
Internet Engineering Task Force (IETF) M. Upadhyay
Request for Comments: 8353 Google
Obsoletes: 5653 S. Malkani
Category: Standards Track ActivIdentity
ISSN: 2070-1721 W. Wang
 Oracle
 May 2018

 Generic Security Service API Version 2: Java Bindings Update

Abstract

 The Generic Security Services Application Programming Interface
 (GSS-API) offers application programmers uniform access to security
 services atop a variety of underlying cryptographic mechanisms. This
 document updates the Java bindings for the GSS-API that are specified
 in "Generic Security Service API Version 2: Java Bindings Update"
 (RFC 5653). This document obsoletes RFC 5653 by adding a new output
 token field to the GSSException class so that when the initSecContext
 or acceptSecContext methods of the GSSContext class fail, it has a
 chance to emit an error token that can be sent to the peer for
 debugging or informational purpose. The stream-based GSSContext
 methods are also removed in this version.

 The GSS-API is described at a language-independent conceptual level
 in "Generic Security Service Application Program Interface Version 2,
 Update 1" (RFC 2743). The GSS-API allows a caller application to
 authenticate a principal identity, to delegate rights to a peer, and
 to apply security services such as confidentiality and integrity on a
 per-message basis. Examples of security mechanisms defined for
 GSS-API are "The Simple Public-Key GSS-API Mechanism (SPKM)"
 (RFC 2025) and "The Kerberos Version 5 Generic Security Service
 Application Program Interface (GSS-API) Mechanism: Version 2"
 (RFC 4121).

Upadhyay, et al. Standards Track [Page 1]

RFC 8353 Java GSS-API Update May 2018

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8353.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Upadhyay, et al. Standards Track [Page 2]

RFC 8353 Java GSS-API Update May 2018

Table of Contents

 1. Introduction . 6
 2. Notational Conventions 7
 3. GSS-API Operational Paradigm 7
 4. Additional Controls . 9
 4.1. Delegation . 10
 4.2. Mutual Authentication 11
 4.3. Replay and Out-of-Sequence Detection 11
 4.4. Anonymous Authentication 12
 4.5. Integrity and Confidentiality 13
 4.6. Inter-process Context Transfer 13
 4.7. The Use of Incomplete Contexts 14
 5. Calling Conventions . 15
 5.1. Package Name . 15
 5.2. Provider Framework 15
 5.3. Integer Types . 16
 5.4. Opaque Data Types . 16
 5.5. Strings . 16
 5.6. Object Identifiers 16
 5.7. Object Identifier Sets 17
 5.8. Credentials . 17
 5.9. Contexts . 19
 5.10. Authentication Tokens 20
 5.11. Inter-process Tokens 20
 5.12. Error Reporting . 20
 5.12.1. GSS Status Codes 21
 5.12.2. Mechanism-Specific Status Codes 23
 5.12.3. Supplementary Status Codes 23
 5.13. Names . 24
 5.14. Channel Bindings . 27
 5.15. Optional Parameters 28
 6. Introduction to GSS-API Classes and Interfaces 28
 6.1. GSSManager Class . 28
 6.2. GSSName Interface . 29
 6.3. GSSCredential Interface 30
 6.4. GSSContext Interface 31
 6.5. MessageProp Class . 32
 6.6. GSSException Class 32
 6.7. Oid Class . 32
 6.8. ChannelBinding Class 33
 7. Detailed GSS-API Class Description 33
 7.1. public abstract class GSSManager 33
 7.1.1. getInstance . 34
 7.1.2. getMechs . 34
 7.1.3. getNamesForMech 35
 7.1.4. getMechsForName 35
 7.1.5. createName . 35

Upadhyay, et al. Standards Track [Page 3]

RFC 8353 Java GSS-API Update May 2018

 7.1.6. createName . 36
 7.1.7. createName . 36
 7.1.8. createName . 37
 7.1.9. createCredential 38
 7.1.10. createCredential 38
 7.1.11. createCredential 39
 7.1.12. createContext . 39
 7.1.13. createContext . 40
 7.1.14. createContext . 40
 7.1.15. addProviderAtFront 41
 7.1.15.1. addProviderAtFront Example Code 42
 7.1.16. addProviderAtEnd 43
 7.1.16.1. addProviderAtEnd Example Code 43
 7.1.17. Example Code . 44
 7.2. public interface GSSName 45
 7.2.1. Static Constants 45
 7.2.2. equals . 46
 7.2.3. equals . 46
 7.2.4. canonicalize . 47
 7.2.5. export . 47
 7.2.6. toString . 47
 7.2.7. getStringNameType 47
 7.2.8. isAnonymous . 47
 7.2.9. isMN . 48
 7.2.10. Example Code . 48
 7.3. public interface GSSCredential implements Cloneable . . . 49
 7.3.1. Static Constants 50
 7.3.2. dispose . 50
 7.3.3. getName . 50
 7.3.4. getName . 51
 7.3.5. getRemainingLifetime 51
 7.3.6. getRemainingInitLifetime 51
 7.3.7. getRemainingAcceptLifetime 51
 7.3.8. getUsage . 52
 7.3.9. getUsage . 52
 7.3.10. getMechs . 52
 7.3.11. add . 52
 7.3.12. equals . 53
 7.3.13. Example Code . 54
 7.4. public interface GSSContext 54
 7.4.1. Static Constants 55
 7.4.2. initSecContext 56
 7.4.3. acceptSecContext 56
 7.4.4. isEstablished . 57
 7.4.5. dispose . 57
 7.4.6. getWrapSizeLimit 58
 7.4.7. wrap . 58
 7.4.8. unwrap . 59

Upadhyay, et al. Standards Track [Page 4]

RFC 8353 Java GSS-API Update May 2018

 7.4.9. getMIC . 60
 7.4.10. verifyMIC . 61
 7.4.11. export . 62
 7.4.12. requestMutualAuth 62
 7.4.13. requestReplayDet 63
 7.4.14. requestSequenceDet 63
 7.4.15. requestCredDeleg 63
 7.4.16. requestAnonymity 64
 7.4.17. requestConf . 64
 7.4.18. requestInteg . 64
 7.4.19. requestLifetime 64
 7.4.20. setChannelBinding 65
 7.4.21. getCredDelegState 65
 7.4.22. getMutualAuthState 65
 7.4.23. getReplayDetState 65
 7.4.24. getSequenceDetState 66
 7.4.25. getAnonymityState 66
 7.4.26. isTransferable 66
 7.4.27. isProtReady . 66
 7.4.28. getConfState . 66
 7.4.29. getIntegState . 67
 7.4.30. getLifetime . 67
 7.4.31. getSrcName . 67
 7.4.32. getTargName . 67
 7.4.33. getMech . 67
 7.4.34. getDelegCred . 68
 7.4.35. isInitiator . 68
 7.4.36. Example Code . 68
 7.5. public class MessageProp 70
 7.5.1. Constructors . 70
 7.5.2. getQOP . 71
 7.5.3. getPrivacy . 71
 7.5.4. getMinorStatus 71
 7.5.5. getMinorString 71
 7.5.6. setQOP . 71
 7.5.7. setPrivacy . 72
 7.5.8. isDuplicateToken 72
 7.5.9. isOldToken . 72
 7.5.10. isUnseqToken . 72
 7.5.11. isGapToken . 72
 7.5.12. setSupplementaryStates 72
 7.6. public class ChannelBinding 73
 7.6.1. Constructors . 73
 7.6.2. getInitiatorAddress 74
 7.6.3. getAcceptorAddress 74
 7.6.4. getApplicationData 74
 7.6.5. equals . 75

Upadhyay, et al. Standards Track [Page 5]

RFC 8353 Java GSS-API Update May 2018

 7.7. public class Oid . 75
 7.7.1. Constructors . 75
 7.7.2. toString . 76
 7.7.3. equals . 76
 7.7.4. getDER . 76
 7.7.5. containedIn . 77
 7.8. public class GSSException extends Exception 77
 7.8.1. Static Constants 77
 7.8.2. Constructors . 80
 7.8.3. getMajor . 81
 7.8.4. getMinor . 81
 7.8.5. getMajorString 81
 7.8.6. getMinorString 81
 7.8.7. getOutputToken 82
 7.8.8. setMinor . 82
 7.8.9. toString . 82
 7.8.10. getMessage . 82
 8. Sample Applications . 83
 8.1. Simple GSS Context Initiator 83
 8.2. Simple GSS Context Acceptor 87
 9. Security Considerations 90
 10. IANA Considerations . 91
 11. Changes since RFC 5653 91
 12. Changes since RFC 2853 93
 13. References . 94
 13.1. Normative References 94
 13.2. Informative References 95
 Acknowledgments . 96
 Authors’ Addresses . 96

1. Introduction

 This document specifies Java language bindings for the Generic
 Security Services Application Programming Interface (GSS-API) version
 2. GSS-API version 2 is described in a language-independent format
 in RFC 2743 [RFC2743]. The GSS-API allows a caller application to
 authenticate a principal identity, delegate rights to a peer, and
 apply security services such as confidentiality and integrity on a
 per-message basis.

 This document and its predecessors, RFC 2853 [RFC2853] and RFC 5653
 [RFC5653], leverage the work done by the working group (WG) in the
 area of RFC 2743 [RFC2743] and the C-bindings of RFC 2744 [RFC2744].
 Whenever appropriate, text has been used from the C-bindings document
 (RFC 2744) to explain generic concepts and provide direction to the
 implementors.

Upadhyay, et al. Standards Track [Page 6]

RFC 8353 Java GSS-API Update May 2018

 The design goals of this API have been to satisfy all the
 functionality defined in RFC 2743 [RFC2743] and to provide these
 services in an object-oriented method. The specification also aims
 to satisfy the needs of both types of Java application developers,
 those who would like access to a "system-wide" GSS-API
 implementation, as well as those who would want to provide their own
 "custom" implementation.

 A system-wide implementation is one that is available to all
 applications in the form of a library package. It may be the
 standard package in the Java runtime environment (JRE) being used, or
 it may be additionally installed and accessible to any application
 via the CLASSPATH.

 A custom implementation of the GSS-API, on the other hand, is one
 that would, in most cases, be bundled with the application during
 distribution. It is expected that such an implementation would be
 meant to provide for some particular need of the application, such as
 support for some specific mechanism.

 The design of this API also aims to provide a flexible framework to
 add and manage GSS-API mechanisms. GSS-API leverages the Java
 Cryptography Architecture (JCA) provider model to support the
 plugability of mechanisms. Mechanisms can be added on a system-wide
 basis, where all users of the framework will have them available.
 The specification also allows for the addition of mechanisms per
 instance of the GSS-API.

