 lifetime, and validation.

18.49. Operation 56: WANT_DELEGATION - Request Delegation

18.49.1. ARGUMENT

 union deleg_claim4 switch (open_claim_type4 dc_claim) {
 /*
 * No special rights to object. Ordinary delegation
 * request of the specified object. Object identified
 * by filehandle.
 */
 case CLAIM_FH: /* new to v4.1 */
 /* CURRENT_FH: object being delegated */
 void;

 /*
 * Right to file based on a delegation granted
 * to a previous boot instance of the client.
 * File is specified by filehandle.
 */
 case CLAIM_DELEG_PREV_FH: /* new to v4.1 */
 /* CURRENT_FH: object being delegated */
 void;

 /*
 * Right to the file established by an open previous
 * to server reboot. File identified by filehandle.
 * Used during server reclaim grace period.
 */
 case CLAIM_PREVIOUS:

 /* CURRENT_FH: object being reclaimed */
 open_delegation_type4 dc_delegate_type;
 };

 struct WANT_DELEGATION4args {
 uint32_t wda_want;
 deleg_claim4 wda_claim;
 };

18.49.2. RESULT

 union WANT_DELEGATION4res switch (nfsstat4 wdr_status) {
 case NFS4_OK:
 open_delegation4 wdr_resok4;
 default:
 void;
 };

18.49.3. DESCRIPTION

 Where this description mandates the return of a specific error code
 for a specific condition, and where multiple conditions apply, the
 server MAY return any of the mandated error codes.

 This operation allows a client to:

 * Get a delegation on all types of files except directories.

 * Register a "want" for a delegation for the specified file object,
 and be notified via a callback when the delegation is available.
 The server MAY support notifications of availability via
 callbacks. If the server does not support registration of wants,
 it MUST NOT return an error to indicate that, and instead MUST
 return with ond_why set to WND4_CONTENTION or WND4_RESOURCE and
 ond_server_will_push_deleg or ond_server_will_signal_avail set to
 FALSE. When the server indicates that it will notify the client
 by means of a callback, it will either provide the delegation
 using a CB_PUSH_DELEG operation or cancel its promise by sending a
 CB_WANTS_CANCELLED operation.

 * Cancel a want for a delegation.

 The client SHOULD NOT set OPEN4_SHARE_ACCESS_READ and SHOULD NOT set
 OPEN4_SHARE_ACCESS_WRITE in wda_want. If it does, the server MUST
 ignore them.

 The meanings of the following flags in wda_want are the same as they
 are in OPEN, except as noted below.

 * OPEN4_SHARE_ACCESS_WANT_READ_DELEG

 * OPEN4_SHARE_ACCESS_WANT_WRITE_DELEG

 * OPEN4_SHARE_ACCESS_WANT_ANY_DELEG

 * OPEN4_SHARE_ACCESS_WANT_NO_DELEG. Unlike the OPEN operation, this
 flag SHOULD NOT be set by the client in the arguments to
 WANT_DELEGATION, and MUST be ignored by the server.

 * OPEN4_SHARE_ACCESS_WANT_CANCEL

 * OPEN4_SHARE_ACCESS_WANT_SIGNAL_DELEG_WHEN_RESRC_AVAIL

 * OPEN4_SHARE_ACCESS_WANT_PUSH_DELEG_WHEN_UNCONTENDED

 The handling of the above flags in WANT_DELEGATION is the same as in
 OPEN. Information about the delegation and/or the promises the
 server is making regarding future callbacks are the same as those
 described in the open_delegation4 structure.

 The successful results of WANT_DELEGATION are of data type

 open_delegation4, which is the same data type as the "delegation"
 field in the results of the OPEN operation (see Section 18.16.3).
 The server constructs wdr_resok4 the same way it constructs OPEN’s
 "delegation" with one difference: WANT_DELEGATION MUST NOT return a
 delegation type of OPEN_DELEGATE_NONE.

 If ((wda_want & OPEN4_SHARE_ACCESS_WANT_DELEG_MASK) &
 ˜OPEN4_SHARE_ACCESS_WANT_NO_DELEG) is zero, then the client is
 indicating no explicit desire or non-desire for a delegation and the
 server MUST return NFS4ERR_INVAL.

 The client uses the OPEN4_SHARE_ACCESS_WANT_CANCEL flag in the
 WANT_DELEGATION operation to cancel a previously requested want for a
 delegation. Note that if the server is in the process of sending the
 delegation (via CB_PUSH_DELEG) at the time the client sends a
 cancellation of the want, the delegation might still be pushed to the
 client.

 If WANT_DELEGATION fails to return a delegation, and the server
 returns NFS4_OK, the server MUST set the delegation type to
 OPEN4_DELEGATE_NONE_EXT, and set od_whynone, as described in
 Section 18.16. Write delegations are not available for file types
 that are not writable. This includes file objects of types NF4BLK,
 NF4CHR, NF4LNK, NF4SOCK, and NF4FIFO. If the client requests
 OPEN4_SHARE_ACCESS_WANT_WRITE_DELEG without
 OPEN4_SHARE_ACCESS_WANT_READ_DELEG on an object with one of the
 aforementioned file types, the server must set
 wdr_resok4.od_whynone.ond_why to WND4_WRITE_DELEG_NOT_SUPP_FTYPE.

18.49.4. IMPLEMENTATION

 A request for a conflicting delegation is not normally intended to
 trigger the recall of the existing delegation. Servers may choose to
 treat some clients as having higher priority such that their wants
 will trigger recall of an existing delegation, although that is
 expected to be an unusual situation.

 Servers will generally recall delegations assigned by WANT_DELEGATION
 on the same basis as those assigned by OPEN. CB_RECALL will
 generally be done only when other clients perform operations
 inconsistent with the delegation. The normal response to aging of
 delegations is to use CB_RECALL_ANY, in order to give the client the
 opportunity to keep the delegations most useful from its point of
 view.

18.50. Operation 57: DESTROY_CLIENTID - Destroy a Client ID

18.50.1. ARGUMENT

 struct DESTROY_CLIENTID4args {
 clientid4 dca_clientid;
 };

18.50.2. RESULT

 struct DESTROY_CLIENTID4res {
 nfsstat4 dcr_status;
 };

18.50.3. DESCRIPTION

 The DESTROY_CLIENTID operation destroys the client ID. If there are
 sessions (both idle and non-idle), opens, locks, delegations,
 layouts, and/or wants (Section 18.49) associated with the unexpired
 lease of the client ID, the server MUST return NFS4ERR_CLIENTID_BUSY.
 DESTROY_CLIENTID MAY be preceded with a SEQUENCE operation as long as
 the client ID derived from the session ID of SEQUENCE is not the same
 as the client ID to be destroyed. If the client IDs are the same,
 then the server MUST return NFS4ERR_CLIENTID_BUSY.

 If DESTROY_CLIENTID is not prefixed by SEQUENCE, it MUST be the only

 operation in the COMPOUND request (otherwise, the server MUST return
 NFS4ERR_NOT_ONLY_OP). If the operation is sent without a SEQUENCE
 preceding it, a client that retransmits the request may receive an
 error in response, because the original request might have been
 successfully executed.

18.50.4. IMPLEMENTATION

 DESTROY_CLIENTID allows a server to immediately reclaim the resources
 consumed by an unused client ID, and also to forget that it ever
 generated the client ID. By forgetting that it ever generated the
 client ID, the server can safely reuse the client ID on a future
 EXCHANGE_ID operation.

18.51. Operation 58: RECLAIM_COMPLETE - Indicates Reclaims Finished

18.51.1. ARGUMENT

 struct RECLAIM_COMPLETE4args {
 /*
 * If rca_one_fs TRUE,
 *
 * CURRENT_FH: object in
 * file system reclaim is
 * complete for.
 */
 bool rca_one_fs;
 };

18.51.2. RESULTS

 struct RECLAIM_COMPLETE4res {
 nfsstat4 rcr_status;
 };

18.51.3. DESCRIPTION

 A RECLAIM_COMPLETE operation is used to indicate that the client has
 reclaimed all of the locking state that it will recover using
 reclaim, when it is recovering state due to either a server restart
 or the migration of a file system to another server. There are two
 types of RECLAIM_COMPLETE operations:

 * When rca_one_fs is FALSE, a global RECLAIM_COMPLETE is being done.
 This indicates that recovery of all locks that the client held on
 the previous server instance has been completed. The current
 filehandle need not be set in this case.

 * When rca_one_fs is TRUE, a file system-specific RECLAIM_COMPLETE
 is being done. This indicates that recovery of locks for a single
 fs (the one designated by the current filehandle) due to the
 migration of the file system has been completed. Presence of a
 current filehandle is required when rca_one_fs is set to TRUE.
 When the current filehandle designates a filehandle in a file
 system not in the process of migration, the operation returns
 NFS4_OK and is otherwise ignored.

 Once a RECLAIM_COMPLETE is done, there can be no further reclaim
 operations for locks whose scope is defined as having completed
 recovery. Once the client sends RECLAIM_COMPLETE, the server will
 not allow the client to do subsequent reclaims of locking state for
 that scope and, if these are attempted, will return NFS4ERR_NO_GRACE.

 Whenever a client establishes a new client ID and before it does the
 first non-reclaim operation that obtains a lock, it MUST send a
 RECLAIM_COMPLETE with rca_one_fs set to FALSE, even if there are no
 locks to reclaim. If non-reclaim locking operations are done before
 the RECLAIM_COMPLETE, an NFS4ERR_GRACE error will be returned.

 Similarly, when the client accesses a migrated file system on a new
 server, before it sends the first non-reclaim operation that obtains

 a lock on this new server, it MUST send a RECLAIM_COMPLETE with
 rca_one_fs set to TRUE and current filehandle within that file
 system, even if there are no locks to reclaim. If non-reclaim
 locking operations are done on that file system before the
 RECLAIM_COMPLETE, an NFS4ERR_GRACE error will be returned.

 It should be noted that there are situations in which a client needs
 to issue both forms of RECLAIM_COMPLETE. An example is an instance
 of file system migration in which the file system is migrated to a
 server for which the client has no clientid. As a result, the client
 needs to obtain a clientid from the server (incurring the
 responsibility to do RECLAIM_COMPLETE with rca_one_fs set to FALSE)
 as well as RECLAIM_COMPLETE with rca_one_fs set to TRUE to complete
 the per-fs grace period associated with the file system migration.
 These two may be done in any order as long as all necessary lock
 reclaims have been done before issuing either of them.

 Any locks not reclaimed at the point at which RECLAIM_COMPLETE is
 done become non-reclaimable. The client MUST NOT attempt to reclaim
 them, either during the current server instance or in any subsequent
 server instance, or on another server to which responsibility for
 that file system is transferred. If the client were to do so, it
 would be violating the protocol by representing itself as owning
 locks that it does not own, and so has no right to reclaim. See
 Section 8.4.3 of [66] for a discussion of edge conditions related to
 lock reclaim.

 By sending a RECLAIM_COMPLETE, the client indicates readiness to
 proceed to do normal non-reclaim locking operations. The client
 should be aware that such operations may temporarily result in
 NFS4ERR_GRACE errors until the server is ready to terminate its grace
 period.

18.51.4. IMPLEMENTATION

 Servers will typically use the information as to when reclaim
 activity is complete to reduce the length of the grace period. When
 the server maintains in persistent storage a list of clients that
 might have had locks, it is able to use the fact that all such
 clients have done a RECLAIM_COMPLETE to terminate the grace period
 and begin normal operations (i.e., grant requests for new locks)
 sooner than it might otherwise.

 Latency can be minimized by doing a RECLAIM_COMPLETE as part of the
 COMPOUND request in which the last lock-reclaiming operation is done.
 When there are no reclaims to be done, RECLAIM_COMPLETE should be
 done immediately in order to allow the grace period to end as soon as
 possible.

 RECLAIM_COMPLETE should only be done once for each server instance or
 occasion of the transition of a file system. If it is done a second
 time, the error NFS4ERR_COMPLETE_ALREADY will result. Note that
 because of the session feature’s retry protection, retries of
 COMPOUND requests containing RECLAIM_COMPLETE operation will not
 result in this error.

 When a RECLAIM_COMPLETE is sent, the client effectively acknowledges
 any locks not yet reclaimed as lost. This allows the server to re-
 enable the client to recover locks if the occurrence of edge
 conditions, as described in Section 8.4.3, had caused the server to
 disable the client’s ability to recover locks.

 Because previous descriptions of RECLAIM_COMPLETE were not
 sufficiently explicit about the circumstances in which use of
 RECLAIM_COMPLETE with rca_one_fs set to TRUE was appropriate, there
 have been cases in which it has been misused by clients who have
 issued RECLAIM_COMPLETE with rca_one_fs set to TRUE when it should
 have not been. There have also been cases in which servers have, in
 various ways, not responded to such misuse as described above, either
 ignoring the rca_one_fs setting (treating the operation as a global
 RECLAIM_COMPLETE) or ignoring the entire operation.

 While clients SHOULD NOT misuse this feature, and servers SHOULD
 respond to such misuse as described above, implementors need to be
 aware of the following considerations as they make necessary trade-
 offs between interoperability with existing implementations and
 proper support for facilities to allow lock recovery in the event of
 file system migration.

 * When servers have no support for becoming the destination server
 of a file system subject to migration, there is no possibility of
 a per-fs RECLAIM_COMPLETE being done legitimately, and occurrences
 of it SHOULD be ignored. However, the negative consequences of
 accepting such mistaken use are quite limited as long as the
 client does not issue it before all necessary reclaims are done.

 * When a server might become the destination for a file system being
 migrated, inappropriate use of per-fs RECLAIM_COMPLETE is more
 concerning. In the case in which the file system designated is
 not within a per-fs grace period, the per-fs RECLAIM_COMPLETE
 SHOULD be ignored, with the negative consequences of accepting it
 being limited, as in the case in which migration is not supported.
 However, if the server encounters a file system undergoing
 migration, the operation cannot be accepted as if it were a global
 RECLAIM_COMPLETE without invalidating its intended use.

18.52. Operation 10044: ILLEGAL - Illegal Operation

18.52.1. ARGUMENTS

 void;

18.52.2. RESULTS

 struct ILLEGAL4res {
 nfsstat4 status;
 };

18.52.3. DESCRIPTION

 This operation is a placeholder for encoding a result to handle the
 case of the client sending an operation code within COMPOUND that is
 not supported. See the COMPOUND procedure description for more
 details.

 The status field of ILLEGAL4res MUST be set to NFS4ERR_OP_ILLEGAL.

18.52.4. IMPLEMENTATION

 A client will probably not send an operation with code OP_ILLEGAL but
 if it does, the response will be ILLEGAL4res just as it would be with
 any other invalid operation code. Note that if the server gets an
 illegal operation code that is not OP_ILLEGAL, and if the server
 checks for legal operation codes during the XDR decode phase, then
 the ILLEGAL4res would not be returned.

19. NFSv4.1 Callback Procedures

 The procedures used for callbacks are defined in the following
 sections. In the interest of clarity, the terms "client" and
 "server" refer to NFS clients and servers, despite the fact that for
 an individual callback RPC, the sense of these terms would be
 precisely the opposite.

 Both procedures, CB_NULL and CB_COMPOUND, MUST be implemented.

19.1. Procedure 0: CB_NULL - No Operation

19.1.1. ARGUMENTS

 void;

19.1.2. RESULTS

 void;

19.1.3. DESCRIPTION

 CB_NULL is the standard ONC RPC NULL procedure, with the standard
 void argument and void response. Even though there is no direct
 functionality associated with this procedure, the server will use
 CB_NULL to confirm the existence of a path for RPCs from the server
 to client.

19.1.4. ERRORS

 None.

