
ï»¿

Internet Engineering Task Force (IETF) S. Cheshire
Request for Comments: 8766 Apple Inc.
Category: Standards Track June 2020
ISSN: 2070-1721

 Discovery Proxy for Multicast DNS-Based Service Discovery

Abstract

 This document specifies a network proxy that uses Multicast DNS to
 automatically populate the wide-area unicast Domain Name System
 namespace with records describing devices and services found on the
 local link.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8766.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 2. Operational Analogy
 3. Conventions and Terminology Used in This Document
 4. Compatibility Considerations
 5. Discovery Proxy Operation
 5.1. Delegated Subdomain for DNS-based Service Discovery Records
 5.2. Domain Enumeration
 5.2.1. Domain Enumeration via Unicast Queries
 5.2.2. Domain Enumeration via Multicast Queries
 5.3. Delegated Subdomain for LDH Host Names
 5.4. Delegated Subdomain for Reverse Mapping
 5.5. Data Translation
 5.5.1. DNS TTL Limiting
 5.5.2. Suppressing Unusable Records
 5.5.3. NSEC and NSEC3 Queries
 5.5.4. No Text-Encoding Translation
 5.5.5. Application-Specific Data Translation
 5.6. Answer Aggregation
 6. Administrative DNS Records
 6.1. DNS SOA (Start of Authority) Record
 6.2. DNS NS Records

 6.3. DNS Delegation Records
 6.4. DNS SRV Records
 6.5. Domain Enumeration Records
 7. DNSSEC Considerations
 7.1. Online Signing Only
 7.2. NSEC and NSEC3 Records
 8. IPv6 Considerations
 9. Security Considerations
 9.1. Authenticity
 9.2. Privacy
 9.3. Denial of Service
 10. IANA Considerations
 11. References
 11.1. Normative References
 11.2. Informative References
 Appendix A. Implementation Status
 A.1. Already Implemented and Deployed
 A.2. Already Implemented
 A.3. Partially Implemented
 Acknowledgments
 Author’s Address

1. Introduction

 Multicast DNS [RFC6762] and its companion technology DNS-based
 Service Discovery [RFC6763] were created to provide IP networking
 with the ease of use and autoconfiguration for which AppleTalk was
 well known [RFC6760] [ZC] [ROADMAP].

 For a small home network consisting of just a single link (or a few
 physical links bridged together to appear as a single logical link
 from the point of view of IP), Multicast DNS [RFC6762] is sufficient
 for client devices to look up the ".local" host names of peers on the
 same home network, and to use Multicast DNS-based Service Discovery
 (DNS-SD) [RFC6763] to discover services offered on that home network.

 For a larger network consisting of multiple links that are
 interconnected using IP-layer routing instead of link-layer bridging,
 link-local Multicast DNS alone is insufficient because link-local
 Multicast DNS packets, by design, are not propagated onto other
 links.

 Using link-local multicast packets for Multicast DNS was a conscious
 design choice [RFC6762]. Even when limited to a single link,
 multicast traffic is still generally considered to be more expensive
 than unicast, because multicast traffic impacts many devices instead
 of just a single recipient. In addition, with some technologies like
 Wi-Fi [IEEE-11], multicast traffic is inherently less efficient and
 less reliable than unicast, because Wi-Fi multicast traffic is sent
 at lower data rates, and is not acknowledged [MCAST]. Increasing the
 amount of expensive multicast traffic by flooding it across multiple
 links would make the traffic load even worse.

 Partitioning the network into many small links curtails the spread of
 expensive multicast traffic but limits the discoverability of
 services. At the opposite end of the spectrum, using a very large
 local link with thousands of hosts enables better service discovery
 but at the cost of larger amounts of multicast traffic.

 Performing DNS-based Service Discovery using purely Unicast DNS is
 more efficient and doesn’t require large multicast domains but does
 require that the relevant data be available in the Unicast DNS
 namespace. The Unicast DNS namespace in question could fall within a
 traditionally assigned globally unique domain name, or it could be
 within a private local unicast domain name such as ".home.arpa"
 [RFC8375].

 In the DNS-SD specification [RFC6763], Section 10 ("Populating the
 DNS with Information") discusses various possible ways that a
 service’s PTR, SRV, TXT, and address records can make their way into
 the Unicast DNS namespace, including manual zone file configuration

 [RFC1034] [RFC1035], DNS Update [RFC2136] [RFC3007], and proxies of
 various kinds.

 One option is to make the relevant data available in the Unicast DNS
 namespace by manual DNS configuration. This option has been used for
 many years at IETF meetings to advertise the IETF terminal room
 printer. Details of this example are given in Appendix A of the
 Roadmap document [ROADMAP]. However, this manual DNS configuration
 is labor intensive, error prone, and requires a reasonable degree of
 DNS expertise.

 Another option is to populate the Unicast DNS namespace by having the
 devices offering the services do that themselves, using DNS Update
 [REG-PROT] [DNS-UL]. However, this requires configuration of DNS
 Update keys on those devices, which has proven onerous and
 impractical for simple devices like printers and network cameras.

 Hence, to facilitate efficient and reliable DNS-based Service
 Discovery, a hybrid is needed that combines the ease of use of
 Multicast DNS with the efficiency and scalability of Unicast DNS.

 This document specifies a type of proxy called a "Discovery Proxy"
 that uses Multicast DNS [RFC6762] to discover Multicast DNS records
 on its local link on demand, and makes corresponding DNS records
 visible in the Unicast DNS namespace.

 In principle, similar mechanisms could be defined for other local
 discovery protocols, by creating a proxy that (i) uses the protocol
 in question to discover local information on demand, and then (ii)
 makes corresponding DNS records visible in the Unicast DNS namespace.
 Such mechanisms for other local discovery protocols could be
 addressed in future documents.

 The design of the Discovery Proxy is guided by the previously
 published DNS-based Service Discovery requirements document
 [RFC7558].

 In simple terms, a descriptive DNS name is chosen for each link in an
 organization. Using a DNS NS record, responsibility for that DNS
 name is delegated to a Discovery Proxy physically attached to that
 link. When a remote client issues a unicast query for a name falling
 within the delegated subdomain, the normal DNS delegation mechanism
 results in the unicast query arriving at the Discovery Proxy, since
 it has been declared authoritative for those names. Now, instead of
 consulting a textual zone file on disk to discover the answer to the
 query as a traditional authoritative DNS server would, a Discovery
 Proxy consults its local link, using Multicast DNS, to find the
 answer to the question.

 For fault tolerance reasons, there may be more than one Discovery
 Proxy serving a given link.

 Note that the Discovery Proxy uses a "pull" model. Until some remote
 client has requested data, the local link is not queried using
 Multicast DNS. In the idle state, in the absence of client requests,
 the Discovery Proxy sends no packets and imposes no burden on the
 network. It operates purely "on demand".

 An alternative proposal that has been discussed is a proxy that
 performs DNS updates to a remote DNS server on behalf of the
 Multicast DNS devices on the local network. The difficulty with this
 is that Multicast DNS devices do not routinely announce their records
 on the network. Generally, they remain silent until queried. This
 means that the complete set of Multicast DNS records in use on a link
 can only be discovered by active querying, not by passive listening.
 Because of this, a proxy can only know what names exist on a link by
 issuing queries for them, and since it would be impractical to issue
 queries for every possible name just to find out which names exist
 and which do not, there is no reasonable way for a proxy to
 programmatically learn all the answers it would need to push up to
 the remote DNS server using DNS Update. Even if such a mechanism

 were possible, it would risk generating high load on the network
 continuously, even when there are no clients with any interest in
 that data.

 Hence, having a model where the query comes to the Discovery Proxy is
 much more efficient than a model where the Discovery Proxy pushes the
 answers out to some other remote DNS server.

 A client seeking to discover services and other information performs
 this by sending traditional DNS queries to the Discovery Proxy or by
 sending DNS Push Notification subscription requests [RFC8765].

 How a client discovers what domain name(s) to use for its DNS-based
 Service Discovery queries (and, consequently, what Discovery Proxy or
 Proxies to use) is described in Section 5.2.

 The diagram below illustrates a network topology using a Discovery
 Proxy to provide discovery service to a remote client.

 +--------+ Unicast +-----------+ +---------+ +---------+
 | Remote | Communication | Discovery | | Network | | Network |
 | Client |---- . . . ----| Proxy | | Printer | | Camera |
 +--------+ +-----------+ +---------+ +---------+
 | | | |
 ------------ --
 Multicast-capable LAN segment (e.g., Ethernet)

 Figure 1: Example Deployment

 Note that there need not be any Discovery Proxy on the link to which
 the remote client is directly attached. The remote client
 communicates directly with the Discovery Proxy using normal unicast
 TCP/IP communication mechanisms, potentially spanning multiple IP
 hops, possibly including VPN tunnels and other similar long-distance
 communication channels.

2. Operational Analogy

 A Discovery Proxy does not operate as a multicast relay or multicast
 forwarder. There is no danger of multicast forwarding loops that
 result in traffic storms, because no multicast packets are forwarded.
 A Discovery Proxy operates as a _proxy_ for remote clients,
 performing queries on their behalf and reporting the results back.

 A reasonable analogy is making a telephone call to a colleague at
 your workplace and saying, "I’m out of the office right now. Would
 you mind bringing up a printer browser window and telling me the
 names of the printers you see?" That entails no risk of a forwarding
 loop causing a traffic storm, because no multicast packets are sent
 over the telephone call.

