
ï»¿

Internet Engineering Task Force (IETF) B. Campbell
Request for Comments: 8707 Ping Identity
Category: Standards Track J. Bradley
ISSN: 2070-1721 Yubico
 H. Tschofenig
 Arm Limited
 February 2020

 Resource Indicators for OAuth 2.0

Abstract

 This document specifies an extension to the OAuth 2.0 Authorization
 Framework defining request parameters that enable a client to
 explicitly signal to an authorization server about the identity of
 the protected resource(s) to which it is requesting access.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8707.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 1.1. Requirements Notation and Conventions
 1.2. Terminology
 2. Resource Parameter
 2.1. Authorization Request
 2.2. Access Token Request
 3. Security Considerations
 4. Privacy Considerations
 5. IANA Considerations
 5.1. OAuth Parameters Registration
 5.2. OAuth Extensions Error Registration
 6. References
 6.1. Normative References
 6.2. Informative References
 Acknowledgements
 Authors’ Addresses

1. Introduction

 Several years of deployment and implementation experience with the
 OAuth 2.0 Authorization Framework [RFC6749] has uncovered a need (in
 some circumstances, such as an authorization server servicing a
 significant number of diverse resources) for the client to explicitly
 signal to the authorization server where it intends to use the access
 token it is requesting.

 Knowing the protected resource (a.k.a. resource server, application,
 API, etc.) that will process the access token enables the
 authorization server to construct the token as necessary for that
 entity. Properly encrypting the token (or content within the token)
 to a particular resource, for example, requires knowing which
 resource will receive and decrypt the token. Furthermore, various
 resources oftentimes have different requirements with respect to the
 data contained in (or referenced by) the token, and knowing the
 resource where the client intends to use the token allows the
 authorization server to mint the token accordingly.

 Specific knowledge of the intended recipient(s) of the access token
 also helps facilitate improved security characteristics of the token
 itself. Bearer tokens, currently the most commonly utilized type of
 OAuth access token, allow any party in possession of a token to get
 access to the associated resources. To prevent misuse, several
 important security assumptions must hold, one of which is that an
 access token must only be valid for use at a specific protected
 resource and for a specific scope of access. Section 5.2 of
 [RFC6750], for example, prescribes including the token’s intended
 recipients within the token to prevent token redirect. When the
 authorization server is informed of the resource that will process
 the access token, it can restrict the intended audience of that token
 to the given resource such that the token cannot be used successfully
 at other resources.

 OAuth scope, from Section 3.3 of [RFC6749], is sometimes overloaded
 to convey the location or identity of the protected resource,
 however, doing so isn’t always feasible or desirable. Scope is
 typically about what access is being requested rather than where that
 access will be redeemed (e.g., "email", "admin:org", "user_photos",
 "channels:read", and "channels:write" are a small sample of scope
 values in use in the wild that convey only the type of access and not
 the location or identity).

 In some circumstances and for some deployments, a means for the
 client to signal to the authorization server where it intends to use
 the access token it’s requesting is important and useful. A number
 of implementations and deployments of OAuth 2.0 have already employed
 proprietary parameters toward that end. Going forward, this
 specification aspires to provide a standardized and interoperable
 alternative to the proprietary approaches.

1.1. Requirements Notation and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Terminology

 This specification uses the terms "access token", "refresh token",
 "authorization server", "resource server", "authorization endpoint",
 "authorization request", "authorization response", "token endpoint",
 "grant type", "access token request", "access token response", and
 "client" defined by The OAuth 2.0 Authorization Framework [RFC6749].

