
ï»¿

Independent Submission J.J. Aranda
Request for Comments: 8802 M. CortÃ©s
Category: Informational Nokia
ISSN: 2070-1721 J. SalvachÃºa
 Univ. Politecnica de Madrid
 M. Narganes
 Tecnalia
 I. MartÃnez-Sarriegui
 Optiva Media
 July 2020

 The Quality for Service (Q4S) Protocol

Abstract

 This memo describes an application-level protocol for the
 communication of end-to-end QoS compliance information based on the
 HyperText Transfer Protocol (HTTP) and the Session Description
 Protocol (SDP). The Quality for Service (Q4S) protocol provides a
 mechanism to negotiate and monitor latency, jitter, bandwidth, and
 packet loss, and to alert whenever one of the negotiated conditions
 is violated.

 Implementation details on the actions to be triggered upon reception/
 detection of QoS alerts exchanged by the protocol are out of scope of
 this document; it is either application dependent (e.g., act to
 increase quality or reduce bit-rate) or network dependent (e.g.,
 change connection’s quality profile).

 This protocol specification is the product of research conducted over
 a number of years; it is presented here as a permanent record and to
 offer a foundation for future similar work. It does not represent a
 standard protocol and does not have IETF consensus.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This is a contribution to the RFC Series, independently of any other
 RFC stream. The RFC Editor has chosen to publish this document at
 its discretion and makes no statement about its value for
 implementation or deployment. Documents approved for publication by
 the RFC Editor are not candidates for any level of Internet Standard;
 see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8802.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

 1. Introduction
 1.1. Scope

 1.2. Motivation
 1.3. Summary of Features
 1.4. Differences from OWAMP/TWAMP
 2. Terminology
 3. Overview of Operation
 4. Q4S Messages
 4.1. Requests
 4.2. Responses
 4.3. Header Fields
 4.3.1. Common Q4S Header Fields
 4.3.2. Specific Q4S Request Header Fields
 4.3.3. Specific Q4S Response Header Fields
 4.4. Bodies
 4.4.1. Encoding
 5. Q4S Method Definitions
 5.1. BEGIN
 5.2. READY
 5.3. PING
 5.4. BWIDTH
 5.5. Q4S-ALERT
 5.6. Q4S-RECOVERY
 5.7. CANCEL
 6. Response Codes
 6.1. 100 Trying
 6.2. Success 2xx
 6.2.1. 200 OK
 6.3. Redirection 3xx
 6.4. Request Failure 4xx
 6.4.1. 400 Bad Request
 6.4.2. 404 Not Found
 6.4.3. 405 Method Not Allowed
 6.4.4. 406 Not Acceptable
 6.4.5. 408 Request Timeout
 6.4.6. 413 Request Entity Too Large
 6.4.7. 414 Request-URI Too Long
 6.4.8. 415 Unsupported Media Type
 6.4.9. 416 Unsupported URI Scheme
 6.5. Server Failure 5xx
 6.5.1. 500 Server Internal Error
 6.5.2. 501 Not Implemented
 6.5.3. 503 Service Unavailable
 6.5.4. 504 Server Time-Out
 6.5.5. 505 Version Not Supported
 6.5.6. 513 Message Too Large
 6.6. Global Failures 6xx
 6.6.1. 600 Session Does Not Exist
 6.6.2. 601 Quality Level Not Allowed
 6.6.3. 603 Session Not Allowed
 6.6.4. 604 Authorization Not Allowed
 7. Protocol
 7.1. Protocol Phases
 7.2. SDP Structure
 7.2.1. "qos-level" Attribute
 7.2.2. "alerting-mode" Attribute
 7.2.3. "alert-pause" Attribute
 7.2.4. "recovery-pause" Attribute
 7.2.5. "public-address" Attributes
 7.2.6. "latency" Attribute
 7.2.7. "jitter" Attribute
 7.2.8. "bandwidth" Attribute
 7.2.9. "packetloss" Attribute
 7.2.10. "flow" Attributes
 7.2.11. "measurement" Attributes
 7.2.12. "max-content-length" Attribute
 7.3. Measurements
 7.3.1. Latency
 7.3.2. Jitter
 7.3.3. Bandwidth
 7.3.4. Packet Loss
 7.4. Handshake Phase
 7.5. Negotiation Phase

 7.5.1. Stage 0: Measurement of Latencies and Jitter
 7.5.2. Stage 1: Measurement of Bandwidth and Packet Loss
 7.5.3. Quality Constraints Not Reached
 7.5.3.1. Actuator Role
 7.5.3.2. Policy Server Role
 7.5.4. "qos-level" Changes
 7.6. Continuity Phase
 7.7. Termination Phase
 7.7.1. Sanity Check of Quality Sessions
 7.8. Dynamic Constraints and Flows
 7.9. "qos-level" Upgrade and Downgrade Operation
 8. General User Agent Behavior
 8.1. Roles in Peer-to-Peer Scenarios
 8.2. Multiple Quality Sessions in Parallel
 8.3. General Client Behavior
 8.3.1. Generating Requests
 8.4. General Server Behavior
 9. Implementation Recommendations
 9.1. Default Client Constraints
 9.2. Latency and Jitter Measurements
 9.3. Bandwidth Measurements
 9.4. Packet Loss Measurement Resolution
 9.5. Measurements and Reactions
 9.6. Instability Treatments
 9.6.1. Loss of Control Packets
 9.6.2. Outlier Samples
 9.7. Scenarios
 9.7.1. Client to ACP
 9.7.2. Client to Client
 10. Security Considerations
 10.1. Confidentiality Issues
 10.2. Integrity of Measurements and Authentication
 10.3. Privacy of Measurements
 10.4. Availability Issues
 10.5. Bandwidth Occupancy Issues
 11. Future Code Point Requirements
 11.1. Service Port
 12. IANA Considerations
 13. References
 13.1. Normative References
 13.2. Informative References
 Acknowledgements
 Contributors
 Authors’ Addresses

1. Introduction

 The World Wide Web (WWW) is a distributed hypermedia system that has
 gained widespread acceptance among Internet users. Although WWW
 browsers support other, preexisting Internet application protocols,
 the primary protocol used between WWW clients and servers became the
 HyperText Transfer Protocol (HTTP) ([RFC7230], [RFC7231], [RFC7232],
 [RFC7233], [RFC7234], and [RFC7235]). Since then, HTTP over TLS
 (known as HTTPS and described in [RFC2818]) has become an imperative
 for providing secure and authenticated WWW access. The mechanisms
 described in this document are equally applicable to HTTP and HTTPS.

 The ease of use of the Web has prompted its widespread employment as
 a client/server architecture for many applications. Many of such
 applications require the client and the server to be able to
 communicate with each other and exchange information with certain
 quality constraints.

 Quality in communications at the application level consists of four
 measurable parameters:

 Latency: The time a message takes to travel from source to
 destination. It may be approximated as RTT/2 (round-trip
 time), assuming the networks are symmetrical. In this context,
 we will consider the statistical median formula.

 Jitter: Latency variation. There are some formulas to calculate
 jitter, and in this context, we will consider the arithmetic
 mean formula.

 Bandwidth: Bit rate of communication. To ensure quality, a protocol
 must ensure the availability of the bandwidth needed by the
 application.

 Packet loss: The percentage of packet loss is closely related to
 bandwidth and jitter. Packet loss affects bandwidth because a
 high packet loss sometimes implies retransmissions that also
 consumes extra bandwidth, other times the retransmissions are
 not achieved (for example, in video streaming over UDP), and
 the information received is less than the required bandwidth.
 In terms of jitter, a packet loss sometimes is seen by the
 destination as a larger time between arrivals, causing a jitter
 growth.

 Any other communication parameter, such as throughput, is not a
 network parameter because it depends on protocol window size and
 other implementation-dependent aspects.

 The Q4S protocol provides a mechanism for quality monitoring based on
 an HTTP syntax and the Session Description Protocol (SDP) in order to
 be easily integrated in the WWW, but it may be used by any type of
 application, not only those based on HTTP. Quality requirements may
 be needed by any type of application that communicates using any kind
 of protocol, especially those with real-time constraints. Depending
 on the nature of each application, the constraints may be different,
 leading to different parameter thresholds that need to be met.

 Q4S is an application-level client/server protocol that continuously
 measures session quality for a given flow (or set of flows), end-to-
 end (e2e) and in real time; raising alerts if quality parameters are
 below a given negotiated threshold and sending recoveries when
 quality parameters are restored. Q4S describes when these
 notifications, alerts, and recoveries need to be sent and the entity
 receiving them. The actions undertaken by the receiver of the alert
 are out of scope of the protocol.

 Q4S is session-independent from the application flows to minimize the
 impact on them. To perform the measurements, two control flows are
 created on both communication paths (forward and reverse directions).

 This protocol specification is the product of research conducted over
 a number of years and is presented here as a permanent record and to
 offer a foundation for future similar work. It does not represent a
 standard protocol and does not have IETF consensus.

1.1. Scope

 The purpose of Q4S is to measure end-to-end network quality in real
 time. Q4S does not transport any application data. This means that
 Q4S is designed to be used jointly with other transport protocols
 such as Real-time Transport Protocol (RTP) [RFC3550], Transmission
 Control Protocol (TCP) [RFC0793], QUIC [QUIC], HTTP [RFC7230], etc.

 Some existent transport protocols are focused on real-time media
 transport and certain connection metrics are available, which is the
 case of RTP and RTP Control Protocol (RTCP) [RFC3550]. Other
 protocols such as QUIC provide low connection latencies as well as
 advanced congestion control. These protocols transport data
 efficiently and provide a lot of functionalities. However, there are
 currently no other quality measurement protocols offering the same
 level of function as Q4S. See Section 1.4 for a discussion of the
 IETF’s quality measurement protocols, One-Way Active Measurement
 Protocol (OWAMP) and Two-Way Active Measurement Protocol (TWAMP).

 Q4S enables applications to become reactive under e2e network quality
 changes. To achieve it, an independent Q4S stack application must
 run in parallel with the target application. Then, Q4S metrics may

 be used to trigger actions on the target application, such as speed
 adaptation to latency in multiuser games, bitrate control at
 streaming services, intelligent commutation of delivery node at
 Content Delivery Networks, and whatever the target application
 allows.

1.2. Motivation

 Monitoring quality of service (QoS) in computer networks is useful
 for several reasons:

 * It enables real-time services and applications to verify whether
 network resources achieve a certain QoS level. This helps real-
 time services and applications to run over the Internet, allowing
 the existence of Application Content Providers (ACPs), which offer
 guaranteed real-time services to the end users.

 * Real-time monitoring allows applications to adapt themselves to
 network conditions (application-based QoS) and/or request more
 network quality from the Internet Service Provider (ISP) (if the
 ISP offers this possibility).

 * Monitoring may also be required by peer-to-peer (P2P) real-time
 applications for which Q4S can be used.

 * Monitoring enables ISPs to offer QoS to any ACP or end user
 application in an accountable way.

 * Monitoring enables e2e negotiation of QoS parameters,
 independently of the ISPs of both endpoints.

 A protocol to monitor QoS must address the following issues:

 * Must be ready to be used in conjunction with current standard
 protocols and applications, without forcing a change on them.

 * Must have a formal and compact way to specify quality constraints
 desired by the application to run.

 * Must have measurement mechanisms that avoid application disruption
 and minimize network resources consumption.

 * Must have specific messages to alert about the violation of
 quality constraints in different directions (forward and reverse)
 because network routing may not be symmetrical, and of course,
 quality constraints may not be symmetrical.

 * After having alerted about the violation of quality constraints,
 must have specific messages to inform about the recovery of
 quality constraints in corresponding directions (forward and
 reverse).

 * Must protect the data (constraints, measurements, QoS levels
 demanded from the network) in order to avoid the injection of
 malicious data in the measurements.

1.3. Summary of Features

 The Quality for Service (Q4S) protocol is a message-oriented
 communication protocol that can be used in conjunction with any other
 application-level protocol. Q4S is a measurement protocol. Any
 action taken derived from its measurements are out of scope of the
 protocol. These actions depend on the application provider and may
 be application-level adaptive reactions, may involve requests to the
 ISP, or whatever the application provider decides.

 The benefits in quality measurements provided by Q4S can be used by
 any type of application that uses any type of protocol for data
 transport. It provides a quality monitoring scheme for any
 communication that takes place between the client and the server, not
 only for the Q4S communication itself.

 Q4S does not establish multimedia sessions, and it does not transport
 application data. It monitors the fulfillment of the quality
 requirements of the communication between the client and the server;
 therefore, it does not impose any restrictions on the type of
 application, protocol, or usage of the monitored quality connection.

 Some applications may vary their quality requirements dynamically for
 any given quality parameter. Q4S is able to adapt to the changing
 application needs, modifying the parameter thresholds to the new
 values and monitoring the network quality according to the new
 quality constraints. It will raise alerts if the new constraints are
 violated.

 The Q4S session lifetime is composed of four phases with different
 purposes: Handshake, Negotiation, Continuity, and Termination.
 Negotiation and Continuity phases perform network parameter
 measurements per a negotiated measurement procedure. Different
 measurement procedures could be used inside Q4S, although one default
 measurement mechanism is needed for compatibility reasons and is the
 one defined in this document. Basically, Q4S defines how to
 transport application quality requirements and measurement results
 between a client and server and how to provide monitoring and
 alerting, too.

 Q4S must be executed just before starting a client-server application
 that needs a quality connection in terms of latency, jitter,
 bandwidth, and/or packet loss. Once the client and server have
 succeeded in establishing communication under quality constraints,
 the application can start, and Q4S continues measuring and alerting
 if necessary.

 The quality parameters can be suggested by the client in the first
 message of the Handshake phase, but it is the server that accepts
 these parameter values or forces others. The server is in charge of
 deciding the final values of quality connection.

1.4. Differences from OWAMP/TWAMP

 OWAMP [RFC4656] and TWAMP [RFC5357] are two protocols to measure
 network quality in terms of RTT, but they have a different goal than
 Q4S. The main difference is the scope: Q4S is designed to assist
 reactive applications, whereas OWAMP/TWAMP is designed to measure
 just network delay.

 The differences can be summarized in the following points:

 * OWAMP and TWAMP are not intended for measuring availability of
 resources (certain bandwidth availability, for example) but only
 RTT. However, Q4S is intended for measuring required bandwidth,
 packet loss, jitter, and latency in both directions. Available
 bandwidth is not measured by Q4S, but bandwidth required for a
 specific application is.

 * OWAMP and TWAMP do not have responsivity control (which defines
 the speed of protocol reactions under network quality changes)
 because these protocols are designed to measure network
 performance, not to assist reactive applications, and do not
 detect the fluctuations of quality within certain time intervals
 to take reactive actions. However, responsivity control is a key
 feature of Q4S.

 * OWAMP and TWAMP are not intended to run in parallel with reactive
 applications, but the Q4S protocol’s goal is to run in parallel
 and assist reactive applications in making decisions based on Q4S-
 ALERT packets, which may trigger actions.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Overview of Operation

 This section introduces the basic operation of Q4S using simple
 examples. This section is of a tutorial nature and does not contain
 any normative statements.