 Lastly, this specification presents an API that will naturally fit
 within the operation environment of the Java platform. Readers are
 assumed to be familiar with both the GSS-API and the Java platform.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. GSS-API Operational Paradigm

 "Generic Security Service Application Programming Interface, Version
 2" [RFC2743] defines a generic security API to calling applications.
 It allows a communicating application to authenticate the user
 associated with another application, to delegate rights to another
 application, and to apply security services such as confidentiality
 and integrity on a per-message basis.

Upadhyay, et al. Standards Track [Page 7]

RFC 8353 Java GSS-API Update May 2018

 There are four stages to using GSS-API:

 1) The application acquires a set of credentials with which it may
 prove its identity to other processes. The application’s
 credentials vouch for its global identity, which may or may not be
 related to any local username under which it may be running.

 2) A pair of communicating applications establish a joint security
 context using their credentials. The security context
 encapsulates shared state information, which is required in order
 that per-message security services may be provided. Examples of
 state information that might be shared between applications as
 part of a security context are cryptographic keys and message
 sequence numbers. As part of the establishment of a security
 context, the context initiator is authenticated to the responder
 and may require that the responder is authenticated back to the
 initiator. The initiator may optionally give the responder the
 right to initiate further security contexts, acting as an agent or
 delegate of the initiator. This transfer of rights is termed
 "delegation" and is achieved by creating a set of credentials,
 similar to those used by the initiating application, but which may
 be used by the responder.

 A GSSContext object is used to establish and maintain the shared
 information that makes up the security context. Certain
 GSSContext methods will generate a token, which applications treat
 as cryptographically protected, opaque data. The caller of such a
 GSSContext method is responsible for transferring the token to the
 peer application, encapsulated if necessary in an application-to-
 application protocol. On receipt of such a token, the peer
 application should pass it to a corresponding GSSContext method,
 which will decode the token and extract the information, updating
 the security context state information accordingly.

 3) Per-message services are invoked on a GSSContext object to apply
 either:

 integrity and data origin authentication, or

 confidentiality, integrity, and data origin authentication

 to application data, which are treated by GSS-API as arbitrary
 octet strings. An application transmitting a message that it
 wishes to protect will call the appropriate GSSContext method
 (getMIC or wrap) to apply protection before sending the resulting
 token to the receiving application. The receiver will pass the
 received token (and, in the case of data protected by getMIC, the

Upadhyay, et al. Standards Track [Page 8]

RFC 8353 Java GSS-API Update May 2018

 accompanying message data) to the corresponding decoding method of
 the GSSContext interface (verifyMIC or unwrap) to remove the
 protection and validate the data.

 4) At the completion of a communications session (which may extend
 across several transport connections), each application uses a
 GSSContext method to invalidate the security context and release
 any system or cryptographic resources held. Multiple contexts may
 also be used (either successively or simultaneously) within a
 single communications association, at the discretion of the
 applications.

4. Additional Controls

 This section discusses the OPTIONAL services that a context initiator
 may request of the GSS-API before the context establishment. Each of
 these services is requested by calling the appropriate mutator method
 in the GSSContext object before the first call to init is performed.
 Only the context initiator can request context flags.

 The OPTIONAL services defined are:

 Delegation: The (usually temporary) transfer of rights from
 initiator to acceptor, enabling the acceptor to authenticate
 itself as an agent of the initiator.

 Mutual Authentication: In addition to the initiator authenticating
 its identity to the context acceptor, the context acceptor SHOULD
 also authenticate itself to the initiator.

 Replay Detection: In addition to providing message integrity
 services, GSSContext per-message operations of getMIC and wrap
 SHOULD include message numbering information to enable verifyMIC
 and unwrap to detect if a message has been duplicated.

 Out-of-Sequence Detection: In addition to providing message
 integrity services, GSSContext per-message operations (getMIC and
 wrap) SHOULD include message sequencing information to enable
 verifyMIC and unwrap to detect if a message has been received out
 of sequence.

 Anonymous Authentication: The establishment of the security
 context SHOULD NOT reveal the initiator’s identity to the context
 acceptor.

 Some mechanisms may not support all OPTIONAL services, and some
 mechanisms may only support some services in conjunction with others.
 The GSSContext interface offers query methods to allow the

Upadhyay, et al. Standards Track [Page 9]

RFC 8353 Java GSS-API Update May 2018

 verification by the calling application of which services will be
 available from the context when the establishment phase is complete.
 In general, if the security mechanism is capable of providing a
 requested service, it SHOULD do so even if additional services must
 be enabled in order to provide the requested service. If the
 mechanism is incapable of providing a requested service, it SHOULD
 proceed without the service leaving the application to abort the
 context establishment process if it considers the requested service
 to be mandatory.

 Some mechanisms MAY specify that support for some services is
 optional and that implementors of the mechanism need not provide it.
 This is most commonly true of the confidentiality service, often
 because of legal restrictions on the use of data encryption, but it
 may apply to any of the services. Such mechanisms are required to
 send at least one token from acceptor to initiator during context
 establishment when the initiator indicates a desire to use such a
 service, so that the initiating GSS-API can correctly indicate
 whether the service is supported by the acceptor’s GSS-API.

4.1. Delegation

 The GSS-API allows delegation to be controlled by the initiating
 application via the requestCredDeleg method before the first call to
 init has been issued. Some mechanisms do not support delegation, and
 for such mechanisms, attempts by an application to enable delegation
 are ignored.

 The acceptor of a security context, for which the initiator enabled
 delegation, can check if delegation was enabled by using the
 getCredDelegState method of the GSSContext interface. In cases when
 it is enabled, the delegated credential object can be obtained by
 calling the getDelegCred method. The obtained GSSCredential object
 may then be used to initiate subsequent GSS-API security contexts as
 an agent or delegate of the initiator. If the original initiator’s
 identity is "A" and the delegate’s identity is "B", then, depending
 on the underlying mechanism, the identity embodied by the delegated
 credential may be either "A" or "B acting for A".

 For many mechanisms that support delegation, a simple boolean does
 not provide enough control. Examples of additional aspects of
 delegation control that a mechanism might provide to an application
 are duration of delegation, network addresses from which delegation
 is valid, and constraints on the tasks that may be performed by a
 delegate. Such controls are presently outside the scope of the
 GSS-API. GSS-API implementations supporting mechanisms offering
 additional controls SHOULD provide extension routines that allow
 these controls to be exercised (perhaps by modifying the initiator’s

Upadhyay, et al. Standards Track [Page 10]

RFC 8353 Java GSS-API Update May 2018

 GSS-API credential object prior to its use in establishing a
 context). However, the simple delegation control provided by GSS-API
 SHOULD always be able to override other mechanism-specific delegation
 controls. If the application instructs the GSSContext object that
 delegation is not desired, then the implementation MUST NOT permit
 delegation to occur. This is an exception to the general rule that a
 mechanism may enable services even if they are not requested --
 delegation may only be provided at the explicit request of the
 application.

4.2. Mutual Authentication

 Usually, a context acceptor will require that a context initiator
 authenticate itself so that the acceptor may make an access-control
 decision prior to performing a service for the initiator. In some
 cases, the initiator may also request that the acceptor authenticate
 itself. GSS-API allows the initiating application to request this
 mutual authentication service by calling the requestMutualAuth method
 of the GSSContext interface with a "true" parameter before making the
 first call to init. The initiating application is informed as to
 whether or not the context acceptor has authenticated itself. Note
 that some mechanisms may not support mutual authentication, and other
 mechanisms may always perform mutual authentication, whether or not
 the initiating application requests it. In particular, mutual
 authentication may be required by some mechanisms in order to support
 replay or out-of-sequence message detection, and for such mechanisms,
 a request for either of these services will automatically enable
 mutual authentication.

4.3. Replay and Out-of-Sequence Detection

 The GSS-API MAY provide detection of mis-ordered messages once a
 security context has been established. Protection MAY be applied to
 messages by either application, by calling either getMIC or wrap
 methods of the GSSContext interface, and verified by the peer
 application by calling verifyMIC or unwrap for the peer’s GSSContext
 object.

 The getMIC method calculates a cryptographic checksum (authentication
 tag) of an application message, and returns that checksum in a token.
 The application SHOULD pass both the token and the message to the
 peer application, which presents them to the verifyMIC method of the
 peer’s GSSContext object.

Upadhyay, et al. Standards Track [Page 11]

RFC 8353 Java GSS-API Update May 2018

 The wrap method calculates a cryptographic checksum of an application
 message, and places both the checksum and the message inside a single
 token. The application SHOULD pass the token to the peer
 application, which presents it to the unwrap method of the peer’s
 GSSContext object to extract the message and verify the checksum.

 Either pair of routines may be capable of detecting out-of-sequence
 message delivery or the duplication of messages. Details of such
 mis-ordered messages are indicated through supplementary query
 methods of the MessageProp object that is filled in by each of these
 routines.

 A mechanism need not maintain a list of all tokens that have been
 processed in order to support these status codes. A typical
 mechanism might retain information about only the most recent "N"
 tokens processed, allowing it to distinguish duplicates and missing
 tokens within the most recent "N" messages; the receipt of a token
 older than the most recent "N" would result in the isOldToken method
 of the instance of MessageProp to return "true".

4.4. Anonymous Authentication

 In certain situations, an application may wish to initiate the
 authentication process to authenticate a peer, without revealing its
 own identity. As an example, consider an application providing
 access to a database containing medical information and offering
 unrestricted access to the service. A client of such a service might
 wish to authenticate the service (in order to establish trust in any
 information retrieved from it), but might not wish the service to be
 able to obtain the client’s identity (perhaps due to privacy concerns
 about the specific inquiries, or perhaps simply to avoid being placed
 on mailing-lists).

 In normal use of the GSS-API, the initiator’s identity is made
 available to the acceptor as a result of the context establishment
 process. However, context initiators may request that their identity
 not be revealed to the context acceptor. Many mechanisms do not
 support anonymous authentication, and for such mechanisms, the
 request will not be honored. An authentication token will still be
 generated, but the application is always informed if a requested
 service is unavailable, and has the option to abort context
 establishment if anonymity is valued above the other security
 services that would require a context to be established.

 In addition to informing the application that a context is
 established anonymously (via the isAnonymous method of the GSSContext
 class), the getSrcName method of the acceptor’s GSSContext object

Upadhyay, et al. Standards Track [Page 12]

RFC 8353 Java GSS-API Update May 2018

 will, for such contexts, return a reserved internal-form name,
 defined by the implementation.

