
ï»¿

Internet Engineering Task Force (IETF) A. Minaburo
Request for Comments: 8824 Acklio
Category: Standards Track L. Toutain
ISSN: 2070-1721 IMT Atlantique
 R. Andreasen
 Universidad de Buenos Aires
 June 2021

 Static Context Header Compression (SCHC) for the
 Constrained Application Protocol (CoAP)

Abstract

 This document defines how to compress Constrained Application
 Protocol (CoAP) headers using the Static Context Header Compression
 and fragmentation (SCHC) framework. SCHC defines a header
 compression mechanism adapted for Constrained Devices. SCHC uses a
 static description of the header to reduce the header’s redundancy
 and size. While RFC 8724 describes the SCHC compression and
 fragmentation framework, and its application for IPv6/UDP headers,
 this document applies SCHC to CoAP headers. The CoAP header
 structure differs from IPv6 and UDP, since CoAP uses a flexible
 header with a variable number of options, themselves of variable
 length. The CoAP message format is asymmetric: the request messages
 have a header format different from the format in the response
 messages. This specification gives guidance on applying SCHC to
 flexible headers and how to leverage the asymmetry for more efficient
 compression Rules.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8824.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 1.1. Terminology
 2. SCHC Applicability to CoAP
 3. CoAP Headers Compressed with SCHC
 3.1. Differences between CoAP and UDP/IP Compression
 4. Compression of CoAP Header Fields

 4.1. CoAP Version Field
 4.2. CoAP Type Field
 4.3. CoAP Code Field
 4.4. CoAP Message ID Field
 4.5. CoAP Token Fields
 5. CoAP Options
 5.1. CoAP Content and Accept Options
 5.2. CoAP Option Max-Age, Uri-Host, and Uri-Port Fields
 5.3. CoAP Option Uri-Path and Uri-Query Fields
 5.3.1. Variable Number of Path or Query Elements
 5.4. CoAP Option Size1, Size2, Proxy-URI, and Proxy-Scheme
 Fields
 5.5. CoAP Option ETag, If-Match, If-None-Match, Location-Path,
 and Location-Query Fields
 6. SCHC Compression of CoAP Extensions
 6.1. Block
 6.2. Observe
 6.3. No-Response
 6.4. OSCORE
 7. Examples of CoAP Header Compression
 7.1. Mandatory Header with CON Message
 7.2. OSCORE Compression
 7.3. Example OSCORE Compression
 8. IANA Considerations
 9. Security Considerations
 10. Normative References
 Acknowledgements
 Authors’ Addresses

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] is a command/
 response protocol designed for microcontrollers with small RAM and
 ROM and optimized for services based on REST (Representational State
 Transfer). Although the Constrained Devices are a leading factor in
 the design of CoAP, a CoAP header’s size is still too large for
 LPWANs (Low-Power Wide-Area Networks). Static Context Header
 Compression and fragmentation (SCHC) over CoAP headers is required to
 increase performance or to use CoAP over LPWAN technologies.

 [RFC8724] defines the SCHC framework, which includes a header
 compression mechanism for LPWANs that is based on a static context.
 Section 5 of [RFC8724] explains where compression and decompression
 occur in the architecture. The SCHC compression scheme assumes as a
 prerequisite that both endpoints know the static context before
 transmission. The way the context is configured, provisioned, or
 exchanged is out of this document’s scope.

 CoAP is an application protocol, so CoAP compression requires
 installing common Rules between the two SCHC instances. SCHC
 compression may apply at two different levels: at IP and UDP in the
 LPWAN and another at the application level for CoAP. These two
 compression techniques may be independent. Both follow the same
 principle as that described in [RFC8724]. As different entities
 manage the CoAP compression process at different levels, the SCHC
 Rules driving the compression/decompression are also different.
 [RFC8724] describes how to use SCHC for IP and UDP headers. This
 document specifies how to apply SCHC compression to CoAP headers.

 SCHC compresses and decompresses headers based on common contexts
 between Devices. The SCHC context includes multiple Rules. Each
 Rule can match the header fields to specific values or ranges of
 values. If a Rule matches, the matched header fields are replaced by
 the RuleID and the Compression Residue that contains the residual
 bits of the compression. Thus, different Rules may correspond to
 different protocol headers in the packet that a Device expects to
 send or receive.

 A Rule describes the packets’ entire header with an ordered list of
 Field Descriptors; see Section 7 of [RFC8724]. Thereby, each
 description contains the Field ID (FID), Field Length (FL), and Field

 Position (FP), as well as a Direction Indicator (DI) (upstream,
 downstream, and bidirectional) and some associated Target Values
 (TVs). The DI is used for compression to give the best TV to the FID
 when these values differ in their transmission direction. So, a
 field may be described several times.

 A Matching Operator (MO) is associated with each header Field
 Descriptor. The Rule is selected if all the MOs fit the TVs for all
 fields of the incoming header. A Rule cannot be selected if the
 message contains a field that is unknown to the SCHC compressor.

 In that case, a Compression/Decompression Action (CDA) associated
 with each field gives the method to compress and decompress each
 field. Compression mainly results in one of four actions:

 * send the field value (value-sent),

 * send nothing (not-sent),

 * send some Least Significant Bits (LSBs) of the field, or

 * send an index (mapping-sent).

 After applying the compression, there may be some bits to be sent.
 These values are called "Compression Residue".

 SCHC is a general mechanism applied to different protocols, with the
 exact Rules to be used depending on the protocol and the application.
 Section 10 of [RFC8724] describes the compression scheme for IPv6 and
 UDP headers. This document targets CoAP header compression using
 SCHC.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. SCHC Applicability to CoAP

 SCHC compression for CoAP headers MAY be done in conjunction with the
 lower layers (IPv6/UDP) or independently. The SCHC adaptation
 layers, described in Section 5 of [RFC8724], may be used as shown in
 Figures 1, 2, and 3.

 In the first example, Figure 1, a Rule compresses the complete header
 stack from IPv6 to CoAP. In this case, the Device and the Network
 Gateway (NGW) perform SCHC C/D (SCHC Compression/Decompression; see
 [RFC8724]). The application communicating with the Device does not
 implement SCHC C/D.