 The first example shows the basic functions of Q4S: communication
 establishment between a client and a server, quality requirement
 negotiations for the requested application, application start and
 continuous quality parameter measurements, and finally communication
 termination.

 The client triggers the establishment of the communication by
 requesting a specific service or application from the server. This
 first message must have a special URI [RFC3986], which may force the
 use of the Q4S protocol if it is implemented in a standard web
 browser. This message consists of a Q4S BEGIN method, which can
 optionally include a proposal for the communication quality
 requirements in an SDP body. This option gives the client a certain
 negotiation capacity about quality requirements, but it will be the
 server who finally decides the stated requirements.

 This request is answered by the server with a Q4S 200 OK response
 letting the client know that it accepts the request. This response
 message must contain an SDP body with the following:

 * The assigned Q4S sess-id.

 * The quality constraints required by the requested application.

 * The measurement procedure to use.

 * "alerting-mode" attribute: There are two different scenarios for
 sending alerts that trigger actions either on the network or in
 the application when measurements identify violated quality
 constraints. In both cases, alerts are triggered by the server.

 (a) Q4S-aware-network scenario: The network is Q4S aware and
 reacts by itself to these alerts. In this scenario, Q4S-
 ALERT messages are sent by the server to the client, and
 network elements inspect and process these alert messages.
 The alerting mode in this scenario is called Q4S-aware-
 network alerting mode.

 (b) Reactive scenario: As shown in Figure 1, the network is not
 Q4S aware. In this scenario, alert notifications are sent to
 a specific node, called an Actuator, which is in charge of
 making decisions regarding what actions to trigger: either to
 change application behavior to adapt it to network conditions
 and/or invoke a network policy server in order to reconfigure
 the network and request better quality for application flows.

 +------+ +-----------+
 | App |<----- app flows---------->|Application|
 |Client| +-----------+
 +------+ A
 |
 +------+ +------+ +--------+
 | Q4S |<----Q4S---->| Q4S |<----->|Actuator|
 |Client| |Server| +--------+
 +------+ +------+ |
 V
 +-------------+
 |policy server|
 +-------------+

 Figure 1: Reactive Scenario

 The format of messages exchanged between the server stack and
 the Actuator doesn’t follow Q4S codification rules; their
 format will be implementation dependent. In this way, we
 will call the messages sent from the server stack to the
 Actuator "notifications" (e.g., alert notifications) and the
 messages sent from the Actuator to the server stack in
 response to notifications "acknowledges" (e.g., alert
 acknowledges).

 * "alert-pause" attribute: The amount of time between consecutive
 alerts. In the Q4S-aware-network scenario, the server has to wait
 this period of time between Q4S-ALERT messages sent to the client.
 In the Reactive scenario, the server stack has to wait this period
 of time between alert notifications sent to the Actuator.
 Measurements are not stopped in Negotiation or Continuity phases
 during this period of time, but no alerts are sent, even with
 violated network quality constraints, in order to leave time for
 network reconfiguration or for application adjustments.

 * "recovery-pause" attribute: The amount of time the Q4S server
 waits before trying to recover the initial "qos-level"
 (Section 7.2.1). After having detected violation of quality
 constraints several times, the "qos-level" will have been
 increased accordingly. If this violation detection finally stops,
 the server waits for a period of time (recovery time), and if the
 situation persists, it tries to recover to previous "qos-level"
 values gradually by sending Q4S-RECOVERY messages to the client in
 the Q4S-aware-network scenario, or recovery notifications to the
 Actuator in the Reactive scenario (Section 7.9).

 It is important to highlight that any Q4S 200 OK response sent by the
 server to the client at any time during the life of a quality session
 may contain an SDP body with new values of quality constraints
 required by the application. Depending on the phase and the state of
 the measurement procedure within the specific phase, the client will
 react accordingly to take into account the new quality constraints in
 the measurement procedure.

 Once the communication has been established (i.e., the Handshake
 phase is finished), the protocol will verify that the communication
 path between the client and the server meets the quality constraints
 in both directions, from and to the server (Negotiation phase). This
 Negotiation phase requires taking measurements of the quality
 parameters: latencies, jitter, bandwidth, and packet loss. This
 phase is initiated with a client message containing a Q4S READY
 method, which will be answered by the server with a Q4S 200 OK
 response.

 Negotiation measurements are achieved in two sequential stages:

 Stage 0: latency and jitter measurements

 Stage 1: bandwidth and packet loss measurements

 Stage 0 measurements are taken through Q4S PING messages sent from
 both the client and the server. All Q4S PING requests will be
 answered by Q4S 200 OK messages to allow for bidirectional
 measurements.

 Different client and server implementations may send a different
 number of PING messages for measuring, although at least 255 messages
 should be considered to perform the latency measurement. The Stage 0
 measurements only may be considered ended when neither client nor
 server receive new PING messages after an implementation-dependent
 guard time. Only after Stage 0 has ended, can the client send a
 "READY 1" message.

 After a pre-agreed number of measurements have been performed,
 determined by the measurement procedure sent by the server, three
 scenarios may be possible:

 (a) Measurements do not meet the requirements: in this case, the
 stage 0 is repeated after sending an alert from the server to
 the client or from the server stack to the Actuator, depending
 on the alerting mode defined in the Handshake phase. Notice
 that measurements continue to be taken but no alerts are sent
 during the "alert-pause" time. In the Reactive scenario, the
 Actuator will decide either to forward the alert notification to
 the network policy server or to the application, depending on
 where reconfiguration actions have to be taken.

 (b) Measurements do meet the requirements: in this case, client
 moves to stage 1 by sending a new READY message.

 (c) At any time during the measurement procedure, the Q4S 200 OK
 message sent by the server to the client, in response to a Q4S
 PING message, contains an SDP body with new values of quality
 constraints required by the application. This means the
 application has varied their quality requirements dynamically;
 therefore, quality thresholds used while monitoring quality
 parameters have to be changed to the new constraints. In this
 case, the client moves to the beginning of Stage 0 for
 initiating the negotiation measurements again.

 Stage 1 is optional. Its purpose is to measure the availability of
 application-needed bandwidth. If the "bandwidth" attribute is set to
 zero kbps in the SDP, the client can skip stage 1 by sending a "READY
 2" message after completion of stage 0. Stage 1 measurements are
 achieved through Q4S BWIDTH messages sent from both the client and
 the server. Unlike PING messages, Q4S BWIDTH requests will not be
 answered.

 If Stage 0 and 1 meet the application quality constraints, the
 application may start. Q4S will enter the Continuity phase by
 measuring the network quality parameters through the Q4S PING message
 exchange on both connection paths and raising alerts in case of
 violation.

 Once the client wants to terminate the quality session, it sends a
 Q4S CANCEL message, which will be acknowledged by the server with
 another Q4S CANCEL message. Termination of quality sessions are
 always initiated by the client because Q4S TCP requests follow the
 client/server schema.

 Figure 2 depicts the message exchange in a successful scenario.

 +---+
 | |
 | Client Server |
 | |
 Handshake | --------- Q4S BEGIN -----------> |
 | <-------- Q4S 200 OK ----------- |
 | |
 Negotiation | |
 (Stage 0) | --------- Q4S READY 0----------> |
 | <-------- Q4S 200 OK ----------- |
 | |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | --------- Q4S PING ------------> |
 | <-------- Q4S PING ------------- |
 | --------- Q4S 200 OK ----------> |
 | <-------- Q4S 200 OK ----------- |
 | ... |
 Negotiation | |
 (Stage 1) | --------- Q4S READY 1----------> |
 | <-------- Q4S 200 OK ----------- |
 | |
 | --------- Q4S BWITDH ----------> |

 | <-------- Q4S BWIDTH------------ |
 | --------- Q4S BWITDH ----------> |
 | <-------- Q4S BWIDTH------------ |
 | ... |
 Continuity | --------- Q4S READY 2 ---------> |
 | <-------- Q4S 200 OK ----------- | app start
 | |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | |
 Termination | --------- Q4S CANCEL ----------> | app end
 | <-------- Q4S CANCEL ----------- |
 | |
 +---+

 Figure 2: Successful Q4S Message Exchange

 Both client and server measurements are included in the PING and
 BWIDTH messages, allowing both sides of the communication channel to
 be aware of all measurements in both directions.

 The following two examples show the behavior of the Q4S protocol when
 quality constraints are violated, and alerts are generated; and,
 later on, when the violation of quality constraints stops leading to
 the execution of the recovery process. The first example (Figure 3)
 shows the Q4S-aware-network alerting mode scenario:

 +---+
 | |
 | Client Server |
 | |
 Handshake | --------- Q4S BEGIN -----------> |
 | <-------- Q4S 200 OK ----------- |
 | |
 Negotiation | |
 (Stage 0) | --------- Q4S READY 0----------> |
 | <-------- Q4S 200 OK ----------- |
 | |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | ... |
 | |
 | <-------- Q4S-ALERT ------------ |
 | -------- Q4S-ALERT ------------> |
 | (alert-pause start) |
 Repetition | |
 of Stage 0 | --------- Q4S READY 0----------> |
 | <-------- Q4S 200 OK ----------- |
 | |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | ... |
 Negotiation | |
 (Stage 1) | --------- Q4S READY 1----------> |
 | <-------- Q4S 200 OK ----------- |
 | |
 | --------- Q4S BWITDH ----------> |
 | <-------- Q4S BWIDTH------------ |
 | ... |
 | |
 Continuity | --------- Q4S READY 2 ---------> |
 | <-------- Q4S 200 OK ----------- | app start
 | |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |

 | -------- Q4S 200 OK ----------> |
 | ... |
 |(alert-pause expires & |
 | violated constraints) |
 | <-------- Q4S-ALERT ------------ |
 | --------- Q4S-ALERT -----------> |
 | |
 | (alert-pause start) |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | --------- Q4S 200 OK ----------> |
 | ... |
 |(alert-pause expires & |
 | violated constraints) |
 | <-------- Q4S-ALERT ------------ |
 | --------- Q4S-ALERT -----------> |
 | (alert-pause) |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | ... |
 |(alert-pause expires & |
 | Fulfilled constraints) |
 | |
 | (recovery-pause start) |
 | |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | ... |
 |(recovery-pause expires & |
 | Fulfilled constraints) |
 | <--------- Q4S-RECOVERY --------- |
 | -------- Q4S-RECOVERY -----------> |
 | |
 | (recovery-pause start) |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | ... |
 | |
 Termination | --------- Q4S CANCEL ----------> | app end
 | <-------- Q4S CANCEL ----------- |
 | |
 +---+

 Figure 3: Q4S-Aware-Network Alerting Mode

 In this Q4S-aware-network alerting mode scenario, the server may send
 Q4S alerts to the client at any time upon detection of violated
 quality constraints. This alerting exchange must not interrupt the
 continuity quality parameter measurements between client and server.

 The second example depicted in Figure 4 represents the Reactive
 scenario, in which alert notifications are sent from the server stack
 to the Actuator, which is in charge of deciding to act over
 application behavior and/or to invoke a network policy server. The
 Actuator is an entity that has a defined set of different quality
 levels and decides how to act depending on the actions stated for
 each of these levels; it can take actions for making adjustments on
 the application, or it can send a request to the policy server for
 acting on the network. The policy server also has a defined set of
 different quality levels previously agreed upon between the
 Application Content Provider and the ISP. The Reactive alerting mode
 is the default mode.

 +---+

 | |
 | Client Server Actuator |
 Handshake | ----- Q4S BEGIN -----> |
 | <---- Q4S 200 OK ----- |
 | |
 Negotiation | |
 (Stage 0) | ----- Q4S READY 0----> |
 | <---- Q4S 200 OK ----- |
 | |
 | ----- Q4S PING ------> |
 | <---- Q4S 200 OK ----- |
 | <---- Q4S PING ------- |
 | ---- Q4S 200 OK ----> |
 | ... |
 | (alert-pause start) |
 | --alert |
 | notification--> |
 | |
 | <--alert |
 | acknowledge--- |
 | |
 Repetition | |
 of Stage 0 | ----- Q4S READY 0----> |
 | <---- Q4S 200 OK ----- |
 | |
 | ----- Q4S PING ------> |
 | <---- Q4S 200 OK ----- |
 | <---- Q4S PING ------- |
 | ... |
 |(alert-pause expires & |
 | violated constraints) |
 | |
 | --alert |
 | notification--> |
 | |
 | <--alert |
 | acknowledge--- |
 | |
 | ----- Q4S PING ------> |
 | <---- Q4S 200 OK ----- |
 | <---- Q4S PING ------- |
 | ... |
 Negotiation | |
 (Stage 1) | ----- Q4S READY 1----> |
 | <---- Q4S 200 OK ----- |
 | |
 | ----- Q4S BWITDH ----> |
 | <---- Q4S BWIDTH------ |
 | ... |
 Continuity | ----- Q4S READY 2 ---> |
 | <---- Q4S 200 OK ----- | app start
 | |
 |(alert-pause expires & |
 | fulfilled constraints) |
 | |
 |(recovery-pause start) |
 | ----- Q4S PING ------> |
 | <---- Q4S 200 OK ----- |
 | <---- Q4S PING ------- |
 | ----- Q4S PING ------> |
 | |
 |(recovery-pause expires & |
 | fulfilled constraints) |
 | |
 | --recovery |
 | notification--> |
 | |
 | <--recovery |
 | acknowledge--- |
 | |
 |(recovery-pause start) |

 | <---- Q4S 200 OK ----- |
 | <---- Q4S PING ------- |
 | ----- Q4S 200 OK ----> |
 | ----- Q4S PING ------> |
 | ... |
 | |
 Termination | ----- Q4S CANCEL ----> | app end
 | --cancel |
 | notification--> |
 | |
 | <--cancel |
 | acknowledge-- |
 | <---- Q4S CANCEL ----- |
 | |
 +---+

 Figure 4: Reactive Alerting Mode

 At the end of any stage of the Negotiation phase, the server sends an
 alert notification to the Actuator if quality constraints are
 violated. During the period of time defined by the "alert-pause"
 attribute, no further alert notifications are sent, but measurements
 are not interrupted. This way, both the client and the server will
 detect network improvements as soon as possible. In a similar way
 during the Continuity phase, the server may send alert notifications
 at any time to the Actuator upon detection of violated quality
 constraints. This alerting exchange must not interrupt the
 continuity measurements between client and server.

 Finally, in the Termination phase, Q4S CANCEL messages sent from the
 client to the server must be forwarded from the server to the
 Actuator in order to release possible assigned resources for the
 session.

4. Q4S Messages

 Q4S is a text-based protocol and uses the UTF-8 charset [RFC3629]. A
 Q4S message is either a request or a response.

 Both request and response messages use the basic format of Internet
 Message Format [RFC5322]. Both types of messages consist of a start-
 line, one or more header fields, an empty line indicating the end of
 the header fields, and an optional message-body. This document uses
 ABNF notation [RFC5234] for the definitions of the syntax of
 messages.

 The start-line, each message-header line, and the empty line MUST be
 terminated by a carriage-return line-feed sequence (CRLF). Note that
 the empty line MUST be present even if the message-body is not.

 generic-message = start-line CRLF
 *message-header CRLF
 CRLF
 [message-body]
 start-line = Request-Line / Status-Line

 Much of Q4S’s messages and header field syntax are identical to
 HTTP/1.1. However, Q4S is not an extension of HTTP.