 The toString method for a GSSName object representing an anonymous
 entity will return a printable name. The returned value will be
 syntactically distinguishable from any valid principal name supported
 by the implementation. The associated name-type Object Identifier
 (OID) will be an OID representing the value of NT_ANONYMOUS. This
 name-type OID will be defined as a public, static Oid object of the
 GSSName class. The printable form of an anonymous name SHOULD be
 chosen such that it implies anonymity, since this name may appear in,
 for example, audit logs. For example, the string "<anonymous>" might
 be a good choice, if no valid printable names supported by the
 implementation can begin with "<" and end with ">".

 When using the equal method of the GSSName interface, and one of the
 operands is a GSSName instance representing an anonymous entity, the
 method MUST return "false".

4.5. Integrity and Confidentiality

 If a GSSContext supports the integrity service, the getMic method may
 be used to create message integrity check tokens on application
 messages.

 If a GSSContext supports the confidentiality service, the wrap method
 may be used to encrypt application messages. Messages are
 selectively encrypted, under the control of the setPrivacy method of
 the MessageProp object used in the wrap method. Confidentiality will
 be applied if the privacy state is set to true.

4.6. Inter-process Context Transfer

 GSS-APIv2 provides functionality that allows a security context to be
 transferred between processes on a single machine. These are
 implemented using the export method of GSSContext and a byte array
 constructor of the same class. The most common use for such a
 feature is a client-server design where the server is implemented as
 a single process that accepts incoming security contexts, which then
 launches child processes to deal with the data on these contexts. In
 such a design, the child processes must have access to the security
 context object created within the parent so that they can use per-
 message protection services and delete the security context when the
 communication session ends.

 Since the security context data structure is expected to contain
 sequencing information, it is impractical in general to share a
 context between processes. Thus, the GSSContext interface provides

Upadhyay, et al. Standards Track [Page 13]

RFC 8353 Java GSS-API Update May 2018

 an export method that the process, which currently owns the context,
 can call to declare that it has no intention to use the context
 subsequently and to create an inter-process token containing
 information needed by the adopting process to successfully recreate
 the context. After successful completion of export, the original
 security context is made inaccessible to the calling process by
 GSS-API, and any further usage of this object will result in
 failures. The originating process transfers the inter-process token
 to the adopting process, which creates a new GSSContext object using
 the byte array constructor. The properties of the context are
 equivalent to that of the original context.

 The inter-process token MAY contain sensitive data from the original
 security context (including cryptographic keys). Applications using
 inter-process tokens to transfer security contexts MUST take
 appropriate steps to protect these tokens in transit.

 Implementations are not required to support the inter-process
 transfer of security contexts. Calling the isTransferable method of
 the GSSContext interface will indicate if the context object is
 transferable.

4.7. The Use of Incomplete Contexts

 Some mechanisms may allow the per-message services to be used before
 the context establishment process is complete. For example, a
 mechanism may include sufficient information in its initial context-
 level tokens for the context acceptor to immediately decode messages
 protected with wrap or getMIC. For such a mechanism, the initiating
 application need not wait until subsequent context-level tokens have
 been sent and received before invoking the per-message protection
 services.

 An application can invoke the isProtReady method of the GSSContext
 class to determine if the per-message services are available in
 advance of complete context establishment. Applications wishing to
 use per-message protection services on partially established contexts
 SHOULD query this method before attempting to invoke wrap or getMIC.

Upadhyay, et al. Standards Track [Page 14]

RFC 8353 Java GSS-API Update May 2018

5. Calling Conventions

 Java provides the implementors with not just a syntax for the
 language but also an operational environment. For example, memory is
 automatically managed and does not require application intervention.
 These language features have allowed for a simpler API and have led
 to the elimination of certain GSS-API functions.

 Moreover, the JCA defines a provider model that allows for
 implementation-independent access to security services. Using this
 model, applications can seamlessly switch between different
 implementations and dynamically add new services. The GSS-API
 specification leverages these concepts by the usage of providers for
 the mechanism implementations.

5.1. Package Name

 The classes and interfaces defined in this document reside in the
 package called "org.ietf.jgss". Applications that wish to make use
 of this API should import this package name as shown in Section 8.

5.2. Provider Framework

 Java security APIs use a provider architecture that allows
 applications to be implementation independent and security API
 implementations to be modular and extensible. The
 java.security.Provider class is an abstract class that a vendor
 extends. This class maps various properties that represent different
 security services that are available to the names of the actual
 vendor classes that implement those services. When requesting a
 service, an application simply specifies the desired provider, and
 the API delegates the request to service classes available from that
 provider.

 Using the Java security provider model insulates applications from
 implementation details of the services they wish to use.
 Applications can switch between providers easily, and new providers
 can be added as needed, even at runtime.

 The GSS-API may use providers to find components for specific
 underlying security mechanisms. For instance, a particular provider
 might contain components that will allow the GSS-API to support the
 Kerberos v5 mechanism [RFC4121], and another might contain components
 to support the Simple Public-Key GSS-API Mechanism (SPKM) [RFC2025].
 By delegating mechanism-specific functionality to the components
 obtained from providers, the GSS-API can be extended to support an
 arbitrary list of mechanisms.

Upadhyay, et al. Standards Track [Page 15]

RFC 8353 Java GSS-API Update May 2018

 How the GSS-API locates and queries these providers is beyond the
 scope of this document and is being deferred to a Service Provider
 Interface (SPI) specification. The availability of such an SPI
 specification is not mandatory for the adoption of this API
 specification nor is it mandatory to use providers in the
 implementation of a GSS-API framework. However, by using the
 provider framework together with an SPI specification, one can create
 an extensible and implementation-independent GSS-API framework.

5.3. Integer Types

 All numeric values are declared as the "int" primitive Java type.
 The Java specification guarantees that this will be a 32-bit two’s
 complement signed number.

 Throughout this API, the "boolean" primitive Java type is used
 wherever a boolean value is required or returned.

5.4. Opaque Data Types

 Java byte arrays are used to represent opaque data types that are
 consumed and produced by the GSS-API in the form of tokens. Java
 arrays contain a length field that enables the users to easily
 determine their size. The language has automatic garbage collection
 that alleviates the need by developers to release memory and
 simplifies buffer ownership issues.

5.5. Strings

 The String object will be used to represent all textual data. The
 Java String object transparently treats all characters as two-byte
 Unicode characters, which allows support for many locals. All
 routines returning or accepting textual data will use the String
 object.

5.6. Object Identifiers

 An Oid object will be used to represent Universal Object Identifiers
 (OIDs). OIDs are ISO-defined, hierarchically globally interpretable
 identifiers used within the GSS-API framework to identify security
 mechanisms and name formats. The Oid object can be created from a
 string representation of its dot notation (e.g., "1.3.6.1.5.6.2") as
 well as from its ASN.1 DER encoding. Methods are also provided to
 test equality and provide the DER representation for the object.

Upadhyay, et al. Standards Track [Page 16]

RFC 8353 Java GSS-API Update May 2018

 An important feature of the Oid class is that its instances are
 immutable -- i.e., there are no methods defined that allow one to
 change the contents of an Oid object. This property allows one to
 treat these objects as "statics" without the need to perform copies.

 Certain routines allow the usage of a default OID. A "null" value
 can be used in those cases.

5.7. Object Identifier Sets

 The Java bindings represent Object Identifier sets as arrays of Oid
 objects. All Java arrays contain a length field, which allows for
 easy manipulation and reference.

 In order to support the full functionality of RFC 2743 [RFC2743], the
 Oid class includes a method that checks for existence of an Oid
 object within a specified array. This is equivalent in functionality
 to gss_test_oid_set_member. The use of Java arrays and Java’s
 automatic garbage collection has eliminated the need for the
 following routines: gss_create_empty_oid_set, gss_release_oid_set,
 and gss_add_oid_set_member. Java GSS-API implementations will not
 contain them. Java’s automatic garbage collection and the immutable
 property of the Oid object eliminates the memory management issues of
 the C counterpart.

 Whenever a default value for an Object Identifier set is required, a
 "null" value can be used. Please consult the detailed method
 description for details.

5.8. Credentials

 GSS-API credentials are represented by the GSSCredential interface.
 The interface contains several constructs to allow for the creation
 of most common credential objects for the initiator and the acceptor.
 Comparisons are performed using the interface’s "equals" method. The
 following general description of GSS-API credentials is included from
 the C-bindings specification [RFC2744]:

 GSS-API credentials can contain mechanism-specific principal
 authentication data for multiple mechanisms. A GSS-API credential
 is composed of a set of credential-elements, each of which is
 applicable to a single mechanism. A credential may contain at
 most one credential-element for each supported mechanism. A
 credential-element identifies the data needed by a single
 mechanism to authenticate a single principal, and conceptually
 contains two credential-references that describe the actual
 mechanism-specific authentication data, one to be used by GSS-API
 for initiating contexts, and one to be used for accepting

Upadhyay, et al. Standards Track [Page 17]

RFC 8353 Java GSS-API Update May 2018

 contexts. For mechanisms that do not distinguish between acceptor
 and initiator credentials, both references would point to the same
 underlying mechanism-specific authentication data.

 Credentials describe a set of mechanism-specific principals and give
 their holder the ability to act as any of those principals. All
 principal identities asserted by a single GSS-API credential SHOULD
 belong to the same entity, although enforcement of this property is
 an implementation-specific matter. A single GSSCredential object
 represents all the credential elements that have been acquired.

 The creation of a GSSContext object allows the value of "null" to be
 specified as the GSSCredential input parameter. This will indicate a
 desire by the application to act as a default principal. While
 individual GSS-API implementations are free to determine such default
 behavior as appropriate to the mechanism, the following default
 behavior by these routines is RECOMMENDED for portability:

 For the initiator side of the context:

 1) If there is only a single principal capable of initiating security
 contexts for the chosen mechanism that the application is
 authorized to act on behalf of, then that principal shall be used;
 otherwise,

 2) If the platform maintains a concept of a default network identity
 for the chosen mechanism, and if the application is authorized to
 act on behalf of that identity for the purpose of initiating
 security contexts, then the principal corresponding to that
 identity shall be used; otherwise,

 3) If the platform maintains a concept of a default local identity,
 and provides a means to map local identities into network
 identities for the chosen mechanism, and if the application is
 authorized to act on behalf of the network-identity image of the
 default local identity for the purpose of initiating security
 contexts using the chosen mechanism, then the principal
 corresponding to that identity shall be used; otherwise,

 4) A user-configurable default identity should be used.

 For the acceptor side of the context:

 1) If there is only a single authorized principal identity capable of
 accepting security contexts for the chosen mechanism, then that
 principal shall be used; otherwise,

Upadhyay, et al. Standards Track [Page 18]

RFC 8353 Java GSS-API Update May 2018

 2) If the mechanism can determine the identity of the target
 principal by examining the context-establishment token processed
 during the accept method, and if the accepting application is
 authorized to act as that principal for the purpose of accepting
 security contexts using the chosen mechanism, then that principal
 identity shall be used; otherwise,

 3) If the mechanism supports context acceptance by any principal, and
 if mutual authentication was not requested, any principal that the
 application is authorized to accept security contexts under using
 the chosen mechanism may be used; otherwise,

 4) A user-configurable default identity shall be used.