19.2. Procedure 1: CB_COMPOUND - Compound Operations

19.2.1. ARGUMENTS

 enum nfs_cb_opnum4 {
 OP_CB_GETATTR = 3,
 OP_CB_RECALL = 4,
 /* Callback operations new to NFSv4.1 */
 OP_CB_LAYOUTRECALL = 5,
 OP_CB_NOTIFY = 6,
 OP_CB_PUSH_DELEG = 7,
 OP_CB_RECALL_ANY = 8,
 OP_CB_RECALLABLE_OBJ_AVAIL = 9,
 OP_CB_RECALL_SLOT = 10,
 OP_CB_SEQUENCE = 11,
 OP_CB_WANTS_CANCELLED = 12,
 OP_CB_NOTIFY_LOCK = 13,
 OP_CB_NOTIFY_DEVICEID = 14,

 OP_CB_ILLEGAL = 10044
 };

 union nfs_cb_argop4 switch (unsigned argop) {
 case OP_CB_GETATTR:
 CB_GETATTR4args opcbgetattr;
 case OP_CB_RECALL:
 CB_RECALL4args opcbrecall;
 case OP_CB_LAYOUTRECALL:
 CB_LAYOUTRECALL4args opcblayoutrecall;
 case OP_CB_NOTIFY:
 CB_NOTIFY4args opcbnotify;
 case OP_CB_PUSH_DELEG:
 CB_PUSH_DELEG4args opcbpush_deleg;
 case OP_CB_RECALL_ANY:
 CB_RECALL_ANY4args opcbrecall_any;
 case OP_CB_RECALLABLE_OBJ_AVAIL:
 CB_RECALLABLE_OBJ_AVAIL4args opcbrecallable_obj_avail;
 case OP_CB_RECALL_SLOT:
 CB_RECALL_SLOT4args opcbrecall_slot;
 case OP_CB_SEQUENCE:
 CB_SEQUENCE4args opcbsequence;
 case OP_CB_WANTS_CANCELLED:
 CB_WANTS_CANCELLED4args opcbwants_cancelled;
 case OP_CB_NOTIFY_LOCK:
 CB_NOTIFY_LOCK4args opcbnotify_lock;
 case OP_CB_NOTIFY_DEVICEID:
 CB_NOTIFY_DEVICEID4args opcbnotify_deviceid;
 case OP_CB_ILLEGAL: void;
 };

 struct CB_COMPOUND4args {
 utf8str_cs tag;
 uint32_t minorversion;
 uint32_t callback_ident;
 nfs_cb_argop4 argarray<>;

 };

19.2.2. RESULTS

 union nfs_cb_resop4 switch (unsigned resop) {
 case OP_CB_GETATTR: CB_GETATTR4res opcbgetattr;
 case OP_CB_RECALL: CB_RECALL4res opcbrecall;

 /* new NFSv4.1 operations */
 case OP_CB_LAYOUTRECALL:
 CB_LAYOUTRECALL4res
 opcblayoutrecall;

 case OP_CB_NOTIFY: CB_NOTIFY4res opcbnotify;

 case OP_CB_PUSH_DELEG: CB_PUSH_DELEG4res
 opcbpush_deleg;

 case OP_CB_RECALL_ANY: CB_RECALL_ANY4res
 opcbrecall_any;

 case OP_CB_RECALLABLE_OBJ_AVAIL:
 CB_RECALLABLE_OBJ_AVAIL4res
 opcbrecallable_obj_avail;

 case OP_CB_RECALL_SLOT:
 CB_RECALL_SLOT4res
 opcbrecall_slot;

 case OP_CB_SEQUENCE: CB_SEQUENCE4res opcbsequence;

 case OP_CB_WANTS_CANCELLED:
 CB_WANTS_CANCELLED4res
 opcbwants_cancelled;

 case OP_CB_NOTIFY_LOCK:
 CB_NOTIFY_LOCK4res
 opcbnotify_lock;

 case OP_CB_NOTIFY_DEVICEID:
 CB_NOTIFY_DEVICEID4res
 opcbnotify_deviceid;

 /* Not new operation */
 case OP_CB_ILLEGAL: CB_ILLEGAL4res opcbillegal;
 };

 struct CB_COMPOUND4res {
 nfsstat4 status;
 utf8str_cs tag;
 nfs_cb_resop4 resarray<>;
 };

19.2.3. DESCRIPTION

 The CB_COMPOUND procedure is used to combine one or more of the
 callback procedures into a single RPC request. The main callback RPC
 program has two main procedures: CB_NULL and CB_COMPOUND. All other
 operations use the CB_COMPOUND procedure as a wrapper.

 During the processing of the CB_COMPOUND procedure, the client may
 find that it does not have the available resources to execute any or
 all of the operations within the CB_COMPOUND sequence. Refer to
 Section 2.10.6.4 for details.

 The minorversion field of the arguments MUST be the same as the
 minorversion of the COMPOUND procedure used to create the client ID
 and session. For NFSv4.1, minorversion MUST be set to 1.

 Contained within the CB_COMPOUND results is a "status" field. This
 status MUST be equal to the status of the last operation that was

 executed within the CB_COMPOUND procedure. Therefore, if an
 operation incurred an error, then the "status" value will be the same
 error value as is being returned for the operation that failed.

 The "tag" field is handled the same way as that of the COMPOUND
 procedure (see Section 16.2.3).

 Illegal operation codes are handled in the same way as they are
 handled for the COMPOUND procedure.

19.2.4. IMPLEMENTATION

 The CB_COMPOUND procedure is used to combine individual operations
 into a single RPC request. The client interprets each of the
 operations in turn. If an operation is executed by the client and
 the status of that operation is NFS4_OK, then the next operation in
 the CB_COMPOUND procedure is executed. The client continues this
 process until there are no more operations to be executed or one of
 the operations has a status value other than NFS4_OK.

19.2.5. ERRORS

 CB_COMPOUND will of course return every error that each operation on
 the backchannel can return (see Table 13). However, if CB_COMPOUND
 returns zero operations, obviously the error returned by COMPOUND has
 nothing to do with an error returned by an operation. The list of
 errors CB_COMPOUND will return if it processes zero operations
 includes:

 +==============================+==================================+
 | Error | Notes |
 +==============================+==================================+
 | NFS4ERR_BADCHAR | The tag argument has a character |
 | | the replier does not support. |
 +------------------------------+----------------------------------+
 | NFS4ERR_BADXDR | |
 +------------------------------+----------------------------------+
 | NFS4ERR_DELAY | |
 +------------------------------+----------------------------------+
 | NFS4ERR_INVAL | The tag argument is not in UTF-8 |
 | | encoding. |
 +------------------------------+----------------------------------+
 | NFS4ERR_MINOR_VERS_MISMATCH | |
 +------------------------------+----------------------------------+
 | NFS4ERR_SERVERFAULT | |
 +------------------------------+----------------------------------+
 | NFS4ERR_TOO_MANY_OPS | |
 +------------------------------+----------------------------------+
 | NFS4ERR_REP_TOO_BIG | |
 +------------------------------+----------------------------------+
 | NFS4ERR_REP_TOO_BIG_TO_CACHE | |
 +------------------------------+----------------------------------+
 | NFS4ERR_REQ_TOO_BIG | |
 +------------------------------+----------------------------------+

 Table 24: CB_COMPOUND Error Returns

20. NFSv4.1 Callback Operations

20.1. Operation 3: CB_GETATTR - Get Attributes

20.1.1. ARGUMENT

 struct CB_GETATTR4args {
 nfs_fh4 fh;
 bitmap4 attr_request;
 };

20.1.2. RESULT

 struct CB_GETATTR4resok {

 fattr4 obj_attributes;
 };

 union CB_GETATTR4res switch (nfsstat4 status) {
 case NFS4_OK:
 CB_GETATTR4resok resok4;
 default:
 void;
 };

20.1.3. DESCRIPTION

 The CB_GETATTR operation is used by the server to obtain the current
 modified state of a file that has been OPEN_DELEGATE_WRITE delegated.
 The size and change attributes are the only ones guaranteed to be
 serviced by the client. See Section 10.4.3 for a full description of
 how the client and server are to interact with the use of CB_GETATTR.

 If the filehandle specified is not one for which the client holds an
 OPEN_DELEGATE_WRITE delegation, an NFS4ERR_BADHANDLE error is
 returned.

20.1.4. IMPLEMENTATION

 The client returns attrmask bits and the associated attribute values
 only for the change attribute, and attributes that it may change
 (time_modify, and size).

20.2. Operation 4: CB_RECALL - Recall a Delegation

20.2.1. ARGUMENT

 struct CB_RECALL4args {
 stateid4 stateid;
 bool truncate;
 nfs_fh4 fh;
 };

20.2.2. RESULT

 struct CB_RECALL4res {
 nfsstat4 status;
 };

20.2.3. DESCRIPTION

 The CB_RECALL operation is used to begin the process of recalling a
 delegation and returning it to the server.

 The truncate flag is used to optimize recall for a file object that
 is a regular file and is about to be truncated to zero. When it is
 TRUE, the client is freed of the obligation to propagate modified
 data for the file to the server, since this data is irrelevant.

 If the handle specified is not one for which the client holds a
 delegation, an NFS4ERR_BADHANDLE error is returned.

 If the stateid specified is not one corresponding to an OPEN
 delegation for the file specified by the filehandle, an
 NFS4ERR_BAD_STATEID is returned.

20.2.4. IMPLEMENTATION

 The client SHOULD reply to the callback immediately. Replying does
 not complete the recall except when the value of the reply’s status
 field is neither NFS4ERR_DELAY nor NFS4_OK. The recall is not
 complete until the delegation is returned using a DELEGRETURN
 operation.

20.3. Operation 5: CB_LAYOUTRECALL - Recall Layout from Client

20.3.1. ARGUMENT

 /*
 * NFSv4.1 callback arguments and results
 */

 enum layoutrecall_type4 {
 LAYOUTRECALL4_FILE = LAYOUT4_RET_REC_FILE,
 LAYOUTRECALL4_FSID = LAYOUT4_RET_REC_FSID,
 LAYOUTRECALL4_ALL = LAYOUT4_RET_REC_ALL
 };

 struct layoutrecall_file4 {
 nfs_fh4 lor_fh;
 offset4 lor_offset;
 length4 lor_length;
 stateid4 lor_stateid;
 };

 union layoutrecall4 switch(layoutrecall_type4 lor_recalltype) {
 case LAYOUTRECALL4_FILE:
 layoutrecall_file4 lor_layout;
 case LAYOUTRECALL4_FSID:
 fsid4 lor_fsid;
 case LAYOUTRECALL4_ALL:
 void;
 };

 struct CB_LAYOUTRECALL4args {
 layouttype4 clora_type;
 layoutiomode4 clora_iomode;
 bool clora_changed;
 layoutrecall4 clora_recall;
 };

20.3.2. RESULT

 struct CB_LAYOUTRECALL4res {
 nfsstat4 clorr_status;
 };

20.3.3. DESCRIPTION

 The CB_LAYOUTRECALL operation is used by the server to recall layouts
 from the client; as a result, the client will begin the process of
 returning layouts via LAYOUTRETURN. The CB_LAYOUTRECALL operation
 specifies one of three forms of recall processing with the value of
 layoutrecall_type4. The recall is for one of the following: a
 specific layout of a specific file (LAYOUTRECALL4_FILE), an entire
 file system ID (LAYOUTRECALL4_FSID), or all file systems
 (LAYOUTRECALL4_ALL).

 The behavior of the operation varies based on the value of the
 layoutrecall_type4. The value and behaviors are:

 LAYOUTRECALL4_FILE
 For a layout to match the recall request, the values of the
 following fields must match those of the layout: clora_type,
 clora_iomode, lor_fh, and the byte-range specified by lor_offset
 and lor_length. The clora_iomode field may have a special value
 of LAYOUTIOMODE4_ANY. The special value LAYOUTIOMODE4_ANY will
 match any iomode originally returned in a layout; therefore, it
 acts as a wild card. The other special value used is for
 lor_length. If lor_length has a value of NFS4_UINT64_MAX, the
 lor_length field means the maximum possible file size. If a
 matching layout is found, it MUST be returned using the
 LAYOUTRETURN operation (see Section 18.44). An example of the
 field’s special value use is if clora_iomode is LAYOUTIOMODE4_ANY,
 lor_offset is zero, and lor_length is NFS4_UINT64_MAX, then the
 entire layout is to be returned.

 The NFS4ERR_NOMATCHING_LAYOUT error is only returned when the
 client does not hold layouts for the file or if the client does
 not have any overlapping layouts for the specification in the
 layout recall.

 LAYOUTRECALL4_FSID and LAYOUTRECALL4_ALL
 If LAYOUTRECALL4_FSID is specified, the fsid specifies the file
 system for which any outstanding layouts MUST be returned. If
 LAYOUTRECALL4_ALL is specified, all outstanding layouts MUST be
 returned. In addition, LAYOUTRECALL4_FSID and LAYOUTRECALL4_ALL
 specify that all the storage device ID to storage device address
 mappings in the affected file system(s) are also recalled. The
 respective LAYOUTRETURN with either LAYOUTRETURN4_FSID or
 LAYOUTRETURN4_ALL acknowledges to the server that the client
 invalidated the said device mappings. See Section 12.5.5.2.1.5
 for considerations with "bulk" recall of layouts.

 The NFS4ERR_NOMATCHING_LAYOUT error is only returned when the
 client does not hold layouts and does not have valid deviceid
 mappings.

 In processing the layout recall request, the client also varies its
 behavior based on the value of the clora_changed field. This field
 is used by the server to provide additional context for the reason
 why the layout is being recalled. A FALSE value for clora_changed
 indicates that no change in the layout is expected and the client may
 write modified data to the storage devices involved; this must be
 done prior to returning the layout via LAYOUTRETURN. A TRUE value
 for clora_changed indicates that the server is changing the layout.
 Examples of layout changes and reasons for a TRUE indication are the
 following: the metadata server is restriping the file or a permanent
 error has occurred on a storage device and the metadata server would
 like to provide a new layout for the file. Therefore, a
 clora_changed value of TRUE indicates some level of change for the
 layout and the client SHOULD NOT write and commit modified data to
 the storage devices. In this case, the client writes and commits
 data through the metadata server.

 See Section 12.5.3 for a description of how the lor_stateid field in
 the arguments is to be constructed. Note that the "seqid" field of
 lor_stateid MUST NOT be zero. See Sections 8.2, 12.5.3, and 12.5.5.2
 for a further discussion and requirements.

20.3.4. IMPLEMENTATION

 The client’s processing for CB_LAYOUTRECALL is similar to CB_RECALL
 (recall of file delegations) in that the client responds to the
 request before actually returning layouts via the LAYOUTRETURN
 operation. While the client responds to the CB_LAYOUTRECALL
 immediately, the operation is not considered complete (i.e.,
 considered pending) until all affected layouts are returned to the
 server via the LAYOUTRETURN operation.

 Before returning the layout to the server via LAYOUTRETURN, the
 client should wait for the response from in-process or in-flight
 READ, WRITE, or COMMIT operations that use the recalled layout.

 If the client is holding modified data that is affected by a recalled
 layout, the client has various options for writing the data to the
 server. As always, the client may write the data through the
 metadata server. In fact, the client may not have a choice other
 than writing to the metadata server when the clora_changed argument
 is TRUE and a new layout is unavailable from the server. However,
 the client may be able to write the modified data to the storage
 device if the clora_changed argument is FALSE; this needs to be done
 before returning the layout via LAYOUTRETURN. If the client were to
 obtain a new layout covering the modified data’s byte-range, then
 writing to the storage devices is an available alternative. Note
 that before obtaining a new layout, the client must first return the
 original layout.

 In the case of modified data being written while the layout is held,
 the client must use LAYOUTCOMMIT operations at the appropriate time;
 as required LAYOUTCOMMIT must be done before the LAYOUTRETURN. If a
 large amount of modified data is outstanding, the client may send
 LAYOUTRETURNs for portions of the recalled layout; this allows the
 server to monitor the client’s progress and adherence to the original
 recall request. However, the last LAYOUTRETURN in a sequence of
 returns MUST specify the full range being recalled (see
 Section 12.5.5.1 for details).

 If a server needs to delete a device ID and there are layouts
 referring to the device ID, CB_LAYOUTRECALL MUST be invoked to cause
 the client to return all layouts referring to the device ID before
 the server can delete the device ID. If the client does not return
 the affected layouts, the server MAY revoke the layouts.