2. Resource Parameter

 In requests to the authorization server, a client MAY indicate the
 protected resource (a.k.a. resource server, application, API, etc.)

 to which it is requesting access by including the following parameter
 in the request.

 resource
 Indicates the target service or resource to which access is being
 requested. Its value MUST be an absolute URI, as specified by
 Section 4.3 of [RFC3986]. The URI MUST NOT include a fragment
 component. It SHOULD NOT include a query component, but it is
 recognized that there are cases that make a query component a
 useful and necessary part of the resource parameter, such as when
 one or more query parameters are used to scope requests to an
 application. The "resource" parameter URI value is an identifier
 representing the identity of the resource, which MAY be a locator
 that corresponds to a network-addressable location where the
 target resource is hosted. Multiple "resource" parameters MAY be
 used to indicate that the requested token is intended to be used
 at multiple resources.

 The parameter value identifies a resource to which the client is
 requesting access. The parameter can carry the location of a
 protected resource, typically as an https URL or a more abstract
 identifier. This enables the authorization server to apply policy as
 appropriate for the resource, such as determining the type and
 content of tokens to be issued, if and how tokens are encrypted, and
 applying appropriate audience restrictions.

 The client SHOULD provide the most specific URI that it can for the
 complete API or set of resources it intends to access. In practice,
 a client will know a base URI for the application or resource that it
 interacts with, which is appropriate to use as the value of the
 "resource" parameter. The client SHOULD use the base URI of the API
 as the "resource" parameter value unless specific knowledge of the
 resource dictates otherwise. For example, the value
 "https://api.example.com/" would be used for a resource that is the
 exclusive application on that host; however, if the resource is one
 of many applications on that host, something like
 "https://api.example.com/app/" would be used as a more specific
 value. Another example is when an API has multiple endpoints, e.g.,
 when System for Cross-domain Identity Management (SCIM) [RFC7644] has
 endpoints such as "https://apps.example.com/scim/Users",
 "https://apps.example.com/scim/Groups", and
 "https://apps.example.com/scim/Schemas". The client would use
 "https://apps.example.com/scim/" as the resource so that the issued
 access token is valid for all the endpoints of the SCIM API.

 The following error code is provided for an authorization server to
 indicate problems with the requested resource(s) in response to an
 authorization request or access token request. It can also be used
 to inform the client that it has requested an invalid combination of
 resource and scope.

 invalid_target
 The requested resource is invalid, missing, unknown, or malformed.

 The authorization server SHOULD audience-restrict issued access
 tokens to the resource(s) indicated by the "resource" parameter.
 Audience restrictions can be communicated in JSON Web Tokens
 [RFC7519] with the "aud" claim and the top-level member of the same
 name provides the audience restriction information in a Token
 Introspection [RFC7662] response. The authorization server may use
 the exact "resource" value as the audience or it may map from that
 value to a more general URI or abstract identifier for the given
 resource.

2.1. Authorization Request

 When the "resource" parameter is used in an authorization request to
 the authorization endpoint, it indicates the identity of the
 protected resource(s) to which access is being requested. When an
 access token will be returned directly from the authorization
 endpoint via the implicit flow (Section 4.2 of OAuth 2.0 [RFC6749]),

 the requested resource is applicable to that access token. In the
 code flow (Section 4.1 of OAuth 2.0 [RFC6749]) where an intermediate
 representation of the authorization grant (the authorization code) is
 returned from the authorization endpoint, the requested resource is
 applicable to the full authorization grant.

 For an authorization request sent as a JSON Web Token (JWT), such as
 when using the JWT Secured Authorization Request [JWT-SAR], a single
 "resource" parameter value is represented as a JSON string while
 multiple values are represented as an array of strings.

 If the client omits the "resource" parameter when requesting
 authorization, the authorization server MAY process the request with
 no specific resource or by using a predefined default resource value.
 Alternatively, the authorization server MAY require clients to
 specify the resource(s) they intend to access and MAY fail requests
 that omit the parameter with an "invalid_target" error. The
 authorization server might use this data to inform the user about the
 resources the client is going to access on their behalf, to apply
 policy (e.g., refuse the request due to unknown resources), and to
 determine the set of resources that can be used in subsequent access
 token requests.

