
Internet Engineering Task Force (IETF) O. Muravskiy

Request for Comments: 8488 RIPE NCC

Category: Informational T. Bruijnzeels

ISSN: 2070-1721 NLnet Labs

 December 2018

 RIPE NCC’s Implementation of Resource Public Key Infrastructure (RPKI)

 Certificate Tree Validation

Abstract

 This document describes an approach to validating the content of the

 Resource Public Key Infrastructure (RPKI) certificate tree, as it is

 implemented in the RIPE NCC RPKI Validator. This approach is

 independent of a particular object retrieval mechanism, which allows

 it to be used with repositories available over the rsync protocol,

 the RPKI Repository Delta Protocol (RRDP), and repositories that use

 a mix of both.

Status of This Memo

 This document is not an Internet Standards Track specification; it is

 published for informational purposes.

 This document is a product of the Internet Engineering Task Force

 (IETF). It represents the consensus of the IETF community. It has

 received public review and has been approved for publication by the

 Internet Engineering Steering Group (IESG). Not all documents

 approved by the IESG are candidates for any level of Internet

 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,

 and how to provide feedback on it may be obtained at

 https://www.rfc-editor.org/info/rfc8488.

Muravskiy & Bruijnzeels Informational [Page 1]

RFC 8488 RPKI Tree Validation December 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Muravskiy & Bruijnzeels Informational [Page 2]

RFC 8488 RPKI Tree Validation December 2018

Table of Contents

 1. Introduction . 4

 2. General Considerations 4

 2.1. Hash Comparisons . 4

 2.2. Discovery of RPKI Objects Issued by a CA 5

 2.3. Manifest Entries versus Repository Content 5

 3. Top-Down Validation of a Single Trust Anchor Certificate Tree 6

 3.1. Fetching the Trust Anchor Certificate Using the Trust

 Anchor Locator . 6

 3.2. CA Certificate Validation 7

 3.2.1. Finding the Most Recent Valid Manifest and CRL . . . 8

 3.2.2. Validating Manifest Entries 9

 3.3. Object Store Cleanup 10

 4. Remote Objects Fetcher 11

 4.1. Fetcher Operations 11

 4.1.1. Fetch Repository Objects 12

 4.1.2. Fetch Single Repository Object 12

 5. Local Object Store . 12

 5.1. Store Operations . 12

 5.1.1. Store Repository Object 12

 5.1.2. Get Objects by Hash 12

 5.1.3. Get Certificate Objects by URI 13

 5.1.4. Get Manifest Objects by AKI 13

 5.1.5. Delete Objects for a URI 13

 5.1.6. Delete Outdated Objects 13

 5.1.7. Update Object’s Validation Time 13

 6. IANA Considerations . 13

 7. Security Considerations 13

 7.1. Hash Collisions . 13

 7.2. Algorithm Agility . 13

 7.3. Mismatch between the Expected and Actual Location of an

 Object in the Repository 14

 7.4. Manifest Content versus Publication Point Content 14

 7.5. Possible Denial of Service 15

 8. References . 15

 8.1. Normative References 15

 8.2. Informative References 16

 Acknowledgements . 16

 Authors’ Addresses . 17

Muravskiy & Bruijnzeels Informational [Page 3]

RFC 8488 RPKI Tree Validation December 2018

1. Introduction

 This document describes how the RIPE NCC RPKI Validator version 2.25

 has been implemented. Source code for this software can be found at

 [rpki-validator]. The purpose of this document is to provide

 transparency to users of (and contributors to) this software tool.

 In order to use information published in RPKI repositories, Relying

 Parties (RPs) need to retrieve and validate the content of

 certificates, Certificate Revocation Lists (CRLs), and other RPKI

 signed objects. To validate a particular object, one must ensure

 that all certificates in the certificate chain up to the Trust Anchor

 (TA) are valid. Therefore, the validation of a certificate tree is

 performed top-down, starting from the TA certificate and descending

 the certificate chain, validating every encountered certificate and

 its products. The result of this process is a list of all

 encountered RPKI objects with a validity status attached to each of

 them. These results may later be used by an RP in making routing

 decisions, etc.

