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Abstract

The invention of a large-scale quantum computer would pose a serious
challenge for the cryptographic algorithms that are widely deployed
today. The Cryptographic Message Syntax (CMS) supports key transport
and key agreement algorithms that could be broken by the invention of
such a quantum computer. By storing communications that are
protected with the CMS today, someone could decrypt them in the
future when a large-scale gquantum computer becomes available. Once
quantum-secure key management algorithms are available, the CMS will
be extended to support the new algorithms if the existing syntax does
not accommodate them. This document describes a mechanism to protect
today’s communication from the future invention of a large-scale
quantum computer by mixing the output of key transport and key
agreement algorithms with a pre-shared key.
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Introduction

The invention of a large-scale gquantum computer would pose a serious
challenge for the cryptographic algorithms that are widely deployed

today [S1994]. It is an open question whether or not it is feasible
to build a large-scale quantum computer and, if so, when that might
happen [NAS2019]. However, if such a quantum computer is invented,

many of the cryptographic algorithms and the security protocols that
use them would become vulnerable.

The Cryptographic Message Syntax (CMS) [RFC5652] [RFC5083] supports
key transport and key agreement algorithms that could be broken by

the invention of a large-scale quantum computer [C2PQ]. These
algorithms include RSA [RFC8017], Diffie-Hellman [RFC2631], and
Elliptic Curve Diffie-Hellman (ECDH) [RFC5753]. As a result, an

adversary that stores CMS-protected communications today could
decrypt those communications in the future when a large-scale quantum
computer becomes available.

Once quantum-secure key management algorithms are available, the CMS
will be extended to support them if the existing syntax does not
already accommodate the new algorithms.

In the near term, this document describes a mechanism to protect
today’s communication from the future invention of a large-scale
quantum computer by mixing the output of existing key transport and
key agreement algorithms with a pre-shared key (PSK). Secure
communication can be achieved today by mixing a strong PSK with the
output of an existing key transport algorithm, like RSA [RFC8017], or
an existing key agreement algorithm, like Diffie-Hellman [RFC2631] or
Elliptic Curve Diffie-Hellman (ECDH) [RFC5753]. A security solution
that is believed to be quantum resistant can be achieved by using a
PSK with sufficient entropy along with a quantum-resistant key
derivation function (KDF), like an HMAC-based key derivation function
(HKDF) [RFC5869], and a quantum-resistant encryption algorithm, like
256-bit AES [AES]. In this way, today’s CMS-protected communication
can be resistant to an attacker with a large-scale quantum computer.

In addition, there may be other reasons for including a strong PSK
besides protection against the future invention of a large-scale
quantum computer. For example, there is always the possibility of a
cryptoanalytic breakthrough on one or more classic public key
algorithms, and there are longstanding concerns about undisclosed
trapdoors in Diffie-Hellman parameters [FGHT2016]. Inclusion of a
strong PSK as part of the overall key management offers additional
protection against these concerns.

Note that the CMS also supports key management techniques based on
symmetric key-encryption keys and passwords, but they are not
discussed in this document because they are already quantum
resistant. The symmetric key-encryption key technique is quantum
resistant when used with an adequate key size. The password
technique is quantum resistant when used with a quantum-resistant key
derivation function and a sufficiently large password.

Terminology



The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

1.2. ASN.1

CMS values are generated using ASN.1 [X680], which uses the Basic
Encoding Rules (BER) and the Distinguished Encoding Rules (DER)
[X690].

1.3. Version Numbers

The major data structures include a version number as the first item
in the data structure. The version number is intended to avoid ASN.1
decode errors. Some implementations do not check the version number
prior to attempting a decode; then, if a decode error occurs, the
version number is checked as part of the error-handling routine.

This is a reasonable approach; it places error processing outside of
the fast path. This approach is also forgiving when an incorrect
version number is used by the sender.

Whenever the structure is updated, a higher version number will be
assigned. However, to ensure maximum interoperability, the higher
version number is only used when the new syntax feature is employed.
That is, the lowest version number that supports the generated syntax
is used.

2. Overview

The CMS enveloped-data content type [RFC5652] and the CMS
authenticated-enveloped-data content type [RFC5083] support both key
transport and key agreement public key algorithms to establish the
key used to encrypt the content. ©No restrictions are imposed on the
key transport or key agreement public key algorithms, which means
that any key transport or key agreement algorithm can be used,
including algorithms that are specified in the future. In both
cases, the sender randomly generates the content-encryption key, and
then all recipients obtain that key. All recipients use the sender-
generated symmetric content-encryption key for decryption.

This specification defines two quantum-resistant ways to establish a
symmetric key-encryption key, which is used to encrypt the sender-
generated content-encryption key. In both cases, the PSK is used as
one of the inputs to a key-derivation function to create a quantum-
resistant key-encryption key. The PSK MUST be distributed to the
sender and all of the recipients by some out-of-band means that does
not make it vulnerable to the future invention of a large-scale
quantum computer, and an identifier MUST be assigned to the PSK. It
is best if each PSK has a unique identifier; however, if a recipient
has more than one PSK with the same identifier, the recipient can try
each of them in turn. A PSK is expected to be used with many
messages, with a lifetime of weeks or months.

The content-encryption key or content-authenticated-encryption key is
quantum resistant, and the sender establishes it using these steps:

When using a key transport algorithm:

1. The content-encryption key or the content-authenticated-
encryption key, called "CEK", is generated at random.

2. The key-derivation key, called "KDK", is generated at random.

3. For each recipient, the KDK is encrypted in the recipient’s
public key, then the KDF is used to mix the PSK and the KDK to
produce the key-encryption key, called "KEK".

4. The KEK is used to encrypt the CEK.



When using a key agreement algorithm:

1. The content-encryption key or the content-authenticated-
encryption key, called "CEK", is generated at random.

2. For each recipient, a pairwise key-encryption key, called "KEK1",
is established using the recipient’s public key and the sender’s
private key. Note that KEK1l will be used as a key-derivation
key.

3. For each recipient, the KDF is used to mix the PSK and the
pairwise KEK1l, and the result is called "KEK2".

4. For each recipient, the pairwise KEK2 is used to encrypt the CEK.

As specified in Section 6.2.5 of [RFC5652], recipient information for
additional key management techniques is represented in the
OtherRecipientInfo type. Two key management techniques are specified
in this document, and they are each identified by a unique ASN.1
object identifier.

The first key management technique, called "keyTransPSK" (see
Section 3), uses a key transport algorithm to transfer the key-
derivation key from the sender to the recipient, and then the key-
derivation key is mixed with the PSK using a KDF. The output of the
KDF is the key-encryption key, which is used for the encryption of
the content-encryption key or content-authenticated-encryption key.