 (Device) (NGW) (App)

 +--------+ +--------+
 | CoAP | | CoAP |
 +--------+ +--------+
 | UDP | | UDP |
 +--------+ +----------------+ +--------+
 | IPv6 | | IPv6 | | IPv6 |
 +--------+ +--------+-------+ +--------+
 | SCHC | | SCHC | | | |
 +--------+ +--------+ + + +
 | LPWAN | | LPWAN | | | |
 +--------+ +--------+-------+ +--------+
 ((((LPWAN)))) ------ Internet ------

 Figure 1: Compression/Decompression at the LPWAN Boundary

 Figure 1 shows the use of SCHC header compression above Layer 2 in

 the Device and the NGW. The SCHC layer receives non-encrypted
 packets and can apply compression Rules to all the headers in the
 stack. On the other end, the NGW receives the SCHC packet and
 reconstructs the headers using the Rule and the Compression Residue.
 After the decompression, the NGW forwards the IPv6 packet toward the
 destination. The same process applies in the other direction when a
 non-encrypted packet arrives at the NGW. Thanks to the IP forwarding
 based on the IPv6 prefix, the NGW identifies the Device and
 compresses headers using the Device’s Rules.

 In the second example, Figure 2, SCHC compression is applied in the
 CoAP layer, compressing the CoAP header independently of the other
 layers. The RuleID, Compression Residue, and CoAP payload are
 encrypted using a mechanism such as DTLS. Only the other end (App)
 can decipher the information. If needed, layers below use SCHC to
 compress the header as defined in [RFC8724] (represented by dotted
 lines in the figure).

 This use case needs an end-to-end context initialization between the
 Device and the application. The context initialization is out of
 scope for this document.

 (Device) (NGW) (App)

 +--------+ +--------+
 | CoAP | | CoAP |
 +--------+ +--------+
 | SCHC | | SCHC |
 +--------+ +--------+
 | DTLS | | DTLS |
 +--------+ +--------+
 . udp . . udp .

 . ipv6 . . ipv6 . . ipv6 .

 . schc . . schc

 . lpwan . . lpwan

 ((((LPWAN)))) ------ Internet ------

 Figure 2: Standalone CoAP End-to-End Compression/Decompression

 The third example, Figure 3, shows the use of Object Security for
 Constrained RESTful Environments (OSCORE) [RFC8613]. In this case,
 SCHC needs two Rules to compress the CoAP header. A first Rule
 focuses on the Inner header. The result of this first compression is
 encrypted using the OSCORE mechanism. Then, a second Rule compresses
 the Outer header, including the OSCORE options.

 (Device) (NGW) (App)

 +--------+ +--------+
 | CoAP | | CoAP |
 | Inner | | Inner |
 +--------+ +--------+
 | SCHC | | SCHC |
 | Inner | | Inner |
 +--------+ +--------+
 | CoAP | | CoAP |
 | Outer | | Outer |
 +--------+ +--------+
 | SCHC | | SCHC |
 | Outer | | Outer |
 +--------+ +--------+
 . udp . . udp .

 . ipv6 . . ipv6 . . ipv6 .

 . schc . . schc

 . lpwan . . lpwan

 ((((LPWAN)))) ------ Internet ------

 Figure 3: OSCORE Compression/Decompression

 In the case of several SCHC instances, as shown in Figures 2 and 3,
 the Rules may come from different provisioning domains.

 This document focuses on CoAP compression, as represented by the
 dashed boxes in the previous figures.

3. CoAP Headers Compressed with SCHC

 The use of SCHC over the CoAP header applies the same description and
 compression/decompression techniques as the technique used for IP and
 UDP, as explained in [RFC8724]. For CoAP, the SCHC Rules description
 uses the direction information to optimize the compression by
 reducing the number of Rules needed to compress headers. The Field
 Descriptor MAY define both request/response headers and TVs in the
 same Rule, using the DI to indicate the header type.

 As for other header compression protocols, when the compressor does
 not find a correct Rule to compress the header, the packet MUST be
 sent uncompressed using the RuleID dedicated to this purpose, and
 where the Compression Residue is the complete header of the packet.
 See Section 6 of [RFC8724].

3.1. Differences between CoAP and UDP/IP Compression

 CoAP compression differs from IPv6 and UDP compression in the
 following aspects:

 * The CoAP message format is asymmetric; the headers are different
 for a request or a response. For example, the Uri-Path option is
 mandatory in the request, and it might not be present in the
 response. A request might contain an Accept option, and the
 response might include a Content-Format option. In comparison,
 the IPv6 and UDP returning path swaps the value of some fields in
 the header. However, all the directions have the same fields
 (e.g., source and destination address fields).

 [RFC8724] defines the use of a DI in the Field Descriptor, which
 allows a single Rule to process a message header differently,
 depending on the direction.

 * Even when a field is "symmetric" (i.e., found in both directions),
 the values carried in each direction are different. The
 compression may use a "match-mapping" MO to limit the range of
 expected values in a particular direction and reduce the
 Compression Residue’s size. Through the DI, a Field Descriptor in
 the Rules splits the possible field value into two parts, one for
 each direction. For instance, if a client sends only Confirmable
 (CON) requests [RFC7252], the Type can be elided by compression,
 and the answer may use one single bit to carry either the ACK or
 Reset (RST) type. The field Code has the same behavior: the 0.0X
 code format value in the request and the Y.ZZ code format in the
 response.

 * In SCHC, the Rule defines the different header fields’ length, so
 SCHC does not need to send it. In IPv6 and UDP headers, the
 fields have a fixed size, known by definition. On the other hand,
 some CoAP header fields have variable lengths, and the Rule
 description specifies it. For example, in a Uri-Path or Uri-
 Query, the Token size may vary from 0 to 8 bytes, and the CoAP
 options use the Type-Length-Value encoding format.

 When doing SCHC compression of a variable-length field,
 Section 7.4.2 of [RFC8724] offers the option of defining a
 function for the Field Length in the Field Descriptor to know the
 length before compression. If the Field Length is unknown, the

 Rule will set it as a variable, and SCHC will send the compressed
 field’s length in the Compression Residue.

 * A field can appear several times in the CoAP headers. It is found
 typically for elements of a URI (path or queries). The SCHC
 specification [RFC8724] allows a FID to appear several times in
 the Rule and uses the Field Position (FP) to identify the correct
 instance, thereby removing the MO’s ambiguity.

 * Field Lengths defined in CoAP can be too large when it comes to
 LPWAN traffic constraints. For instance, this is particularly
 true for the Message ID field and the Token field. SCHC uses
 different MOs to perform the compression. See Section 7.4 of
 [RFC8724]. In this case, SCHC can apply the Most Significant Bits
 (MSBs) MO to reduce the information carried on LPWANs.

4. Compression of CoAP Header Fields

 This section discusses the compression of the different CoAP header
 fields. CoAP compression with SCHC follows the information provided
 in Section 7.1 of [RFC8724].