 The purpose of the above rules is to allow security contexts to be
 established by both initiator and acceptor using the default behavior
 whenever possible. Applications requesting default behavior are
 likely to be more portable across mechanisms and implementations than
 ones that instantiate a GSSCredential object representing a specific
 identity.

5.9. Contexts

 The GSSContext interface is used to represent one end of a GSS-API
 security context, storing state information appropriate to that end
 of the peer communication, including cryptographic state information.
 The instantiation of the context object is done differently by the
 initiator and the acceptor. After the context has been instantiated,
 the initiator MAY choose to set various context options that will
 determine the characteristics of the desired security context. When
 all the application-desired characteristics have been set, the
 initiator will call the initSecContext method, which will produce a
 token for consumption by the peer’s acceptSecContext method. It is
 the responsibility of the application to deliver the authentication
 token(s) between the peer applications for processing. Upon
 completion of the context-establishment phase, context attributes can
 be retrieved, by both the initiator and acceptor, using the accessor
 methods. These will reflect the actual attributes of the established
 context and might not match the initiator-requested values. If any
 retrieved attribute does not match the desired value but it is
 necessary for the application protocol, the application SHOULD
 destroy the security context and not use it for application traffic.
 Otherwise, at this point, the context can be used by the application
 to apply cryptographic services to its data.

Upadhyay, et al. Standards Track [Page 19]

RFC 8353 Java GSS-API Update May 2018

5.10. Authentication Tokens

 A token is a caller-opaque type that GSS-API uses to maintain
 synchronization between each end of the GSS-API security context.
 The token is a cryptographically protected octet string, generated by
 the underlying mechanism at one end of a GSS-API security context for
 use by the peer mechanism at the other end. Encapsulation (if
 required) within the application protocol and transfer of the token
 are the responsibility of the peer applications.

 Java GSS-API uses byte arrays to represent authentication tokens.

5.11. Inter-process Tokens

 Certain GSS-API routines are intended to transfer data between
 processes in multi-process programs. These routines use a caller-
 opaque octet string, generated by the GSS-API in one process for use
 by the GSS-API in another process. The calling application is
 responsible for transferring such tokens between processes. Note
 that, while GSS-API implementors are encouraged to avoid placing
 sensitive information within inter-process tokens, or to
 cryptographically protect them, many implementations will be unable
 to avoid placing key material or other sensitive data within them.
 It is the application’s responsibility to ensure that inter-process
 tokens are protected in transit and transferred only to processes
 that are trustworthy. An inter-process token is represented using a
 byte array emitted from the export method of the GSSContext
 interface. The receiver of the inter-process token would initialize
 a GSSContext object with this token to create a new context. Once a
 context has been exported, the GSSContext object is invalidated and
 is no longer available.

5.12. Error Reporting

 RFC 2743 [RFC2743] defined the usage of major and minor status values
 for the signaling of GSS-API errors. The major code, also called the
 GSS status code, is used to signal errors at the GSS-API level,
 independent of the underlying mechanism(s). The minor status value
 or Mechanism status code, is a mechanism-defined error value
 indicating a mechanism-specific error code.

 Java GSS-API uses exceptions implemented by the GSSException class to
 signal both minor and major error values. Both mechanism-specific
 errors and GSS-API level errors are signaled through instances of
 this class. The usage of exceptions replaces the need for major and
 minor codes to be used within the API calls. The GSSException class
 also contains methods to obtain textual representations for both the

Upadhyay, et al. Standards Track [Page 20]

RFC 8353 Java GSS-API Update May 2018

 major and minor values, which is equivalent to the functionality of
 gss_display_status. A GSSException object MAY also include an output
 token that SHOULD be sent to the peer.

 If an exception is thrown during context establishment, the context
 negotiation has failed and the GSSContext object MUST be abandoned.
 If it is thrown in a per-message call, the context MAY remain useful.

5.12.1. GSS Status Codes

 GSS status codes indicate errors that are independent of the
 underlying mechanism(s) used to provide the security service. The
 errors that can be indicated via a GSS status code are generic API
 routine errors (errors that are defined in the GSS-API
 specification). These bindings take advantage of the Java exceptions
 mechanism, thus eliminating the need for calling errors.

 A GSS status code indicates a single fatal generic API error from the
 routine that has thrown the GSSException. Using exceptions announces
 that a fatal error has occurred during the execution of the method.
 The GSS-API operational model also allows for the signaling of
 supplementary status information from the per-message calls. These
 need to be handled as return values since using exceptions is not
 appropriate for informatory or warning-like information. The methods
 that are capable of producing supplementary information are the two
 per-message methods GSSContext.verifyMIC() and GSSContext.unwrap().
 These methods fill the supplementary status codes in the MessageProp
 object that was passed in.

 A GSSException object, along with providing the functionality for
 setting the various error codes and translating them into textual
 representation, also contains the definitions of all the numeric
 error values. The following table lists the definitions of error
 codes:

Upadhyay, et al. Standards Track [Page 21]

RFC 8353 Java GSS-API Update May 2018

 Table: GSS Status Codes

 +----------------------+-------+------------------------------------+
 | Name | Value | Meaning |
 +----------------------+-------+------------------------------------+
BAD_BINDINGS	1	Incorrect channel bindings were
		supplied.
BAD_MECH	2	An unsupported mechanism was
		requested.
BAD_NAME	3	An invalid name was supplied.
BAD_NAMETYPE	4	A supplied name was of an
		unsupported type.
BAD_STATUS	5	An invalid status code was
		supplied.
BAD_MIC	6	A token had an invalid MIC.
CONTEXT_EXPIRED	7	The context has expired.
CREDENTIALS_EXPIRED	8	The referenced credentials have
		expired.
DEFECTIVE_CREDENTIAL	9	A supplied credential was invalid.
DEFECTIVE_TOKEN	10	A supplied token was invalid.
FAILURE	11	Miscellaneous failure, unspecified
		at the GSS-API level.
NO_CONTEXT	12	Invalid context has been supplied.
NO_CRED	13	No credentials were supplied, or
		the credentials were unavailable
		or inaccessible.
BAD_QOP	14	The quality of protection (QOP)
		requested could not be provided.
UNAUTHORIZED	15	The operation is forbidden by the
		local security policy.
UNAVAILABLE	16	The operation or option is
		unavailable.
DUPLICATE_ELEMENT	17	The requested credential element
		already exists.
NAME_NOT_MN	18	The provided name was not a
		mechanism name.
 +----------------------+-------+------------------------------------+

Upadhyay, et al. Standards Track [Page 22]

RFC 8353 Java GSS-API Update May 2018

 The following four status codes (DUPLICATE_TOKEN, OLD_TOKEN,
 UNSEQ_TOKEN, and GAP_TOKEN) are contained in a GSSException only if
 detected during context establishment, in which case it is a fatal
 error. (During per-message calls, these values are indicated as
 supplementary information contained in the MessageProp object.) They
 are:

 +-----------------+-------+---+
 | Name | Value | Meaning |
 +-----------------+-------+---+
DUPLICATE_TOKEN	19	The token was a duplicate of an earlier
		version.
OLD_TOKEN	20	The token’s validity period has
		expired.
UNSEQ_TOKEN	21	A later token has already been
		processed.
GAP_TOKEN	22	The expected token was not received.
 +-----------------+-------+---+

 The GSS major status code of FAILURE is used to indicate that the
 underlying mechanism detected an error for which no specific GSS
 status code is defined. The mechanism-specific status code can
 provide more details about the error.

 The different major status codes that can be contained in the
 GSSException object thrown by the methods in this specification are
 the same as the major status codes returned by the corresponding
 calls in RFC 2743 [RFC2743].

5.12.2. Mechanism-Specific Status Codes

 Mechanism-specific status codes are communicated in two ways: they
 are part of any GSSException thrown from the mechanism-specific layer
 to signal a fatal error, or they are part of the MessageProp object
 that the per-message calls use to signal non-fatal errors.

 A default value of 0 in either the GSSException object or the
 MessageProp object will be used to represent the absence of any
 mechanism-specific status code.

5.12.3. Supplementary Status Codes

 Supplementary status codes are confined to the per-message methods of
 the GSSContext interface. Because of the informative nature of these
 errors, it is not appropriate to use exceptions to signal them.
 Instead, the per-message operations of the GSSContext interface
 return these values in a MessageProp object.

Upadhyay, et al. Standards Track [Page 23]

RFC 8353 Java GSS-API Update May 2018

 The MessageProp class defines query methods that return boolean
 values indicating the following supplementary states:

 Table: Supplementary Status Methods

 +------------------+--+
 | Method Name | Meaning when "true" is returned |
 +------------------+--+
isDuplicateToken	The token was a duplicate of an earlier token.
isOldToken	The token’s validity period has expired.
isUnseqToken	A later token has already been processed.
isGapToken	An expected per-message token was not
	received.
 +------------------+--+

 A "true" return value for any of the above methods indicates that the
 token exhibited the specified property. The application MUST
 determine the appropriate course of action for these supplementary
 values. They are not treated as errors by the GSS-API.

5.13. Names

 A name is used to identify a person or entity. GSS-API authenticates
 the relationship between a name and the entity claiming the name.

 Since different authentication mechanisms may employ different
 namespaces for identifying their principals, GSS-API’s naming support
 is necessarily complex in multi-mechanism environments (or even in
 some single-mechanism environments where the underlying mechanism
 supports multiple namespaces).

 Two distinct conceptual representations are defined for names:

 1) A GSS-API form represented by implementations of the GSSName
 interface: A single GSSName object MAY contain multiple names from
 different namespaces, but all names SHOULD refer to the same
 entity. An example of such an internal name would be the name
 returned from a call to the getName method of the GSSCredential
 interface, when applied to a credential containing credential
 elements for multiple authentication mechanisms employing
 different namespaces. This GSSName object will contain a distinct
 name for the entity for each authentication mechanism.

 For GSS-API implementations supporting multiple namespaces,
 GSSName implementations MUST contain sufficient information to
 determine the namespace to which each primitive name belongs.

Upadhyay, et al. Standards Track [Page 24]

RFC 8353 Java GSS-API Update May 2018

 2) Mechanism-specific contiguous byte array and string forms:
 Different GSSName initialization methods are provided to handle
 both byte array and string formats and to accommodate various
 calling applications and name types. These formats are capable of
 containing only a single name (from a single namespace).
 Contiguous string names are always accompanied by an Object
 Identifier specifying the namespace to which the name belongs, and
 their format is dependent on the authentication mechanism that
 employs that name. The string name forms are assumed to be
 printable and may therefore be used by GSS-API applications for
 communication with their users. The byte array name formats are
 assumed to be in non-printable formats (e.g., the byte array
 returned from the export method of the GSSName interface).