20.4. Operation 6: CB_NOTIFY - Notify Client of Directory Changes

20.4.1. ARGUMENT

 /*
 * Directory notification types.
 */
 enum notify_type4 {
 NOTIFY4_CHANGE_CHILD_ATTRS = 0,
 NOTIFY4_CHANGE_DIR_ATTRS = 1,
 NOTIFY4_REMOVE_ENTRY = 2,
 NOTIFY4_ADD_ENTRY = 3,
 NOTIFY4_RENAME_ENTRY = 4,
 NOTIFY4_CHANGE_COOKIE_VERIFIER = 5
 };

 /* Changed entry information. */
 struct notify_entry4 {
 component4 ne_file;
 fattr4 ne_attrs;
 };

 /* Previous entry information */
 struct prev_entry4 {
 notify_entry4 pe_prev_entry;
 /* what READDIR returned for this entry */
 nfs_cookie4 pe_prev_entry_cookie;
 };

 struct notify_remove4 {
 notify_entry4 nrm_old_entry;
 nfs_cookie4 nrm_old_entry_cookie;
 };

 struct notify_add4 {
 /*
 * Information on object
 * possibly renamed over.
 */
 notify_remove4 nad_old_entry<1>;
 notify_entry4 nad_new_entry;
 /* what READDIR would have returned for this entry */
 nfs_cookie4 nad_new_entry_cookie<1>;
 prev_entry4 nad_prev_entry<1>;
 bool nad_last_entry;
 };

 struct notify_attr4 {
 notify_entry4 na_changed_entry;
 };

 struct notify_rename4 {
 notify_remove4 nrn_old_entry;
 notify_add4 nrn_new_entry;
 };

 struct notify_verifier4 {
 verifier4 nv_old_cookieverf;
 verifier4 nv_new_cookieverf;
 };

 /*
 * Objects of type notify_<>4 and
 * notify_device_<>4 are encoded in this.
 */
 typedef opaque notifylist4<>;

 struct notify4 {
 /* composed from notify_type4 or notify_deviceid_type4 */
 bitmap4 notify_mask;
 notifylist4 notify_vals;
 };

 struct CB_NOTIFY4args {
 stateid4 cna_stateid;
 nfs_fh4 cna_fh;
 notify4 cna_changes<>;
 };

20.4.2. RESULT

 struct CB_NOTIFY4res {
 nfsstat4 cnr_status;
 };

20.4.3. DESCRIPTION

 The CB_NOTIFY operation is used by the server to send notifications
 to clients about changes to delegated directories. The registration
 of notifications for the directories occurs when the delegation is
 established using GET_DIR_DELEGATION. These notifications are sent
 over the backchannel. The notification is sent once the original
 request has been processed on the server. The server will send an
 array of notifications for changes that might have occurred in the
 directory. The notifications are sent as list of pairs of bitmaps
 and values. See Section 3.3.7 for a description of how NFSv4.1
 bitmaps work.

 If the server has more notifications than can fit in the CB_COMPOUND
 request, it SHOULD send a sequence of serial CB_COMPOUND requests so
 that the client’s view of the directory does not become confused.
 For example, if the server indicates that a file named "foo" is added
 and that the file "foo" is removed, the order in which the client
 receives these notifications needs to be the same as the order in
 which the corresponding operations occurred on the server.

 If the client holding the delegation makes any changes in the
 directory that cause files or sub-directories to be added or removed,
 the server will notify that client of the resulting change(s). If
 the client holding the delegation is making attribute or cookie
 verifier changes only, the server does not need to send notifications
 to that client. The server will send the following information for
 each operation:

 NOTIFY4_ADD_ENTRY
 The server will send information about the new directory entry
 being created along with the cookie for that entry. The entry
 information (data type notify_add4) includes the component name of
 the entry and attributes. The server will send this type of entry
 when a file is actually being created, when an entry is being
 added to a directory as a result of a rename across directories
 (see below), and when a hard link is being created to an existing
 file. If this entry is added to the end of the directory, the
 server will set the nad_last_entry flag to TRUE. If the file is
 added such that there is at least one entry before it, the server
 will also return the previous entry information (nad_prev_entry, a

 variable-length array of up to one element. If the array is of
 zero length, there is no previous entry), along with its cookie.
 This is to help clients find the right location in their file name
 caches and directory caches where this entry should be cached. If
 the new entry’s cookie is available, it will be in the
 nad_new_entry_cookie (another variable-length array of up to one
 element) field. If the addition of the entry causes another entry
 to be deleted (which can only happen in the rename case)
 atomically with the addition, then information on this entry is
 reported in nad_old_entry.

 NOTIFY4_REMOVE_ENTRY
 The server will send information about the directory entry being
 deleted. The server will also send the cookie value for the
 deleted entry so that clients can get to the cached information
 for this entry.

 NOTIFY4_RENAME_ENTRY
 The server will send information about both the old entry and the
 new entry. This includes the name and attributes for each entry.
 In addition, if the rename causes the deletion of an entry (i.e.,
 the case of a file renamed over), then this is reported in
 nrn_new_new_entry.nad_old_entry. This notification is only sent
 if both entries are in the same directory. If the rename is
 across directories, the server will send a remove notification to
 one directory and an add notification to the other directory,
 assuming both have a directory delegation.

 NOTIFY4_CHANGE_CHILD_ATTRS/NOTIFY4_CHANGE_DIR_ATTRS
 The client will use the attribute mask to inform the server of
 attributes for which it wants to receive notifications. This
 change notification can be requested for changes to the attributes
 of the directory as well as changes to any file’s attributes in
 the directory by using two separate attribute masks. The client
 cannot ask for change attribute notification for a specific file.
 One attribute mask covers all the files in the directory. Upon
 any attribute change, the server will send back the values of
 changed attributes. Notifications might not make sense for some
 file system-wide attributes, and it is up to the server to decide
 which subset it wants to support. The client can negotiate the
 frequency of attribute notifications by letting the server know
 how often it wants to be notified of an attribute change. The
 server will return supported notification frequencies or an
 indication that no notification is permitted for directory or
 child attributes by setting the dir_notif_delay and
 dir_entry_notif_delay attributes, respectively.

 NOTIFY4_CHANGE_COOKIE_VERIFIER
 If the cookie verifier changes while a client is holding a
 delegation, the server will notify the client so that it can
 invalidate its cookies and re-send a READDIR to get the new set of
 cookies.

20.5. Operation 7: CB_PUSH_DELEG - Offer Previously Requested
 Delegation to Client

20.5.1. ARGUMENT

 struct CB_PUSH_DELEG4args {
 nfs_fh4 cpda_fh;
 open_delegation4 cpda_delegation;

 };

20.5.2. RESULT

 struct CB_PUSH_DELEG4res {
 nfsstat4 cpdr_status;
 };

20.5.3. DESCRIPTION

 CB_PUSH_DELEG is used by the server both to signal to the client that
 the delegation it wants (previously indicated via a want established
 from an OPEN or WANT_DELEGATION operation) is available and to
 simultaneously offer the delegation to the client. The client has
 the choice of accepting the delegation by returning NFS4_OK to the
 server, delaying the decision to accept the offered delegation by
 returning NFS4ERR_DELAY, or permanently rejecting the offer of the
 delegation by returning NFS4ERR_REJECT_DELEG. When a delegation is
 rejected in this fashion, the want previously established is
 permanently deleted and the delegation is subject to acquisition by
 another client.

20.5.4. IMPLEMENTATION

 If the client does return NFS4ERR_DELAY and there is a conflicting
 delegation request, the server MAY process it at the expense of the
 client that returned NFS4ERR_DELAY. The client’s want will not be
 cancelled, but MAY be processed behind other delegation requests or
 registered wants.

 When a client returns a status other than NFS4_OK, NFS4ERR_DELAY, or
 NFS4ERR_REJECT_DELAY, the want remains pending, although servers may
 decide to cancel the want by sending a CB_WANTS_CANCELLED.

20.6. Operation 8: CB_RECALL_ANY - Keep Any N Recallable Objects

20.6.1. ARGUMENT

 const RCA4_TYPE_MASK_RDATA_DLG = 0;
 const RCA4_TYPE_MASK_WDATA_DLG = 1;
 const RCA4_TYPE_MASK_DIR_DLG = 2;
 const RCA4_TYPE_MASK_FILE_LAYOUT = 3;
 const RCA4_TYPE_MASK_BLK_LAYOUT = 4;
 const RCA4_TYPE_MASK_OBJ_LAYOUT_MIN = 8;
 const RCA4_TYPE_MASK_OBJ_LAYOUT_MAX = 9;
 const RCA4_TYPE_MASK_OTHER_LAYOUT_MIN = 12;
 const RCA4_TYPE_MASK_OTHER_LAYOUT_MAX = 15;

 struct CB_RECALL_ANY4args {
 uint32_t craa_objects_to_keep;
 bitmap4 craa_type_mask;
 };

20.6.2. RESULT

 struct CB_RECALL_ANY4res {
 nfsstat4 crar_status;
 };

20.6.3. DESCRIPTION

 The server may decide that it cannot hold all of the state for
 recallable objects, such as delegations and layouts, without running
 out of resources. In such a case, while not optimal, the server is
 free to recall individual objects to reduce the load.

 Because the general purpose of such recallable objects as delegations
 is to eliminate client interaction with the server, the server cannot
 interpret lack of recent use as indicating that the object is no
 longer useful. The absence of visible use is consistent with a
 delegation keeping potential operations from being sent to the
 server. In the case of layouts, while it is true that the usefulness
 of a layout is indicated by the use of the layout when storage
 devices receive I/O requests, because there is no mandate that a
 storage device indicate to the metadata server any past or present
 use of a layout, the metadata server is not likely to know which
 layouts are good candidates to recall in response to low resources.

 In order to implement an effective reclaim scheme for such objects,
 the server’s knowledge of available resources must be used to

 determine when objects must be recalled with the clients selecting
 the actual objects to be returned.

 Server implementations may differ in their resource allocation
 requirements. For example, one server may share resources among all
 classes of recallable objects, whereas another may use separate
 resource pools for layouts and for delegations, or further separate
 resources by types of delegations.

 When a given resource pool is over-utilized, the server can send a
 CB_RECALL_ANY to clients holding recallable objects of the types
 involved, allowing it to keep a certain number of such objects and
 return any excess. A mask specifies which types of objects are to be
 limited. The client chooses, based on its own knowledge of current
 usefulness, which of the objects in that class should be returned.

 A number of bits are defined. For some of these, ranges are defined
 and it is up to the definition of the storage protocol to specify how
 these are to be used. There are ranges reserved for object-based
 storage protocols and for other experimental storage protocols. An
 RFC defining such a storage protocol needs to specify how particular
 bits within its range are to be used. For example, it may specify a
 mapping between attributes of the layout (read vs. write, size of
 area) and the bit to be used, or it may define a field in the layout
 where the associated bit position is made available by the server to
 the client.

 RCA4_TYPE_MASK_RDATA_DLG
 The client is to return OPEN_DELEGATE_READ delegations on non-
 directory file objects.

 RCA4_TYPE_MASK_WDATA_DLG
 The client is to return OPEN_DELEGATE_WRITE delegations on regular
 file objects.

 RCA4_TYPE_MASK_DIR_DLG
 The client is to return directory delegations.

 RCA4_TYPE_MASK_FILE_LAYOUT
 The client is to return layouts of type LAYOUT4_NFSV4_1_FILES.

 RCA4_TYPE_MASK_BLK_LAYOUT
 See [48] for a description.

 RCA4_TYPE_MASK_OBJ_LAYOUT_MIN to RCA4_TYPE_MASK_OBJ_LAYOUT_MAX
 See [47] for a description.

 RCA4_TYPE_MASK_OTHER_LAYOUT_MIN to RCA4_TYPE_MASK_OTHER_LAYOUT_MAX
 This range is reserved for telling the client to recall layouts of
 experimental or site-specific layout types (see Section 3.3.13).

 When a bit is set in the type mask that corresponds to an undefined
 type of recallable object, NFS4ERR_INVAL MUST be returned. When a
 bit is set that corresponds to a defined type of object but the
 client does not support an object of the type, NFS4ERR_INVAL MUST NOT
 be returned. Future minor versions of NFSv4 may expand the set of
 valid type mask bits.

 CB_RECALL_ANY specifies a count of objects that the client may keep
 as opposed to a count that the client must return. This is to avoid
 a potential race between a CB_RECALL_ANY that had a count of objects
 to free with a set of client-originated operations to return layouts
 or delegations. As a result of the race, the client and server would
 have differing ideas as to how many objects to return. Hence, the
 client could mistakenly free too many.

 If resource demands prompt it, the server may send another
 CB_RECALL_ANY with a lower count, even if it has not yet received an
 acknowledgment from the client for a previous CB_RECALL_ANY with the
 same type mask. Although the possibility exists that these will be
 received by the client in an order different from the order in which

 they were sent, any such permutation of the callback stream is
 harmless. It is the job of the client to bring down the size of the
 recallable object set in line with each CB_RECALL_ANY received, and
 until that obligation is met, it cannot be cancelled or modified by
 any subsequent CB_RECALL_ANY for the same type mask. Thus, if the
 server sends two CB_RECALL_ANYs, the effect will be the same as if
 the lower count was sent, whatever the order of recall receipt. Note
 that this means that a server may not cancel the effect of a
 CB_RECALL_ANY by sending another recall with a higher count. When a
 CB_RECALL_ANY is received and the count is already within the limit
 set or is above a limit that the client is working to get down to,
 that callback has no effect.

 Servers are generally free to deny recallable objects when
 insufficient resources are available. Note that the effect of such a
 policy is implicitly to give precedence to existing objects relative
 to requested ones, with the result that resources might not be
 optimally used. To prevent this, servers are well advised to make
 the point at which they start sending CB_RECALL_ANY callbacks
 somewhat below that at which they cease to give out new delegations
 and layouts. This allows the client to purge its less-used objects
 whenever appropriate and so continue to have its subsequent requests
 given new resources freed up by object returns.

20.6.4. IMPLEMENTATION

 The client can choose to return any type of object specified by the
 mask. If a server wishes to limit the use of objects of a specific
 type, it should only specify that type in the mask it sends. Should
 the client fail to return requested objects, it is up to the server
 to handle this situation, typically by sending specific recalls
 (i.e., sending CB_RECALL operations) to properly limit resource
 usage. The server should give the client enough time to return
 objects before proceeding to specific recalls. This time should not
 be less than the lease period.

20.7. Operation 9: CB_RECALLABLE_OBJ_AVAIL - Signal Resources for
 Recallable Objects

20.7.1. ARGUMENT

 typedef CB_RECALL_ANY4args CB_RECALLABLE_OBJ_AVAIL4args;

20.7.2. RESULT

 struct CB_RECALLABLE_OBJ_AVAIL4res {
 nfsstat4 croa_status;
 };

20.7.3. DESCRIPTION

 CB_RECALLABLE_OBJ_AVAIL is used by the server to signal the client
 that the server has resources to grant recallable objects that might
 previously have been denied by OPEN, WANT_DELEGATION, GET_DIR_DELEG,
 or LAYOUTGET.

 The argument craa_objects_to_keep means the total number of
 recallable objects of the types indicated in the argument type_mask
 that the server believes it can allow the client to have, including
 the number of such objects the client already has. A client that
 tries to acquire more recallable objects than the server informs it
 can have runs the risk of having objects recalled.

 The server is not obligated to reserve the difference between the
 number of the objects the client currently has and the value of
 craa_objects_to_keep, nor does delaying the reply to
 CB_RECALLABLE_OBJ_AVAIL prevent the server from using the resources
 of the recallable objects for another purpose. Indeed, if a client
 responds slowly to CB_RECALLABLE_OBJ_AVAIL, the server might
 interpret the client as having reduced capability to manage
 recallable objects, and so cancel or reduce any reservation it is

 maintaining on behalf of the client. Thus, if the client desires to
 acquire more recallable objects, it needs to reply quickly to
 CB_RECALLABLE_OBJ_AVAIL, and then send the appropriate operations to
 acquire recallable objects.

20.8. Operation 10: CB_RECALL_SLOT - Change Flow Control Limits

20.8.1. ARGUMENT

 struct CB_RECALL_SLOT4args {
 slotid4 rsa_target_highest_slotid;
 };

20.8.2. RESULT

 struct CB_RECALL_SLOT4res {
 nfsstat4 rsr_status;
 };

20.8.3. DESCRIPTION

 The CB_RECALL_SLOT operation requests the client to return session
 slots, and if applicable, transport credits (e.g., RDMA credits for
 connections associated with the operations channel) of the session’s
 fore channel. CB_RECALL_SLOT specifies rsa_target_highest_slotid,
 the value of the target highest slot ID the server wants for the
 session. The client MUST then progress toward reducing the session’s
 highest slot ID to the target value.

 If the session has only non-RDMA connections associated with its
 operations channel, then the client need only wait for all
 outstanding requests with a slot ID > rsa_target_highest_slotid to
 complete, then send a single COMPOUND consisting of a single SEQUENCE
 operation, with the sa_highestslot field set to
 rsa_target_highest_slotid. If there are RDMA-based connections
 associated with operation channel, then the client needs to also send
 enough zero-length "RDMA Send" messages to take the total RDMA credit
 count to rsa_target_highest_slotid + 1 or below.

20.8.4. IMPLEMENTATION

 If the client fails to reduce highest slot it has on the fore channel
 to what the server requests, the server can force the issue by
 asserting flow control on the receive side of all connections bound
 to the fore channel, and then finish servicing all outstanding
 requests that are in slots greater than rsa_target_highest_slotid.
 Once that is done, the server can then open the flow control, and any
 time the client sends a new request on a slot greater than
 rsa_target_highest_slotid, the server can return NFS4ERR_BADSLOT.

