
Internet Engineering Task Force (IETF) A. Bittau
Request for Comments: 8547 Google
Category: Experimental D. Giffin
ISSN: 2070-1721 Stanford University
 M. Handley
 University College London
 D. Mazieres
 Stanford University
 E. Smith
 Kestrel Institute
 May 2019

 TCP-ENO: Encryption Negotiation Option

Abstract

 Despite growing adoption of TLS, a significant fraction of TCP
 traffic on the Internet remains unencrypted. The persistence of
 unencrypted traffic can be attributed to at least two factors.
 First, some legacy protocols lack a signaling mechanism (such as a
 STARTTLS command) by which to convey support for encryption, thus
 making incremental deployment impossible. Second, legacy
 applications themselves cannot always be upgraded and therefore
 require a way to implement encryption transparently entirely within
 the transport layer. The TCP Encryption Negotiation Option (TCP-ENO)
 addresses both of these problems through a new TCP option kind
 providing out-of-band, fully backward-compatible negotiation of
 encryption.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are candidates for any level of
 Internet Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8547.

Bittau, et al. Experimental [Page 1]

RFC 8547 TCP Encryption Negotiation Option May 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bittau, et al. Experimental [Page 2]

RFC 8547 TCP Encryption Negotiation Option May 2019

Table of Contents

 1. Introduction . 4
 1.1. Design Goals . 4
 2. Requirements Language . 5
 3. Terminology . 5
 4. TCP-ENO Specification . 6
 4.1. ENO Option . 7
 4.2. The Global Suboption 9
 4.3. TCP-ENO Roles . 10
 4.4. Specifying Suboption Data Length 11
 4.5. The Negotiated TEP 12
 4.6. TCP-ENO Handshake . 13
 4.7. Data in SYN Segments 14
 4.8. Negotiation Transcript 16
 5. Requirements for TEPs . 16
 5.1. Session IDs . 18
 6. Examples . 19
 7. Future Developments . 21
 8. Design Rationale . 22
 8.1. Handshake Robustness 22
 8.2. Suboption Data . 22
 8.3. Passive Role Bit . 22
 8.4. Application-Aware Bit 23
 8.5. Use of ENO Option Kind by TEPs 24
 8.6. Unpredictability of Session IDs 24
 9. Experiments . 24
 10. Security Considerations 25
 11. IANA Considerations . 27
 12. References . 28
 12.1. Normative References 28
 12.2. Informative References 29
 Acknowledgments . 30
 Contributors . 30
 Authors’ Addresses . 31

Bittau, et al. Experimental [Page 3]

RFC 8547 TCP Encryption Negotiation Option May 2019

1. Introduction

 Many applications and protocols running on top of TCP today do not
 encrypt traffic. This failure to encrypt lowers the bar for certain
 attacks, harming both user privacy and system security.
 Counteracting the problem demands a minimally intrusive, backward-
 compatible mechanism for incrementally deploying encryption. The TCP
 Encryption Negotiation Option (TCP-ENO) specified in this document
 provides such a mechanism.

 Introducing TCP options, extending operating system interfaces to
 support TCP-level encryption, and extending applications to take
 advantage of TCP-level encryption all require effort. To the
 greatest extent possible, the effort invested in realizing TCP-level
 encryption today needs to remain applicable in the future should the
 need arise to change encryption strategies. To this end, it is
 useful to consider two questions separately:

 1. How to negotiate the use of encryption at the TCP layer

 2. How to perform encryption at the TCP layer

 This document addresses question 1 with a new TCP option, ENO.
 TCP-ENO provides a framework in which two endpoints can agree on a
 TCP encryption protocol (TEP) out of multiple possible TEPs. For
 future compatibility, TEPs can vary widely in terms of wire format,
 use of TCP option space, and integration with the TCP header and
 segmentation. However, ENO abstracts these differences to ensure the
 introduction of new TEPs can be transparent to applications taking
 advantage of TCP-level encryption.

 Question 2 is addressed by one or more companion TEP specification
 documents. While current TEPs enable TCP-level traffic encryption
 today, TCP-ENO ensures that the effort invested to deploy today’s
 TEPs will additionally benefit future ones.

1.1. Design Goals

 TCP-ENO was designed to achieve the following goals:

 1. Enable endpoints to negotiate the use of a separately specified
 TCP encryption protocol (TEP) suitable for either opportunistic
 security [RFC7435] of arbitrary TCP communications or stronger
 security of applications willing to perform endpoint
 authentication.

Bittau, et al. Experimental [Page 4]

RFC 8547 TCP Encryption Negotiation Option May 2019

 2. Transparently fall back to unencrypted TCP when not supported by
 both endpoints.

 3. Provide out-of-band signaling through which applications can
 better take advantage of TCP-level encryption (for instance, by
 improving authentication mechanisms in the presence of TCP-level
 encryption).

 4. Define a standard negotiation transcript that TEPs can use to
 defend against tampering with TCP-ENO.

 5. Make parsimonious use of TCP option space.

 6. Define roles for the two ends of a TCP connection, so as to name
 each end of a connection for encryption or authentication
 purposes even following a symmetric simultaneous open.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Terminology

 Throughout this document, we use the following terms, several of
 which have more detailed normative descriptions in [RFC793]:

 SYN segment
 A TCP segment in which the SYN flag is set

 ACK segment
 A TCP segment in which the ACK flag is set (which includes most
 segments other than an initial SYN segment)

 Non-SYN segment
 A TCP segment in which the SYN flag is clear

 SYN-only segment
 A TCP segment in which the SYN flag is set but the ACK flag is
 clear

 SYN-ACK segment
 A TCP segment in which the SYN and ACK flags are both set

Bittau, et al. Experimental [Page 5]

RFC 8547 TCP Encryption Negotiation Option May 2019

 Active opener
 A host that initiates a connection by sending a SYN-only segment.
 With the BSD socket API, an active opener calls "connect". In
 client-server configurations, active openers are typically
 clients.

 Passive opener
 A host that does not send a SYN-only segment but responds to one
 with a SYN-ACK segment. With the BSD socket API, passive openers
 call "listen" and "accept", rather than "connect". In client-
 server configurations, passive openers are typically servers.

 Simultaneous open
 The act of symmetrically establishing a TCP connection between two
 active openers (both of which call "connect" with BSD sockets).
 Each host of a simultaneous open sends both a SYN-only and a SYN-
 ACK segment. Simultaneous open is less common than asymmetric
 open with one active and one passive opener, but it can be used
 for NAT traversal by peer-to-peer applications [RFC5382].

 TEP
 A TCP encryption protocol intended for use with TCP-ENO and
 specified in a separate document

 TEP identifier
 A unique 7-bit value in the range 0x20-0x7f that IANA has assigned
 to a TEP

 Negotiated TEP
 The single TEP governing a TCP connection, determined by use of
 the TCP ENO option specified in this document

4. TCP-ENO Specification

 TCP-ENO extends TCP connection establishment to enable encryption
 opportunistically. It uses a new TCP option kind [RFC793] to
 negotiate one among multiple possible TCP encryption protocols
 (TEPs). The negotiation involves hosts exchanging sets of supported
 TEPs, where each TEP is represented by a suboption within a larger
 TCP ENO option in the offering host’s SYN segment.

