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Abstract
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   local link.
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1.  Introduction

   Multicast DNS [RFC6762] and its companion technology DNS-based
   Service Discovery [RFC6763] were created to provide IP networking
   with the ease of use and autoconfiguration for which AppleTalk was
   well known [RFC6760] [ZC] [ROADMAP].

   For a small home network consisting of just a single link (or a few
   physical links bridged together to appear as a single logical link
   from the point of view of IP), Multicast DNS [RFC6762] is sufficient
   for client devices to look up the ".local" host names of peers on the
   same home network, and to use Multicast DNS-based Service Discovery
   (DNS-SD) [RFC6763] to discover services offered on that home network.

   For a larger network consisting of multiple links that are
   interconnected using IP-layer routing instead of link-layer bridging,
   link-local Multicast DNS alone is insufficient because link-local
   Multicast DNS packets, by design, are not propagated onto other
   links.

   Using link-local multicast packets for Multicast DNS was a conscious
   design choice [RFC6762].  Even when limited to a single link,
   multicast traffic is still generally considered to be more expensive
   than unicast, because multicast traffic impacts many devices instead
   of just a single recipient.  In addition, with some technologies like
   Wi-Fi [IEEE-11], multicast traffic is inherently less efficient and
   less reliable than unicast, because Wi-Fi multicast traffic is sent
   at lower data rates, and is not acknowledged [MCAST].  Increasing the
   amount of expensive multicast traffic by flooding it across multiple
   links would make the traffic load even worse.

   Partitioning the network into many small links curtails the spread of
   expensive multicast traffic but limits the discoverability of
   services.  At the opposite end of the spectrum, using a very large
   local link with thousands of hosts enables better service discovery
   but at the cost of larger amounts of multicast traffic.

   Performing DNS-based Service Discovery using purely Unicast DNS is
   more efficient and doesn’t require large multicast domains but does
   require that the relevant data be available in the Unicast DNS
   namespace.  The Unicast DNS namespace in question could fall within a
   traditionally assigned globally unique domain name, or it could be
   within a private local unicast domain name such as ".home.arpa"
   [RFC8375].

   In the DNS-SD specification [RFC6763], Section 10 ("Populating the
   DNS with Information") discusses various possible ways that a
   service’s PTR, SRV, TXT, and address records can make their way into
   the Unicast DNS namespace, including manual zone file configuration



   [RFC1034] [RFC1035], DNS Update [RFC2136] [RFC3007], and proxies of
   various kinds.

   One option is to make the relevant data available in the Unicast DNS
   namespace by manual DNS configuration.  This option has been used for
   many years at IETF meetings to advertise the IETF terminal room
   printer.  Details of this example are given in Appendix A of the
   Roadmap document [ROADMAP].  However, this manual DNS configuration
   is labor intensive, error prone, and requires a reasonable degree of
   DNS expertise.

   Another option is to populate the Unicast DNS namespace by having the
   devices offering the services do that themselves, using DNS Update
   [REG-PROT] [DNS-UL].  However, this requires configuration of DNS
   Update keys on those devices, which has proven onerous and
   impractical for simple devices like printers and network cameras.

   Hence, to facilitate efficient and reliable DNS-based Service
   Discovery, a hybrid is needed that combines the ease of use of
   Multicast DNS with the efficiency and scalability of Unicast DNS.

   This document specifies a type of proxy called a "Discovery Proxy"
   that uses Multicast DNS [RFC6762] to discover Multicast DNS records
   on its local link on demand, and makes corresponding DNS records
   visible in the Unicast DNS namespace.

   In principle, similar mechanisms could be defined for other local
   discovery protocols, by creating a proxy that (i) uses the protocol
   in question to discover local information on demand, and then (ii)
   makes corresponding DNS records visible in the Unicast DNS namespace.
   Such mechanisms for other local discovery protocols could be
   addressed in future documents.

   The design of the Discovery Proxy is guided by the previously
   published DNS-based Service Discovery requirements document
   [RFC7558].

   In simple terms, a descriptive DNS name is chosen for each link in an
   organization.  Using a DNS NS record, responsibility for that DNS
   name is delegated to a Discovery Proxy physically attached to that
   link.  When a remote client issues a unicast query for a name falling
   within the delegated subdomain, the normal DNS delegation mechanism
   results in the unicast query arriving at the Discovery Proxy, since
   it has been declared authoritative for those names.  Now, instead of
   consulting a textual zone file on disk to discover the answer to the
   query as a traditional authoritative DNS server would, a Discovery
   Proxy consults its local link, using Multicast DNS, to find the
   answer to the question.

   For fault tolerance reasons, there may be more than one Discovery
   Proxy serving a given link.

   Note that the Discovery Proxy uses a "pull" model.  Until some remote
   client has requested data, the local link is not queried using
   Multicast DNS.  In the idle state, in the absence of client requests,
   the Discovery Proxy sends no packets and imposes no burden on the
   network.  It operates purely "on demand".

   An alternative proposal that has been discussed is a proxy that
   performs DNS updates to a remote DNS server on behalf of the
   Multicast DNS devices on the local network.  The difficulty with this
   is that Multicast DNS devices do not routinely announce their records
   on the network.  Generally, they remain silent until queried.  This
   means that the complete set of Multicast DNS records in use on a link
   can only be discovered by active querying, not by passive listening.
   Because of this, a proxy can only know what names exist on a link by
   issuing queries for them, and since it would be impractical to issue
   queries for every possible name just to find out which names exist
   and which do not, there is no reasonable way for a proxy to
   programmatically learn all the answers it would need to push up to
   the remote DNS server using DNS Update.  Even if such a mechanism



   were possible, it would risk generating high load on the network
   continuously, even when there are no clients with any interest in
   that data.

   Hence, having a model where the query comes to the Discovery Proxy is
   much more efficient than a model where the Discovery Proxy pushes the
   answers out to some other remote DNS server.

   A client seeking to discover services and other information performs
   this by sending traditional DNS queries to the Discovery Proxy or by
   sending DNS Push Notification subscription requests [RFC8765].

   How a client discovers what domain name(s) to use for its DNS-based
   Service Discovery queries (and, consequently, what Discovery Proxy or
   Proxies to use) is described in Section 5.2.

   The diagram below illustrates a network topology using a Discovery
   Proxy to provide discovery service to a remote client.

    +--------+   Unicast     +-----------+  +---------+  +---------+
    | Remote | Communication | Discovery |  | Network |  | Network |
    | Client |---- . . . ----|   Proxy   |  | Printer |  | Camera  |
    +--------+               +-----------+  +---------+  +---------+
         |                         |             |            |
   ------------            --------------------------------------------
                          Multicast-capable LAN segment (e.g., Ethernet)

                        Figure 1: Example Deployment

   Note that there need not be any Discovery Proxy on the link to which
   the remote client is directly attached.  The remote client
   communicates directly with the Discovery Proxy using normal unicast
   TCP/IP communication mechanisms, potentially spanning multiple IP
   hops, possibly including VPN tunnels and other similar long-distance
   communication channels.

2.  Operational Analogy

   A Discovery Proxy does not operate as a multicast relay or multicast
   forwarder.  There is no danger of multicast forwarding loops that
   result in traffic storms, because no multicast packets are forwarded.
   A Discovery Proxy operates as a _proxy_ for remote clients,
   performing queries on their behalf and reporting the results back.

   A reasonable analogy is making a telephone call to a colleague at
   your workplace and saying, "I’m out of the office right now.  Would
   you mind bringing up a printer browser window and telling me the
   names of the printers you see?"  That entails no risk of a forwarding
   loop causing a traffic storm, because no multicast packets are sent
   over the telephone call.

   A similar analogy, instead of enlisting another human being to
   initiate the service discovery operation on your behalf, is to log in
   to your own desktop work computer using screen sharing and then run
   the printer browser yourself to see the list of printers.  Or, log in
   using Secure Shell (ssh) and type "dns-sd -B _ipp._tcp" and observe
   the list of discovered printer names.  In neither case is there any
   risk of a forwarding loop causing a traffic storm, because no
   multicast packets are being sent over the screen-sharing or ssh
   connection.

   The Discovery Proxy provides another way of performing remote
   queries, which uses a different protocol instead of screen sharing or
   ssh.  The Discovery Proxy mechanism can be thought of as a custom
   Remote Procedure Call (RPC) protocol that allows a remote client to
   exercise the Multicast DNS APIs on the Discovery Proxy device, just
   as a local client running on the Discovery Proxy device would use
   those APIs.