 If the authorization server fails to parse the provided value(s) or
 does not consider the resource(s) acceptable, it should reject the
 request with an error response using the error code "invalid_target"
 as the value of the "error" parameter and can provide additional
 information regarding the reasons for the error using the
 "error_description".

 An example of an authorization request where the client tells the
 authorization server that it wants an access token for use at
 "https://api.example.com/app/" is shown in Figure 1 below (extra line
 breaks and indentation are for display purposes only).

 GET /as/authorization.oauth2?response_type=token
 &client_id=example-client
 &state=XzZaJlcwYew1u0QBrRv_Gw
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb
 &resource=https%3A%2F%2Fapi.example.com%2Fapp%2F HTTP/1.1
 Host: authorization-server.example.com

 Figure 1: Implicit Flow Authorization Request

 Below in Figure 2 is an example of an authorization request using the
 "code" response type where the client is requesting access to the
 resource owner’s contacts and calendar data at
 "https://cal.example.com/" and "https://contacts.example.com/" (extra
 line breaks and indentation are for display purposes only).

 GET /as/authorization.oauth2?response_type=code
 &client_id=s6BhdRkqt3
 &state=tNwzQ87pC6llebpmac_IDeeq-mCR2wLDYljHUZUAWuI
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb
 &scope=calendar%20contacts
 &resource=https%3A%2F%2Fcal.example.com%2F
 &resource=https%3A%2F%2Fcontacts.example.com%2F HTTP/1.1
 Host: authorization-server.example.com

 Figure 2: Code Flow Authorization Request

2.2. Access Token Request

 When the "resource" parameter is used on an access token request made
 to the token endpoint, for all grant types, it indicates the target
 service or protected resource where the client intends to use the
 requested access token.

 The resource value(s) that is acceptable to an authorization server
 in fulfilling an access token request is at its sole discretion based
 on local policy or configuration. In the case of a "refresh_token"

 or "authorization_code" grant type request, such policy may limit the
 acceptable resources to those that were originally granted by the
 resource owner or a subset thereof. In the "authorization_code" case
 where the requested resources are a subset of the set of resources
 originally granted, the authorization server will issue an access
 token based on that subset of requested resources, whereas any
 refresh token that is returned is bound to the full original grant.

 When requesting a token, the client can indicate the desired target
 service(s) where it intends to use that token by way of the
 "resource" parameter and can indicate the desired scope of the
 requested token using the "scope" parameter. The semantics of such a
 request are that the client is asking for a token with the requested
 scope that is usable at all the requested target services.
 Effectively, the requested access rights of the token are the
 cartesian product of all the scopes at all the target services. To
 the extent possible, when issuing access tokens, the authorization
 server should downscope the scope value associated with an access
 token to the value the respective resource is able to process and
 needs to know. (Here, "downscope" means give fewer permissions than
 originally authorized by the resource owner.) This further improves
 privacy as a list of scope values is an indication that the resource
 owner uses the multiple various services listed; downscoping a token
 to only that which is needed for a particular service can limit the
 extent to which such information is revealed across different
 services. As specified in Section 5.1 of [RFC6749], the
 authorization server must indicate the access token’s effective scope
 to the client in the "scope" response parameter value when it differs
 from the scope requested by the client.

 Following from the code flow authorization request shown in Figure 2,
 the below examples show an "authorization_code" grant type access
 token request (Figure 3) and response (Figure 4) where the client
 tells the authorization server that it wants the access token for use
 at "https://cal.example.com/" (extra line breaks and indentation are
 for display purposes only).