 If TCP-ENO succeeds, it yields the following information:

 o a negotiated TEP represented by a unique 7-bit TEP identifier,

 o a few extra bytes of suboption data from each host, if needed by
 the TEP,

Bittau, et al. Experimental [Page 6]

RFC 8547 TCP Encryption Negotiation Option May 2019

 o a negotiation transcript with which to mitigate attacks on the
 negotiation itself,

 o role assignments designating one endpoint "host A" and the other
 endpoint "host B", and

 o a bit available to higher-layer protocols at each endpoint for
 out-of-band negotiation of updated behavior in the presence of TCP
 encryption.

 If TCP-ENO fails, encryption is disabled and the connection falls
 back to traditional unencrypted TCP.

 The remainder of this section provides the normative description of
 the TCP ENO option and handshake protocol.

4.1. ENO Option

 TCP-ENO employs an option in the TCP header [RFC793]. Figure 1
 illustrates the high-level format of this option.

 byte 0 1 2 N+1 (N+2 bytes total)
 +-----+-----+-----+--....--+-----+
 |Kind=|Len= | |
 | 69 | N+2 | contents (N bytes) |
 +-----+-----+-----+--....--+-----+

 Figure 1: The TCP-ENO Option

 The contents of an ENO option can take one of two forms. A SYN-form
 ENO option, illustrated in Figure 2, appears only in SYN segments. A
 non-SYN-form ENO option, illustrated in Figure 3, appears only in
 non-SYN segments. The SYN-form ENO option acts as a container for
 zero or more suboptions, labeled "Opt_0", "Opt_1", ... in Figure 2.
 The non-SYN-form ENO option, by its presence, acts as a one-bit
 acknowledgment, with the actual contents ignored by ENO. Particular
 TEPs MAY assign additional meaning to the contents of non-SYN-form
 ENO options. When a negotiated TEP does not assign such meaning, the
 contents of a non-SYN-form ENO option MUST be zero bytes (i.e.,
 N = 0) in sent segments and MUST be ignored in received segments.

 byte 0 1 2 3 ... N+1
 +-----+-----+-----+-----+--...--+-----+----...----+
 |Kind=|Len= |Opt_0|Opt_1| |Opt_i| Opt_i |
 | 69 | N+2 | | | | | data |
 +-----+-----+-----+-----+--...--+-----+----...----+

 Figure 2: SYN-Form ENO Option

Bittau, et al. Experimental [Page 7]

RFC 8547 TCP Encryption Negotiation Option May 2019

 byte 0 1 2 N+1
 +-----+-----+-----...----+
 |Kind=|Len= | ignored |
 | 69 | N+2 | by TCP-ENO |
 +-----+-----+-----...----+

 Figure 3: Non-SYN-Form ENO option, Where N MAY Be 0

 Every suboption starts with a byte of the form illustrated in
 Figure 4. The high bit "v", when set, introduces suboptions with
 variable-length data. When v = 0, the byte itself constitutes the
 entirety of the suboption. The remaining 7-bit value, called "glt",
 takes on various meanings as defined below:

 o Global configuration data (discussed in Section 4.2)

 o Suboption data length for the next suboption (discussed in
 Section 4.4)

 o An offer to use a particular TEP defined in a separate TEP
 specification document

 bit 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 | v | glt |
 +---+---+---+---+---+---+---+---+

 v - non-zero for use with variable-length suboption data
 glt - Global suboption, Length, or TEP identifier

 Figure 4: Format of Initial Suboption Byte

 Table 1 summarizes the meaning of initial suboption bytes. Values of
 glt below 0x20 are used for global suboptions and length information
 (the "gl" in "glt"), while those greater than or equal to 0x20 are
 TEP identifiers (the "t"). When v = 0, since the initial suboption
 byte constitutes the entirety of the suboption, all information is
 expressed by the 7-bit glt value, which can be either a global
 suboption or a TEP identifier. When v = 1, it indicates a suboption
 with variable-length suboption data. Only TEP identifiers have
 suboption data, not global suboptions. Therefore, bytes with v = 1
 and glt < 0x20 are not global suboptions but rather length bytes
 governing the length of the next suboption (which MUST be a TEP
 identifier). In the absence of a length byte, a TEP identifier
 suboption with v = 1 has suboption data extending to the end of the
 TCP option.

Bittau, et al. Experimental [Page 8]

RFC 8547 TCP Encryption Negotiation Option May 2019

 +-----------+---+---+
 | glt | v | Meaning |
 +-----------+---+---+
 | 0x00-0x1f | 0 | Global suboption (Section 4.2) |
 | 0x00-0x1f | 1 | Length byte (Section 4.4) |
 | 0x20-0x7f | 0 | TEP identifier without suboption data |
 | 0x20-0x7f | 1 | TEP identifier followed by suboption data |
 +-----------+---+---+

 Table 1: Initial Suboption Byte Values

 A SYN segment MUST contain at most one TCP ENO option. If a SYN
 segment contains more than one ENO option, the receiver MUST behave
 as though the segment contained no ENO options and disable
 encryption. A TEP MAY specify the use of multiple ENO options in a
 non-SYN segment. For non-SYN segments, ENO itself only distinguishes
 between the presence or absence of ENO options; multiple ENO options
 are interpreted the same as one.

4.2. The Global Suboption

 Suboptions 0x00-0x1f are used for global configuration that applies
 regardless of the negotiated TEP. A TCP SYN segment MUST include at
 most one ENO suboption in this range. A receiver MUST ignore all but
 the first suboption in this range in any given TCP segment so as to
 anticipate updates to ENO that assign new meaning to bits in
 subsequent global suboptions. The value of a global suboption byte
 is interpreted as a bit mask, illustrated in Figure 5.

 bit 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 |z1 |z2 |z3 | a | b |
 +---+---+---+---+---+---+---+---+

 b - Passive role bit
 a - Application-aware bit
 z* - Zero bits (reserved for future use)

 Figure 5: Format of the Global Suboption Byte

 The fields of the bit mask are interpreted as follows:

 b
 The passive role bit MUST be 1 for all passive openers. For
 active openers, it MUST default to 0, but implementations MUST
 provide an API through which an application can explicitly set b =
 1 before initiating an active open. (Manual configuration of "b"
 is only necessary to enable encryption with a simultaneous open

Bittau, et al. Experimental [Page 9]

RFC 8547 TCP Encryption Negotiation Option May 2019

 and requires prior coordination to ensure exactly one endpoint
 sets b = 1 before connecting.) See Section 8.3 for further
 discussion.

 a
 Legacy applications can benefit from ENO-specific updates that
 improve endpoint authentication or avoid double encryption. The
 application-aware bit "a" is an out-of-band signal through which
 higher-layer protocols can enable ENO-specific updates that would
 otherwise not be backwards compatible. Implementations MUST set
 this bit to zero by default, and MUST provide an API through which
 applications can change the value of the bit as well as examine
 the value of the bit sent by the remote host. Implementations
 MUST furthermore support a mandatory application-aware mode in
 which TCP-ENO is automatically disabled if the remote host does
 not set a = 1. See Section 8.4 for further discussion.

 z1, z2, z3
 The "z" bits are reserved for future updates to TCP-ENO. They
 MUST be set to zero in sent segments and MUST be ignored in
 received segments.