   When the Discovery Proxy software performs Multicast DNS operations,
   the exact same Multicast DNS caching mechanisms are applied as when



   any other client software on that Discovery Proxy device performs
   Multicast DNS operations, regardless of whether that be running a
   printer browser client locally, a remote user running the printer
   browser client via a screen-sharing connection, a remote user logged
   in via ssh running a command-line tool like "dns-sd", or a remote
   user sending DNS requests that cause a Discovery Proxy to perform
   discovery operations on its behalf.

3.  Conventions and Terminology Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   The Discovery Proxy builds on Multicast DNS, which works between
   hosts on the same link.  For the purposes of this document, a set of
   hosts is considered to be "on the same link" if:

   *  when any host from that set sends a packet to any other host in
      that set, using unicast, multicast, or broadcast, the entire link-
      layer packet payload arrives unmodified, and

   *  a broadcast sent over that link, by any host from that set of
      hosts, can be received by every other host in that set.

   The link-layer _header_ may be modified, such as in Token Ring Source
   Routing [IEEE-5], but not the link-layer _payload_.  In particular,
   if any device forwarding a packet modifies any part of the IP header
   or IP payload, then the packet is no longer considered to be on the
   same link.  This means that the packet may pass through devices such
   as repeaters, bridges, hubs, or switches and still be considered to
   be on the same link for the purpose of this document, but not through
   a device such as an IP router that decrements the IP TTL or otherwise
   modifies the IP header.

4.  Compatibility Considerations

   No changes to existing devices are required to work with a Discovery
   Proxy.

   Existing devices that advertise services using Multicast DNS work
   with a Discovery Proxy.

   Existing clients that support DNS-based Service Discovery over
   Unicast DNS work with a Discovery Proxy.  DNS-based Service Discovery
   over Unicast DNS was introduced in Mac OS X 10.4 Tiger in April 2005
   and has been included in Apple products introduced since then,
   including the iPhone and iPad.  It has also been included in products
   from other vendors, such as Microsoft Windows 10.

   An overview of the larger collection of associated DNS-based Service
   Discovery technologies, and how the Discovery Proxy technology
   relates to those, is given in the Service Discovery Road Map document
   [ROADMAP].

5.  Discovery Proxy Operation

   In a typical configuration, a Discovery Proxy is configured to be
   authoritative [RFC1034] [RFC1035] for four or more DNS subdomains,
   listed below.  Authority for these subdomains is delegated from the
   parent domain to the Discovery Proxy in the usual way for DNS
   delegation, via NS records.

   A DNS subdomain for DNS-based Service Discovery records.
      This subdomain name may contain rich text, including spaces and
      other punctuation.  This is because this subdomain name is used
      only in graphical user interfaces, where rich text is appropriate.

   A DNS subdomain for host name records.



      This subdomain name SHOULD be limited to letters, digits, and
      hyphens in order to facilitate the convenient use of host names in
      command-line interfaces.

   One or more DNS subdomains for IPv4 Reverse Mapping records.
      These subdomains will have names that end in "in-addr.arpa".

   One or more DNS subdomains for IPv6 Reverse Mapping records.
      These subdomains will have names that end in "ip6.arpa".

   In an enterprise network, the naming and delegation of these
   subdomains is typically performed by conscious action of the network
   administrator.  In a home network, naming and delegation would
   typically be performed using some automatic configuration mechanism
   such as Home Networking Control Protocol (HNCP) [RFC7788].

   These three varieties of delegated subdomains (service discovery,
   host names, and reverse mapping) are described below in Sections 5.1,
   5.3, and 5.4.

   How a client discovers where to issue its DNS-based Service Discovery
   queries is described in Section 5.2.

5.1.  Delegated Subdomain for DNS-based Service Discovery Records

   In its simplest form, each link in an organization is assigned a
   unique Unicast DNS domain name such as "Building 1.example.com" or
   "2nd Floor.Building 3.example.com".  Grouping multiple links under a
   single Unicast DNS domain name is to be specified in a future
   companion document, but for the purposes of this document, assume
   that each link has its own unique Unicast DNS domain name.  In a
   graphical user interface these names are not displayed as strings
   with dots as shown above, but something more akin to a typical file
   browser graphical user interface (which is harder to illustrate in a
   text-only document) showing folders, subfolders, and files in a file
   system.

     +---------------+--------------+-------------+-------------------+
     | *example.com* |  Building 1  |  1st Floor  | Alice’s printer   |
     |               |  Building 2  | *2nd Floor* | Bob’s printer     |
     |               | *Building 3* |  3rd Floor  | Charlie’s printer |
     |               |  Building 4  |  4th Floor  |                   |
     |               |  Building 5  |             |                   |
     |               |  Building 6  |             |                   |
     +---------------+--------------+-------------+-------------------+

                         Figure 2: Illustrative GUI

   Each named link in an organization has one or more Discovery Proxies
   that serve it.  This Discovery Proxy function could be performed by a
   device like a router or switch that is physically attached to that
   link.  In the parent domain, NS records are used to delegate
   ownership of each defined link name (e.g., "Building 1.example.com")
   to one or more Discovery Proxies that serve the named link.  In other
   words, the Discovery Proxies are the authoritative name servers for
   that subdomain.  As in the rest of DNS-based Service Discovery, all
   names are represented as-is using plain UTF-8 encoding and, as
   described in Section 5.5.4, no text-encoding translations are
   performed.

   With appropriate VLAN configuration [IEEE-1Q], a single Discovery
   Proxy device could have a logical presence on many links and serve as
   the Discovery Proxy for all those links.  In such a configuration,
   the Discovery Proxy device would have a single physical Ethernet
   [IEEE-3] port, configured as a VLAN trunk port, which would appear to
   software on that device as multiple virtual Ethernet interfaces, one
   connected to each of the VLAN links.

   As an alternative to using VLAN technology, using a Multicast DNS
   Discovery Relay [RELAY] is another way that a Discovery Proxy can
   have a "virtual" presence on a remote link.



   When a DNS-SD client issues a Unicast DNS query to discover services
   in a particular Unicast DNS subdomain
   (e.g., "_ipp._tcp.Building 1.example.com. PTR ?"), the normal DNS
   delegation mechanism results in that query being forwarded until it
   reaches the delegated authoritative name server for that subdomain,
   namely, the Discovery Proxy on the link in question.  Like a
   conventional Unicast DNS server, a Discovery Proxy implements the
   usual Unicast DNS protocol [RFC1034] [RFC1035] over UDP and TCP.
   However, unlike a conventional Unicast DNS server that generates
   answers from the data in its manually configured zone file, a
   Discovery Proxy learns answers using Multicast DNS.  A Discovery
   Proxy does this by consulting its Multicast DNS cache and/or issuing
   Multicast DNS queries, as appropriate according to the usual protocol
   rules of Multicast DNS [RFC6762], for the corresponding Multicast DNS
   name, type, and class, with the delegated zone part of the name
   replaced with ".local" (e.g., in this case,
   "_ipp._tcp.local. PTR ?").  Then, from the received Multicast DNS
   data, the Discovery Proxy synthesizes the appropriate Unicast DNS
   response, with the ".local" top-level label of the owner name
   replaced with the name of the delegated zone.  Further details of the
   name translation rules are described in Section 5.5.  Rules
   specifying how long the Discovery Proxy should wait to accumulate
   Multicast DNS responses before sending its unicast reply are
   described in Section 5.6.

   The existing Multicast DNS caching mechanism is used to minimize
   unnecessary Multicast DNS queries on the wire.  The Discovery Proxy
   is acting as a client of the underlying Multicast DNS subsystem and
   benefits from the same caching and efficiency measures as any other
   client using that subsystem.

   Note that the contents of the delegated zone, generated as it is by
   performing ".local" Multicast DNS queries, mirrors the records
   available on the local link via Multicast DNS very closely, but not
   precisely.  There is not a full bidirectional equivalence between the
   two.  Certain records that are available via Multicast DNS may not
   have equivalents in the delegated zone possibly because they are
   invalid or not relevant in the delegated zone or because they are
   being suppressed because they are unusable outside the local link
   (see Section 5.5.2).  Conversely, certain records that appear in the
   delegated zone may not have corresponding records available on the
   local link via Multicast DNS.  In particular, there are certain
   administrative SRV records (see Section 6) that logically fall within
   the delegated zone but semantically represent metadata _about_ the
   zone rather than records _within_ the zone.  Consequently, these
   administrative records in the delegated zone do not have any
   corresponding counterparts in the Multicast DNS namespace of the
   local link.