 A similar analogy, instead of enlisting another human being to
 initiate the service discovery operation on your behalf, is to log in
 to your own desktop work computer using screen sharing and then run
 the printer browser yourself to see the list of printers. Or, log in
 using Secure Shell (ssh) and type "dns-sd -B _ipp._tcp" and observe
 the list of discovered printer names. In neither case is there any
 risk of a forwarding loop causing a traffic storm, because no
 multicast packets are being sent over the screen-sharing or ssh
 connection.

 The Discovery Proxy provides another way of performing remote
 queries, which uses a different protocol instead of screen sharing or
 ssh. The Discovery Proxy mechanism can be thought of as a custom
 Remote Procedure Call (RPC) protocol that allows a remote client to
 exercise the Multicast DNS APIs on the Discovery Proxy device, just
 as a local client running on the Discovery Proxy device would use
 those APIs.

 When the Discovery Proxy software performs Multicast DNS operations,
 the exact same Multicast DNS caching mechanisms are applied as when

 any other client software on that Discovery Proxy device performs
 Multicast DNS operations, regardless of whether that be running a
 printer browser client locally, a remote user running the printer
 browser client via a screen-sharing connection, a remote user logged
 in via ssh running a command-line tool like "dns-sd", or a remote
 user sending DNS requests that cause a Discovery Proxy to perform
 discovery operations on its behalf.

3. Conventions and Terminology Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The Discovery Proxy builds on Multicast DNS, which works between
 hosts on the same link. For the purposes of this document, a set of
 hosts is considered to be "on the same link" if:

 * when any host from that set sends a packet to any other host in
 that set, using unicast, multicast, or broadcast, the entire link-
 layer packet payload arrives unmodified, and

 * a broadcast sent over that link, by any host from that set of
 hosts, can be received by every other host in that set.

 The link-layer _header_ may be modified, such as in Token Ring Source
 Routing [IEEE-5], but not the link-layer _payload_. In particular,
 if any device forwarding a packet modifies any part of the IP header
 or IP payload, then the packet is no longer considered to be on the
 same link. This means that the packet may pass through devices such
 as repeaters, bridges, hubs, or switches and still be considered to
 be on the same link for the purpose of this document, but not through
 a device such as an IP router that decrements the IP TTL or otherwise
 modifies the IP header.

4. Compatibility Considerations

 No changes to existing devices are required to work with a Discovery
 Proxy.

 Existing devices that advertise services using Multicast DNS work
 with a Discovery Proxy.

 Existing clients that support DNS-based Service Discovery over
 Unicast DNS work with a Discovery Proxy. DNS-based Service Discovery
 over Unicast DNS was introduced in Mac OS X 10.4 Tiger in April 2005
 and has been included in Apple products introduced since then,
 including the iPhone and iPad. It has also been included in products
 from other vendors, such as Microsoft Windows 10.

 An overview of the larger collection of associated DNS-based Service
 Discovery technologies, and how the Discovery Proxy technology
 relates to those, is given in the Service Discovery Road Map document
 [ROADMAP].

5. Discovery Proxy Operation

 In a typical configuration, a Discovery Proxy is configured to be
 authoritative [RFC1034] [RFC1035] for four or more DNS subdomains,
 listed below. Authority for these subdomains is delegated from the
 parent domain to the Discovery Proxy in the usual way for DNS
 delegation, via NS records.

 A DNS subdomain for DNS-based Service Discovery records.
 This subdomain name may contain rich text, including spaces and
 other punctuation. This is because this subdomain name is used
 only in graphical user interfaces, where rich text is appropriate.

 A DNS subdomain for host name records.

 This subdomain name SHOULD be limited to letters, digits, and
 hyphens in order to facilitate the convenient use of host names in
 command-line interfaces.

 One or more DNS subdomains for IPv4 Reverse Mapping records.
 These subdomains will have names that end in "in-addr.arpa".

 One or more DNS subdomains for IPv6 Reverse Mapping records.
 These subdomains will have names that end in "ip6.arpa".

 In an enterprise network, the naming and delegation of these
 subdomains is typically performed by conscious action of the network
 administrator. In a home network, naming and delegation would
 typically be performed using some automatic configuration mechanism
 such as Home Networking Control Protocol (HNCP) [RFC7788].

 These three varieties of delegated subdomains (service discovery,
 host names, and reverse mapping) are described below in Sections 5.1,
 5.3, and 5.4.

 How a client discovers where to issue its DNS-based Service Discovery
 queries is described in Section 5.2.

5.1. Delegated Subdomain for DNS-based Service Discovery Records

 In its simplest form, each link in an organization is assigned a
 unique Unicast DNS domain name such as "Building 1.example.com" or
 "2nd Floor.Building 3.example.com". Grouping multiple links under a
 single Unicast DNS domain name is to be specified in a future
 companion document, but for the purposes of this document, assume
 that each link has its own unique Unicast DNS domain name. In a
 graphical user interface these names are not displayed as strings
 with dots as shown above, but something more akin to a typical file
 browser graphical user interface (which is harder to illustrate in a
 text-only document) showing folders, subfolders, and files in a file
 system.

 +---------------+--------------+-------------+-------------------+
 | *example.com* | Building 1 | 1st Floor | Alice’s printer |
 | | Building 2 | *2nd Floor* | Bob’s printer |
 | | *Building 3* | 3rd Floor | Charlie’s printer |
 | | Building 4 | 4th Floor | |
 | | Building 5 | | |
 | | Building 6 | | |
 +---------------+--------------+-------------+-------------------+

 Figure 2: Illustrative GUI

 Each named link in an organization has one or more Discovery Proxies
 that serve it. This Discovery Proxy function could be performed by a
 device like a router or switch that is physically attached to that
 link. In the parent domain, NS records are used to delegate
 ownership of each defined link name (e.g., "Building 1.example.com")
 to one or more Discovery Proxies that serve the named link. In other
 words, the Discovery Proxies are the authoritative name servers for
 that subdomain. As in the rest of DNS-based Service Discovery, all
 names are represented as-is using plain UTF-8 encoding and, as
 described in Section 5.5.4, no text-encoding translations are
 performed.

 With appropriate VLAN configuration [IEEE-1Q], a single Discovery
 Proxy device could have a logical presence on many links and serve as
 the Discovery Proxy for all those links. In such a configuration,
 the Discovery Proxy device would have a single physical Ethernet
 [IEEE-3] port, configured as a VLAN trunk port, which would appear to
 software on that device as multiple virtual Ethernet interfaces, one
 connected to each of the VLAN links.

 As an alternative to using VLAN technology, using a Multicast DNS
 Discovery Relay [RELAY] is another way that a Discovery Proxy can
 have a "virtual" presence on a remote link.

 When a DNS-SD client issues a Unicast DNS query to discover services
 in a particular Unicast DNS subdomain
 (e.g., "_ipp._tcp.Building 1.example.com. PTR ?"), the normal DNS
 delegation mechanism results in that query being forwarded until it
 reaches the delegated authoritative name server for that subdomain,
 namely, the Discovery Proxy on the link in question. Like a
 conventional Unicast DNS server, a Discovery Proxy implements the
 usual Unicast DNS protocol [RFC1034] [RFC1035] over UDP and TCP.
 However, unlike a conventional Unicast DNS server that generates
 answers from the data in its manually configured zone file, a
 Discovery Proxy learns answers using Multicast DNS. A Discovery
 Proxy does this by consulting its Multicast DNS cache and/or issuing
 Multicast DNS queries, as appropriate according to the usual protocol
 rules of Multicast DNS [RFC6762], for the corresponding Multicast DNS
 name, type, and class, with the delegated zone part of the name
 replaced with ".local" (e.g., in this case,
 "_ipp._tcp.local. PTR ?"). Then, from the received Multicast DNS
 data, the Discovery Proxy synthesizes the appropriate Unicast DNS
 response, with the ".local" top-level label of the owner name
 replaced with the name of the delegated zone. Further details of the
 name translation rules are described in Section 5.5. Rules
 specifying how long the Discovery Proxy should wait to accumulate
 Multicast DNS responses before sending its unicast reply are
 described in Section 5.6.

 The existing Multicast DNS caching mechanism is used to minimize
 unnecessary Multicast DNS queries on the wire. The Discovery Proxy
 is acting as a client of the underlying Multicast DNS subsystem and
 benefits from the same caching and efficiency measures as any other
 client using that subsystem.

 Note that the contents of the delegated zone, generated as it is by
 performing ".local" Multicast DNS queries, mirrors the records
 available on the local link via Multicast DNS very closely, but not
 precisely. There is not a full bidirectional equivalence between the
 two. Certain records that are available via Multicast DNS may not
 have equivalents in the delegated zone possibly because they are
 invalid or not relevant in the delegated zone or because they are
 being suppressed because they are unusable outside the local link
 (see Section 5.5.2). Conversely, certain records that appear in the
 delegated zone may not have corresponding records available on the
 local link via Multicast DNS. In particular, there are certain
 administrative SRV records (see Section 6) that logically fall within
 the delegated zone but semantically represent metadata _about_ the
 zone rather than records _within_ the zone. Consequently, these
 administrative records in the delegated zone do not have any
 corresponding counterparts in the Multicast DNS namespace of the
 local link.

5.2. Domain Enumeration

 A DNS-SD client performs Domain Enumeration [RFC6763] via certain PTR
 queries, using both unicast and multicast.

 If a DNS-SD client receives a Domain Name configuration via DHCP then
 it issues unicast queries derived from this domain name. It also
 issues unicast queries using names derived from its IPv4 subnet
 address(es) and IPv6 prefix(es). These unicast Domain Enumeration
 queries are described in Section 5.2.1. A DNS-SD client also issues
 multicast Domain Enumeration queries in the "local" domain [RFC6762],
 as described in Section 5.2.2. The results of all the Domain
 Enumeration queries are combined for DNS-based Service Discovery
 purposes.