 Traditionally, RPKI data is made available to RPs through the

 repositories [RFC6481] accessible over the rsync protocol [rsync].

 RPs are advised to keep a local copy of repository data and perform

 regular updates of this copy from the repository (see Section 5 of

 [RFC6481]). The RRDP [RFC8182] introduces another method to fetch

 repository data and keep the local copy up to date with the

 repository.

 This document describes how the RIPE NCC RPKI Validator discovers

 RPKI objects to download, builds certificate paths, and validates

 RPKI objects, independently of what repository access protocol is

 used. To achieve this, it puts downloaded RPKI objects in an object

 store, where each RPKI object can be found by its URI, the hash of

 its content, the value of its Authority Key Identifier (AKI)

 extension, or a combination of these. It also keeps track of the

 download and validation time for every object, to decide which

 locally stored objects are not used in the RPKI tree validation and

 could be removed.

2. General Considerations

2.1. Hash Comparisons

 This algorithm relies on the collision resistance properties of the

 hash algorithm (defined in [RFC7935]) to compute the hash of

 repository objects. It assumes that any two objects for which the

 hash value is the same are identical.

Muravskiy & Bruijnzeels Informational [Page 4]

RFC 8488 RPKI Tree Validation December 2018

 The hash comparison is used when matching objects in the repository

 with entries on the manifest (Section 3.2.2) and when looking up

 objects in the object store (Section 5).

2.2. Discovery of RPKI Objects Issued by a CA

 There are several possible ways of discovering potential products of

 a Certification Authority (CA) certificate: one could 1) use all

 objects located in a repository directory designated as a publication

 point for a CA, 2) only use objects mentioned on the manifest located

 at that publication point (see Section 6 of [RFC6486]), or 3) use all

 known repository objects whose AKI extension matches the Subject Key

 Identifier (SKI) extension (Section 4.2.1 of [RFC5280]) of a CA

 certificate.

 For publication points whose content is consistent with the manifest

 and issuing certificate, all of these approaches should produce the

 same result. For inconsistent publication points, the results might

 be different. Section 6 of [RFC6486] leaves the decision on how to

 deal with inconsistencies to a local policy.

 The implementation described here does not rely on content of

 repository directories but uses the Authority Key Identifier (AKI)

 extension of a manifest and a CRL to find in an object store

 (Section 5) a manifest and a CRL issued by a particular CA (see

 Section 3.2.1). It further uses the hashes of the manifest’s

 fileList entries (Section 4.2.1 of [RFC6486]) to find other objects

 issued by the CA, as described in Section 3.2.2.

2.3. Manifest Entries versus Repository Content

 Since the current set of RPKI standards (see [RFC6481], [RFC6486],

 and [RFC6487]) requires use of the manifest [RFC6486] to describe the

 content of a publication point, this implementation requires strict

 consistency between the publication point content and manifest

 content. (This is a more stringent requirement than established in

 [RFC6486].) Therefore, it will not process objects that are found in

 the publication point but do not match any of the entries of that

 publication point’s manifest (see Section 3.2.2). It will also issue

 warnings for all found mismatches, so that the responsible operators

 could be made aware of inconsistencies and fix them.

Muravskiy & Bruijnzeels Informational [Page 5]

RFC 8488 RPKI Tree Validation December 2018

3. Top-Down Validation of a Single Trust Anchor Certificate Tree

 When several Trust Anchors are configured, validation of their

 corresponding certificate trees is performed concurrently and

 independently from each other. For every configured Trust Anchor,

 the following steps are performed:

 1. The validation of a TA certificate tree starts from its TA

 certificate. To retrieve the TA certificate, a Trust Anchor

 Locator (TAL) object is used, as described in Section 3.1.

 2. If the TA certificate is retrieved, it is validated according to

 Section 7 of [RFC6487] and Section 2.2 of [RFC7730]. Otherwise,

 the validation of the certificate tree is aborted and an error is

 issued.