4.1. Requests

 Q4S requests are distinguished by having a Request-Line for a start-
 line. A Request-Line contains a method name, a Request-URI, and the
 protocol version separated by a single space (SP) character.

 The Request-Line ends with CRLF. No CR or LF are allowed except in
 the end-of-line CRLF sequence. No linear whitespace (LWSP) is
 allowed in any of the elements.

 Request-Line = Method SP Request-URI SP Q4S-Version CRLF

 Method: This specification defines seven methods: BEGIN for starting
 and negotiating quality sessions, READY for synchronization of
 measurements, PING and BWIDTH for quality measurements
 purposes, CANCEL for terminating sessions, Q4S-ALERT for
 reporting quality violations, and Q4S-RECOVERY for reporting
 quality recovery.

 Request-URI: The Request-URI is a Q4S URI [RFC3986] as described in
 Section 7.4. The Request-URI MUST NOT contain unescaped spaces
 or control characters and MUST NOT be enclosed in "<>".

 Q4S-Version: Both request and response messages include the version
 of Q4S in use. To be compliant with this specification,
 applications sending Q4S messages MUST include a Q4S-Version of
 "Q4S/1.0". The Q4S-Version string is case insensitive, but
 implementations MUST send uppercase. Unlike HTTP/1.1, Q4S
 treats the version number as a literal string. In practice,
 this should make no difference.

4.2. Responses

 Q4S responses are distinguished from requests by having a Status-Line
 as their start-line. A Status-Line consists of the protocol version
 followed by a numeric Status-Code and its associated textual phrase,
 with each element separated by a single SP character. No CR or LF is
 allowed except in the final CRLF sequence.

 Status-Line = Q4S-Version SP Status-Code SP Reason-Phrase CRLF

 The Status-Code is a 3-digit integer result code that indicates the
 outcome of an attempt to understand and satisfy a request. The
 Reason-Phrase is intended to give a short textual description of the
 Status-Code. The Status-Code is intended for use by automata,
 whereas the Reason-Phrase is intended for the human user. A client
 is not required to examine or display the Reason-Phrase.

 While this specification suggests specific wording for the Reason-
 Phrase, implementations MAY choose other text, for example, in the
 language indicated in the Accept-Language header field of the
 request.

 The first digit of the Status-Code defines the class of response.
 The last two digits do not have any categorization role. For this
 reason, any response with a status code between 100 and 199 is
 referred to as a "1xx response", any response with a status code
 between 200 and 299 as a "2xx response", and so on. Q4S/1.0 allows
 following values for the first digit:

 1xx: Provisional -- request received, continuing to process the
 request;

 2xx: Success -- the action was successfully received, understood,
 and accepted;

 3xx: Redirection -- further action needs to be taken in order to
 complete the request;

 4xx: Request Failure -- the request contains bad syntax or cannot be
 fulfilled at this server;

 5xx: Server Error -- the server failed to fulfill an apparently
 valid request;

 6xx: Global Failure -- the request cannot be fulfilled at any
 server.

 The status codes are the same as described in HTTP [RFC7231]. In the
 same way as HTTP, Q4S applications are not required to understand the
 meaning of all registered status codes, though such understanding is
 obviously desirable. However, applications MUST understand the class
 of any status code, as indicated by the first digit, and treat any

 unrecognized response as being equivalent to the x00 status code of
 that class.

 The Q4S-ALERT, Q4S-RECOVERY, and CANCEL requests do not have to be
 responded to. However, after receiving a Q4S-ALERT, Q4S-RECOVERY, or
 CANCEL request, the server SHOULD send a Q4S-ALERT, Q4S-RECOVERY, or
 CANCEL request to the client.

4.3. Header Fields

 Q4S header fields are identical to HTTP header fields in both syntax
 and semantics.

 Some header fields only make sense in requests or responses. These
 are called request header fields and response header fields,
 respectively. If a header field appears in a message that does not
 match its category (such as a request header field in a response), it
 MUST be ignored.

4.3.1. Common Q4S Header Fields

 These fields may appear in request and response messages.

 Session-Id: the value for this header field is the same sess-id used
 in SDP (embedded in the SDP "o=" line) and is assigned by the
 server. The messages without SDP MUST include this header
 field. If a message has an SDP body, this header field is
 optional. The method of sess-id allocation is up to the
 creating tool, but it is suggested that a UTC timestamp be used
 to ensure uniqueness.

 Sequence-Number: sequential and cyclic positive integer number
 assigned to PING and BWIDTH messages and acknowledged in 200 OK
 responses.

 Timestamp: this optional header field contains the system time (with
 the best possible accuracy). It indicates the time in which
 the PING request was sent. If this header field is present in
 PING messages, then the 200 OK response messages MUST include
 this value.

 Stage: this is used in the client’s READY requests and the server’s
 200 OK responses during the Negotiation and Continuity phases
 in order to synchronize the initiation of the measurements.
 Example: Stage: 0

4.3.2. Specific Q4S Request Header Fields

 In addition to HTTP header fields, these are the specific Q4S request
 header fields:

 User-Agent: this header field contains information about the
 implementation of the user agent. This is for statistical
 purposes, the tracing of protocol violations, and the automated
 recognition of user agents for the sake of tailoring responses
 to avoid particular user agent limitations. User agents SHOULD
 include this field with requests. The field MAY contain
 multiple product tokens and comments identifying the agent and
 any sub-products that form a significant part of the user
 agent. By convention, the product tokens are listed in order
 of their significance for identifying the application.

 Signature: this header field contains a digital signature that can
 be used by the network, Actuator, or policy server to validate
 the SDP, preventing security attacks. The Signature is an
 optional header field generated by the server according to the
 pre-agreed security policies between the Application Content
 Provider and the ISP. For example, a hash algorithm and
 encryption method such as SHA256 [RFC6234] and RSA [RFC8017]
 based on the server certificate could be used. This
 certificate is supposed to be delivered by a Certification

 Authority (CA) or policy owner to the server. The signature is
 applied to the SDP body.

 Signature= RSA (SHA256 (<sdp>), <certificate>)

 If the Signature header field is not present, other validation
 mechanisms MAY be implemented in order to provide assured
 quality with security and control.

 Measurements: this header field carries the measurements of the
 quality parameters in PING and BWIDTH requests. The format is:

 Measurements: "l=" " "|[0..9999] ", j=" " "|[0..9999] ", pl="
 " "|[0.00 .. 100.00] ", bw=" " "|[0..999999]

 Where "l" stands for latency followed by the measured value (in
 milliseconds) or an empty space, "j" stands for jitter followed
 by the measured value (in milliseconds) or an empty space, "pl"
 stands for packet loss followed by the measured value (in
 percentage with two decimals) or an empty space, and "bw"
 stands for bandwidth followed by the measured value (in kbps)
 or an empty space.

4.3.3. Specific Q4S Response Header Fields

 Expires: its purpose is to provide a sanity check and allow the
 server to close inactive sessions. If the client does not send
 a new request before the expiration time, the server MAY close
 the session. The value MUST be an integer, and the measurement
 units are milliseconds.

 In order to keep the session open, the server MUST send a Q4S
 alert before the session expiration (Expires header field),
 with the same quality levels and an alert cause of "keep-
 alive". The purpose of this alert is to avoid TCP sockets,
 which were opened with READY message, from being closed,
 specially in NAT scenarios.

4.4. Bodies

 Requests, including new requests defined in extensions to this
 specification, MAY contain message bodies unless otherwise noted.
 The interpretation of the body depends on the request method.

 For response messages, the request method and the response status
 code determine the type and interpretation of any message body. All
 responses MAY include a body.

 The Internet media type of the message body MUST be given by the
 Content-Type header field.

4.4.1. Encoding

 The body MUST NOT be compressed. This mechanism is valid for other
 protocols such as HTTP and SIP [RFC3261], but a compression/coding
 scheme will limit the way the request is parsed to certain logical
 implementations, thus making the protocol concept more implementation
 dependent. In addition, the bandwidth calculation may not be valid
 if compression is used. Therefore, the HTTP Accept-Encoding request
 header field cannot be used in Q4S with values different from
 "identity", and if it is present in a request, the server MUST ignore
 it. In addition, the response header field Content-Encoding is
 optional, but if present, the unique permitted value is "identity".

 The body length in bytes MUST be provided by the Content-Length
 header field. The "chunked" transfer encoding of HTTP/1.1 MUST NOT
 be used for Q4S.

 | Note: The chunked encoding modifies the body of a message in
 | order to transfer it as a series of chunks, each one with its
 | own size indicator.

5. Q4S Method Definitions

 The Method token indicates the method to be performed on the resource
 identified by the Request-URI. The method is case sensitive.

 Method = "BEGIN" | "READY" | "PING" | "BWIDTH" |
 "Q4S-ALERT" | "Q4S-RECOVERY" | "CANCEL" | extension-method

 extension-method = token

 The list of methods allowed by a resource can be specified in an
 Allow header field [RFC7231]. The return code of the response always
 notifies the client when a method is currently allowed on a resource,
 since the set of allowed methods can change dynamically. Any server
 application SHOULD return the status code 405 (Method Not Allowed) if
 the method is known, but not allowed for the requested resource, and
 501 (Not Implemented) if the method is unrecognized or not
 implemented by the server.

5.1. BEGIN

 The BEGIN method requests information from a resource identified by a
 Q4S URI. The purpose of this method is to start the quality session.

 This method is used only during the Handshake phase to retrieve the
 SDP containing the sess-id and all quality and operation parameters
 for the desired application to run.

 When a BEGIN message is received by the server, any current quality
 session MUST be canceled, and a new session should be created.

 The response to a Q4S BEGIN request is not cacheable.

5.2. READY

 The READY method is used to synchronize the starting time for the
 sending of PING and BWIDTH messages over UDP between clients and
 servers. Including the Stage header field in this method is
 mandatory.

 This message is used only in Negotiation and Continuity phases, and
 only just before making a measurement. Otherwise (outside of this
 context), the server MUST ignore this method.

5.3. PING

 This message is used during the Negotiation and Continuity phases to
 measure the RTT and jitter of a session. The message MUST be sent
 only over UDP ports.

 The fundamental difference between the PING and BWIDTH requests is
 reflected in the different measurements achieved with them. PING is
 a short message, and it MUST be answered in order to measure RTT and
 jitter, whereas BWIDTH is a long message and MUST NOT be answered.

 PING is a request method that can be originated by either the client
 or the server. The client MUST also answer the server PING messages,
 assuming a "server role" for these messages during the measurement
 process.

 Including the Measurements header field in this method is mandatory,
 and provides updated measurements values for latency, jitter, and
 packet loss to the counterpart.

5.4. BWIDTH

 This message is used only during the Negotiation phase to measure the
 bandwidth and packet loss of a session. The message MUST be sent
 only over UDP ports.

 BWIDTH is a request method that can be originated by either the
 client or the server. Both client and server MUST NOT answer BWIDTH
 messages.

 Including the Measurements header field in this method is mandatory
 and provides updated measurements values for bandwidth and packet
 loss to the counterpart.

5.5. Q4S-ALERT

 This is the request message that Q4S generates when the measurements
 indicate that quality constraints are being violated. It is used
 during the Negotiation and Continuity phases.

 This informative message indicates that the user experience is being
 degraded and includes the details of the problem (bandwidth, jitter,
 packet loss measurements). The Q4S-ALERT message does not contain
 any detail on the actions to be taken, which depend on the agreements
 between all involved parties.

 Unless there is an error condition, an answer to a Q4S-ALERT request
 is optional and is formatted as a request Q4S-ALERT message. If
 there is an error condition, then a response message is sent. The
 response to a Q4S-ALERT request is not cacheable.

 This method MUST be initiated by the server in both alerting modes.
 In the Q4S-aware-network alerting mode, the Q4S-ALERT messages are
 sent by the server to the client, advising the network to react by
 itself. In the Reactive alerting mode, alert notifications are
 triggered by the server stack and sent to the Actuator (see Figure 1,
 "Reactive Scenario").

 Client----q4s----SERVER STACK--->ACTUATOR-->APP OR POLICY SERVER

 The way in which the server stack notifies the Actuator is
 implementation dependent, and the communication between the Actuator
 and the network policy server is defined by the protocol and API that
 the policy server implements.

5.6. Q4S-RECOVERY

 This is the request message that Q4S generates when the measurements
 indicate that quality constraints, which had been violated, have been
 fulfilled during a period of time ("recovery-pause"). It is used
 during the Negotiation and Continuity phases.

 This informative message indicates that the "qos-level" could be
 increased gradually until the initial "qos-level" is recovered (the
 "qos-level" established at the beginning of the session that was
 decreased during violation of constraints. See Section 7.9). The
 Q4S-RECOVERY message does not contain any detail on the actions to be
 taken, which depends on the agreements between all involved parties.

 The answer to a Q4S-RECOVERY request is formatted as a request Q4S-
 RECOVERY message. A Q4S-RECOVERY request MUST NOT be answered with a
 response message unless there is an error condition. The response to
 a Q4S-RECOVERY request is not cacheable.

 Like the Q4S-ALERT message, the Q4S-RECOVERY method is always
 initiated by the server in both alerting modes. In the Q4S-aware-
 network alerting mode, the Q4S-RECOVERY messages are sent by the
 server to the client, advising the network to react by itself. In
 the Reactive alerting mode, recovery notifications are triggered by
 the server stack and sent to the Actuator (see Figure 1, "Reactive
 Scenario").

5.7. CANCEL

 The purpose of the CANCEL message is the release of the Q4S Session-
 Id and the possible resources assigned to the session. This message
 could be triggered by the Q4S stack or by the application using the

 stack (through an implementation-dependent API).

 In the same way as Q4S-ALERT, CANCEL must not be answered with a
 response message, but with an answer formatted as a request Q4S-
 CANCEL message.

 In the Reactive scenario, the server stack MUST react to the Q4S
 CANCEL messages received from the client by forwarding a cancel
 notification to the Actuator, in order to release possible assigned
 resources for the session (at the application or at the policy
 server). The Actuator MUST answer the cancel notification with a
 cancel acknowledge towards the server stack, acknowledging the
 reception.

6. Response Codes

 Q4S response codes are used for TCP and UDP. However, in UDP, only
 the response code 200 is used.

 The receiver of an unknown response code must take a generic action
 for the received error group (1xx, 2xx, 3xx, 4xx, 5xx, 6xx). In case
 of an unknown error group, the expected action should be the same as
 with the 6xx error group.

6.1. 100 Trying

 This response indicates that the request has been received by the
 next-hop server and that some unspecified action is being taken on
 behalf of this request (for example, a database is being consulted).
 This response, like all other provisional responses, stops
 retransmissions of a Q4S-ALERT during the "alert-pause" time.

6.2. Success 2xx

 2xx responses give information about the success of a request.

6.2.1. 200 OK

 The request has succeeded.

6.3. Redirection 3xx

 3xx responses give information about the user’s new location or about
 alternative services that might be able to satisfy the request.

 The requesting client SHOULD retry the request at the new address(es)
 given by the Location header field.