5.2.  Domain Enumeration

   A DNS-SD client performs Domain Enumeration [RFC6763] via certain PTR
   queries, using both unicast and multicast.

   If a DNS-SD client receives a Domain Name configuration via DHCP then
   it issues unicast queries derived from this domain name.  It also
   issues unicast queries using names derived from its IPv4 subnet
   address(es) and IPv6 prefix(es).  These unicast Domain Enumeration
   queries are described in Section 5.2.1.  A DNS-SD client also issues
   multicast Domain Enumeration queries in the "local" domain [RFC6762],
   as described in Section 5.2.2.  The results of all the Domain
   Enumeration queries are combined for DNS-based Service Discovery
   purposes.

5.2.1.  Domain Enumeration via Unicast Queries

   The (human or automated) administrator creates Unicast DNS Domain
   Enumeration PTR records [RFC6763] to inform clients of available
   service discovery domains.  Two varieties of such Unicast DNS Domain
   Enumeration PTR records exist: those with names derived from the



   domain name communicated to the clients via DHCP option 15 [RFC2132],
   and those with names derived from either IPv4 subnet address(es) or
   IPv6 prefix(es) in use by the clients.  Below is an example showing
   the name-based variety, where the DHCP server configured the client
   with the domain name "example.com":

         b._dns-sd._udp.example.com.    PTR   Building 1.example.com.
                                        PTR   Building 2.example.com.
                                        PTR   Building 3.example.com.
                                        PTR   Building 4.example.com.

         db._dns-sd._udp.example.com.   PTR   Building 1.example.com.

         lb._dns-sd._udp.example.com.   PTR   Building 1.example.com.

   The meaning of these records is defined in the DNS-based Service
   Discovery specification [RFC6763] but, for convenience, is repeated
   here.  The "b" ("browse") records tell the client device the list of
   browsing domains to display for the user to select from.  The "db"
   ("default browse") record tells the client device which domain in
   that list should be selected by default.  The "db" domain MUST be one
   of the domains in the "b" list; if not, then no domain is selected by
   default.  The "lb" ("legacy browse") record tells the client device
   which domain to automatically browse on behalf of applications that
   don’t implement user interface for multi-domain browsing (which is
   most of them at the time of writing).  The "lb" domain is often the
   same as the "db" domain, or sometimes the "db" domain plus one or
   more others that should be included in the list of automatic browsing
   domains for legacy clients.

   Note that in the example above, for clarity, space characters in
   names are shown as actual spaces.  If this data is manually entered
   into a textual zone file for authoritative server software such as
   BIND, care must be taken because the space character is used as a
   field separator, and other characters like dot (’.’), semicolon
   (’;’), dollar (’$’), backslash (’\’), etc., also have special
   meaning.  These characters have to be escaped when entered into a
   textual zone file, following the rules in Section 5.1 of the DNS
   specification [RFC1035].  For example, a literal space in a name is
   represented in the textual zone file using ’\032’, so
   "Building 1.example.com" is entered as "Building\0321.example.com".

   DNS responses are limited to a maximum size of 65535 bytes.  This
   limits the maximum number of domains that can be returned for a
   Domain Enumeration query as follows:

   A DNS response header is 12 bytes.  That’s typically followed by a
   single qname (up to 256 bytes) plus qtype (2 bytes) and qclass
   (2 bytes), leaving 65275 for the Answer Section.

   An Answer Section Resource Record consists of:

   *  Owner name, encoded as a compression pointer, 2 bytes
   *  RRTYPE (type PTR), 2 bytes
   *  RRCLASS (class IN), 2 bytes
   *  TTL, 4 bytes
   *  RDLENGTH, 2 bytes
   *  RDATA (domain name), up to 256 bytes

   This means that each Resource Record in the Answer Section can take
   up to 268 bytes total, which means that the Answer Section can
   contain, in the worst case, no more than 243 domains.

   In a more typical scenario, where the domain names are not all
   maximum-sized names, and there is some similarity between names so
   that reasonable name compression is possible, each Answer
   Section Resource Record may average 140 bytes, which means that the
   Answer Section can contain up to 466 domains.

   It is anticipated that this should be sufficient for even a large
   corporate network or university campus.



5.2.2.  Domain Enumeration via Multicast Queries

   In the case where Discovery Proxy functionality is widely deployed
   within an enterprise (either by having a Discovery Proxy physically
   on each link, or by having a Discovery Proxy with a remote "virtual"
   presence on each link using VLANs or Multicast DNS Discovery Relays
   [RELAY]), this offers an additional way to provide Domain Enumeration
   configuration data for clients.

   Note that this function of the Discovery Proxy is supplementary to
   the primary purpose of the Discovery Proxy, which is to facilitate
   _remote_ clients discovering services on the Discovery Proxy’s local
   link.  This publication of Domain Enumeration configuration data via
   link-local multicast on the Discovery Proxy’s local link is performed
   for the benefit of _local_ clients attached to that link, and
   typically directs those clients to contact other distant Discovery
   Proxies attached to other links.  Generally, a client does not need
   to use the local Discovery Proxy on its own link, because a client is
   generally able to perform its own Multicast DNS queries on that link.
   (The exception to this is when the local Wi-Fi access point is
   blocking or filtering local multicast traffic, requiring even local
   clients to use their local Discovery Proxy to perform local
   discovery.)

   A Discovery Proxy can be configured to generate Multicast DNS
   responses for the following Multicast DNS Domain Enumeration queries
   issued by clients:

       b._dns-sd._udp.local.    PTR   ?
       db._dns-sd._udp.local.   PTR   ?
       lb._dns-sd._udp.local.   PTR   ?

   This provides the ability for Discovery Proxies to indicate
   recommended browsing domains to DNS-SD clients on a per-link
   granularity.  In some enterprises, it may be preferable to provide
   this per-link configuration information in the form of Discovery
   Proxy configuration data rather than by populating the Unicast DNS
   servers with the same data (in the "ip6.arpa" or "in-addr.arpa"
   domains).

   Regardless of how the network operator chooses to provide this
   configuration data, clients will perform Domain Enumeration via both
   unicast and multicast queries and then combine the results of these
   queries.

5.3.  Delegated Subdomain for LDH Host Names

   DNS-SD service instance names and domains are allowed to contain
   arbitrary Net-Unicode text [RFC5198], encoded as precomposed UTF-8
   [RFC3629].

   Users typically interact with service discovery software by viewing a
   list of discovered service instance names on a display and selecting
   one of them by pointing, touching, or clicking.  Similarly, in
   software that provides a multi-domain DNS-SD user interface, users
   view a list of offered domains on the display and select one of them
   by pointing, touching, or clicking.  To use a service, users don’t
   have to remember domain or instance names, or type them; users just
   have to be able to recognize what they see on the display and touch
   or click on the thing they want.

   In contrast, host names are often remembered and typed.  Also, host
   names have historically been used in command-line interfaces where
   spaces can be inconvenient.  For this reason, host names have
   traditionally been restricted to letters, digits, and hyphens (LDH)
   with no spaces or other punctuation.

   While we do want to allow rich text for DNS-SD service instance names
   and domains, it is advisable, for maximum compatibility with existing
   usage, to restrict host names to the traditional letter-digit-hyphen



   rules.  This means that while the service name
   "My Printer._ipp._tcp.Building 1.example.com" is acceptable and
   desirable (it is displayed in a graphical user interface as an
   instance called "My Printer" in the domain "Building 1" at
   "example.com"), the host name "My-Printer.Building 1.example.com" is
   less desirable (because of the space in "Building 1").

   To accommodate this difference in allowable characters, a Discovery
   Proxy SHOULD support having two separate subdomains delegated to it
   for each link it serves: one whose name is allowed to contain
   arbitrary Net-Unicode text [RFC5198], and a second more constrained
   subdomain whose name is restricted to contain only letters, digits,
   and hyphens, to be used for host name records (names of ’A’ and
   ’AAAA’ address records).  The restricted names may be any valid name
   consisting of only letters, digits, and hyphens, including Punycode-
   encoded names [RFC3492].

