
ï»¿

Internet Engineering Task Force (IETF) T. Fossati
Request for Comments: 8710 ARM
Category: Standards Track K. Hartke
ISSN: 2070-1721 Ericsson
 C. Bormann
 UniversitÃ¤t Bremen TZI
 February 2020

Multipart Content-Format for the Constrained Application Protocol (CoAP)

Abstract

 This memo defines application/multipart-core, an application-
 independent media type that can be used to combine representations of
 zero or more different media types (each with a Constrained
 Application Protocol (CoAP) Content-Format identifier) into a single
 representation, with minimal framing overhead.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8710.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 1.1. Requirements Language
 2. Multipart Content-Format Encoding
 3. Usage Example: Observing Resources
 4. Implementation Hints
 5. IANA Considerations
 5.1. Registration of Media Type application/multipart-core
 5.2. Registration of a Content-Format Identifier for
 application/multipart-core
 6. Security Considerations
 7. References
 7.1. Normative References
 7.2. Informative References
 Acknowledgements
 Authors’ Addresses

1. Introduction

 This memo defines application/multipart-core, an application-
 independent media type that can be used to combine representations of
 zero or more different media types (each with a CoAP Content-Format
 identifier [RFC7252]) into a single representation, with minimal
 framing overhead.

 This simple and efficient binary framing mechanism can be employed to
 create application-specific message bodies that build on multiple
 already existing media types.

 As the name of the media type suggests, application/multipart-core
 was inspired by the multipart media types initially defined in the
 original set of MIME specifications [RFC2046] and later. However,
 while those needed to focus on the syntactic aspects of integrating
 multiple representations into one email, transfer protocols providing
 full data transparency such as CoAP as well as readily available
 encoding formats such as the Concise Binary Object Representation
 (CBOR) [RFC7049] shift the focus towards the intended use of the
 combined representations. In this respect, the basic intent of the
 application/multipart-core media type is like that of multipart/mixed
 (Section 5.1.3 of [RFC2046]); however, the semantics are relaxed to
 allow for both ordered and unordered collections of media types.

 Historical Note: Experience with multipart/mixed in email has
 shown that recipients that care about order of included body parts
 will process them in the order they are listed inside multipart/
 mixed, and recipients that don’t care about the order will ignore
 it anyway. The media type multipart/parallel that was intended
 for unordered collections didn’t deploy.

 The detailed semantics of the representations are refined by the
 context established by the application in the accompanying request
 parameters, e.g., the resource URI and any further options (header
 fields), but three usage scenarios are envisioned:

 In one case, the individual representations in an application/
 multipart-core message body occur in a sequence, which may be
 employed by an application where such a sequence is natural, e.g.,
 for a number of audio snippets in various formats to be played out in
 that sequence or search results returned in order of relevance.

 In another case, an application may be more interested in a bag of
 representations (which are distinguished by their Content-Format
 identifiers), such as an audio snippet and a text representation
 accompanying it. In such a case, the sequence in which these occur
 may not be relevant to the application. This specification adds the
 option of substituting a null value for the representation of an
 optional part, which indicates that the part is not present.

 A third common situation only has a single representation in the
 sequence, and the sender selects just one of a set of formats
 possible for this situation. This kind of union "type" of formats
 may also make the presence of the actual representation optional, the
 omission of which leads to a zero-length array.

 Where these rules are not sufficient, an application might still use
 the general format defined here but register a new media type and an
 associated Content-Format identifier to associate the representation
 with these more specific semantics instead of using the application/
 multipart-core media type.

 Also, future specifications might want to define rough equivalents
 for other multipart media types with specific semantics not covered
 by the present specification, such as multipart/alternative
 (Section 5.1.4 of [RFC2046]), where several alternative
 representations are provided in the message body, but only one of
 those is to be selected by the recipient for its use (this is less
 likely to be useful in a constrained environment that has facilities
 for pre-flight discovery).