6.4. Request Failure 4xx

 4xx responses are definite failure responses from a particular
 server. The client SHOULD NOT retry the same request without
 modification (for example, adding appropriate header fields or SDP
 values). However, the same request to a different server might be
 successful.

6.4.1. 400 Bad Request

 The request could not be understood due to malformed syntax. The
 Reason-Phrase SHOULD identify the syntax problem in more detail, for
 example, "Missing Sequence-Number header field".

6.4.2. 404 Not Found

 The server has definitive information that the user does not exist at
 the domain specified in the Request-URI. This status is also
 returned if the domain in the Request-URI does not match any of the
 domains handled by the recipient of the request.

6.4.3. 405 Method Not Allowed

 The method specified in the Request-Line is understood, but not
 allowed for the address identified by the Request-URI.

 The response MUST include an Allow header field containing a list of
 valid methods for the indicated address.

6.4.4. 406 Not Acceptable

 The resource identified by the request is only able to generate
 response entities that have content characteristics that are not
 acceptable according to the Accept header field sent in the request.

6.4.5. 408 Request Timeout

 The server could not produce a response within a suitable amount of
 time, and the client MAY repeat the request without modifications at
 any later time.

6.4.6. 413 Request Entity Too Large

 The server is refusing to process a request because the request
 entity-body is larger than the one that the server is willing or able
 to process. The server MAY close the connection to prevent the
 client from continuing the request.

6.4.7. 414 Request-URI Too Long

 The server is refusing to process the request because the Request-URI
 is longer than the one that the server accepts.

6.4.8. 415 Unsupported Media Type

 The server is refusing to process the request because the message
 body of the request is in a format not supported by the server for
 the requested method. The server MUST return a list of acceptable
 formats using the Accept, Accept-Encoding, or Accept-Language header
 field, depending on the specific problem with the content.

6.4.9. 416 Unsupported URI Scheme

 The server cannot process the request because the scheme of the URI
 in the Request-URI is unknown to the server.

6.5. Server Failure 5xx

 5xx responses are failure responses given when a server itself is
 having trouble.

6.5.1. 500 Server Internal Error

 The server encountered an unexpected condition that prevented it from
 fulfilling the request. The client MAY display the specific error
 condition and MAY retry the request after several seconds.

6.5.2. 501 Not Implemented

 The server does not support the functionality required to fulfill the
 request. This is the appropriate response when a server does not
 recognize the request method, and it is not capable of supporting it
 for any user.

 Note that a 405 (Method Not Allowed) is sent when the server
 recognizes the request method, but that method is not allowed or
 supported.

6.5.3. 503 Service Unavailable

 The server is temporarily unable to process the request due to a
 temporary overloading or maintenance of the server. The server MAY
 indicate when the client should retry the request in a Retry-After
 header field. If no Retry-After is given, the client MUST act as if

 it had received a 500 (Server Internal Error) response.

 A client receiving a 503 (Service Unavailable) SHOULD attempt to
 forward the request to an alternate server. It SHOULD NOT forward
 any other requests to that server for the duration specified in the
 Retry-After header field, if present.

 Servers MAY refuse the connection or drop the request instead of
 responding with 503 (Service Unavailable).

6.5.4. 504 Server Time-Out

 The server did not receive a timely response from an external server
 it accessed in attempting to process the request.

6.5.5. 505 Version Not Supported

 The server does not support, or refuses to support, the Q4S protocol
 version that was used in the request. The server is indicating that
 it is unable or unwilling to complete the request using the same
 major version as the client, other than with this error message.

 In the case that the Q4S version is not supported, this error may be
 sent by the server in the Handshake phase just after receiving the
 first BEGIN message from client.

6.5.6. 513 Message Too Large

 The server was unable to process the request because the message
 length exceeded its capabilities.

6.6. Global Failures 6xx

 6xx responses indicate that a server has definitive information about
 a particular policy not satisfied for processing the request.

6.6.1. 600 Session Does Not Exist

 The Session-Id is not valid.

6.6.2. 601 Quality Level Not Allowed

 The "qos-level" requested is not allowed for the client/server pair.

6.6.3. 603 Session Not Allowed

 The session is not allowed due to some policy (the number of sessions
 allowed for the server is exceeded, or the time band of the Q4S-ALERT
 is not allowed for the client/server pair, etc.).

6.6.4. 604 Authorization Not Allowed

 The policy server does not authorize the Q4S-ALERT quality session
 improvement operation due to an internal or external reason.

7. Protocol

 This section describes the measurement procedures, the SDP structure
 of the Q4S messages, the different Q4S protocol phases, and the
 messages exchanged in them.

7.1. Protocol Phases

 All elements of the IP network contribute to quality in terms of
 latency, jitter, bandwidth, and packet loss. All these elements have
 their own quality policies in terms of priorities, traffic mode,
 etc., and each element has its own way to manage the quality. The
 purpose of a quality connection is to establish end-to-end
 communication with enough quality for the application to function
 flawlessly.

 To monitor quality constraints of the application, four phases are
 defined and can be seen in Figure 5:

 +---+
 | |
 | |
 | Handshake ---> Negotiation -+--> Continuity ----> Termination |
A	(app start)	(app end)				
	V A V A					
	violated	violated				
	constraints	constraints				
				_______	____	
			+-------+			
+------+ +---------------------+						
 +---+

 Figure 5: Session Lifetime Phases

 Handshake phase: in which the server is contacted by the client, and
 in the answer message, the quality constraints for the application
 are communicated in the embedded SDP.

 Negotiation phase: in which the quality of the connection is
 measured in both directions (latency, jitter, bandwidth, and
 packet loss), and Q4S messages may be sent in order to alert if
 the measured quality does not meet the constraints. This phase is
 iterative until quality constraints are reached, or the session is
 canceled after a number of measurement cycles with consistent
 violation of the quality constraints. The number of measurement
 cycles executed depends on the "qos-level", which is incremented
 in each cycle until a maximum "qos-level" value is reached. Just
 after reaching the quality requirements, Q4S provides a simple
 optional mechanism using HTTP to start the application.

 Continuity phase: in which quality is continuously measured. In
 this phase, the measurements MUST avoid disturbing the application
 by consuming network resources. If quality constraints are not
 met, the server stack will notify the Actuator with an alert
 notification. If later the quality improves, the server stack
 will notify the Actuator, in this case with a recovery
 notification. After several alert notifications with no quality
 improvements, the Q4S stack SHOULD move to the Termination phase.

 Termination phase: in which the Q4S session is terminated. The
 application may be closed also or may not start.

7.2. SDP Structure

 The original goal of SDP was to announce necessary information for
 the participants and multicast MBONE (Multicast Backbone)
 applications. Right now, its use has been extended to the
 announcement and the negotiation of multimedia sessions. The purpose
 of Q4S is not to establish media stream sessions, but to monitor a
 quality connection. This connection may be later used to establish
 any type of session including media sessions; Q4S does not impose any
 conditions on the type of communication requiring quality parameters.

 SDP will be used by Q4S to exchange quality constraints and will
 therefore always have all the media descriptions ("m=") set to zero.

 The SDP embedded in the messages is the container of the quality
 parameters. As these may vary depending on the direction of the
 communication (to and from the client), all quality parameters need
 to specify the uplink and downlink values: <uplink> / <downlink> (see
 Section 7.5.3 for an example). When one or both of these values are
 empty, it MUST be understood as needing no constraint on that
 parameter and/or that direction.

 The uplink direction MUST be considered as being the communication

 from the client to the server. The downlink direction MUST be
 considered as being the communication from the server to the client.

 The SDP information can comprise all or some of the following
 parameters shown in the example below. This is an example of an SDP
 message used by Q4S included in the 200 OK response to a Q4S BEGIN
 request.

 v=0
 o=q4s-UA 53655765 2353687637 IN IP4 192.0.2.33
 s=Q4S
 i=Q4S parameters
 t=0 0
 a=qos-level:0/0
 a=alerting-mode:Reactive
 a=alert-pause:5000
 a=public-address:client IP4 198.51.100.51
 a=public-address:server IP4 198.51.100.58
 a=measurement:procedure default(50/50,75/75,5000,40/80,100/256)
 a=latency:40
 a=jitter:10/10
 a=bandwidth:20/6000
 a=packetloss:0.50/0.50
 a=flow:app clientListeningPort TCP/10000-20000
 a=flow:app clientListeningPort UDP/15000-18000
 a=flow:app serverListeningPort TCP/56000
 a=flow:app serverListeningPort UDP/56000
 a=flow:q4s clientListeningPort UDP/55000
 a=flow:q4s clientListeningPort TCP/55001
 a=flow:q4s serverListeningPort UDP/56000
 a=flow:q4s serverListeningPort TCP/56001

 As quality constraints may be changed by applications at any time
 during the Q4S session lifetime, any Q4S 200 OK response sent by the
 server to the client in the Negotiation and Continuity phases could
 also include an SDP body with the new quality requirements stated by
 the applications from then on. Therefore, in response to any PING
 request sent by the client to the server, the server could send a Q4S
 200 OK with an embedded SDP message that specifies new quality
 constraints requested by the application.

7.2.1. "qos-level" Attribute

 The "qos-level" attribute contains the QoS level for uplink and
 downlink. Default values are 0 for both directions. The meaning of
 each level is out of scope of Q4S, but a higher level SHOULD
 correspond to a better service quality.

 Appropriate attribute values: [0..9] "/" [0..9]

 The "qos-level" attribute may be changed during the session lifetime,
 raising or lowering the value as necessary following the network
 measurements and the application needs.

7.2.2. "alerting-mode" Attribute

 The "alerting-mode" attribute specifies the player in charge of
 triggering Q4S alerts in the case of constraint violation. There are
 two possible values:

 Appropriate attribute values: <"Q4S-aware-network"|"Reactive">

 Q4S-aware-network: Q4S-ALERT messages are triggered by the server to
 the client. In this case, the network is supposed to be Q4S
 aware, and reacts by itself to these alerts.

 Reactive: alert notifications are sent by the server stack to the
 Actuator. In this case, the network is not Q4S aware, and a
 specific node (Actuator) is in charge of triggering tuning
 mechanisms, either on the network or in the application.

 The "alerting-mode" attribute is optional, and if not present,
 Reactive alerting mode is assumed.

7.2.3. "alert-pause" Attribute

 In the Q4S-aware-network scenario, the "alert-pause" attribute
 specifies the amount of time (in milliseconds) the server waits
 between consecutive Q4S-ALERT messages sent to the client. In the
 Reactive scenario, the "alert-pause" attribute specifies the amount
 of time (in milliseconds) the server stack waits between consecutive
 alert notifications sent to the Actuator. Measurements are not
 stopped in Negotiation or Continuity phases during this period of
 time, but no Q4S-ALERT messages or alert notifications are fired,
 even with violated quality constraints, allowing for either network
 reconfigurations or application adjustments.

 Appropriate attribute values: [0..60000]

7.2.4. "recovery-pause" Attribute

 In the Q4S-aware-network scenario, the "recovery-pause" attribute
 specifies the amount of time (in milliseconds) the server waits for
 initiating the "qos-level" recovery process. Once the recovery
 process has started, the "recovery-pause" attribute also states the
 amount of time (in milliseconds) between consecutive Q4S-RECOVERY
 messages sent by the server to the client (in the Q4S-aware-network
 scenario) or between recovery notifications sent by the server stack
 to the Actuator (in the Reactive scenario).

 Appropriate attribute values: [0..60000]

7.2.5. "public-address" Attributes

 This attribute contains the public IP address of the client and the
 server. The server fills these attributes with its own public IP
 address and the public IP address of the first message received from
 the client in the Handshake phase.

 The purpose of these attributes is to make available the addressing
 information to the network policy server or other external entities
 in charge of processing Q4S-ALERT messages.

 Appropriate attribute values: <"client"|"server"> <"IP4"|"IP6">
 <value of IP address>

7.2.6. "latency" Attribute

 The maximum latency (considered equal for uplink and downlink)
 tolerance is specified in the "latency" attribute, expressed in
 milliseconds. In the Q4S-aware-network scenario, if the latency
 constraints are not met, a Q4S-ALERT method will be sent to the
 client. In the Reactive scenario, if the latency constraints are not
 met, an alert notification will be sent to the Actuator. If the
 "latency" attribute is not present or has a 0 value, no latency
 constraints need to be met, and no measurements MAY be taken.

 Appropriate attribute values: [0..9999]

7.2.7. "jitter" Attribute

 The maximum uplink and downlink jitter tolerance is specified in the
 "jitter" attribute, expressed in milliseconds. In the Q4S-aware-
 network scenario, if the jitter constraints are not met, a Q4S-ALERT
 method will be sent to the client. In the Reactive scenario, if the
 latency constraints are not met, an alert notification will be sent
 to the Actuator. If the "jitter" attribute is not present or has a 0
 value, no jitter constraints need to be met, and no measurements MAY
 be taken.

 Appropriate attribute values: [0..9999] "/" [0..9999]

7.2.8. "bandwidth" Attribute

 The minimum uplink and downlink bandwidth is specified in the
 "bandwidth" attribute, expressed in kbps. In the Q4S-aware-network
 scenario, if the bandwidth constraints are not met, a Q4S-ALERT
 method will be sent to the client. In the Reactive scenario, an
 alert notification will be sent to the Actuator. If the "bandwidth"
 attribute is not present or has a 0 value, no bandwidth constraints
 need to be met, and no measurements MAY be taken.

 Appropriate attribute values: [0..99999] "/" [0..99999]

7.2.9. "packetloss" Attribute

 The maximum uplink and downlink packet loss tolerance is specified in
 the "packetloss" attribute expressed in percentage (two decimal
 accuracy). In the Q4S-aware-network scenario, if the packetloss
 constraints are not met, a Q4S-ALERT method will be sent to the
 client. In the Reactive scenario, an alert notification will be sent
 to the Actuator. If the "packetloss" attribute is not present or has
 a 0 value, no packet loss constraints need to be met, and no
 measurements MAY be taken.

 Appropriate attribute values: [0.00 ..100.00] "/"[0.00 ..100.00]

7.2.10. "flow" Attributes

 These attributes specify the flows (protocol, destination IP/ports)
 of data over TCP and UDP ports to be used in uplink and downlink
 communications.

 Several "flow" attributes can be defined. These flows identify the
 listening port (client or server), the protocol (TCP [RFC0793] or UDP
 [RFC0768]) with the range of ports that are going to be used by the
 application and, of course, by the Q4S protocol (for quality
 measurements). All defined flows ("app" and "q4s") will be
 considered within the same quality profile, which is determined by
 the "qos-level" attribute in each direction. This allows us to
 assume that measurements on "q4s" flows are the same as experienced
 by the application, which is using "app" flows.

 During Negotiation and Continuity phases, the specified Q4S ports in
 the "flow:q4s" attributes of SDP will be used for Q4S messages.

 The Q4S flows comprise two UDP flows and two TCP flows (one uplink
 and one downlink for each one), whereas application traffic MAY
 consist of many flows, depending on its nature. The Handshake phase
 takes place through the Q4S Contact URI, using the standard Q4S TCP
 port. However, the Negotiation and Continuity phases will take place
 on the Q4S ports (UDP and TCP) specified in the SDP.