5.2.1. Domain Enumeration via Unicast Queries

 The (human or automated) administrator creates Unicast DNS Domain
 Enumeration PTR records [RFC6763] to inform clients of available
 service discovery domains. Two varieties of such Unicast DNS Domain
 Enumeration PTR records exist: those with names derived from the

 domain name communicated to the clients via DHCP option 15 [RFC2132],
 and those with names derived from either IPv4 subnet address(es) or
 IPv6 prefix(es) in use by the clients. Below is an example showing
 the name-based variety, where the DHCP server configured the client
 with the domain name "example.com":

 b._dns-sd._udp.example.com. PTR Building 1.example.com.
 PTR Building 2.example.com.
 PTR Building 3.example.com.
 PTR Building 4.example.com.

 db._dns-sd._udp.example.com. PTR Building 1.example.com.

 lb._dns-sd._udp.example.com. PTR Building 1.example.com.

 The meaning of these records is defined in the DNS-based Service
 Discovery specification [RFC6763] but, for convenience, is repeated
 here. The "b" ("browse") records tell the client device the list of
 browsing domains to display for the user to select from. The "db"
 ("default browse") record tells the client device which domain in
 that list should be selected by default. The "db" domain MUST be one
 of the domains in the "b" list; if not, then no domain is selected by
 default. The "lb" ("legacy browse") record tells the client device
 which domain to automatically browse on behalf of applications that
 don’t implement user interface for multi-domain browsing (which is
 most of them at the time of writing). The "lb" domain is often the
 same as the "db" domain, or sometimes the "db" domain plus one or
 more others that should be included in the list of automatic browsing
 domains for legacy clients.

 Note that in the example above, for clarity, space characters in
 names are shown as actual spaces. If this data is manually entered
 into a textual zone file for authoritative server software such as
 BIND, care must be taken because the space character is used as a
 field separator, and other characters like dot (’.’), semicolon
 (’;’), dollar (’$’), backslash (’\’), etc., also have special
 meaning. These characters have to be escaped when entered into a
 textual zone file, following the rules in Section 5.1 of the DNS
 specification [RFC1035]. For example, a literal space in a name is
 represented in the textual zone file using ’\032’, so
 "Building 1.example.com" is entered as "Building\0321.example.com".

 DNS responses are limited to a maximum size of 65535 bytes. This
 limits the maximum number of domains that can be returned for a
 Domain Enumeration query as follows:

 A DNS response header is 12 bytes. That’s typically followed by a
 single qname (up to 256 bytes) plus qtype (2 bytes) and qclass
 (2 bytes), leaving 65275 for the Answer Section.

 An Answer Section Resource Record consists of:

 * Owner name, encoded as a compression pointer, 2 bytes
 * RRTYPE (type PTR), 2 bytes
 * RRCLASS (class IN), 2 bytes
 * TTL, 4 bytes
 * RDLENGTH, 2 bytes
 * RDATA (domain name), up to 256 bytes

 This means that each Resource Record in the Answer Section can take
 up to 268 bytes total, which means that the Answer Section can
 contain, in the worst case, no more than 243 domains.

 In a more typical scenario, where the domain names are not all
 maximum-sized names, and there is some similarity between names so
 that reasonable name compression is possible, each Answer
 Section Resource Record may average 140 bytes, which means that the
 Answer Section can contain up to 466 domains.

 It is anticipated that this should be sufficient for even a large
 corporate network or university campus.

5.2.2. Domain Enumeration via Multicast Queries

 In the case where Discovery Proxy functionality is widely deployed
 within an enterprise (either by having a Discovery Proxy physically
 on each link, or by having a Discovery Proxy with a remote "virtual"
 presence on each link using VLANs or Multicast DNS Discovery Relays
 [RELAY]), this offers an additional way to provide Domain Enumeration
 configuration data for clients.

 Note that this function of the Discovery Proxy is supplementary to
 the primary purpose of the Discovery Proxy, which is to facilitate
 remote clients discovering services on the Discovery Proxy’s local
 link. This publication of Domain Enumeration configuration data via
 link-local multicast on the Discovery Proxy’s local link is performed
 for the benefit of _local_ clients attached to that link, and
 typically directs those clients to contact other distant Discovery
 Proxies attached to other links. Generally, a client does not need
 to use the local Discovery Proxy on its own link, because a client is
 generally able to perform its own Multicast DNS queries on that link.
 (The exception to this is when the local Wi-Fi access point is
 blocking or filtering local multicast traffic, requiring even local
 clients to use their local Discovery Proxy to perform local
 discovery.)

 A Discovery Proxy can be configured to generate Multicast DNS
 responses for the following Multicast DNS Domain Enumeration queries
 issued by clients:

 b._dns-sd._udp.local. PTR ?
 db._dns-sd._udp.local. PTR ?
 lb._dns-sd._udp.local. PTR ?

 This provides the ability for Discovery Proxies to indicate
 recommended browsing domains to DNS-SD clients on a per-link
 granularity. In some enterprises, it may be preferable to provide
 this per-link configuration information in the form of Discovery
 Proxy configuration data rather than by populating the Unicast DNS
 servers with the same data (in the "ip6.arpa" or "in-addr.arpa"
 domains).

 Regardless of how the network operator chooses to provide this
 configuration data, clients will perform Domain Enumeration via both
 unicast and multicast queries and then combine the results of these
 queries.

5.3. Delegated Subdomain for LDH Host Names

 DNS-SD service instance names and domains are allowed to contain
 arbitrary Net-Unicode text [RFC5198], encoded as precomposed UTF-8
 [RFC3629].

 Users typically interact with service discovery software by viewing a
 list of discovered service instance names on a display and selecting
 one of them by pointing, touching, or clicking. Similarly, in
 software that provides a multi-domain DNS-SD user interface, users
 view a list of offered domains on the display and select one of them
 by pointing, touching, or clicking. To use a service, users don’t
 have to remember domain or instance names, or type them; users just
 have to be able to recognize what they see on the display and touch
 or click on the thing they want.

 In contrast, host names are often remembered and typed. Also, host
 names have historically been used in command-line interfaces where
 spaces can be inconvenient. For this reason, host names have
 traditionally been restricted to letters, digits, and hyphens (LDH)
 with no spaces or other punctuation.

 While we do want to allow rich text for DNS-SD service instance names
 and domains, it is advisable, for maximum compatibility with existing
 usage, to restrict host names to the traditional letter-digit-hyphen

 rules. This means that while the service name
 "My Printer._ipp._tcp.Building 1.example.com" is acceptable and
 desirable (it is displayed in a graphical user interface as an
 instance called "My Printer" in the domain "Building 1" at
 "example.com"), the host name "My-Printer.Building 1.example.com" is
 less desirable (because of the space in "Building 1").

 To accommodate this difference in allowable characters, a Discovery
 Proxy SHOULD support having two separate subdomains delegated to it
 for each link it serves: one whose name is allowed to contain
 arbitrary Net-Unicode text [RFC5198], and a second more constrained
 subdomain whose name is restricted to contain only letters, digits,
 and hyphens, to be used for host name records (names of ’A’ and
 ’AAAA’ address records). The restricted names may be any valid name
 consisting of only letters, digits, and hyphens, including Punycode-
 encoded names [RFC3492].

 For example, a Discovery Proxy could have the two subdomains
 "Building 1.example.com" and "bldg-1.example.com" delegated to it.
 The Discovery Proxy would then translate these two Multicast DNS
 records:

 My Printer._ipp._tcp.local. SRV 0 0 631 prnt.local.
 prnt.local. A 203.0.113.2

 into Unicast DNS records as follows:

 My Printer._ipp._tcp.Building 1.example.com.
 SRV 0 0 631 prnt.bldg-1.example.com.
 prnt.bldg-1.example.com. A 203.0.113.2

 Note that the SRV record name is translated using the rich-text
 domain name ("Building 1.example.com"), and the address record name
 is translated using the LDH domain ("bldg-1.example.com"). Further
 details of the name translation rules are described in Section 5.5.

 A Discovery Proxy MAY support only a single rich-text Net-Unicode
 domain and use that domain for all records, including ’A’ and ’AAAA’
 address records, but implementers choosing this option should be
 aware that this choice may produce host names that are awkward to use
 in command-line environments. Whether or not this is an issue
 depends on whether users in the target environment are expected to be
 using command-line interfaces.

 A Discovery Proxy MUST NOT be restricted to support only a letter-
 digit-hyphen subdomain, because that results in an unnecessarily poor
 user experience.

 As described in Section 5.2.1, for clarity, in examples here space
 characters in names are shown as actual spaces. If this dynamically
 discovered data were to be manually entered into a textual zone file
 (which it isn’t), then spaces would need to be represented using
 ’\032’, so "My Printer._ipp._tcp.Building 1.example.com" would become
 "My\032Printer._ipp._tcp.Building\0321.example.com".

 Note that the ’\032’ representation does not appear in DNS messages
 sent over the air. In the wire format of DNS messages, spaces are
 sent as spaces, not as ’\032’, and likewise, in a graphical user
 interface at the client device, spaces are shown as spaces, not as
 ’\032’.

5.4. Delegated Subdomain for Reverse Mapping

 A Discovery Proxy can facilitate easier management of reverse mapping
 domains, particularly for IPv6 addresses where manual management may
 be more onerous than it is for IPv4 addresses.

 To achieve this, in the parent domain, NS records are used to
 delegate ownership of the appropriate reverse mapping domain to the
 Discovery Proxy. In other words, the Discovery Proxy becomes the
 authoritative name server for the reverse mapping domain. For fault

 tolerance reasons, there may be more than one Discovery Proxy serving
 a given link.