4.1. CoAP Version Field

 The CoAP version is bidirectional and MUST be elided during SCHC
 compression, since it always contains the same value. In the future,
 or if a new version of CoAP is defined, new Rules will be needed to
 avoid ambiguities between versions.

4.2. CoAP Type Field

 CoAP [RFC7252] has four types of messages: two requests (CON, NON),
 one response (ACK), and one empty message (RST).

 The SCHC compression scheme SHOULD elide this field if, for instance,
 a client is sending only Non-confirmable (NON) messages or only CON
 messages. For the RST message, SCHC may use a dedicated Rule. For
 other usages, SCHC can use a "match-mapping" MO.

4.3. CoAP Code Field

 The Code field, defined in an IANA registry [RFC7252], indicates the
 Request Method used in CoAP. The compression of the CoAP Code field
 follows the same principle as that of the CoAP Type field. If the
 Device plays a specific role, SCHC may split the code values into two
 Field Descriptors: (1) the request codes with the 0 class and (2) the
 response values. SCHC will use the DI to identify the correct value
 in the packet.

 If the Device only implements a CoAP client, SCHC compression may
 reduce the request code to the set of requests the client can
 process.

 For known values, SCHC can use a "match-mapping" MO. If SCHC cannot
 compress the Code field, it will send the values in the Compression
 Residue.

4.4. CoAP Message ID Field

 SCHC can compress the Message ID field with the "MSB" MO and the
 "LSB" CDA. See Section 7.4 of [RFC8724].

4.5. CoAP Token Fields

 CoAP defines the Token using two CoAP fields: Token Length in the
 mandatory header and Token Value directly following the mandatory
 CoAP header.

 SCHC processes the Token Length as it would any header field. If the
 value does not change, the size can be stored in the TV and elided
 during the transmission. Otherwise, SCHC will send the Token Length

 in the Compression Residue.

 For the Token Value, SCHC MUST NOT send it as variable-length data in
 the Compression Residue, to avoid ambiguity with the Token Length.
 Therefore, SCHC MUST use the Token Length value to define the size of
 the Compression Residue. SCHC designates a specific function, "tkl",
 that the Rule MUST use to complete the Field Descriptor. During the
 decompression, this function returns the value contained in the Token
 Length field.

5. CoAP Options

 CoAP defines options placed after the basic header, ordered by option
 number; see [RFC7252]. Each Option instance in a message uses the
 format Delta-Type (D-T), Length (L), Value (V). The SCHC Rule builds
 the description of the option by using the following:

 * in the FID: the option number built from the D-T;

 * in the TV: the option value; and

 * for the Option Length: the information provided in Sections 7.4.1
 and 7.4.2 of [RFC8724].

 When the Option Length has a well-known size, the Rule may keep the
 length value. Therefore, SCHC compression does not send it.
 Otherwise, SCHC compression carries the length of the Compression
 Residue, in addition to the Compression Residue value.

 CoAP requests and responses do not include the same options. So,
 compression Rules may reflect this asymmetry by tagging the DI.

 Note that length coding differs between CoAP options and SCHC
 variable size Compression Residue.

 The following sections present how SCHC compresses some specific CoAP
 options.

 If CoAP introduces a new option, the SCHC Rules MAY be updated, and
 the new FID description MUST be assigned to allow its compression.
 Otherwise, if no Rule describes this new option, SCHC compression is
 not achieved, and SCHC sends the CoAP header without compression.

5.1. CoAP Content and Accept Options

 If the client expects a single value, it can be stored in the TV and
 elided during the transmission. Otherwise, if the client expects
 several possible values, a "match-mapping" MO SHOULD be used to limit
 the Compression Residue’s size. If not, SCHC has to send the option
 value in the Compression Residue (fixed or variable length).

5.2. CoAP Option Max-Age, Uri-Host, and Uri-Port Fields

 SCHC compresses these three fields in the same way. When the values
 of these options are known, SCHC can elide these fields. If the
 option uses well-known values, SCHC can use a "match-mapping" MO.
 Otherwise, SCHC will use the "value-sent" MO, and the Compression
 Residue will send these options’ values.

5.3. CoAP Option Uri-Path and Uri-Query Fields

 The Uri-Path and Uri-Query fields are repeatable options; this means
 that in the CoAP header, they may appear several times with different
 values. The SCHC Rule description uses the FP to distinguish the
 different instances in the path.

 To compress repeatable field values, SCHC may use a "match-mapping"
 MO to reduce the size of variable paths or queries. In these cases,
 to optimize the compression, several elements can be regrouped into a
 single entry. The numbering of elements does not change, and the
 first matching element sets the MO comparison.

 In Table 1, SCHC can use a single bit in the Compression Residue to
 code one of the two paths. If regrouping were not allowed, 2 bits in
 the Compression Residue would be needed. SCHC sends the third path
 element as a variable size in the Compression Residue.

 +==========+=====+====+====+==========+=========+==============+
 | Field | FL | FP | DI | TV | MO | CDA |
 +==========+=====+====+====+==========+=========+==============+
 | Uri-Path | | 1 | Up | ["/a/b", | match- | mapping-sent |
 | | | | | "/c/d"] | mapping | |
 +----------+-----+----+----+----------+---------+--------------+
 | Uri-Path | var | 3 | Up | | ignore | value-sent |
 +----------+-----+----+----+----------+---------+--------------+

 Table 1: Complex Path Example

 The length of Uri-Path and Uri-Query may be known when the Rule is
 defined. In any case, SCHC MUST set the Field Length to a variable
 value. The Compression Residue size is expressed in bytes.

 SCHC compression can use the MSB MO to a Uri-Path or Uri-Query
 element. However, attention to the length is important because the
 MSB value is in bits, and the size MUST always be a multiple of 8
 bits.

 The length sent at the beginning of a variable-length Compression
 Residue indicates the LSB’s size in bytes.

 For instance, for a CORECONF path /c/X6?k=eth0, the Rule description
 can be as follows (Table 2):

 +===========+=====+====+====+======+=========+============+
 | Field | FL | FP | DI | TV | MO | CDA |
 +===========+=====+====+====+======+=========+============+
 | Uri-Path | | 1 | Up | "c" | equal | not-sent |
 +-----------+-----+----+----+------+---------+------------+
 | Uri-Path | var | 2 | Up | | ignore | value-sent |
 +-----------+-----+----+----+------+---------+------------+
 | Uri-Query | var | 1 | Up | "k=" | MSB(16) | LSB |
 +-----------+-----+----+----+------+---------+------------+

 Table 2: CORECONF URI Compression

 Table 2 shows the Rule description for a Uri-Path and a Uri-Query.
 SCHC compresses the first part of the Uri-Path with a "not-sent" CDA.
 SCHC will send the second element of the Uri-Path with the length
 (i.e., 0x2 "X6") followed by the query option (i.e., 0x4 "eth0").