 POST /as/token.oauth2 HTTP/1.1
 Host: authorization-server.example.com
 Authorization: Basic czZCaGRSa3F0Mzpoc3FFelFsVW9IQUU5cHg0RlNyNHlJ
 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb
 &code=10esc29BWC2qZB0acc9v8zAv9ltc2pko105tQauZ
 &resource=https%3A%2F%2Fcal.example.com%2F

 Figure 3: Access Token Request

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-cache, no-store

 {
 "access_token":"eyJhbGciOiJFUzI1NiIsImtpZCI6Ijc3In0.eyJpc3MiOi
 JodHRwOi8vYXV0aG9yaXphdGlvbi1zZXJ2ZXIuZXhhbXBsZS5jb20iLCJzdWI
 iOiJfX2JfYyIsImV4cCI6MTU4ODQyMDgwMCwic2NvcGUiOiJjYWxlbmRhciIs
 ImF1ZCI6Imh0dHBzOi8vY2FsLmV4YW1wbGUuY29tLyJ9.nNWJ2dXSxaDRdMUK
 lzs-cYIj8MDoM6Gy7pf_sKrLGsAFf1C2bDhB60DQfW1DZL5npdko1_Mmk5sUf
 zkiQNVpYw",
 "token_type":"Bearer",
 "expires_in":3600,
 "refresh_token":"4LTC8lb0acc6Oy4esc1Nk9BWC0imAwH7kic16BDC2",
 "scope":"calendar"
 }

 Figure 4: Access Token Response

 A subsequent access token request, using the refresh token, where the
 client tells the authorization server that it wants an access token
 for use at "https://contacts.example.com/" is shown in Figure 5 below

 with the response shown in Figure 6 (extra line breaks and
 indentation are for display purposes only).

 POST /as/token.oauth2 HTTP/1.1
 Host: authorization-server.example.com
 Authorization: Basic czZCaGRSa3F0Mzpoc3FFelFsVW9IQUU5cHg0RlNyNHlJ
 Content-Type: application/x-www-form-urlencoded

 grant_type=refresh_token
 &refresh_token=4LTC8lb0acc6Oy4esc1Nk9BWC0imAwH7kic16BDC2
 &resource=https%3A%2F%2Fcontacts.example.com%2F

 Figure 5: Access Token Request

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-cache, no-store

 {
 "access_token":"eyJhbGciOiJFUzI1NiIsImtpZCI6Ijc3In0.eyJpc3MiOi
 JodHRwOi8vYXV0aG9yaXphdGlvbi1zZXJ2ZXIuZXhhbXBsZS5jb20iLCJzdWI
 iOiJfX2JfYyIsImV4cCI6MTU4ODQyMDgyNiwic2NvcGUiOiJjb250YWN0cyIs
 ImF1ZCI6Imh0dHBzOi8vY29udGFjdHMuZXhhbXBsZS5jb20vIn0.5f4yhqazc
 OSlJw4y94KPeWNEFQqj2cfeO8x4hr3YbHtIl3nQXnBMw5wREY5O1YbZED-GfH
 UowfmtNaA5EikYAw",
 "token_type":"Bearer",
 "expires_in":3600,
 "scope":"contacts"
 }

 Figure 6: Access Token Response

3. Security Considerations

 An audience-restricted access token that is legitimately presented to
 a resource cannot then be taken by that resource and presented
 elsewhere for illegitimate access to other resources. The "resource"
 parameter enables a client to indicate the protected resources where
 the requested access token will be used, which in turn enables the
 authorization server to apply the appropriate audience restrictions
 to the token.

 Some servers may host user content or be multi-tenant. In order to
 avoid attacks where one tenant uses an access token to illegitimately
 access resources owned by a different tenant, it is important to use
 a specific resource URI including any portion of the URI that
 identifies the tenant, such as a path component. This will allow
 access tokens to be audience-restricted in a way that identifies the
 tenant and prevents their use, due to an invalid audience, at
 resources owned by a different tenant.

 Although multiple occurrences of the "resource" parameter may be
 included in a token request, using only a single "resource" parameter
 is encouraged. If a bearer token has multiple intended recipients
 (audiences), then the token is valid at more than one protected
 resource and can be used by any one of those resources to access any
 of the others. Thus, a high degree of trust between the involved
 parties is needed when using access tokens with multiple audiences.
 Furthermore, an authorization server may be unwilling or unable to
 fulfill a token request with multiple resources.