   For example, a Discovery Proxy could have the two subdomains
   "Building 1.example.com" and "bldg-1.example.com" delegated to it.
   The Discovery Proxy would then translate these two Multicast DNS
   records:

      My Printer._ipp._tcp.local. SRV 0 0 631 prnt.local.
      prnt.local.                 A   203.0.113.2

   into Unicast DNS records as follows:

      My Printer._ipp._tcp.Building 1.example.com.
                                  SRV 0 0 631 prnt.bldg-1.example.com.
      prnt.bldg-1.example.com.     A   203.0.113.2

   Note that the SRV record name is translated using the rich-text
   domain name ("Building 1.example.com"), and the address record name
   is translated using the LDH domain ("bldg-1.example.com").  Further
   details of the name translation rules are described in Section 5.5.

   A Discovery Proxy MAY support only a single rich-text Net-Unicode
   domain and use that domain for all records, including ’A’ and ’AAAA’
   address records, but implementers choosing this option should be
   aware that this choice may produce host names that are awkward to use
   in command-line environments.  Whether or not this is an issue
   depends on whether users in the target environment are expected to be
   using command-line interfaces.

   A Discovery Proxy MUST NOT be restricted to support only a letter-
   digit-hyphen subdomain, because that results in an unnecessarily poor
   user experience.

   As described in Section 5.2.1, for clarity, in examples here space
   characters in names are shown as actual spaces.  If this dynamically
   discovered data were to be manually entered into a textual zone file
   (which it isn’t), then spaces would need to be represented using
   ’\032’, so "My Printer._ipp._tcp.Building 1.example.com" would become
   "My\032Printer._ipp._tcp.Building\0321.example.com".

   Note that the ’\032’ representation does not appear in DNS messages
   sent over the air.  In the wire format of DNS messages, spaces are
   sent as spaces, not as ’\032’, and likewise, in a graphical user
   interface at the client device, spaces are shown as spaces, not as
   ’\032’.

5.4.  Delegated Subdomain for Reverse Mapping

   A Discovery Proxy can facilitate easier management of reverse mapping
   domains, particularly for IPv6 addresses where manual management may
   be more onerous than it is for IPv4 addresses.

   To achieve this, in the parent domain, NS records are used to
   delegate ownership of the appropriate reverse mapping domain to the
   Discovery Proxy.  In other words, the Discovery Proxy becomes the
   authoritative name server for the reverse mapping domain.  For fault



   tolerance reasons, there may be more than one Discovery Proxy serving
   a given link.

   If a given link is using the IPv4 subnet 203.0.113/24, then the
   domain "113.0.203.in-addr.arpa" is delegated to the Discovery Proxy
   for that link.

   If a given link is using the IPv6 prefix 2001:0DB8:1234:5678::/64,
   then the domain "8.7.6.5.4.3.2.1.8.b.d.0.1.0.0.2.ip6.arpa" is
   delegated to the Discovery Proxy for that link.

   When a reverse mapping query arrives at the Discovery Proxy, it
   issues the identical query on its local link, as a Multicast DNS
   query.  The mechanism to force an apparently unicast name to be
   resolved using link-local Multicast DNS varies depending on the API
   set being used.  For example, in the "dns_sd.h" APIs (available on
   macOS, iOS, Bonjour for Windows, Linux, and Android), using
   kDNSServiceFlagsForceMulticast indicates that the
   DNSServiceQueryRecord() call should perform the query using Multicast
   DNS.  Other API sets have different ways of forcing multicast
   queries.  When the host owning that IPv4 or IPv6 address responds
   with a name of the form "something.local", the Discovery Proxy
   rewrites it to use its configured LDH host name domain instead of
   ".local" and returns the response to the caller.

   For example, a Discovery Proxy with the two subdomains
   "113.0.203.in-addr.arpa" and "bldg-1.example.com" delegated to it
   would translate this Multicast DNS record:

      2.113.0.203.in-addr.arpa. PTR prnt.local.

   into this Unicast DNS response:

      2.113.0.203.in-addr.arpa. PTR prnt.bldg-1.example.com.

   In this example the "prnt.local" host name is translated using the
   delegated LDH subdomain, as described in Section 5.5.

   Subsequent queries for the prnt.bldg-1.example.com address record,
   falling as it does within the bldg-1.example.com domain, which is
   delegated to this Discovery Proxy, will arrive at this Discovery
   Proxy where they are answered by issuing Multicast DNS queries and
   using the received Multicast DNS answers to synthesize Unicast DNS
   responses, as described above.

   Note that this description assumes that all addresses on a given IPv4
   subnet or IPv6 prefix are mapped to host names using the Discovery
   Proxy mechanism.  It would be possible to implement a Discovery Proxy
   that can be configured so that some address-to-name mappings are
   performed using Multicast DNS on the local link, while other address-
   to-name mappings within the same IPv4 subnet or IPv6 prefix are
   configured manually.

5.5.  Data Translation

   For the delegated rich-text and LDH subdomains, generating
   appropriate Multicast DNS queries involves translating from the
   configured DNS domain (e.g., "Building 1.example.com") on the Unicast
   DNS side to ".local" on the Multicast DNS side.

   For the delegated reverse-mapping subdomain, generating appropriate
   Multicast DNS queries involves using the appropriate API mechanism to
   indicate that a query should be performed using Multicast DNS, as
   described in Section 5.4.

   Generating appropriate Unicast DNS responses from the received
   Multicast DNS answers involves translating back from ".local" to the
   appropriate configured Unicast DNS domain as necessary, as described
   below.

   In the examples below, the delegated subdomains are as follows:



   Delegated subdomain for rich-text names       Building 1.example.com.
   Delegated subdomain for LDH names                 bldg-1.example.com.
   Delegated subdomain for IPv4 reverse mapping  113.0.203.in-addr.arpa.

   Names in Multicast DNS answers that do not end in ".local" do not
   require any translation.

   Names in Multicast DNS answers that end in ".local" are only
   meaningful on the local link, and require translation to make them
   useable by clients outside the local link.

   Names that end in ".local" may appear both as the owner names of
   received Multicast DNS answer records, and in the RDATA of received
   Multicast DNS answer records.

   In a received Multicast DNS answer record, if the owner name ends
   with ".local", then the ".local" top-level label is replaced with the
   name of the delegated subdomain as was used in the originating query.

   In a received Multicast DNS answer record, if a name in the RDATA
   ends with ".local", then the name is translated according to the
   delegated subdomain that was used in the originating query, as
   explained below.

   For queries in subdomains delegated for LDH host names, ".local"
   names in RDATA are translated to that delegated LDH subdomain.  For
   example, a query for "thing.bldg-1.example.com" will be translated to
   a Multicast DNS query for "thing.local".  If that query returns this
   CNAME record:

     thing.local.               CNAME  prnt.local.

   then both the owner name and the name in the RDATA are translated
   from ".local" to the LDH subdomain "bldg-1.example.com":

     thing.bldg-1.example.com.  CNAME  prnt.bldg-1.example.com.

   For queries in subdomains delegated for reverse mapping names,
   ".local" names in RDATA are translated to the delegated LDH
   subdomain, if one is configured, or to the delegated rich-text
   subdomain otherwise.  For example, consider a reverse mapping query
   that returns this PTR record:

     2.113.0.203.in-addr.arpa.  PTR  prnt.local.

   The owner name is not translated because it does not end in ".local".
   The name in the RDATA is translated from ".local" to the LDH
   subdomain "bldg-1.example.com":

     2.113.0.203.in-addr.arpa.  PTR  prnt.bldg-1.example.com.

   For queries in subdomains delegated for rich-text names, ".local"
   names in RDATA are translated according to whether or not they
   represent host names (i.e., RDATA names that are the owner names of A
   and AAAA DNS records).  RDATA names ending in ".local" that represent
   host names are translated to the delegated LDH subdomain, if one is
   configured, or to the delegated rich-text subdomain otherwise.  All
   other RDATA names ending in ".local" are translated to the delegated
   rich-text subdomain.  For example, consider a DNS-SD service browsing
   PTR query that returns this PTR record for IPP printing:

     _ipp._tcp.local.  PTR  My Printer._ipp._tcp.local.

   Both the owner name and the name in the RDATA are translated from
   ".local" to the rich-text subdomain:

     _ipp._tcp.Building 1.example.com.
                       PTR  My Printer._ipp._tcp.Building 1.example.com.

   In contrast, consider a query that returns this SRV record for a



   specific IPP printing instance:

     My Printer._ipp._tcp.local.  SRV  0 0 631 prnt.local.