5.3.1. Variable Number of Path or Query Elements

 SCHC fixed the number of Uri-Path or Uri-Query elements in a Rule at
 the Rule creation time. If the number varies, SCHC SHOULD either

 * create several Rules to cover all possibilities or

 * create a Rule that defines several entries for Uri-Path to cover
 the longest path and send a Compression Residue with a length of 0
 to indicate that a Uri-Path entry is empty.

 However, this adds 4 bits to the variable Compression Residue size.
 See Section 7.4.2 of [RFC8724].

5.4. CoAP Option Size1, Size2, Proxy-URI, and Proxy-Scheme Fields

 The SCHC Rule description MAY define sending some field values by
 setting the TV to "not-sent", the MO to "ignore", and the CDA to
 "value-sent". A Rule MAY also use a "match-mapping" MO when there
 are different options for the same FID. Otherwise, the Rule sets the
 TV to the value, the MO to "equal", and the CDA to "not-sent".

5.5. CoAP Option ETag, If-Match, If-None-Match, Location-Path, and
 Location-Query Fields

 A Rule entry cannot store these fields’ values. The Rule description
 MUST always send these values in the Compression Residue.

6. SCHC Compression of CoAP Extensions

6.1. Block

 When a packet uses a Block option [RFC7959], SCHC compression MUST
 send its content in the Compression Residue. The SCHC Rule describes
 an empty TV with the MO set to "ignore" and the CDA set to "value-
 sent". The Block option allows fragmentation at the CoAP level that
 is compatible with SCHC fragmentation. Both fragmentation mechanisms
 are complementary, and the node may use them for the same packet as
 needed.

6.2. Observe

 [RFC7641] defines the Observe Option. The SCHC Rule description will
 not define the TV but will set the MO to "ignore" and the CDA to
 "value-sent". SCHC does not limit the maximum size for this option
 (3 bytes). To reduce the transmission size, either the Device
 implementation MAY limit the delta between two consecutive values or
 a proxy can modify the increment.

 Since the Observe Option MAY use a RST message to inform a server
 that the client does not require the Observe response, a specific
 SCHC Rule SHOULD exist to allow the message’s compression with the
 RST type.

6.3. No-Response

 [RFC7967] defines a No-Response option limiting the responses made by
 a server to a request. Different behaviors exist while using this
 option to limit the responses made by a server to a request. If both
 ends know the value, then the SCHC Rule will describe a TV to this
 value, with the MO set to "equal" and the CDA set to "not-sent".

 Otherwise, if the value is changing over time, the SCHC Rule will set
 the MO to "ignore" and the CDA to "value-sent". The Rule may also
 use a "match-mapping" MO to compress this option.

6.4. OSCORE

 OSCORE [RFC8613] defines end-to-end protection for CoAP messages.
 This section describes how SCHC Rules can be applied to compress
 OSCORE-protected messages.

 Figure 4 shows the OSCORE option value encoding defined in
 Section 6.1 of [RFC8613], where the first byte specifies the content
 of the OSCORE options using flags. The three most significant bits
 of this byte are reserved and always set to 0. Bit h, when set,
 indicates the presence of the kid context field in the option. Bit
 k, when set, indicates the presence of a kid field. The three least
 significant bits, n, indicate the length of the piv (Partial
 Initialization Vector) field in bytes. When n = 0, no piv is
 present.

 0 1 2 3 4 5 6 7 <--------- n bytes ------------->
 +-+-+-+-+-+-+-+-+---------------------------------
 |0 0 0|h|k| n | Partial IV (if any) ...
 +-+-+-+-+-+-+-+-+---------------------------------
 | | |
 |<-- CoAP -->|<------ CoAP OSCORE_piv ------> |
 OSCORE_flags

 <- 1 byte -> <------ s bytes ----->
 +------------+----------------------+-----------------------+
 | s (if any) | kid context (if any) | kid (if any) ... |

 +------------+----------------------+-----------------------+
 | | |
 | <------ CoAP OSCORE_kidctx ------>|<-- CoAP OSCORE_kid -->|

 Figure 4: OSCORE Option

 The flag byte is followed by the piv field, the kid context field,
 and the kid field, in that order, and, if present, the kid context
 field’s length (in bytes) is encoded in the first byte, denoted by
 "s".

 To better perform OSCORE SCHC compression, the Rule description needs
 to identify the OSCORE option and the fields it contains.
 Conceptually, it discerns up to four distinct pieces of information
 within the OSCORE option: the flag bits, the piv, the kid context,
 and the kid. The SCHC Rule splits the OSCORE option into four Field
 Descriptors in order to compress them:

 * CoAP OSCORE_flags

 * CoAP OSCORE_piv

 * CoAP OSCORE_kidctx

 * CoAP OSCORE_kid

 Figure 4 shows the OSCORE option format with those four fields
 superimposed on it. Note that the CoAP OSCORE_kidctx field directly
 includes the size octet, s.

7. Examples of CoAP Header Compression

7.1. Mandatory Header with CON Message

 In this first scenario, the SCHC compressor on the NGW side receives
 a POST message from an Internet client, which is immediately
 acknowledged by the Device. Table 3 describes the SCHC Rule
 descriptions for this scenario.

 +===+
 |RuleID 1 |
 +==========+===+==+==+======+===============+===============+=======+
 | Field | FL|FP|DI| TV | MO | CDA | Sent |
 | | | | | | | | [bits]|
 +==========+===+==+==+======+===============+===============+=======+
 |CoAP |2 |1 |Bi|01 | equal | not-sent | |
 |version | | | | | | | |
 +----------+---+--+--+------+---------------+---------------+=======+
 |CoAP Type |2 |1 |Dw|CON | equal | not-sent | |
 +----------+---+--+--+------+---------------+---------------+=======+
 |CoAP Type |2 |1 |Up|[ACK, | match-mapping | matching-sent |T |
 | | | | |RST] | | | |
 +----------+---+--+--+------+---------------+---------------+=======+
 |CoAP TKL |4 |1 |Bi|0 | equal | not-sent | |
 +----------+---+--+--+------+---------------+---------------+=======+
CoAP Code	8	1	Bi	[0.00,	match-mapping	matching-sent	CC CCC
				...			
				5.05]			
+----------+---+--+--+------+---------------+---------------+=======+							
CoAP MID	16	1	Bi	0000	MSB(7)	LSB	MID
+----------+---+--+--+------+---------------+---------------+=======+							
CoAP Uri-	var	1	Dw	path	equal 1	not-sent	
Path							
 +----------+---+--+--+------+---------------+---------------+=======+

 Table 3: CoAP Context to Compress Header without Token

 In this example, SCHC compression elides the version and Token Length
 fields. The 25 Method and Response Codes defined in [RFC7252] have
 been shrunk to 5 bits using a "match-mapping" MO. The Uri-Path
 contains a single element indicated in the TV and elided with the CDA

 "not-sent".