The second key management technique, called "keyAgreePSK" (see
Section 4), uses a key agreement algorithm to establish a pairwise
key-encryption key. This pairwise key-encryption key is then mixed
with the PSK using a KDF to produce a second pairwise key-encryption
key, which is then used to encrypt the content-encryption key or
content—-authenticated-encryption key.

keyTransPSK

Per-recipient information using keyTransPSK is represented in the
KeyTransPSKRecipientInfo type, which is indicated by the id-ori-
keyTransPSK object identifier. Each instance of
KeyTransPSKRecipientInfo establishes the content-encryption key or
content—-authenticated-encryption key for one or more recipients that
have access to the same PSK.

The id-ori-keyTransPSK object identifier is:

id-ori OBJECT IDENTIFIER ::= { iso(l) member-body(2) us (840)
rsadsi (113549) pkcs(l) pkcs—-9(9) smime(16) 13 }

id-ori-keyTransPSK OBJECT IDENTIFIER ::= { id-ori 1 }
The KeyTransPSKRecipientInfo type is:

KeyTransPSKRecipientInfo ::= SEQUENCE ({
version CMSVersion, -- always set to O
pskid PreSharedKeyIdentifier,
kdfAlgorithm KeyDerivationAlgorithmIdentifier,
keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
ktris KeyTransRecipientInfos,
encryptedKey EncryptedKey }

PreSharedKeyIdentifier ::= OCTET STRING

KeyTransRecipientInfos SEQUENCE OF KeyTransRecipientInfo

The fields of the KeyTransPSKRecipientInfo type have the following
meanings:

* version is the syntax version number. The version MUST be 0. The
CMSVersion type is described in Section 10.2.5 of [RFC5652].



* pskid is the identifier of the PSK used by the sender. The
identifier is an OCTET STRING, and it need not be human readable.

* kdfAlgorithm identifies the key-derivation algorithm and any
associated parameters used by the sender to mix the key-derivation
key and the PSK to generate the key-encryption key. The
KeyDerivationAlgorithmIdentifier is described in Section 10.1.6 of
[RFC5652] .

* keyEncryptionAlgorithm identifies a key-encryption algorithm used
to encrypt the content-encryption key. The
KeyEncryptionAlgorithmIdentifier is described in Section 10.1.3 of
[RFC5652] .

* ktris contains one KeyTransRecipientInfo type for each recipient;
it uses a key transport algorithm to establish the key-derivation
key. That is, the encryptedKey field of KeyTransRecipientInfo
contains the key-derivation key instead of the content-encryption
key. KeyTransRecipientInfo is described in Section 6.2.1 of
[RFC5652] .

* encryptedKey is the result of encrypting the content-encryption
key or the content-authenticated-encryption key with the key-
encryption key. EncryptedKey is an OCTET STRING.

keyAgreePSK

Per-recipient information using keyAgreePSK is represented in the
KeyAgreePSKRecipientInfo type, which is indicated by the id-ori-
keyAgreePSK object identifier. Each instance of
KeyAgreePSKRecipientInfo establishes the content-encryption key or
content—-authenticated-encryption key for one or more recipients that
have access to the same PSK.

The id-ori-keyAgreePSK object identifier is:

id-ori-keyAgreePSK OBJECT IDENTIFIER ::= { id-ori 2 }
The KeyAgreePSKRecipientInfo type is:

KeyAgreePSKRecipientInfo ::= SEQUENCE {
version CMSVersion, -— always set to O
pskid PreSharedKeyIdentifier,
originator [0] EXPLICIT OriginatorIdentifierOrKey,
ukm [1] EXPLICIT UserKeyingMaterial OPTIONAL,
kdfAlgorithm KeyDerivationAlgorithmIdentifier,
keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
recipientEncryptedKeys RecipientEncryptedKeys }

The fields of the KeyAgreePSKRecipientInfo type have the following
meanings:

* wversion is the syntax version number. The version MUST be 0. The
CMSVersion type is described in Section 10.2.5 of [RFC5652].

* pskid is the identifier of the PSK used by the sender. The
identifier is an OCTET STRING, and it need not be human readable.

* originator is a CHOICE with three alternatives specifying the
sender’s key agreement public key. Implementations MUST support
all three alternatives for specifying the sender’s public key.
The sender uses their own private key and the recipient’s public
key to generate a pairwise key-encryption key. A KDF is used to
mix the PSK and the pairwise key-encryption key to produce a
second key-encryption key. The OriginatorIdentifierOrKey type is
described in Section 6.2.2 of [RFC5652].

* ukm is optional. With some key agreement algorithms, the sender
provides a User Keying Material (UKM) to ensure that a different
key is generated each time the same two parties generate a
pairwise key. Implementations MUST accept a
KeyAgreePSKRecipientInfo SEQUENCE that includes a ukm field.



5.

Implementations that do not support key agreement algorithms that
make use of UKMs MUST gracefully handle the presence of UKMs. The
UserKeyingMaterial type is described in Section 10.2.6 of
[RFC5652] .

* kdfAlgorithm identifies the key-derivation algorithm and any
associated parameters used by the sender to mix the pairwise key-
encryption key and the PSK to produce a second key-encryption key

of the same length as the first one. The
KeyDerivationAlgorithmIdentifier is described in Section 10.1.6 of
[RFC5652] .

* keyEncryptionAlgorithm identifies a key-encryption algorithm used
to encrypt the content-encryption key or the content-
authenticated-encryption key. The
KeyEncryptionAlgorithmIdentifier type is described in
Section 10.1.3 of [RFC5652].

* recipientEncryptedKeys includes a recipient identifier and
encrypted key for one or more recipients. The
KeyAgreeRecipientIdentifier is a CHOICE with two alternatives
specifying the recipient’s certificate, and thereby the
recipient’s public key, that was used by the sender to generate a
pairwise key-encryption key. The encryptedKey is the result of
encrypting the content-encryption key or the content-
authenticated-encryption key with the second pairwise key-
encryption key. EncryptedKey is an OCTET STRING. The
RecipientEncryptedKeys type is defined in Section 6.2.2 of
[RFC5652] .

Key Derivation

Many KDFs internally employ a one-way hash function. When this is
the case, the hash function that is used is indirectly indicated by
the KeyDerivationAlgorithmIdentifier. HKDF [RFC5869] is one example

of a KDF that makes use of a hash function.

Other KDFs internally employ an encryption algorithm. When this is
the case, the encryption that is used is indirectly indicated by the
KeyDerivationAlgorithmIdentifier. For example, AES-128-CMAC can be
used for randomness extraction in a KDF as described in [NIST2018].

A KDF has several input values. This section describes the

conventions for using the KDF to compute the key-encryption key for

KeyTransPSKRecipientInfo and KeyAgreePSKRecipientInfo. For

simplicity, the terminology used in the HKDF specification [RFC5869]
is used here.

The KDF inputs are:

* IKM is the input keying material; it is the symmetric secret input
to the KDF. For KeyTransPSKRecipientInfo, it is the key-
derivation key. For KeyAgreePSKRecipientInfo, it is the pairwise
key-encryption key produced by the key agreement algorithm.

* salt is an optional non-secret random value. Many KDFs do not
require a salt, and the KeyDerivationAlgorithmIdentifier
assignments for HKDF [RFC8619] do not offer a parameter for a
salt. If a particular KDF requires a salt, then the salt value is
provided as a parameter of the KeyDerivationAlgorithmIdentifier.