 3. If the TA certificate is valid, then all its subordinate objects

 are validated as described in Section 3.2. Otherwise, the

 validation of the certificate tree is aborted and an error is

 issued.

 4. For each repository object that was validated during this

 validation run, the validation timestamp is updated in the object

 store (see Section 5.1.7).

 5. Outdated objects are removed from the store as described in

 Section 3.3. This completes the validation of the TA certificate

 tree.

3.1. Fetching the Trust Anchor Certificate Using the Trust Anchor

 Locator

 The following steps are performed in order to fetch a Trust Anchor

 certificate:

 1. (Optional) If the TAL contains a prefetch.uris field, pass the

 URIs contained in that field to the fetcher (see Section 4.1.1).

 (This field is a non-standard addition to the TAL format. It

 helps with fetching non-hierarchical rsync repositories more

 efficiently.)

 2. Extract the first TA certificate URI from the TAL’s URI section

 (see Section 2.1 of [RFC7730]) and pass it to the object fetcher

 (Section 4.1.2). If the fetcher returns an error, repeat this

 step for every URI in the URI section until no error is

 encountered or no more URIs are left.

Muravskiy & Bruijnzeels Informational [Page 6]

RFC 8488 RPKI Tree Validation December 2018

 3. From the object store (see Section 5.1.3), retrieve all

 certificate objects for which the URI matches the URI extracted

 from the TAL in the previous step and the public key matches the

 subjectPublicKeyInfo extension of the TAL (see Section 2.1 of

 [RFC7730]).

 4. If no such objects are found or if more than one such objects are

 found, issue an error and abort the certificate tree validation

 process with an error. Otherwise, use the single found object as

 the TA certificate.

3.2. CA Certificate Validation

 The following steps describe the validation of a single CA resource

 certificate:

 1. If both the caRepository (Section 4.8.8.1 of [RFC6487]) and the

 id-ad-rpkiNotify (Section 3.2 of [RFC8182]) instances of an

 accessMethod are present in the Subject Information Access

 extension of the CA certificate, use a local policy to determine

 which pointer to use. Extract the URI from the selected pointer

 and pass it to the object fetcher (that will then fetch all

 objects available from that repository; see Section 4.1.1).

 2. For the CA certificate, find the current manifest and certificate

 revocation list (CRL) using the procedure described in

 Section 3.2.1. If no such manifest and CRL could be found, stop

 validation of this certificate, consider it invalid, and issue an

 error.

 3. Compare the URI found in the id-ad-rpkiManifest field

 (Section 4.8.8.1 of [RFC6487]) of the SIA extension of the

 certificate with the URI of the manifest found in the previous

 step. If they are different, issue a warning but continue the

 validation process using the manifest found in the previous step.

 (This warning indicates that there is a mismatch between the

 expected and the actual location of an object in a repository.

 See Section 7.3 for the explanation of this mismatch and the

 decision made.)

 4. Perform discovery and validation of manifest entries as described

 in Section 3.2.2.

Muravskiy & Bruijnzeels Informational [Page 7]

RFC 8488 RPKI Tree Validation December 2018

 5. Validate all resource certificate objects found on the manifest

 using the CRL object:

 * If the strict validation option is enabled by the operator,

 the validation is performed according to Section 7 of

 [RFC6487].

 * Otherwise, the validation is performed according to Section 7

 of [RFC6487] but with the exception of the resource

 certification path validation, which is performed according to

 Section 4.2.4.4 of [RFC8360].

 (Note that this implementation uses the operator configuration to

 decide which algorithm to use for path validation. It applies

 the selected algorithm to all resource certificates, rather than

 applying an appropriate algorithm per resource certificate based

 on the object identifier (OID) for the Certificate Policy found

 in that certificate, as specified in [RFC8360].)

 6. Validate all Route Origin Authorization (ROA) objects found on

 the manifest using the CRL object found on the manifest,

 according to Section 4 of [RFC6482].

 7. Validate all Ghostbusters Record objects found on the manifest

 using the CRL object found on the manifest, according to

 Section 7 of [RFC6493].

