
Internet Engineering Task Force (IETF) T. Haynes
Request for Comments: 8434 Hammerspace
Updates: 5661 August 2018
Category: Standards Track
ISSN: 2070-1721

 Requirements for Parallel NFS (pNFS) Layout Types

Abstract

 This document defines the requirements that individual Parallel NFS
 (pNFS) layout types need to meet in order to work within the pNFS
 framework as defined in RFC 5661. In so doing, this document aims to
 clearly distinguish between requirements for pNFS as a whole and
 those specifically directed to the pNFS file layout. The lack of a
 clear separation between the two sets of requirements has been
 troublesome for those specifying and evaluating new layout types. In
 this regard, this document updates RFC 5661.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8434.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Haynes Standards Track [Page 1]

RFC 8434 pNFS Layout Types August 2018

Table of Contents

 1. Introduction ..2
 2. Definitions ...3
 2.1. Use of the Terms "Data Server" and "Storage Device"5
 2.2. Requirements Language6
 3. The Control Protocol ..6
 3.1. Control Protocol Requirements8
 3.2. Previously Undocumented Protocol Requirements9
 3.3. Editorial Requirements10
 4. Specifications of Original Layout Types11
 4.1. File Layout Type ..11
 4.2. Block Layout Type ...12
 4.3. Object Layout Type ..13
 5. Summary ..14
 6. Security Considerations ..15
 7. IANA Considerations ..15
 8. References ...16
 8.1. Normative References16
 8.2. Informative References16
 Acknowledgments ...17
 Author’s Address ..17

1. Introduction

 The concept of "layout type" has a central role in the definition and
 implementation of Parallel NFS (pNFS) (see [RFC5661]). Clients and
 servers implementing different layout types behave differently in
 many ways while conforming to the overall pNFS framework defined in
 [RFC5661] and this document. Layout types may differ as to:

 o The method used to do I/O operations directed to data storage
 devices.

 o The requirements for communication between the metadata server
 (MDS) and the storage devices.

 o The means used to ensure that I/O requests are only processed when
 the client holds an appropriate layout.

 o The format and interpretation of nominally opaque data fields in
 pNFS-related NFSv4.x data structures.

 Each layout type will define the needed details for its usage in the
 specification for that layout type; layout type specifications are
 always Standards Track RFCs. Except for the file layout type defined

Haynes Standards Track [Page 2]

RFC 8434 pNFS Layout Types August 2018

 in Section 13 of [RFC5661], existing layout types are defined in
 their own Standards Track documents, and it is anticipated that new
 layout types will be defined in similar documents.

 The file layout type was defined in the Network File System (NFS)
 version 4.1 protocol specification [RFC5661]. The block layout type
 was defined in [RFC5663], and the object layout type was defined in
 [RFC5664]. Subsequently, the Small Computer System Interface (SCSI)
 layout type was defined in [RFC8154].

 Some implementers have interpreted the text in Sections 12 ("Parallel
 NFS (pNFS)") and 13 ("NFSv4.1 as a Storage Protocol in pNFS: the File
 Layout Type") of [RFC5661] as applying only to the file layout type.
 Because Section 13 was not covered in a separate Standards Track
 document such as those for both the block and object layout types,
 there was some confusion as to the responsibilities of both the
 metadata server and the data servers (DSs) that were laid out in
 Section 12.

 As a consequence, authors of new specifications (see [RFC8435] and
 [Lustre]) may struggle to meet the requirements to be a pNFS layout
 type. This document gathers the requirements from all of the
 original Standards Track documents regarding layout type and then
 specifies the requirements placed on all layout types independent of
 the particular type chosen.

2. Definitions

 control communication requirement: the specification for information
 on layouts, stateids, file metadata, and file data that must be
 communicated between the metadata server and the storage devices.
 There is a separate set of requirements for each layout type.

 control protocol: the particular mechanism that an implementation of
 a layout type would use to meet the control communication
 requirement for that layout type. This need not be a protocol as
 normally understood. In some cases, the same protocol may be used
 as both a control protocol and storage protocol.

 storage protocol: the protocol used by clients to do I/O operations
 to the storage device. Each layout type specifies the set of
 storage protocols.

 loose coupling: when the control protocol is a storage protocol.