 SCHC compression reduces the header, sending only the Type, a mapped
 code, and the least significant bits of the Message ID (9 bits in the
 example above).

 Note that a client located in an Application Server sending a request
 to a server located in the Device may not be compressed through this
 Rule, since the MID might not start with 7 bits equal to 0. A CoAP
 proxy placed before SCHC C/D can rewrite the Message ID to fit the
 value and match the Rule.

7.2. OSCORE Compression

 OSCORE aims to solve the problem of end-to-end encryption for CoAP
 messages. Therefore, the goal is to hide the message as much as
 possible while still enabling proxy operation.

 Conceptually, this is achieved by splitting the CoAP message into an
 Inner Plaintext and Outer OSCORE message. The Inner Plaintext
 contains sensitive information that is not necessary for proxy
 operation. However, it is part of the message that can be encrypted
 until it reaches its end destination. The Outer Message acts as a
 shell matching the regular CoAP message format and includes all
 options and information needed for proxy operation and caching.
 Figure 5 below illustrates this analysis.

 CoAP arranges the options into one of three classes, each granted a
 specific type of protection by the protocol:

 Class E: Encrypted options moved to the Inner Plaintext.

 Class I: Integrity-protected options included in the Additional
 Authenticated Data (AAD) for the encryption of the Plaintext but
 otherwise left untouched in the Outer Message.

 Class U: Unprotected options left untouched in the Outer Message.

 These classes point out that the Outer option contains the OSCORE
 option and that the message is OSCORE protected; this option carries
 the information necessary to retrieve the Security Context. The
 endpoint will use this Security Context to decrypt the message
 correctly.

 Original CoAP Packet
 +-+-+---+-------+---------------+
 |v|t|TKL| code | Message ID |
 +-+-+---+-------+---------------+....+
 | Token |
 +-------------------------------.....+
 | Options (IEU) |
 . .
 . .
 +------+-------------------+
 | 0xFF |
 +------+------------------------+
 | |
 | Payload |
 | |
 +-------------------------------+
 / \
 / \
 / \
 / \
 Outer Header v v Plaintext
 +-+-+---+--------+---------------+ +-------+
 |v|t|TKL|new code| Message ID | | code |
 +-+-+---+--------+---------------+....+ +-------+-----......+
 | Token | | Options (E) |
 +--------------------------------.....+ +-------+------.....+
 | Options (IU) | | 0xFF |

 . . +-------+-----------+
 . OSCORE Option . | |
 +------+-------------------+ | Payload |
 | 0xFF | | |
 +------+ +-------------------+

 Figure 5: CoAP Packet Split into OSCORE Outer Header and Plaintext

 Figure 5 shows the packet format for the OSCORE Outer header and
 Plaintext.

 In the Outer header, the original header code is hidden and replaced
 by a default dummy value. As seen in Sections 4.1.3.5 and 4.2 of
 [RFC8613], the message code is replaced by POST for requests and
 Changed for responses when CoAP is not using the Observe Option. If
 CoAP uses Observe, the OSCORE message code is replaced by FETCH for
 requests and Content for responses.

 The first byte of the Plaintext contains the original packet code,
 followed by the message code, the class E options, and, if present,
 the original message payload preceded by its payload marker.

 An Authenticated Encryption with Associated Data (AEAD) algorithm now
 encrypts the Plaintext. This integrity-protects the Security Context
 parameters and, eventually, any class I options from the Outer
 header. The resulting ciphertext becomes the new payload of the
 OSCORE message, as illustrated in Figure 6.

 As defined in [RFC5116], this ciphertext is the encrypted Plaintext’s
 concatenation of the Authentication Tag. Note that Inner Compression
 only affects the Plaintext before encryption. The Authentication
 Tag, fixed in length and uncompressed, is considered part of the cost
 of protection.

 Outer Header
 +-+-+---+--------+---------------+
 |v|t|TKL|new code| Message ID |
 +-+-+---+--------+---------------+....+
 | Token |
 +--------------------------------.....+
 | Options (IU) |
 . .
 . OSCORE Option .
 +------+-------------------+
 | 0xFF |
 +------+---------------------------+
 | |
 | Ciphertext: Encrypted Inner |
 | Header and Payload |
 | + Authentication Tag |
 | |
 +----------------------------------+

 Figure 6: OSCORE Message

 The SCHC compression scheme consists of compressing both the
 Plaintext before encryption and the resulting OSCORE message after
 encryption; see Figure 7.

 The OSCORE message translates into a segmented process where SCHC
 compression is applied independently in two stages, each with its
 corresponding set of Rules, with the Inner SCHC Rules and the Outer
 SCHC Rules. This way, compression is applied to all fields of the
 original CoAP message.

 Outer Message OSCORE Plaintext
 +-+-+---+--------+---------------+ +-------+
 |v|t|TKL|new code| Message ID | | code |
 +-+-+---+--------+---------------+....+ +-------+-----......+
 | Token | | Options (E) |
 +--------------------------------.....+ +-------+------.....+

 | Options (IU) | | 0xFF |
 . . +-------+-----------+
 . OSCORE Option . | |
 +------+-------------------+ | Payload |
 | 0xFF | | |
 +------+------------+ +-------------------+
 | Ciphertext |<---------\ |
 | | | v
 +-------------------+ | +-----------------+
 | | | Inner SCHC |
 v | | Compression |
 +-----------------+ | +-----------------+
 | Outer SCHC | | |
 | Compression | | v
 +-----------------+ | +-------+
 | | |RuleID |
 v | +-------+-----------+
 +--------+ +------------+ |Compression Residue|
 |RuleID’ | | Encryption | <-- +----------+--------+
 +--------+-----------+ +------------+ | |
 |Compression Residue’| | Payload |
 +-----------+--------+ | |
 | Ciphertext | +-------------------+
 | |
 +--------------------+

 Figure 7: OSCORE Compression Diagram

 Note that since the corresponding endpoint can only decrypt the Inner
 part of the message, this endpoint will also have to implement Inner
 SCHC Compression/Decompression.