 A SYN segment without an explicit global suboption has an implicit
 global suboption of 0x00. Because passive openers MUST always set
 b = 1, they cannot rely on this implicit 0x00 byte and MUST include
 an explicit global suboption in their SYN-ACK segments.

4.3. TCP-ENO Roles

 TCP-ENO uses abstract roles called "A" and "B" to distinguish the two
 ends of a TCP connection. These roles are determined by the "b" bit
 in the global suboption. The host that sent an implicit or explicit
 suboption with b = 0 plays the A role. The host that sent b = 1
 plays the B role. Because a passive opener MUST set b = 1 and an
 active opener by default has b = 0, the normal case is for the active
 opener to play role A and the passive opener role B.

 Applications performing a simultaneous open, if they desire TCP-level
 encryption, need to arrange for exactly one endpoint to set b = 1
 (despite being an active opener) while the other endpoint keeps the
 default b = 0. Otherwise, if both sides use the default b = 0 or if
 both sides set b = 1, then TCP-ENO will fail and fall back to
 unencrypted TCP. Likewise, if an active opener explicitly configures
 b = 1 and connects to a passive opener (which MUST always have
 b = 1), then TCP-ENO will fail and fall back to unencrypted TCP.

Bittau, et al. Experimental [Page 10]

RFC 8547 TCP Encryption Negotiation Option May 2019

 TEP specifications SHOULD refer to TCP-ENO’s A and B roles to specify
 asymmetric behavior by the two hosts. For the remainder of this
 document, we will use the terms "host A" and "host B" to designate
 the hosts with roles A and B, respectively, in a connection.

4.4. Specifying Suboption Data Length

 A TEP MAY optionally make use of one or more bytes of suboption data.
 The presence of such data is indicated by setting v = 1 in the
 initial suboption byte (see Figure 4). A suboption introduced by a
 TEP identifier with v = 1 (i.e., a suboption whose first octet has
 value 0xa0 or higher) extends to the end of the TCP option. Hence,
 if only one suboption requires data, the most compact way to encode
 it is to place it last in the ENO option, after all other suboptions.
 In Figure 2, for example, the last suboption, Opt_i, has suboption
 data and thus requires v = 1. However, the suboption data length is
 inferred from the total length of the TCP option.

 When a suboption with data is not last in an ENO option, the sender
 MUST explicitly specify the suboption data length for the receiver to
 know where the next suboption starts. The sender does so by
 introducing the suboption with a length byte, depicted in Figure 6.
 The length byte encodes a 5-bit value nnnnn. Adding one to nnnnn
 yields the length of the suboption data (not including the length
 byte or the TEP identifier). Hence, a length byte can designate
 anywhere from 1 to 32 bytes of suboption data (inclusive).

 bit 7 6 5 4 3 2 1 0
 +---+---+---+-------------------+
 | 1 0 0 nnnnn |
 +---+---+---+-------------------+

 nnnnn - 5-bit value encoding (length - 1)

 Figure 6: Format of a Length Byte

 A suboption preceded by a length byte MUST be a TEP identifier
 (glt >= 0x20) and MUST have v = 1. Figure 7 shows an example of such
 a suboption.

Bittau, et al. Experimental [Page 11]

RFC 8547 TCP Encryption Negotiation Option May 2019

 byte 0 1 2 nnnnn+2 (nnnnn+3 bytes total)
 +------+------+-------...-------+
 |length| TEP | suboption data |
 | byte |ident.| (nnnnn+1 bytes) |
 +------+------+-------...-------+

 length byte - specifies nnnnn
 TEP identifier - MUST have v = 1 and glt >= 0x20
 suboption data - length specified by nnnnn+1

 Figure 7: Suboption with Length Byte

 A host MUST ignore an ENO option in a SYN segment and MUST disable
 encryption if either of the following apply:

 1. A length byte indicates that suboption data would extend beyond
 the end of the TCP ENO option.

 2. A length byte is followed by an octet in the range 0x00-0x9f
 (meaning the following byte has v = 0 or glt < 0x20).

 Because the last suboption in an ENO option is special-cased to have
 its length inferred from the 8-bit TCP option length, it MAY contain
 more than 32 bytes of suboption data. Other suboptions are limited
 to 32 bytes by the length byte format. However, the TCP header
 itself can only accommodate a maximum of 40 bytes of options.
 Therefore, regardless of the length byte format, a segment would not
 be able to contain more than one suboption over 32 bytes in size.
 That said, TEPs MAY define the use of multiple suboptions with the
 same TEP identifier in the same SYN segment, providing another way to
 convey over 32 bytes of suboption data even with length bytes.

4.5. The Negotiated TEP

 A TEP identifier glt (with glt >= 0x20) is valid for a connection
 when all of the following hold:

 1. Each side has sent a suboption for glt in its SYN-form ENO
 option.

 2. Any suboption data in these glt suboptions is valid according to
 the TEP specification and satisfies any runtime constraints.

 3. If an ENO option contains multiple suboptions with glt, then such
 repetition is well-defined by the TEP specification.

Bittau, et al. Experimental [Page 12]

RFC 8547 TCP Encryption Negotiation Option May 2019

 A passive opener (which is always host B) sees the remote host’s SYN
 segment before constructing its own SYN-ACK segment. Therefore, a
 passive opener SHOULD include only one TEP identifier in SYN-ACK
 segments and SHOULD ensure this TEP identifier is valid. However,
 simultaneous open or implementation considerations can prevent host B
 from offering only one TEP.

 To accommodate scenarios in which host B sends multiple TEP
 identifiers in the SYN-ACK segment, the negotiated TEP is defined as
 the last valid TEP identifier in host B’s SYN-form ENO option. This
 definition means host B specifies TEP suboptions in order of
 increasing priority, while host A does not influence TEP priority.

4.6. TCP-ENO Handshake

 A host employing TCP-ENO for a connection MUST include an ENO option
 in every TCP segment sent until either encryption is disabled or the
 host receives a non-SYN segment. In particular, this means an active
 opener MUST include a non-SYN-form ENO option in the third segment of
 a three-way handshake.

 A host MUST disable encryption, refrain from sending any further ENO
 options, and fall back to unencrypted TCP if any of the following
 occurs:

 1. Any segment it receives up to and including the first received
 ACK segment does not contain an ENO option (or contains an ill-
 formed SYN-form ENO option).

 2. The SYN segment it receives does not contain a valid TEP
 identifier.

 3. It receives a SYN segment with an incompatible global suboption.
 (Specifically, "incompatible" means the two hosts set the same
 "b" value, or the connection is in mandatory application-aware
 mode and the remote host set a = 0.)