Haynes Standards Track [Page 3]

RFC 8434 pNFS Layout Types August 2018

 tight coupling: an arrangement in which the control protocol is one
 designed specifically for control communication. It may be either
 a proprietary protocol adapted specifically to a particular
 metadata server or a protocol based on a Standards Track document.

 (file) data: that part of the file system object that contains the
 data to be read or written. It is the contents of the object
 rather than the attributes of the object.

 data server (DS): a pNFS server that provides the file’s data when
 the file system object is accessed over a file-based protocol.
 Note that this usage differs from that in [RFC5661], which applies
 the term in some cases even when other sorts of protocols are
 being used. Depending on the layout, there might be one or more
 data servers over which the data is striped. While the metadata
 server is strictly accessed over the NFSv4.1 protocol, the data
 server could be accessed via any file access protocol that meets
 the pNFS requirements.

 See Section 2.1 for a comparison of this term and "storage
 device".

 storage device: the target to which clients may direct I/O requests
 when they hold an appropriate layout. Note that each data server
 is a storage device but that some storage device are not data
 servers. See Section 2.1 for further discussion.

 fencing: the process by which the metadata server prevents the
 storage devices from processing I/O from a specific client to a
 specific file.

 layout: the information a client uses to access file data on a
 storage device. This information includes specification of the
 protocol (layout type) and the identity of the storage devices to
 be used.

 The bulk of the contents of the layout are defined in [RFC5661] as
 nominally opaque, but individual layout types are responsible for
 specifying the format of the layout data.

 layout iomode: a grant of either read-only or read/write I/O to the
 client.

 layout stateid: a 128-bit quantity returned by a server that
 uniquely defines the layout state provided by the server for a
 specific layout that describes a layout type and file (see

Haynes Standards Track [Page 4]

RFC 8434 pNFS Layout Types August 2018

 Section 12.5.2 of [RFC5661]). Further, Section 12.5.3 of
 [RFC5661] describes differences in handling between layout
 stateids and other stateid types.

 layout type: a specification of both the storage protocol used to
 access the data and the aggregation scheme used to lay out the
 file data on the underlying storage devices.

 recalling a layout: a graceful recall, via a callback, of a specific
 layout by the metadata server to the client. Graceful here means
 that the client would have the opportunity to flush any WRITEs,
 etc., before returning the layout to the metadata server.

 revoking a layout: an invalidation of a specific layout by the
 metadata server. Once revocation occurs, the metadata server will
 not accept as valid any reference to the revoked layout, and a
 storage device will not accept any client access based on the
 layout.

 (file) metadata: the part of the file system object that contains
 various descriptive data relevant to the file object, as opposed
 to the file data itself. This could include the time of last
 modification, access time, EOF position, etc.

 metadata server (MDS): the pNFS server that provides metadata
 information for a file system object. It is also responsible for
 generating, recalling, and revoking layouts for file system
 objects, for performing directory operations, and for performing
 I/O operations to regular files when the clients direct these to
 the metadata server itself.

 stateid: a 128-bit quantity returned by a server that uniquely
 defines the set of locking-related state provided by the server.
 Stateids may designate state related to open files, byte-range
 locks, delegations, or layouts.

2.1. Use of the Terms "Data Server" and "Storage Device"

 In [RFC5661], the terms "data server" and "storage device" are used
 somewhat inconsistently:

 o In Section 12, where pNFS in general is discussed, the term
 "storage device" is used.

 o In Section 13, where the file layout type is discussed, the term
 "data server" is used.

Haynes Standards Track [Page 5]

RFC 8434 pNFS Layout Types August 2018

 o In other sections, the term "data server" is used, even in
 contexts where the storage access type is not NFSv4.1 or any other
 file access protocol.