7.3. Example OSCORE Compression

 This section gives an example with a GET request and its consequent
 Content response from a Device-based CoAP client to a cloud-based
 CoAP server. The example also describes a possible set of Rules for
 Inner SCHC Compression and Outer SCHC Compression. A dump of the
 results and a contrast between SCHC + OSCORE performance with SCHC +
 CoAP performance are also listed. This example gives an
 approximation of the cost of security with SCHC-OSCORE.

 Our first CoAP message is the GET request in Figure 8.

 Original message:
 =================
 0x4101000182bb74656d7065726174757265

 Header:
 0x4101
 01 Ver
 00 CON
 0001 TKL
 00000001 Request Code 1 "GET"

 0x0001 = mid
 0x82 = token

 Options:
 0xbb74656d7065726174757265
 Option 11: URI_PATH
 Value = temperature

 Original message length: 17 bytes

 Figure 8: CoAP GET Request

 Its corresponding response is the Content response in Figure 9.

 Original message:
 =================

 0x6145000182ff32332043

 Header:
 0x6145
 01 Ver
 10 ACK
 0001 TKL
 01000101 Successful Response Code 69 "2.05 Content"

 0x0001 = mid
 0x82 = token

 0xFF Payload marker
 Payload:
 0x32332043

 Original message length: 10 bytes

 Figure 9: CoAP Content Response

 The SCHC Rules for the Inner Compression include all fields already
 present in a regular CoAP message. The methods described in
 Section 4 apply to these fields. Table 4 provides an example.

 +===+
 |RuleID 0 |
 +========+==+==+==+===========+===============+==============+======+
 | Field |FL|FP|DI| TV | MO | CDA | Sent |
 | | | | | | | |[bits]|
 +========+==+==+==+===========+===============+==============+======+
 |CoAP |8 |1 |Up|1 | equal | not-sent | |
 |Code | | | | | | | |
 +--------+--+--+--+-----------+---------------+--------------+======+
 |CoAP |8 |1 |Dw|[69,132] | match-mapping | mapping-sent |c |
 |Code | | | | | | | |
 +--------+--+--+--+-----------+---------------+--------------+======+
 |CoAP | |1 |Up|temperature| equal | not-sent | |
 |Uri-Path| | | | | | | |
 +--------+--+--+--+-----------+---------------+--------------+======+

 Table 4: Inner SCHC Rule

 Figure 10 shows the Plaintext obtained for the example GET request.
 The packet follows the process of Inner Compression and encryption
 until the payload. The Outer OSCORE message adds the result of the
 Inner process.

 __
 | |
 | OSCORE Plaintext |
 | |
 | 0x01bb74656d7065726174757265 (13 bytes) |
 | |
 | 0x01 Request Code GET |
 | |
 | bb74656d7065726174757265 Option 11: URI_PATH |
 | Value = temperature |
 |__|

 |
 |
 | Inner SCHC Compression
 |
 v

 | |
 | Compressed Plaintext |
 | |
 | 0x00 |
 | |
 | RuleID = 0x00 (1 byte) |

 | (No Compression Residue) |
 |_________________________________|

 |
 | AEAD Encryption
 | (piv = 0x04)
 v

 | |
 | encrypted_plaintext = 0xa2 (1 byte) |
 | tag = 0xc54fe1b434297b62 (8 bytes) |
 | |
 | ciphertext = 0xa2c54fe1b434297b62 (9 bytes) |
 |___|

 Figure 10: Plaintext Compression and Encryption for GET Request

 In this case, the original message has no payload, and its resulting
 Plaintext is compressed up to only 1 byte (the size of the RuleID).
 The AEAD algorithm preserves this length in its first output and
 yields a fixed-size tag. SCHC cannot compress the tag, and the
 OSCORE message must include it without compression. The use of
 integrity protection translates into an overhead in total message
 length, limiting the amount of compression that can be achieved and
 playing into the cost of adding security to the exchange.

 Figure 11 shows the process for the example Content response. The
 Compression Residue is 1 bit long. Note that since SCHC adds padding
 after the payload, this misalignment causes the hexadecimal code from
 the payload to differ from the original, even if SCHC cannot compress
 the tag. The overhead for the tag bytes limits SCHC’s performance
 but brings security to the transmission.

 __
 | |
 | OSCORE Plaintext |
 | |
 | 0x45ff32332043 (6 bytes) |
 | |
 | 0x45 Successful Response Code 69 "2.05 Content" |
 | |
 | ff Payload marker |
 | |
 | 32332043 Payload |
 |__|

 |
 |
 | Inner SCHC Compression
 |
 v

 | |
 | Compressed Plaintext |
 | |
 | 0x001919902180 (6 bytes) |
 | |
 | 00 RuleID |
 | |
 | 0b0 (1 bit match-mapping Compression Residue) |
 | 0x32332043 >> 1 (shifted payload) |
 | 0b0000000 Padding |
 |___|

 |
 | AEAD Encryption
 | (piv = 0x04)
 v

 | |
 | encrypted_plaintext = 0x10c6d7c26cc1 (6 bytes) |

 | tag = 0xe9aef3f2461e0c29 (8 bytes) |
 | |
 | ciphertext = 0x10c6d7c26cc1e9aef3f2461e0c29 (14 bytes) |
 |___|

 Figure 11: Plaintext Compression and Encryption for Content Response

 The Outer SCHC Rule (Table 5) must process the OSCORE options fields.
 Figures 12 and 13 show a dump of the OSCORE messages generated from
 the example messages. They include the Inner Compressed ciphertext
 in the payload. These are the messages that have to be compressed
 via the Outer SCHC Compression scheme.

 Table 5 shows a possible set of Outer Rule items to compress the
 Outer header.