* L is the length of output keying material in octets; the value
depends on the key-encryption algorithm that will be used. The
algorithm is identified by the KeyEncryptionAlgorithmIdentifier.
In addition, the OBJECT IDENTIFIER portion of the
KeyEncryptionAlgorithmIdentifier is included in the next input
value, called "info".

* info is optional context and application specific information.
The DER encoding of CMSORIforPSKOtherInfo is used as the info
value, and the PSK is included in this structure. Note that



EXPLICIT tagging is used in the ASN.l module that defines this
structure. For KeyTransPSKRecipientInfo, the ENUMERATED value of
5 is used. For KeyAgreePSKRecipientInfo, the ENUMERATED value of
10 is used. CMSORIforPSKOtherInfo is defined by the following
ASN.1 structure:

CMSORIforPSKOtherInfo ::= SEQUENCE {
psk OCTET STRING,
keyMgmtAlgType ENUMERATED {
keyTrans (5),
keyAgree (10) 1},
keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
pskLength INTEGER (1..MAX),
kdkLength INTEGER (1..MAX) 1}

The fields of type CMSORIforPSKOtherInfo have the following meanings:
* psk is an OCTET STRING; it contains the PSK.

* keyMgmtAlgType is either set to 5 or 10. For
KeyTransPSKRecipientInfo, the ENUMERATED value of 5 is used. For
KeyAgreePSKRecipientInfo, the ENUMERATED value of 10 is used.

* keyEncryptionAlgorithm is the KeyEncryptionAlgorithmIdentifier,
which identifies the algorithm and provides algorithm parameters,
if any.

* pskLength is a positive integer; it contains the length of the PSK
in octets.

* kdkLength is a positive integer; it contains the length of the
key-derivation key in octets. For KeyTransPSKRecipientInfo, the
key—-derivation key is generated by the sender. For
KeyAgreePSKRecipientInfo, the key-derivation key is the pairwise
key—-encryption key produced by the key agreement algorithm.

The KDF output is:

* OKM is the output keying material, which is exactly L octets. The
OKM is the key-encryption key that is used to encrypt the content-
encryption key or the content-authenticated-encryption key.

An acceptable KDF MUST accept IKM, L, and info inputs; an acceptable
KDF MAY also accept salt and other inputs. All of these inputs MUST
influence the output of the KDF. If the KDF requires a salt or other
inputs, then those inputs MUST be provided as parameters of the
KeyDerivationAlgorithmIdentifier.

ASN.1 Module

This section contains the ASN.1 module for the two key management
techniques defined in this document. This module imports types from
other ASN.1 modules that are defined in [RFC5912] and [RFC6268].

<CODE BEGINS>
CMSORIforPSK-2019
{ iso(l) member-body (2) us(840) rsadsi(113549) pkcs(l) pkcs-9(9)
smime (16) modules (0) id-mod-cms—-ori-psk-2019(69) }

DEFINITIONS EXPLICIT TAGS ::=
BEGIN

—-— EXPORTS All
IMPORTS

AlgorithmIdentifier{}, KEY-DERIVATION
FROM AlgorithmInformation-2009 -- [RFC5912]
{ iso(l) identified-organization(3) dod(6) internet (1)
security (5) mechanisms (5) pkix(7) id-mod (0)
id-mod-algorithmInformation-02 (58) }



OTHER-RECIPIENT, OtherRecipientInfo, CMSVersion,
KeyTransRecipientInfo, OriginatorIdentifierOrKey,
UserKeyingMaterial, RecipientEncryptedKeys, EncryptedKey,
KeyDerivationAlgorithmIdentifier, KeyEncryptionAlgorithmIdentifier
FROM CryptographicMessageSyntax—-2010 -- [RFC6268]
{ is0o(l) member-body(2) us(840) rsadsi(113549)
pkcs (1) pkcs—-9(9) smime (16) modules (0)
id-mod-cms-2009 (58) } ;

—— OtherRecipientInfo Types (ori-)

SupportedOtherRecipInfo OTHER-RECIPIENT ::= {
ori-keyTransPSK |
ori-keyAgreePSK,
}

—— Key Transport with Pre-Shared Key

ori-keyTransPSK OTHER-RECIPIENT ::= {
KeyTransPSKRecipientInfo IDENTIFIED BY id-ori-keyTransPSK }

id-ori OBJECT IDENTIFIER ::= { iso(l) member-body (2) us(840)
rsadsi(113549) pkcs(l) pkcs—9(9) smime(16) 13 }

id-ori-keyTransPSK OBJECT IDENTIFIER ::= { id-ori 1 }
KeyTransPSKRecipientInfo ::= SEQUENCE ({
version CMSVersion, -- always set to O

pskid PreSharedKeyIdentifier,

kdfAlgorithm KeyDerivationAlgorithmIdentifier,
keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
ktris KeyTransRecipientInfos,

encryptedKey EncryptedKey }

PreSharedKeyIdentifier OCTET STRING

KeyTransRecipientInfos SEQUENCE OF KeyTransRecipientInfo

—— Key Agreement with Pre-Shared Key

ori-keyAgreePSK OTHER-RECIPIENT ::= {
KeyAgreePSKRecipientInfo IDENTIFIED BY id-ori-keyAgreePSK }

id-ori-keyAgreePSK OBJECT IDENTIFIER ::= { id-ori 2 }
KeyAgreePSKRecipientInfo ::= SEQUENCE {
version CMSVersion, -—- always set to O

pskid PreSharedKeyIdentifier,

originator [0] EXPLICIT OriginatorIdentifierOrKey,

ukm [1] EXPLICIT UserKeyingMaterial OPTIONAL,
kdfAlgorithm KeyDerivationAlgorithmIdentifier,
keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
recipientEncryptedKeys RecipientEncryptedKeys }

—— Structure to provide ’info’ input to the KDF,
—— including the Pre-Shared Key

CMSORIforPSKOtherInfo ::= SEQUENCE ({
psk OCTET STRING,
keyMgmtAlgType ENUMERATED {

keyTrans (5),
keyAgree (10) 1},

keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
pskLength INTEGER (1..MAX),



kdkLength INTEGER (1..MAX) }

END
<CODE ENDS>

Security Considerations

The security considerations related to the CMS enveloped-data content
type in [RFC5652] and the security considerations related to the CMS
authenticated-enveloped-data content type in [RFC5083] continue to

apply.

Implementations of the key derivation function must compute the
entire result, which, in this specification, is a key-encryption key,
before outputting any portion of the result. The resulting key-
encryption key must be protected. Compromise of the key-encryption
key may result in the disclosure of all content-encryption keys or
content—-authenticated-encryption keys that were protected with that
keying material; this, in turn, may result in the disclosure of the
content. Note that there are two key-encryption keys when a PSK with
a key agreement algorithm is used, with similar consequences for the
compromise of either one of these keys.