 If a given link is using the IPv4 subnet 203.0.113/24, then the
 domain "113.0.203.in-addr.arpa" is delegated to the Discovery Proxy
 for that link.

 If a given link is using the IPv6 prefix 2001:0DB8:1234:5678::/64,
 then the domain "8.7.6.5.4.3.2.1.8.b.d.0.1.0.0.2.ip6.arpa" is
 delegated to the Discovery Proxy for that link.

 When a reverse mapping query arrives at the Discovery Proxy, it
 issues the identical query on its local link, as a Multicast DNS
 query. The mechanism to force an apparently unicast name to be
 resolved using link-local Multicast DNS varies depending on the API
 set being used. For example, in the "dns_sd.h" APIs (available on
 macOS, iOS, Bonjour for Windows, Linux, and Android), using
 kDNSServiceFlagsForceMulticast indicates that the
 DNSServiceQueryRecord() call should perform the query using Multicast
 DNS. Other API sets have different ways of forcing multicast
 queries. When the host owning that IPv4 or IPv6 address responds
 with a name of the form "something.local", the Discovery Proxy
 rewrites it to use its configured LDH host name domain instead of
 ".local" and returns the response to the caller.

 For example, a Discovery Proxy with the two subdomains
 "113.0.203.in-addr.arpa" and "bldg-1.example.com" delegated to it
 would translate this Multicast DNS record:

 2.113.0.203.in-addr.arpa. PTR prnt.local.

 into this Unicast DNS response:

 2.113.0.203.in-addr.arpa. PTR prnt.bldg-1.example.com.

 In this example the "prnt.local" host name is translated using the
 delegated LDH subdomain, as described in Section 5.5.

 Subsequent queries for the prnt.bldg-1.example.com address record,
 falling as it does within the bldg-1.example.com domain, which is
 delegated to this Discovery Proxy, will arrive at this Discovery
 Proxy where they are answered by issuing Multicast DNS queries and
 using the received Multicast DNS answers to synthesize Unicast DNS
 responses, as described above.

 Note that this description assumes that all addresses on a given IPv4
 subnet or IPv6 prefix are mapped to host names using the Discovery
 Proxy mechanism. It would be possible to implement a Discovery Proxy
 that can be configured so that some address-to-name mappings are
 performed using Multicast DNS on the local link, while other address-
 to-name mappings within the same IPv4 subnet or IPv6 prefix are
 configured manually.

5.5. Data Translation

 For the delegated rich-text and LDH subdomains, generating
 appropriate Multicast DNS queries involves translating from the
 configured DNS domain (e.g., "Building 1.example.com") on the Unicast
 DNS side to ".local" on the Multicast DNS side.

 For the delegated reverse-mapping subdomain, generating appropriate
 Multicast DNS queries involves using the appropriate API mechanism to
 indicate that a query should be performed using Multicast DNS, as
 described in Section 5.4.

 Generating appropriate Unicast DNS responses from the received
 Multicast DNS answers involves translating back from ".local" to the
 appropriate configured Unicast DNS domain as necessary, as described
 below.

 In the examples below, the delegated subdomains are as follows:

 Delegated subdomain for rich-text names Building 1.example.com.
 Delegated subdomain for LDH names bldg-1.example.com.
 Delegated subdomain for IPv4 reverse mapping 113.0.203.in-addr.arpa.

 Names in Multicast DNS answers that do not end in ".local" do not
 require any translation.

 Names in Multicast DNS answers that end in ".local" are only
 meaningful on the local link, and require translation to make them
 useable by clients outside the local link.

 Names that end in ".local" may appear both as the owner names of
 received Multicast DNS answer records, and in the RDATA of received
 Multicast DNS answer records.

 In a received Multicast DNS answer record, if the owner name ends
 with ".local", then the ".local" top-level label is replaced with the
 name of the delegated subdomain as was used in the originating query.

 In a received Multicast DNS answer record, if a name in the RDATA
 ends with ".local", then the name is translated according to the
 delegated subdomain that was used in the originating query, as
 explained below.

 For queries in subdomains delegated for LDH host names, ".local"
 names in RDATA are translated to that delegated LDH subdomain. For
 example, a query for "thing.bldg-1.example.com" will be translated to
 a Multicast DNS query for "thing.local". If that query returns this
 CNAME record:

 thing.local. CNAME prnt.local.

 then both the owner name and the name in the RDATA are translated
 from ".local" to the LDH subdomain "bldg-1.example.com":

 thing.bldg-1.example.com. CNAME prnt.bldg-1.example.com.

 For queries in subdomains delegated for reverse mapping names,
 ".local" names in RDATA are translated to the delegated LDH
 subdomain, if one is configured, or to the delegated rich-text
 subdomain otherwise. For example, consider a reverse mapping query
 that returns this PTR record:

 2.113.0.203.in-addr.arpa. PTR prnt.local.

 The owner name is not translated because it does not end in ".local".
 The name in the RDATA is translated from ".local" to the LDH
 subdomain "bldg-1.example.com":

 2.113.0.203.in-addr.arpa. PTR prnt.bldg-1.example.com.

 For queries in subdomains delegated for rich-text names, ".local"
 names in RDATA are translated according to whether or not they
 represent host names (i.e., RDATA names that are the owner names of A
 and AAAA DNS records). RDATA names ending in ".local" that represent
 host names are translated to the delegated LDH subdomain, if one is
 configured, or to the delegated rich-text subdomain otherwise. All
 other RDATA names ending in ".local" are translated to the delegated
 rich-text subdomain. For example, consider a DNS-SD service browsing
 PTR query that returns this PTR record for IPP printing:

 _ipp._tcp.local. PTR My Printer._ipp._tcp.local.

 Both the owner name and the name in the RDATA are translated from
 ".local" to the rich-text subdomain:

 _ipp._tcp.Building 1.example.com.
 PTR My Printer._ipp._tcp.Building 1.example.com.

 In contrast, consider a query that returns this SRV record for a

 specific IPP printing instance:

 My Printer._ipp._tcp.local. SRV 0 0 631 prnt.local.

 As for all queries, the owner name is translated to the delegated
 subdomain of the originating query, the delegated rich-text subdomain
 "Building 1.example.com". However, the ".local" name in the RDATA is
 the target host name field of an SRV record, a field that is used
 exclusively for host names. Consequently it is translated to the LDH
 subdomain "bldg-1.example.com", if configured, instead of the rich-
 text subdomain:

 My Printer._ipp._tcp.Building 1.example.com.
 SRV 0 0 631 prnt.bldg-1.example.com.

 Other beneficial translation and filtering operations are described
 below.

5.5.1. DNS TTL Limiting

 For efficiency, Multicast DNS typically uses moderately high DNS TTL
 values. For example, the typical TTL on DNS-SD service browsing PTR
 records is 75 minutes. What makes these moderately high TTLs
 acceptable is the cache coherency mechanisms built in to the
 Multicast DNS protocol, which protect against stale data persisting
 for too long. When a service shuts down gracefully, it sends goodbye
 packets to remove its service browsing PTR record(s) immediately from
 neighboring caches. If a service shuts down abruptly without sending
 goodbye packets, the Passive Observation Of Failures (POOF) mechanism
 described in Section 10.5 of the Multicast DNS specification
 [RFC6762] comes into play to purge the cache of stale data.

 A traditional Unicast DNS client on a distant remote link does not
 get to participate in these Multicast DNS cache coherency mechanisms
 on the local link. For traditional Unicast DNS queries (those
 received without using Long-Lived Queries (LLQ) [RFC8764] or DNS Push
 Notification subscriptions [RFC8765]), the DNS TTLs reported in the
 resulting Unicast DNS response MUST be capped to be no more than ten
 seconds.

 Similarly, for negative responses, the negative caching TTL indicated
 in the SOA record [RFC2308] should also be ten seconds (see
 Section 6.1).

 This value of ten seconds is chosen based on user-experience
 considerations.

 For negative caching, suppose a user is attempting to access a remote
 device (e.g., a printer), and they are unsuccessful because that
 device is powered off. Suppose they then place a telephone call and
 ask for the device to be powered on. We want the device to become
 available to the user within a reasonable time period. It is
 reasonable to expect it to take on the order of ten seconds for a
 simple device with a simple embedded operating system to power on.
 Once the device is powered on and has announced its presence on the
 network via Multicast DNS, we would like it to take no more than a
 further ten seconds for stale negative cache entries to expire from
 Unicast DNS caches, making the device available to the user desiring
 to access it.

 Similar reasoning applies to capping positive TTLs at ten seconds.
 In the event of a device moving location, getting a new DHCP address,
 or other renumbering events, we would like the updated information to
 be available to remote clients in a relatively timely fashion.

 However, network administrators should be aware that many recursive
 resolvers by default are configured to impose a minimum TTL of 30
 seconds. If stale data appears to be persisting in the network to
 the extent that it adversely impacts user experience, network
 administrators are advised to check the configuration of their
 recursive resolvers.

 For received Unicast DNS queries that use LLQ [RFC8764] or DNS Push
 Notifications [RFC8765], the Multicast DNS record’s TTL SHOULD be
 returned unmodified, because the notification channel exists to
 inform the remote client as records come and go. For further details
 about Long-Lived Queries and its newer replacement, DNS Push
 Notifications, see Section 5.6.

5.5.2. Suppressing Unusable Records

 A Discovery Proxy SHOULD offer a configurable option, enabled by
 default, to suppress Unicast DNS answers for records that are not
 useful outside the local link. When the option to suppress unusable
 records is enabled:

 * For a Discovery Proxy that is serving only clients outside the
 local link, DNS A and AAAA records for IPv4 link-local addresses
 [RFC3927] and IPv6 link-local addresses [RFC4862] SHOULD be
 suppressed.