 As this document deals with pNFS in general, it uses the more generic
 term "storage device" in preference to "data server". The term "data
 server" is used only in contexts in which a file server is used as a
 storage device. Note that every data server is a storage device, but
 storage devices that use protocols that are not file access protocols
 (such as NFS) are not data servers.

 Since a given storage device may support multiple layout types, a
 given device can potentially act as a data server for some set of
 storage protocols while simultaneously acting as a storage device for
 others.

2.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document differs from most Standards Track documents in that it
 specifies requirements for those defining future layout types rather
 than defining the requirements for implementations directly. This
 document makes clear whether:

 (1) any particular requirement applies to implementations.

 (2) any particular requirement applies to those defining layout
 types.

 (3) the requirement is a general requirement that implementations
 need to conform to, with the specific means left to layout type
 definitions type to specify.

3. The Control Protocol

 A layout type has to meet the requirements that apply to the
 interaction between the metadata server and the storage device such
 that they present to the client a consistent view of stored data and
 locking state (Section 12.2.6 of [RFC5661]). Particular
 implementations may satisfy these requirements in any manner they
 choose, and the mechanism chosen need not be described as a protocol.
 Specifications defining layout types need to clearly show how
 implementations can meet the requirements discussed below, especially

Haynes Standards Track [Page 6]

RFC 8434 pNFS Layout Types August 2018

 with respect to those that have security implications. In addition,
 such specifications may find it necessary to impose requirements on
 implementations of the layout type to ensure appropriate
 interoperability.

 In some cases, there may be no control protocol other than the
 storage protocol. This is often described as using a "loosely
 coupled" model. In such cases, the assumption is that the metadata
 server, storage devices, and client may be changed independently and
 that the implementation requirements in the layout type specification
 need to ensure this degree of interoperability. This model is used
 in the block and object layout type specification.

 In other cases, it is assumed that there will be a purpose-built
 control protocol that may be different for different implementations
 of the metadata server and data server. The assumption here is that
 the metadata server and data servers are designed and implemented as
 a unit and interoperability needs to be assured between clients and
 metadata-data server pairs, developed independently. This is the
 model used for the file layout.

 Another possibility is for the definition of a control protocol to be
 specified in a Standards Track document. There are two subcases to
 consider:

 o A new layout type includes a definition of a particular control
 protocol whose use is obligatory for metadata servers and storage
 devices implementing the layout type. In this case, the
 interoperability model is similar to the first case above, and the
 defining document should assure interoperability among metadata
 servers, storage devices, and clients developed independently.

 o A control protocol is defined in a Standards Track document that
 meets the control protocol requirements for one of the existing
 layout types. In this case, the new document’s job is to assure
 interoperability between metadata servers and storage devices
 developed separately. The existing definition document for the
 selected layout type retains the function of assuring
 interoperability between clients and a given collection of
 metadata servers and storage devices. In this context,
 implementations that implement the new protocol are treated in the
 same way as those that use an internal control protocol or a
 functional equivalent.

 An example of this last case is the SCSI layout type [RFC8154], which
 extends the block layout type. The block layout type had a
 requirement for fencing of clients but did not present a way for the

Haynes Standards Track [Page 7]

RFC 8434 pNFS Layout Types August 2018

 control protocol (in this case, the SCSI storage protocol) to fence
 the client. The SCSI layout type remedies that in [RFC8154] and, in
 effect, has a tightly coupled model.

3.1. Control Protocol Requirements

 The requirements of interactions between the metadata server and the
 storage devices are:

 (1) The metadata server MUST be able to service the client’s I/O
 requests if the client decides to make such requests to the
 metadata server instead of to the storage device. The metadata
 server must be able to retrieve the data from the constituent
 storage devices and present it back to the client. A corollary
 to this is that even though the metadata server has successfully
 given the client a layout, the client MAY still send I/O
 requests to the metadata server.

 (2) The metadata server MUST be able to restrict access to a file on
 the storage devices when it revokes a layout. The metadata
 server typically would revoke a layout whenever a client fails
 to respond to a recall or a client’s lease is expired due to
 non-renewal. It might also revoke the layout as a means of
 enforcing a change in locking state or access permissions that
 the storage device cannot directly enforce.