 Hosts MUST NOT alter SYN-form ENO options in retransmitted segments,
 or between the SYN and SYN-ACK segments of a simultaneous open, with
 two exceptions for an active opener. First, an active opener MAY
 unilaterally disable ENO (and thus remove the ENO option) between
 retransmissions of a SYN-only segment. (Such removal could enable
 recovery from middleboxes dropping segments with ENO options.)
 Second, an active opener performing simultaneous open MAY include no
 TCP-ENO option in its SYN-ACK if the received SYN caused it to
 disable encryption according to the above rules (for instance,
 because role negotiation failed).

Bittau, et al. Experimental [Page 13]

RFC 8547 TCP Encryption Negotiation Option May 2019

 Once a host has both sent and received an ACK segment containing an
 ENO option, encryption MUST be enabled. Once encryption is enabled,
 hosts MUST follow the specification of the negotiated TEP and MUST
 NOT present raw TCP payload data to the application. In particular,
 data segments MUST NOT contain plaintext application data, but rather
 ciphertext, key negotiation parameters, or other messages as
 determined by the negotiated TEP.

 A host MAY send a SYN-form ENO option containing zero TEP identifier
 suboptions, which we term a "vacuous" ENO option. If either host’s
 SYN segment contains a vacuous ENO option, it follows that there are
 no valid TEP identifiers for the connection, and therefore the
 connection MUST fall back to unencrypted TCP. Hosts MAY send vacuous
 ENO options to indicate that ENO is supported but unavailable by
 configuration, or to probe network paths for robustness to ENO
 options. However, a passive opener MUST NOT send a vacuous ENO
 option in a SYN-ACK segment unless there was an ENO option in the SYN
 segment it received. Moreover, a passive opener’s SYN-form ENO
 option MUST still include a global suboption with b = 1 as discussed
 in Section 4.3.

4.7. Data in SYN Segments

 TEPs MAY specify the use of data in SYN segments so as to reduce the
 number of round trips required for connection setup. The meaning of
 data in a SYN segment with an ENO option (a SYN+ENO segment) is
 determined by the last TEP identifier in the ENO option, which we
 term the segment’s "SYN TEP". A SYN+ENO segment MAY of course
 include multiple TEP suboptions, but only the SYN TEP (i.e., the last
 one) specifies how to interpret the SYN segment’s data payload.

 A host sending a SYN+ENO segment MUST NOT include data in the segment
 unless the SYN TEP’s specification defines the use of such data.
 Furthermore, to avoid conflicting interpretations of SYN data, a
 SYN+ENO segment MUST NOT include a non-empty TCP Fast Open (TFO)
 option [RFC7413].

 Because a host can send SYN data before knowing which if any TEP the
 connection will negotiate, hosts implementing ENO are REQUIRED to
 discard data from SYN+ENO segments when the SYN TEP does not become
 the negotiated TEP. Hosts are furthermore REQUIRED to discard SYN
 data in cases where another Internet standard specifies a conflicting
 interpretation of SYN data (as would occur when receiving a non-empty
 TFO option). This requirement applies to hosts that implement ENO
 even when ENO has been disabled by configuration. However, note that
 discarding SYN data is already common practice [RFC4987] and the new
 requirement applies only to segments containing ENO options.

Bittau, et al. Experimental [Page 14]

RFC 8547 TCP Encryption Negotiation Option May 2019

 More specifically, a host that implements ENO MUST discard the data
 in a received SYN+ENO segment if any of the following applies:

 o ENO fails and TEP-indicated encryption is disabled for the
 connection.

 o The received segment’s SYN TEP is not the negotiated TEP.

 o The negotiated TEP does not define the use of SYN data.

 o The SYN segment contains a non-empty TFO option or any other TCP
 option implying a conflicting definition of SYN data.

 A host discarding SYN data in compliance with the above requirement
 MUST NOT acknowledge the sequence number of the discarded data, but
 rather MUST acknowledge the other host’s initial sequence number as
 if the received SYN segment contained no data. Furthermore, after
 discarding SYN data, such a host MUST NOT assume the SYN data will be
 identically retransmitted, and MUST process data only from non-SYN
 segments.

 If a host sends a SYN+ENO segment with data and receives
 acknowledgment for the data, but the SYN TEP in its transmitted SYN
 segment is not the negotiated TEP (either because a different TEP was
 negotiated or because ENO failed to negotiate encryption), then the
 host MUST abort the TCP connection. Proceeding in any other fashion
 risks misinterpreted SYN data.

 If a host sends a SYN-only SYN+ENO segment bearing data and
 subsequently receives a SYN-ACK segment without an ENO option, that
 host MUST abort the connection even if the SYN-ACK segment does not
 acknowledge the SYN data. The issue is that unacknowledged data
 could nonetheless have been cached by the receiver; later
 retransmissions intended to supersede this unacknowledged data could
 fail to do so if the receiver gives precedence to the cached original
 data. Implementations MAY provide an API call for a non-default mode
 in which unacknowledged SYN data does not cause a connection abort,
 but applications MUST use this mode only when a higher-layer
 integrity check would anyway terminate a garbled connection.

 To avoid unexpected connection aborts, ENO implementations MUST
 disable the use of data in SYN-only segments by default. Such data
 MAY be enabled by an API command. In particular, implementations MAY
 provide a per-connection mandatory encryption mode that automatically
 aborts a connection if ENO fails, and they MAY enable SYN data in
 this mode.

Bittau, et al. Experimental [Page 15]

RFC 8547 TCP Encryption Negotiation Option May 2019

 To satisfy the requirement of the previous paragraph, all TEPs SHOULD
 support a normal mode of operation that avoids data in SYN-only
 segments. An exception is TEPs intended to be disabled by default.

4.8. Negotiation Transcript

 To defend against attacks on encryption negotiation itself, a TEP
 MUST, with high probability, fail to establish a working connection
 between two ENO-compliant hosts when SYN-form ENO options have been
 altered in transit. (Of course, in the absence of endpoint
 authentication, two compliant hosts can each still be connected to a
 man-in-the-middle attacker.) To detect SYN-form ENO option
 tampering, TEPs MUST reference a transcript of TCP-ENO’s negotiation.

 TCP-ENO defines its negotiation transcript as a packed data structure
 consisting of two TCP-ENO options exactly as they appeared in the TCP
 header (including the TCP option kind and TCP option length byte as
 illustrated in Figure 1). The transcript is constructed from the
 following, in order:

 1. The TCP-ENO option in host A’s SYN segment, including the kind
 and length bytes

 2. The TCP-ENO option in host B’s SYN segment, including the kind
 and length bytes

 Note that because the ENO options in the transcript contain length
 bytes as specified by TCP, the transcript unambiguously delimits A’s
 and B’s ENO options.

5. Requirements for TEPs

 TCP-ENO affords TEP specifications a large amount of design
 flexibility. However, to abstract TEP differences away from
 applications requires fitting them all into a coherent framework. As
 such, any TEP claiming an ENO TEP identifier MUST satisfy the
 following normative list of properties:

 o TEPs MUST protect TCP data streams with authenticated encryption.
 (Note that "authenticated encryption" refers only to the form of
 encryption, such as an Authenticated Encryption with Associated
 Data (AEAD) algorithm meeting the requirements of [RFC5116]; it
 does not imply endpoint authentication.)

 o TEPs MUST define a session ID whose value identifies the TCP
 connection and, with overwhelming probability, is unique over all
 time if either host correctly obeys the TEP. Section 5.1
 describes the requirements of the session ID in more detail.