20.9. Operation 11: CB_SEQUENCE - Supply Backchannel Sequencing and
 Control

20.9.1. ARGUMENT

 struct referring_call4 {
 sequenceid4 rc_sequenceid;
 slotid4 rc_slotid;
 };

 struct referring_call_list4 {
 sessionid4 rcl_sessionid;
 referring_call4 rcl_referring_calls<>;
 };

 struct CB_SEQUENCE4args {
 sessionid4 csa_sessionid;
 sequenceid4 csa_sequenceid;
 slotid4 csa_slotid;
 slotid4 csa_highest_slotid;
 bool csa_cachethis;

 referring_call_list4 csa_referring_call_lists<>;
 };

20.9.2. RESULT

 struct CB_SEQUENCE4resok {
 sessionid4 csr_sessionid;
 sequenceid4 csr_sequenceid;
 slotid4 csr_slotid;
 slotid4 csr_highest_slotid;
 slotid4 csr_target_highest_slotid;
 };

 union CB_SEQUENCE4res switch (nfsstat4 csr_status) {
 case NFS4_OK:
 CB_SEQUENCE4resok csr_resok4;
 default:
 void;
 };

20.9.3. DESCRIPTION

 The CB_SEQUENCE operation is used to manage operational accounting
 for the backchannel of the session on which a request is sent. The
 contents include the session ID to which this request belongs, the
 slot ID and sequence ID used by the server to implement session
 request control and exactly once semantics, and exchanged slot ID
 maxima that are used to adjust the size of the reply cache. In each
 CB_COMPOUND request, CB_SEQUENCE MUST appear once and MUST be the
 first operation. The error NFS4ERR_SEQUENCE_POS MUST be returned
 when CB_SEQUENCE is found in any position in a CB_COMPOUND beyond the
 first. If any other operation is in the first position of
 CB_COMPOUND, NFS4ERR_OP_NOT_IN_SESSION MUST be returned.

 See Section 18.46.3 for a description of how slots are processed.

 If csa_cachethis is TRUE, then the server is requesting that the
 client cache the reply in the callback reply cache. The client MUST
 cache the reply (see Section 2.10.6.1.3).

 The csa_referring_call_lists array is the list of COMPOUND requests,
 identified by session ID, slot ID, and sequence ID. These are
 requests that the client previously sent to the server. These
 previous requests created state that some operation(s) in the same
 CB_COMPOUND as the csa_referring_call_lists are identifying. A
 session ID is included because leased state is tied to a client ID,
 and a client ID can have multiple sessions. See Section 2.10.6.3.

 The value of the csa_sequenceid argument relative to the cached
 sequence ID on the slot falls into one of three cases.

 * If the difference between csa_sequenceid and the client’s cached
 sequence ID at the slot ID is two (2) or more, or if
 csa_sequenceid is less than the cached sequence ID (accounting for
 wraparound of the unsigned sequence ID value), then the client
 MUST return NFS4ERR_SEQ_MISORDERED.

 * If csa_sequenceid and the cached sequence ID are the same, this is
 a retry, and the client returns the CB_COMPOUND request’s cached
 reply.

 * If csa_sequenceid is one greater (accounting for wraparound) than
 the cached sequence ID, then this is a new request, and the slot’s
 sequence ID is incremented. The operations subsequent to
 CB_SEQUENCE, if any, are processed. If there are no other
 operations, the only other effects are to cache the CB_SEQUENCE
 reply in the slot, maintain the session’s activity, and when the
 server receives the CB_SEQUENCE reply, renew the lease of state
 related to the client ID.

 If the server reuses a slot ID and sequence ID for a completely

 different request, the client MAY treat the request as if it is a
 retry of what it has already executed. The client MAY however detect
 the server’s illegal reuse and return NFS4ERR_SEQ_FALSE_RETRY.

 If CB_SEQUENCE returns an error, then the state of the slot (sequence
 ID, cached reply) MUST NOT change. See Section 2.10.6.1.3 for the
 conditions when the error NFS4ERR_RETRY_UNCACHED_REP might be
 returned.

 The client returns two "highest_slotid" values: csr_highest_slotid
 and csr_target_highest_slotid. The former is the highest slot ID the
 client will accept in a future CB_SEQUENCE operation, and SHOULD NOT
 be less than the value of csa_highest_slotid (but see
 Section 2.10.6.1 for an exception). The latter is the highest slot
 ID the client would prefer the server use on a future CB_SEQUENCE
 operation.

20.10. Operation 12: CB_WANTS_CANCELLED - Cancel Pending Delegation
 Wants

20.10.1. ARGUMENT

 struct CB_WANTS_CANCELLED4args {
 bool cwca_contended_wants_cancelled;
 bool cwca_resourced_wants_cancelled;
 };

20.10.2. RESULT

 struct CB_WANTS_CANCELLED4res {
 nfsstat4 cwcr_status;
 };

20.10.3. DESCRIPTION

 The CB_WANTS_CANCELLED operation is used to notify the client that
 some or all of the wants it registered for recallable delegations and
 layouts have been cancelled.

 If cwca_contended_wants_cancelled is TRUE, this indicates that the
 server will not be pushing to the client any delegations that become
 available after contention passes.

 If cwca_resourced_wants_cancelled is TRUE, this indicates that the
 server will not notify the client when there are resources on the
 server to grant delegations or layouts.

 After receiving a CB_WANTS_CANCELLED operation, the client is free to
 attempt to acquire the delegations or layouts it was waiting for, and
 possibly re-register wants.

20.10.4. IMPLEMENTATION

 When a client has an OPEN, WANT_DELEGATION, or GET_DIR_DELEGATION
 request outstanding, when a CB_WANTS_CANCELLED is sent, the server
 may need to make clear to the client whether a promise to signal
 delegation availability happened before the CB_WANTS_CANCELLED and is
 thus covered by it, or after the CB_WANTS_CANCELLED in which case it
 was not covered by it. The server can make this distinction by
 putting the appropriate requests into the list of referring calls in
 the associated CB_SEQUENCE.

20.11. Operation 13: CB_NOTIFY_LOCK - Notify Client of Possible Lock
 Availability

20.11.1. ARGUMENT

 struct CB_NOTIFY_LOCK4args {
 nfs_fh4 cnla_fh;
 lock_owner4 cnla_lock_owner;
 };

20.11.2. RESULT

 struct CB_NOTIFY_LOCK4res {
 nfsstat4 cnlr_status;
 };

20.11.3. DESCRIPTION

 The server can use this operation to indicate that a byte-range lock
 for the given file and lock-owner, previously requested by the client
 via an unsuccessful LOCK operation, might be available.

 This callback is meant to be used by servers to help reduce the
 latency of blocking locks in the case where they recognize that a
 client that has been polling for a blocking byte-range lock may now
 be able to acquire the lock. If the server supports this callback
 for a given file, it MUST set the OPEN4_RESULT_MAY_NOTIFY_LOCK flag
 when responding to successful opens for that file. This does not
 commit the server to the use of CB_NOTIFY_LOCK, but the client may
 use this as a hint to decide how frequently to poll for locks derived
 from that open.

 If an OPEN operation results in an upgrade, in which the stateid
 returned has an "other" value matching that of a stateid already
 allocated, with a new "seqid" indicating a change in the lock being
 represented, then the value of the OPEN4_RESULT_MAY_NOTIFY_LOCK flag
 when responding to that new OPEN controls handling from that point
 going forward. When parallel OPENs are done on the same file and
 open-owner, the ordering of the "seqid" fields of the returned
 stateids (subject to wraparound) are to be used to select the
 controlling value of the OPEN4_RESULT_MAY_NOTIFY_LOCK flag.

20.11.4. IMPLEMENTATION

 The server MUST NOT grant the byte-range lock to the client unless
 and until it receives a LOCK operation from the client. Similarly,
 the client receiving this callback cannot assume that it now has the
 lock or that a subsequent LOCK operation for the lock will be
 successful.

 The server is not required to implement this callback, and even if it
 does, it is not required to use it in any particular case.
 Therefore, the client must still rely on polling for blocking locks,
 as described in Section 9.6.

 Similarly, the client is not required to implement this callback, and
 even it does, is still free to ignore it. Therefore, the server MUST
 NOT assume that the client will act based on the callback.

20.12. Operation 14: CB_NOTIFY_DEVICEID - Notify Client of Device ID
 Changes

20.12.1. ARGUMENT

 /*
 * Device notification types.
 */
 enum notify_deviceid_type4 {
 NOTIFY_DEVICEID4_CHANGE = 1,
 NOTIFY_DEVICEID4_DELETE = 2
 };

 /* For NOTIFY4_DEVICEID4_DELETE */
 struct notify_deviceid_delete4 {
 layouttype4 ndd_layouttype;
 deviceid4 ndd_deviceid;
 };

 /* For NOTIFY4_DEVICEID4_CHANGE */
 struct notify_deviceid_change4 {

 layouttype4 ndc_layouttype;
 deviceid4 ndc_deviceid;
 bool ndc_immediate;
 };

 struct CB_NOTIFY_DEVICEID4args {
 notify4 cnda_changes<>;
 };

20.12.2. RESULT

 struct CB_NOTIFY_DEVICEID4res {
 nfsstat4 cndr_status;
 };

20.12.3. DESCRIPTION

 The CB_NOTIFY_DEVICEID operation is used by the server to send
 notifications to clients about changes to pNFS device IDs. The
 registration of device ID notifications is optional and is done via
 GETDEVICEINFO. These notifications are sent over the backchannel
 once the original request has been processed on the server. The
 server will send an array of notifications, cnda_changes, as a list
 of pairs of bitmaps and values. See Section 3.3.7 for a description
 of how NFSv4.1 bitmaps work.

 As with CB_NOTIFY (Section 20.4.3), it is possible the server has
 more notifications than can fit in a CB_COMPOUND, thus requiring
 multiple CB_COMPOUNDs. Unlike CB_NOTIFY, serialization is not an
 issue because unlike directory entries, device IDs cannot be re-used
 after being deleted (Section 12.2.10).

 All device ID notifications contain a device ID and a layout type.
 The layout type is necessary because two different layout types can
 share the same device ID, and the common device ID can have
 completely different mappings for each layout type.

 The server will send the following notifications:

 NOTIFY_DEVICEID4_CHANGE
 A previously provided device-ID-to-device-address mapping has
 changed and the client uses GETDEVICEINFO to obtain the updated
 mapping. The notification is encoded in a value of data type
 notify_deviceid_change4. This data type also contains a boolean
 field, ndc_immediate, which if TRUE indicates that the change will
 be enforced immediately, and so the client might not be able to
 complete any pending I/O to the device ID. If ndc_immediate is
 FALSE, then for an indefinite time, the client can complete
 pending I/O. After pending I/O is complete, the client SHOULD get
 the new device-ID-to-device-address mappings before sending new I/
 O requests to the storage devices addressed by the device ID.

 NOTIFY4_DEVICEID_DELETE
 Deletes a device ID from the mappings. This notification MUST NOT
 be sent if the client has a layout that refers to the device ID.
 In other words, if the server is sending a delete device ID
 notification, one of the following is true for layouts associated
 with the layout type:

 * The client never had a layout referring to that device ID.

 * The client has returned all layouts referring to that device
 ID.

 * The server has revoked all layouts referring to that device ID.

 The notification is encoded in a value of data type
 notify_deviceid_delete4. After a server deletes a device ID, it
 MUST NOT reuse that device ID for the same layout type until the
 client ID is deleted.

20.13. Operation 10044: CB_ILLEGAL - Illegal Callback Operation

20.13.1. ARGUMENT

 void;

20.13.2. RESULT

 /*
 * CB_ILLEGAL: Response for illegal operation numbers
 */
 struct CB_ILLEGAL4res {
 nfsstat4 status;
 };

20.13.3. DESCRIPTION

 This operation is a placeholder for encoding a result to handle the
 case of the server sending an operation code within CB_COMPOUND that
 is not defined in the NFSv4.1 specification. See Section 19.2.3 for
 more details.

 The status field of CB_ILLEGAL4res MUST be set to NFS4ERR_OP_ILLEGAL.

20.13.4. IMPLEMENTATION

 A server will probably not send an operation with code OP_CB_ILLEGAL,
 but if it does, the response will be CB_ILLEGAL4res just as it would
 be with any other invalid operation code. Note that if the client
 gets an illegal operation code that is not OP_ILLEGAL, and if the
 client checks for legal operation codes during the XDR decode phase,
 then an instance of data type CB_ILLEGAL4res will not be returned.

21. Security Considerations

 Historically, the authentication model of NFS was based on the entire
 machine being the NFS client, with the NFS server trusting the NFS
 client to authenticate the end-user. The NFS server in turn shared
 its files only to specific clients, as identified by the client’s
 source network address. Given this model, the AUTH_SYS RPC security
 flavor simply identified the end-user using the client to the NFS
 server. When processing NFS responses, the client ensured that the
 responses came from the same network address and port number to which
 the request was sent. While such a model is easy to implement and
 simple to deploy and use, it is unsafe. Thus, NFSv4.1
 implementations are REQUIRED to support a security model that uses
 end-to-end authentication, where an end-user on a client mutually
 authenticates (via cryptographic schemes that do not expose passwords
 or keys in the clear on the network) to a principal on an NFS server.
 Consideration is also given to the integrity and privacy of NFS
 requests and responses. The issues of end-to-end mutual
 authentication, integrity, and privacy are discussed in
 Section 2.2.1.1.1. There are specific considerations when using
 Kerberos V5 as described in Section 2.2.1.1.1.2.1.1.

 Note that being REQUIRED to implement does not mean REQUIRED to use;
 AUTH_SYS can be used by NFSv4.1 clients and servers. However,
 AUTH_SYS is merely an OPTIONAL security flavor in NFSv4.1, and so
 interoperability via AUTH_SYS is not assured.

 For reasons of reduced administration overhead, better performance,
 and/or reduction of CPU utilization, users of NFSv4.1 implementations
 might decline to use security mechanisms that enable integrity
 protection on each remote procedure call and response. The use of
 mechanisms without integrity leaves the user vulnerable to a man-in-
 the-middle of the NFS client and server that modifies the RPC request
 and/or the response. While implementations are free to provide the
 option to use weaker security mechanisms, there are three operations
 in particular that warrant the implementation overriding user
 choices.

 * The first two such operations are SECINFO and SECINFO_NO_NAME. It
 is RECOMMENDED that the client send both operations such that they
 are protected with a security flavor that has integrity
 protection, such as RPCSEC_GSS with either the
 rpc_gss_svc_integrity or rpc_gss_svc_privacy service. Without
 integrity protection encapsulating SECINFO and SECINFO_NO_NAME and
 their results, a man-in-the-middle could modify results such that
 the client might select a weaker algorithm in the set allowed by
 the server, making the client and/or server vulnerable to further
 attacks.

 * The third operation that SHOULD use integrity protection is any
 GETATTR for the fs_locations and fs_locations_info attributes, in
 order to mitigate the severity of a man-in-the-middle attack. The
 attack has two steps. First the attacker modifies the unprotected
 results of some operation to return NFS4ERR_MOVED. Second, when
 the client follows up with a GETATTR for the fs_locations or
 fs_locations_info attributes, the attacker modifies the results to
 cause the client to migrate its traffic to a server controlled by
 the attacker. With integrity protection, this attack is
 mitigated.

 Relative to previous NFS versions, NFSv4.1 has additional security
 considerations for pNFS (see Sections 12.9 and 13.12), locking and
 session state (see Section 2.10.8.3), and state recovery during grace
 period (see Section 8.4.2.1.1). With respect to locking and session
 state, if SP4_SSV state protection is being used, Section 2.10.10 has
 specific security considerations for the NFSv4.1 client and server.

 Security considerations for lock reclaim differ between the two
 different situations in which state reclaim is to be done. The
 server failure situation is discussed in Section 8.4.2.1.1, while the
 per-fs state reclaim done in support of migration/replication is
 discussed in Section 11.11.9.1.

 The use of the multi-server namespace features described in
 Section 11 raises the possibility that requests to determine the set
 of network addresses corresponding to a given server might be
 interfered with or have their responses modified in flight. In light
 of this possibility, the following considerations should be noted:

 * When DNS is used to convert server names to addresses and DNSSEC
 [29] is not available, the validity of the network addresses
 returned generally cannot be relied upon. However, when combined
 with a trusted resolver, DNS over TLS [30] and DNS over HTTPS [34]
 can be relied upon to provide valid address resolutions.

 In situations in which the validity of the provided addresses
 cannot be relied upon and the client uses RPCSEC_GSS to access the
 designated server, it is possible for mutual authentication to
 discover invalid server addresses as long as the RPCSEC_GSS
 implementation used does not use insecure DNS queries to
 canonicalize the hostname components of the service principal
 names, as explained in [28].