Implementations must protect the PSK, key transport private key,
agreement private key, and key-derivation key. Compromise of the PSK
will make the encrypted content vulnerable to the future invention of
a large-scale quantum computer. Compromise of the PSK and either the
key transport private key or the agreement private key may result in
the disclosure of all contents protected with that combination of
keying material. Compromise of the PSK and the key-derivation key
may result in the disclosure of all contents protected with that
combination of keying material.

A large-scale quantum computer will essentially negate the security
provided by the key transport algorithm or the key agreement
algorithm, which means that the attacker with a large-scale quantum
computer can discover the key-derivation key. In addition, a large-
scale quantum computer effectively cuts the security provided by a
symmetric key algorithm in half. Therefore, the PSK needs at least
256 bits of entropy to provide 128 bits of security. To match that
same level of security, the key derivation function needs to be
quantum resistant and produce a key-encryption key that is at least
256 bits in length. Similarly, the content-encryption key or
content—-authenticated-encryption key needs to be at least 256 bits in
length.

When using a PSK with a key transport or a key agreement algorithm, a
key-encryption key is produced to encrypt the content-encryption key
or content-authenticated-encryption key. If the key-encryption
algorithm is different than the algorithm used to protect the
content, then the effective security is determined by the weaker of
the two algorithms. If, for example, content is encrypted with
256-bit AES and the key is wrapped with 128-bit AES, then, at most,
128 bits of protection are provided. Implementers must ensure that
the key-encryption algorithm is as strong or stronger than the
content-encryption algorithm or content-authenticated-encryption
algorithm.

The selection of the key-derivation function imposes an upper bound
on the strength of the resulting key-encryption key. The strength of
the selected key-derivation function should be at least as strong as
the key-encryption algorithm that is selected. NIST SP 800-56C
Revision 1 [NIST2018] offers advice on the security strength of
several popular key-derivation functions.

Implementers should not mix quantum-resistant key management
algorithms with their non-quantum-resistant counterparts. For
example, the same content should not be protected with
KeyTransRecipientInfo and KeyTransPSKRecipientInfo. Likewise, the
same content should not be protected with KeyAgreeRecipientInfo and
KeyAgreePSKRecipientInfo. Doing so would make the content vulnerable



to the future invention of a large-scale quantum computer.

Implementers should not send the same content in different messages,
one using a quantum-resistant key management algorithm and the other
using a non-quantum-resistant key management algorithm, even if the
content-encryption key is generated independently. Doing so may
allow an eavesdropper to correlate the messages, making the content
vulnerable to the future invention of a large-scale quantum computer.

This specification does not require that PSK be known only by the
sender and recipients. The PSK may be known to a group. Since
confidentiality depends on the key transport or key agreement
algorithm, knowledge of the PSK by other parties does not inherently
enable eavesdropping. However, group members can record the traffic
of other members and then decrypt it if they ever gain access to a
large—-scale quantum computer. Also, when many parties know the PSK,
there are many opportunities for theft of the PSK by an attacker.
Once an attacker has the PSK, they can decrypt stored traffic if they
ever gain access to a large-scale gquantum computer in the same manner
as a legitimate group member.

Sound cryptographic key hygiene is to use a key for one and only one
purpose. Use of the recipient’s public key for both the traditional
CMS and the PSK-mixing variation specified in this document would be
a violation of this principle; however, there is no known way for an
attacker to take advantage of this situation. That said, an
application should enforce separation whenever possible. For
example, a purpose identifier for use in the X.509 extended key usage
certificate extension [RFC5280] could be identified in the future to
indicate that a public key should only be used in conjunction with or
without a PSK.

Implementations must randomly generate key-derivation keys as well as
content-encryption keys or content-authenticated-encryption keys.
Also, the generation of public/private key pairs for the key
transport and key agreement algorithms rely on random numbers. The
use of inadequate pseudorandom number generators (PRNGs) to generate
cryptographic keys can result in little or no security. An attacker
may find it much easier to reproduce the PRNG environment that
produced the keys, searching the resulting small set of
possibilities, rather than brute-force searching the whole key space.
The generation of quality random numbers is difficult. [RFC4086]
offers important guidance in this area.

Implementers should be aware that cryptographic algorithms become
weaker with time. As new cryptanalysis techniques are developed and
computing performance improves, the work factor to break a particular
cryptographic algorithm will be reduced. Therefore, cryptographic
algorithm implementations should be modular, allowing new algorithms
to be readily inserted. That is, implementers should be prepared for
the set of supported algorithms to change over time.

The security properties provided by the mechanisms specified in this
document can be validated using formal methods. A ProVerif proof in
[H2019] shows that an attacker with a large-scale quantum computer
that is capable of breaking the Diffie-Hellman key agreement
algorithm cannot disrupt the delivery of the content-encryption key
to the recipient and that the attacker cannot learn the content-
encryption key from the protocol exchange.

Privacy Considerations

An observer can see which parties are using each PSK simply by
watching the PSK key identifiers. However, the addition of these key
identifiers does not really weaken the privacy situation. When key
transport is used, the RecipientIdentifier is always present, and it
clearly identifies each recipient to an observer. When key agreement
is used, either the IssuerAndSerialNumber or the
RecipientKeyIdentifier is always present, and these clearly identify
each recipient.
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IANA Considerations

One object identifier for the ASN.1l module in Section 6 was assigned
in the "SMI Security for S/MIME Module Identifier
(1.2.840.113549.1.9.16.0)" registry [IANA]:

id-mod-cms-ori-psk-2019 OBJECT IDENTIFIER ::= ({
iso(l) member-body(2) us(840) rsadsi(113549)
pkcs-9(9) smime(16) mod(0) 69 }

pkcs (1)

One new entry has been added in the "SMI Security for S/MIME Mail
Security (1.2.840.113549.1.9.16)" registry [IANA]:

id-ori OBJECT IDENTIFIER ::= { iso(l) member-body (2) us(840)
rsadsi(113549) pkcs(l) pkcs—9(9) smime(1l6) 13 }

A new registry titled "SMI Security for S/MIME Other Recipient Info
Identifiers (1.2.840.113549.1.9.16.13)" has been created.

Updates to the new registry are to be made according to the
Specification Required policy as defined in [RFC8126]. The expert is
expected to ensure that any new values identify additional
RecipientInfo structures for use with the CMS. Object identifiers
for other purposes should not be assigned in this arc.

Two assignments were made in the new "SMI Security for S/MIME Other
Recipient Info Identifiers (1.2.840.113549.1.9.16.13)" registry
[IANA] with references to this document:

id-ori-keyTransPSK OBJECT IDENTIFIER ::= {
iso(l) member-body(2) us(840) rsadsi(113549) pkcs (1)
pkcs-9(9) smime(16) id-ori(13) 1 }

id-ori-keyAgreePSK OBJECT IDENTIFIER ::= {
iso(l) member-body (2) us(840) rsadsi(113549) pkcs (1)
pkcs-9(9) smime(16) id-ori(1l3) 2 }
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Appendix A. Key Transport with PSK Example

This example shows the establishment of an AES-256 content-encryption
key using:

* a pre-shared key of 256 bits;

* key transport using RSA PKCS#1 v1.5 with a 3072-bit key;

* key derivation using HKDF with SHA-384; and

* key wrap using AES-256-KEYWRAP.