Bittau, et al. Experimental [Page 16]

RFC 8547 TCP Encryption Negotiation Option May 2019

 o TEPs MUST NOT make data confidentiality dependent on encryption
 algorithms with a security strength [NIST-SP-800-57] of less than
 120 bits. The number 120 was chosen to accommodate ciphers with
 128-bit keys that lose a few bits of security either to
 particularities of the key schedule or to highly theoretical and
 unrealistic attacks.

 o TEPs MUST NOT allow the negotiation of null cipher suites, even
 for debugging purposes. (Implementations MAY support debugging
 modes that allow applications to extract their own session keys.)

 o TEPs MUST guarantee the confidentiality of TCP streams without
 assuming the security of any long-lived secrets. Implementations
 SHOULD provide forward secrecy soon after the close of a TCP
 connection and SHOULD therefore bound the delay between closing a
 connection and erasing any relevant cryptographic secrets.
 (Exceptions to forward secrecy are permissible only at the
 implementation level and only in response to hardware or
 architectural constraints -- e.g., storage that cannot be securely
 erased.)

 o TEPs MUST protect and authenticate the end-of-file marker conveyed
 by TCP’s FIN flag. In particular, a receiver MUST, with
 overwhelming probability, detect a FIN flag that was set or
 cleared in transit and does not match the sender’s intent. A TEP
 MAY discard a segment with such a corrupted FIN bit or MAY abort
 the connection in response to such a segment. However, any such
 abort MUST raise an error condition distinct from an authentic
 end-of-file condition.

 o TEPs MUST prevent corrupted packets from causing urgent data to be
 delivered when none has been sent. There are several ways to do
 so. For instance, a TEP MAY cryptographically protect the URG
 flag and urgent pointer alongside ordinary payload data.
 Alternatively, a TEP MAY disable urgent data functionality by
 clearing the URG flag on all received segments and returning
 errors in response to sender-side urgent-data API calls.
 Implementations SHOULD avoid negotiating TEPs that disable urgent
 data by default. The exception is when applications and protocols
 are known never to send urgent data.

Bittau, et al. Experimental [Page 17]

RFC 8547 TCP Encryption Negotiation Option May 2019

5.1. Session IDs

 Each TEP MUST define a session ID that is computable by both
 endpoints and uniquely identifies each encrypted TCP connection.
 Implementations MUST expose the session ID to applications via an API
 extension. The API extension MUST return an error when no session ID
 is available because ENO has failed to negotiate encryption or
 because no connection is yet established. Applications that are
 aware of TCP-ENO SHOULD, when practical, authenticate the TCP
 endpoints by incorporating the values of the session ID and TCP-ENO
 role (A or B) into higher-layer authentication mechanisms.

 In order to avoid replay attacks and prevent authenticated session
 IDs from being used out of context, session IDs MUST be unique over
 all time with high probability. This uniqueness property MUST hold
 even if one end of a connection maliciously manipulates the protocol
 in an effort to create duplicate session IDs. In other words, it
 MUST be infeasible for a host, even by violating the TEP
 specification, to establish two TCP connections with the same session
 ID to remote hosts properly implementing the TEP.

 To prevent session IDs from being confused across TEPs, all session
 IDs begin with the negotiated TEP identifier -- that is, the last
 valid TEP identifier in host B’s SYN segment. Furthermore, this
 initial byte has bit "v" set to the same value that accompanied the
 negotiated TEP identifier in B’s SYN segment. However, only this
 single byte is included, not any suboption data. Figure 8 shows the
 resulting format. This format is designed for TEPs to compute unique
 identifiers; it is not intended for application authors to pick apart
 session IDs. Applications SHOULD treat session IDs as monolithic
 opaque values and SHOULD NOT discard the first byte to shorten
 identifiers. (An exception is for non-security-relevant purposes,
 such as gathering statistics about negotiated TEPs.)

 byte 0 1 2 N-1 N
 +-----+------------...------------+
 | sub-| collision-resistant hash |
 | opt | of connection information |
 +-----+------------...------------+

 Figure 8: Format of a Session ID

 Though TEP specifications retain considerable flexibility in their
 definitions of the session ID, all session IDs MUST meet the
 following normative list of requirements:

 o The session ID MUST be at least 33 bytes (including the one-byte
 suboption), though TEPs MAY choose longer session IDs.

Bittau, et al. Experimental [Page 18]

RFC 8547 TCP Encryption Negotiation Option May 2019

 o The session ID MUST depend, in a collision-resistant way, on all
 of the following (meaning it is computationally infeasible to
 produce collisions of the session ID derivation function unless
 all of the following quantities are identical):

 * Fresh data contributed by both sides of the connection

 * Any public keys, public Diffie-Hellman parameters, or other
 public asymmetric cryptographic parameters that are employed by
 the TEP and have corresponding private data that is known by
 only one side of the connection

 * The negotiation transcript specified in Section 4.8

 o Unless and until applications disclose information about the
 session ID, all but the first byte MUST be computationally
 indistinguishable from random bytes to a network eavesdropper.

 o Applications MAY choose to make session IDs public. Therefore,
 TEPs MUST NOT place any confidential data in the session ID (such
 as data permitting the derivation of session keys).

6. Examples

 This subsection illustrates the TCP-ENO handshake with a few non-
 normative examples.

 (1) A -> B: SYN ENO<X,Y>
 (2) B -> A: SYN-ACK ENO<b=1,Y>
 (3) A -> B: ACK ENO<>
 [rest of connection encrypted according to TEP Y]

 Figure 9: Three-Way Handshake with Successful TCP-ENO Negotiation

 Figure 9 shows a three-way handshake with a successful TCP-ENO
 negotiation. Host A includes two ENO suboptions with TEP identifiers
 X and Y. Host A does not include an explicit global suboption, which
 means it has an implicit global suboption 0x00 conveying passive role
 bit b = 0. The two sides agree to follow the TEP identified by
 suboption Y.

 (1) A -> B: SYN ENO<X,Y>
 (2) B -> A: SYN-ACK
 (3) A -> B: ACK
 [rest of connection unencrypted legacy TCP]

 Figure 10: Three-Way Handshake with Failed TCP-ENO Negotiation

Bittau, et al. Experimental [Page 19]

RFC 8547 TCP Encryption Negotiation Option May 2019

 Figure 10 shows a failed TCP-ENO negotiation. The active opener (A)
 indicates support for TEPs corresponding to suboptions X and Y.
 Unfortunately, at this point, one of several things occurs:

 1. The passive opener (B) does not support TCP-ENO.

 2. B supports TCP-ENO but supports neither of the TEPs X and Y, and
 so it does not reply with an ENO option.

 3. B supports TCP-ENO but has the connection configured in mandatory
 application-aware mode and thus disables ENO because A’s SYN
 segment contains an implicit global suboption with a = 0.

 4. The network stripped the ENO option out of A’s SYN segment, so B
 did not receive it.

 Whichever of the above applies, the connection transparently falls
 back to unencrypted TCP.