   As for all queries, the owner name is translated to the delegated
   subdomain of the originating query, the delegated rich-text subdomain
   "Building 1.example.com".  However, the ".local" name in the RDATA is
   the target host name field of an SRV record, a field that is used
   exclusively for host names.  Consequently it is translated to the LDH
   subdomain "bldg-1.example.com", if configured, instead of the rich-
   text subdomain:

     My Printer._ipp._tcp.Building 1.example.com.
                                  SRV  0 0 631 prnt.bldg-1.example.com.

   Other beneficial translation and filtering operations are described
   below.

5.5.1.  DNS TTL Limiting

   For efficiency, Multicast DNS typically uses moderately high DNS TTL
   values.  For example, the typical TTL on DNS-SD service browsing PTR
   records is 75 minutes.  What makes these moderately high TTLs
   acceptable is the cache coherency mechanisms built in to the
   Multicast DNS protocol, which protect against stale data persisting
   for too long.  When a service shuts down gracefully, it sends goodbye
   packets to remove its service browsing PTR record(s) immediately from
   neighboring caches.  If a service shuts down abruptly without sending
   goodbye packets, the Passive Observation Of Failures (POOF) mechanism
   described in Section 10.5 of the Multicast DNS specification
   [RFC6762] comes into play to purge the cache of stale data.

   A traditional Unicast DNS client on a distant remote link does not
   get to participate in these Multicast DNS cache coherency mechanisms
   on the local link.  For traditional Unicast DNS queries (those
   received without using Long-Lived Queries (LLQ) [RFC8764] or DNS Push
   Notification subscriptions [RFC8765]), the DNS TTLs reported in the
   resulting Unicast DNS response MUST be capped to be no more than ten
   seconds.

   Similarly, for negative responses, the negative caching TTL indicated
   in the SOA record [RFC2308] should also be ten seconds (see
   Section 6.1).

   This value of ten seconds is chosen based on user-experience
   considerations.

   For negative caching, suppose a user is attempting to access a remote
   device (e.g., a printer), and they are unsuccessful because that
   device is powered off.  Suppose they then place a telephone call and
   ask for the device to be powered on.  We want the device to become
   available to the user within a reasonable time period.  It is
   reasonable to expect it to take on the order of ten seconds for a
   simple device with a simple embedded operating system to power on.
   Once the device is powered on and has announced its presence on the
   network via Multicast DNS, we would like it to take no more than a
   further ten seconds for stale negative cache entries to expire from
   Unicast DNS caches, making the device available to the user desiring
   to access it.

   Similar reasoning applies to capping positive TTLs at ten seconds.
   In the event of a device moving location, getting a new DHCP address,
   or other renumbering events, we would like the updated information to
   be available to remote clients in a relatively timely fashion.

   However, network administrators should be aware that many recursive
   resolvers by default are configured to impose a minimum TTL of 30
   seconds.  If stale data appears to be persisting in the network to
   the extent that it adversely impacts user experience, network
   administrators are advised to check the configuration of their
   recursive resolvers.



   For received Unicast DNS queries that use LLQ [RFC8764] or DNS Push
   Notifications [RFC8765], the Multicast DNS record’s TTL SHOULD be
   returned unmodified, because the notification channel exists to
   inform the remote client as records come and go.  For further details
   about Long-Lived Queries and its newer replacement, DNS Push
   Notifications, see Section 5.6.

5.5.2.  Suppressing Unusable Records

   A Discovery Proxy SHOULD offer a configurable option, enabled by
   default, to suppress Unicast DNS answers for records that are not
   useful outside the local link.  When the option to suppress unusable
   records is enabled:

   *  For a Discovery Proxy that is serving only clients outside the
      local link, DNS A and AAAA records for IPv4 link-local addresses
      [RFC3927] and IPv6 link-local addresses [RFC4862] SHOULD be
      suppressed.

   *  Similarly, for sites that have multiple private address realms
      [RFC1918], in cases where the Discovery Proxy can determine that
      the querying client is in a different address realm, private
      addresses SHOULD NOT be communicated to that client.

   *  IPv6 Unique Local Addresses [RFC4193] SHOULD be suppressed in
      cases where the Discovery Proxy can determine that the querying
      client is in a different IPv6 address realm.

   *  By the same logic, DNS SRV records that reference target host
      names that have no addresses usable by the requester should be
      suppressed, and likewise, DNS-SD service browsing PTR records that
      point to unusable SRV records should similarly be suppressed.

5.5.3.  NSEC and NSEC3 Queries

   Multicast DNS devices do not routinely announce their records on the
   network.  Generally, they remain silent until queried.  This means
   that the complete set of Multicast DNS records in use on a link can
   only be discovered by active querying, not by passive listening.
   Because of this, a Discovery Proxy can only know what names exist on
   a link by issuing queries for them, and since it would be impractical
   to issue queries for every possible name just to find out which names
   exist and which do not, a Discovery Proxy cannot programmatically
   generate the traditional Unicast DNS NSEC [RFC4034] and NSEC3
   [RFC5155] records that assert the nonexistence of a large range of
   names.

   When queried for an NSEC or NSEC3 record type, the Discovery Proxy
   issues a qtype "ANY" query using Multicast DNS on the local link and
   then generates an NSEC or NSEC3 response with a Type Bit Map
   signifying which record types do and do not exist for just the
   specific name queried, and no other names.

   Multicast DNS NSEC records received on the local link MUST NOT be
   forwarded unmodified to a unicast querier, because there are slight
   differences in the NSEC record data.  In particular, Multicast DNS
   NSEC records do not have the NSEC bit set in the Type Bit Map,
   whereas conventional Unicast DNS NSEC records do have the NSEC bit
   set.

5.5.4.  No Text-Encoding Translation

   A Discovery Proxy does no translation between text encodings.
   Specifically, a Discovery Proxy does no translation between Punycode
   encoding [RFC3492] and UTF-8 encoding [RFC3629], either in the owner
   name of DNS records or anywhere in the RDATA of DNS records (such as
   the RDATA of PTR records, SRV records, NS records, or other record
   types like TXT, where it is ambiguous whether the RDATA may contain
   DNS names).  All bytes are treated as-is with no attempt at text-
   encoding translation.  A client implementing DNS-based Service



   Discovery [RFC6763] will use UTF-8 encoding for its unicast DNS-based
   Service Discovery queries, which the Discovery Proxy passes through
   without any text-encoding translation to the Multicast DNS subsystem.
   Responses from the Multicast DNS subsystem are similarly returned,
   without any text-encoding translation, back to the requesting unicast
   client.

5.5.5.  Application-Specific Data Translation

   There may be cases where Application-Specific Data Translation is
   appropriate.

   For example, AirPrint printers tend to advertise fairly verbose
   information about their capabilities in their DNS-SD TXT record.  TXT
   record sizes in the range of 500-1000 bytes are not uncommon.  This
   information is a legacy from lineprinter (LPR) printing, because LPR
   does not have in-band capability negotiation, so all of this
   information is conveyed using the DNS-SD TXT record instead.
   Internet Printing Protocol (IPP) printing does have in-band
   capability negotiation, but for convenience, printers tend to include
   the same capability information in their IPP DNS-SD TXT records as
   well.  For local Multicast DNS (mDNS) use, this extra TXT record
   information is wasteful but not fatal.  However, when a Discovery
   Proxy aggregates data from multiple printers on a link, and sends it
   via unicast (via UDP or TCP), this amount of unnecessary TXT record
   information can result in large responses.  A DNS reply over TCP
   carrying information about 70 printers with an average of 700 bytes
   per printer adds up to about 50 kilobytes of data.  Therefore, a
   Discovery Proxy that is aware of the specifics of an application-
   layer protocol such as AirPrint (which uses IPP) can elide
   unnecessary key/value pairs from the DNS-SD TXT record for better
   network efficiency.

   Also, the DNS-SD TXT record for many printers contains an "adminurl"
   key (e.g., "adminurl=http://printername.local/status.html").  For
   this URL to be useful outside the local link, the embedded ".local"
   host name needs to be translated to an appropriate name with larger
   scope.  It is easy to translate ".local" names when they appear in
   well-defined places: as a record’s owner name, or in domain name
   fields in the RDATA of record types like PTR and SRV.  In the
   printing case, some application-specific knowledge about the
   semantics of the "adminurl" key is needed for the Discovery Proxy to
   know that it contains a name that needs to be translated.  This is
   somewhat analogous to the need for NAT gateways to contain ALGs
   (Application-Level Gateways) to facilitate the correct translation of
   protocols that embed addresses in unexpected places.