 * The fetching of attributes containing file system location
 information SHOULD be performed using integrity protection. It is
 important to note here that a client making a request of this sort
 without using integrity protection needs be aware of the negative
 consequences of doing so, which can lead to invalid hostnames or
 network addresses being returned. These include cases in which
 the client is directed to a server under the control of an
 attacker, who might get access to data written or provide
 incorrect values for data read. In light of this, the client
 needs to recognize that using such returned location information
 to access an NFSv4 server without use of RPCSEC_GSS (i.e., by
 using AUTH_SYS) poses dangers as it can result in the client
 interacting with such an attacker-controlled server without any
 authentication facilities to verify the server’s identity.

 * Despite the fact that it is a requirement that implementations

 provide "support" for use of RPCSEC_GSS, it cannot be assumed that
 use of RPCSEC_GSS is always available between any particular
 client-server pair.

 * When a client has the network addresses of a server but not the
 associated hostnames, that would interfere with its ability to use
 RPCSEC_GSS.

 In light of the above, a server SHOULD present file system location
 entries that correspond to file systems on other servers using a
 hostname. This would allow the client to interrogate the
 fs_locations on the destination server to obtain trunking information
 (as well as replica information) using integrity protection,
 validating the name provided while assuring that the response has not
 been modified in flight.

 When RPCSEC_GSS is not available on a server, the client needs to be
 aware of the fact that the location entries are subject to
 modification in flight and so cannot be relied upon. In the case of
 a client being directed to another server after NFS4ERR_MOVED, this
 could vitiate the authentication provided by the use of RPCSEC_GSS on
 the designated destination server. Even when RPCSEC_GSS
 authentication is available on the destination, the server might
 still properly authenticate as the server to which the client was
 erroneously directed. Without a way to decide whether the server is
 a valid one, the client can only determine, using RPCSEC_GSS, that
 the server corresponds to the name provided, with no basis for
 trusting that server. As a result, the client SHOULD NOT use such
 unverified location entries as a basis for migration, even though
 RPCSEC_GSS might be available on the destination.

 When a file system location attribute is fetched upon connecting with
 an NFS server, it SHOULD, as stated above, be done with integrity
 protection. When this not possible, it is generally best for the
 client to ignore trunking and replica information or simply not fetch
 the location information for these purposes.

 When location information cannot be verified, it can be subjected to
 additional filtering to prevent the client from being inappropriately
 directed. For example, if a range of network addresses can be
 determined that assure that the servers and clients using AUTH_SYS
 are subject to the appropriate set of constraints (e.g., physical
 network isolation, administrative controls on the operating systems
 used), then network addresses in the appropriate range can be used
 with others discarded or restricted in their use of AUTH_SYS.

 To summarize considerations regarding the use of RPCSEC_GSS in
 fetching location information, we need to consider the following
 possibilities for requests to interrogate location information, with
 interrogation approaches on the referring and destination servers
 arrived at separately:

 * The use of integrity protection is RECOMMENDED in all cases, since
 the absence of integrity protection exposes the client to the
 possibility of the results being modified in transit.

 * The use of requests issued without RPCSEC_GSS (i.e., using
 AUTH_SYS, which has no provision to avoid modification of data in
 flight), while undesirable and a potential security exposure, may
 not be avoidable in all cases. Where the use of the returned
 information cannot be avoided, it is made subject to filtering as
 described above to eliminate the possibility that the client would
 treat an invalid address as if it were a NFSv4 server. The
 specifics will vary depending on the degree of network isolation
 and whether the request is to the referring or destination
 servers.

 Even if such requests are not interfered with in flight, it is
 possible for a compromised server to direct the client to use
 inappropriate servers, such as those under the control of the
 attacker. It is not clear that being directed to such servers

 represents a greater threat to the client than the damage that could
 be done by the compromised server itself. However, it is possible
 that some sorts of transient server compromises might be exploited to
 direct a client to a server capable of doing greater damage over a
 longer time. One useful step to guard against this possibility is to
 issue requests to fetch location data using RPCSEC_GSS, even if no
 mapping to an RPCSEC_GSS principal is available. In this case,
 RPCSEC_GSS would not be used, as it typically is, to identify the
 client principal to the server, but rather to make sure (via
 RPCSEC_GSS mutual authentication) that the server being contacted is
 the one intended.

 Similar considerations apply if the threat to be avoided is the
 redirection of client traffic to inappropriate (i.e., poorly
 performing) servers. In both cases, there is no reason for the
 information returned to depend on the identity of the client
 principal requesting it, while the validity of the server
 information, which has the capability to affect all client
 principals, is of considerable importance.

22. IANA Considerations

 This section uses terms that are defined in [63].

22.1. IANA Actions

 This update does not require any modification of, or additions to,
 registry entries or registry rules associated with NFSv4.1. However,
 since this document obsoletes RFC 5661, IANA has updated all registry
 entries and registry rules references that point to RFC 5661 to point
 to this document instead.

 Previous actions by IANA related to NFSv4.1 are listed in the
 remaining subsections of Section 22.

22.2. Named Attribute Definitions

 IANA created a registry called the "NFSv4 Named Attribute Definitions
 Registry".

 The NFSv4.1 protocol supports the association of a file with zero or
 more named attributes. The namespace identifiers for these
 attributes are defined as string names. The protocol does not define
 the specific assignment of the namespace for these file attributes.
 The IANA registry promotes interoperability where common interests
 exist. While application developers are allowed to define and use
 attributes as needed, they are encouraged to register the attributes
 with IANA.

 Such registered named attributes are presumed to apply to all minor
 versions of NFSv4, including those defined subsequently to the
 registration. If the named attribute is intended to be limited to
 specific minor versions, this will be clearly stated in the
 registry’s assignment.

 All assignments to the registry are made on a First Come First Served
 basis, per Section 4.4 of [63]. The policy for each assignment is
 Specification Required, per Section 4.6 of [63].

 Under the NFSv4.1 specification, the name of a named attribute can in
 theory be up to 2^(32) - 1 bytes in length, but in practice NFSv4.1
 clients and servers will be unable to handle a string that long.
 IANA should reject any assignment request with a named attribute that
 exceeds 128 UTF-8 characters. To give the IESG the flexibility to
 set up bases of assignment of Experimental Use and Standards Action,
 the prefixes of "EXPE" and "STDS" are Reserved. The named attribute
 with a zero-length name is Reserved.

 The prefix "PRIV" is designated for Private Use. A site that wants
 to make use of unregistered named attributes without risk of
 conflicting with an assignment in IANA’s registry should use the

 prefix "PRIV" in all of its named attributes.

 Because some NFSv4.1 clients and servers have case-insensitive
 semantics, the fifteen additional lower case and mixed case
 permutations of each of "EXPE", "PRIV", and "STDS" are Reserved
 (e.g., "expe", "expE", "exPe", etc. are Reserved). Similarly, IANA
 must not allow two assignments that would conflict if both named
 attributes were converted to a common case.

 The registry of named attributes is a list of assignments, each
 containing three fields for each assignment.

 1. A US-ASCII string name that is the actual name of the attribute.
 This name must be unique. This string name can be 1 to 128 UTF-8
 characters long.

 2. A reference to the specification of the named attribute. The
 reference can consume up to 256 bytes (or more if IANA permits).

 3. The point of contact of the registrant. The point of contact can
 consume up to 256 bytes (or more if IANA permits).

22.2.1. Initial Registry

 There is no initial registry.

22.2.2. Updating Registrations

 The registrant is always permitted to update the point of contact
 field. Any other change will require Expert Review or IESG Approval.

22.3. Device ID Notifications

 IANA created a registry called the "NFSv4 Device ID Notifications
 Registry".

 The potential exists for new notification types to be added to the
 CB_NOTIFY_DEVICEID operation (see Section 20.12). This can be done
 via changes to the operations that register notifications, or by
 adding new operations to NFSv4. This requires a new minor version of
 NFSv4, and requires a Standards Track document from the IETF.
 Another way to add a notification is to specify a new layout type
 (see Section 22.5).

 Hence, all assignments to the registry are made on a Standards Action
 basis per Section 4.6 of [63], with Expert Review required.

 The registry is a list of assignments, each containing five fields
 per assignment.

 1. The name of the notification type. This name must have the
 prefix "NOTIFY_DEVICEID4_". This name must be unique.

 2. The value of the notification. IANA will assign this number, and
 the request from the registrant will use TBD1 instead of an
 actual value. IANA MUST use a whole number that can be no higher
 than 2^(32)-1, and should be the next available value. The value
 assigned must be unique. A Designated Expert must be used to
 ensure that when the name of the notification type and its value
 are added to the NFSv4.1 notify_deviceid_type4 enumerated data
 type in the NFSv4.1 XDR description [10], the result continues to
 be a valid XDR description.

 3. The Standards Track RFC(s) that describe the notification. If
 the RFC(s) have not yet been published, the registrant will use
 RFCTBD2, RFCTBD3, etc. instead of an actual RFC number.

 4. How the RFC introduces the notification. This is indicated by a
 single US-ASCII value. If the value is N, it means a minor
 revision to the NFSv4 protocol. If the value is L, it means a
 new pNFS layout type. Other values can be used with IESG

 Approval.

 5. The minor versions of NFSv4 that are allowed to use the
 notification. While these are numeric values, IANA will not
 allocate and assign them; the author of the relevant RFCs with
 IESG Approval assigns these numbers. Each time there is a new
 minor version of NFSv4 approved, a Designated Expert should
 review the registry to make recommended updates as needed.

22.3.1. Initial Registry

 The initial registry is in Table 25. Note that the next available
 value is zero.

 +=========================+=======+==========+=====+================+
 | Notification Name | Value | RFC | How | Minor Versions |
 +=========================+=======+==========+=====+================+
 | NOTIFY_DEVICEID4_CHANGE | 1 | RFC | N | 1 |
 | | | 8881 | | |
 +-------------------------+-------+----------+-----+----------------+
 | NOTIFY_DEVICEID4_DELETE | 2 | RFC | N | 1 |
 | | | 8881 | | |
 +-------------------------+-------+----------+-----+----------------+

 Table 25: Initial Device ID Notification Assignments

22.3.2. Updating Registrations

 The update of a registration will require IESG Approval on the advice
 of a Designated Expert.

22.4. Object Recall Types

 IANA created a registry called the "NFSv4 Recallable Object Types
 Registry".

 The potential exists for new object types to be added to the
 CB_RECALL_ANY operation (see Section 20.6). This can be done via
 changes to the operations that add recallable types, or by adding new
 operations to NFSv4. This requires a new minor version of NFSv4, and
 requires a Standards Track document from IETF. Another way to add a
 new recallable object is to specify a new layout type (see
 Section 22.5).

 All assignments to the registry are made on a Standards Action basis
 per Section 4.9 of [63], with Expert Review required.

 Recallable object types are 32-bit unsigned numbers. There are no
 Reserved values. Values in the range 12 through 15, inclusive, are
 designated for Private Use.

 The registry is a list of assignments, each containing five fields
 per assignment.

 1. The name of the recallable object type. This name must have the
 prefix "RCA4_TYPE_MASK_". The name must be unique.

 2. The value of the recallable object type. IANA will assign this
 number, and the request from the registrant will use TBD1 instead
 of an actual value. IANA MUST use a whole number that can be no
 higher than 2^(32)-1, and should be the next available value.
 The value must be unique. A Designated Expert must be used to
 ensure that when the name of the recallable type and its value
 are added to the NFSv4 XDR description [10], the result continues
 to be a valid XDR description.

 3. The Standards Track RFC(s) that describe the recallable object
 type. If the RFC(s) have not yet been published, the registrant
 will use RFCTBD2, RFCTBD3, etc. instead of an actual RFC number.

 4. How the RFC introduces the recallable object type. This is

 indicated by a single US-ASCII value. If the value is N, it
 means a minor revision to the NFSv4 protocol. If the value is L,
 it means a new pNFS layout type. Other values can be used with
 IESG Approval.

 5. The minor versions of NFSv4 that are allowed to use the
 recallable object type. While these are numeric values, IANA
 will not allocate and assign them; the author of the relevant
 RFCs with IESG Approval assigns these numbers. Each time there
 is a new minor version of NFSv4 approved, a Designated Expert
 should review the registry to make recommended updates as needed.

22.4.1. Initial Registry

 The initial registry is in Table 26. Note that the next available
 value is five.

 +===============================+=======+======+=====+==========+
 | Recallable Object Type Name | Value | RFC | How | Minor |
 | | | | | Versions |
 +===============================+=======+======+=====+==========+
 | RCA4_TYPE_MASK_RDATA_DLG | 0 | RFC | N | 1 |
 | | | 8881 | | |
 +-------------------------------+-------+------+-----+----------+
 | RCA4_TYPE_MASK_WDATA_DLG | 1 | RFC | N | 1 |
 | | | 8881 | | |
 +-------------------------------+-------+------+-----+----------+
 | RCA4_TYPE_MASK_DIR_DLG | 2 | RFC | N | 1 |
 | | | 8881 | | |
 +-------------------------------+-------+------+-----+----------+
 | RCA4_TYPE_MASK_FILE_LAYOUT | 3 | RFC | N | 1 |
 | | | 8881 | | |
 +-------------------------------+-------+------+-----+----------+
 | RCA4_TYPE_MASK_BLK_LAYOUT | 4 | RFC | L | 1 |
 | | | 8881 | | |
 +-------------------------------+-------+------+-----+----------+
 | RCA4_TYPE_MASK_OBJ_LAYOUT_MIN | 8 | RFC | L | 1 |
 | | | 8881 | | |
 +-------------------------------+-------+------+-----+----------+
 | RCA4_TYPE_MASK_OBJ_LAYOUT_MAX | 9 | RFC | L | 1 |
 | | | 8881 | | |
 +-------------------------------+-------+------+-----+----------+

 Table 26: Initial Recallable Object Type Assignments

22.4.2. Updating Registrations

 The update of a registration will require IESG Approval on the advice
 of a Designated Expert.

22.5. Layout Types

 IANA created a registry called the "pNFS Layout Types Registry".

 All assignments to the registry are made on a Standards Action basis,
 with Expert Review required.

 Layout types are 32-bit numbers. The value zero is Reserved. Values
 in the range 0x80000000 to 0xFFFFFFFF inclusive are designated for
 Private Use. IANA will assign numbers from the range 0x00000001 to
 0x7FFFFFFF inclusive.

 The registry is a list of assignments, each containing five fields.

 1. The name of the layout type. This name must have the prefix
 "LAYOUT4_". The name must be unique.

 2. The value of the layout type. IANA will assign this number, and
 the request from the registrant will use TBD1 instead of an
 actual value. The value assigned must be unique. A Designated
 Expert must be used to ensure that when the name of the layout

 type and its value are added to the NFSv4.1 layouttype4
 enumerated data type in the NFSv4.1 XDR description [10], the
 result continues to be a valid XDR description.

 3. The Standards Track RFC(s) that describe the notification. If
 the RFC(s) have not yet been published, the registrant will use
 RFCTBD2, RFCTBD3, etc. instead of an actual RFC number.
 Collectively, the RFC(s) must adhere to the guidelines listed in
 Section 22.5.3.

 4. How the RFC introduces the layout type. This is indicated by a
 single US-ASCII value. If the value is N, it means a minor
 revision to the NFSv4 protocol. If the value is L, it means a
 new pNFS layout type. Other values can be used with IESG
 Approval.

 5. The minor versions of NFSv4 that are allowed to use the
 notification. While these are numeric values, IANA will not
 allocate and assign them; the author of the relevant RFCs with
 IESG Approval assigns these numbers. Each time there is a new
 minor version of NFSv4 approved, a Designated Expert should
 review the registry to make recommended updates as needed.

22.5.1. Initial Registry

 The initial registry is in Table 27.

 +=======================+=======+==========+=====+================+
 | Layout Type Name | Value | RFC | How | Minor Versions |
 +=======================+=======+==========+=====+================+
 | LAYOUT4_NFSV4_1_FILES | 0x1 | RFC 8881 | N | 1 |
 +-----------------------+-------+----------+-----+----------------+
 | LAYOUT4_OSD2_OBJECTS | 0x2 | RFC 5664 | L | 1 |
 +-----------------------+-------+----------+-----+----------------+
 | LAYOUT4_BLOCK_VOLUME | 0x3 | RFC 5663 | L | 1 |
 +-----------------------+-------+----------+-----+----------------+

 Table 27: Initial Layout Type Assignments

22.5.2. Updating Registrations

 The update of a registration will require IESG Approval on the advice
 of a Designated Expert.

22.5.3. Guidelines for Writing Layout Type Specifications

 The author of a new pNFS layout specification must follow these steps
 to obtain acceptance of the layout type as a Standards Track RFC:

 1. The author devises the new layout specification.

 2. The new layout type specification MUST, at a minimum:

 * Define the contents of the layout-type-specific fields of the
 following data types:

 - the da_addr_body field of the device_addr4 data type;

 - the loh_body field of the layouthint4 data type;

 - the loc_body field of layout_content4 data type (which in
 turn is the lo_content field of the layout4 data type);

 - the lou_body field of the layoutupdate4 data type;

 * Describe or define the storage access protocol used to access
 the storage devices.