 * Similarly, for sites that have multiple private address realms
 [RFC1918], in cases where the Discovery Proxy can determine that
 the querying client is in a different address realm, private
 addresses SHOULD NOT be communicated to that client.

 * IPv6 Unique Local Addresses [RFC4193] SHOULD be suppressed in
 cases where the Discovery Proxy can determine that the querying
 client is in a different IPv6 address realm.

 * By the same logic, DNS SRV records that reference target host
 names that have no addresses usable by the requester should be
 suppressed, and likewise, DNS-SD service browsing PTR records that
 point to unusable SRV records should similarly be suppressed.

5.5.3. NSEC and NSEC3 Queries

 Multicast DNS devices do not routinely announce their records on the
 network. Generally, they remain silent until queried. This means
 that the complete set of Multicast DNS records in use on a link can
 only be discovered by active querying, not by passive listening.
 Because of this, a Discovery Proxy can only know what names exist on
 a link by issuing queries for them, and since it would be impractical
 to issue queries for every possible name just to find out which names
 exist and which do not, a Discovery Proxy cannot programmatically
 generate the traditional Unicast DNS NSEC [RFC4034] and NSEC3
 [RFC5155] records that assert the nonexistence of a large range of
 names.

 When queried for an NSEC or NSEC3 record type, the Discovery Proxy
 issues a qtype "ANY" query using Multicast DNS on the local link and
 then generates an NSEC or NSEC3 response with a Type Bit Map
 signifying which record types do and do not exist for just the
 specific name queried, and no other names.

 Multicast DNS NSEC records received on the local link MUST NOT be
 forwarded unmodified to a unicast querier, because there are slight
 differences in the NSEC record data. In particular, Multicast DNS
 NSEC records do not have the NSEC bit set in the Type Bit Map,
 whereas conventional Unicast DNS NSEC records do have the NSEC bit
 set.

5.5.4. No Text-Encoding Translation

 A Discovery Proxy does no translation between text encodings.
 Specifically, a Discovery Proxy does no translation between Punycode
 encoding [RFC3492] and UTF-8 encoding [RFC3629], either in the owner
 name of DNS records or anywhere in the RDATA of DNS records (such as
 the RDATA of PTR records, SRV records, NS records, or other record
 types like TXT, where it is ambiguous whether the RDATA may contain
 DNS names). All bytes are treated as-is with no attempt at text-
 encoding translation. A client implementing DNS-based Service

 Discovery [RFC6763] will use UTF-8 encoding for its unicast DNS-based
 Service Discovery queries, which the Discovery Proxy passes through
 without any text-encoding translation to the Multicast DNS subsystem.
 Responses from the Multicast DNS subsystem are similarly returned,
 without any text-encoding translation, back to the requesting unicast
 client.

5.5.5. Application-Specific Data Translation

 There may be cases where Application-Specific Data Translation is
 appropriate.

 For example, AirPrint printers tend to advertise fairly verbose
 information about their capabilities in their DNS-SD TXT record. TXT
 record sizes in the range of 500-1000 bytes are not uncommon. This
 information is a legacy from lineprinter (LPR) printing, because LPR
 does not have in-band capability negotiation, so all of this
 information is conveyed using the DNS-SD TXT record instead.
 Internet Printing Protocol (IPP) printing does have in-band
 capability negotiation, but for convenience, printers tend to include
 the same capability information in their IPP DNS-SD TXT records as
 well. For local Multicast DNS (mDNS) use, this extra TXT record
 information is wasteful but not fatal. However, when a Discovery
 Proxy aggregates data from multiple printers on a link, and sends it
 via unicast (via UDP or TCP), this amount of unnecessary TXT record
 information can result in large responses. A DNS reply over TCP
 carrying information about 70 printers with an average of 700 bytes
 per printer adds up to about 50 kilobytes of data. Therefore, a
 Discovery Proxy that is aware of the specifics of an application-
 layer protocol such as AirPrint (which uses IPP) can elide
 unnecessary key/value pairs from the DNS-SD TXT record for better
 network efficiency.

 Also, the DNS-SD TXT record for many printers contains an "adminurl"
 key (e.g., "adminurl=http://printername.local/status.html"). For
 this URL to be useful outside the local link, the embedded ".local"
 host name needs to be translated to an appropriate name with larger
 scope. It is easy to translate ".local" names when they appear in
 well-defined places: as a record’s owner name, or in domain name
 fields in the RDATA of record types like PTR and SRV. In the
 printing case, some application-specific knowledge about the
 semantics of the "adminurl" key is needed for the Discovery Proxy to
 know that it contains a name that needs to be translated. This is
 somewhat analogous to the need for NAT gateways to contain ALGs
 (Application-Level Gateways) to facilitate the correct translation of
 protocols that embed addresses in unexpected places.

 To avoid the need for application-specific knowledge about the
 semantics of particular TXT record keys, protocol designers are
 advised to avoid placing link-local names or link-local IP addresses
 in TXT record keys if translation of those names or addresses would
 be required for off-link operation. In the printing case, the
 consequence of failing to translate the "adminurl" key correctly
 would be that, when accessed from a different link, printing will
 still work, but clicking the "Admin" user interface button will fail
 to open the printer’s administration page. Rather than duplicating
 the host name from the service’s SRV record in its "adminurl" key,
 thereby having the same host name appear in two places, a better
 design might have been to omit the host name from the "adminurl" key
 and instead have the client implicitly substitute the target host
 name from the service’s SRV record in place of a missing host name in
 the "adminurl" key. That way, the desired host name only appears
 once and is in a well-defined place where software like the Discovery
 Proxy is expecting to find it.

 Note that this kind of Application-Specific Data Translation is
 expected to be very rare; it is the exception rather than the rule.
 This is an example of a common theme in computing. It is frequently
 the case that it is wise to start with a clean, layered design with
 clear boundaries. Then, in certain special cases, those layer
 boundaries may be violated where the performance and efficiency

 benefits outweigh the inelegance of the layer violation.

 These layer violations are optional. They are done primarily for
 efficiency reasons and generally should not be required for correct
 operation. A Discovery Proxy MAY operate solely at the mDNS layer
 without any knowledge of semantics at the DNS-SD layer or above.

5.6. Answer Aggregation

 In a simple analysis, simply gathering multicast answers and
 forwarding them in a unicast response seems adequate, but it raises
 the question of how long the Discovery Proxy should wait to be sure
 that it has received all the Multicast DNS answers it needs to form a
 complete Unicast DNS response. If it waits too little time, then it
 risks its Unicast DNS response being incomplete. If it waits too
 long, then it creates a poor user experience at the client end. In
 fact, there may be no time that is both short enough to produce a
 good user experience and at the same time long enough to reliably
 produce complete results.

 Similarly, the Discovery Proxy (the authoritative name server for the
 subdomain in question) needs to decide what DNS TTL to report for
 these records. If the TTL is too long, then the recursive resolvers
 issuing queries on behalf of their clients risk caching stale data
 for too long. If the TTL is too short, then the amount of network
 traffic will be more than necessary. In fact, there may be no TTL
 that is both short enough to avoid undesirable stale data and, at the
 same time, long enough to be efficient on the network.

 Both these dilemmas are solved by the use of DNS Long-Lived Queries
 (LLQ) [RFC8764] or its newer replacement, DNS Push Notifications
 [RFC8765].

 Clients supporting unicast DNS-based Service Discovery SHOULD
 implement DNS Push Notifications [RFC8765] for improved user
 experience.

 Clients and Discovery Proxies MAY support both LLQ and DNS Push
 Notifications, and when talking to a Discovery Proxy that supports
 both, the client may use either protocol, as it chooses, though it is
 expected that only DNS Push Notifications will continue to be
 supported in the long run.

 When a Discovery Proxy receives a query using LLQ or DNS Push
 Notifications, it responds immediately using the Multicast DNS
 records it already has in its cache (if any). This provides a good
 client user experience by providing a near-instantaneous response.
 Simultaneously, the Discovery Proxy issues a Multicast DNS query on
 the local link to discover if there are any additional Multicast DNS
 records it did not already know about. Should additional Multicast
 DNS responses be received, these are then delivered to the client
 using additional LLQ or DNS Push Notification update messages. The
 timeliness of such update messages is limited only by the timeliness
 of the device responding to the Multicast DNS query. If the
 Multicast DNS device responds quickly, then the update message is
 delivered quickly. If the Multicast DNS device responds slowly, then
 the update message is delivered slowly. The benefit of using
 multiple update messages to deliver results as they become available
 is that the Discovery Proxy can respond promptly because it doesn’t
 have to deliver all the results in a single response that needs to be
 delayed to allow for the expected worst-case delay for receiving all
 the Multicast DNS responses.

 With a proxy that supported only standard DNS queries, even if it
 were to try to provide reliability by assuming an excessively
 pessimistic worst-case time (thereby giving a very poor user
 experience), there would still be the risk of a slow Multicast DNS
 device taking even longer than that worst-case time (e.g., a device
 that is not even powered on until ten seconds after the initial query
 is received), resulting in incomplete responses. Using update
 messages to deliver subsequent asynchronous replies solves this

 dilemma: even very late responses are not lost; they are delivered in
 subsequent update messages.

 Note that while normal DNS queries are generally received via the
 client’s configured recursive resolver, LLQ and DNS Push Notification
 subscriptions may be received directly from the client.

 There are two factors that determine how unicast responses are
 generated:

 The first factor is whether or not the Discovery Proxy already has at
 least one record in its cache that answers the question.