   To avoid the need for application-specific knowledge about the
   semantics of particular TXT record keys, protocol designers are
   advised to avoid placing link-local names or link-local IP addresses
   in TXT record keys if translation of those names or addresses would
   be required for off-link operation.  In the printing case, the
   consequence of failing to translate the "adminurl" key correctly
   would be that, when accessed from a different link, printing will
   still work, but clicking the "Admin" user interface button will fail
   to open the printer’s administration page.  Rather than duplicating
   the host name from the service’s SRV record in its "adminurl" key,
   thereby having the same host name appear in two places, a better
   design might have been to omit the host name from the "adminurl" key
   and instead have the client implicitly substitute the target host
   name from the service’s SRV record in place of a missing host name in
   the "adminurl" key.  That way, the desired host name only appears
   once and is in a well-defined place where software like the Discovery
   Proxy is expecting to find it.

   Note that this kind of Application-Specific Data Translation is
   expected to be very rare; it is the exception rather than the rule.
   This is an example of a common theme in computing.  It is frequently
   the case that it is wise to start with a clean, layered design with
   clear boundaries.  Then, in certain special cases, those layer
   boundaries may be violated where the performance and efficiency



   benefits outweigh the inelegance of the layer violation.

   These layer violations are optional.  They are done primarily for
   efficiency reasons and generally should not be required for correct
   operation.  A Discovery Proxy MAY operate solely at the mDNS layer
   without any knowledge of semantics at the DNS-SD layer or above.

5.6.  Answer Aggregation

   In a simple analysis, simply gathering multicast answers and
   forwarding them in a unicast response seems adequate, but it raises
   the question of how long the Discovery Proxy should wait to be sure
   that it has received all the Multicast DNS answers it needs to form a
   complete Unicast DNS response.  If it waits too little time, then it
   risks its Unicast DNS response being incomplete.  If it waits too
   long, then it creates a poor user experience at the client end.  In
   fact, there may be no time that is both short enough to produce a
   good user experience and at the same time long enough to reliably
   produce complete results.

   Similarly, the Discovery Proxy (the authoritative name server for the
   subdomain in question) needs to decide what DNS TTL to report for
   these records.  If the TTL is too long, then the recursive resolvers
   issuing queries on behalf of their clients risk caching stale data
   for too long.  If the TTL is too short, then the amount of network
   traffic will be more than necessary.  In fact, there may be no TTL
   that is both short enough to avoid undesirable stale data and, at the
   same time, long enough to be efficient on the network.

   Both these dilemmas are solved by the use of DNS Long-Lived Queries
   (LLQ) [RFC8764] or its newer replacement, DNS Push Notifications
   [RFC8765].

   Clients supporting unicast DNS-based Service Discovery SHOULD
   implement DNS Push Notifications [RFC8765] for improved user
   experience.

   Clients and Discovery Proxies MAY support both LLQ and DNS Push
   Notifications, and when talking to a Discovery Proxy that supports
   both, the client may use either protocol, as it chooses, though it is
   expected that only DNS Push Notifications will continue to be
   supported in the long run.

   When a Discovery Proxy receives a query using LLQ or DNS Push
   Notifications, it responds immediately using the Multicast DNS
   records it already has in its cache (if any).  This provides a good
   client user experience by providing a near-instantaneous response.
   Simultaneously, the Discovery Proxy issues a Multicast DNS query on
   the local link to discover if there are any additional Multicast DNS
   records it did not already know about.  Should additional Multicast
   DNS responses be received, these are then delivered to the client
   using additional LLQ or DNS Push Notification update messages.  The
   timeliness of such update messages is limited only by the timeliness
   of the device responding to the Multicast DNS query.  If the
   Multicast DNS device responds quickly, then the update message is
   delivered quickly.  If the Multicast DNS device responds slowly, then
   the update message is delivered slowly.  The benefit of using
   multiple update messages to deliver results as they become available
   is that the Discovery Proxy can respond promptly because it doesn’t
   have to deliver all the results in a single response that needs to be
   delayed to allow for the expected worst-case delay for receiving all
   the Multicast DNS responses.

   With a proxy that supported only standard DNS queries, even if it
   were to try to provide reliability by assuming an excessively
   pessimistic worst-case time (thereby giving a very poor user
   experience), there would still be the risk of a slow Multicast DNS
   device taking even longer than that worst-case time (e.g., a device
   that is not even powered on until ten seconds after the initial query
   is received), resulting in incomplete responses.  Using update
   messages to deliver subsequent asynchronous replies solves this



   dilemma: even very late responses are not lost; they are delivered in
   subsequent update messages.

   Note that while normal DNS queries are generally received via the
   client’s configured recursive resolver, LLQ and DNS Push Notification
   subscriptions may be received directly from the client.

   There are two factors that determine how unicast responses are
   generated:

   The first factor is whether or not the Discovery Proxy already has at
   least one record in its cache that answers the question.

   The second factor is whether the client used a normal DNS query, or
   established a subscription using LLQ or DNS Push Notifications.
   Normal DNS queries are typically used for one-shot operations like
   SRV or address record queries.  LLQ and DNS Push Notification
   subscriptions are typically used for long-lived service browsing PTR
   queries.  Normal DNS queries and LLQ each have different response
   timing depending on the cache state, yielding the first four cases
   listed below.  DNS Push Notifications, the newer protocol, has
   uniform behavior regardless of cache state, yielding the fifth case
   listed below.

   *  Standard DNS query; no answer in cache:

      Issue an mDNS query on the local link, exactly as a local client
      would issue an mDNS query, for the desired record name, type, and
      class, including retransmissions, as appropriate, according to the
      established mDNS retransmission schedule [RFC6762].  The Discovery
      Proxy awaits Multicast DNS responses.

      As soon as any Multicast DNS response packet is received that
      contains one or more positive answers to that question (with or
      without the Cache Flush bit [RFC6762] set) or a negative answer
      (signified via a Multicast DNS NSEC record [RFC6762]), the
      Discovery Proxy generates a Unicast DNS response message
      containing the corresponding (filtered and translated) answers and
      sends it to the remote client.

      If after six seconds no relevant Multicast DNS answers have been
      received, cancel the mDNS query and return a negative response to
      the remote client.  Six seconds is enough time for the underlying
      Multicast DNS subsystem to transmit three mDNS queries and allow
      some time for responses to arrive.

      (Reasoning: Queries not using LLQ or Push Notifications are
      generally queries that expect an answer from only one device, so
      the first response is also the only response.)

      DNS TTLs in responses MUST be capped to at most ten seconds.

   *  Standard DNS query; at least one answer in cache:

      No local mDNS queries are performed.

      The Discovery Proxy generates a Unicast DNS response message
      containing the answer(s) from the cache right away, to minimize
      delay.

      (Reasoning: Queries not using LLQ or Push Notifications are
      generally queries that expect an answer from only one device.
      Given RRSet TTL harmonization, if the proxy has one Multicast DNS
      answer in its cache, it can reasonably assume that it has the
      whole set.)

      DNS TTLs in responses MUST be capped to at most ten seconds.

   *  Long-Lived Query (LLQ); no answer in cache:

      As in the case above with no answer in the cache, plan to perform



      mDNS querying for six seconds, returning an LLQ response message
      to the remote client as soon as any relevant mDNS response is
      received.

      If after six seconds no relevant mDNS answers have been received,
      and the client has not cancelled its Long-Lived Query, return a
      negative LLQ response message to the remote client.

      (Reasoning: We don’t need to rush to send an empty answer.)

      Regardless of whether or not a relevant mDNS response is received
      within six seconds, the Long-Lived Query remains active for as
      long as the client maintains the LLQ state, and results in the
      ongoing transmission of mDNS queries until the Long-Lived Query is
      cancelled.  If the set of mDNS answers changes, LLQ Event Response
      messages are sent.

      DNS TTLs in responses are returned unmodified.

   *  Long-Lived Query (LLQ); at least one answer in cache:

      As in the case above with at least one answer in the cache, the
      Discovery Proxy generates a unicast LLQ response message
      containing the answer(s) from the cache right away, to minimize
      delay.

      The Long-Lived Query remains active for as long as the client
      maintains the LLQ state, and results in the transmission of mDNS
      queries (with appropriate Known Answer lists) to determine if
      further answers are available.  If the set of mDNS answers
      changes, LLQ Event Response messages are sent.

      (Reasoning: We want a user interface that is displayed very
      rapidly yet continues to remain accurate even as the network
      environment changes.)

      DNS TTLs in responses are returned unmodified.

   *  Push Notification Subscription

      The Discovery Proxy acknowledges the subscription request
      immediately.