 The "clientListeningPort" is a port on which the client listens for
 server requests and MUST be used as the origin port of client
 responses. The "serverListeningPort" is a port on which the server
 is listening for incoming messages from the client. The origin port
 of server responses may be different than the "serverListeningPort"
 value.

 If "clientListeningPort" is zero ("a=flow:q4s clientListeningPort
 TCP/0"), the client MAY choose one randomly per OS standard rules.
 Client ports inside the SDP must always be matched against actual
 received port values on the server side in order to deal with NAT/
 NAPT devices. If a zero value or incorrect value is present, the
 server must set the value to the received origin port in the next
 message with SDP (200 OK, ALERT, and CANCEL messages).

 Attribute values:
 <"q4s"|"app"> <"serverListeningPort"|"clientListeningPort">
 <"UDP"|"TCP"> <0..65535> ["-" [0..65535]]

7.2.11. "measurement" Attributes

 These attributes contain the measurement procedure and the results of
 the quality measurements.

 Measurement parameters are included using the session attribute
 "measurement". The first measurement parameter is the procedure.
 Q4S provides a "default" procedure for measurements, but others like
 RTP/RTCP might be used and defined later. This document will only
 define and explain the "default" procedure.

 In the initial client request, a set of measurement procedures can be
 sent to the server for negotiation. One measurement procedure line
 MUST be included in the SDP message for each proposed method. The
 server MUST answer with only one line with the chosen procedure.

 For each procedure, a set of values of parameters separated by ","
 can be included in the same attribute line. The amount and type of
 parameters depends on the procedure type.

 In the following example, the "default" procedure type is chosen:

 a=measurement:procedure default(50/50,75/75,5000,40/80,100/256)

 In the "default" procedure, the meaning of these parameters is the
 following:

 * The first parameter is the interval of time (in milliseconds)
 between PING requests during the Negotiation phase. Uplink and
 downlink values from the client’s point of view are separated by
 "/". This allows different responsiveness values depending on the
 control resources used in each direction.

 * The second parameter is the time interval (in milliseconds)
 between PING requests during the Continuity phase. Uplink and
 downlink values are separated by "/". This allows two different
 responsiveness values depending on the control resources used in
 each direction.

 * The third parameter is the time interval to be used to measure
 bandwidth during the Negotiation phase.

 * The fourth parameter indicates the window size for jitter and
 latency calculations. Uplink and downlink values are separated by
 "/".

 * The fifth parameter indicates the window size for packet loss
 calculations. Uplink and downlink values are separated by "/".

 There are four more "measurement" attributes:

 a=measurement:latency 45
 a=measurement:jitter 3/12
 a=measurement:bandwidth 200/9800
 a=measurement:packetloss 0.00/1.00

 The "measurement:latency", "measurement:jitter",
 "measurement:bandwidth", and "measurement:packetloss" attributes
 contain the values measured for each of these quality parameters in
 uplink and downlink directions. Notice that latency is considered
 equal for uplink and downlink directions. Quality parameter values
 in these "measurement" attributes provide a snapshot of the quality
 reached and MUST only be included in Q4S-ALERT messages in the SDP
 body such that they can be protected from malicious attacks as these
 alerts include a signature of the SDP body in the header. The rest
 of the messages will include the measured values in the Measurements
 header field.

 In the case of the "default" procedure, the valid values are as
 follows:

 a=measurement:procedure default,[0..999]"/" [0..999] "," [0..999]

 "/" [0..999] "," [0..9999] "," [0..999]/[0..999] ","
 [0..999]/[0..999]

7.2.12. "max-content-length" Attribute

 The adaptation of measurement traffic to approximate the actual data
 streams’ characteristics is convenient to accurately estimate the
 expected QoS for applications. Particularly, packet size can have a
 remarkable effect on bandwidth estimations. Moreover, this can
 produce problems depending on the MTU of the end hosts and links
 along the path.

 Therefore, the maximum content length MAY be set in an attribute
 denoted as "max-content-length". Its value MUST be given in bytes
 and MUST NOT include application, transport, network, or link layer
 headers, i.e., size of the content length at the application layer.
 If not set, the value MUST be 1000 bytes.

 Furthermore, this attribute MAY be used to communicate MTU limits in
 endpoints, hence reducing possible bias as a result of network-layer
 fragmentation.

 For instance:

 a=max-content-length:1300

7.3. Measurements

 This section describes the way quality parameters are measured as
 defined by the "default" procedure. Measurements MUST be taken for
 any quality parameter with constraints, that is, specified in the SDP
 attributes with non-zero values. For absent attributes, measurements
 MAY be omitted.

7.3.1. Latency

 Latency measurements will be performed if the "latency" attribute
 and/or the "a=measurement:latency" attribute are present and have
 non-zero values.

 Q4S defines a PING method in order to exchange packets between the
 client and the server. Based on this PING exchange, the client and
 the server are able to calculate the round-trip time (RTT). The RTT
 is the sum of downlink latency (normally named "reverse latency") and
 uplink latency (normally named "forward latency").

 At least 255 samples of RTT MUST be taken by the client and server.
 As the forward and reverse latencies are impossible to measure, the
 client and server will assume that both latencies are identical
 (symmetric network assumption). The latency will therefore be
 calculated as the statistical median value of all the RTT samples
 divided by 2.

7.3.2. Jitter

 Jitter measurements will be performed if the "jitter" attribute and/
 or the "a=measurement:jitter" attribute are present and have non-zero
 values.

 The jitter can be calculated independently by the client and by the
 server. The downlink jitter is calculated by the client taking into
 account the time interval between PING requests as defined by the
 "measurement:procedure" attribute in the first or second parameter
 depending on the Q4S protocol phase. The client and the server MUST
 send these PING requests at the specified intervals. The client
 measures the downlink jitter, whereas the server measures the uplink
 jitter. Note that PING responses are not taken into account when
 calculating jitter values.

 Every time a PING request is received by an endpoint (either server
 or client), the corresponding jitter value is updated with the

 statistical jitter value, which is the arithmetic mean of the
 absolute values of elapsed times calculated on the first 255 packets
 received.

 Each endpoint sends a PING periodically with a fixed interval, and
 each value of "elapsed time" (ET) should be very close to this
 interval. If a PING message is lost, the ET value is doubled.
 Identifying lost PING messages, however, is not an issue because all
 PING messages are labeled with a Sequence-Number header field.
 Therefore, the receiver can discard this ET value.

 In order to have the first jitter sample, the receiver MUST wait
 until it receives 3 PING requests, because each ET is the time
 between two PINGs, and a jitter measurement needs at least two ET.

 The client measures the values of RTT and downlink jitter, and the
 server measures RTT and uplink jitter, but all measurements are
 shared with the counterpart by means of the Measurements header field
 of the PING message.

7.3.3. Bandwidth

 Bandwidth measurements will be performed if the "bandwidth" attribute
 and/or the "a=measurement:bandwidth" attribute is present and has
 non-zero values.

 In order to measure the available bandwidth, both the client and the
 server MUST start sending BWIDTH messages simultaneously using the
 UDP control ports exchanged during the Handshake phase in the SDP
 message at the needed rate to verify the availability of the
 bandwidth constraint in each direction. The messages are sent during
 the period of time defined in the third parameter of the SDP
 "measurement:procedure default" attribute in milliseconds.

 a=measurement:procedure default(50/50,75/75,5000,256/256,256/256)

 +--+
 | Rate |
 | A |
 | | | | | | | |
 |downlink rate-|-------------------+ <-- traffic |
 | | | sent by |
 | | | server |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | uplink rate-|-------------------+ <-- traffic |
 | | | sent by |
 | | | client |
 | | | |
 | | | |
 | |---|---|---|---|---|----> time |
 | 0 1 2 3 4 5 (sec.) |
 | |
 +--+

 Figure 6: Bandwidth and Packet Loss Measurements

 The goal of these measurements is not to identify the available
 bandwidth of the communication path, but to determine if the required
 bandwidth is available, meeting the application’s constraints.
 Therefore, the requested bandwidth MUST be measured sending only the

 highest bitrate required by the bandwidth attribute. This is
 illustrated in Figure 6.

 ALERTS are not expected during bandwidth measurement, but only at the
 end of the measurement time.

 When measuring bandwidth, all BWIDTH requests sent MUST be 1 kilobyte
 in length (UDP payload length by default), they MUST include a
 Sequence-Number header field with a sequential number starting at 0,
 and their content MUST consist of randomly generated values to
 minimize the effect of compression elements along the path. The
 Sequence-Number MUST be incremented by 1 with each BWIDTH packet
 sent. If any measurement stage needs to be repeated, the sequence
 number MUST start at zero again. BWIDTH requests MUST NOT be
 answered. Examples:

 Client message:
 =========================
 BWIDTH q4s://www.example.com Q4S/1.0
 User-Agent: q4s-ua-experimental-1.0
 Session-Id: 53655765
 Sequence-Number: 0
 Content-Type: text
 Content-Length: XXXX
 Measurements: l=22, j=10, pl=0.00, bw=3000

 VkZaU1FrNVZNVlZSV0doT1ZrZ (to complete up to "max-content-
 length" bytes UDP payload length)
 =========================

 The client MUST send BWIDTH packets to the server to allow the server
 to measure the uplink bandwidth. The server MUST send BWIDTH packets
 to the client to allow the client to measure the downlink bandwidth.

 Server message:
 =========================
 BWIDTH q4s://www.example.com Q4S/1.0
 Session-Id: 53655765
 Sequence-Number: 0
 Content-Type: text
 Content-Length: XXXX
 Measurements: l=22, j=7, pl=0.00, bw=200

 ZY0VaT1ZURlZVVmhyUFE9PQ (to complete up to max-content-
 length UDP payload length)
 =========================

7.3.4. Packet Loss

 Packet loss and bandwidth are measured simultaneously using the
 BWIDTH packets sent by both the client and the server. Because the
 BWIDTH packets contain a Sequence-Number header field incremented
 sequentially with each sent packet, lost packets can be easily
 identified. The lost packets MUST be counted during the measurement
 time.

7.4. Handshake Phase

 The first phase consists of a Q4S BEGIN method issued from the client
 to the server as shown in Figure 7.

 The first Q4S message MUST have a special URI [RFC3986], which forces
 the use of the Q4S protocol if it is implemented in a standard web
 browser.

 This URI, named "Contact URI", is used to request the start of a
 session. Its scheme MUST be:

 "q4s:" "//" host [":" port] [path["?" query]

 Optionally, the client can send the desired quality parameters

 enclosed in the body of the message as an SDP document. The server
 MAY take them into account when building the answer message with the
 final values in the SDP body, following a request/response schema
 [RFC3264].

 If the request is accepted, the server MUST answer it with a Q4S 200
 OK message, which MUST contain an SDP body [RFC4566] with the
 assigned sess-id (embedded in the SDP "o=" line), the IP addresses to
 be used, the flow ports to be used, the measurement procedure to be
 followed, and information about the required quality constraints.
 Additionally, the "alerting-mode" and "alert-pause" time attributes
 may be included. Q4S responses should use the protocol designator
 "Q4S/1.0".

 After these two messages are exchanged, the first phase is completed.
 The quality parameter thresholds have been sent to the client. The
 next step is to measure the actual quality of the communication path
 between the client and the server and alert if the Service Level
 Agreement (SLA) is being violated.

 +--+
 | |
 | Client Server |
 | |
 | ------- Q4S BEGIN ------------> |
 | |
 | <------ Q4S 200 OK ------------ |
 | |
 | |
 +--+

 Figure 7: Handshake Phase

 The following is an example of a client request and a server answer:

 Client Request:
 =========================
 BEGIN q4s://www.example.com Q4S/1.0
 Content-Type: application/sdp
 User-Agent: q4s-ua-experimental-1.0
 Content-Length: 142

 (SDP not shown)
 =========================

 Server Answer:
 =========================
 Q4S/1.0 200 OK
 Date: Mon, 10 Jun 2010 10:00:01 GMT
 Content-Type: application/sdp
 Expires: 3000
 Signature: 6ec1ba40e2adf2d783de530ae254acd4f3477ac4
 Content-Length: 131

 (SDP not shown)
 =========================

 The header fields used are explained in Section 4.3.

7.5. Negotiation Phase

 The Negotiation phase is in charge of measuring the quality
 parameters and verifying that the communication paths meet the
 required quality constraints in both directions as specified in the
 SDP body.

 The measured parameters will be compared with the quality constraints
 specified in the SDP body. If the quality session is compliant with
 all the quality constraints, the application can start.

 If the quality constraints are not met, a higher quality service

 level will be demanded. Depending on the scenario, this quality
 upgrade will be managed as follows:

 In the Q4S-aware-network scenario: a Q4S-ALERT method will be
 triggered by the server to the client, and the client will answer
 with the same Q4S-ALERT method. After receiving the same Q4S-
 ALERT from the counterpart, no other alerts will be triggered by
 the server during the "alert-pause" period of time in order to
 allow the network to react, but measurements will continue to be
 taken to achieve early detection of improved network quality
 conditions and a fast application start.

 In the Reactive scenario: an alert notification will be sent by the
 server stack to the Actuator, and the Actuator will answer with an
 alert acknowledgement. After receiving the alert acknowledgement
 from the Actuator, the server stack will not send other alert
 notifications during the "alert-pause" period of time in order to
 allow the Actuator to react and trigger actions on the application
 or on the policy server, but measurements will continue to be
 taken to achieve early detection of improved network quality
 conditions and a fast application start.

 In both scenarios stated above, if after several measurement cycles,
 the network constraints cannot be met, the quality session is
 terminated. Concretely when, under all possible actions taken by
 Actuator, the quality remains below requirements, the session must be
 terminated.

 The steps to be taken in this phase depend on the measurement
 procedure exchanged during the Handshake phase. This document only
 describes the "default" procedure, but others can be used, like RTP/
 RTCP [RFC3550].

 Measurements of latency and jitter are made by calculating the
 differences in the arrival times of packets and can be achieved with
 little bandwidth consumption. The bandwidth measurement, on the
 other hand, involves higher bandwidth consumption in both directions
 (uplink and downlink).

 To avoid wasting unnecessary network resources, these two types of
 measurements will be performed in two separate stages. If the
 required latencies and jitters cannot be reached, it makes no sense
 to waste network resources measuring bandwidth. In addition, if
 achieving the required latency and jitter thresholds implies
 upgrading the quality session level, the chance of obtaining
 compliant bandwidth measurements without retries is higher, saving
 network traffic again. Therefore, the "default" procedure determines
 that the measurements are taken in two stages:

 Stage 0: Measurement of latencies, jitters, and packet loss

 Stage 1: Measurement of bandwidths and packet loss

 Notice that packet loss can be measured in both stages, as all
 messages exchanged include a Sequence-Number header field that allows
 for easy packet loss detection.

 The client starts the Negotiation phase by sending a READY request
 using the TCP Q4S ports defined in the SDP. This READY request
 includes a Stage header field that indicates the measurement stage.

 If either jitter, latency, or both are specified, the Negotiation
 phase begins with the measurement of latencies and jitters (stage 0).
 If none of those attributes is specified, stage 0 is skipped.

7.5.1. Stage 0: Measurement of Latencies and Jitter

 The Stage 0 MUST start with a synchronization message exchange
 initiated with the client’s READY message.