 The second factor is whether the client used a normal DNS query, or
 established a subscription using LLQ or DNS Push Notifications.
 Normal DNS queries are typically used for one-shot operations like
 SRV or address record queries. LLQ and DNS Push Notification
 subscriptions are typically used for long-lived service browsing PTR
 queries. Normal DNS queries and LLQ each have different response
 timing depending on the cache state, yielding the first four cases
 listed below. DNS Push Notifications, the newer protocol, has
 uniform behavior regardless of cache state, yielding the fifth case
 listed below.

 * Standard DNS query; no answer in cache:

 Issue an mDNS query on the local link, exactly as a local client
 would issue an mDNS query, for the desired record name, type, and
 class, including retransmissions, as appropriate, according to the
 established mDNS retransmission schedule [RFC6762]. The Discovery
 Proxy awaits Multicast DNS responses.

 As soon as any Multicast DNS response packet is received that
 contains one or more positive answers to that question (with or
 without the Cache Flush bit [RFC6762] set) or a negative answer
 (signified via a Multicast DNS NSEC record [RFC6762]), the
 Discovery Proxy generates a Unicast DNS response message
 containing the corresponding (filtered and translated) answers and
 sends it to the remote client.

 If after six seconds no relevant Multicast DNS answers have been
 received, cancel the mDNS query and return a negative response to
 the remote client. Six seconds is enough time for the underlying
 Multicast DNS subsystem to transmit three mDNS queries and allow
 some time for responses to arrive.

 (Reasoning: Queries not using LLQ or Push Notifications are
 generally queries that expect an answer from only one device, so
 the first response is also the only response.)

 DNS TTLs in responses MUST be capped to at most ten seconds.

 * Standard DNS query; at least one answer in cache:

 No local mDNS queries are performed.

 The Discovery Proxy generates a Unicast DNS response message
 containing the answer(s) from the cache right away, to minimize
 delay.

 (Reasoning: Queries not using LLQ or Push Notifications are
 generally queries that expect an answer from only one device.
 Given RRSet TTL harmonization, if the proxy has one Multicast DNS
 answer in its cache, it can reasonably assume that it has the
 whole set.)

 DNS TTLs in responses MUST be capped to at most ten seconds.

 * Long-Lived Query (LLQ); no answer in cache:

 As in the case above with no answer in the cache, plan to perform

 mDNS querying for six seconds, returning an LLQ response message
 to the remote client as soon as any relevant mDNS response is
 received.

 If after six seconds no relevant mDNS answers have been received,
 and the client has not cancelled its Long-Lived Query, return a
 negative LLQ response message to the remote client.

 (Reasoning: We don’t need to rush to send an empty answer.)

 Regardless of whether or not a relevant mDNS response is received
 within six seconds, the Long-Lived Query remains active for as
 long as the client maintains the LLQ state, and results in the
 ongoing transmission of mDNS queries until the Long-Lived Query is
 cancelled. If the set of mDNS answers changes, LLQ Event Response
 messages are sent.

 DNS TTLs in responses are returned unmodified.

 * Long-Lived Query (LLQ); at least one answer in cache:

 As in the case above with at least one answer in the cache, the
 Discovery Proxy generates a unicast LLQ response message
 containing the answer(s) from the cache right away, to minimize
 delay.

 The Long-Lived Query remains active for as long as the client
 maintains the LLQ state, and results in the transmission of mDNS
 queries (with appropriate Known Answer lists) to determine if
 further answers are available. If the set of mDNS answers
 changes, LLQ Event Response messages are sent.

 (Reasoning: We want a user interface that is displayed very
 rapidly yet continues to remain accurate even as the network
 environment changes.)

 DNS TTLs in responses are returned unmodified.

 * Push Notification Subscription

 The Discovery Proxy acknowledges the subscription request
 immediately.

 If one or more answers are already available in the cache, those
 answers are then sent in an immediately following DNS PUSH
 message.

 The Push Notification subscription remains active until the client
 cancels the subscription, and results in the transmission of mDNS
 queries (with appropriate Known Answer lists) to determine if
 further answers are available. If the set of mDNS answers
 changes, further DNS PUSH messages are sent.

 (Reasoning: We want a user interface that is displayed very
 rapidly yet continues to remain accurate even as the network
 environment changes.)

 DNS TTLs in responses are returned unmodified.

 Where the text above refers to returning "a negative response to the
 remote client", it is describing returning a "no error no answer"
 negative response, not NXDOMAIN. This is because the Discovery Proxy
 cannot know all the Multicast DNS domain names that may exist on a
 link at any given time, so any name with no answers may have child
 names that do exist, making it an "empty non-terminal" name.

 Note that certain aspects of the behavior described here do not have
 to be implemented overtly by the Discovery Proxy; they occur
 naturally as a result of using existing Multicast DNS APIs.

 For example, in the first case above (standard DNS query and no

 answers in the cache), if a new Multicast DNS query is requested
 (either by a local client on the Discovery Proxy device, or by the
 Discovery Proxy software on that device on behalf of a remote
 client), and there is not already an identical Multicast DNS query
 active and there are no matching answers already in the Multicast DNS
 cache on the Discovery Proxy device, then this will cause a series of
 Multicast DNS query packets to be issued with exponential backoff.
 The exponential backoff sequence in some implementations starts at
 one second and then doubles for each retransmission (0, 1, 3, 7
 seconds, etc.), and in others, it starts at one second and then
 triples for each retransmission (0, 1, 4, 13 seconds, etc.). In
 either case, if no response has been received after six seconds, that
 is long enough that the underlying Multicast DNS implementation will
 have sent three query packets without receiving any response. At
 that point, the Discovery Proxy cancels its Multicast DNS query (so
 no further Multicast DNS query packets will be sent for this query)
 and returns a negative response to the remote client via unicast.

 The six-second delay is chosen to be long enough to give enough time
 for devices to respond, yet short enough not to be too onerous for a
 human user waiting for a response. For example, using the "dig" DNS
 debugging tool, the current default settings result in it waiting a
 total of 15 seconds for a reply (three transmissions of the DNS UDP
 query packet, with a wait of 5 seconds after each packet), which is
 ample time for it to have received a negative reply from a Discovery
 Proxy after six seconds.

 The text above states that for a standard DNS query, if at least one
 answer is already available in the cache, then a Discovery Proxy
 should not issue additional mDNS query packets. This also occurs
 naturally as a result of using existing Multicast DNS APIs. If a new
 Multicast DNS query is requested (either locally, or by the Discovery
 Proxy on behalf of a remote client) for which there are relevant
 answers already in the Multicast DNS cache on the Discovery Proxy
 device, and after the answers are delivered the Multicast DNS query
 is immediately cancelled, then no Multicast DNS query packets will be
 generated for this query.

6. Administrative DNS Records

6.1. DNS SOA (Start of Authority) Record

 The MNAME field SHOULD contain the host name of the Discovery Proxy
 device (i.e., the same domain name as the RDATA of the NS record
 delegating the relevant zone(s) to this Discovery Proxy device).

 The RNAME field SHOULD contain the mailbox of the person responsible
 for administering this Discovery Proxy device.

 The SERIAL field MUST be zero.

 Zone transfers are undefined for Discovery Proxy zones, and
 consequently, the REFRESH, RETRY, and EXPIRE fields have no useful
 meaning for Discovery Proxy zones. These fields SHOULD contain
 reasonable default values. The RECOMMENDED values are: REFRESH 7200,
 RETRY 3600, and EXPIRE 86400.

 The MINIMUM field (used to control the lifetime of negative cache
 entries) SHOULD contain the value 10. This value is chosen based on
 user-experience considerations (see Section 5.5.1).

 In the event that there are multiple Discovery Proxy devices on a
 link for fault tolerance reasons, this will result in clients
 receiving inconsistent SOA records (different MNAME and possibly
 RNAME) depending on which Discovery Proxy answers their SOA query.
 However, since clients generally have no reason to use the MNAME or
 RNAME data, this is unlikely to cause any problems.

6.2. DNS NS Records

 In the event that there are multiple Discovery Proxy devices on a

 link for fault tolerance reasons, the parent zone MUST be configured
 with NS records giving the names of all the Discovery Proxy devices
 on the link.

 Each Discovery Proxy device MUST be configured to answer NS queries
 for the zone apex name by giving its own NS record, and the NS
 records of its fellow Discovery Proxy devices on the same link, so
 that it can return the correct answers for NS queries.

 The target host name in the RDATA of an NS record MUST NOT reference
 a name that falls within any zone delegated to a Discovery Proxy.
 Apart from the zone apex name, all other host names (names of A and
 AAAA DNS records) that fall within a zone delegated to a Discovery
 Proxy correspond to local Multicast DNS host names, which logically
 belong to the respective Multicast DNS hosts defending those names,
 not the Discovery Proxy. Generally speaking, the Discovery Proxy
 does not own or control the delegated zone; it is merely a conduit to
 the corresponding ".local" namespace, which is controlled by the
 Multicast DNS hosts on that link. If an NS record were to reference
 a manually determined host name that falls within a delegated zone,
 that manually determined host name may inadvertently conflict with a
 corresponding ".local" host name that is owned and controlled by some
 device on that link.

6.3. DNS Delegation Records

 Since the Multicast DNS specification [RFC6762] states that there can
 be no delegation (subdomains) within a ".local" namespace, this
 implies that any name within a zone delegated to a Discovery Proxy
 (except for the zone apex name itself) cannot have any answers for
 any DNS queries for RRTYPEs SOA, NS, or DS. Consequently:

 * for any query for the zone apex name of a zone delegated to a
 Discovery Proxy, the Discovery Proxy MUST generate the appropriate
 immediate answers as described above, and

 * for any query for any name below the zone apex, for RRTYPEs SOA,
 NS, or DS, the Discovery Proxy MUST generate an immediate negative
 answer.