 A GSSName object can be converted to a contiguous representation by
 using the toString method. This will guarantee that the name will be
 converted to a printable format. Different initialization methods in
 the GSSName interface are defined to allow support for multiple
 syntaxes for each supported namespace and to allow users the freedom
 to choose a preferred name representation. The toString method
 SHOULD use an implementation-chosen printable syntax for each
 supported name type. To obtain the printable name type, the
 getStringNameType method can be used.

 There is no guarantee that calling the toString method on the GSSName
 interface will produce the same string form as the original imported
 string name. Furthermore, it is possible that the name was not even
 constructed from a string representation. The same applies to
 namespace identifiers, which may not necessarily survive unchanged
 after a journey through the internal name form. An example of this
 might be a mechanism that authenticates X.500 names but provides an
 algorithmic mapping of Internet DNS names into X.500. That
 mechanism’s implementation of GSSName might, when presented with a
 DNS name, generate an internal name that contained both the original
 DNS name and the equivalent X.500 name. Alternatively, it might only
 store the X.500 name. In the latter case, the toString method of
 GSSName would most likely generate a printable X.500 name, rather
 than the original DNS name.

 The context acceptor can obtain a GSSName object representing the
 entity performing the context initiation (through the usage of the
 getSrcName method). Since this name has been authenticated by a
 single mechanism, it contains only a single name (even if the
 internal name presented by the context initiator to the GSSContext
 object had multiple components). Such names are termed internal-
 mechanism names (or MNs), and the names emitted by the GSSContext
 interface’s getSrcName and getTargName methods are always of this
 type. Since some applications may require MNs without wanting to

Upadhyay, et al. Standards Track [Page 25]

RFC 8353 Java GSS-API Update May 2018

 incur the overhead of an authentication operation, creation methods
 are provided that take not only the name buffer and name type but
 also the mechanism OID for which this name should be created. When
 dealing with an existing GSSName object, the canonicalize method may
 be invoked to convert a general internal name into an MN.

 GSSName objects can be compared using their equal method, which
 returns "true" if the two names being compared refer to the same
 entity. This is the preferred way to perform name comparisons
 instead of using the printable names that a given GSS-API
 implementation may support. Since GSS-API assumes that all primitive
 names contained within a given internal name refer to the same
 entity, equal can return "true" if the two names have at least one
 primitive name in common. If the implementation embodies knowledge
 of equivalence relationships between names taken from different
 namespaces, this knowledge may also allow successful comparisons of
 internal names containing no overlapping primitive elements.
 However, applications SHOULD note that to avoid surprising behavior,
 it is best to ensure that the names being compared are either both
 mechanism names for the same mechanism or both internal names that
 are not mechanism names. This holds whether the equals method is
 used directly or the export method is used to generate byte strings
 that are then compared byte-by-byte.

 When used in large access control lists, the overhead of creating a
 GSSName object on each name and invoking the equal method on each
 name from the Access Control List (ACL) may be prohibitive. As an
 alternative way of supporting this case, GSS-API defines a special
 form of the contiguous byte array name, which MAY be compared
 directly (byte by byte). Contiguous names suitable for comparison
 are generated by the export method. Exported names MAY be
 re-imported by using the byte array constructor and specifying the
 NT_EXPORT_NAME as the name type Object Identifier. The resulting
 GSSName name will also be an MN.

 The GSSName interface defines public static Oid objects representing
 the standard name types. Structurally, an exported name object
 consists of a header containing an OID identifying the mechanism that
 authenticated the name, and a trailer containing the name itself,
 where the syntax of the trailer is defined by the individual
 mechanism specification. Detailed description of the format is
 specified in the language-independent GSS-API specification
 [RFC2743].

 Note that the results obtained by using the equals method will in
 general be different from those obtained by invoking canonicalize and
 export and then comparing the byte array output. The first series of
 operation determines whether two (unauthenticated) names identify the

Upadhyay, et al. Standards Track [Page 26]

RFC 8353 Java GSS-API Update May 2018

 same principal; the second determines whether a particular mechanism
 would authenticate them as the same principal. These two operations
 will in general give the same results only for MNs.

 It is important to note that the above are guidelines as to how
 GSSName implementations SHOULD behave and are not intended to be
 specific requirements of how name objects must be implemented. The
 mechanism designers are free to decide on the details of their
 implementations of the GSSName interface as long as the behavior
 satisfies the above guidelines.

5.14. Channel Bindings

 GSS-API supports the use of user-specified tags to identify a given
 context to the peer application. These tags are intended to be used
 to identify the particular communications channel that carries the
 context. Channel bindings are communicated to the GSS-API using the
 ChannelBinding object. The application MAY use byte arrays as well
 as instances of InetAddress to specify the application data to be
 used in the channel binding. The InetAddress for the initiator and/
 or acceptor can be used within an instance of a ChannelBinding.
 ChannelBinding can be set for the GSSContext object using the
 setChannelBinding method before the first call to init or accept has
 been performed. Unless the setChannelBinding method has been used to
 set the ChannelBinding for a GSSContext object, "null" ChannelBinding
 will be assumed. InetAddress is currently the only address type
 defined within the Java platform and as such, it is the only one
 supported within the ChannelBinding class. Applications that use
 other types of addresses can include them as part of the application-
 specific data.

 Conceptually, the GSS-API concatenates the initiator and acceptor
 address information and the application-supplied byte array to form
 an octet string. The mechanism calculates a Message Integrity Code
 (MIC) over this octet string and binds the MIC to the context
 establishment token emitted by the init method of the GSSContext
 interface. The same bindings are set by the context acceptor for its
 GSSContext object, and during processing of the accept method, a MIC
 is calculated in the same way. The calculated MIC is compared with
 that found in the token, and if the MICs differ, accept will throw a
 GSSException with the major code set to BAD_BINDINGS, and the context
 will not be established. Some mechanisms may include the actual
 channel-binding data in the token (rather than just a MIC);
 applications SHOULD therefore not use confidential data as channel-
 binding components.

Upadhyay, et al. Standards Track [Page 27]

RFC 8353 Java GSS-API Update May 2018

 Individual mechanisms may impose additional constraints on addresses
 that may appear in channel bindings. For example, a mechanism may
 verify that the initiator address field of the channel binding
 contains the correct network address of the host system. Portable
 applications SHOULD therefore ensure that they either provide correct
 information for the address fields or omit the setting of the
 addressing information.

5.15. Optional Parameters

 Whenever the application wishes to omit an optional parameter, the
 "null" value SHALL be used. The detailed method descriptions
 indicate which parameters are optional. Method overloading has also
 been used as a technique to indicate default parameters.

6. Introduction to GSS-API Classes and Interfaces

 This section presents a brief description of the classes and
 interfaces that constitute the GSS-API. The implementations of these
 are obtained from the CLASSPATH defined by the application. If Java
 GSS becomes part of the standard Java APIs, then these classes will
 be available by default on all systems as part of the JRE’s system
 classes.

 This section also shows the corresponding RFC 2743 [RFC2743]
 functionality implemented by each of the classes. Detailed
 description of these classes and their methods is presented in
 Section 7.

6.1. GSSManager Class

 This abstract class serves as a factory to instantiate
 implementations of the GSS-API interfaces and also provides methods
 to make queries about underlying security mechanisms.

 A default implementation can be obtained using the static method
 getInstance(). Applications that desire to provide their own
 implementation of the GSSManager class can simply extend the abstract
 class themselves.

Upadhyay, et al. Standards Track [Page 28]

RFC 8353 Java GSS-API Update May 2018

 This class contains equivalents of the following RFC 2743 [RFC2743]
 routines:

 +----------------------------+-------------------------+------------+
 | RFC 2743 Routine | Function | Section(s) |
 +----------------------------+-------------------------+------------+
gss_import_name	Create an internal name	7.1.5 -
	from the supplied	7.1.8
	information.	
gss_acquire_cred	Acquire credential for	7.1.9 -
	use.	7.1.11
gss_import_sec_context	Create a previously	7.1.14
	exported context.	
gss_indicate_mechs	List the mechanisms	7.1.2
	supported by this GSS-	
	API implementation.	
gss_inquire_mechs_for_name	List the mechanisms	7.1.4
	supporting the	
	specified name type.	
gss_inquire_names_for_mech	List the name types	7.1.3
	supported by the	
	specified mechanism.	
 +----------------------------+-------------------------+------------+

6.2. GSSName Interface

 GSS-API names are represented in the Java bindings through the
 GSSName interface. Different name formats and their definitions are
 identified with Universal OIDs. The format of the names can be
 derived based on the unique OID of each name type. The following
 GSS-API routines are provided by the GSSName interface:

Upadhyay, et al. Standards Track [Page 29]

RFC 8353 Java GSS-API Update May 2018

 +-----------------------+------------------------------+------------+
 | RFC 2743 Routine | Function | Section(s) |
 +-----------------------+------------------------------+------------+
gss_display_name	Convert internal name	7.2.6
	representation to text	
	format.	
gss_compare_name	Compare two internal names.	7.2.2,
		7.2.3
gss_release_name	Release resources associated	N/A
	with the internal name.	
gss_canonicalize_name	Convert an internal name to	7.2.4
	a mechanism name.	
gss_export_name	Convert a mechanism name to	7.2.5
	export format.	
gss_duplicate_name	Create a copy of the	N/A
	internal name.	
 +-----------------------+------------------------------+------------+

 The gss_release_name call is not provided as Java does its own
 garbage collection. The gss_duplicate_name call is also redundant;
 the GSSName interface has no mutator methods that can change the
 state of the object, so it is safe for sharing across threads.