 Effective revocation may require client cooperation in using a
 particular stateid (file layout) or principal (e.g., flexible
 file layout) when performing I/O.

 In contrast, there is no requirement to restrict access to a
 file on the storage devices when a layout is recalled. It is
 only after the metadata server determines that the client is not
 gracefully returning the layout and starts the revocation that
 this requirement is enforced.

 (3) A pNFS implementation MUST NOT allow the violation of NFSv4.1’s
 access controls: Access Control Lists (ACLs) and file open
 modes. Section 12.9 of [RFC5661] specifically lays this burden
 on the combination of clients, storage devices, and the metadata
 server. However, the specification of the individual layout
 type might create requirements as to how this is to be done.
 This may include a possible requirement for the metadata server
 to update the storage device so that it can enforce security.

 The file layout requires the storage device to enforce access
 whereas the flexible file layout requires both the storage
 device and the client to enforce security.

Haynes Standards Track [Page 8]

RFC 8434 pNFS Layout Types August 2018

 (4) Interactions between locking and I/O operations MUST obey
 existing semantic restrictions. In particular, if an I/O
 operation would be invalid when directed at the metadata server,
 it is not to be allowed when performed on the storage device.

 For the block and SCSI layouts, as the storage device is not
 able to reject the I/O operation, the client is responsible for
 enforcing this requirement.

 (5) Any disagreement between the metadata server and the data server
 as to the value of attributes such as modify time, the change
 attribute, and the EOF position MUST be of limited duration with
 clear means of resolution of any discrepancies being provided.
 Note the following:

 (a) Discrepancies need not be resolved unless any client has
 accessed the file in question via the metadata server,
 typically by performing a GETATTR.

 (b) A particular storage device might be striped, and as such,
 its local view of the EOF position does not match the
 global EOF position.

 (c) Both clock skew and network delay can lead to the metadata
 server and the storage device having different values of
 the time attributes. As long as those differences can be
 accounted for in what is presented to the client in a
 GETATTR, then no violation results.

 (d) A LAYOUTCOMMIT requires that changes in attributes
 resulting from operations on the storage device need to be
 reflected in the metadata server by the completion of the
 operation.

 These requirements may be satisfied in different ways by different
 layout types. As an example, while the file layout type uses the
 stateid to fence off the client, there is no requirement that other
 layout types use this stateid approach.

 Each new Standards Track document for a layout type MUST address how
 the client, metadata server, and storage devices are to interact to
 meet these requirements.

3.2. Previously Undocumented Protocol Requirements

 While not explicitly stated as requirements in Section 12 of
 [RFC5661], the existing layout types do have more requirements that
 they need to enforce.

Haynes Standards Track [Page 9]

RFC 8434 pNFS Layout Types August 2018

 The client has these obligations when making I/O requests to the
 storage devices:

 (1) Clients MUST NOT perform I/O to the storage device if they do
 not have layouts for the files in question.

 (2) Clients MUST NOT perform I/O operations outside of the specified
 ranges in the layout segment.

 (3) Clients MUST NOT perform I/O operations that would be
 inconsistent with the iomode specified in the layout segments it
 holds.

 Under the file layout type, the storage devices are able to reject
 any request made not conforming to these requirements. This may not
 be possible for other known layout types, which puts the burden of
 enforcing such violations solely on the client. For these layout
 types:

 (1) The metadata server MAY use fencing operations to the storage
 devices to enforce layout revocation against the client.

 (2) The metadata server MUST allow the clients to perform data I/O
 against it, even if it has already granted the client a layout.
 A layout type might discourage such I/O, but it cannot forbid
 it.

 (3) The metadata server MUST be able to do storage allocation,
 whether that is to create, delete, extend, or truncate files.

 The means to address these requirements will vary with the layout
 type. A control protocol will be used to effect these; the control
 protocol could be a purpose-built one, one identical to the storage
 protocol, or a new Standards Track control protocol.