 (1) A -> B: SYN ENO<X,Y>
 (2) B -> A: SYN-ACK ENO<b=1,X> [ENO stripped by middlebox]
 (3) A -> B: ACK
 [rest of connection unencrypted legacy TCP]

 Figure 11: Failed TCP-ENO Negotiation Because of Option Stripping

 Figure 11 Shows another handshake with a failed encryption
 negotiation. In this case, the passive opener (B) receives an ENO
 option from A and replies. However, the reverse network path from B
 to A strips ENO options. Therefore, A does not receive an ENO option
 from B, it disables ENO, and it does not include a non-SYN-form ENO
 option in segment 3 when ACKing B’s SYN. Had A not disabled
 encryption, Section 4.6 would have required it to include a non-SYN-
 form ENO option in segment 3. The omission of this option informs B
 that encryption negotiation has failed, after which the two hosts
 proceed with unencrypted TCP.

 (1) A -> B: SYN ENO<Y,X>
 (2) B -> A: SYN ENO<b=1,X,Y,Z>
 (3) A -> B: SYN-ACK ENO<Y,X>
 (4) B -> A: SYN-ACK ENO<b=1,X,Y,Z>
 [rest of connection encrypted according to TEP Y]

 Figure 12: Simultaneous Open with Successful TCP-ENO Negotiation

 Figure 12 shows a successful TCP-ENO negotiation with simultaneous
 open. Here, the first four segments contain a SYN-form ENO option,
 as each side sends both a SYN-only and a SYN-ACK segment. The ENO

Bittau, et al. Experimental [Page 20]

RFC 8547 TCP Encryption Negotiation Option May 2019

 option in each host’s SYN-ACK is identical to the ENO option in its
 SYN-only segment, as otherwise, connection establishment could not
 recover from the loss of a SYN segment. The last valid TEP in host
 B’s ENO option is Y, so Y is the negotiated TEP.

7. Future Developments

 TCP-ENO is designed to capitalize on future developments that could
 alter trade-offs and change the best approach to TCP-level encryption
 (beyond introducing new cipher suites). By way of example, we
 discuss a few such possible developments.

 Various proposals exist to increase the maximum space for options in
 the TCP header. These proposals are highly experimental --
 particularly those that apply to SYN segments. Therefore, future
 TEPs are unlikely to benefit from extended SYN option space. In the
 unlikely event that SYN option space is one day extended, however,
 future TEPs could benefit by embedding key agreement messages
 directly in SYN segments. Under such usage, the 32-byte limit on
 length bytes could prove insufficient. This document intentionally
 aborts TCP-ENO if a length byte is followed by an octet in the range
 0x00-0x9f. If necessary, a future update to this document can define
 a format for larger suboptions by assigning meaning to such currently
 undefined byte sequences.

 New revisions to socket interfaces [RFC3493] could involve library
 calls that simultaneously have access to hostname information and an
 underlying TCP connection. Such an API enables the possibility of
 authenticating servers transparently to the application, particularly
 in conjunction with technologies such as DNS-Based Authentication of
 Named Entities (DANE) [RFC6394]. An update to TCP-ENO can adopt one
 of the "z" bits in the global suboption to negotiate the use of an
 endpoint authentication protocol before any application use of the
 TCP connection. Over time, the consequences of failed or missing
 endpoint authentication can gradually be increased from issuing log
 messages to aborting the connection if some as yet unspecified DNS
 record indicates authentication is mandatory. Through shared library
 updates, such endpoint authentication can potentially be added
 transparently to legacy applications without recompilation.

 TLS can currently only be added to legacy applications whose
 protocols accommodate a STARTTLS command or equivalent. TCP-ENO,
 because it provides out-of-band signaling, opens the possibility of
 future TLS revisions being generically applicable to any TCP
 application.

Bittau, et al. Experimental [Page 21]

RFC 8547 TCP Encryption Negotiation Option May 2019

8. Design Rationale

 This section describes some of the design rationale behind TCP-ENO.

8.1. Handshake Robustness

 Incremental deployment of TCP-ENO depends critically on failure cases
 devolving to unencrypted TCP rather than causing the entire TCP
 connection to fail.

 Because a network path might drop ENO options in one direction only,
 a host needs to know not just that the peer supports encryption, but
 that the peer has received an ENO option. To this end, ENO disables
 encryption unless it receives an ACK segment bearing an ENO option.
 To stay robust in the face of dropped segments, hosts continue to
 include non-SYN-form ENO options in segments until the point that
 they have received a non-SYN segment from the other side.

 One particularly pernicious middlebox behavior found in the wild is
 load balancers that echo unknown TCP options found in SYN segments
 back to an active opener. The passive role bit "b" in global
 suboptions ensures encryption will always be disabled under such
 circumstances, as sending back a verbatim copy of an active opener’s
 SYN-form ENO option always causes role negotiation to fail.

8.2. Suboption Data

 TEPs can employ suboption data for session caching, cipher suite
 negotiation, or other purposes. However, TCP currently limits total
 option space consumed by all options to only 40 bytes, making it
 impractical to have many suboptions with data. For this reason, ENO
 optimizes the case of a single suboption with data by inferring the
 length of the last suboption from the TCP option length. Doing so
 saves one byte.

8.3. Passive Role Bit

 TCP-ENO, TEPs, and applications all have asymmetries that require an
 unambiguous way to identify one of the two connection endpoints. As
 an example, Section 4.8 specifies that host A’s ENO option comes
 before host B’s in the negotiation transcript. As another example,
 an application might need to authenticate one end of a TCP connection
 with a digital signature. To ensure the signed message cannot be
 interpreted out of context to authenticate the other end, the signed
 message would need to include both the session ID and the local role,
 A or B.

Bittau, et al. Experimental [Page 22]

RFC 8547 TCP Encryption Negotiation Option May 2019

 A normal TCP three-way handshake involves one active and one passive
 opener. This asymmetry is captured by the default configuration of
 the "b" bit in the global suboption. With simultaneous open, both
 hosts are active openers, so TCP-ENO requires that one host
 explicitly configure b = 1. An alternate design might automatically
 break the symmetry to avoid this need for explicit configuration.
 However, all such designs we considered either lacked robustness or
 consumed precious bytes of SYN option space even in the absence of
 simultaneous open. (One complicating factor is that TCP does not
 know it is participating in a simultaneous open until after it has
 sent a SYN segment. Moreover, with packet loss, one host might never
 learn it has participated in a simultaneous open.)

8.4. Application-Aware Bit

 Applications developed before TCP-ENO can potentially evolve to take
 advantage of TCP-level encryption. For instance, an application
 designed to run only on trusted networks might leverage TCP-ENO to
 run on untrusted networks, but, importantly, needs to authenticate
 endpoints and session IDs to do so. In addition to user-visible
 changes such as requesting credentials, this kind of authentication
 functionality requires application-layer protocol changes. Some
 protocols can accommodate the requisite changes -- for instance, by
 introducing a new verb analogous to STARTTLS, while others cannot do
 so in a backwards-compatible manner.

 The application-aware bit "a" in the global suboption provides a
 means of incrementally deploying enhancements specific to TCP-ENO to
 application-layer protocols that would otherwise lack the necessary
 extensibility. Software implementing the enhancement always sets a =
 1 in its own global suboption, but only activates the new behavior
 when the other end of the connection also sets a = 1.