      If one or more answers are already available in the cache, those
      answers are then sent in an immediately following DNS PUSH
      message.

      The Push Notification subscription remains active until the client
      cancels the subscription, and results in the transmission of mDNS
      queries (with appropriate Known Answer lists) to determine if
      further answers are available.  If the set of mDNS answers
      changes, further DNS PUSH messages are sent.

      (Reasoning: We want a user interface that is displayed very
      rapidly yet continues to remain accurate even as the network
      environment changes.)

      DNS TTLs in responses are returned unmodified.

   Where the text above refers to returning "a negative response to the
   remote client", it is describing returning a "no error no answer"
   negative response, not NXDOMAIN.  This is because the Discovery Proxy
   cannot know all the Multicast DNS domain names that may exist on a
   link at any given time, so any name with no answers may have child
   names that do exist, making it an "empty non-terminal" name.

   Note that certain aspects of the behavior described here do not have
   to be implemented overtly by the Discovery Proxy; they occur
   naturally as a result of using existing Multicast DNS APIs.

   For example, in the first case above (standard DNS query and no



   answers in the cache), if a new Multicast DNS query is requested
   (either by a local client on the Discovery Proxy device, or by the
   Discovery Proxy software on that device on behalf of a remote
   client), and there is not already an identical Multicast DNS query
   active and there are no matching answers already in the Multicast DNS
   cache on the Discovery Proxy device, then this will cause a series of
   Multicast DNS query packets to be issued with exponential backoff.
   The exponential backoff sequence in some implementations starts at
   one second and then doubles for each retransmission (0, 1, 3, 7
   seconds, etc.), and in others, it starts at one second and then
   triples for each retransmission (0, 1, 4, 13 seconds, etc.).  In
   either case, if no response has been received after six seconds, that
   is long enough that the underlying Multicast DNS implementation will
   have sent three query packets without receiving any response.  At
   that point, the Discovery Proxy cancels its Multicast DNS query (so
   no further Multicast DNS query packets will be sent for this query)
   and returns a negative response to the remote client via unicast.

   The six-second delay is chosen to be long enough to give enough time
   for devices to respond, yet short enough not to be too onerous for a
   human user waiting for a response.  For example, using the "dig" DNS
   debugging tool, the current default settings result in it waiting a
   total of 15 seconds for a reply (three transmissions of the DNS UDP
   query packet, with a wait of 5 seconds after each packet), which is
   ample time for it to have received a negative reply from a Discovery
   Proxy after six seconds.

   The text above states that for a standard DNS query, if at least one
   answer is already available in the cache, then a Discovery Proxy
   should not issue additional mDNS query packets.  This also occurs
   naturally as a result of using existing Multicast DNS APIs.  If a new
   Multicast DNS query is requested (either locally, or by the Discovery
   Proxy on behalf of a remote client) for which there are relevant
   answers already in the Multicast DNS cache on the Discovery Proxy
   device, and after the answers are delivered the Multicast DNS query
   is immediately cancelled, then no Multicast DNS query packets will be
   generated for this query.

6.  Administrative DNS Records

6.1.  DNS SOA (Start of Authority) Record

   The MNAME field SHOULD contain the host name of the Discovery Proxy
   device (i.e., the same domain name as the RDATA of the NS record
   delegating the relevant zone(s) to this Discovery Proxy device).

   The RNAME field SHOULD contain the mailbox of the person responsible
   for administering this Discovery Proxy device.

   The SERIAL field MUST be zero.

   Zone transfers are undefined for Discovery Proxy zones, and
   consequently, the REFRESH, RETRY, and EXPIRE fields have no useful
   meaning for Discovery Proxy zones.  These fields SHOULD contain
   reasonable default values.  The RECOMMENDED values are: REFRESH 7200,
   RETRY 3600, and EXPIRE 86400.

   The MINIMUM field (used to control the lifetime of negative cache
   entries) SHOULD contain the value 10.  This value is chosen based on
   user-experience considerations (see Section 5.5.1).

   In the event that there are multiple Discovery Proxy devices on a
   link for fault tolerance reasons, this will result in clients
   receiving inconsistent SOA records (different MNAME and possibly
   RNAME) depending on which Discovery Proxy answers their SOA query.
   However, since clients generally have no reason to use the MNAME or
   RNAME data, this is unlikely to cause any problems.

6.2.  DNS NS Records

   In the event that there are multiple Discovery Proxy devices on a



   link for fault tolerance reasons, the parent zone MUST be configured
   with NS records giving the names of all the Discovery Proxy devices
   on the link.

   Each Discovery Proxy device MUST be configured to answer NS queries
   for the zone apex name by giving its own NS record, and the NS
   records of its fellow Discovery Proxy devices on the same link, so
   that it can return the correct answers for NS queries.

   The target host name in the RDATA of an NS record MUST NOT reference
   a name that falls within any zone delegated to a Discovery Proxy.
   Apart from the zone apex name, all other host names (names of A and
   AAAA DNS records) that fall within a zone delegated to a Discovery
   Proxy correspond to local Multicast DNS host names, which logically
   belong to the respective Multicast DNS hosts defending those names,
   not the Discovery Proxy.  Generally speaking, the Discovery Proxy
   does not own or control the delegated zone; it is merely a conduit to
   the corresponding ".local" namespace, which is controlled by the
   Multicast DNS hosts on that link.  If an NS record were to reference
   a manually determined host name that falls within a delegated zone,
   that manually determined host name may inadvertently conflict with a
   corresponding ".local" host name that is owned and controlled by some
   device on that link.

6.3.  DNS Delegation Records

   Since the Multicast DNS specification [RFC6762] states that there can
   be no delegation (subdomains) within a ".local" namespace, this
   implies that any name within a zone delegated to a Discovery Proxy
   (except for the zone apex name itself) cannot have any answers for
   any DNS queries for RRTYPEs SOA, NS, or DS.  Consequently:

   *  for any query for the zone apex name of a zone delegated to a
      Discovery Proxy, the Discovery Proxy MUST generate the appropriate
      immediate answers as described above, and

   *  for any query for any name below the zone apex, for RRTYPEs SOA,
      NS, or DS, the Discovery Proxy MUST generate an immediate negative
      answer.

6.4.  DNS SRV Records

   There are certain special DNS records that logically fall within the
   delegated Unicast DNS subdomain, but rather than mapping to their
   corresponding ".local" namesakes, they actually contain metadata
   pertaining to the operation of the delegated Unicast DNS subdomain
   itself.  They do not exist in the corresponding ".local" namespace of
   the local link.  For these queries, a Discovery Proxy MUST generate
   immediate answers, whether positive or negative, to avoid delays
   while clients wait for their query to be answered.

   For example, if a Discovery Proxy implements Long-Lived Queries
   [RFC8764], then it MUST positively respond to
   "_dns-llq._udp.<zone> SRV" queries, "_dns-llq._tcp.<zone> SRV"
   queries, and "_dns-llq-tls._tcp.<zone> SRV" queries as appropriate.
   If it does not implement Long-Lived Queries, it MUST return an
   immediate negative answer for those queries, instead of passing those
   queries through to the local network as Multicast DNS queries and
   then waiting unsuccessfully for answers that will not be forthcoming.

   If a Discovery Proxy implements DNS Push Notifications [RFC8765],
   then it MUST positively respond to "_dns-push-tls._tcp.<zone>"
   queries.  Otherwise, it MUST return an immediate negative answer for
   those queries.

   A Discovery Proxy MUST return an immediate negative answer for
   "_dns-update._udp.<zone> SRV" queries, "_dns-update._tcp.<zone> SRV"
   queries, and "_dns-update-tls._tcp.<zone> SRV" queries, since using
   DNS Update [RFC2136] to change zones generated dynamically from local
   Multicast DNS data is not possible.



6.5.  Domain Enumeration Records

   If the network operator chooses to use address-based unicast Domain
   Enumeration queries for client configuration (see Section 5.2.1), and
   the network operator also chooses to delegate the enclosing reverse
   mapping subdomain to a Discovery Proxy, then that Discovery Proxy
   becomes responsible for serving the answers to those address-based
   unicast Domain Enumeration queries.

   As with the SRV metadata records described above, a Discovery Proxy
   configured with delegated reverse mapping subdomains is responsible
   for generating immediate (positive or negative) answers for address-
   based unicast Domain Enumeration queries, rather than passing them
   though to the underlying Multicast DNS subsystem and then waiting
   unsuccessfully for answers that will not be forthcoming.