In real-world use, the originator would encrypt the key-derivation

key in their own RSA public key as well as the recipient’s public

key. This is omitted in an attempt to simplify the example.

A.l. Originator Processing Example

The pre-shared key known to Alice and Bob, in hexadecimal, is:
c244cdd11a0d1£39d9b61282770244£fb0£f6befb91ab7£96cb05213365c£95b15

The identifier assigned to the pre-shared key is:
ptf-kmc:13614122112

Alice obtains Bob’s public key:
MITBojANBgkghkiGOwOBAQEFAAOCAYS8AMIIBigKCAYEA3ocWl4cxncPJ47£fnEjBZ
AyfC21gapL3ET4jvV6C7gGeVrRQxWPDwl+cFYBBR2ej3j3/0ecDmu+Xuvi2+s5JH
Keeza+itfuhsz3yifgeEpeK8T+SusHhn20/NBLhYKbh3kiAcCgQ56dpDrDvDcLgg
vS3jg/VO+0OPnZbofoHOOevt8Q/roahdelPlIyQ4udWB8zZezJ4mLLfbOAIYVaYXx
2AHHZJevo3nmRnlgJXo6mEOOE/6gkhjDHKSMd12WG6mO9TCDZc9gY3cAJDUGIrOv
SH7qU18/vN13y4UOFkn8hM4kmZ6bJgbZt 5SNbjHtY4uQOVMW3RYESzhrO02mrp39a
uLNnH3EXdXaV1tk75H3gC72JaeGWMIyQfOE3YfEGRKNn8fxubji716D8UecAxAzFy
FL6m1JiOyV5acAiOpxN14gRYZAHNXOMIODgGIGpoeY1UuD4Mo050s0gOUpBIJHASES
whSZG7VNEf+vgNWTLNYSYLI04KiMdulnvU6ds+QPz+KKt AgMBAAE=

Bob’s RSA public key has the following key identifier:
9eeb67c995a74d44d2£16396680e801b5cba4dSc

Alice randomly generates a content-encryption key:
c8adc30f4a3e20ac420caa’76a68£5787c02ab42afea20d19672£d963a5338e83

Alice randomly generates a key-derivation key:

df85af9%e3cebffde6e9b9d24263db31114d0a8e33a0d50e05eb64578ccde8leb



Alice encrypts the key-derivation key in Bob’s public key:

52693f12140c91dea2b44c0b7936f6bedbde8a7’bfab072bcbbecfd56b06a9£f£65
1bd4669d336aef7b449e5cd90151893b7¢c7a3b8e364394840b0a5434cbfl0elb
5670aefd074faf380665d204fb95153543346£36c2125dba6f4d23d2bc61434b
5e36ff72b3eafe57c6cf7£74924c309£f174b0b875355458ed33a8848d707a98
c0c2blddcfd09e31fe213calad48ddl57bd7d842e85cc76£77710d58efeaal525
c651bcdl410fb47534ecabafb5ab7daabed809d4b97220caf6d4929¢c5fb684f7b
b8692e6e70332ff9%3f7clldbcac51d4a35593173d48£80ca843b89789d625e7
997ad7d674d25a2a7d165a5£39%3cb6358e937bdb02ac8a524ac93113cedd9ad
c68263025¢c0bb0997d716e58d4d70697390£591£f3e71c7678dc0df96£3df9%e8a
a5738f4f9ce21489£f300e040891b20b2ab6d9051b3c2e68efa2fa9799a706878
d5£462018c021d6669ed649f9acdf78476810198bfb8bd41ffedc585eafad957e
eald3625ed4bed376e7ae49718aee2f575c401a26a29941d8dabb7ee%9aca36471

Alice produces a 256-bit key-encryption key with HKDF using SHA-384;
the secret value is the key-derivation key; and the 'info’ is the
DER-encoded CMSORIforPSKOtherInfo structure with the following
values:

0 56: SEQUENCE ({
2 32: OCTET STRING
C2 44 CcD D1 1A OD 1F 39 D9 B6 12 82 77 02 44 FB
OF 6B EF B9 1A B7 F9 6C BO 52 13 36 5C F9 5B 15
36 1: ENUMERATED 5

39 11: SEQUENCE {

41 9: OBJECT IDENTIFIER aes256-wrap (2 16 840 1 101 3 4 1 45)
: }

52 1: INTEGER 32

55 1: INTEGER 32

}
The DER encoding of CMSORIforPSKOtherInfo produces 58 octets:

30380420c244cdd11a0d1£39d9b61282770244fb0f6befb91ab7£96cb0521336
5c£95b150a0105300b0609608648016503040124020120020120

The HKDF output is 256 bits:
£319e9cebb35f1c6a7a9709b8760b9d0d3e30e16c5b2b69347e9£00ca540a232

Alice uses AES-KEY-WRAP to encrypt the 256-bit content-encryption key
with the key-encryption key:

ea0947250fa66cd525595e52a69%aaade88efcflb0£108abe291060391blcdf59
07£36b4067e45342

Alice encrypts the content using AES-256-GCM with the content-
encryption key. The 12-octet nonce used is:

cafebabefacedbaddecaf888

The content plaintext is:
48656c6c6£2c20776£726c6421

The resulting ciphertext is:
9af2dl6f21547fcefed9b3ef2d

The resulting 1l2-octet authentication tag is:
a0eb5925ccl84e0172463c44c

.2. ContentInfo and AuthEnvelopedData

Alice encodes the AuthEnvelopedData and the ContentInfo and sends the
result to Bob. The resulting structure is:

0 650: SEQUENCE ({



17
21
25
28
32
36

49
53
56
77
79

92
94

105
109
113
116

138

140

151

153

541

583
585
596
598

609

11:

633:
629:

551:
547 :
11:
530:
19:

13:
11:

432:
428:

20:

384:

40:

55:

27:

14:

OBJECT IDENTIFIER
authEnvelopedData (1 2 840 113549 1 9 16 1 23)
[0] |
SEQUENCE {
INTEGER O
SET {
[41 {
OBJECT IDENTIFIER
keyTransPSK (1 2 840 113549 1 9 16 13 1)
SEQUENCE {
INTEGER O
OCTET STRING ’'ptf-kmc:13614122112"
SEQUENCE {
OBJECT IDENTIFIER
hkdf-with-sha384 (1 2 840 113549 1 9 16 3 29)
}
SEQUENCE {
OBJECT IDENTIFIER
aes256-wrap (2 16 840 1 101 3 4 1 45)
}
SEQUENCE {
SEQUENCE {
INTEGER 2
[0]
9E EB 67 C9 B9 5A 74 D4 4D 2F 16 39 66 80 ES8
B5 CB A4 9C
SEQUENCE {
OBJECT IDENTIFIER
rsaEncryption (1 2 840 113549 1 1 1)
NULL
}
OCTET STRING
52 69 3F 12 14 0C 91 DE A2 B4 4C 0B 79 36 F6
46 DE 8A 7B FA BO 72 BC Bo6 EC FD 56 BO 6A 9F
1B D4 66 9D 33 6A EF 7B 44 9E 5C D9 Bl 51 89
7C 7A 3B 8E 36 43 94 84 0B OA 54 34 CB F1 OE
56 70 AE FD 07 4F AF 38 06 65 D2 04 FB 95 15
43 34 6F 36 C2 12 5D BA 6F 4D 23 D2 BC 61 43
5E 36 FF 72 B3 EA FE 57 Co CF 7F 74 92 4C 30
17 4B OB 87 53 55 4B 58 ED 33 A8 84 8D 70 7A
CO C2 B1 DD CF DO 9E 31 FE 21 3C A0 A4 8D D1
BD 7D 84 2E 85 CC 76 F7 77 10 D5 8E FE AA 05
C6 51 BC D1 41 OF B4 75 34 EC AB AF 5A B7 DA
ED 80 9D 4B 97 22 0C AF 6D 49 29 C5 FB 68 4F
B8 69 2E 6E 70 33 2F F9 B3 F7 Cl 1D 6C AC 51
A3 55 93 17 3D 48 F8 0C A8 43 B8 97 89 D6 25
99 7A D7 D6 74 D2 5A 2A 7D 16 5A 5F 39 B3 CB
58 E9 37 BD BO 2A C8 A5 24 AC 93 11 3C ED D9
C6 82 63 02 5C 0B BO 99 7D 71 6E 58 D4 D7 B6
39 BF 59 1F 3E 71 C7 67 8D CO DF 96 F3 DF 9E
A5 73 8F 4F 9C E2 14 89 F3 00 EO 40 89 1B 20
AB 6D 90 51 B3 C2 E6 8E FA 2F A9 79 9A 70 68
D5 F4 62 01 8C 02 1D 66 69 ED 64 9F 9A CD F7
76 81 01 98 BF B8 BD 41 FF ED C5 85 EA FA 95
EA 1D 36 25 E4 BE D3 76 E7 AE 49 71 8A EE 2F
5C 40 1A 26 A2 99 41 D8 DA 5B 7E E9 AC A3 64
}
}
OCTET STRING
EA 09 47 25 OF A6 6C D5 25 59 5E 52 A6 9A AA DE
88 EF CF 1B OF 10 8A BE 29 10 60 39 1B 1C DF 59
07 F3 6B 40 67 E4 53 42
}
}
}
SEQUENCE {
OBJECT IDENTIFIER data (1 2 840 113549 1 7 1)
SEQUENCE {
OBJECT IDENTIFIER
aes256-GCM (2 16 840 1 101 3 4 1 4e6)
SEQUENCE {

01

BE
65
3B
1B
35
4B
9F
98
57
25
AB
B
D4
E7
63
AD
97
8A
B2
78
84
TE
57
71



A.

3.

611 12: OCTET STRING
: CA FE BA BE FA CE DB AD DE CA F8 88
}
: }
625 13: [0]
: 9A F2 D1 6F 21 54 7F CE FE D9 B3 EF 2D
: }
640 12: OCTET STRING AQ E5 92 5C Cl 84 E0 17 24 63 C4 4C
: }
}
}

Recipient Processing Example

Bob’s private key is:

MIIGS5AIBAAKCAYEA30ocWl4cxncPJ47£fnEJjBZAyfC21gapL3ET4jvVeC7gGeVrROx
WPDwl+cFYBBR2ej3j3/0ecDmu+XuVi2+s5JHKeeza+itfuhsz3yifgeEpeK8T+Su
sHhn20/NBLhYKbh3kiAcCgQ56dpDrDvDcLggvS3jg/VO+0OPnZbofoHOOevt8Q/ro
ahJelP1lIyQ4udWB8zZezJ4mLLfbOA9YVaYXx2AHHZJevo3nmRnlgJXo6mEOOE/ 69
khJDHKSMd12WG6mO9TCDZc9qY3cAJDUG6Ir0vSH7qU18/vN13y4UOFkn8hM4kmZ6b
JgbZt5NbjHt Y4AuQOVMW3RYESzhrO02mrp39aulLNnH3EXdXavV1ltk75H3gC7zJaeGW
MJIyQfOE3YfEGRKN8£fxubji716D8UecAxAzFyFL6mM1Ji0yV5acAiOpxN14gRYZdHn
XOMI9DgGIGpoeY1lUuD4Mo050s0qOUpBIHAYfSWhSZG7VNE+vgNWTLNYSYLIO04KiMd
ulnvU6ds+QPz+KKt AQMBAAECggGATF fkSkUjjJCjLvDk4aScpSx6+Rakf2hrdS3x
JwghyUfAXgTTeUQQBs1HVtHCgxQd+glXYn3/qu8TeZVwG4ANPztyi/Z5yB1wOGJIEV
3k8N/ytul 6pJFFn6p48VM01bUdTrkMJbXERe6g/rr6dBQeeItCaOK7N5SIJH30gh
9xYuB5tH4rquCdYLmt17Tx8CavVqU9gPY3vOdQEOWI j jMV8UQURSrHSO9KkS j8AGS
Lg9kcuPpvgJdc20gMRcNePS2WVh8xPFkt RLLRazgLP8STHAt JT6S1J2UzkUgfDHGK
q/BoXxBDub6L1VDwdnIS5HXtL54E1cXWsoOyKF8/1i1mhRUIUWRZFm1S10k8IC5IgX
UdL9rJVZFTRLYyAwmcCEvVRMlasbBrhyEyshSOuN5SnHJ1i2WVJ+wSHi jeKl1lgeLlpMk
HrdIYBg4Nz7/zXmiQphpAy+yQeanhP80406C8e7RwKdpxed4sudZ8fEgASyQx0u’
8yR1EhGKydX5bhBLR5Cm1VM7rT2BAOHBAP /+e5gZLNf/ECtEBZ jeiJ0VshszOoUqg
haUQPA+9Bx9pytsoKm50QhB7Q0DaxAvrn8/FUW2alAkaXsaj9F+/g30AYSQtExaiod
fdKKook30imN8/yNRsKmhf jGOj8hd4+GjX0qoMSBCEVAT+bA jjry8wgQrgReuZnu
0oXU85dmb3jvv0uIczIKvIIeyjXES5afjQIJImZFXsBmO09BG87Ia5EFUK1y96BOMJIh
/QWEZUYYXDQOFfzQtkAe fXNFW21Kz4Hw2QKBwQDeiGh41xCGT JECVGT7 fauMGlu+qg
DSAYyMHif6t6mx57eS16EjvOrl1XKItYhIyzW8KwOrf/CSB2j8iglGKMLTOgrGIJl
0322050F0r500mZPueeR4pOyAP0fgQ8DD1L3JBpY68/8MhYbsizVrR+Ar4 jM0£96
W2bF5Xj3h+fQTDMkx6VrCCQ6miRmBUZzH+ZPs5n/1Y0zAYrgiKOanaily4mjRvlsy
mjzZ6z5CG8sISqcLQ/k30115p0Y/v0rdBjgwAW/UCgcEAQGVYGjKAXCzuDvEi9EpV4
mpTWB6yIV2ckaPOn/tZi5BgsmEPwvZYZt0vMbu28Px7sSpkqUuBKbzJ4pcy8uC3I
SuYiTAhMiHS4rxIBX3BYXSuDD2RD4vG1l+XMOh6 jVRHXHhOnOXdVEgnmigPGz3jVJ
B8oph/jD802YCk4YCTDOXPEi8Rjusxzro+whvRR+kGOgsGGcKSVNCPj1fNISEted
gJId701mUAAzeDjn/VaS/PXQovEMolssPPKn9NocbKbpAoHBAIJNFHIJUN122W/1lrr
PpepmPnIzjI30YVcYOASVv1IgLKyGaAsnfYgqP1WUNgfVhg2 jRsrHx9cnHQI9HU442PvI
x+c5H30YFJ4ipE3eRRRMAUL4ghY5WgD+1hw8 fqyUW7E715LbSbGEUVXtrkUS5G64T
UR91LEyMF80PATdiV/KD4PWYkgagRm3tVEUCVACDTQkgNsOOi3YPQcm270w6gx£fQ
SOEy/kdhCFexJFA8uzZvmh6Cp2crczxyBilR/yCxgKOONglFdOQKBwEbJk5eHP jJz
AYueKMQESPGYCrwIgxgZGCxageVArHvKsEDX5whI6JWoFYVKFA8FOMyhukoEb/2x
29gB5T88Dg3EbgjTiLg3gxrWJ20xtUo8pBP2I2wbl2NOwzcbrlYhzEZ8bJyxZu5il
SYILC8PJ4Qzw63S40pmdy1WHz8e/E1W6Vyfml jZYA7 £ OWMnt dfeQVgCVzZNTvKn6 £
hg6GSpdTzp4LlV3ougidInQuWXZF2wInsXkLYpsiMbL6Fz34RwohJtYA==