6.4. DNS SRV Records

 There are certain special DNS records that logically fall within the
 delegated Unicast DNS subdomain, but rather than mapping to their
 corresponding ".local" namesakes, they actually contain metadata
 pertaining to the operation of the delegated Unicast DNS subdomain
 itself. They do not exist in the corresponding ".local" namespace of
 the local link. For these queries, a Discovery Proxy MUST generate
 immediate answers, whether positive or negative, to avoid delays
 while clients wait for their query to be answered.

 For example, if a Discovery Proxy implements Long-Lived Queries
 [RFC8764], then it MUST positively respond to
 "_dns-llq._udp.<zone> SRV" queries, "_dns-llq._tcp.<zone> SRV"
 queries, and "_dns-llq-tls._tcp.<zone> SRV" queries as appropriate.
 If it does not implement Long-Lived Queries, it MUST return an
 immediate negative answer for those queries, instead of passing those
 queries through to the local network as Multicast DNS queries and
 then waiting unsuccessfully for answers that will not be forthcoming.

 If a Discovery Proxy implements DNS Push Notifications [RFC8765],
 then it MUST positively respond to "_dns-push-tls._tcp.<zone>"
 queries. Otherwise, it MUST return an immediate negative answer for
 those queries.

 A Discovery Proxy MUST return an immediate negative answer for
 "_dns-update._udp.<zone> SRV" queries, "_dns-update._tcp.<zone> SRV"
 queries, and "_dns-update-tls._tcp.<zone> SRV" queries, since using
 DNS Update [RFC2136] to change zones generated dynamically from local
 Multicast DNS data is not possible.

6.5. Domain Enumeration Records

 If the network operator chooses to use address-based unicast Domain
 Enumeration queries for client configuration (see Section 5.2.1), and
 the network operator also chooses to delegate the enclosing reverse
 mapping subdomain to a Discovery Proxy, then that Discovery Proxy
 becomes responsible for serving the answers to those address-based
 unicast Domain Enumeration queries.

 As with the SRV metadata records described above, a Discovery Proxy
 configured with delegated reverse mapping subdomains is responsible
 for generating immediate (positive or negative) answers for address-
 based unicast Domain Enumeration queries, rather than passing them
 though to the underlying Multicast DNS subsystem and then waiting
 unsuccessfully for answers that will not be forthcoming.

7. DNSSEC Considerations

7.1. Online Signing Only

 The Discovery Proxy acts as the authoritative name server for
 designated subdomains, and if DNSSEC is to be used, the Discovery
 Proxy needs to possess a copy of the signing keys in order to
 generate authoritative signed data from the local Multicast DNS
 responses it receives. Offline signing is not applicable to
 Discovery Proxy.

7.2. NSEC and NSEC3 Records

 In DNSSEC, NSEC and NSEC3 records are used to assert the nonexistence
 of certain names, also described as "authenticated denial of
 existence" [RFC4034] [RFC5155].

 Since a Discovery Proxy only knows what names exist on the local link
 by issuing queries for them, and since it would be impractical to
 issue queries for every possible name just to find out which names
 exist and which do not, a Discovery Proxy cannot programmatically
 synthesize the traditional NSEC and NSEC3 records that assert the
 nonexistence of a large range of names. Instead, when generating a
 negative response, a Discovery Proxy programmatically synthesizes a
 single NSEC record asserting the nonexistence of just the specific
 name queried and no others. Since the Discovery Proxy has the zone
 signing key, it can do this on demand. Since the NSEC record asserts
 the nonexistence of only a single name, zone walking is not a
 concern, and NSEC3 is therefore not necessary.

 Note that this applies only to traditional immediate DNS queries,
 which may return immediate negative answers when no immediate
 positive answer is available. When used with a DNS Push Notification
 subscription [RFC8765], there are no negative answers, merely the
 absence of answers so far, which may change in the future if answers
 become available.

8. IPv6 Considerations

 An IPv4-only host and an IPv6-only host behave as "ships that pass in
 the night". Even if they are on the same Ethernet [IEEE-3], neither
 is aware of the other’s traffic. For this reason, each link may have
 two unrelated ".local." zones: one for IPv4 and one for IPv6.
 Since, for practical purposes, a group of IPv4-only hosts and a group
 of IPv6-only hosts on the same Ethernet act as if they were on two
 entirely separate Ethernet segments, it is unsurprising that their
 use of the ".local." zone should occur exactly as it would if they
 really were on two entirely separate Ethernet segments.

 It will be desirable to have a mechanism to "stitch" together these
 two unrelated ".local." zones so that they appear as one. Such a
 mechanism will need to be able to differentiate between a dual-stack
 (v4/v6) host participating in both ".local." zones, and two different
 hosts: one IPv4-only and the other IPv6-only, which are both trying
 to use the same name(s). Such a mechanism will be specified in a

 future companion document.

 At present, it is RECOMMENDED that a Discovery Proxy be configured
 with a single domain name for both the IPv4 and IPv6 ".local." zones
 on the local link, and when a unicast query is received, it should
 issue Multicast DNS queries using both IPv4 and IPv6 on the local
 link and then combine the results.

9. Security Considerations

9.1. Authenticity

 A service proves its presence on a link by its ability to answer
 link-local multicast queries on that link. If greater security is
 desired, then the Discovery Proxy mechanism should not be used, and
 something with stronger security should be used instead such as
 authenticated secure DNS Update [RFC2136] [RFC3007].

9.2. Privacy

 The Domain Name System is, generally speaking, a global public
 database. Records that exist in the Domain Name System name
 hierarchy can be queried by name from, in principle, anywhere in the
 world. If services on a mobile device (like a laptop computer) are
 made visible via the Discovery Proxy mechanism, then when those
 services become visible in a domain such as "My House.example.com",
 it might indicate to (potentially hostile) observers that the mobile
 device is in the owner’s home. When those services disappear from
 "My House.example.com", that change could be used by observers to
 infer when the mobile device (and possibly its owner) may have left
 the house. The privacy of this information may be protected using
 techniques like firewalls, split-view DNS, and Virtual Private
 Networks (VPNs), as are customarily used today to protect the privacy
 of corporate DNS information.

 The privacy issue is particularly serious for the IPv4 and IPv6
 reverse zones. If the public delegation of the reverse zones points
 to the Discovery Proxy, and the Discovery Proxy is reachable
 globally, then it could leak a significant amount of information.
 Attackers could discover hosts that otherwise might not be easy to
 identify, and learn their host names. Attackers could also discover
 the existence of links where hosts frequently come and go.

 The Discovery Proxy could provide sensitive records only to
 authenticated users. This is a general DNS problem, not specific to
 the Discovery Proxy. Work is underway in the IETF to tackle this
 problem [RFC7626].

9.3. Denial of Service

 A remote attacker could use a rapid series of unique Unicast DNS
 queries to induce a Discovery Proxy to generate a rapid series of
 corresponding Multicast DNS queries on one or more of its local
 links. Multicast traffic is generally more expensive than unicast
 traffic, especially on Wi-Fi links [MCAST], which makes this attack
 particularly serious. To limit the damage that can be caused by such
 attacks, a Discovery Proxy (or the underlying Multicast DNS subsystem
 that it utilizes) MUST implement Multicast DNS query rate limiting
 appropriate to the link technology in question. For today’s
 802.11b/g/n/ac Wi-Fi links (for which approximately 200 multicast
 packets per second is sufficient to consume approximately 100% of the
 wireless spectrum), a limit of 20 Multicast DNS query packets per
 second is RECOMMENDED. On other link technologies like Gigabit
 Ethernet, higher limits may be appropriate. A consequence of this
 rate limiting is that a rogue remote client could issue an excessive
 number of queries resulting in denial of service to other legitimate
 remote clients attempting to use that Discovery Proxy. However, this
 is preferable to a rogue remote client being able to inflict even
 greater harm on the local network, which could impact the correct
 operation of all local clients on that network.

10. IANA Considerations

 This document has no IANA actions.

11. References

11.1. Normative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.
 J., and E. Lear, "Address Allocation for Private
 Internets", BCP 5, RFC 1918, DOI 10.17487/RFC1918,
 February 1996, <https://www.rfc-editor.org/info/rfc1918>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2308] Andrews, M., "Negative Caching of DNS Queries (DNS
 NCACHE)", RFC 2308, DOI 10.17487/RFC2308, March 1998,
 <https://www.rfc-editor.org/info/rfc2308>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC3927] Cheshire, S., Aboba, B., and E. Guttman, "Dynamic
 Configuration of IPv4 Link-Local Addresses", RFC 3927,
 DOI 10.17487/RFC3927, May 2005,
 <https://www.rfc-editor.org/info/rfc3927>.

 [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",
 RFC 4034, DOI 10.17487/RFC4034, March 2005,
 <https://www.rfc-editor.org/info/rfc4034>.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862,
 DOI 10.17487/RFC4862, September 2007,
 <https://www.rfc-editor.org/info/rfc4862>.

 [RFC5155] Laurie, B., Sisson, G., Arends, R., and D. Blacka, "DNS
 Security (DNSSEC) Hashed Authenticated Denial of
 Existence", RFC 5155, DOI 10.17487/RFC5155, March 2008,
 <https://www.rfc-editor.org/info/rfc5155>.