 Whenever feasible, the "resource" parameter should correspond to the
 network-addressable location of the protected resource. This makes
 it possible for the client to validate that the resource being
 requested controls the corresponding network location, reducing the
 risk of malicious endpoints obtaining tokens meant for other
 resources. If the "resource" parameter contains an abstract
 identifier, it is the client’s responsibility to validate out of band
 that any network endpoint to which tokens are sent are the intended
 audience for that identifier.

4. Privacy Considerations

 In typical OAuth deployments the authorization sever is in a position
 to observe and track a significant amount of user and client
 behavior. It is largely just inherent to the nature of OAuth, and
 this document does little to affect that. In some cases, however,
 such as when access token introspection is not being used, use of the
 resource parameter defined herein may allow for tracking behavior at
 a somewhat more granular and specific level than would otherwise be
 possible in its absence.

5. IANA Considerations

5.1. OAuth Parameters Registration

 This specification updates the following value in the IANA "OAuth
 Parameters" registry [IANA.OAuth.Parameters] established by
 [RFC6749].

 Parameter name: resource
 Parameter usage location: authorization request, token request
 Change controller: IESG
 Specification document(s): RFC 8707

5.2. OAuth Extensions Error Registration

 This specification updates the following error in the IANA "OAuth
 Extensions Error Registry" [IANA.OAuth.Parameters] established by
 [RFC6749].

 Error name: invalid_target
 Error usage location: implicit grant error response, token error
 response
 Related protocol extension: resource parameter
 Change controller: IESG
 Specification document(s): RFC 8707

6. References

6.1. Normative References

 [IANA.OAuth.Parameters]
 IANA, "OAuth Parameters",
 <https://www.iana.org/assignments/oauth-parameters>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

6.2. Informative References

 [JWT-SAR] Sakimura, N. and J. Bradley, "The OAuth 2.0 Authorization
 Framework: JWT Secured Authorization Request (JAR)", Work
 in Progress, Internet-Draft, draft-ietf-oauth-jwsreq-20,
 21 October 2019,
 <https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-20>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <https://www.rfc-editor.org/info/rfc6750>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7644] Hunt, P., Ed., Grizzle, K., Ansari, M., Wahlstroem, E.,
 and C. Mortimore, "System for Cross-domain Identity
 Management: Protocol", RFC 7644, DOI 10.17487/RFC7644,
 September 2015, <https://www.rfc-editor.org/info/rfc7644>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
 RFC 7662, DOI 10.17487/RFC7662, October 2015,
 <https://www.rfc-editor.org/info/rfc7662>.

Acknowledgements

 This specification was developed within the OAuth Working Group under
 the chairmanship of Hannes Tschofenig and Rifaat Shekh-Yusef with
 Eric Rescorla, Benjamin Kaduk, and Roman Danyliw serving as Security
 Area Directors. Additionally, the following individuals contributed
 ideas, feedback, and wording that helped shape this specification:

 Vittorio Bertocci, Sergey Beryozkin, Roman Danyliw, William Denniss,
 Vladimir Dzhuvinov, George Fletcher, Dick Hardt, Phil Hunt, Michael
 Jones, Benjamin Kaduk, Barry Leiba, Torsten Lodderstedt, Anthony
 Nadalin, Justin Richer, Adam Roach, Nat Sakimura, Rifaat Shekh-Yusef,
 Filip Skokan, Ã\211ric Vyncke, and Hans Zandbelt.

Authors’ Addresses

 Brian Campbell
 Ping Identity

 Email: brian.d.campbell@gmail.com

 John Bradley
 Yubico

 Email: ve7jtb@ve7jtb.com

 Hannes Tschofenig
 Arm Limited

 Email: hannes.tschofenig@gmx.net