 A related issue is that an application might leverage TCP-ENO as a
 replacement for legacy application-layer encryption. In this
 scenario, if both endpoints support TCP-ENO, then application-layer
 encryption can be disabled in favor of simply authenticating the TCP-
 ENO session ID. On the other hand, if one endpoint is not aware of
 the new mode of operation specific to TCP-ENO, there is little
 benefit to performing redundant encryption at the TCP layer; data is
 already encrypted once at the application layer, and authentication
 only has meaning with respect to this application-layer encryption.
 The mandatory application-aware mode lets applications avoid double
 encryption in this case: the mode sets a = 1 in the local host’s
 global suboption but also disables TCP-ENO entirely in the event that
 the other side has not also set a = 1.

Bittau, et al. Experimental [Page 23]

RFC 8547 TCP Encryption Negotiation Option May 2019

 Note that the application-aware bit is not needed by applications
 that already support adequate higher-layer encryption such as those
 provided by TLS [RFC8446] or SSH [RFC4253]. To avoid double
 encryption in such cases, it suffices to disable TCP-ENO by
 configuration on any ports with known secure protocols.

8.5. Use of ENO Option Kind by TEPs

 This document does not specify the use of ENO options beyond the
 first few segments of a connection. Moreover, it does not specify
 the content of ENO options in non-SYN segments, only their presence.
 As a result, any use of option kind 69 after the SYN exchange does
 not conflict with this document. In addition, because ENO guarantees
 at most one negotiated TEP per connection, TEPs will not conflict
 with one another or ENO if they use option kind 69 for out-of-band
 signaling in non-SYN segments.

8.6. Unpredictability of Session IDs

 Section 5.1 specifies that all but the first (TEP identifier) byte of
 a session ID MUST be computationally indistinguishable from random
 bytes to a network eavesdropper. This property is easy to ensure
 under standard assumptions about cryptographic hash functions. Such
 unpredictability helps security in a broad range of cases. For
 example, it makes it possible for applications to use a session ID
 from one connection to authenticate a session ID from another,
 thereby tying the two connections together. It furthermore helps
 ensure that TEPs do not trivially subvert the 33-byte minimum-length
 requirement for session IDs by padding shorter session IDs with
 zeros.

9. Experiments

 This document has experimental status because TCP-ENO’s viability
 depends on middlebox behavior that can only be determined a
 posteriori. Specifically, we need to determine to what extent
 middleboxes will permit the use of TCP-ENO. Once TCP-ENO is
 deployed, we will be in a better position to gather data on two types
 of failure:

 1. Middleboxes downgrading TCP-ENO connections to unencrypted TCP.
 This can happen if middleboxes strip unknown TCP options or if
 they terminate TCP connections and relay data back and forth.

 2. Middleboxes causing TCP-ENO connections to fail completely. This
 can happen if middleboxes perform deep packet inspection and
 start dropping segments that unexpectedly contain ciphertext, or

Bittau, et al. Experimental [Page 24]

RFC 8547 TCP Encryption Negotiation Option May 2019

 if middleboxes strip ENO options from non-SYN segments after
 allowing them in SYN segments.

 Type-1 failures are tolerable since TCP-ENO is designed for
 incremental deployment anyway. Type-2 failures are more problematic,
 and, if prevalent, will require the development of techniques to
 avoid and recover from such failures. The experiment will succeed so
 long as we can avoid type-2 failures and find sufficient use cases
 that avoid type-1 failures (possibly along with a gradual path for
 further reducing type-1 failures).

 In addition to the question of basic viability, deploying TCP-ENO
 will allow us to identify and address other potential corner cases or
 relaxations. For example, does the slight decrease in effective TCP
 segment payload pose a problem to any applications, which would
 require restrictions on how TEPs interpret socket buffer sizes?
 Conversely, can we relax the prohibition on default TEPs that disable
 urgent data?

 A final important metric, related to the pace of deployment and
 incidence of type-1 failures, will be the extent to which
 applications adopt enhancements specific to TCP-ENO for endpoint
 authentication.

10. Security Considerations

 An obvious use case for TCP-ENO is opportunistic encryption, e.g.,
 encrypting some connections, but only where supported and without any
 kind of endpoint authentication. Opportunistic encryption provides a
 property known as "opportunistic security" [RFC7435], which protects
 against undetectable large-scale eavesdropping. However, it does not
 protect against detectable large-scale eavesdropping (for instance,
 if ISPs terminate TCP connections and proxy them or simply downgrade
 connections to unencrypted). Moreover, opportunistic encryption
 emphatically does not protect against targeted attacks that employ
 trivial spoofing to redirect a specific high-value connection to a
 man-in-the-middle attacker. Hence, the mere presence of TEP-
 indicated encryption does not suffice for an application to represent
 a connection as secure to the user.

 Achieving stronger security with TCP-ENO requires verifying session
 IDs. Any application relying on ENO for communication security MUST
 incorporate session IDs into its endpoint authentication. By way of
 example, an authentication mechanism based on keyed digests (such as
 Digest Access Authentication [RFC7616]) can be extended to include
 the role and session ID in the input of the keyed digest.
 Authentication mechanisms with a notion of channel binding (such as
 Salted Challenge Response Authentication Mechanism (SCRAM) [RFC5802])

Bittau, et al. Experimental [Page 25]

RFC 8547 TCP Encryption Negotiation Option May 2019

 can be updated to derive a channel binding from the session ID.
 Higher-layer protocols MAY use the application-aware "a" bit to
 negotiate the inclusion of session IDs in authentication even when
 there is no in-band way to carry out such a negotiation. Because
 there is only one "a" bit, however, a protocol extension that
 specifies use of the "a" bit will likely require a built-in
 versioning or negotiation mechanism to accommodate crypto agility and
 future updates.

 Because TCP-ENO enables multiple different TEPs to coexist, security
 could potentially be only as strong as the weakest available TEP. In
 particular, if TEPs use a weak hash function to incorporate the TCP-
 ENO transcript into session IDs, then an attacker can undetectably
 tamper with ENO options to force negotiation of a deprecated and
 vulnerable TEP. To avoid such problems, security reviewers of new
 TEPs SHOULD pay particular attention to the collision resistance of
 hash functions used for session IDs (including the state of
 cryptanalysis and research into possible attacks). Even if other
 parts of a TEP rely on more esoteric cryptography that turns out to
 be vulnerable, it ought nonetheless to be intractable for an attacker
 to induce identical session IDs at both ends after tampering with ENO
 contents in SYN segments.

 Implementations MUST NOT send ENO options unless they have access to
 an adequate source of randomness [RFC4086]. Without secret
 unpredictable data at both ends of a connection, it is impossible for
 TEPs to achieve confidentiality and forward secrecy. Because systems
 typically have very little entropy on bootup, implementations might
 need to disable TCP-ENO until after system initialization.