3.3. Editorial Requirements

 This section discusses how the protocol requirements discussed above
 need to be addressed in documents specifying a new layout type.
 Depending on the interoperability model for the layout type in
 question, this may involve the imposition of layout-type-specific
 requirements that ensure appropriate interoperability of pNFS
 components that are developed separately.

 The specification of the layout type needs to make clear how the
 client, metadata server, and storage device act together to meet the
 protocol requirements discussed previously. If the document does not

Haynes Standards Track [Page 10]

RFC 8434 pNFS Layout Types August 2018

 impose implementation requirements sufficient to ensure that these
 semantic requirements are met, it is not appropriate for publication
 as an RFC from the IETF stream.

 Some examples include:

 o If the metadata server does not have a means to invalidate a
 stateid issued to the storage device to keep a particular client
 from accessing a specific file, then the layout type specification
 has to document how the metadata server is going to fence the
 client from access to the file on that storage device.

 o If the metadata server implements mandatory byte-range locking
 when accessed directly by the client, then the layout type
 specification must require that this also be done when data is
 read or written using the designated storage protocol.

4. Specifications of Original Layout Types

 This section discusses how the original layout types interact with
 Section 12 of [RFC5661], which enumerates the requirements of pNFS
 layout type specifications. It is not normative with regards to the
 file layout type presented in Section 13 of [RFC5661], the block
 layout type [RFC5663], and the object layout type [RFC5664]. These
 are discussed here only to illuminate the updates Section 3 of this
 document makes to Section 12 of [RFC5661].

4.1. File Layout Type

 Because the storage protocol is a subset of NFSv4.1, the semantics of
 the file layout type comes closest to the semantics of NFSv4.1 in the
 absence of pNFS. In particular, the stateid and principal used for
 I/O MUST have the same effect and be subject to the same validation
 on a data server as it would have if the I/O were being performed on
 the metadata server itself. The same set of validations are applied
 whether or not pNFS is in effect.

 While for most implementations, the storage devices can do the
 following validations that are each presented as a "SHOULD" and not a
 "MUST" in [RFC5661]:

 (1) client holds a valid layout,

 (2) client I/O matches the layout iomode, and

 (3) client does not go out of the byte ranges,

Haynes Standards Track [Page 11]

RFC 8434 pNFS Layout Types August 2018

 Actually, the first point is presented in [RFC5661] as both:

 "MUST": in Section 13.6

 As described in Section 12.5.1, a client MUST NOT send an I/O to a
 data server for which it does not hold a valid layout; the data
 server MUST reject such an I/O.

 "SHOULD": in Section 13.8

 The iomode need not be checked by the data servers when clients
 perform I/O. However, the data servers SHOULD still validate that
 the client holds a valid layout and return an error if the client
 does not.

 It should be noted that it is just these layout-specific checks that
 are optional, not the normal file access semantics. The storage
 devices MUST make all of the required access checks on each READ or
 WRITE I/O as determined by the NFSv4.1 protocol. If the metadata
 server would deny a READ or WRITE operation on a file due to its ACL,
 mode attribute, open access mode, open deny mode, mandatory byte-
 range locking state, or any other attributes and state, the storage
 device MUST also deny the READ or WRITE operation. Also, while the
 NFSv4.1 protocol does not mandate export access checks based on the
 client’s IP address, if the metadata server implements such a policy,
 then that counts as such state as outlined above.

 The data filehandle provided by the PUTFH operation to the data
 server provides sufficient context to enable the data server to
 ensure that the client has a valid layout for the I/O being performed
 for the subsequent READ or WRITE operation in the compound.

 Finally, the data server can check the stateid presented in the READ
 or WRITE operation to see if that stateid has been rejected by the
 metadata server; if so, the data server will cause the I/O to be
 fenced. Whilst it might just be the open owner or lock owner on that
 client being fenced, the client should take the NFS4ERR_BAD_STATEID
 error code to mean it has been fenced from the file and contact the
 metadata server.