Bob decrypts the key-derivation key with his RSA private key:

df85af9e3cebffdebe999d24263db31114d0a8e33a0d50e05eb64578ccde8leb
Bob produces a 256-bit key-encryption key with HKDF using SHA-384;
the secret value is the key-derivation key; and the ’"info’ is the
DER-encoded CMSORIforPSKOtherInfo structure with the same values as
shown in Appendix A.l1l. The HKDF output is 256 bits:

£319e9cebb35f1c6a7a9709b8760b9d0d3e30el6c5b2b69347e9£00ca540a232

Bob uses AES-KEY-WRAP to decrypt the content-encryption key with the
key—-encryption key; the content-encryption key is:

c8adc30fd4a3e20ac420caa’76a68£5787c02ab42afea20d19672£d963a5338e83



Bob decrypts the content using AES-256-GCM with the content-
encryption key and checks the received authentication tag. The
12-octet nonce used is:

cafebabefacedbaddecaf888
The 12-octet authentication tag is:

a0e5925ccl84e0172463c44c
The received ciphertext content is:

9af2dl6f21547fcefed9b3ef2d
The resulting plaintext content is:

48656c6c6£f2c20776£726c6421

Appendix B. Key Agreement with PSK Example

This example shows the establishment of an AES-256 content-encryption
key using:

* a pre-shared key of 256 bits;

* key agreement using ECDH on curve P-384 and X9.63 KDF with SHA-
384;

* key derivation using HKDF with SHA-384; and

* key wrap using AES-256-KEYWRAP.

In real-world use, the originator would treat themselves as an

additional recipient by performing key agreement with their own

static public key and the ephemeral private key generated for this

message. This is omitted in an attempt to simplify the example.

B.1l. Originator Processing Example

The pre-shared key known to Alice and Bob, in hexadecimal, is:
4aa53cb£f500850dd583a5d9821605c6£a228£fb5917£87c1c078660214e2d83e4

The identifier assigned to the pre-shared key is:
ptf-kmc:216840110121

Alice randomly generates a content-encryption key:
937b1219a64d57ad81c05cc86075e86017848c824d4e85800¢c731c5b7b091033

Alice obtains Bob’s static ECDH public key:
MHYWEAYHK0ZIzjOCAQYFK4EEACIDYgAEScGPBOINMUwWGrgbGEOFY9HR/bCoOWyeY
/dePQVrwZmwN2yMJImO2d1kWCvLTz8U7atinxyIRe9CV54yaulKWU/wbhkhPDnzuSM
YkcpxMGo32z3JetEloW5aFOjal3vv/W5

It has a key identifier of:
e8218b98b8b7d86b5e%9ebdc8aeb8cd4ecdc05c529

Alice generates an ephemeral ECDH key pair on the same curve:
MIGKAgEBBDCMiWLG44ik+L8cYVvIrQdLcFA+PwlgREF+Wt1Ab25gUh80B70ePWjxp
/b8P6IOUI6GgBWYFKAEEACKhZANIAAQSGOEMJIk/2ks8sXY1kzbuG3Uu3ttWwQRXA

LEDJIC)vYfr+yTpOQVkchm88FAhOMEkw4NKctokKNgpsgXyrT3DtOg760IYENPPDb
GE51JdjPx9sBsZQdABwlsU0Zb7P/718=



Alice computes a shared secret called "Z" using Bob’s static ECDH
public key and her ephemeral ECDH private key; Z is:

3f015ed0ff4b99523a95157bbe77e9cclee52fcffeb7edleac79dlcllbbec556
19cf8807e6d800c2ded40240fele26adc

Alice computes the pairwise key-encryption key, called "KEK1", from Z
using the X9.63 KDF with the ECC-CMS-SharedInfo structure with the

following values:

0 21: SEQUENCE {

2 11: SEQUENCE {

4 9: OBJECT IDENTIFIER aes256-wrap (2 16 840 1 101 3 4 1 45)
: }

15 6: [21 {

17 4: OCTET STRING 00 00 00 20
: }
}

The DER encoding of ECC-CMS-SharedInfo produces 23 octets:
3015300b060960864801650304012da206040400000020
The X9.63 KDF output is the 256-bit KEKL1:
27dc25ddb0b425f7a968ceada80a8f73c6ccaabllbbaafcceda?22a45d6b8£f3da
Alice produces the 256-bit KEK2 with HKDF using SHA-384; the secret
value is KEK1l; and the ’'info’ is the DER-encoded
CMSORIforPSKOtherInfo structure with the following values:
0 56: SEQUENCE {
2 32: OCTET STRING