 [RFC5198] Klensin, J. and M. Padlipsky, "Unicode Format for Network
 Interchange", RFC 5198, DOI 10.17487/RFC5198, March 2008,
 <https://www.rfc-editor.org/info/rfc5198>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8490] Bellis, R., Cheshire, S., Dickinson, J., Dickinson, S.,

 Lemon, T., and T. Pusateri, "DNS Stateful Operations",
 RFC 8490, DOI 10.17487/RFC8490, March 2019,
 <https://www.rfc-editor.org/info/rfc8490>.

 [RFC8765] Pusateri, T. and S. Cheshire, "DNS Push Notifications",
 RFC 8765, DOI 10.17487/RFC8765, June 2020,
 <https://www.rfc-editor.org/info/rfc8765>.

11.2. Informative References

 [DNS-UL] Cheshire, S. and T. Lemon, "Dynamic DNS Update Leases",
 Work in Progress, Internet-Draft, draft-sekar-dns-ul-02, 2
 August 2018,
 <https://tools.ietf.org/html/draft-sekar-dns-ul-02>.

 [IEEE-1Q] IEEE, "IEEE Standard for Local and metropolitan area
 networks -- Bridges and Bridged Networks", IEEE Std
 802.1Q-2014, DOI 10.1109/IEEESTD.2014.6991462, 2014,
 <https://ieeexplore.ieee.org/document/6991462>.

 [IEEE-3] IEEE, "IEEE Standard for Ethernet",
 DOI 10.1109/IEEESTD.2018.8457469, IEEE Std 802.3-2018,
 December 2008,
 <https://ieeexplore.ieee.org/document/8457469>.

 [IEEE-5] IEEE, "Telecommunications and information exchange between
 systems - Local and metropolitan area networks - Part 5:
 Token ring access method and physical layer
 specifications", IEEE Std 802.5-1998, 1998,
 <https://standards.ieee.org/standard/802_5-1998.html>.

 [IEEE-11] IEEE, "Information technology - Telecommunications and
 information exchange between systems - Local and
 metropolitan area networks - Specific requirements - Part
 11: Wireless LAN Medium Access Control (MAC) and Physical
 Layer (PHY) Specifications", IEEE Std 802.11-2016,
 December 2016,
 <https://standards.ieee.org/standard/802_11-2016.html>.

 [MCAST] Perkins, C., McBride, M., Stanley, D., Kumari, W., and J.
 Zuniga, "Multicast Considerations over IEEE 802 Wireless
 Media", Work in Progress, Internet-Draft, draft-ietf-
 mboned-ieee802-mcast-problems-11, 11 December 2019,
 <https://tools.ietf.org/html/draft-ietf-mboned-ieee802-
 mcast-problems-11>.

 [OHP] "ohybridproxy - an mDNS/DNS hybrid-proxy based on
 mDNSResponder", commit 464d6c9, June 2017,
 <https://github.com/sbyx/ohybridproxy/>.

 [REG-PROT] Cheshire, S. and T. Lemon, "Service Registration Protocol
 for DNS-Based Service Discovery", Work in Progress,
 Internet-Draft, draft-sctl-service-registration-02, 15
 July 2018, <https://tools.ietf.org/html/draft-sctl-
 service-registration-02>.

 [RELAY] Cheshire, S. and T. Lemon, "Multicast DNS Discovery
 Relay", Work in Progress, Internet-Draft, draft-sctl-
 dnssd-mdns-relay-04, 21 March 2018,
 <https://tools.ietf.org/html/draft-sctl-dnssd-mdns-relay-
 04>.

 [RFC2132] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
 Extensions", RFC 2132, DOI 10.17487/RFC2132, March 1997,
 <https://www.rfc-editor.org/info/rfc2132>.

 [RFC2136] Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",
 RFC 2136, DOI 10.17487/RFC2136, April 1997,
 <https://www.rfc-editor.org/info/rfc2136>.

 [RFC3007] Wellington, B., "Secure Domain Name System (DNS) Dynamic
 Update", RFC 3007, DOI 10.17487/RFC3007, November 2000,
 <https://www.rfc-editor.org/info/rfc3007>.

 [RFC3492] Costello, A., "Punycode: A Bootstring encoding of Unicode
 for Internationalized Domain Names in Applications
 (IDNA)", RFC 3492, DOI 10.17487/RFC3492, March 2003,
 <https://www.rfc-editor.org/info/rfc3492>.

 [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005,
 <https://www.rfc-editor.org/info/rfc4193>.

 [RFC6760] Cheshire, S. and M. Krochmal, "Requirements for a Protocol
 to Replace the AppleTalk Name Binding Protocol (NBP)",
 RFC 6760, DOI 10.17487/RFC6760, February 2013,
 <https://www.rfc-editor.org/info/rfc6760>.

 [RFC7558] Lynn, K., Cheshire, S., Blanchet, M., and D. Migault,
 "Requirements for Scalable DNS-Based Service Discovery
 (DNS-SD) / Multicast DNS (mDNS) Extensions", RFC 7558,
 DOI 10.17487/RFC7558, July 2015,
 <https://www.rfc-editor.org/info/rfc7558>.

 [RFC7626] Bortzmeyer, S., "DNS Privacy Considerations", RFC 7626,
 DOI 10.17487/RFC7626, August 2015,
 <https://www.rfc-editor.org/info/rfc7626>.

 [RFC7788] Stenberg, M., Barth, S., and P. Pfister, "Home Networking
 Control Protocol", RFC 7788, DOI 10.17487/RFC7788, April
 2016, <https://www.rfc-editor.org/info/rfc7788>.

 [RFC8375] Pfister, P. and T. Lemon, "Special-Use Domain
 ’home.arpa.’", RFC 8375, DOI 10.17487/RFC8375, May 2018,
 <https://www.rfc-editor.org/info/rfc8375>.

 [RFC8764] Cheshire, S. and M. Krochmal, "Apple’s DNS Long-Lived
 Queries Protocol", RFC 8764, DOI 10.17487/RFC8764, June
 2020, <https://www.rfc-editor.org/info/rfc8764>.

 [ROADMAP] Cheshire, S., "Service Discovery Road Map", Work in
 Progress, Internet-Draft, draft-cheshire-dnssd-roadmap-03,
 23 October 2018, <https://tools.ietf.org/html/draft-
 cheshire-dnssd-roadmap-03>.

 [ZC] Cheshire, S. and D.H. Steinberg, "Zero Configuration
 Networking: The Definitive Guide", O’Reilly Media, Inc.,
 ISBN 0-596-10100-7, December 2005.

Appendix A. Implementation Status

 Some aspects of the mechanism specified in this document already
 exist in deployed software. Some aspects are new. This section
 outlines which aspects already exist and which are new.

A.1. Already Implemented and Deployed

 Domain enumeration by the client ("b._dns-sd._udp.<zone>" queries) is
 already implemented and deployed.

 Performing unicast queries to the indicated discovery domain is
 already implemented and deployed.

 These are implemented and deployed in Mac OS X 10.4 Tiger and later
 (including all versions of Apple iOS, on all models of iPhones,
 iPads, Apple TVs and HomePods), in Bonjour for Windows, and in
 Android 4.1 "Jelly Bean" (API Level 16) and later.

 Domain enumeration and unicast querying have been used for several
 years at IETF meetings to make terminal room printers discoverable
 from outside the terminal room. When an IETF attendee presses

 "Cmd-P" on a Mac, or selects AirPrint on an iPad or iPhone, and the
 terminal room printers appear, it is because the client is sending
 Unicast DNS queries to the IETF DNS servers. A walk-through giving
 the details of this particular specific example is given in
 Appendix A of the Roadmap document [ROADMAP].

 The Long-Lived Query mechanism [RFC8764] referred to in this
 specification exists and is deployed but was not standardized by the
 IETF. The IETF has developed a superior Long-Lived Query mechanism
 called DNS Push Notifications [RFC8765], which is built on DNS
 Stateful Operations [RFC8490]. DNS Push Notifications is implemented
 and deployed in Mac OS X 10.15 and later, and iOS 13 and later.

A.2. Already Implemented

 A minimal portable Discovery Proxy implementation has been produced
 by Markus Stenberg and Steven Barth, which runs on OS X and several
 Linux variants including OpenWrt [OHP]. It was demonstrated at the
 Berlin IETF in July 2013.

 Tom Pusateri has an implementation that runs on any Unix/Linux
 system. It has a RESTful interface for management and an
 experimental demo command-line interface (CLI) and web interface.

 Ted Lemon also has produced a portable implementation of Discovery
 Proxy, which is available in the mDNSResponder open source code.

A.3. Partially Implemented

 At the time of writing, existing APIs make multiple domains visible
 to client software, but most client user interfaces lump all
 discovered services into a single flat list. This is largely a
 chicken-and-egg problem. Application writers were naturally
 reluctant to spend time writing domain-aware user interface code when
 few customers would benefit from it. If Discovery Proxy deployment
 becomes common, then application writers will have a reason to
 provide a better user experience. Existing applications will work
 with the Discovery Proxy but will show all services in a single flat
 list. Applications with improved user interfaces will show services
 grouped by domain.

Acknowledgments

 Thanks to Markus Stenberg for helping develop the policy regarding
 the four styles of unicast response according to what data is
 immediately available in the cache. Thanks to Anders Brandt, Ben
 Campbell, Tim Chown, Alissa Cooper, Spencer Dawkins, Ralph Droms,
 Joel Halpern, Ray Hunter, Joel Jaeggli, Warren Kumari, Ted Lemon,
 Alexey Melnikov, Kathleen Moriarty, Tom Pusateri, Eric Rescorla, Adam
 Roach, David Schinazi, Markus Stenberg, Dave Thaler, and Andrew
 Yourtchenko for their comments.

Author’s Address

 Stuart Cheshire
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Phone: +1 (408) 996-1010
 Email: cheshire@apple.com