 8. For every valid CA certificate object found on the manifest,

 apply the procedure described in this section, recursively,

 provided that this CA certificate (identified by its SKI) has not

 yet been validated during current tree validation run.

3.2.1. Finding the Most Recent Valid Manifest and CRL

 To find the most recent issued manifest and CRL objects of a

 particular CA certificate, the following steps are performed:

 1. From the store (see Section 5.1.4), fetch all objects of type

 manifest whose certificate’s AKI extension matches the SKI of the

 current CA certificate. If no such objects are found, stop

 processing the current CA certificate and issue an error.

Muravskiy & Bruijnzeels Informational [Page 8]

RFC 8488 RPKI Tree Validation December 2018

 2. Among found objects, find the manifest object with the highest

 manifestNumber field (Section 4.2.1 of [RFC6486]) for which all

 following conditions are met:

 * There is only one entry in the manifest for which the store

 contains exactly one object of type CRL, the hash of which

 matches the hash of the entry.

 * The manifest’s certificate AKI equals the above CRL’s AKI.

 * The above CRL is a valid object according to Section 6.3 of

 [RFC5280].

 * The manifest is a valid object according to Section 4.4 of

 [RFC6486], and its EE certificate is not in the CRL found

 above.

 3. If there is an object that matches the above criteria, consider

 this object to be the valid manifest, and consider the CRL found

 at the previous step to be the valid CRL for the current CA

 certificate’s publication point.

 4. Report an error for every other manifest with a number higher

 than the number of the valid manifest.

3.2.2. Validating Manifest Entries

 For every entry in the manifest object:

 1. Construct an entry’s URI by appending the entry name to the

 current CA’s publication point URI.

 2. Get all objects from the store whose hash attribute equals the

 entry’s hash (see Section 5.1.2).

 3. If no such objects are found, issue an error for this manifest

 entry and progress to the next entry. This case indicates that

 the repository does not have an object at the location listed in

 the manifest or that the object’s hash does not match the hash

 listed in the manifest.

 4. For every found object, compare its URI with the URI of the

 manifest entry.

 * For every object with a non-matching URI, issue a warning.

 This case indicates that the object from the manifest entry is

 (also) found at a different location in a (possibly different)

 repository.

Muravskiy & Bruijnzeels Informational [Page 9]

RFC 8488 RPKI Tree Validation December 2018

 * If no objects with a matching URI are found, issue a warning.

 This case indicates that there is no object found in the

 repository at the location listed in the manifest entry (but

 there is at least one matching object found at a different

 location).

 5. Use all found objects for further validation as per Section 3.2.

 Please note that the above steps will not reject objects whose hash

 matches the hash listed in the manifest but whose URI does not. See

 Section 7.3 for additional information.

3.3. Object Store Cleanup

 At the end of every TA tree validation, some objects are removed from

 the store using the following rules:

 1. Given all objects that were encountered during the current

 validation run, remove from the store (Section 5.1.6) all objects

 whose URI attribute matches the URI of one of the encountered

 objects but whose content’s hash does not match the hash of any

 of the encountered objects. This removes from the store objects

 that were replaced in the repository by their newer versions with

 the same URIs.

 2. Remove from the store all objects that were last encountered

 during validation a long time ago (as specified by the local

 policy). This removes objects that do not appear on any valid

 manifest anymore (but possibly are still published in a

 repository).

 3. Remove from the store all objects that were downloaded recently

 (as specified by the local policy) but that have never been used

 in the validation process. This removes objects that have never

 appeared on any valid manifest.

 Shortening the time interval used in step 2 will free more disk space

 used by the store, at the expense of downloading removed objects

 again if they are still published in the repository.

 Extending the time interval used in step 3 will prevent repeated

 downloads of unused repository objects. However, it will also extend

 the interval at which unused objects are removed. This creates a

 risk that such objects will fill up all available disk space if a

 large enough amount of such objects is published in the repository

 (either by mistake or with a malicious intent).

Muravskiy & Bruijnzeels Informational [Page 10]

RFC 8488 RPKI Tree Validation December 2018

4. Remote Objects Fetcher

 The fetcher is responsible for downloading objects from remote

 repositories (described in Section 3 of [RFC6481]) using the rsync

 protocol [rsync] or RRDP [RFC8182].