4A A5 3C BF 50 08 50 DD 58 3A 5D 98 21 60 5C 6F
A2 28 FB 59 17 F8 7C 1C 07 86 60 21 4E 2D 83 E4

36 1: ENUMERATED 10

39 11: SEQUENCE {

41 9: OBJECT IDENTIFIER aes256-wrap (2 16 840 1 101 3 4 1 45)
: }

52 1: INTEGER 32

55 1: INTEGER 32

}
The DER encoding of CMSORIforPSKOtherInfo produces 58 octets:

303804204aa53cb£f500850dd583a5d9821605¢c6£fa228fb5917£87¢c1c07866021
4e2d83e40a010a300b0609608648016503040124020120020120

The HKDF output is the 256-bit KEK2:
7de693ee30ae22b5£8£6cd026c2164103£f4e1430£f1ab135dc1£fb98954£9830bb

Alice uses AES-KEY-WRAP to encrypt the content-encryption key with
the KEK2; the wrapped key is:

229fe0b45e40003e7d8244eclb7e7ffb2c8dcal6c36£5737222553a71263a92b
de08866a602d63£4

Alice encrypts the content using AES-256-GCM with the content-
encryption key. The 1l2-octet nonce used is:

dbaddecaf888cafebabeface
The plaintext is:
48656c6c6f2c20776£726c6421

The resulting ciphertext is:
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fc6d6f823e3ed2d209d0c6ffct

The resulting 1l2-octet authentication tag is:

550260c42e5b29719426¢clff

ContentInfo and AuthEnvelopedData

Alice encodes the AuthEnvelopedData and the ContentInfo and sends the

is:

0 113549 1 9 16 1 23)

113549 1 9 16 13 2)

OCTET STRING 'ptf-kmc:216840110121"

6 (1 3 132 1 11 1)

840 1 101 3 4 1 45)

92 CF 2C 5D 8D 64 CD BB 86 DD
15 CO 2C 50 C9 20 28 EF 61 FA
1C 86 6F 3C 14 08 7D 30 49 30
36 0OA 6C

2 840 113549 1 9 16 3 29)

40 1 101 3 4 1 45)

E8 21 8B 98 B8 B7 D8 6B LE 9E BD C8 AE B8 C4 EC

0 3 7D 82 44 EC 1B 7E 7F FB
7 37 22 25 53 A7 12 63 A9 2B
3 F4

(1 2 840 113549 1 7 1)

1 101 3 4 1 46)

result to Bob. The resulting structure
0 327: SEQUENCE {
4 11: OBJECT IDENTIFIER
authEnvelopedData (1 2 84
17 310: [0] |
21 306: SEQUENCE {
25 1: INTEGER O
28 229: SET {
31 226: [41 {
34 11: OBJECT IDENTIFIER
: keyAgreePSK (1 2 840
47 210: SEQUENCE {
50 1: INTEGER O
53 20:
75 85: [0] |
77 83: [11 |
79 19: SEQUENCE {
81 6: OBJECT IDENTIFIER
: ecdhX963KDF-SHA25
89 9: OBJECT IDENTIFIER
aes256-wrap (2 16
: }
100 60: BIT STRING, encapsulates {
103 57: OCTET STRING
: 1B 41 26 26 4F F6
4B B7 B6 D5 BO 41
FE C9 3A 4E 41 59
EO D2 9C B6 89 0A
}
}
: }
162 13: SEQUENCE {
164 11: OBJECT IDENTIFIER
: hkdf-with-sha384 (1
: }
177 11: SEQUENCE {
179 9: OBJECT IDENTIFIER
: aes256-wrap (2 16 8
: }
190 68: SEQUENCE {
192 66: SEQUENCE {
194 22: [01 {
196 20: OCTET STRING
DC 05 C5 29
: }
218 40: OCTET STRING
: 22 9F EO B4 5E 40 O
2C 8D CA 16 C3 6F 5
DE 08 86 6A 60 2D 6
}
}
}
}
: }
260 55: SEQUENCE {
262 9: OBJECT IDENTIFIER data
273 27 : SEQUENCE {
275 9: OBJECT IDENTIFIER
: aes256-GCM (2 16 840
286 14: SEQUENCE {
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288 12: OCTET STRING
: DB AD DE CA F8 88 CA FE BA BE FA CE
}
: }
302 13: [0]
FC 6D 6F 82 3E 3E D2 D2 09 DO C6 FF CF

: }
317 12: OCTET STRING 55 02 60 C4 2E 5B 29 71 94 26 Cl1 FF

}
}
}

Recipient Processing Example

Bob obtains Alice’s ephemeral ECDH public key from the message:

MHYWEAYHK0ZIzjOCAQYFK4EEACIDYgAEORtBJ1iZP9pLPLF2NZM27ht 1Lt 7TbVSEEV
wCxQySA072H6/sk6TkFZHIZvPBQIfTBIMODSnLaJCjYKbK18g09w7ToO+gCGBDaT
2xh0ZSXYz8fbAbGUHQACILENGW+z /+4v

MIGKkAGEBBDANJ4hB+tTUN9X03/WORsrYy+gcpt 1IRSYkhaDIsQYPXfTUOugjJEmRk
NTPj4y1IRjegBwYFK4EEACKhZANiAARJWY8E72eZTAauBsYSgVi0dHIsKiRbJI559
149BWvBmMbA3bIwmY7Z3WRYK8tPPxTtq2KfHIhF70JXnjJq7UpZT/BuSE80fO5Ixi
RynEwajfbPcl60SWhbloU6NrXe+/9bk=

Bob computes a shared secret called "Z" using Alice’s ephemeral ECDH
public key and his static ECDH private key; Z is:

3f015ed0££4b99523a95157bbe77e9cclOeeb2fcffeb7edleac79dlcllbbecc556
19c£8807e6d800c2ded40240fele26adc

Bob computes the pairwise key-encryption key, KEK1l, from Z using the
X9.63 KDF with the ECC-CMS-SharedInfo structure with the values shown
in Appendix B.l. The X9.63 KDF output is the 256-bit KEK1:
27dc25ddb0b425f7a968ceada80a8f73c6ccaabllbSbaafcceda22a45d6b8£f3da
Bob produces the 256-bit KEK2 with HKDF using SHA-384; the secret
value is KEK1l; and the ’'info’ is the DER-encoded
CMSORIforPSKOtherInfo structure with the values shown in
Appendix B.1l. The HKDF output is the 256-bit KEK2:
7de693ee30ae22b5f8f6cd026c2164103f4e1430£f1ab135dcl1fb98954£9830bb

Bob uses AES-KEY-WRAP to decrypt the content-encryption key with the
KEK2; the content-encryption key is:

937b1219a64d57ad81c05cc86075e86017848c824d4e85800c731c5b7b091033
Bob decrypts the content using AES-256-GCM with the content-
encryption key and checks the received authentication tag. The
12-octet nonce used is:

dbaddecaf888cafebabeface
The 12-octet authentication tag is:

550260c42e5b29719426¢c1ff
The received ciphertext content is:

fc6d6£823e3ed2d209d0c6ffct

The resulting plaintext content is:



48656c6c6£f2c20776£726c6421
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