 Client Request, READY message:

 =========================
 READY q4s://www.example.com Q4S/1.0
 Stage: 0
 Session-Id: 53655765
 User-Agent: q4s-ua-experimental-1.0
 Content-Length: 0
 =========================

 Server Response:
 =========================
 Q4S/1.0 200 OK
 Session-Id: 53655765
 Stage:0
 Content-Length: 0
 =========================

 This triggers the exchange of a sequence of PING requests and
 responses that will lead to the calculation of RTT (latency), jitter,
 and packet loss.

 After receiving a 200 OK, the client must send the first PING
 message, and the server will wait to send PINGs until the reception
 of this first client PING.

 The client and server MUST send PING requests to each other. The
 Sequence-Number header field of the first PING MUST be set to 0. The
 client and server will manage their own sequence numbers.

 +--+
 | |
 | Client Server |
 | |
 | --------- Q4S READY 0 ---------> |
 | <-------- Q4S 200 OK ----------- |
 | |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | --------- Q4S PING ------------> |
 | <-------- Q4S PING ------------- |
 | --------- Q4S 200 OK ----------> |
 | <-------- Q4S 200 OK ----------- |
 | ... |
 | |
 +--+

 Figure 8: Simultaneous Exchange of PING Request and Responses

 The following is an example of the PING request sent from the client
 and the server’s response:

 Client Request:
 =========================
 PING q4s://www.example.com Q4S/1.0
 Session-Id: 53655765
 Sequence-Number: 0
 User-Agent: q4s-ua-experimental-1.0
 Measurements: l=22, j=12, pl=0.20, bw=
 Content-Length: 0
 =========================

 Server Response:
 =========================
 Q4S/1.0 200 OK
 Session-Id: 53655765
 Sequence-Number: 0
 Content-Length: 0
 =========================

 The function of the PING method is similar to the ICMP echo request

 message [RFC0792]. The server MUST answer as soon as it receives the
 message.

 Both endpoints MUST send Q4S PING messages with the periodicity
 specified in the first parameter of SDP "measurement:procedure"
 attribute, always using the same UDP ports and incrementing the
 Sequence-Number with each message.

 In the following example, the value of the first parameter of the SDP
 "measurement:procedure" attribute is 50 milliseconds (from the client
 to the server) and 60 ms (from the server to the client):

 a=measurement:procedure default(50/60,50/50,5000,256/256,256/256)

 They MUST NOT wait for a response to send the next PING request. The
 Sequence-Number header field value is incremented sequentially and
 MUST start at zero. If this stage is repeated, the initial Sequence-
 Number MUST start at zero again.

 All PING requests MUST contain a Measurements header field with the
 values of the latency, jitter, and packet loss measured by each
 entity up to that moment. The client will send its measurements to
 the server, and the server will send its measurements to the client.
 Example:

 Measurements: l=22, j=13, pl=0.10, bw=

 Where "l" stands for latency, "j" for jitter, "pl" for packet loss,
 and "bw" for bandwidth. The bandwidth value is omitted, as it is not
 measured at this stage.

 Optionally the PING request can include a Timestamp header field with
 the time in which the message has been sent. In the case that the
 header field is present, the server MUST include the header field in
 the response without changing the value.

 A minimum number of PING messages MUST be exchanged in order to be
 able to measure latency, jitter, and packet loss with certain
 accuracy (at least 256 samples are RECOMMENDED to get an accurate
 packet loss measurement). Both the client and the server calculate
 the respective measured parameter values. The mechanisms to
 calculate the different parameters are described in Section 7.3.

 At the end of this stage 0, there are three possibilities:

 * The latency, jitter, and packetloss constraints are reached in
 both directions

 * The latency, jitter, and packetloss constraints are not reached in
 one or both directions

 In the first case, Stage 0 is finished. The client and server are
 ready for Stage 1: bandwidth and packet loss measurement. The client
 moves to stage 1 by sending a READY message that includes the header
 field, "Stage: 1".

 If the bandwidth constraints are either empty or have a value of
 zero, the Negotiation phase MUST terminate, and both client and
 server may initiate the Continuity phase. In this case, client moves
 to the Continuity phase by sending a READY message that includes the
 header field, "Stage: 2".

 The second case, in which one or more quality constraints have not
 been met, is detailed in Section 7.5.4.

7.5.2. Stage 1: Measurement of Bandwidth and Packet Loss

 This stage begins in a similar way to stage 0, sending a READY
 request over TCP. The value of the READY message’s Stage header
 field is 1. The server answers with a Q4S 200 OK message to
 synchronize the initiation of the measurements as shown in Figure 9.

 +--+
 | |
 | Client Server |
 | |
 | --------- Q4S READY 1 -----------> |
 | <-------- Q4S 200 OK ------------- |
 | |
 | --------- Q4S BWIDTH -----------> |
 | <-------- Q4S BWIDTH ------------ |
 | --------- Q4S BWIDTH -----------> |
 | <-------- Q4S BWIDTH ------------ |
 | ... |
 | |
 +--+

 Figure 9: Starting Bandwidth and Packet Loss Measurement

 Client Request:
 =========================
 READY q4s://www.example.com Q4S/1.0
 User-Agent: q4s-ua-experimental-1.0
 Stage: 1
 Session-Id: 53655765
 Content-Length: 0

 =========================

 Server Response:
 =========================
 Q4S/1.0 200 OK
 Session-Id: 53655765
 Stage: 1
 Content-Length: 0

 =========================

 Just after receiving the 200 OK, both the client and the server MUST
 start sending BWIDTH messages simultaneously using the UDP "q4s"
 ports. Section 7.3.3 describes the bandwidth measurement in detail.

 At the end of this stage 1, there are three possibilities:

 * The bandwidth and packetloss constraints are reached in both
 directions.

 * The bandwidth and packetloss constraints are not reached in one or
 both directions.

 In the first case, Stage 1 is finished. The client and server are
 ready for the Continuity phase. The client moves to this phase by
 sending a READY message that includes the header field, "Stage: 2".
 The server answer MUST be 200 OK as shown in Figure 10.

 +--+
 | |
 | Client Server |
 | |
 | --------- Q4S READY 2 --------------> |
 | <---- Q4S 200 OK with trigger URI----- |
 | |
 | --------- HTTP GET ----------------> |
 | |
 | (Application starts) |
 | |
 +--+

 Figure 10: Trigger the Application Using HTTP URI

 Client Request:
 =========================

 READY q4s://www.example.com Q4S/1.0
 User-Agent: q4s-ua-experimental-1.0
 Stage: 2
 Session-Id: 53655765
 Content-Length: 0

 =========================

 Server Answer:
 =========================
 Q4S/1.0 200 OK
 Date: Mon, 10 Jun 2010 10:00:01 GMT
 Session-Id: 53655765
 Trigger-URI: http://www.example.com/app_start
 Expires: 3000
 Content-Type: application/sdp
 Signature: 6ec1ba40e2adf2d783de530ae254acd4f3477ac4
 Content-Length: 131

 (SDP not shown)
 =========================

 If the Trigger-URI header field is present, the client SHOULD send an
 HTTP request to this URI.

 The second case, with violated network constraints, is explained in
 Section 7.5.4.

7.5.3. Quality Constraints Not Reached

 After finishing Stage 1 of the Negotiation phase, the client and the
 server have each other’s measured parameter values as these have been
 exchanged in the Measurements header fields of the PING and BWIDTH
 messages. If there is one or more parameters that do not comply with
 the uplink or downlink application constraints required, both the
 server and the client are aware of it.

 If there is any quality parameter that does not meet the uplink or
 downlink quality constraints specified in the SDP message, two
 scenarios are possible depending on the specified alerting mode (if
 not present, the default value is Reactive alerting mode):

 (a) Q4S-aware-network alerting mode: the server MUST send a Q4S-
 ALERT message to the client including the digital Signature
 header field, and the client MUST answer with the same Q4S-ALERT
 message. The Signature header field contains the signed hash
 value of the SDP body in order to protect all the SDP data, and
 therefore it MUST contain the "measurement" parameters in the
 body.

 Server request
 =========================
 Q4S-ALERT q4s://www.example.com Q4S/1.0
 Host: www.example.com
 User-Agent: q4s-ua-experimental-1.0
 Session-Id: 53655765
 Content-Type: application/sdp
 Content-Length: 142

 v=0
 o=q4s-UA 53655765 2353687637 IN IP4 192.0.2.33
 s=Q4S
 i=Q4S parameters
 t=0 0
 a=qos-level:1/2
 a=alerting-mode: Q4S-aware-network
 a=alert-pause:5000
 a=public-address:client IP4 198.51.100.51
 a=public-address:server IP4 198.51.100.58
 a=latency:40
 a=jitter:10/10

 a=bandwidth:20/6000
 a=packetloss:0.50/0.50
 a=flow:app downlink TCP/10000-20000
 a=flow:app uplink TCP/56000
 a=flow:q4s downlink UDP/55000
 a=flow:q4s downlink TCP/55001
 a=flow:q4s uplink UDP/56000
 a=flow:q4s uplink TCP/56001
 a=measurement:procedure default(50/50,50/50,5000,256/256,256/256)
 a=measurement:latency 30
 a=measurement:jitter 6/4
 a=measurement:bandwidth 200/4000
 a=measurement:packetloss 0.20/0.33
 =========================

 At this point, both the client and server keep on measuring but
 without sending new Q4S-ALERT messages during the "alert-pause"
 milliseconds.

 (b) Reactive alerting mode: the server stack MUST send an alert
 notification to the Actuator, and the Actuator MUST answer with
 an acknowledgement to the received alert notification. The
 alert notification sent to the Actuator by the server stack
 doesn’t follow Q4S message style but should have all the
 information the Actuator will need for the actions to be taken,
 which will be implementation dependent.

 At this point during Negotiation phase, both the client and server
 keep on measuring without sending new alert notifications to the
 Actuator during the "alert-pause" milliseconds specified in the SDP.
 This way, both client and server will detect any improvement in
 network conditions as soon as the network reacts. The application
 can start as soon as the number of measurements indicated in the
 "measurement:procedure" attribute indicates that the quality
 parameters are met.

 The same applies to Continuity phase: the measurement dialog between
 client and server must not be interrupted by any possible ALERT
 message.

7.5.3.1. Actuator Role

 The actuator receives notifications of unmet requirements from the
 Q4S server stack and acts upon the application or the network policy
 server, according to logic out of scope of this protocol.

 The Actuator logic activates mechanisms at the application level and/
 or the network level based on a quality level dictionary, in which
 the meaning of each level is implementation dependent, and each level
 involves different actions based on rules to keep a certain user
 experience quality.

 The type of actions that an Actuator can take at the application
 level are application dependent and MAY involve:

 * Reduction of application functionalities, such as limitation of
 application speed or application options.

 * Reduction of application resources usage, such as reduction of
 frames per second in a video application or any other parameter
 modification in order to adapt to network conditions.

 Apart from actions at the application level, the Actuator MAY act at
 the network level if a network policy server is available.

7.5.3.2. Policy Server Role

 A network policy server may be part of the Reactive scenario, and it
 is in charge of managing network quality provision. A network policy
 server may implement all or some of these features (but
 implementation is not exclusive to):

 * Server validation in terms of quality constraints

 * Authentication (Signature validation) and security (blocking of
 malicious clients)

 * Policy rules (the following rules are only examples):

 - Maximum quality level allowed for the ACP

 - Time bands allowed for providing quality sessions

 - Number of simultaneous quality sessions allowed

 - Maximum time used by allowed quality sessions

 - Etc.

 If any of the policy rules fail, a Q4S-ALERT message MUST be answered
 by a 6xx error indicating the cause.

7.5.4. "qos-level" Changes

 If any constraint was violated, the server MAY trigger a Q4S-ALERT
 asking for a higher "qos-level" attribute. The maximum "qos-level"
 allowed is 9 for both uplink and downlink.

 If the "qos-level" has reached the maximum value for the downlink or
 uplink without matching the constraints, then a CANCEL request MUST
 be sent by the client using the TCP port determined in the Handshake
 phase in order to release the session. In reaction to the reception
 of the CANCEL request, the server MUST send a CANCEL request, too.
 If no CANCEL request is received, the expiration time cancels the
 session on the server side.

 Client Request:
 =========================
 CANCEL q4s://www.example.com Q4S/1.0
 User-Agent: q4s-ua-experimental-1.0
 Session-Id: 53655765
 Content-Type: application/sdp
 Content-Length: 142

 (SDP not shown)
 =========================

 Server Request in reaction to Client Request:
 =========================
 CANCEL q4s://www.example.com Q4S/1.0
 Session-Id: 53655765
 Expires: 0
 Content-Type: application/sdp
 Signature: 6ec1ba40e2adf2d783de530ae254acd4f3477ac4
 Content-Length: 131

 (SDP not shown)
 =========================

7.6. Continuity Phase

 During the Negotiation phase, latency, jitter, bandwidth, and packet
 loss have been measured. During the Continuity phase, bandwidth will
 not be measured again because bandwidth measurements may disturb
 application performance.

 This phase is supposed to be executed at the same time as the real-
 time application is being used.

 This document only covers the "default" procedure. The continuity
 operation with the "default" procedure is based on a sliding window
 of samples. The number of samples involved in the sliding window may

 be different for jitter and latency than for packet loss calculations
 according to the fifth and sixth parameters of the
 "measurement:procedure" attribute. In the example, shown in
 Figure 11, the jitter and latency sliding window comprises 40
 samples, whereas the size of the packet loss sliding window is 100
 samples:

 a=measurement:procedure default(50/50,75/75,5000,40/40,100/100)

 In addition, the sizes of these windows are configurable per
 direction: uplink and downlink values may differ.

 PING requests are sent continuously (in both directions), and when
 the Sequence-Number header field reaches the maximum value, the
 client continues sending PING messages with the Sequence-Number
 header field starting again at zero. When the server PING Sequence-
 Number header field reaches the maximum value, it does the same,
 starting again from zero.

 On the client side, the measured values of downlink jitter, downlink
 packet loss, and latency are calculated using the last samples,
 discarding older ones, in a sliding window schema.

 +--+
 | |
 | 55 56 57 . . . 253 254 255 0 1 2 . . . 55 56 |
 | A A |
 | | | |
 | +-----------------------------------+ |
 | |
 +--+

 Figure 11: Sliding Samples Window

 Only if the server detects that the measured values (downlink or
 uplink jitter, packet loss, or latency) are not reaching the quality
 constraints, a Q4S-ALERT is triggered and sent either to the client
 or to the Actuator, depending on the alerting mode, and the "alert-
 pause" timer is started.

 In the Q4S-aware-network alerting mode shown in Figure 12, if the
 client receives a Q4S-ALERT message, it MUST answer by sending the
 Q4S-ALERT request message including the SDP (with its corresponding
 digital signature) back to the server.

 Both client and server will keep performing measurements, but Q4S-
 ALERT messages MUST NOT be sent during "alert-pause" milliseconds.
 The operations needed to act on the network and the agents in charge
 of them are out of scope of this document.