4.1. Fetcher Operations

 For every visited URI, the fetcher keeps track of the last time a

 successful fetch occurred.

4.1.1. Fetch Repository Objects

 This operation receives one parameter -- a URI. For an rsync

 repository, this URI points to a directory. For an RRDP repository,

 it points to the repository’s notification file.

 The fetcher follows these steps:

 1. If data associated with the URI has been downloaded recently (as

 specified by the local policy), skip the following steps.

 2. Download remote objects using the URI provided (for an rsync

 repository, use recursive mode). If the URI contains the "https"

 schema and download has failed, issue a warning, replace the

 "https" schema in the URI with "http", and try to download

 objects again using the resulting URI.

 3. If remote objects cannot be downloaded, issue an error and skip

 the following steps.

 4. Perform syntactic verification of fetched objects. The type of

 every object (certificate, manifest, CRL, ROA, or Ghostbusters

 Record) is determined based on the object’s filename extension

 (.cer, .mft, .crl, .roa, and .gbr, respectively). The syntax of

 the object is described in Section 4 of [RFC6487] for resource

 certificates, step 1 of Section 3 of [RFC6488] for signed

 objects, Section 4 of [RFC6486] for manifests, [RFC5280] for

 CRLs, Section 3 of [RFC6482] for ROAs, and Section 5 of [RFC6493]

 for Ghostbusters Records.

 5. Put every downloaded and syntactically correct object in the

 object store (Section 5.1.1).

 The time interval used in step 1 should be chosen based on the

 acceptable delay in receiving repository updates.

Muravskiy & Bruijnzeels Informational [Page 11]

RFC 8488 RPKI Tree Validation December 2018

4.1.2. Fetch Single Repository Object

 This operation receives one parameter -- a URI that points to an

 object in a repository.

 The fetcher follows these steps:

 1. Download a remote object using the URI provided. If the URI

 contains the "https" schema and download failed, issue a warning,

 replace the "https" schema in the URI with "http", and try to

 download the object using the resulting URI.

 2. If the remote object cannot be downloaded, issue an error and

 skip the following steps.

 3. Perform syntactic verification of the fetched object. The type

 of object (certificate, manifest, CRL, ROA, or Ghostbusters

 Record) is determined based on the object’s filename extension

 (.cer, .mft, .crl, .roa, and .gbr, respectively). The syntax of

 the object is described in Section 4 of [RFC6487] for resource

 certificates, step 1 of Section 3 of [RFC6488] for signed

 objects, Section 4 of [RFC6486] for manifests, [RFC5280] for

 CRLs, Section 3 of [RFC6482] for ROAs, and Section 5 of [RFC6493]

 for Ghostbusters Records.

 4. If the downloaded object is not syntactically correct, issue an

 error and skip further steps.

 5. Delete all objects from the object store (Section 5.1.5) whose

 URI matches the URI given.

 6. Put the downloaded object in the object store (Section 5.1.1).

5. Local Object Store

5.1. Store Operations

5.1.1. Store Repository Object

 Put the given object in the store if there is no record with the same

 hash and URI fields. Note that in the (unlikely) event of hash

 collision, the given object will not replace the object in the store.

5.1.2. Get Objects by Hash

 Retrieve all objects from the store whose hash attribute matches the

 given hash.

Muravskiy & Bruijnzeels Informational [Page 12]

RFC 8488 RPKI Tree Validation December 2018

5.1.3. Get Certificate Objects by URI

 Retrieve from the store all objects of type certificate whose URI

 attribute matches the given URI.

5.1.4. Get Manifest Objects by AKI

 Retrieve from the store all objects of type manifest whose AKI

 attribute matches the given AKI.

5.1.5. Delete Objects for a URI

 For a given URI, delete all objects in the store with a matching URI

 attribute.

5.1.6. Delete Outdated Objects

 For a given URI and a list of hashes, delete all objects in the store

 with a matching URI whose hash attribute is not in the given list of

 hashes.