 * Describe whether revocation of layouts is supported.

 * At a minimum, describe the methods of recovery from:

 1. Failure and restart for client, server, storage device.

 2. Lease expiration from perspective of the active client,
 server, storage device.

 3. Loss of layout state resulting in fencing of client access
 to storage devices (for an example, see Section 12.7.3).

 * Include an IANA considerations section, which will in turn
 include:

 - A request to IANA for a new layout type per Section 22.5.

 - A list of requests to IANA for any new recallable object
 types for CB_RECALL_ANY; each entry is to be presented in
 the form described in Section 22.4.

 - A list of requests to IANA for any new notification values
 for CB_NOTIFY_DEVICEID; each entry is to be presented in
 the form described in Section 22.3.

 * Include a security considerations section. This section MUST
 explain how the NFSv4.1 authentication, authorization, and
 access-control models are preserved. That is, if a metadata
 server would restrict a READ or WRITE operation, how would
 pNFS via the layout similarly restrict a corresponding input
 or output operation?

 3. The author documents the new layout specification as an Internet-
 Draft.

 4. The author submits the Internet-Draft for review through the IETF
 standards process as defined in "The Internet Standards Process--
 Revision 3" (BCP 9 [35]). The new layout specification will be
 submitted for eventual publication as a Standards Track RFC.

 5. The layout specification progresses through the IETF standards
 process.

22.6. Path Variable Definitions

 This section deals with the IANA considerations associated with the
 variable substitution feature for location names as described in
 Section 11.17.3. As described there, variables subject to
 substitution consist of a domain name and a specific name within that
 domain, with the two separated by a colon. There are two sets of
 IANA considerations here:

 1. The list of variable names.

 2. For each variable name, the list of possible values.

 Thus, there will be one registry for the list of variable names, and
 possibly one registry for listing the values of each variable name.

22.6.1. Path Variables Registry

 IANA created a registry called the "NFSv4 Path Variables Registry".

22.6.1.1. Path Variable Values

 Variable names are of the form "${", followed by a domain name,
 followed by a colon (":"), followed by a domain-specific portion of
 the variable name, followed by "}". When the domain name is
 "ietf.org", all variables names must be registered with IANA on a
 Standards Action basis, with Expert Review required. Path variables
 with registered domain names neither part of nor equal to ietf.org
 are assigned on a Hierarchical Allocation basis (delegating to the
 domain owner) and thus of no concern to IANA, unless the domain owner
 chooses to register a variable name from his domain. If the domain

 owner chooses to do so, IANA will do so on a First Come First Serve
 basis. To accommodate registrants who do not have their own domain,
 IANA will accept requests to register variables with the prefix
 "${FCFS.ietf.org:" on a First Come First Served basis. Assignments
 on a First Come First Basis do not require Expert Review, unless the
 registrant also wants IANA to establish a registry for the values of
 the registered variable.

 The registry is a list of assignments, each containing three fields.

 1. The name of the variable. The name of this variable must start
 with a "${" followed by a registered domain name, followed by
 ":", or it must start with "${FCFS.ietf.org". The name must be
 no more than 64 UTF-8 characters long. The name must be unique.

 2. For assignments made on Standards Action basis, the Standards
 Track RFC(s) that describe the variable. If the RFC(s) have not
 yet been published, the registrant will use RFCTBD1, RFCTBD2,
 etc. instead of an actual RFC number. Note that the RFCs do not
 have to be a part of an NFS minor version. For assignments made
 on a First Come First Serve basis, an explanation (consuming no
 more than 1024 bytes, or more if IANA permits) of the purpose of
 the variable. A reference to the explanation can be substituted.

 3. The point of contact, including an email address. The point of
 contact can consume up to 256 bytes (or more if IANA permits).
 For assignments made on a Standards Action basis, the point of
 contact is always IESG.

22.6.1.1.1. Initial Registry

 The initial registry is in Table 28.

 +========================+==========+==================+
 | Variable Name | RFC | Point of Contact |
 +========================+==========+==================+
 | ${ietf.org:CPU_ARCH} | RFC 8881 | IESG |
 +------------------------+----------+------------------+
 | ${ietf.org:OS_TYPE} | RFC 8881 | IESG |
 +------------------------+----------+------------------+
 | ${ietf.org:OS_VERSION} | RFC 8881 | IESG |
 +------------------------+----------+------------------+

 Table 28: Initial List of Path Variables

 IANA has created registries for the values of the variable names
 ${ietf.org:CPU_ARCH} and ${ietf.org:OS_TYPE}. See Sections 22.6.2 and
 22.6.3.

 For the values of the variable ${ietf.org:OS_VERSION}, no registry is
 needed as the specifics of the values of the variable will vary with
 the value of ${ietf.org:OS_TYPE}. Thus, values for
 ${ietf.org:OS_VERSION} are on a Hierarchical Allocation basis and are
 of no concern to IANA.

22.6.1.1.2. Updating Registrations

 The update of an assignment made on a Standards Action basis will
 require IESG Approval on the advice of a Designated Expert.

 The registrant can always update the point of contact of an
 assignment made on a First Come First Serve basis. Any other update
 will require Expert Review.

22.6.2. Values for the ${ietf.org:CPU_ARCH} Variable

 IANA created a registry called the "NFSv4 ${ietf.org:CPU_ARCH} Value
 Registry".

 Assignments to the registry are made on a First Come First Serve
 basis. The zero-length value of ${ietf.org:CPU_ARCH} is Reserved.

 Values with a prefix of "PRIV" are designated for Private Use.

 The registry is a list of assignments, each containing three fields.

 1. A value of the ${ietf.org:CPU_ARCH} variable. The value must be
 1 to 32 UTF-8 characters long. The value must be unique.

 2. An explanation (consuming no more than 1024 bytes, or more if
 IANA permits) of what CPU architecture the value denotes. A
 reference to the explanation can be substituted.

 3. The point of contact, including an email address. The point of
 contact can consume up to 256 bytes (or more if IANA permits).

22.6.2.1. Initial Registry

 There is no initial registry.

22.6.2.2. Updating Registrations

 The registrant is free to update the assignment, i.e., change the
 explanation and/or point-of-contact fields.

22.6.3. Values for the ${ietf.org:OS_TYPE} Variable

 IANA created a registry called the "NFSv4 ${ietf.org:OS_TYPE} Value
 Registry".

 Assignments to the registry are made on a First Come First Serve
 basis. The zero-length value of ${ietf.org:OS_TYPE} is Reserved.
 Values with a prefix of "PRIV" are designated for Private Use.

 The registry is a list of assignments, each containing three fields.

 1. A value of the ${ietf.org:OS_TYPE} variable. The value must be 1
 to 32 UTF-8 characters long. The value must be unique.

 2. An explanation (consuming no more than 1024 bytes, or more if
 IANA permits) of what CPU architecture the value denotes. A
 reference to the explanation can be substituted.

 3. The point of contact, including an email address. The point of
 contact can consume up to 256 bytes (or more if IANA permits).

22.6.3.1. Initial Registry

 There is no initial registry.

22.6.3.2. Updating Registrations

 The registrant is free to update the assignment, i.e., change the
 explanation and/or point of contact fields.

23. References

23.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [2] Eisler, M., Ed., "XDR: External Data Representation
 Standard", STD 67, RFC 4506, DOI 10.17487/RFC4506, May
 2006, <https://www.rfc-editor.org/info/rfc4506>.

 [3] Thurlow, R., "RPC: Remote Procedure Call Protocol
 Specification Version 2", RFC 5531, DOI 10.17487/RFC5531,
 May 2009, <https://www.rfc-editor.org/info/rfc5531>.

 [4] Eisler, M., Chiu, A., and L. Ling, "RPCSEC_GSS Protocol

 Specification", RFC 2203, DOI 10.17487/RFC2203, September
 1997, <https://www.rfc-editor.org/info/rfc2203>.

 [5] Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos
 Version 5 Generic Security Service Application Program
 Interface (GSS-API) Mechanism: Version 2", RFC 4121,
 DOI 10.17487/RFC4121, July 2005,
 <https://www.rfc-editor.org/info/rfc4121>.

 [6] The Open Group, "Section 3.191 of Chapter 3 of Base
 Definitions of The Open Group Base Specifications Issue 6
 IEEE Std 1003.1, 2004 Edition, HTML Version",
 ISBN 1931624232, 2004, <https://www.opengroup.org>.

 [7] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743,
 DOI 10.17487/RFC2743, January 2000,
 <https://www.rfc-editor.org/info/rfc2743>.

 [8] Recio, R., Metzler, B., Culley, P., Hilland, J., and D.
 Garcia, "A Remote Direct Memory Access Protocol
 Specification", RFC 5040, DOI 10.17487/RFC5040, October
 2007, <https://www.rfc-editor.org/info/rfc5040>.

 [9] Eisler, M., "RPCSEC_GSS Version 2", RFC 5403,
 DOI 10.17487/RFC5403, February 2009,
 <https://www.rfc-editor.org/info/rfc5403>.

 [10] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 External Data Representation Standard (XDR) Description",
 RFC 5662, DOI 10.17487/RFC5662, January 2010,
 <https://www.rfc-editor.org/info/rfc5662>.

 [11] The Open Group, "Section 3.372 of Chapter 3 of Base
 Definitions of The Open Group Base Specifications Issue 6
 IEEE Std 1003.1, 2004 Edition, HTML Version",
 ISBN 1931624232, 2004, <https://www.opengroup.org>.

 [12] Eisler, M., "IANA Considerations for Remote Procedure Call
 (RPC) Network Identifiers and Universal Address Formats",
 RFC 5665, DOI 10.17487/RFC5665, January 2010,
 <https://www.rfc-editor.org/info/rfc5665>.

 [13] The Open Group, "Section ’read()’ of System Interfaces of
 The Open Group Base Specifications Issue 6 IEEE Std
 1003.1, 2004 Edition, HTML Version", ISBN 1931624232,
 2004, <https://www.opengroup.org>.

 [14] The Open Group, "Section ’readdir()’ of System Interfaces
 of The Open Group Base Specifications Issue 6 IEEE Std
 1003.1, 2004 Edition, HTML Version", ISBN 1931624232,
 2004, <https://www.opengroup.org>.

 [15] The Open Group, "Section ’write()’ of System Interfaces of
 The Open Group Base Specifications Issue 6 IEEE Std
 1003.1, 2004 Edition, HTML Version", ISBN 1931624232,
 2004, <https://www.opengroup.org>.

 [16] Hoffman, P. and M. Blanchet, "Preparation of
 Internationalized Strings ("stringprep")", RFC 3454,
 DOI 10.17487/RFC3454, December 2002,
 <https://www.rfc-editor.org/info/rfc3454>.

 [17] The Open Group, "Section ’chmod()’ of System Interfaces of
 The Open Group Base Specifications Issue 6 IEEE Std
 1003.1, 2004 Edition, HTML Version", ISBN 1931624232,
 2004, <https://www.opengroup.org>.

 [18] International Organization for Standardization,
 "Information Technology - Universal Multiple-octet coded

 Character Set (UCS) - Part 1: Architecture and Basic
 Multilingual Plane", ISO Standard 10646-1, May 1993.

 [19] Alvestrand, H., "IETF Policy on Character Sets and
 Languages", BCP 18, RFC 2277, DOI 10.17487/RFC2277,
 January 1998, <https://www.rfc-editor.org/info/rfc2277>.

 [20] Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep
 Profile for Internationalized Domain Names (IDN)",
 RFC 3491, DOI 10.17487/RFC3491, March 2003,
 <https://www.rfc-editor.org/info/rfc3491>.

 [21] The Open Group, "Section ’fcntl()’ of System Interfaces of
 The Open Group Base Specifications Issue 6 IEEE Std
 1003.1, 2004 Edition, HTML Version", ISBN 1931624232,
 2004, <https://www.opengroup.org>.

 [22] The Open Group, "Section ’fsync()’ of System Interfaces of
 The Open Group Base Specifications Issue 6 IEEE Std
 1003.1, 2004 Edition, HTML Version", ISBN 1931624232,
 2004, <https://www.opengroup.org>.

 [23] The Open Group, "Section ’getpwnam()’ of System Interfaces
 of The Open Group Base Specifications Issue 6 IEEE Std
 1003.1, 2004 Edition, HTML Version", ISBN 1931624232,
 2004, <https://www.opengroup.org>.

 [24] The Open Group, "Section ’unlink()’ of System Interfaces
 of The Open Group Base Specifications Issue 6 IEEE Std
 1003.1, 2004 Edition, HTML Version", ISBN 1931624232,
 2004, <https://www.opengroup.org>.

 [25] Schaad, J., Kaliski, B., and R. Housley, "Additional
 Algorithms and Identifiers for RSA Cryptography for use in
 the Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile", RFC 4055,
 DOI 10.17487/RFC4055, June 2005,
 <https://www.rfc-editor.org/info/rfc4055>.

 [26] National Institute of Standards and Technology, "Computer
 Security Objects Register", May 2016,
 <https://csrc.nist.gov/projects/computer-security-objects-
 register/algorithm-registration>.

 [27] Adamson, A. and N. Williams, "Remote Procedure Call (RPC)
 Security Version 3", RFC 7861, DOI 10.17487/RFC7861,
 November 2016, <https://www.rfc-editor.org/info/rfc7861>.

 [28] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
 Kerberos Network Authentication Service (V5)", RFC 4120,
 DOI 10.17487/RFC4120, July 2005,
 <https://www.rfc-editor.org/info/rfc4120>.

 [29] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",
 RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <https://www.rfc-editor.org/info/rfc4033>.

 [30] Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
 and P. Hoffman, "Specification for DNS over Transport
 Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
 2016, <https://www.rfc-editor.org/info/rfc7858>.

 [31] Adamson, A. and N. Williams, "Requirements for NFSv4
 Multi-Domain Namespace Deployment", RFC 8000,
 DOI 10.17487/RFC8000, November 2016,
 <https://www.rfc-editor.org/info/rfc8000>.

 [32] Lever, C., Ed., Simpson, W., and T. Talpey, "Remote Direct
 Memory Access Transport for Remote Procedure Call Version
 1", RFC 8166, DOI 10.17487/RFC8166, June 2017,

 <https://www.rfc-editor.org/info/rfc8166>.

 [33] Lever, C., "Network File System (NFS) Upper-Layer Binding
 to RPC-over-RDMA Version 1", RFC 8267,
 DOI 10.17487/RFC8267, October 2017,
 <https://www.rfc-editor.org/info/rfc8267>.

 [34] Hoffman, P. and P. McManus, "DNS Queries over HTTPS
 (DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,
 <https://www.rfc-editor.org/info/rfc8484>.

 [35] Bradner, S., "The Internet Standards Process -- Revision
 3", BCP 9, RFC 2026, October 1996.

 Kolkman, O., Bradner, S., and S. Turner, "Characterization
 of Proposed Standards", BCP 9, RFC 7127, January 2014.

 Dusseault, L. and R. Sparks, "Guidance on Interoperation
 and Implementation Reports for Advancement to Draft
 Standard", BCP 9, RFC 5657, September 2009.

 Housley, R., Crocker, D., and E. Burger, "Reducing the
 Standards Track to Two Maturity Levels", BCP 9, RFC 6410,
 October 2011.

 Resnick, P., "Retirement of the "Internet Official
 Protocol Standards" Summary Document", BCP 9, RFC 7100,
 December 2013.

 Dawkins, S., "Increasing the Number of Area Directors in
 an IETF Area", BCP 9, RFC 7475, March 2015.

 <https://www.rfc-editor.org/info/bcp9>

23.2. Informative References

 [36] Roach, A., "Process for Handling Non-Major Revisions to
 Existing RFCs", Work in Progress, Internet-Draft, draft-
 roach-bis-documents-00, 7 May 2019,
 <https://tools.ietf.org/html/draft-roach-bis-documents-
 00>.

 [37] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
 Beame, C., Eisler, M., and D. Noveck, "Network File System
 (NFS) version 4 Protocol", RFC 3530, DOI 10.17487/RFC3530,
 April 2003, <https://www.rfc-editor.org/info/rfc3530>.

 [38] Callaghan, B., Pawlowski, B., and P. Staubach, "NFS
 Version 3 Protocol Specification", RFC 1813,
 DOI 10.17487/RFC1813, June 1995,
 <https://www.rfc-editor.org/info/rfc1813>.

 [39] Eisler, M., "LIPKEY - A Low Infrastructure Public Key
 Mechanism Using SPKM", RFC 2847, DOI 10.17487/RFC2847,
 June 2000, <https://www.rfc-editor.org/info/rfc2847>.