 +===+
 |RuleID 0 |
 +===============+===+==+==+================+=======+=========+======+
 | Field | FL|FP|DI| TV | MO | CDA | Sent |
 | | | | | | | |[bits]|
 +===============+===+==+==+================+=======+=========+======+
 |CoAP version |2 |1 |Bi| 01 |equal |not-sent | |
 +---------------+---+--+--+----------------+-------+---------+======+
 |CoAP Type |2 |1 |Up| 0 |equal |not-sent | |
 +---------------+---+--+--+----------------+-------+---------+======+
 |CoAP Type |2 |1 |Dw| 2 |equal |not-sent | |
 +---------------+---+--+--+----------------+-------+---------+======+
 |CoAP TKL |4 |1 |Bi| 1 |equal |not-sent | |
 +---------------+---+--+--+----------------+-------+---------+======+
 |CoAP Code |8 |1 |Up| 2 |equal |not-sent | |
 +---------------+---+--+--+----------------+-------+---------+======+
 |CoAP Code |8 |1 |Dw| 68 |equal |not-sent | |
 +---------------+---+--+--+----------------+-------+---------+======+
 |CoAP MID |16 |1 |Bi| 0000 |MSB(12)|LSB |MMMM |
 +---------------+---+--+--+----------------+-------+---------+======+
 |CoAP Token |tkl|1 |Bi| 0x80 |MSB(5) |LSB |TTT |
 +---------------+---+--+--+----------------+-------+---------+======+
 |CoAP |8 |1 |Up| 0x09 |equal |not-sent | |
 |OSCORE_flags | | | | | | | |
 +---------------+---+--+--+----------------+-------+---------+======+
 |CoAP OSCORE_piv|var|1 |Up| 0x00 |MSB(4) |LSB |PPPP |
 +---------------+---+--+--+----------------+-------+---------+======+
 |CoAP OSCORE_kid|var|1 |Up| 0x636c69656e70 |MSB(52)|LSB |KKKK |
 +---------------+---+--+--+----------------+-------+---------+======+
 |CoAP |var|1 |Bi| b’’ |equal |not-sent | |
 |OSCORE_kidctx | | | | | | | |
 +---------------+---+--+--+----------------+-------+---------+======+
 |CoAP |8 |1 |Dw| b’’ |equal |not-sent | |
 |OSCORE_flags | | | | | | | |
 +---------------+---+--+--+----------------+-------+---------+======+
 |CoAP OSCORE_piv|var|1 |Dw| b’’ |equal |not-sent | |
 +---------------+---+--+--+----------------+-------+---------+======+
 |CoAP OSCORE_kid|var|1 |Dw| b’’ |equal |not-sent | |
 +---------------+---+--+--+----------------+-------+---------+======+

 Table 5: Outer SCHC Rule

 Protected message:
 ==================
 0x4102000182d8080904636c69656e74ffa2c54fe1b434297b62
 (25 bytes)

 Header:
 0x4102
 01 Ver
 00 CON
 0001 TKL
 00000010 Request Code 2 "POST"

 0x0001 = mid

 0x82 = token

 Options:
 0xd8080904636c69656e74 (10 bytes)
 Option 21: OBJECT_SECURITY
 Value = 0x0904636c69656e74
 09 = 000 0 1 001 flag byte
 h k n
 04 piv
 636c69656e74 kid

 0xFF Payload marker
 Payload:
 0xa2c54fe1b434297b62 (9 bytes)

 Figure 12: Protected and Inner SCHC Compressed GET Request

 Protected message:
 ==================
 0x6144000182d008ff10c6d7c26cc1e9aef3f2461e0c29
 (22 bytes)

 Header:
 0x6144
 01 Ver
 10 ACK
 0001 TKL
 01000100 Successful Response Code 68 "2.04 Changed"

 0x0001 = mid
 0x82 = token

 Options:
 0xd008 (2 bytes)
 Option 21: OBJECT_SECURITY
 Value = b’’

 0xFF Payload marker
 Payload:
 0x10c6d7c26cc1e9aef3f2461e0c29 (14 bytes)

 Figure 13: Protected and Inner SCHC Compressed Content Response

 For the flag bits, some SCHC compression methods are useful,
 depending on the application. The most straightforward alternative
 is to provide a fixed value for the flags, combining a MO of "equal"
 and a CDA of "not-sent". This SCHC definition saves most bits but
 could prevent flexibility. Otherwise, SCHC could use a "match-
 mapping" MO to choose from several configurations for the exchange.
 If not, the SCHC description may use an "MSB" MO to mask off the
 three hard-coded most significant bits.

 Note that fixing a flag bit will limit the choices of CoAP options
 that can be used in the exchange, since the values of these choices
 are dependent on specific options.

 The piv field lends itself to having some bits masked off with an
 "MSB" MO and an "LSB" CDA. This SCHC description could be useful in
 applications where the message frequency is low, such as LPWAN
 technologies. Note that compressing the sequence numbers may reduce
 the maximum number of sequence numbers that can be used in an
 exchange. Once the sequence number exceeds the maximum value, the
 OSCORE keys need to be re-established.

 The size, s, that is included in the kid context field MAY be masked
 off with an "LSB" CDA. The rest of the field could have additional
 bits masked off or have the whole field fixed with a MO of "equal"
 and a CDA of "not-sent". The same holds for the kid field.

 The Outer Rule of Table 5 is applied to the example GET request and
 Content response. Figures 14 and 15 show the resulting messages.

 Compressed message:
 ==================
 0x001489458a9fc3686852f6c4 (12 bytes)
 0x00 RuleID
 1489 Compression Residue
 458a9fc3686852f6c4 Padded payload

 Compression Residue:
 0b 0001 010 0100 0100 (15 bits -> 2 bytes with padding)
 mid tkn piv kid

 Payload
 0xa2c54fe1b434297b62 (9 bytes)

 Compressed message length: 12 bytes

 Figure 14: SCHC-OSCORE Compressed GET Request

 Compressed message:
 ==================
 0x0014218daf84d983d35de7e48c3c1852 (16 bytes)
 0x00 RuleID
 14 Compression Residue
 218daf84d983d35de7e48c3c1852 Padded payload
 Compression Residue:
 0b0001 010 (7 bits -> 1 byte with padding)
 mid tkn

 Payload
 0x10c6d7c26cc1e9aef3f2461e0c29 (14 bytes)

 Compressed message length: 16 bytes

 Figure 15: SCHC-OSCORE Compressed Content Response

 In contrast, comparing these results with what would be obtained by
 SCHC compressing the original CoAP messages without protecting them
 with OSCORE is done by compressing the CoAP messages according to the
 SCHC Rule in Table 6.