 +--+
 | |
 | Client Server |
 | |
 | ... |
 | ----------- PING ----------> |
 | <--------- 200 OK ---------- |
 | <------- Q4S-ALERT --------- |
 | -------- Q4S-ALERT --------> |
 | <---------- PING ----------- |
 | ---------- 200 OK ---------> |
 | ----------- PING ----------> |
 | <--------- 200 OK ---------- |
 | <---------- PING ----------- |
 | ---------- 200 OK ---------> |
 | ... |
 | |
 +--+

 Figure 12: Continuity in Q4S-Aware-Network Alerting Mode

 In the Reactive scenario shown in Figure 13, if the server detects
 that the measured values (downlink or uplink jitter, packet loss, or
 latency) are not reaching the quality constraints, an alert
 notification is triggered and sent to the Actuator. The Actuator
 MUST then answer to the server stack with an alert acknowledgement.

 The measurement dialog between the client and the server MUST NOT be
 interrupted by any possible ALERT message.

 +--+
 | |
 | Client Server Actuator |
 | ... |
 | --- PING ----------> |
 | <-- 200 OK---------- |
 | <----- PING -------- |
 | <--- 200 OK -------- ---- alert |
 | notification --> |
 | |
 | --- PING ----------> <--- alert |
 | acknowledge --- |
 | <-- 200 OK---------- |
 | <----- PING -------- |
 | --- 200 OK --------> |
 | ... |
 | |
 +--+

 Figure 13: Continuity in Reactive Alerting Mode

7.7. Termination Phase

 The Termination phase is the endpoint for the established Q4S session
 that is reached in the following cases:

 * A CANCEL message has been received. The client sends a CANCEL
 message due to the network’s inability to meet the required
 quality constraints. The client and server application will be
 notified by their respective Q4S stacks.

 * Session expires: if after the Expires time, no client or server
 activity is detected, that end cancels the session.

 * A BEGIN message has been received by the server. The pre-existing
 Q4S quality session is canceled, and a new session will be
 initiated.

 The meaning of the Termination phase in terms of the release of
 resources or accounting is application dependent and out of scope of
 the Q4S protocol.

 In the Reactive alerting mode, Q4S CANCEL messages received by the
 Q4S server must cause the server stack to send cancel notifications
 to the Actuator in order to release possible assigned resources for
 the session.

7.7.1. Sanity Check of Quality Sessions

 A session may finish due to several reasons (client shutdown, client
 CANCEL request, constraints not reached, etc.), and any session
 finished MUST release the assigned resources.

 In order to release the assigned server resources for the session,
 the Expires header field indicates the maximum interval of time
 without exchanging any Q4S message.

7.8. Dynamic Constraints and Flows

 Depending on the nature of the application, the quality constraints
 to be reached may evolve, changing some or all quality constraint
 values in any direction.

 The client MUST be able to deal with this possibility. When the
 server sends an SDP document attached to a response (200 OK or Q4S-
 ALERT, etc.), the client MUST take all the new received values,
 overriding any previous value in use.

 The dynamic changes on the quality constraints can be a result of two
 possibilities:

 * The application communicates to the Q4S server a change in the
 constraints. In this case, the application requirements can
 evolve, and the Q4S server will be aware of them.

 * The application uses TCP flows. In that case, in order to
 guarantee a constant throughput, the nature of TCP behavior forces
 the use of a composite constraint function, which depends on RTT,
 packet loss, and a window control mechanism implemented in each
 TCP stack.

 TCP throughput can be less than actual bandwidth if the Bandwidth-
 Delay Product (BDP) is large, or if the network suffers from a high
 packet loss rate. In both cases, TCP congestion control algorithms
 may result in a suboptimal performance.

 Different TCP congestion control implementations like Reno [RENO],
 High Speed TCP [RFC3649], CUBIC [CUBIC], Compound TCP (CTCP) [CTCP],
 etc., reach different throughputs under the same network conditions
 of RTT and packet loss. In all cases, depending on the RTT-measured
 value, the Q4S server could dynamically change the packetloss
 constraints (defined in the SDP) in order to make it possible to
 reach a required throughput or vice versa (using
 "measurement:packetloss" to change dynamically the latency
 constraints).

 A general guideline for calculating the packet loss constraint and
 the RTT constraint consists of approximating the throughput by using
 a simplified formula, which should take into account the TCP stack
 implementation of the receiver, in addition to the RTT and packet
 loss:

 Th= Function(RTT, packet loss, ...)

 Then, depending on RTT-measured values, set dynamically the packet
 loss constraint.

 It is possible to easily calculate a worst-case boundary for the Reno
 algorithm, which should ensure for all algorithms that the target
 throughput is actually achieved, except that high-speed algorithms
 will then have even larger throughput if more bandwidth is available.

 For the Reno algorithm, the Mathis formula may be used [RENO] for the
 upper bound on the throughput:

 Th <= (MSS/RTT)*(1 / sqrt{p})

 In the absence of packet loss, a practical limit for the TCP
 throughput is the receiver_window_size divided by the RTT. However,
 if the TCP implementation uses a window scale option, this limit can
 reach the available bandwidth value.

7.9. "qos-level" Upgrade and Downgrade Operation

 Each time the server detects a violation of constraints, the alert
 mechanism is triggered, the "alert-pause" timer is started, and the
 "qos-level" is increased. When this happens repeatedly, and the
 "qos-level" reaches its maximum value (value 9), the session is
 canceled. But when the violation of constraints stops before
 reaching "qos-level" maximum value, the recovery mechanism allows for
 the "qos-level" upgrade gradually.

 This downgrade and upgrade of "qos-level" is explained with the

 following example:

 1. A Q4S session is initiated successfully with "qos-level=0".

 2. During the Continuity phase, violation of constraints is
 detected; the "qos-level" is increased to 1, a Q4S-ALERT is sent
 by the server to the client, and an "alert-pause" timer is
 started.

 3. The "alert-pause" timer expires, and still a violation of
 constraints is detected; the "qos-level" is increased to 2, a
 Q4S-ALERT is sent by the server to the client, and an "alert-
 pause" timer is started.

 4. The "alert-pause" timer expires, but the violation of constraints
 has stopped; the "recovery-pause" timer is started.

 5. The "recovery-pause" timer expires, and no violation of
 constraints has been detected. Meanwhile, the "qos-level" is
 decreased to 1, a Q4S-RECOVERY is sent by the server to the
 client, and the "recovery-pause" timer is started again.

 6. The "recovery-pause" timer expires again, and no violation of
 constraints has been detected. Meanwhile, the "qos-level" is
 decreased to 0, and a Q4S-RECOVERY is sent by the server to the
 client. The "recovery-pause" timer is not started this time as
 the "qos-level" has reached its initial value.

 When the network configuration allows for the possibility of managing
 Q4S flows and application flows independently (either is a network-
 based QoS or a Q4S-aware network), the "qos-level" downgrade process
 could be managed more efficiently using a strategy that allows for
 carrying out "qos-level" downgrades excluding application flows from
 SDP dynamically. The Q4S flows would be downgraded to allow for
 measurements on a lower quality level without interference of the
 application flows. A Q4S client MUST allow this kind of SDP
 modification by the server.

 Periodically (every several minutes, depending on the implementation)
 a Q4S-ALERT could be triggered, in which the level is downgraded for
 Q4S flows, excluding application flows from the embedded SDP of that
 request.

 This mechanism allows the measurement at lower levels of quality
 while application flows continue using a higher "qos-level" value.

 * If the measurements in the lower level meet the quality
 constraints, then a Q4S-RECOVERY message to this lower "qos-level"
 may be triggered, in which the SDP includes the application flows
 in addition to the Q4S flows.

 * If the measurements in the lower level do not meet the
 constraints, then a new Q4S-ALERT to the previous "qos-level" MUST
 be triggered, in which the SDP includes only the Q4S flows.

 +--+
 | |
 | qos-level |
 | A |
 | | | | | |
 | 4| |
 | | |
 | 3| +------+ |
 | | | | |
 | 2| +----+ +----+ +--- |
 | | | | | |
 | 1| +----+ +-----+ |
 | | | |
 | 0+---+---------------------------------> time |
 | |
 +--+

 Figure 14: Possible Evolution of "qos-level"

 This mechanism, illustrated in Figure 14, avoids the risk of
 disturbing the application while the measurements are being run in
 lower levels. However, this optional optimization of resources MUST
 be used carefully.

 The chosen period to measure a lower "qos-level" is implementation
 dependent. Therefore, it is not included as a
 "measurement:procedure" parameter. It is RECOMMENDED to use a large
 value, such as 20 minutes.

8. General User Agent Behavior

8.1. Roles in Peer-to-Peer Scenarios

 In order to allow peer-to-peer applications, a Q4S User Agent (UA)
 MUST be able to assume both the client and server role. The role
 assumed depends on who sends the first message.

 In a communication between two UAs, the UA that first sends the Q4S
 BEGIN request to start the Handshake phase shall assume the client
 role.

 If both UAs send the BEGIN request at the same time, they will wait
 for a random time to restart again as shown in Figure 15.

 Otherwise, an UA may be configured to act only as server (e.g.,
 content provider’s side).

 +---+
 | |
 | UA(Client) UA(Server) |
 | |
 | -------- Q4S BEGIN -------------> |
 | <------- Q4S BEGIN -------------- |
 | |
 | ------- Q4S BEGIN --------------> |
 | <------ Q4S 200 OK -------------- |
 | |
 | |
 +---+

 Figure 15: P2P Roles

8.2. Multiple Quality Sessions in Parallel

 A Q4S session is intended to be used for an application. This means
 that for using the application, the client MUST establish only one
 Q4S session against the server. Indeed, the relation between the
 Session-Id and the application is 1 to 1.

 If a user wants to participate in several independent Q4S sessions
 simultaneously against different servers (or against the same
 server), it can execute different Q4S clients to establish separately
 different Q4S sessions, but it is NOT RECOMMENDED because:

 * The establishment of a new Q4S session may affect other running
 applications over other Q4S sessions during bandwidth measurement.

 * If the Negotiation phase is executed separately before running any
 application, the summation of bandwidth requirements could not be
 met when the applications are running in parallel.

8.3. General Client Behavior

 A Q4S client has different behaviors. We will use letters X, Y, and
 Z to designate each different behavior (follow the letters in
 Figure 16 and their descriptions below).

 X) When it sends messages over TCP (methods BEGIN, READY, Q4S-ALERT,
 Q4S-RECOVERY, and CANCEL), it behaves strictly like a state
 machine that sends requests and waits for responses. Depending
 on the response type, it enters into a new state.

 When it sends UDP messages (methods PING and BWIDTH), a Q4S client is
 not strictly a state machine that sends messages and waits for
 responses because of the following:

 Y) During the measurement of latency, jitter, and packet loss, the
 PING requests are sent periodically, not just after receiving the
 response to the previous request. In addition, the client MUST
 answer the PING requests coming from the server, therefore the
 client assumes temporarily the role of a server.

 Z) During the bandwidth and packet loss measurement stage, the
 client does not expect to receive responses when sending BWIDTH
 requests to the server. In addition, it MUST receive and process
 all server messages in order to achieve the downlink measurement.

 The Q4S-ALERT and CANCEL may have a conventional answer if an error
 is produced, otherwise the corresponding answer is formatted as a
 request message.

 +-----------+------------------------+-----------+-----------+
 | Handshake | Negotiation |Continuity |Termination|
 | Phase | Phase | Phase | Phase |
 | | | | |
 | X ---------> Y --> X --> Z --> X ---> Y --> X ---> X |
 | | A | A | | A | | | | | |
 | | | | | | | | | | |
 | | +-----+ +-----+ | +-----+ | |
 | | | | |
 +--+-----------+

 Figure 16: Phases and Client Behaviors

8.3.1. Generating Requests

 A valid Q4S request formulated by a client MUST, at a minimum,
 contain the following header fields:

 If no SDP is included: the header fields Session-Id and Sequence-
 Number are mandatory.

 If SDP is included: the Session-Id is embedded into the SDP,
 therefore the inclusion of the Session-Id header field is
 optional, but if present, must have the same value. Measurements
 are embedded into the SDP only for Q4S-ALERT messages in order to
 be signed.

 At any time, if the server sends new SDP with updated values, the
 client MUST take it into account.

8.4. General Server Behavior

 If a server does not understand a header field in a request (that is,
 the header field is not defined in this specification or in any
 supported extension), the server MUST ignore that header field and
 continue processing the message.

 The role of the server is changed at Negotiation and Continuity
 phases, in which the server MUST send packets to measure jitter,
 latency, and bandwidth. Therefore, the different behaviors of the
 server are (follow the letters in Figure 17 and their descriptions
 below):

 R) When the client sends messages over TCP (methods BEGIN, READY
 Q4S-ALERT, Q4S-RECOVERY, and CANCEL), it behaves strictly like a
 state machine that receives messages and sends responses.

 When the client begins to send UDP messages (methods PING and
 BWIDTH), a Q4S server is not strictly a state machine that receives
 messages and sends responses because of the following:

 S) During the measurement of latency, jitter, and packet loss, the
 PING requests are sent periodically by the client and also by the
 server. In this case, the server behaves as a server answering
 client requests but also behaves temporarily as a client, sending
 PING requests toward the client and receiving responses.

 T) During bandwidth and packet loss measurement, the server sends
 BWIDTH requests to the client. In addition, it MUST receive and
 process client messages in order to achieve the uplink
 measurement.

 The Q4S-ALERT and CANCEL may have a conventional answer if an error
 is produced, otherwise the corresponding answer is formatted as a
 request message.

 +-----------+------------------------+-----------+-----------+
 | Handshake | Negotiation |Continuity |Termination|
 | Phase | Phase | Phase | Phase |
 | | | | |
 | R ---------> S --> R --> T --> R ---> S --> R ---> R |
 | | A | A | | A | | | | | |
 | | | | | | | | | | |
 | | +-----+ +-----+ | +-----+ | |
 | | | | |
 +--+-----------+

 Figure 17: Phases and Server Behaviors

9. Implementation Recommendations

9.1. Default Client Constraints

 To provide a default configuration, it would be good if the client
 had a configurable set of quality headers in the implementation
 settings menu. Otherwise, these quality headers will not be present
 in the first message.

 Different business models (out of scope of this proposal) may be
 achieved: depending on who pays for the quality session, the server
 can accept certain client parameters sent in the first message, or
 force billing parameters on the server side.

9.2. Latency and Jitter Measurements

 Different client and server implementations may send a different
 number of PING messages for measuring, although at least 255 messages
 should be considered to perform the latency measurement. The Stage 0
 measurements may be considered ended only when neither the client nor
 server receive new PING messages after an implementation-dependent
 guard time. Only after, the client can send a "READY 1" message.

 In execution systems, where the timers are not accurate, a
 recommended approach consists of including the optional Timestamp
 header field in the PING request with the time in which the message
 has been sent. This allows an accurate measurement of the jitter
 even with no identical intervals of time between PINGs.

9.3. Bandwidth Measurements

 In programming languages or operating systems with limited timers or
 clock resolution, it is recommended to use an approach based on
 several intervals to send messages of 1KB (= 8000 bits) in order to
 reach the required bandwidth consumption, using a rate as close as
 possible to a constant rate.

 For example, if the resolution is 1 millisecond, and the bandwidth to
 reach is 11 Mbps, a good approach consists of sending:

 1 message of 1KB every 1 millisecond +

 1 message of 1KB every 3 milliseconds +

 1 message of 1KB every 23 milliseconds

 The number of intervals depends on the required bandwidth and
 accuracy that the programmer wants to achieve.