7.  DNSSEC Considerations

7.1.  Online Signing Only

   The Discovery Proxy acts as the authoritative name server for
   designated subdomains, and if DNSSEC is to be used, the Discovery
   Proxy needs to possess a copy of the signing keys in order to
   generate authoritative signed data from the local Multicast DNS
   responses it receives.  Offline signing is not applicable to
   Discovery Proxy.

7.2.  NSEC and NSEC3 Records

   In DNSSEC, NSEC and NSEC3 records are used to assert the nonexistence
   of certain names, also described as "authenticated denial of
   existence" [RFC4034] [RFC5155].

   Since a Discovery Proxy only knows what names exist on the local link
   by issuing queries for them, and since it would be impractical to
   issue queries for every possible name just to find out which names
   exist and which do not, a Discovery Proxy cannot programmatically
   synthesize the traditional NSEC and NSEC3 records that assert the
   nonexistence of a large range of names.  Instead, when generating a
   negative response, a Discovery Proxy programmatically synthesizes a
   single NSEC record asserting the nonexistence of just the specific
   name queried and no others.  Since the Discovery Proxy has the zone
   signing key, it can do this on demand.  Since the NSEC record asserts
   the nonexistence of only a single name, zone walking is not a
   concern, and NSEC3 is therefore not necessary.

   Note that this applies only to traditional immediate DNS queries,
   which may return immediate negative answers when no immediate
   positive answer is available.  When used with a DNS Push Notification
   subscription [RFC8765], there are no negative answers, merely the
   absence of answers so far, which may change in the future if answers
   become available.

8.  IPv6 Considerations

   An IPv4-only host and an IPv6-only host behave as "ships that pass in
   the night".  Even if they are on the same Ethernet [IEEE-3], neither
   is aware of the other’s traffic.  For this reason, each link may have
   _two_ unrelated ".local." zones: one for IPv4 and one for IPv6.
   Since, for practical purposes, a group of IPv4-only hosts and a group
   of IPv6-only hosts on the same Ethernet act as if they were on two
   entirely separate Ethernet segments, it is unsurprising that their
   use of the ".local." zone should occur exactly as it would if they
   really were on two entirely separate Ethernet segments.

   It will be desirable to have a mechanism to "stitch" together these
   two unrelated ".local." zones so that they appear as one.  Such a
   mechanism will need to be able to differentiate between a dual-stack
   (v4/v6) host participating in both ".local." zones, and two different
   hosts: one IPv4-only and the other IPv6-only, which are both trying
   to use the same name(s).  Such a mechanism will be specified in a



   future companion document.

   At present, it is RECOMMENDED that a Discovery Proxy be configured
   with a single domain name for both the IPv4 and IPv6 ".local." zones
   on the local link, and when a unicast query is received, it should
   issue Multicast DNS queries using both IPv4 and IPv6 on the local
   link and then combine the results.

9.  Security Considerations

9.1.  Authenticity

   A service proves its presence on a link by its ability to answer
   link-local multicast queries on that link.  If greater security is
   desired, then the Discovery Proxy mechanism should not be used, and
   something with stronger security should be used instead such as
   authenticated secure DNS Update [RFC2136] [RFC3007].

9.2.  Privacy

   The Domain Name System is, generally speaking, a global public
   database.  Records that exist in the Domain Name System name
   hierarchy can be queried by name from, in principle, anywhere in the
   world.  If services on a mobile device (like a laptop computer) are
   made visible via the Discovery Proxy mechanism, then when those
   services become visible in a domain such as "My House.example.com",
   it might indicate to (potentially hostile) observers that the mobile
   device is in the owner’s home.  When those services disappear from
   "My House.example.com", that change could be used by observers to
   infer when the mobile device (and possibly its owner) may have left
   the house.  The privacy of this information may be protected using
   techniques like firewalls, split-view DNS, and Virtual Private
   Networks (VPNs), as are customarily used today to protect the privacy
   of corporate DNS information.

   The privacy issue is particularly serious for the IPv4 and IPv6
   reverse zones.  If the public delegation of the reverse zones points
   to the Discovery Proxy, and the Discovery Proxy is reachable
   globally, then it could leak a significant amount of information.
   Attackers could discover hosts that otherwise might not be easy to
   identify, and learn their host names.  Attackers could also discover
   the existence of links where hosts frequently come and go.

   The Discovery Proxy could provide sensitive records only to
   authenticated users.  This is a general DNS problem, not specific to
   the Discovery Proxy.  Work is underway in the IETF to tackle this
   problem [RFC7626].

9.3.  Denial of Service

   A remote attacker could use a rapid series of unique Unicast DNS
   queries to induce a Discovery Proxy to generate a rapid series of
   corresponding Multicast DNS queries on one or more of its local
   links.  Multicast traffic is generally more expensive than unicast
   traffic, especially on Wi-Fi links [MCAST], which makes this attack
   particularly serious.  To limit the damage that can be caused by such
   attacks, a Discovery Proxy (or the underlying Multicast DNS subsystem
   that it utilizes) MUST implement Multicast DNS query rate limiting
   appropriate to the link technology in question.  For today’s
   802.11b/g/n/ac Wi-Fi links (for which approximately 200 multicast
   packets per second is sufficient to consume approximately 100% of the
   wireless spectrum), a limit of 20 Multicast DNS query packets per
   second is RECOMMENDED.  On other link technologies like Gigabit
   Ethernet, higher limits may be appropriate.  A consequence of this
   rate limiting is that a rogue remote client could issue an excessive
   number of queries resulting in denial of service to other legitimate
   remote clients attempting to use that Discovery Proxy.  However, this
   is preferable to a rogue remote client being able to inflict even
   greater harm on the local network, which could impact the correct
   operation of all local clients on that network.



10.  IANA Considerations

   This document has no IANA actions.
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Appendix A.  Implementation Status

   Some aspects of the mechanism specified in this document already
   exist in deployed software.  Some aspects are new.  This section
   outlines which aspects already exist and which are new.

A.1.  Already Implemented and Deployed

   Domain enumeration by the client ("b._dns-sd._udp.<zone>" queries) is
   already implemented and deployed.

   Performing unicast queries to the indicated discovery domain is
   already implemented and deployed.

   These are implemented and deployed in Mac OS X 10.4 Tiger and later
   (including all versions of Apple iOS, on all models of iPhones,
   iPads, Apple TVs and HomePods), in Bonjour for Windows, and in
   Android 4.1 "Jelly Bean" (API Level 16) and later.

   Domain enumeration and unicast querying have been used for several
   years at IETF meetings to make terminal room printers discoverable
   from outside the terminal room.  When an IETF attendee presses



   "Cmd-P" on a Mac, or selects AirPrint on an iPad or iPhone, and the
   terminal room printers appear, it is because the client is sending
   Unicast DNS queries to the IETF DNS servers.  A walk-through giving
   the details of this particular specific example is given in
   Appendix A of the Roadmap document [ROADMAP].

   The Long-Lived Query mechanism [RFC8764] referred to in this
   specification exists and is deployed but was not standardized by the
   IETF.  The IETF has developed a superior Long-Lived Query mechanism
   called DNS Push Notifications [RFC8765], which is built on DNS
   Stateful Operations [RFC8490].  DNS Push Notifications is implemented
   and deployed in Mac OS X 10.15 and later, and iOS 13 and later.

A.2.  Already Implemented

   A minimal portable Discovery Proxy implementation has been produced
   by Markus Stenberg and Steven Barth, which runs on OS X and several
   Linux variants including OpenWrt [OHP].  It was demonstrated at the
   Berlin IETF in July 2013.

   Tom Pusateri has an implementation that runs on any Unix/Linux
   system.  It has a RESTful interface for management and an
   experimental demo command-line interface (CLI) and web interface.

   Ted Lemon also has produced a portable implementation of Discovery
   Proxy, which is available in the mDNSResponder open source code.

A.3.  Partially Implemented

   At the time of writing, existing APIs make multiple domains visible
   to client software, but most client user interfaces lump all
   discovered services into a single flat list.  This is largely a
   chicken-and-egg problem.  Application writers were naturally
   reluctant to spend time writing domain-aware user interface code when
   few customers would benefit from it.  If Discovery Proxy deployment
   becomes common, then application writers will have a reason to
   provide a better user experience.  Existing applications will work
   with the Discovery Proxy but will show all services in a single flat
   list.  Applications with improved user interfaces will show services
   grouped by domain.
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