 +===+
 |RuleID 1 |
 +========+===+==+==+===========+===============+=============+======+
 | Field | FL|FP|DI| TV | MO | CDA | Sent |
 | | | | | | | |[bits]|
 +========+===+==+==+===========+===============+=============+======+
 |CoAP |2 |1 |Bi|01 | equal |not-sent | |
 |version | | | | | | | |
 +--------+---+--+--+-----------+---------------+-------------+======+
 |CoAP |2 |1 |Up|0 | equal |not-sent | |
 |Type | | | | | | | |
 +--------+---+--+--+-----------+---------------+-------------+======+
 |CoAP |2 |1 |Dw|2 | equal |not-sent | |
 |Type | | | | | | | |
 +--------+---+--+--+-----------+---------------+-------------+======+
 |CoAP TKL|4 |1 |Bi|1 | equal |not-sent | |
 +--------+---+--+--+-----------+---------------+-------------+======+
 |CoAP |8 |1 |Up|2 | equal |not-sent | |
 |Code | | | | | | | |
 +--------+---+--+--+-----------+---------------+-------------+======+
 |CoAP |8 |1 |Dw|[69,132] | match-mapping |mapping-sent |C |
 |Code | | | | | | | |
 +--------+---+--+--+-----------+---------------+-------------+======+
 |CoAP MID|16 |1 |Bi|0000 | MSB(12) |LSB |MMMM |
 +--------+---+--+--+-----------+---------------+-------------+======+
 |CoAP |tkl|1 |Bi|0x80 | MSB(5) |LSB |TTT |
 |Token | | | | | | | |
 +--------+---+--+--+-----------+---------------+-------------+======+
 |CoAP | |1 |Up|temperature| equal |not-sent | |
 |Uri-Path| | | | | | | |

 +--------+---+--+--+-----------+---------------+-------------+======+

 Table 6: SCHC-CoAP Rule (No OSCORE)

 The Rule in Table 6 yields the SCHC compression results as shown in
 Figure 16 for the request and Figure 17 for the response.

 Compressed message:
 ==================
 0x0114
 0x01 = RuleID

 Compression Residue:
 0b00010100 (1 byte)

 Compressed message length: 2 bytes

 Figure 16: CoAP GET Compressed without OSCORE

 Compressed message:
 ==================
 0x010a32332043
 0x01 = RuleID

 Compression Residue:
 0b00001010 (1 byte)

 Payload
 0x32332043

 Compressed message length: 6 bytes

 Figure 17: CoAP Content Compressed without OSCORE

 As can be seen, the difference between applying SCHC + OSCORE as
 compared to regular SCHC + CoAP is about 10 bytes.

8. IANA Considerations

 This document has no IANA actions.

9. Security Considerations

 The use of SCHC header compression for CoAP header fields only
 affects the representation of the header information. SCHC header
 compression itself does not increase or decrease the overall level of
 security of the communication. When the connection does not use a
 security protocol (OSCORE, DTLS, etc.), it is necessary to use a
 Layer 2 security mechanism to protect the SCHC messages.

 If an LPWAN is the Layer 2 technology being used, the SCHC security
 considerations discussed in [RFC8724] continue to apply. When using
 another Layer 2 protocol, the use of a cryptographic integrity-
 protection mechanism to protect the SCHC headers is REQUIRED. Such
 cryptographic integrity protection is necessary in order to continue
 to provide the properties that [RFC8724] relies upon.

 When SCHC is used with OSCORE, the security considerations discussed
 in [RFC8613] continue to apply.

 When SCHC is used with the OSCORE Outer headers, the Initialization
 Vector (IV) size in the Compression Residue must be carefully
 selected. There is a trade-off between compression efficiency (with
 a longer "MSB" MO prefix) and the frequency at which the Device must
 renew its key material (in order to prevent the IV from expanding to
 an uncompressible value). The key-renewal operation itself requires
 several message exchanges and requires energy-intensive computation,
 but the optimal trade-off will depend on the specifics of the Device
 and expected usage patterns.

 If an attacker can introduce a corrupted SCHC-compressed packet onto

 a link, DoS attacks can be mounted by causing excessive resource
 consumption at the decompressor. However, an attacker able to inject
 packets at the link layer is also capable of other, potentially more
 damaging, attacks.

 SCHC compression emits variable-length Compression Residues for some
 CoAP fields. In the representation of the compressed header, the
 length field that is sent is not the length of the original header
 field but rather the length of the Compression Residue that is being
 transmitted. If a corrupted packet arrives at the decompressor with
 a longer or shorter length than the original compressed
 representation possessed, the SCHC decompression procedures will
 detect an error and drop the packet.

 SCHC header compression Rules MUST remain tightly coupled between the
 compressor and the decompressor. If the compression Rules get out of
 sync, a Compression Residue might be decompressed differently at the
 receiver than the initial message submitted to compression
 procedures. Accordingly, any time the context Rules are updated on
 an OSCORE endpoint, that endpoint MUST trigger OSCORE key re-
 establishment. Similar procedures may be appropriate to signal Rule
 updates when other message-protection mechanisms are in use.

10. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <https://www.rfc-editor.org/info/rfc7641>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <https://www.rfc-editor.org/info/rfc7959>.

 [RFC7967] Bhattacharyya, A., Bandyopadhyay, S., Pal, A., and T.
 Bose, "Constrained Application Protocol (CoAP) Option for
 No Server Response", RFC 7967, DOI 10.17487/RFC7967,
 August 2016, <https://www.rfc-editor.org/info/rfc7967>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/info/rfc8613>.

 [RFC8724] Minaburo, A., Toutain, L., Gomez, C., Barthel, D., and JC.
 ZÃºÃ±iga, "SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation", RFC 8724,
 DOI 10.17487/RFC8724, April 2020,
 <https://www.rfc-editor.org/info/rfc8724>.

Acknowledgements

 The authors would like to thank (in alphabetic order): Christian
 Amsuss, Dominique Barthel, Carsten Bormann, Theresa Enghardt, Thomas
 Fossati, Klaus Hartke, Benjamin Kaduk, Francesca Palombini, Alexander
 Pelov, GÃ¶ran Selander, and Ã\211ric Vyncke.

Authors’ Addresses

 Ana Minaburo
 Acklio
 1137A avenue des Champs Blancs
 35510 Cesson-Sevigne Cedex
 France

 Email: ana@ackl.io

 Laurent Toutain
 Institut MINES TELECOM; IMT Atlantique
 CS 17607
 2 rue de la Chataigneraie
 35576 Cesson-Sevigne Cedex
 France

 Email: Laurent.Toutain@imt-atlantique.fr

 Ricardo Andreasen
 Universidad de Buenos Aires
 Av. Paseo Colon 850
 C1063ACV Ciudad Autonoma de Buenos Aires
 Argentina

 Email: randreasen@fi.uba.ar