 [40] Eisler, M., "NFS Version 2 and Version 3 Security Issues
 and the NFS Protocol’s Use of RPCSEC_GSS and Kerberos V5",
 RFC 2623, DOI 10.17487/RFC2623, June 1999,
 <https://www.rfc-editor.org/info/rfc2623>.

 [41] Juszczak, C., "Improving the Performance and Correctness
 of an NFS Server", USENIX Conference Proceedings, June
 1990.

 [42] Reynolds, J., Ed., "Assigned Numbers: RFC 1700 is Replaced
 by an On-line Database", RFC 3232, DOI 10.17487/RFC3232,
 January 2002, <https://www.rfc-editor.org/info/rfc3232>.

 [43] Srinivasan, R., "Binding Protocols for ONC RPC Version 2",
 RFC 1833, DOI 10.17487/RFC1833, August 1995,

 <https://www.rfc-editor.org/info/rfc1833>.

 [44] Werme, R., "RPC XID Issues", USENIX Conference
 Proceedings, February 1996.

 [45] Nowicki, B., "NFS: Network File System Protocol
 specification", RFC 1094, DOI 10.17487/RFC1094, March
 1989, <https://www.rfc-editor.org/info/rfc1094>.

 [46] Bhide, A., Elnozahy, E. N., and S. P. Morgan, "A Highly
 Available Network Server", USENIX Conference Proceedings,
 January 1991.

 [47] Halevy, B., Welch, B., and J. Zelenka, "Object-Based
 Parallel NFS (pNFS) Operations", RFC 5664,
 DOI 10.17487/RFC5664, January 2010,
 <https://www.rfc-editor.org/info/rfc5664>.

 [48] Black, D., Fridella, S., and J. Glasgow, "Parallel NFS
 (pNFS) Block/Volume Layout", RFC 5663,
 DOI 10.17487/RFC5663, January 2010,
 <https://www.rfc-editor.org/info/rfc5663>.

 [49] Callaghan, B., "WebNFS Client Specification", RFC 2054,
 DOI 10.17487/RFC2054, October 1996,
 <https://www.rfc-editor.org/info/rfc2054>.

 [50] Callaghan, B., "WebNFS Server Specification", RFC 2055,
 DOI 10.17487/RFC2055, October 1996,
 <https://www.rfc-editor.org/info/rfc2055>.

 [51] IESG, "IESG Processing of RFC Errata for the IETF Stream",
 July 2008,
 <https://www.ietf.org/about/groups/iesg/statements/
 processing-rfc-errata/>.

 [52] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

 [53] Shepler, S., "NFS Version 4 Design Considerations",
 RFC 2624, DOI 10.17487/RFC2624, June 1999,
 <https://www.rfc-editor.org/info/rfc2624>.

 [54] The Open Group, "Protocols for Interworking: XNFS, Version
 3W", ISBN 1-85912-184-5, February 1998.

 [55] Floyd, S. and V. Jacobson, "The Synchronization of
 Periodic Routing Messages", IEEE/ACM Transactions on
 Networking, 2(2), pp. 122-136, April 1994.

 [56] Chadalapaka, M., Satran, J., Meth, K., and D. Black,
 "Internet Small Computer System Interface (iSCSI) Protocol
 (Consolidated)", RFC 7143, DOI 10.17487/RFC7143, April
 2014, <https://www.rfc-editor.org/info/rfc7143>.

 [57] Snively, R., "Fibre Channel Protocol for SCSI, 2nd Version
 (FCP-2)", ANSI/INCITS, 350-2003, October 2003.

 [58] Weber, R.O., "Object-Based Storage Device Commands (OSD)",
 ANSI/INCITS, 400-2004, July 2004,
 <https://www.t10.org/drafts.htm>.

 [59] Carns, P. H., Ligon III, W. B., Ross, R. B., and R.
 Thakur, "PVFS: A Parallel File System for Linux
 Clusters.", Proceedings of the 4th Annual Linux Showcase
 and Conference, 2000.

 [60] The Open Group, "The Open Group Base Specifications Issue
 6, IEEE Std 1003.1, 2004 Edition", 2004,

 <https://www.opengroup.org>.

 [61] Callaghan, B., "NFS URL Scheme", RFC 2224,
 DOI 10.17487/RFC2224, October 1997,
 <https://www.rfc-editor.org/info/rfc2224>.

 [62] Chiu, A., Eisler, M., and B. Callaghan, "Security
 Negotiation for WebNFS", RFC 2755, DOI 10.17487/RFC2755,
 January 2000, <https://www.rfc-editor.org/info/rfc2755>.

 [63] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [64] RFC Errata, Erratum ID 2006, RFC 5661,
 <https://www.rfc-editor.org/errata/eid2006>.

 [65] Spasojevic, M. and M. Satayanarayanan, "An Empirical Study
 of a Wide-Area Distributed File System", ACM Transactions
 on Computer Systems, Vol. 14, No. 2, pp. 200-222,
 DOI 10.1145/227695.227698, May 1996,
 <https://doi.org/10.1145/227695.227698>.

 [66] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 Protocol", RFC 5661, DOI 10.17487/RFC5661, January 2010,
 <https://www.rfc-editor.org/info/rfc5661>.

 [67] Noveck, D., "Rules for NFSv4 Extensions and Minor
 Versions", RFC 8178, DOI 10.17487/RFC8178, July 2017,
 <https://www.rfc-editor.org/info/rfc8178>.

 [68] Haynes, T., Ed. and D. Noveck, Ed., "Network File System
 (NFS) Version 4 Protocol", RFC 7530, DOI 10.17487/RFC7530,
 March 2015, <https://www.rfc-editor.org/info/rfc7530>.

 [69] Noveck, D., Ed., Shivam, P., Lever, C., and B. Baker,
 "NFSv4.0 Migration: Specification Update", RFC 7931,
 DOI 10.17487/RFC7931, July 2016,
 <https://www.rfc-editor.org/info/rfc7931>.

 [70] Haynes, T., "Requirements for Parallel NFS (pNFS) Layout
 Types", RFC 8434, DOI 10.17487/RFC8434, August 2018,
 <https://www.rfc-editor.org/info/rfc8434>.

 [71] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
 2014, <https://www.rfc-editor.org/info/rfc7258>.

 [72] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 DOI 10.17487/RFC3552, July 2003,
 <https://www.rfc-editor.org/info/rfc3552>.

Appendix A. The Need for This Update

 This document includes an explanation of how clients and servers are
 to determine the particular network access paths to be used to access
 a file system. This includes descriptions of how to handle changes
 to the specific replica to be used or to the set of addresses to be
 used to access it, and how to deal transparently with transfers of
 responsibility that need to be made. This includes cases in which
 there is a shift between one replica and another and those in which
 different network access paths are used to access the same replica.

 As a result of the following problems in RFC 5661 [66], it was
 necessary to provide the specific updates that are made by this
 document. These updates are described in Appendix B.

 * RFC 5661 [66], while it dealt with situations in which various

 forms of clustering allowed coordination of the state assigned by
 cooperating servers to be used, made no provisions for Transparent
 State Migration. Within NFSv4.0, Transparent State Migration was
 first explained clearly in RFC 7530 [68] and corrected and
 clarified by RFC 7931 [69]. No corresponding explanation for
 NFSv4.1 had been provided.

 * Although NFSv4.1 provided a clear definition of how trunking
 detection was to be done, there was no clear specification of how
 trunking discovery was to be done, despite the fact that the
 specification clearly indicated that this information could be
 made available via the file system location attributes.

 * Because the existence of multiple network access paths to the same
 file system was dealt with as if there were multiple replicas,
 issues relating to transitions between replicas could never be
 clearly distinguished from trunking-related transitions between
 the addresses used to access a particular file system instance.
 As a result, in situations in which both migration and trunking
 configuration changes were involved, neither of these could be
 clearly dealt with, and the relationship between these two
 features was not seriously addressed.

 * Because use of two network access paths to the same file system
 instance (i.e., trunking) was often treated as if two replicas
 were involved, it was considered that two replicas were being used
 simultaneously. As a result, the treatment of replicas being used
 simultaneously in RFC 5661 [66] was not clear, as it covered the
 two distinct cases of a single file system instance being accessed
 by two different network access paths and two replicas being
 accessed simultaneously, with the limitations of the latter case
 not being clearly laid out.

 The majority of the consequences of these issues are dealt with by
 presenting in Section 11 a replacement for Section 11 of RFC 5661
 [66]. This replacement modifies existing subsections within that
 section and adds new ones as described in Appendix B.1. Also, some
 existing sections were deleted. These changes were made in order to
 do the following:

 * Reorganize the description so that the case of two network access
 paths to the same file system instance is distinguished clearly
 from the case of two different replicas since, in the former case,
 locking state is shared and there also can be sharing of session
 state.

 * Provide a clear statement regarding the desirability of
 transparent transfer of state between replicas together with a
 recommendation that either transparent transfer or a single-fs
 grace period be provided.

 * Specifically delineate how a client is to handle such transfers,
 taking into account the differences from the treatment in [69]
 made necessary by the major protocol changes to NFSv4.1.

 * Discuss the relationship between transparent state transfer and
 Parallel NFS (pNFS).

 * Clarify the fs_locations_info attribute in order to specify which
 portions of the provided information apply to a specific network
 access path and which apply to the replica that the path is used
 to access.

 In addition, other sections of RFC 5661 [66] were updated to correct
 the consequences of the incorrect assumptions underlying the
 treatment of multi-server namespace issues. These are described in
 Appendices B.2 through B.4.

 * A revised introductory section regarding multi-server namespace
 facilities is provided.

 * A more realistic treatment of server scope is provided. This
 treatment reflects the more limited coordination of locking state
 adopted by servers actually sharing a common server scope.

 * Some confusing text regarding changes in server_owner has been
 clarified.

 * The description of some existing errors has been modified to more
 clearly explain certain error situations to reflect the existence
 of trunking and the possible use of fs-specific grace periods.
 For details, see Appendix B.3.

 * New descriptions of certain existing operations are provided,
 either because the existing treatment did not account for
 situations that would arise in dealing with Transparent State
 Migration, or because some types of reclaim issues were not
 adequately dealt with in the context of fs-specific grace periods.
 For details, see Appendix B.2.

Appendix B. Changes in This Update

B.1. Revisions Made to Section 11 of RFC 5661

 A number of areas have been revised or extended, in many cases
 replacing subsections within Section 11 of RFC 5661 [66]:

 * New introductory material, including a terminology section,
 replaces the material in RFC 5661 [66], ranging from the start of
 the original Section 11 up to and including Section 11.1. The new
 material starts at the beginning of Section 11 and continues
 through 11.2.

 * A significant reorganization of the material in Sections 11.4 and
 11.5 of RFC 5661 [66] was necessary. The reasons for the
 reorganization of these sections into a single section with
 multiple subsections are discussed in Appendix B.1.1 below. This
 replacement appears as Section 11.5.

 New material relating to the handling of the file system location
 attributes is contained in Sections 11.5.1 and 11.5.7.

 * A new section describing requirements for user and group handling
 within a multi-server namespace has been added as Section 11.7.

 * A major replacement for Section 11.7 of RFC 5661 [66], entitled
 "Effecting File System Transitions", appears as Sections 11.9
 through 11.14. The reasons for the reorganization of this section
 into multiple sections are discussed in Appendix B.1.2.

 * A replacement for Section 11.10 of RFC 5661 [66], entitled "The
 Attribute fs_locations_info", appears as Section 11.17, with
 Appendix B.1.3 describing the differences between the new section
 and the treatment within [66]. A revised treatment was necessary
 because the original treatment did not make clear how the added
 attribute information relates to the case of trunked paths to the
 same replica. These issues were not addressed in RFC 5661 [66]
 where the concepts of a replica and a network path used to access
 a replica were not clearly distinguished.

B.1.1. Reorganization of Sections 11.4 and 11.5 of RFC 5661

 Previously, issues related to the fact that multiple location entries
 directed the client to the same file system instance were dealt with
 in Section 11.5 of RFC 5661 [66]. Because of the new treatment of
 trunking, these issues now belong within Section 11.5.

 In this new section, trunking is covered in Section 11.5.2 together
 with the other uses of file system location information described in
 Sections 11.5.3 through 11.5.6.

 As a result, Section 11.5, which replaces Section 11.4 of RFC 5661

 [66], is substantially different than the section it replaces in that
 some original sections have been replaced by corresponding sections
 as described below, while new sections have been added:

 * The material in Section 11.5, exclusive of subsections, replaces
 the material in Section 11.4 of RFC 5661 [66] exclusive of
 subsections.

 * Section 11.5.1 is the new first subsection of the overall section.

 * Section 11.5.2 is the new second subsection of the overall
 section.

 * Each of the Sections 11.5.4, 11.5.5, and 11.5.6 replaces (in
 order) one of the corresponding Sections 11.4.1, 11.4.2, and
 11.4.3 of RFC 5661 [66].

 * Section 11.5.7 is the new final subsection of the overall section.

B.1.2. Reorganization of Material Dealing with File System Transitions

 The material relating to file system transition, previously contained
 in Section 11.7 of RFC 5661 [66] has been reorganized and augmented
 as described below:

 * Because there can be a shift of the network access paths used to
 access a file system instance without any shift between replicas,
 a new Section 11.9 distinguishes between those cases in which
 there is a shift between distinct replicas and those involving a
 shift in network access paths with no shift between replicas.

 As a result, the new Section 11.10 deals with network address
 transitions, while the bulk of the original Section 11.7 of RFC
 5661 [66] has been extensively modified as reflected in
 Section 11.11, which is now limited to cases in which there is a
 shift between two different sets of replicas.

 * The additional Section 11.12 discusses the case in which a shift
 to a different replica is made and state is transferred to allow
 the client the ability to have continued access to its accumulated
 locking state on the new server.

 * The additional Section 11.13 discusses the client’s response to
 access transitions, how it determines whether migration has
 occurred, and how it gets access to any transferred locking and
 session state.

 * The additional Section 11.14 discusses the responsibilities of the
 source and destination servers when transferring locking and
 session state.

 This reorganization has caused a renumbering of the sections within
 Section 11 of [66] as described below:

 * The new Sections 11.9 and 11.10 have resulted in the renumbering
 of existing sections with these numbers.

 * Section 11.7 of [66] has been substantially modified and appears
 as Section 11.11. The necessary modifications reflect the fact
 that this section only deals with transitions between replicas,
 while transitions between network addresses are dealt with in
 other sections. Details of the reorganization are described later
 in this section.

 * Sections 11.12, 11.13, and 11.14 have been added.

 * Consequently, Sections 11.8, 11.9, 11.10, and 11.11 in [66] now
 appear as Sections 11.15, 11.16, 11.17, and 11.18, respectively.

 As part of this general reorganization, Section 11.7 of RFC 5661 [66]
 has been modified as described below:

 * Sections 11.7 and 11.7.1 of RFC 5661 [66] have been replaced by
 Sections 11.11 and 11.11.1, respectively.

 * Section 11.7.2 of RFC 5661 (and included subsections) has been
 deleted.

 * Sections 11.7.3, 11.7.4, 11.7.5, 11.7.5.1, and 11.7.6 of RFC 5661
 [66] have been replaced by Sections 11.11.2, 11.11.3, 11.11.4,
 11.11.4.1, and 11.11.5 respectively in this document.

 * Section 11.7.7 of RFC 5661 [66] has been replaced by
 Section 11.11.9. This subsection has been moved to the end of the
 section dealing with file system transitions.

 * Sections 11.7.8, 11.7.9, and 11.7.10 of RFC 5661 [66] have been
 replaced by Sections 11.11.6, 11.11.7, and 11.11.8 respectively in
 this document.

B.1.3. Updates to the Treatment of fs_locations_info

 Various elements of the fs_locations_info attribute contain
 information that applies to either a specific file system replica or
 to a network path or set of network paths used to access such a
 replica. The original treatment of fs_locations_info (Section 11.10
 of RFC 5661 [66]) did not clearly distinguish these cases, in part
 because the document did not clearly distinguish replicas from the
 paths used to access them.

 In addition, special clarification has been provided with regard to
 the following fields:

 * With regard to the handling of FSLI4GF_GOING, it was clarified
 that this only applies to the unavailability of a replica rather
 than to a path to access a replica.

 * In describing the appropriate value for a server to use for
 fli_valid_for, it was clarified that there is no need for the
 client to frequently fetch the fs_locations_info value to be
 prepared for shifts in trunking patterns.

 * Clarification of the rules for extensions to the fls_info has been
 provided. The original treatment reflected the extension model
 that was in effect at the time RFC 5661 [66] was written, but has
 been updated in accordance with the extension model described in
 RFC 8178 [67].

B.2. Revisions Made to Operations in RFC 5661

 Descriptions have been revised to address issues that arose in
 effecting necessary changes to multi-server namespace features.