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Multipart Content-Format Encoding

 A representation of media type application/multipart-core contains a
 collection of zero or more representations, each along with their
 respective Content-Format.

 The collection is encoded as a CBOR [RFC7049] array with an even
 number of elements. Counting from zero, the odd-numbered elements
 are a byte string containing a representation or the value "null" (if
 an optional part is indicated as not given). The (even-numbered)
 element preceding each of these is an unsigned integer specifying the
 Content-Format ID of the representation following it.

 For example, a collection containing two representations, one with
 Content-Format ID 42 and one with Content-Format ID 0, looks like
 this in CBOR diagnostic notation:

 [42, h’0123456789abcdef’, 0, h’3031323334’]

 For illustration, the structure of an application/multipart-core
 representation can be described by the Concise Data Definition
 Language (CDDL) [RFC8610] specification in Figure 1:

 multipart-core = [* multipart-part]
 multipart-part = (type: uint .size 2, part: bytes / null)

 Figure 1: CDDL for application/multipart-core

 This format is intended as a strict specification: an implementation
 MUST stop processing the representation if there is a CBOR well-
 formedness error, a deviation from the structure defined above, or
 any residual data left after processing the CBOR data item. (This
 generally means the representation is not processed at all unless
 some streaming processing has already happened.)

3. Usage Example: Observing Resources

 This section illustrates a less obvious example for using
 application/multipart-core: combining it with observing a resource
 [RFC7641] to handle pending results.

 When a client registers to observe a resource for which no
 representation is available yet, the server may send one or more 2.05
 (Content) notifications that indicate the lack of an actual
 representation. Later on, when one becomes available, the server
 will send the first actual 2.05 (Content) or 2.03 (Valid)
 notification. A diagram depicting possible resulting sequences of
 notifications, identified by their respective response code, is shown
 in Figure 2.

 __________ __________ __________
 | | | | | |
 ---->| 2.05 |---->| 2.05 / |---->| 4.xx / |
 | Pending | | 2.03 | | 5.xx |
 |__________| |__________| |__________|
 ^ \ \ ^ \ ^
 __/ \ ___/ /
 _______________________/

 Figure 2: Sequence of Notifications

 The specification of the Observe option requires that all
 notifications carry the same Content-Format. The application/

 multipart-core media type can be used to provide that Content-Format,
 e.g., by carrying an empty list of representations in the case marked
 as "Pending" in Figure 2 and carrying a single representation
 specified as the target Content-Format in the case in the middle of
 the figure.

4. Implementation Hints

 This section describes the serialization for readers that may be new
 to CBOR. It does not contain any new information.

 An application/multipart-core representation carrying no
 representations is represented by an empty CBOR array, which is
 serialized as a single byte with the value 0x80.

 An application/multipart-core representation carrying a single
 representation is represented by a two-element CBOR array, which is
 serialized as 0x82 followed by the two elements. The first element
 is an unsigned integer for the Content-Format value, which is
 represented as described in Table 1. The second element is the
 object as a byte string, which is represented as a length as
 described in Table 2 followed by the bytes of the object.

 +----------------+------------+
 | Serialization | Value |
 +================+============+
 | 0x00..0x17 | 0..23 |
 +----------------+------------+
 | 0x18 0xnn | 24..255 |
 +----------------+------------+
 | 0x19 0xnn 0xnn | 256..65535 |
 +----------------+------------+

 Table 1: Serialization of
 Content-Format

 +-----------------------------+-------------------+
 | Serialization | Length |
 +=============================+===================+
 | 0x40..0x57 | 0..23 |
 +-----------------------------+-------------------+
 | 0x58 0xnn | 24..255 |
 +-----------------------------+-------------------+
 | 0x59 0xnn 0xnn | 256..65535 |
 +-----------------------------+-------------------+
 | 0x5a 0xnn 0xnn 0xnn 0xnn | 65536..4294967295 |
 +-----------------------------+-------------------+
 | 0x5b 0xnn .. 0xnn (8 bytes) | 4294967296.. |
 +-----------------------------+-------------------+

 Table 2: Serialization of Object Length

 For example, a single text/plain object (Content-Format 0) of value
 "Hello World" (11 characters) would be serialized as follows:

 0x82 0x00 0x4b H e l l o 0x20 W o r l d

 In effect, the serialization for a single object is done by prefixing
 the object with information that there is one object (here: 0x82),
 information about its Content-Format (here: 0x00), and information
 regarding its length (here: 0x4b).