5.1.7. Update Object’s Validation Time

 For all objects in the store whose hash attribute matches the given

 hash, set the last validation time attribute to the given timestamp.

6. IANA Considerations

 This document has no IANA actions.

7. Security Considerations

7.1. Hash Collisions

 This implementation will not detect possible hash collisions in the

 hashes of repository objects (calculated using the file hash

 algorithm specified in [RFC7935]). It considers objects with same

 hash values to be identical.

7.2. Algorithm Agility

 This implementation only supports hash algorithms and key sizes

 specified in [RFC7935]. Algorithm agility described in [RFC6916] is

 not supported.

Muravskiy & Bruijnzeels Informational [Page 13]

RFC 8488 RPKI Tree Validation December 2018

7.3. Mismatch between the Expected and Actual Location of an Object in

 the Repository

 According to Section 2 of [RFC6481], all objects issued by a

 particular CA certificate are expected to be located in one

 repository publication point, specified in the SIA extension of that

 CA certificate. The manifest object issued by that CA certificate

 enumerates all other issued objects, listing their filenames and

 content hashes.

 However, it is possible that an object whose content hash matches the

 hash listed in the manifest either has a different filename or is

 located at a different publication point in a repository.

 On the other hand, all RPKI objects, either explicitly or within

 their embedded EE certificate, have an AKI extension that contains

 the key identifier of their issuing CA certificate. Therefore, it is

 always possible to perform an RPKI validation of the object whose

 expected location does not match its actual location, provided that

 the certificate that matches the AKI of the object in question is

 known to the system that performs validation.

 In the case of a mismatch as described above, this implementation

 will not exclude an object from further validation merely because its

 actual location or filename does not match the expected location or

 filename. This decision was made because the actual location of a

 file in a repository is taken from the repository retrieval

 mechanism, which, in the case of an rsync repository, does not

 provide any cryptographic security, and in the case of an RRDP

 repository, provides only a transport-layer security with the

 fallback to unsecured transport. On the other hand, the manifest is

 an RPKI signed object, and its content could be verified in the

 context of the RPKI validation.

7.4. Manifest Content versus Publication Point Content

 This algorithm uses the content of a manifest object to determine

 other objects issued by a CA certificate. It verifies that the

 manifest is located in the publication point designated in the CA

 certificate’s SIA extension. However, if there are other (not listed

 in the manifest) objects located in the same publication point

 directory, they are ignored even if they might be valid and issued by

 the same CA as the manifest. (This RP behavior is allowed, but not

 required, by [RFC6486].)

Muravskiy & Bruijnzeels Informational [Page 14]

RFC 8488 RPKI Tree Validation December 2018

7.5. Possible Denial of Service

 The store cleanup procedure described in Section 3.3 tries to

 minimize removal and subsequent re-fetch of objects that are

 published in a repository but not used in the validation. Once such

 objects are removed from the remote repository, they will be

 discarded from the local object store after a period of time

 specified by a local policy. By generating an excessive amount of

 syntactically valid RPKI objects, a man-in-the-middle attack between

 a validating tool and a repository could force an implementation to

 fetch and store those objects in the object store (see Section 4.1.1)

 before they are validated and discarded, leading to out-of-memory or

 out-of-disk-space conditions and, subsequently, a denial of service.

8. References

8.1. Normative References

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

 Housley, R., and W. Polk, "Internet X.509 Public Key

 Infrastructure Certificate and Certificate Revocation List

 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,

 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC6481] Huston, G., Loomans, R., and G. Michaelson, "A Profile for

 Resource Certificate Repository Structure", RFC 6481,

 DOI 10.17487/RFC6481, February 2012,

 <https://www.rfc-editor.org/info/rfc6481>.

 [RFC6482] Lepinski, M., Kent, S., and D. Kong, "A Profile for Route

 Origin Authorizations (ROAs)", RFC 6482,

 DOI 10.17487/RFC6482, February 2012,

 <https://www.rfc-editor.org/info/rfc6482>.