4.2. Block Layout Type

 With the block layout type, the storage devices are generally not
 able to enforce file-based security. Typically, storage area network
 (SAN) disk arrays and SAN protocols provide coarse-grained access
 control mechanisms (e.g., Logical Unit Number (LUN) mapping and/or
 masking), with a target granularity of disks rather than individual
 blocks and a source granularity of individual hosts rather than of

Haynes Standards Track [Page 12]

RFC 8434 pNFS Layout Types August 2018

 users or owners. Access to block storage is logically at a lower
 layer of the I/O stack than NFSv4. Since NFSv4 security is not
 directly applicable to protocols that access such storage directly,
 Section 2.1 of [RFC5663] specifies that:

 in environments where pNFS clients cannot be trusted to enforce
 such policies, pNFS block layout types SHOULD NOT be used.

 Due to these granularity issues, the security burden has been shifted
 from the storage devices to the client. Those deploying
 implementations of this layout type need to be sure that the client
 implementation can be trusted. This is not a new sort of requirement
 in the context of SAN protocols. In such environments, the client is
 expected to provide block-based protection.

 This shift of the burden also extends to locks and layouts. The
 storage devices are not able to enforce any of these, and the burden
 is pushed to the client to make the appropriate checks before sending
 I/O to the storage devices. For example, the server may use a layout
 iomode only allowing reading to enforce a mandatory read-only lock.
 In such cases, the client has to support that use by not sending
 WRITEs to the storage devices. The fundamental issue here is that
 the storage device is treated by this layout type in the same fashion
 as a local disk device. Once the client has access to the storage
 device, it is able to perform both READ and WRITE I/O to the entire
 storage device. The byte ranges in the layout, any locks, the layout
 iomode, etc., can only be enforced by the client. Therefore, the
 client is required to provide that enforcement.

 In the context of fencing off of the client upon revocation of a
 layout, these limitations come into play again, i.e., the granularity
 of the fencing can only be at the level of the host and logical unit.
 Thus, if one of a client’s layouts is revoked by the server, it will
 effectively revoke all of the client’s layouts for files located on
 the storage units comprising the logical volume. This may extend to
 the client’s layouts for files in other file systems. Clients need
 to be prepared for such revocations and reacquire layouts as needed.

4.3. Object Layout Type

 With the object layout type, security checks occur during the
 allocation of the layout. The client will typically ask for layouts
 covering all of the file and may do so for either READ or READ/WRITE.
 This enables it to do subsequent I/O operations without the need to
 obtain layouts for specific byte ranges. At that time, the metadata
 server should verify permissions against the layout iomode, the file
 mode bits or ACLs, etc. As the client may be acting for multiple

Haynes Standards Track [Page 13]

RFC 8434 pNFS Layout Types August 2018

 local users, it MUST authenticate and authorize the user by issuing
 respective OPEN and ACCESS calls to the metadata server, similar to
 having NFSv4 data delegations.

 Upon successful authorization, the client receives within the layout
 a set of object capabilities allowing it I/O access to the specified
 objects corresponding to the requested iomode. These capabilities
 are used to enforce access control and locking semantics at the
 storage devices. Whenever one of the following occurs on the
 metadata server, then the metadata server MUST change the capability
 version attribute on all objects comprising the file in order to
 invalidate any outstanding capabilities before committing to one of
 these changes:

 o the permissions on the object change,

 o a conflicting mandatory byte-range lock is granted, or

 o a layout is revoked and reassigned to another client.

 When the metadata server wishes to fence off a client to a particular
 object, then it can use the above approach to invalidate the
 capability attribute on the given object. The client can be informed
 via the storage device that the capability has been rejected and is
 allowed to fetch a refreshed set of capabilities, i.e., reacquire the
 layout.

5. Summary

 In the three original layout types, the burden of enforcing the
 security of NFSv4.1 can fall to either the storage devices (files),
 the client (blocks), or the metadata server (objects). Such choices
 are conditioned by the native capabilities of the storage devices --
 if a control protocol can be implemented, then the burden can be
 shifted primarily to the storage devices.