6.3. GSSCredential Interface

 The GSSCredential interface is responsible for the encapsulation of
 GSS-API credentials. Credentials identify a single entity and
 provide the necessary cryptographic information to enable the
 creation of a context on behalf of that entity. A single credential
 may contain multiple mechanism-specific credentials, each referred to
 as a credential element. The GSSCredential interface provides the
 functionality of the following GSS-API routines:

 +--------------------------+---------------------------+------------+
 | RFC 2743 Routine | Function | Section(s) |
 +--------------------------+---------------------------+------------+
gss_add_cred	Constructs credentials	7.3.11
	incrementally.	
gss_inquire_cred	Obtain information about	7.3.3 -
	credential.	7.3.10
gss_inquire_cred_by_mech	Obtain per-mechanism	7.3.4 -
	information about a	7.3.9
	credential.	
gss_release_cred	Dispose of credentials	7.3.2
	after use.	
 +--------------------------+---------------------------+------------+

Upadhyay, et al. Standards Track [Page 30]

RFC 8353 Java GSS-API Update May 2018

6.4. GSSContext Interface

 This interface encapsulates the functionality of context-level calls
 required for security context establishment and management between
 peers as well as the per-message services offered to applications. A
 context is established between a pair of peers and allows the usage
 of security services on a per-message basis on application data. It
 is created over a single security mechanism. The GSSContext
 interface provides the functionality of the following GSS-API
 routines:

 +------------------------+-----------------------------+------------+
 | RFC 2743 Routine | Function | Section(s) |
 +------------------------+-----------------------------+------------+
gss_init_sec_context	Initiate the creation of a	7.4.2
	security context with a	
	peer.	
gss_accept_sec_context	Accept a security context	7.4.3
	initiated by a peer.	
gss_delete_sec_context	Destroy a security context.	7.4.5
gss_context_time	Obtain remaining context	7.4.30
	time.	
gss_inquire_context	Obtain context	7.4.21 -
	characteristics.	7.4.35
gss_wrap_size_limit	Determine token-size limit	7.4.6
	for gss_wrap.	
gss_export_sec_context	Transfer security context	7.4.11
	to another process.	
gss_get_mic	Calculate a cryptographic	7.4.9
	Message Integrity Code	
	(MIC) for a message.	
gss_verify_mic	Verify integrity on a	7.4.10
	received message.	
gss_wrap	Attach a MIC to a message	7.4.7
	and optionally encrypt the	
	message content.	
gss_unwrap	Obtain a previously wrapped	7.4.8
	application message	
	verifying its integrity and	
	optionally decrypting it.	
 +------------------------+-----------------------------+------------+

 The functionality offered by the gss_process_context_token routine
 has not been included in the Java bindings specification. The
 corresponding functionality of gss_delete_sec_context has also been
 modified to not return any peer tokens. This has been proposed in

Upadhyay, et al. Standards Track [Page 31]

RFC 8353 Java GSS-API Update May 2018

 accordance to the recommendations stated in RFC 2743 [RFC2743].
 GSSContext does offer the functionality of destroying the locally
 stored context information.

6.5. MessageProp Class

 This helper class is used in the per-message operations on the
 context. An instance of this class is created by the application and
 then passed into the per-message calls. In some cases, the
 application conveys information to the GSS-API implementation through
 this object, and in other cases, the GSS-API returns information to
 the application by setting it in this object. See the description of
 the per-message operations wrap, unwrap, getMIC, and verifyMIC in the
 GSSContext interfaces for details.

6.6. GSSException Class

 Exceptions are used in the Java bindings to signal fatal errors to
 the calling applications. This replaces the major and minor codes
 used in the C-bindings specification as a method of signaling
 failures. The GSSException class handles both minor and major codes,
 as well as their translation into textual representation. All
 GSS-API methods are declared as throwing this exception.

 +--------------------+----------------------------+-----------------+
 | RFC 2743 Routine | Function | Section |
 +--------------------+----------------------------+-----------------+
gss_display_status	Retrieve textual	7.8.5, 7.8.6,
	representation of error	7.8.9, 7.8.10
	codes.	
 +--------------------+----------------------------+-----------------+

6.7. Oid Class

 This utility class is used to represent Universal Object Identifiers
 and their associated operations. GSS-API uses Object Identifiers to
 distinguish between security mechanisms and name types. This class,
 aside from being used whenever an Object Identifier is needed,
 implements the following GSS-API functionality:

 +-------------------------+-------------------------------+---------+
 | RFC 2743 Routine | Function | Section |
 +-------------------------+-------------------------------+---------+
 | gss_test_oid_set_member | Determine if the specified | 7.7.5 |
 | | OID is part of a set of OIDs. | |
 +-------------------------+-------------------------------+---------+

Upadhyay, et al. Standards Track [Page 32]

RFC 8353 Java GSS-API Update May 2018

6.8. ChannelBinding Class

 An instance of this class is used to specify channel-binding
 information to the GSSContext object before the start of a security
 context establishment. The application may use a byte array to
 specify application data to be used in the channel binding as well as
 to use instances of the InetAddress. InetAddress is currently the
 only address type defined within the Java platform and as such, it is
 the only one supported within the ChannelBinding class. Applications
 that use other types of addresses can include them as part of the
 application data.

7. Detailed GSS-API Class Description

 This section lists a detailed description of all the public methods
 that each of the GSS-API classes and interfaces MUST provide.

7.1. public abstract class GSSManager

 The GSSManager class is an abstract class that serves as a factory
 for three GSS interfaces: GSSName, GSSCredential, and GSSContext. It
 also provides methods for applications to determine what mechanisms
 are available from the GSS implementation and what name types these
 mechanisms support. An instance of the default GSSManager subclass
 MAY be obtained through the static method getInstance(), but
 applications are free to instantiate other subclasses of GSSManager.

 All but one method in this class are declared abstract. This means
 that subclasses have to provide the complete implementation for those
 methods. The only exception to this is the static method
 getInstance(), which will have platform-specific code to return an
 instance of the default subclass.

 Platform providers of GSS are REQUIRED not to add any constructors to
 this class, whether the constructor is private, public, or protected.
 This will ensure that all subclasses invoke only the default
 constructor provided to the base class by the compiler.

 A subclass extending the GSSManager abstract class MAY be implemented
 as a modular provider-based layer that utilizes some well-known
 service provider specification. The GSSManager API provides the
 application with methods to set provider preferences on such an
 implementation. These methods also allow the implementation to throw
 a well-defined exception in case provider-based configuration is not
 supported. Applications that expect to be portable SHOULD be aware
 of this and recover cleanly by catching the exception.

Upadhyay, et al. Standards Track [Page 33]

RFC 8353 Java GSS-API Update May 2018

 It is envisioned that there will be three most common ways in which
 providers will be used:

 1) The application does not care about what provider is used (the
 default case).

 2) The application wants a particular provider to be used
 preferentially, either for a particular mechanism or all the time,
 irrespective of the mechanism.

 3) The application wants to use the locally configured providers as
 far as possible, but if support is missing for one or more
 mechanisms, then it wants to fall back on its own provider.

 The GSSManager class has two methods that enable these modes of
 usage: addProviderAtFront() and addProviderAtEnd(). These methods
 have the effect of creating an ordered list of <provider, OID> pairs
 where each pair indicates a preference of provider for a given OID.

 The use of these methods does not require any knowledge of whatever
 service provider specification the GSSManager subclass follows. It
 is hoped that these methods will serve the needs of most
 applications. Additional methods MAY be added to an extended
 GSSManager that could be part of a service provider specification
 that is standardized later.

 When neither of the methods is called, the implementation SHOULD
 choose a default provider for each mechanism it supports.

7.1.1. getInstance

 public static GSSManager getInstance()

 Returns the default GSSManager implementation.

7.1.2. getMechs

 public abstract Oid[] getMechs()

 Returns an array of Oid objects indicating the mechanisms available
 to GSS-API callers. A "null" value is returned when no mechanisms
 are available (an example of this would be when mechanisms are
 dynamically configured, and currently no mechanisms are installed).

Upadhyay, et al. Standards Track [Page 34]

RFC 8353 Java GSS-API Update May 2018

7.1.3. getNamesForMech

 public abstract Oid[] getNamesForMech(Oid mech)
 throws GSSException

 Returns name type OIDs supported by the specified mechanism.

 Parameters:

 mech The Oid object for the mechanism to query.

7.1.4. getMechsForName

 public abstract Oid[] getMechsForName(Oid nameType)

 Returns an array of Oid objects corresponding to the mechanisms that
 support the specific name type. "null" is returned when no mechanisms
 are found to support the specified name type.

 Parameters:

 nameType The Oid object for the name type.

7.1.5. createName

 public abstract GSSName createName(String nameStr, Oid nameType)
 throws GSSException

 Factory method to convert a contiguous string name from the specified
 namespace to a GSSName object. In general, the GSSName object
 created will not be an MN; two examples that are exceptions to this
 are when the namespace type parameter indicates NT_EXPORT_NAME or
 when the GSS-API implementation does not support multiple mechanisms.

 Parameters:

 nameStr The string representing a printable form of the
 name to create.

 nameType The OID specifying the namespace of the printable
 name is supplied. Note that nameType serves to
 describe and qualify the interpretation of the
 input nameStr; it does not necessarily imply a
 type for the output GSSName implementation. The
 "null" value can be used to specify that a
 mechanism-specific default printable syntax
 SHOULD be assumed by each mechanism that examines
 nameStr.

Upadhyay, et al. Standards Track [Page 35]

RFC 8353 Java GSS-API Update May 2018

7.1.6. createName

 public abstract GSSName createName(byte[] name, Oid nameType)
 throws GSSException

 Factory method to convert a contiguous byte array containing a name
 from the specified namespace to a GSSName object. In general, the
 GSSName object created will not be an MN; two examples that are
 exceptions to this are when the namespace type parameter indicates
 NT_EXPORT_NAME or when the GSS-API implementation is not a multi-
 mechanism.

 Parameters:

 name The byte array containing the name to create.

 nameType The OID specifying the namespace of the name
 supplied in the byte array. Note that nameType
 serves to describe and qualify the interpretation
 of the input name byte array; it does not
 necessarily imply a type for the output GSSName
 implementation. The "null" value can be used to
 specify that a mechanism-specific default syntax
 SHOULD be assumed by each mechanism that examines
 the byte array.

7.1.7. createName

 public abstract GSSName createName(String nameStr, Oid nameType,
 Oid mech) throws GSSException

 Factory method to convert a contiguous string name from the specified
 namespace to a GSSName object that is a mechanism name (MN). In
 other words, this method is a utility that does the equivalent of two
 steps: the createName described in Section 7.1.5 and also the
 GSSName.canonicalize() described in Section 7.2.4.

 Parameters:

 nameStr The string representing a printable form of the
 name to create.

Upadhyay, et al. Standards Track [Page 36]

RFC 8353 Java GSS-API Update May 2018

 nameType The OID specifying the namespace of the printable
 name supplied. Note that nameType serves to
 describe and qualify the interpretation of the
 input nameStr; it does not necessarily imply a
 type for the output GSSName implementation. The
 "null" value can be used to specify that a
 mechanism-specific default printable syntax
 SHOULD be assumed when the mechanism examines
 nameStr.

 mech OID specifying the mechanism for which this name
 should be created.