 [RFC6486] Austein, R., Huston, G., Kent, S., and M. Lepinski,

 "Manifests for the Resource Public Key Infrastructure

 (RPKI)", RFC 6486, DOI 10.17487/RFC6486, February 2012,

 <https://www.rfc-editor.org/info/rfc6486>.

 [RFC6487] Huston, G., Michaelson, G., and R. Loomans, "A Profile for

 X.509 PKIX Resource Certificates", RFC 6487,

 DOI 10.17487/RFC6487, February 2012,

 <https://www.rfc-editor.org/info/rfc6487>.

 [RFC6488] Lepinski, M., Chi, A., and S. Kent, "Signed Object

 Template for the Resource Public Key Infrastructure

 (RPKI)", RFC 6488, DOI 10.17487/RFC6488, February 2012,

 <https://www.rfc-editor.org/info/rfc6488>.

Muravskiy & Bruijnzeels Informational [Page 15]

RFC 8488 RPKI Tree Validation December 2018

 [RFC6493] Bush, R., "The Resource Public Key Infrastructure (RPKI)

 Ghostbusters Record", RFC 6493, DOI 10.17487/RFC6493,

 February 2012, <https://www.rfc-editor.org/info/rfc6493>.

 [RFC6916] Gagliano, R., Kent, S., and S. Turner, "Algorithm Agility

 Procedure for the Resource Public Key Infrastructure

 (RPKI)", BCP 182, RFC 6916, DOI 10.17487/RFC6916, April

 2013, <https://www.rfc-editor.org/info/rfc6916>.

 [RFC7730] Huston, G., Weiler, S., Michaelson, G., and S. Kent,

 "Resource Public Key Infrastructure (RPKI) Trust Anchor

 Locator", RFC 7730, DOI 10.17487/RFC7730, January 2016,

 <https://www.rfc-editor.org/info/rfc7730>.

 [RFC7935] Huston, G. and G. Michaelson, Ed., "The Profile for

 Algorithms and Key Sizes for Use in the Resource Public

 Key Infrastructure", RFC 7935, DOI 10.17487/RFC7935,

 August 2016, <https://www.rfc-editor.org/info/rfc7935>.

 [RFC8182] Bruijnzeels, T., Muravskiy, O., Weber, B., and R. Austein,

 "The RPKI Repository Delta Protocol (RRDP)", RFC 8182,

 DOI 10.17487/RFC8182, July 2017,

 <https://www.rfc-editor.org/info/rfc8182>.

 [RFC8360] Huston, G., Michaelson, G., Martinez, C., Bruijnzeels, T.,

 Newton, A., and D. Shaw, "Resource Public Key

 Infrastructure (RPKI) Validation Reconsidered", RFC 8360,

 DOI 10.17487/RFC8360, April 2018,

 <https://www.rfc-editor.org/info/rfc8360>.

8.2. Informative References

 [rpki-validator]

 "RIPE-NCC/rpki-validator source code",

 <https://github.com/RIPE-NCC/rpki-validator>.

 [rsync] "rsync", October 2018, <https://rsync.samba.org>.

Acknowledgements

 This document describes the algorithm as it is implemented by the

 software development team at the RIPE NCC, which, over time, included

 Mikhail Puzanov, Erik Rozendaal, Miklos Juhasz, Misja Alma, Thiago da

 Cruz Pereira, Yannis Gonianakis, Andrew Snare, Varesh Tapadia, Paolo

 Milani, Thies Edeling, Hans Westerbeek, Rudi Angela, and Constantijn

 Visinescu. The authors would also like to acknowledge contributions

 by Carlos Martinez, Andy Newton, Rob Austein, and Stephen Kent.

Muravskiy & Bruijnzeels Informational [Page 16]

RFC 8488 RPKI Tree Validation December 2018

Authors’ Addresses

 Oleg Muravskiy

 RIPE NCC

 Email: oleg@ripe.net

 URI: https://www.ripe.net/

 Tim Bruijnzeels

 NLnet Labs

 Email: tim@nlnetlabs.nl

 URI: https://www.nlnetlabs.nl/

Muravskiy & Bruijnzeels Informational [Page 17]