 For more than one representation included in an application/
 multipart-core representation, the head of the CBOR array is adjusted
 (0x84 for two representations, 0x86 for three, etc.), and the
 sequences of Content-Format and embedded representations follow.

 For instance, the example from Section 2 would be serialized as
 follows:

 0x84 (*) 0x182A 0x48 0x0123456789ABCDEF (+) 0x00 0x45 0x3031323334

 where (*) marks the start of the information about the first
 representation (Content-Format 42, byte string length 8), and (+)
 marks the start of the second representation (Content-Format 0, byte
 string length 5).

5. IANA Considerations

5.1. Registration of Media Type application/multipart-core

 IANA has registered the following media type [RFC6838]:

 Type name: application

 Subtype name: multipart-core

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: See the Security Considerations section of
 RFC 8710.

 Interoperability considerations: N/A

 Published specification: RFC 8710

 Applications that use this media type: Applications that need to
 combine representations of zero or more different media types into
 one, e.g., EST over secure CoAP (EST-CoAP) [EST-COAPS]

 Fragment identifier considerations: The syntax and semantics of
 fragment identifiers specified for application/multipart-core are
 as specified for application/cbor. (At publication of this
 document, there is no fragment identification syntax defined for
 application/cbor.)

 Additional information: Deprecated alias names for this type: N/A

 Magic number(s): N/A

 File extension(s): N/A

 Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 iesg@ietf.org

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: CoRE WG

 Change controller: IESG

 Provisional registration? (standards tree only): no

5.2. Registration of a Content-Format Identifier for application/
 multipart-core

 IANA has registered the following Content-Format in the "CoAP
 Content-Formats" subregistry within the "Constrained RESTful
 Environments (CoRE) Parameters" registry:

 +----------------------------+----------+----+-----------+
 | Media Type | Encoding | ID | Reference |
 +============================+==========+====+===========+
 | application/multipart-core | - | 62 | RFC 8710 |

 +----------------------------+----------+----+-----------+

 Table 3: Addition to "CoAP Content-Formats" Registry

6. Security Considerations

 The security considerations of [RFC7049] apply. In particular,
 resource exhaustion attacks may employ large values for the byte
 string size fields or employ deeply nested structures of recursively
 embedded application/multipart-core representations.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [EST-COAPS]
 Stok, P., Kampanakis, P., Richardson, M., and S. Raza,
 "EST over secure CoAP (EST-coaps)", Work in Progress,
 Internet-Draft, draft-ietf-ace-coap-est-18, 6 January
 2020,
 <https://tools.ietf.org/html/draft-ietf-ace-coap-est-18>.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 DOI 10.17487/RFC2046, November 1996,
 <https://www.rfc-editor.org/info/rfc2046>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <https://www.rfc-editor.org/info/rfc7641>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Acknowledgements

 Most of the text in this document is from earlier contributions by
 two of the authors, Thomas Fossati and Klaus Hartke. This earlier
 work was reorganized in this document based on the requirements in
 [EST-COAPS] and discussions with Michael Richardson, Panos Kampanis,
 and Peter van der Stok.

Authors’ Addresses

 Thomas Fossati
 ARM

 Email: thomas.fossati@arm.com

 Klaus Hartke
 Ericsson
 Torshamnsgatan 23
 SE-16483 Stockholm
 Sweden

 Email: klaus.hartke@ericsson.com

 Carsten Bormann
 UniversitÃ¤t Bremen TZI
 Postfach 330440
 D-28359 Bremen
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