 * The treatment of EXCHANGE_ID (Section 18.35 of RFC 5661 [66])
 assumed that client IDs cannot be created/confirmed other than by
 the EXCHANGE_ID and CREATE_SESSION operations. Also, the
 necessary use of EXCHANGE_ID in recovery from migration and
 related situations was not clearly addressed. A revised treatment
 of EXCHANGE_ID was necessary, and it appears in Section 18.35,
 while the specific differences between it and the treatment within
 [66] are explained in Appendix B.2.1 below.

 * The treatment of RECLAIM_COMPLETE in Section 18.51 of RFC 5661
 [66] was not sufficiently clear about the purpose and use of the
 rca_one_fs and how the server was to deal with inappropriate
 values of this argument. Because the resulting confusion raised
 interoperability issues, a new treatment of RECLAIM_COMPLETE was
 necessary, and it appears in Section 18.51, while the specific
 differences between it and the treatment within RFC 5661 [66] are
 discussed in Appendix B.2.2 below. In addition, the definitions
 of the reclaim-related errors have received an updated treatment
 in Section 15.1.9 to reflect the fact that there are multiple

 contexts for lock reclaim operations.

B.2.1. Revision of Treatment of EXCHANGE_ID

 There was a number of issues in the original treatment of EXCHANGE_ID
 in RFC 5661 [66] that caused problems for Transparent State Migration
 and for the transfer of access between different network access paths
 to the same file system instance.

 These issues arose from the fact that this treatment was written:

 * Assuming that a client ID can only become known to a server by
 having been created by executing an EXCHANGE_ID, with confirmation
 of the ID only possible by execution of a CREATE_SESSION.

 * Considering the interactions between a client and a server only
 occurring on a single network address.

 As these assumptions have become invalid in the context of
 Transparent State Migration and active use of trunking, the treatment
 has been modified in several respects:

 * It had been assumed that an EXCHANGE_ID executed when the server
 was already aware that a given client instance was either updating
 associated parameters (e.g., with respect to callbacks) or dealing
 with a previously lost reply by retransmitting. As a result, any
 slot sequence returned by that operation would be of no use. The
 original treatment went so far as to say that it "MUST NOT" be
 used, although this usage was not in accord with [1]. This
 created a difficulty when an EXCHANGE_ID is done after Transparent
 State Migration since that slot sequence would need to be used in
 a subsequent CREATE_SESSION.

 In the updated treatment, CREATE_SESSION is a way that client IDs
 are confirmed, but it is understood that other ways are possible.
 The slot sequence can be used as needed, and cases in which it
 would be of no use are appropriately noted.

 * It had been assumed that the only functions of EXCHANGE_ID were to
 inform the server of the client, to create the client ID, and to
 communicate it to the client. When multiple simultaneous
 connections are involved, as often happens when trunking, that
 treatment was inadequate in that it ignored the role of
 EXCHANGE_ID in associating the client ID with the connection on
 which it was done, so that it could be used by a subsequent
 CREATE_SESSION whose parameters do not include an explicit client
 ID.

 The new treatment explicitly discusses the role of EXCHANGE_ID in
 associating the client ID with the connection so it can be used by
 CREATE_SESSION and in associating a connection with an existing
 session.

 The new treatment can be found in Section 18.35 above. It supersedes
 the treatment in Section 18.35 of RFC 5661 [66].

B.2.2. Revision of Treatment of RECLAIM_COMPLETE

 The following changes were made to the treatment of RECLAIM_COMPLETE
 in RFC 5661 [66] to arrive at the treatment in Section 18.51:

 * In a number of places, the text was made more explicit about the
 purpose of rca_one_fs and its connection to file system migration.

 * There is a discussion of situations in which particular forms of
 RECLAIM_COMPLETE would need to be done.

 * There is a discussion of interoperability issues between
 implementations that may have arisen due to the lack of clarity of
 the previous treatment of RECLAIM_COMPLETE.

B.3. Revisions Made to Error Definitions in RFC 5661

 The new handling of various situations required revisions to some
 existing error definitions:

 * Because of the need to appropriately address trunking-related
 issues, some uses of the term "replica" in RFC 5661 [66] became
 problematic because a shift in network access paths was considered
 to be a shift to a different replica. As a result, the original
 definition of NFS4ERR_MOVED (in Section 15.1.2.4 of RFC 5661 [66])
 was updated to reflect the different handling of unavailability of
 a particular fs via a specific network address.

 Since such a situation is no longer considered to constitute
 unavailability of a file system instance, the description has been
 changed, even though the set of circumstances in which it is to be
 returned remains the same. The new paragraph explicitly
 recognizes that a different network address might be used, while
 the previous description, misleadingly, treated this as a shift
 between two replicas while only a single file system instance
 might be involved. The updated description appears in
 Section 15.1.2.4.

 * Because of the need to accommodate the use of fs-specific grace
 periods, it was necessary to clarify some of the definitions of
 reclaim-related errors in Section 15 of RFC 5661 [66] so that the
 text applies properly to reclaims for all types of grace periods.
 The updated descriptions appear within Section 15.1.9.

 * Because of the need to provide the clarifications in errata report
 2006 [64] and to adapt these to properly explain the interaction
 of NFS4ERR_DELAY with the reply cache, a revised description of
 NFS4ERR_DELAY appears in Section 15.1.1.3. This errata report,
 unlike many other RFC 5661 errata reports, is addressed in this
 document because of the extensive use of NFS4ERR_DELAY in
 connection with state migration and session migration.

B.4. Other Revisions Made to RFC 5661

 Besides the major reworking of Section 11 of RFC 5661 [66] and the
 associated revisions to existing operations and errors, there were a
 number of related changes that were necessary:

 * The summary in Section 1.7.3.3 of RFC 5661 [66] was revised to
 reflect the changes made to Section 11 above. The updated summary
 appears as Section 1.8.3.3 above.

 * The discussion of server scope in Section 2.10.4 of RFC 5661 [66]
 was replaced since it appeared to require a level of inter-server
 coordination incompatible with its basic function of avoiding the
 need for a globally uniform means of assigning server_owner
 values. A revised treatment appears in Section 2.10.4.

 * The discussion of trunking in Section 2.10.5 of RFC 5661 [66] was
 revised to more clearly explain the multiple types of trunking
 support and how the client can be made aware of the existing
 trunking configuration. In addition, while the last paragraph
 (exclusive of subsections) of that section dealing with
 server_owner changes was literally true, it had been a source of
 confusion. Since the original paragraph could be read as
 suggesting that such changes be handled nondisruptively, the issue
 was clarified in the revised Section 2.10.5.

Appendix C. Security Issues That Need to Be Addressed

 The following issues in the treatment of security within the NFSv4.1
 specification need to be addressed:

 * The Security Considerations Section of RFC 5661 [66] was not
 written in accordance with RFC 3552 (BCP 72) [72]. Of particular
 concern was the fact that the section did not contain a threat

 analysis.

 * Initial analysis of the existing security issues with NFSv4.1 has
 made it likely that a revised Security Considerations section for
 the existing protocol (one containing a threat analysis) would be
 likely to conclude that NFSv4.1 does not meet the goal of secure
 use on the Internet.

 The Security Considerations section of this document (Section 21) has
 not been thoroughly revised to correct the difficulties mentioned
 above. Instead, it has been modified to take proper account of
 issues related to the multi-server namespace features discussed in
 Section 11, leaving the incomplete discussion and security weaknesses
 pretty much as they were.

 The following major security issues need to be addressed in a
 satisfactory fashion before an updated Security Considerations
 section can be published as part of a bis document for NFSv4.1:

 * The continued use of AUTH_SYS and the security exposures it
 creates need to be addressed. Addressing this issue must not be
 limited to the questions of whether the designation of this as
 OPTIONAL was justified and whether it should be changed.

 In any event, it may not be possible at this point to correct the
 security problems created by continued use of AUTH_SYS simply by
 revising this designation.

 * The lack of attention within the protocol to the possibility of
 pervasive monitoring attacks such as those described in RFC 7258
 [71] (also BCP 188).

 In that connection, the use of CREATE_SESSION without privacy
 protection needs to be addressed as it exposes the session ID to
 view by an attacker. This is worrisome as this is precisely the
 type of protocol artifact alluded to in RFC 7258, which can enable
 further mischief on the part of the attacker as it enables denial-
 of-service attacks that can be executed effectively with only a
 single, normally low-value, credential, even when RPCSEC_GSS
 authentication is in use.

 * The lack of effective use of privacy and integrity, even where the
 infrastructure to support use of RPCSEC_GSS is present, needs to
 be addressed.

 In light of the security exposures that this situation creates, it
 is not enough to define a protocol that could address this problem
 with the provision of sufficient resources. Instead, what is
 needed is a way to provide the necessary security with very
 limited performance costs and without requiring security
 infrastructure, which experience has shown is difficult for many
 clients and servers to provide.

 In trying to provide a major security upgrade for a deployed protocol
 such as NFSv4.1, the working group and the Internet community are
 likely to find themselves dealing with a number of considerations
 such as the following:

 * The need to accommodate existing deployments of protocols
 specified previously in existing Proposed Standards.

 * The difficulty of effecting changes to existing, interoperating
 implementations.

 * The difficulty of making changes to NFSv4 protocols other than
 those in the form of OPTIONAL extensions.

 * The tendency of those responsible for existing NFSv4 deployments
 to ignore security flaws in the context of local area networks
 under the mistaken impression that network isolation provides, in
 and of itself, isolation from all potential attackers.

 Given that the above-mentioned difficulties apply to minor version
 zero as well, it may make sense to deal with these security issues in
 a common document that applies to all NFSv4 minor versions. If that
 approach is taken, the Security Considerations section of an eventual
 NFv4.1 bis document would reference that common document, and the
 defining RFCs for other minor versions might do so as well.

Acknowledgments

Acknowledgments for This Update

 The authors wish to acknowledge the important role of Andy Adamson of
 Netapp in clarifying the need for trunking discovery functionality,
 and exploring the role of the file system location attributes in
 providing the necessary support.

 The authors wish to thank Tom Haynes of Hammerspace for drawing our
 attention to the fact that internationalization and security might
 best be handled in documents dealing with such protocol issues as
 they apply to all NFSv4 minor versions.

 The authors also wish to acknowledge the work of Xuan Qi of Oracle
 with NFSv4.1 client and server prototypes of Transparent State
 Migration functionality.

 The authors wish to thank others that brought attention to important
 issues. The comments of Trond Myklebust of Primary Data related to
 trunking helped to clarify the role of DNS in trunking discovery.
 Rick Macklem’s comments brought attention to problems in the handling
 of the per-fs version of RECLAIM_COMPLETE.

 The authors wish to thank Olga Kornievskaia of Netapp for her helpful
 review comments.

Acknowledgments for RFC 5661

 The initial text for the SECINFO extensions were edited by Mike
 Eisler with contributions from Peng Dai, Sergey Klyushin, and Carl
 Burnett.

 The initial text for the SESSIONS extensions were edited by Tom
 Talpey, Spencer Shepler, Jon Bauman with contributions from Charles
 Antonelli, Brent Callaghan, Mike Eisler, John Howard, Chet Juszczak,
 Trond Myklebust, Dave Noveck, John Scott, Mike Stolarchuk, and Mark
 Wittle.

 Initial text relating to multi-server namespace features, including
 the concept of referrals, were contributed by Dave Noveck, Carl
 Burnett, and Charles Fan with contributions from Ted Anderson, Neil
 Brown, and Jon Haswell.

 The initial text for the Directory Delegations support were
 contributed by Saadia Khan with input from Dave Noveck, Mike Eisler,
 Carl Burnett, Ted Anderson, and Tom Talpey.

 The initial text for the ACL explanations were contributed by Sam
 Falkner and Lisa Week.

 The pNFS work was inspired by the NASD and OSD work done by Garth
 Gibson. Gary Grider has also been a champion of high-performance
 parallel I/O. Garth Gibson and Peter Corbett started the pNFS effort
 with a problem statement document for the IETF that formed the basis
 for the pNFS work in NFSv4.1.

 The initial text for the parallel NFS support was edited by Brent
 Welch and Garth Goodson. Additional authors for those documents were
 Benny Halevy, David Black, and Andy Adamson. Additional input came
 from the informal group that contributed to the construction of the
 initial pNFS drafts; specific acknowledgment goes to Gary Grider,
 Peter Corbett, Dave Noveck, Peter Honeyman, and Stephen Fridella.

 Fredric Isaman found several errors in draft versions of the ONC RPC
 XDR description of the NFSv4.1 protocol.

 Audrey Van Belleghem provided, in numerous ways, essential
 coordination and management of the process of editing the
 specification documents.

 Richard Jernigan gave feedback on the file layout’s striping pattern
 design.

 Several formal inspection teams were formed to review various areas
 of the protocol. All the inspections found significant errors and
 room for improvement. NFSv4.1’s inspection teams were:

 * ACLs, with the following inspectors: Sam Falkner, Bruce Fields,
 Rahul Iyer, Saadia Khan, Dave Noveck, Lisa Week, Mario Wurzl, and
 Alan Yoder.

 * Sessions, with the following inspectors: William Brown, Tom
 Doeppner, Robert Gordon, Benny Halevy, Fredric Isaman, Rick
 Macklem, Trond Myklebust, Dave Noveck, Karen Rochford, John Scott,
 and Peter Shah.

 * Initial pNFS inspection, with the following inspectors: Andy
 Adamson, David Black, Mike Eisler, Marc Eshel, Sam Falkner, Garth
 Goodson, Benny Halevy, Rahul Iyer, Trond Myklebust, Spencer
 Shepler, and Lisa Week.

 * Global namespace, with the following inspectors: Mike Eisler, Dan
 Ellard, Craig Everhart, Fredric Isaman, Trond Myklebust, Dave
 Noveck, Theresa Raj, Spencer Shepler, Renu Tewari, and Robert
 Thurlow.

 * NFSv4.1 file layout type, with the following inspectors: Andy
 Adamson, Marc Eshel, Sam Falkner, Garth Goodson, Rahul Iyer, Trond
 Myklebust, and Lisa Week.

 * NFSv4.1 locking and directory delegations, with the following
 inspectors: Mike Eisler, Pranoop Erasani, Robert Gordon, Saadia
 Khan, Eric Kustarz, Dave Noveck, Spencer Shepler, and Amy Weaver.

 * EXCHANGE_ID and DESTROY_CLIENTID, with the following inspectors:
 Mike Eisler, Pranoop Erasani, Robert Gordon, Benny Halevy, Fredric
 Isaman, Saadia Khan, Ricardo Labiaga, Rick Macklem, Trond
 Myklebust, Spencer Shepler, and Brent Welch.

 * Final pNFS inspection, with the following inspectors: Andy
 Adamson, Mike Eisler, Mark Eshel, Sam Falkner, Jason Glasgow,
 Garth Goodson, Robert Gordon, Benny Halevy, Dean Hildebrand, Rahul
 Iyer, Suchit Kaura, Trond Myklebust, Anatoly Pinchuk, Spencer
 Shepler, Renu Tewari, Lisa Week, and Brent Welch.

 A review team worked together to generate the tables of assignments
 of error sets to operations and make sure that each such assignment
 had two or more people validating it. Participating in the process
 were Andy Adamson, Mike Eisler, Sam Falkner, Garth Goodson, Robert
 Gordon, Trond Myklebust, Dave Noveck, Spencer Shepler, Tom Talpey,
 Amy Weaver, and Lisa Week.

 Jari Arkko, David Black, Scott Bradner, Lisa Dusseault, Lars Eggert,
 Chris Newman, and Tim Polk provided valuable review and guidance.

 Olga Kornievskaia found several errors in the SSV specification.

 Ricardo Labiaga found several places where the use of RPCSEC_GSS was
 underspecified.

 Those who provided miscellaneous comments include: Andy Adamson,
 Sunil Bhargo, Alex Burlyga, Pranoop Erasani, Bruce Fields, Vadim
 Finkelstein, Jason Goldschmidt, Vijay K. Gurbani, Sergey Klyushin,

 Ricardo Labiaga, James Lentini, Anshul Madan, Daniel Muntz, Daniel
 Picken, Archana Ramani, Jim Rees, Mahesh Siddheshwar, Tom Talpey, and
 Peter Varga.

Authors’ Addresses

 David Noveck (editor)
 NetApp
 1601 Trapelo Road, Suite 16
 Waltham, MA 02451
 United States of America

 Phone: +1-781-768-5347
 Email: dnoveck@netapp.com

 Charles Lever
 Oracle Corporation
 1015 Granger Avenue
 Ann Arbor, MI 48104
 United States of America

 Phone: +1-248-614-5091
 Email: chuck.lever@oracle.com