7.1.8. createName

 public abstract GSSName createName(byte[] name, Oid nameType,
 Oid mech) throws GSSException

 Factory method to convert a contiguous byte array containing a name
 from the specified namespace to a GSSName object that is an MN. In
 other words, this method is a utility that does the equivalent of two
 steps: the createName described in Section 7.1.6 and also the
 GSSName.canonicalize() described in Section 7.2.4.

 Parameters:

 name The byte array representing the name to create.

 nameType The OID specifying the namespace of the name
 supplied in the byte array. Note that nameType
 serves to describe and qualify the interpretation
 of the input name byte array; it does not
 necessarily imply a type for the output GSSName
 implementation. The "null" value can be used to
 specify that a mechanism-specific default syntax
 SHOULD be assumed by each mechanism that examines
 the byte array.

 mech OID specifying the mechanism for which this name
 should be created.

Upadhyay, et al. Standards Track [Page 37]

RFC 8353 Java GSS-API Update May 2018

7.1.9. createCredential

 public abstract GSSCredential createCredential(int usage)
 throws GSSException

 Factory method for acquiring default credentials. This will cause
 the GSS-API to use system-specific defaults for the set of
 mechanisms, name, and a DEFAULT lifetime.

 Parameters:

 usage The intended usage for this credential object.
 The value of this parameter MUST be one of:

 GSSCredential.INITIATE_AND_ACCEPT(0),
 GSSCredential.INITIATE_ONLY(1), or
 GSSCredential.ACCEPT_ONLY(2)

7.1.10. createCredential

 public abstract GSSCredential createCredential(GSSName aName,
 int lifetime, Oid mech, int usage)
 throws GSSException

 Factory method for acquiring a single-mechanism credential.

 Parameters:

 aName Name of the principal for whom this credential is
 to be acquired. Use "null" to specify the
 default principal.

 lifetime The number of seconds that credentials should
 remain valid. Use
 GSSCredential.INDEFINITE_LIFETIME to request that
 the credentials have the maximum permitted
 lifetime. Use GSSCredential.DEFAULT_LIFETIME to
 request default credential lifetime.

 mech The OID of the desired mechanism. Use "(Oid)
 null" to request the default mechanism.

 usage The intended usage for this credential object.
 The value of this parameter MUST be one of:

 GSSCredential.INITIATE_AND_ACCEPT(0),
 GSSCredential.INITIATE_ONLY(1), or
 GSSCredential.ACCEPT_ONLY(2)

Upadhyay, et al. Standards Track [Page 38]

RFC 8353 Java GSS-API Update May 2018

7.1.11. createCredential

 public abstract GSSCredential createCredential(GSSName aName,
 int lifetime, Oid[] mechs, int usage)
 throws GSSException

 Factory method for acquiring credentials over a set of mechanisms.
 Acquires credentials for each of the mechanisms specified in the
 array called mechs. To determine the list of mechanisms for which
 the acquisition of credentials succeeded, the caller should use the
 GSSCredential.getMechs() method.

 Parameters:

 aName Name of the principal for whom this credential is
 to be acquired. Use "null" to specify the
 default principal.

 lifetime The number of seconds that credentials should
 remain valid. Use
 GSSCredential.INDEFINITE_LIFETIME to request that
 the credentials have the maximum permitted
 lifetime. Use GSSCredential.DEFAULT_LIFETIME to
 request default credential lifetime.

 mechs The array of mechanisms over which the credential
 is to be acquired. Use "(Oid[]) null" for
 requesting a system-specific default set of
 mechanisms.

 usage The intended usage for this credential object.
 The value of this parameter MUST be one of:

 GSSCredential.INITIATE_AND_ACCEPT(0),
 GSSCredential.INITIATE_ONLY(1), or
 GSSCredential.ACCEPT_ONLY(2)

7.1.12. createContext

 public abstract GSSContext createContext(GSSName peer, Oid mech,
 GSSCredential myCred, int lifetime)
 throws GSSException

 Factory method for creating a context on the initiator’s side.
 Context flags may be modified through the mutator methods prior to
 calling GSSContext.initSecContext().

Upadhyay, et al. Standards Track [Page 39]

RFC 8353 Java GSS-API Update May 2018

 Parameters:

 peer Name of the target peer.

 mech OID of the desired mechanism. Use "(Oid) null"
 to request the default mechanism.

 myCred Credentials of the initiator. Use "null" to act
 as a default initiator principal.

 lifetime The request lifetime, in seconds, for the
 context. Use GSSContext.INDEFINITE_LIFETIME and
 GSSContext.DEFAULT_LIFETIME to request indefinite
 or default context lifetime.

7.1.13. createContext

 public abstract GSSContext createContext(GSSCredential myCred)
 throws GSSException

 Factory method for creating a context on the acceptor’s side. The
 context’s properties will be determined from the input token supplied
 to the accept method.

 Parameters:

 myCred Credentials for the acceptor. Use "null" to act
 as a default acceptor principal.

7.1.14. createContext

 public abstract GSSContext createContext(byte[] interProcessToken)
 throws GSSException

 Factory method for importing a previously exported context. The
 context properties will be determined from the input token and can’t
 be modified through the set methods.

 Parameters:

 interProcessToken The token previously emitted from the export
 method.

Upadhyay, et al. Standards Track [Page 40]

RFC 8353 Java GSS-API Update May 2018

7.1.15. addProviderAtFront

 public abstract void addProviderAtFront(Provider p, Oid mech)
 throws GSSException

 This method is used to indicate to the GSSManager that the
 application would like a particular provider to be used ahead of all
 others when support is desired for the given mechanism. When a value
 of "null" is used instead of an Oid object for the mechanism, the
 GSSManager MUST use the indicated provider ahead of all others no
 matter what the mechanism is. Only when the indicated provider does
 not support the needed mechanism should the GSSManager move on to a
 different provider.

 Calling this method repeatedly preserves the older settings but
 lowers them in preference thus forming an ordered list of provider
 and OID pairs that grows at the top.

 Calling addProviderAtFront with a null Oid will remove all previous
 preferences that were set for this provider in the GSSManager
 instance. Calling addProviderAtFront with a non-null Oid will remove
 any previous preference that was set using this mechanism and this
 provider together.

 If the GSSManager implementation does not support an SPI with a
 pluggable provider architecture, it SHOULD throw a GSSException with
 the status code GSSException.UNAVAILABLE to indicate that the
 operation is unavailable.

 Parameters:

 p The provider instance that should be used
 whenever support is needed for mech.

 mech The mechanism for which the provider is being
 set.

Upadhyay, et al. Standards Track [Page 41]

RFC 8353 Java GSS-API Update May 2018

7.1.15.1. addProviderAtFront Example Code

 Suppose an application desired that provider A always be checked
 first when any mechanism is needed, it would call:

 <CODE BEGINS>
 GSSManager mgr = GSSManager.getInstance();
 // mgr may at this point have its own pre-configured list
 // of provider preferences. The following will prepend to
 // any such list:

 mgr.addProviderAtFront(A, null);
 <CODE ENDS>

 Now if it also desired that the mechanism of OID m1 always be
 obtained from provider B before the previous set A was checked, it
 would call:

 <CODE BEGINS>
 mgr.addProviderAtFront(B, m1);
 <CODE ENDS>

 The GSSManager would then first check with B if m1 was needed. In
 case B did not provide support for m1, the GSSManager would continue
 on to check with A. If any mechanism m2 is needed where m2 is
 different from m1, then the GSSManager would skip B and check with A
 directly.

 Suppose, at a later time, the following call is made to the same
 GSSManager instance:

 <CODE BEGINS>
 mgr.addProviderAtFront(B, null)
 <CODE ENDS>

 then the previous setting with the pair (B, m1) is subsumed by this
 and SHOULD be removed. Effectively, the list of preferences now
 becomes {(B, null), (A, null), ... //followed by the pre-configured
 list}.

 Please note, however, that the following call:

 <CODE BEGINS>
 mgr.addProviderAtFront(A, m3)
 <CODE ENDS>

 does not subsume the previous setting of (A, null), and the list will
 effectively become {(A, m3), (B, null), (A, null), ...}

Upadhyay, et al. Standards Track [Page 42]

RFC 8353 Java GSS-API Update May 2018

7.1.16. addProviderAtEnd

 public abstract void addProviderAtEnd(Provider p, Oid mech)
 throws GSSException

 This method is used to indicate to the GSSManager that the
 application would like a particular provider to be used if no other
 provider can be found that supports the given mechanism. When a
 value of "null" is used instead of an Oid object for the mechanism,
 the GSSManager MUST use the indicated provider for any mechanism.

 Calling this method repeatedly preserves the older settings but
 raises them above newer ones in preference, thus forming an ordered
 list of providers and OID pairs that grows at the bottom. Thus, the
 older provider settings will be utilized first before this one is.

 If there are any previously existing preferences that conflict with
 the preference being set here, then the GSSManager SHOULD ignore this
 request.

 If the GSSManager implementation does not support an SPI with a
 pluggable provider architecture, it SHOULD throw a GSSException with
 the status code GSSException.UNAVAILABLE to indicate that the
 operation is unavailable.

 Parameters:

 p The provider instance that should be used
 whenever support is needed for mech.

 mech The mechanism for which the provider is being
 set.

7.1.16.1. addProviderAtEnd Example Code

 Suppose an application desired that when a mechanism of OID m1 is
 needed, the system default providers always be checked first, and
 only when they do not support m1 should a provider A be checked. It
 would then make the call:

 <CODE BEGINS>
 GSSManager mgr = GSSManager.getInstance();

 mgr.addProviderAtEnd(A, m1);
 <CODE ENDS>

Upadhyay, et al. Standards Track [Page 43]

RFC 8353 Java GSS-API Update May 2018

 Now, if it also desired that provider B be checked for all mechanisms
 after all configured providers have been checked, it would then call:

 <CODE BEGINS>
 mgr.addProviderAtEnd(B, null);
 <CODE ENDS>

 Effectively, the list of preferences now becomes {..., (A, m1), (B,
 null)}.

 Suppose, at a later time, the following call is made to the same
 GSSManager instance:

 <CODE BEGINS>
 mgr.addProviderAtEnd(B, m2)
 <CODE ENDS>

 then the previous setting with the pair (B, null) subsumes this;
 therefore, this request SHOULD be ignored. The same would happen if
 a request is made for the already existing pairs of (A, m1) or (B,
 null).

 Please note, however, that the following call:

 <CODE BEGINS>
 mgr.addProviderAtEnd(A, null)
 <CODE ENDS>

 is not subsumed by the previous setting of (A, m1), and the list will
 effectively become {..., (A, m1), (B, null), (A, null)}.

7.1.17. Example Code

 <CODE BEGINS>
 GSSManager mgr = GSSManager.getInstance();

 // What mechs are available to us?