 In the context of this document, we treat the control protocol as a
 set of requirements. As new layout types are published, the defining
 documents MUST address:

 (1) The fencing of clients after a layout is revoked.

 (2) The security implications of the native capabilities of the
 storage devices with respect to the requirements of the NFSv4.1
 security model.

Haynes Standards Track [Page 14]

RFC 8434 pNFS Layout Types August 2018

 In addition, these defining documents need to make clear how other
 semantic requirements of NFSv4.1 (e.g., locking) are met in the
 context of the proposed layout type.

6. Security Considerations

 This section does not deal directly with security considerations for
 existing or new layout types. Instead, it provides a general
 framework for understating security-related issues within the pNFS
 framework. Specific security considerations will be addressed in the
 Security Considerations sections of documents specifying layout
 types. For example, in Section 3 of [RFC5663], the lack of finer-
 than-physical disk access control necessitates that the client is
 delegated the responsibility to enforce the access provided to them
 in the layout extent that they were granted by the metadata server.

 The layout type specification must ensure that only data access
 consistent with the NFSV4.1 security model is allowed. It may do
 this directly, by providing that appropriate checks be performed at
 the time each access is performed. It may do it indirectly by
 allowing the client or the storage device to be responsible for
 making the appropriate checks. In the latter case, I/O access rights
 are reflected in layouts, and the layout type must provide a way to
 prevent inappropriate access due to permissions changes between the
 time a layout is granted and the time the access is performed.

 The metadata server MUST be able to fence off a client’s access to
 the data file on a storage device. When it revokes the layout, the
 client’s access MUST be terminated at the storage devices. The
 client has a subsequent opportunity to reacquire the layout and
 perform the security check in the context of the newly current access
 permissions.

7. IANA Considerations

 This document has no IANA actions.

Haynes Standards Track [Page 15]

RFC 8434 pNFS Layout Types August 2018

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5661] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 Protocol", RFC 5661, DOI 10.17487/RFC5661, January 2010,
 <https://www.rfc-editor.org/info/rfc5661>.

 [RFC5663] Black, D., Fridella, S., and J. Glasgow, "Parallel NFS
 (pNFS) Block/Volume Layout", RFC 5663,
 DOI 10.17487/RFC5663, January 2010,
 <https://www.rfc-editor.org/info/rfc5663>.

 [RFC5664] Halevy, B., Welch, B., and J. Zelenka, "Object-Based
 Parallel NFS (pNFS) Operations", RFC 5664,
 DOI 10.17487/RFC5664, January 2010,
 <https://www.rfc-editor.org/info/rfc5664>.

 [RFC8154] Hellwig, C., "Parallel NFS (pNFS) Small Computer System
 Interface (SCSI) Layout", RFC 8154, DOI 10.17487/RFC8154,
 May 2017, <https://www.rfc-editor.org/info/rfc8154>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8.2. Informative References

 [Lustre] Faibish, S., Cote, D., and P. Tao, "Parallel NFS (pNFS)
 Lustre Layout Operations", Work in Progress,
 draft-faibish-nfsv4-pnfs-lustre-layout-07, May 2014.

 [RFC8435] Halevy, B. and T. Haynes, "Parallel NFS (pNFS) Flexible
 File Layout", RFC 8435, DOI 10.17487/RFC8435, August 2018,
 <https://www.rfc-editor.org/info/rfc8435>.

Haynes Standards Track [Page 16]

RFC 8434 pNFS Layout Types August 2018

Acknowledgments

 Dave Noveck provided an early review that sharpened the clarity of
 the definitions. He also provided a more comprehensive review of the
 document.

 Both Chuck Lever and Christoph Helwig provided insightful comments
 during the working group last call.

Author’s Address

 Thomas Haynes
 Hammerspace
 4300 El Camino Real Ste 105
 Los Altos, CA 94022
 United States of America

 Email: loghyr@gmail.com

Haynes Standards Track [Page 17]