 With a regular three-way handshake (meaning no simultaneous open),
 the non-SYN-form ENO option in an active opener’s first ACK segment
 MAY contain N > 0 bytes of TEP-specific data, as shown in Figure 3.
 Such data is not part of the TCP-ENO negotiation transcript and
 therefore MUST be separately authenticated by the TEP.

Bittau, et al. Experimental [Page 26]

RFC 8547 TCP Encryption Negotiation Option May 2019

11. IANA Considerations

 This document defines a new TCP option kind for TCP-ENO, assigned a
 value of 69 from the TCP option space. This value is defined as:

 +------+--------+----------------------------------+-----------+
 | Kind | Length | Meaning | Reference |
 +------+--------+----------------------------------+-----------+
 | 69 | N | Encryption Negotiation (TCP-ENO) | RFC 8547 |
 +------+--------+----------------------------------+-----------+

 Table 2: TCP Option Kind Numbers

 Early implementations of TCP-ENO and a predecessor TCP encryption
 protocol made unauthorized use of TCP option kind 69. These earlier
 uses of option 69 are not compatible with TCP-ENO and could disable
 encryption or suffer complete connection failure when interoperating
 with TCP-ENO-compliant hosts. Hence, legacy use of option 69 MUST be
 disabled on hosts that cannot be upgraded to TCP-ENO. More recent
 implementations used experimental option 253 per [RFC6994] with
 16-bit ExID 0x454E. Current and new implementations of TCP-ENO MUST
 use option 69, while any legacy implementations MUST migrate to
 option 69. Note in particular that Section 4.1 requires at most one
 SYN-form ENO option per segment, which means hosts MUST NOT include
 both option 69 and option 253 with ExID 0x454E in the same TCP
 segment.

 This document defines a 7-bit glt field in the range of 0x20-0x7f.
 IANA has created and will maintain a new registry titled "TCP
 Encryption Protocol Identifiers" under the "Transmission Control
 Protocol (TCP) Parameters" registry. Table 3 shows the initial
 contents of this registry. This document allocates one TEP
 identifier (0x20) for experimental use. In case the TEP identifier
 space proves too small, identifiers in the range 0x70-0x7f are
 reserved to enable a future update to this document to define
 extended identifier values. Future assignments are to be made upon
 satisfying either of two policies defined in [RFC8126]: "IETF Review"
 or (for non-IETF stream specifications) "Expert Review with RFC
 Required". IANA will furthermore provide early allocation [RFC7120]
 to facilitate testing before RFCs are finalized.

Bittau, et al. Experimental [Page 27]

RFC 8547 TCP Encryption Negotiation Option May 2019

 +-----------+------------------------------+-----------+
 | Value | Meaning | Reference |
 +-----------+------------------------------+-----------+
 | 0x20 | Experimental Use | RFC 8547 |
 | 0x70-0x7f | Reserved for extended values | RFC 8547 |
 +-----------+------------------------------+-----------+

 Table 3: TCP Encryption Protocol Identifiers

12. References

12.1. Normative References

 [NIST-SP-800-57]
 National Institute of Standards and Technology,
 "Recommendation for Key Management - Part 1: General",
 NIST Special Publication, 800-57, Revision 4,
 DOI 10.6028/NIST.SP.800-57pt1r4, January 2016,
 <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
 NIST.SP.800-57pt1r4.pdf>.

 [RFC793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC7120] Cotton, M., "Early IANA Allocation of Standards Track Code
 Points", BCP 100, RFC 7120, DOI 10.17487/RFC7120, January
 2014, <https://www.rfc-editor.org/info/rfc7120>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bittau, et al. Experimental [Page 28]

RFC 8547 TCP Encryption Negotiation Option May 2019

12.2. Informative References

 [RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6",
 RFC 3493, DOI 10.17487/RFC3493, February 2003,
 <https://www.rfc-editor.org/info/rfc3493>.

 [RFC4253] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
 January 2006, <https://www.rfc-editor.org/info/rfc4253>.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <https://www.rfc-editor.org/info/rfc4987>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [RFC5382] Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and P.
 Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142,
 RFC 5382, DOI 10.17487/RFC5382, October 2008,
 <https://www.rfc-editor.org/info/rfc5382>.

 [RFC5802] Newman, C., Menon-Sen, A., Melnikov, A., and N. Williams,
 "Salted Challenge Response Authentication Mechanism
 (SCRAM) SASL and GSS-API Mechanisms", RFC 5802,
 DOI 10.17487/RFC5802, July 2010,
 <https://www.rfc-editor.org/info/rfc5802>.

 [RFC6394] Barnes, R., "Use Cases and Requirements for DNS-Based
 Authentication of Named Entities (DANE)", RFC 6394,
 DOI 10.17487/RFC6394, October 2011,
 <https://www.rfc-editor.org/info/rfc6394>.

 [RFC6994] Touch, J., "Shared Use of Experimental TCP Options",
 RFC 6994, DOI 10.17487/RFC6994, August 2013,
 <https://www.rfc-editor.org/info/rfc6994>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC7435] Dukhovni, V., "Opportunistic Security: Some Protection
 Most of the Time", RFC 7435, DOI 10.17487/RFC7435,
 December 2014, <https://www.rfc-editor.org/info/rfc7435>.

Bittau, et al. Experimental [Page 29]

RFC 8547 TCP Encryption Negotiation Option May 2019

 [RFC7616] Shekh-Yusef, R., Ed., Ahrens, D., and S. Bremer, "HTTP
 Digest Access Authentication", RFC 7616,
 DOI 10.17487/RFC7616, September 2015,
 <https://www.rfc-editor.org/info/rfc7616>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Acknowledgments

 We are grateful for contributions, help, discussions, and feedback
 from the IETF and its TCPINC Working Group, including Marcelo
 Bagnulo, David Black, Bob Briscoe, Benoit Claise, Spencer Dawkins,
 Jake Holland, Jana Iyengar, Tero Kivinen, Mirja Kuhlewind, Watson
 Ladd, Kathleen Moriarty, Yoav Nir, Christoph Paasch, Eric Rescorla,
 Adam Roach, Kyle Rose, Michael Scharf, Joe Touch, and Eric Vyncke.
 This work was partially funded by DARPA CRASH and the Stanford Secure
 Internet of Things Project.

Contributors

 Dan Boneh was a coauthor of the draft that became this document.

Bittau, et al. Experimental [Page 30]

RFC 8547 TCP Encryption Negotiation Option May 2019

Authors’ Addresses

 Andrea Bittau
 Google
 345 Spear Street
 San Francisco, CA 94105
 United States of America

 Email: bittau@google.com

 Daniel B. Giffin
 Stanford University
 353 Serra Mall, Room 288
 Stanford, CA 94305
 United States of America

 Email: daniel@beech-grove.net

 Mark Handley
 University College London
 Gower St.
 London WC1E 6BT
 United Kingdom

 Email: M.Handley@cs.ucl.ac.uk

 David Mazieres
 Stanford University
 353 Serra Mall, Room 290
 Stanford, CA 94305
 United States of America

 Email: dm@uun.org

 Eric W. Smith
 Kestrel Institute
 3260 Hillview Avenue
 Palo Alto, CA 94304
 United States of America

 Email: eric.smith@kestrel.edu

Bittau, et al. Experimental [Page 31]