 Considering messages of 1KB (= 8000 bits), a general approach to
 determine these intervals is the following:

 (1) Compute target bandwidth / 8000 bits. In the example above, it
 is 11 Mbps / 8000 = 1375 messages per second.

 (2) Divide the number of messages per second by 1000 to determine
 the number of messages per millisecond: 1375 / 1000 = 1.375.
 The integer value is the number of messages per millisecond (in
 this case, one). The pending bandwidth is now 375 messages per
 second.

 (3) To achieve the 375 messages per second, use a submultiple of
 1000, which must be less than 375:

 1000 / 2 = 500 > 375

 1000 / 3 = 333 < 375

 In this case, a message every 3 ms is suitable. The new pending
 target bandwidth is 375 - 333 = 42 messages per second.

 (4) Repeat the same strategy as point 3 to reach the pending
 bandwidth. In this case, 23 ms is suitable because of the
 following:

 1000 / 22 = 45 > 42

 1000 / 23 = 43 > 42

 1000 / 24 = 41.6 < 42

 We can choose 24 ms, but then we need to cover an additional 0.4
 messages per second (42 - 41.6 = 0.4), and 43 is a number higher than
 42 but very close to it.

 In execution systems where the timers are not accurate, a recommended
 approach consists of checking at each interval the number of packets
 that should have been sent at this timestamp since origin and send
 the needed number of packets in order to reach the required
 bandwidth.

 The shorter the packets used, the more constant the rate of bandwidth
 measurement. However, this may stress the execution system in charge
 of receiving and processing packets. As a consequence, some packets
 may be lost because of stack overflows. To deal with this potential
 issue, a larger packet is RECOMMENDED (2KB or more), taking into
 account the overhead produced by the chunks’ headers.

9.4. Packet Loss Measurement Resolution

 Depending on the application nature and network conditions, a packet
 loss resolution less than 1% may be needed. In such cases, there is
 no limit to the number of samples used for this calculation. A
 trade-off between time and resolution should be reached in each case.
 For example, in order to have a resolution of 1/10000, the last 10000
 samples should be considered in the packet loss measured value.

 The problem of this approach is the reliability of old samples. If
 the interval used between PING messages is 50 ms, then to have a
 resolution of 1/1000, it takes 50 seconds, and a resolution of

 1/10000 takes 500 seconds (more than 8 minutes). The reliability of
 a packet loss calculation based on a sliding window of 8 minutes
 depends on how fast network conditions evolve.

9.5. Measurements and Reactions

 Q4S can be used as a mechanism to measure and trigger network tuning
 and application-level actions (i.e. lowering video bit-rate, reducing
 multiplayer interaction speed, etc.) in real time in order to reach
 the application constraints, addressing measured possible network
 degradation.

9.6. Instability Treatments

 There are two scenarios in which Q4S can be affected by network
 problems: loss of Q4S packets and outlier samples.

9.6.1. Loss of Control Packets

 Lost UDP packets (PING or BWIDTH messages) don’t cause any problems
 for the Q4S state machine, but if TCP packets are delivered too late
 (which we will consider as "lost"), some undesirable consequences
 could arise.

 Q4S does have protection mechanisms to overcome these situations.
 Examples:

 * If a BEGIN packet or its corresponding answer is lost, after a
 certain timeout, the client SHOULD resend another BEGIN packet,
 resetting the session

 * If a READY packet is lost, after a certain timeout, the client
 SHOULD resend another READY packet.

 * If a Q4S-ALERT request or its corresponding answer is lost, after
 a certain timeout, the originator SHOULD resend another Q4S-ALERT
 packet.

 * If a CANCEL request or its corresponding answer is lost, after a
 certain timeout, the originator SHOULD resend another CANCEL
 packet.

9.6.2. Outlier Samples

 Outlier samples are those jitter or latency values far from the
 general/average values of most samples.

 Hence, the Q4S default measurement method uses the statistical median
 formula for latency calculation, and the outlier samples are
 neutralized. This is a very common filter for noise or errors on
 signal and image processing.

9.7. Scenarios

 Q4S could be used in two scenarios:

 * client to ACP

 * client to client (peer-to-peer scenario)

9.7.1. Client to ACP

 One server:

 It is the common scenario in which the client contacts the server to
 establish a Q4S session.

 N servers:

 In Content Delivery Networks and in general applications where
 delivery of contents can be achieved by different delivery nodes, two

 working mechanisms can be defined:

 Starting mode: the end user may run Q4S against several delivery
 nodes and after some seconds choose the best one to start the
 multimedia session.

 Prevention mode: during a streaming session, the user keeps several
 Q4S dialogs against different alternative delivery nodes. In case
 of congestion, the end user MAY change to the best alternative
 delivery node.

9.7.2. Client to Client

 In order to solve the client-to-client scenario, a Q4S register
 function MUST be implemented. This allows clients to contact each
 other for sending the BEGIN message. In this scenario, the Register
 server would be used by peers to publish their Q4S-Resource-Server
 header and their public IP address to enable the assumption of the
 server role.

 The register function is out of scope of this protocol version
 because different HTTP mechanisms can be used, and Q4S MUST NOT force
 any.

10. Security Considerations

10.1. Confidentiality Issues

 Because Q4S does not transport any application data, Q4S does not
 jeopardize the security of application data. However, other certain
 considerations may take place, like identity impersonation and
 measurements privacy and integrity.

10.2. Integrity of Measurements and Authentication

 Identity impersonation could potentially produce anomalous Q4S
 measurements. If this attack is based on spoofing of the server IP
 address, it can be avoided using the digital signature mechanism
 included in the SDP. The network can easily validate this digital
 signature using the public key of the server certificate.

 Integrity of Q4S measurements under any malicious manipulation (such
 as a Man-in-the-Middle (MITM) attack) relies on the same mechanism,
 the SDP signature.

 The Signature header field contains the signed hash value of the SDP
 body in order to protect all the SDP data, including the
 measurements. This signature not only protects the integrity of data
 but also authenticates the server.

10.3. Privacy of Measurements

 This protocol could be supported over IPsec. Q4S relies on UDP and
 TCP, and IPsec supports both. If Q4S is used for application-based
 QoS, then IPsec is operationally valid; however, if Q4S is used to
 trigger network-based actions, then measurements could be incorrect
 unless the IPsec ports can be a target of potential action over the
 network (such as prioritizing IPsec flows to measure the new,
 upgraded state of certain application flows).

10.4. Availability Issues

 Any loss of connectivity may interrupt the availability of the Q4S
 service and may result in higher packet loss measurements, which is
 just the desired behavior in these situations.

 In order to mitigate availability issues caused by malicious attacks
 (such as DoS and DDoS), a good practice is to enable the Q4S service
 only for authenticated users. Q4S can be launched after the user is
 authenticated by the application. At this moment, the user’s IP
 address is known, and the Q4S service may be enabled for this IP

 address. Otherwise, the Q4S service should appear unreachable.

10.5. Bandwidth Occupancy Issues

 Q4S bandwidth measurement is limited to the application needs. It
 means that all available bandwidth is not measured, but only the
 fraction required by the application. This allows other applications
 to use the rest of available bandwidth normally.

 However, a malicious Q4S client could restart Q4S sessions just after
 finishing the Negotiation phase. The consequence would be to waste
 bandwidth for nothing.

 In order to mitigate this possible anomalous behavior, it is
 RECOMMENDED to configure the server to reject sessions from the same
 endpoint when this situation is detected.

11. Future Code Point Requirements

 If the ideas described in this document are pursued to become a
 protocol specification, then the code points described in this
 document will need to be assigned by IANA.

11.1. Service Port

 An assigned port would make possible a future Q4S-aware network
 capable of reacting by itself to Q4S alerts. A specific port would
 simplify the identification of the protocol by network elements in
 charge of making possible reactive decisions. Therefore, the need
 for a port assignment by IANA may be postponed until there is the
 need for a future Q4S-aware network.

 Service Name: Q4S

 Transport Protocol(s): TCP

 Assignee:
 Name: Jose Javier Garcia Aranda

 Email: jose_javier.garcia_aranda@nokia.com

 Contact:
 Name: Jose Javier Garcia Aranda

 Email: jose_javier.garcia_aranda@nokia.com

 Description: The service associated with this request is in charge
 of the establishment of new Q4S sessions, and during the
 session, manages the handoff to a new protocol phase
 (Handshake, Negotiation and Continuity) as well as sends alerts
 when measurements do not meet the requirements.

 Reference: This document. This service does not use IP-layer
 broadcast, multicast, or anycast communication.

12. IANA Considerations

 This document has no IANA actions.

13. References

13.1. Normative References

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,

 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7232] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Conditional Requests", RFC 7232,
 DOI 10.17487/RFC7232, June 2014,
 <https://www.rfc-editor.org/info/rfc7232>.

 [RFC7233] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
 "Hypertext Transfer Protocol (HTTP/1.1): Range Requests",
 RFC 7233, DOI 10.17487/RFC7233, June 2014,
 <https://www.rfc-editor.org/info/rfc7233>.

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",
 RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <https://www.rfc-editor.org/info/rfc7234>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <https://www.rfc-editor.org/info/rfc7235>.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <https://www.rfc-editor.org/info/rfc2818>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
 "PKCS #1: RSA Cryptography Specifications Version 2.2",
 RFC 8017, DOI 10.17487/RFC8017, November 2016,
 <https://www.rfc-editor.org/info/rfc8017>.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 DOI 10.17487/RFC3264, June 2002,
 <https://www.rfc-editor.org/info/rfc3264>.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, DOI 10.17487/RFC4566,
 July 2006, <https://www.rfc-editor.org/info/rfc4566>.

13.2. Informative References

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550,
 July 2003, <https://www.rfc-editor.org/info/rfc3550>.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
 RFC 792, DOI 10.17487/RFC0792, September 1981,
 <https://www.rfc-editor.org/info/rfc792>.

 [QUIC] Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", Work in Progress, Internet-Draft,
 draft-ietf-quic-transport-29, 9 June 2020,
 <https://tools.ietf.org/html/draft-ietf-quic-transport-
 29>.

 [RFC4656] Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M.
 Zekauskas, "A One-way Active Measurement Protocol
 (OWAMP)", RFC 4656, DOI 10.17487/RFC4656, September 2006,
 <https://www.rfc-editor.org/info/rfc4656>.

 [RFC5357] Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J.
 Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)",
 RFC 5357, DOI 10.17487/RFC5357, October 2008,
 <https://www.rfc-editor.org/info/rfc5357>.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002,
 <https://www.rfc-editor.org/info/rfc3261>.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

 [RENO] Mathis, M., Semke, J., Mahdavi, J., and T. Ott, "The
 Macroscopic Behavior of the TCP Congestion Avoidance
 Algorithm", ACM SIGCOMM Computer Communication Review, pp.
 67-82, DOI 10.1145/263932.264023, July 1997,
 <https://doi.org/10.1145/263932.264023>.

 [RFC3649] Floyd, S., "HighSpeed TCP for Large Congestion Windows",
 RFC 3649, DOI 10.17487/RFC3649, December 2003,
 <https://www.rfc-editor.org/info/rfc3649>.

 [CUBIC] Rhee, I., Xu, L., and S. Ha, "CUBIC for Fast Long-Distance
 Networks", Work in Progress, Internet-Draft, draft-rhee-
 tcpm-cubic-02, 26 August 2008,
 <https://tools.ietf.org/html/draft-rhee-tcpm-cubic-02>.

 [CTCP] Sridharan, M., Tan, K., Bansal, D., and D. Thaler,
 "Compound TCP: A New TCP Congestion Control for High-Speed
 and Long Distance Networks", Work in Progress, Internet-
 Draft, draft-sridharan-tcpm-ctcp-02, 11 November 2008,
 <https://tools.ietf.org/html/draft-sridharan-tcpm-ctcp-
 02>.

Acknowledgements

 Many people have made comments and suggestions contributing to this
 document. In particular, we would like to thank:

 Victor Villagra, Sonia Herranz, Clara Cubillo Pastor, Francisco Duran
 Pina, Michael Scharf, Jesus Soto Viso, and Federico Guillen.

 Additionally, we want to thank the Spanish Centre for the Development
 of Industrial Technology (CDTI) as well as the Spanish Science and
 Tech Ministry, which funds this initiative through their innovation
 programs.

Contributors

 Jacobo Perez Lajo
 Nokia Spain

 Email: jacobo.perez@nokia.com

 Luis Miguel Diaz Vizcaino
 Nokia Spain

 Email: Luismi.Diaz@nokia.com

 Gonzalo Munoz Fernandez
 Nokia Spain

 Email: gonzalo.munoz_fernandez.ext@nokia.com

 Manuel Alarcon Granero
 Nokia Spain

 Email: manuel.alarcon_granero.ext@nokia.com

 Francisco Jose Juan Quintanilla
 Nokia Spain

 Email: francisco_jose.juan_quintanilla.ext@nokia.com

 Carlos Barcenilla
 Universidad Politecnica de Madrid

 Juan Quemada
 Universidad Politecnica de Madrid

 Email: jquemada@dit.upm.es

 Ignacio Maestro
 Tecnalia Research & Innovation

 Email: ignacio.maestro@tecnalia.com

 Lara Fajardo IbaÃ±ez
 Optiva Media

 Email: lara.fajardo@optivamedia.com

 Pablo LÃ³pez Zapico
 Optiva Media

 Email: Pablo.lopez@optivamedia.com

 David Muelas Recuenco
 Universidad Autonoma de Madrid

 Email: dav.muelas@uam.es

 Jesus Molina Merchan
 Universidad Autonoma de Madrid

 Email: jesus.molina@uam.es

 Jorge E. Lopez de Vergara Mendez
 Universidad Autonoma de Madrid

 Email: jorge.lopez_vergara@uam.es

 Victor Manuel Maroto Ortega
 Optiva Media

 Email: victor.maroto@optivamedia.com

Authors’ Addresses

 Jose Javier Garcia Aranda
 Nokia
 MarÃa Tubau 9
 28050 Madrid
 Spain

 Phone: +34 91 330 4348
 Email: jose_javier.garcia_aranda@nokia.com

 MÃ³nica CortÃ©s
 Nokia
 MarÃa Tubau 9
 28050 Madrid
 Spain

 Email: monica.cortes_sack@nokia.com

 JoaquÃn SalvachÃºa
 Universidad Politecnica de Madrid
 Avenida Complutense 30
 28040 Madrid
 Spain

 Phone: +34 91 0672134
 Email: Joaquin.salvachua@upm.es

 Maribel Narganes
 Tecnalia Research & Innovation
 Parque CientÃfico y TecnolÃ³gico de Bizkaia
 Astondo Bidea, Edificio 700
 E-48160 Derio Bizkaia
 Spain

 Phone: +34 946 430 850
 Email: maribel.narganes@tecnalia.com

 IÃ±aki MartÃnez-Sarriegui
 Optiva Media
 Edificio Europa II,
 Calle Musgo 2, 1G,
 28023 Madrid
 Spain

 Phone: +34 91 297 7271
 Email: inaki.martinez@optivamedia.com