 Oid[] supportedMechs = mgr.getMechs();

 // Set a preference for the provider to be used when support
 // is needed for the mechanisms:
 // "1.2.840.113554.1.2.2" and "1.3.6.1.5.5.1.1".

 Oid krb = new Oid("1.2.840.113554.1.2.2");
 Oid spkm1 = new Oid("1.3.6.1.5.5.1.1");

 Provider p = (Provider) (new com.foo.security.Provider());

Upadhyay, et al. Standards Track [Page 44]

RFC 8353 Java GSS-API Update May 2018

 mgr.addProviderAtFront(p, krb);
 mgr.addProviderAtFront(p, spkm1);

 // What name types does this spkm implementation support?
 Oid[] nameTypes = mgr.getNamesForMech(spkm1);
 <CODE ENDS>

7.2. public interface GSSName

 This interface encapsulates a single GSS-API principal entity.
 Different name formats and their definitions are identified with
 Universal OIDs. The format of the names can be derived based on the
 unique OID of its namespace type.

7.2.1. Static Constants

 public static final Oid NT_HOSTBASED_SERVICE

 OID indicating a host-based service name form. It is used to
 represent services associated with host computers. This name form is
 constructed using two elements, "service" and "hostname", as follows:

 service@hostname

 Values for the "service" element are registered with the IANA. It
 represents the following value: { iso(1) member-body(2) United
 States(840) mit(113554) infosys(1) gssapi(2) generic(1)
 service_name(4) }

 public static final Oid NT_USER_NAME

 Name type to indicate a named user on a local system. It represents
 the following value: { iso(1) member-body(2) United States(840)
 mit(113554) infosys(1) gssapi(2) generic(1) user_name(1) }

 public static final Oid NT_MACHINE_UID_NAME

 Name type to indicate a numeric user identifier corresponding to a
 user on a local system (e.g., Uid). It represents the following
 value: { iso(1) member-body(2) United States(840) mit(113554)
 infosys(1) gssapi(2) generic(1) machine_uid_name(2) }

 public static final Oid NT_STRING_UID_NAME

 Name type to indicate a string of digits representing the numeric
 user identifier of a user on a local system. It represents the
 following value: { iso(1) member-body(2) United States(840)
 mit(113554) infosys(1) gssapi(2) generic(1) string_uid_name(3) }

Upadhyay, et al. Standards Track [Page 45]

RFC 8353 Java GSS-API Update May 2018

 public static final Oid NT_ANONYMOUS

 Name type for representing an anonymous entity. It represents the
 following value: { iso(1), org(3), dod(6), internet(1), security(5),
 nametypes(6), gss-anonymous-name(3) }

 public static final Oid NT_EXPORT_NAME

 Name type used to indicate an exported name produced by the export
 method. It represents the following value: { iso(1), org(3), dod(6),
 internet(1), security(5), nametypes(6), gss-api-exported-name(4) }

7.2.2. equals

 public boolean equals(GSSName another) throws GSSException

 Compares two GSSName objects to determine whether they refer to the
 same entity. This method MAY throw a GSSException when the names
 cannot be compared. If either of the names represents an anonymous
 entity, the method will return "false".

 Parameters:

 another GSSName object with which to compare.

7.2.3. equals

 public boolean equals(Object another)

 A variation of the equals method, described in Section 7.2.2, that is
 provided to override the Object.equals() method that the implementing
 class will inherit. The behavior is exactly the same as that in
 Section 7.2.2 except that no GSSException is thrown; instead, "false"
 will be returned in the situation where an error occurs. (Note that
 the Java language specification requires that two objects that are
 equal according to the equals(Object) method MUST return the same
 integer result when the hashCode() method is called on them.)

 Parameters:

 another GSSName object with which to compare.

Upadhyay, et al. Standards Track [Page 46]

RFC 8353 Java GSS-API Update May 2018

7.2.4. canonicalize

 public GSSName canonicalize(Oid mech) throws GSSException

 Creates an MN from an arbitrary internal name. This is equivalent to
 using the factory methods described in Sections 7.1.7 or 7.1.8 that
 take the mechanism name as one of their parameters.

 Parameters:

 mech The OID for the mechanism for which the canonical
 form of the name is requested.

7.2.5. export

 public byte[] export() throws GSSException

 Returns a canonical contiguous byte representation of an MN, suitable
 for direct, byte-by-byte comparison by authorization functions. If
 the name is not an MN, implementations MAY throw a GSSException with
 the NAME_NOT_MN status code. If an implementation chooses not to
 throw an exception, it SHOULD use some system-specific default
 mechanism to canonicalize the name and then export it. The format of
 the header of the output buffer is specified in RFC 2743 [RFC2743].

7.2.6. toString

 public String toString()

 Returns a textual representation of the GSSName object. To retrieve
 the printed name format, which determines the syntax of the returned
 string, the getStringNameType method can be used.

7.2.7. getStringNameType

 public Oid getStringNameType() throws GSSException

 Returns the OID representing the type of name returned through the
 toString method. Using this OID, the syntax of the printable name
 can be determined.

7.2.8. isAnonymous

 public boolean isAnonymous()

 Tests if this name object represents an anonymous entity. Returns
 "true" if this is an anonymous name.

Upadhyay, et al. Standards Track [Page 47]

RFC 8353 Java GSS-API Update May 2018

7.2.9. isMN

 public boolean isMN()

 Tests if this name object contains only one mechanism element and is
 thus a mechanism name as defined by RFC 2743 [RFC2743].

7.2.10. Example Code

 Included below are code examples utilizing the GSSName interface.
 The code below creates a GSSName, converts it to an MN, performs a
 comparison, obtains a printable representation of the name, exports
 it, and then re-imports to obtain a new GSSName.

 <CODE BEGINS>
 GSSManager mgr = GSSManager.getInstance();

 // create a host-based service name
 GSSName name = mgr.createName("service@host",
 GSSName.NT_HOSTBASED_SERVICE);

 Oid krb5 = new Oid("1.2.840.113554.1.2.2");

 GSSName mechName = name.canonicalize(krb5);

 // the above two steps are equivalent to the following
 GSSName mechName = mgr.createName("service@host",
 GSSName.NT_HOSTBASED_SERVICE, krb5);

 // perform name comparison
 if (name.equals(mechName))
 print("Names are equals.");

 // obtain textual representation of name and its printable
 // name type
 print(mechName.toString() +
 mechName.getStringNameType().toString());

 // export the name
 byte[] exportName = mechName.export();

 // create a new name object from the exported buffer
 GSSName newName = mgr.createName(exportName,
 GSSName.NT_EXPORT_NAME);
 <CODE ENDS>

Upadhyay, et al. Standards Track [Page 48]

RFC 8353 Java GSS-API Update May 2018

7.3. public interface GSSCredential implements Cloneable

 This interface encapsulates the GSS-API credentials for an entity. A
 credential contains all the necessary cryptographic information to
 enable the creation of a context on behalf of the entity that it
 represents. It MAY contain multiple, distinct, mechanism-specific
 credential elements, each containing information for a specific
 security mechanism, but all referring to the same entity.

 A credential MAY be used to perform context initiation, acceptance,
 or both.

 GSS-API implementations MUST impose a local access-control policy on
 callers to prevent unauthorized callers from acquiring credentials to
 which they are not entitled. GSS-API credential creation is not
 intended to provide a "login to the network" function, as such a
 function would involve the creation of new credentials rather than
 merely acquiring a handle to existing credentials. Such functions,
 if required, SHOULD be defined in implementation-specific extensions
 to the API.

 If credential acquisition is time-consuming for a mechanism, the
 mechanism MAY choose to delay the actual acquisition until the
 credential is required (e.g., by GSSContext). Such mechanism-
 specific implementation decisions SHOULD be invisible to the calling
 application; thus, the query methods immediately following the
 creation of a credential object MUST return valid credential data and
 may therefore incur the overhead of a deferred credential
 acquisition.

 Applications will create a credential object passing the desired
 parameters. The application can then use the query methods to obtain
 specific information about the instantiated credential object
 (equivalent to the gss_inquire routines). When the credential is no
 longer needed, the application SHOULD call the dispose (equivalent to
 gss_release_cred) method to release any resources held by the
 credential object and to destroy any cryptographically sensitive
 information.

 Classes implementing this interface also implement the Cloneable
 interface. This indicates that the class will support the clone()
 method that will allow the creation of duplicate credentials. This
 is useful when called just before the add() call to retain a copy of
 the original credential.

Upadhyay, et al. Standards Track [Page 49]

RFC 8353 Java GSS-API Update May 2018

7.3.1. Static Constants

 public static final int INITIATE_AND_ACCEPT

 Credential usage flag requesting that it be able to be used for both
 context initiation and acceptance. The value of this constant is 0.

 public static final int INITIATE_ONLY

 Credential usage flag requesting that it be able to be used for
 context initiation only. The value of this constant is 1.

 public static final int ACCEPT_ONLY

 Credential usage flag requesting that it be able to be used for
 context acceptance only. The value of this constant is 2.

 public static final int DEFAULT_LIFETIME

 A lifetime constant representing the default credential lifetime.
 The value of this constant is 0.

 public static final int INDEFINITE_LIFETIME

 A lifetime constant representing indefinite credential lifetime. The
 value of this constant is the maximum integer value in Java --
 Integer.MAX_VALUE.

7.3.2. dispose

 public void dispose() throws GSSException

 Releases any sensitive information that the GSSCredential object may
 be containing. Applications SHOULD call this method as soon as the
 credential is no longer needed to minimize the time any sensitive
 information is maintained.

7.3.3. getName

 public GSSName getName() throws GSSException

 Retrieves the name of the entity that the credential asserts.

Upadhyay, et al. Standards Track [Page 50]

RFC 8353 Java GSS-API Update May 2018

7.3.4. getName

 public GSSName getName(Oid mechOID) throws GSSException

 Retrieves a mechanism name of the entity that the credential asserts.
 Equivalent to calling canonicalize() on the name returned by
 Section 7.3.3.

 Parameters:

 mechOID The mechanism for which information should be
 returned.

7.3.5. getRemainingLifetime

 public int getRemainingLifetime() throws GSSException

 Returns the remaining lifetime in seconds for a credential. The
 remaining lifetime is the minimum lifetime for any of the underlying
 credential mechanisms. A return value of
 GSSCredential.INDEFINITE_LIFETIME indicates that the credential does
 not expire. A return value of 0 indicates that the credential is
 already expired.

7.3.6. getRemainingInitLifetime

 public int getRemainingInitLifetime(Oid mech) throws GSSException

 Returns the remaining lifetime in seconds for the credential to
 remain capable of initiating security contexts under the specified
 mechanism. A return value of GSSCredential.INDEFINITE_LIFETIME
 indicates that the credential does not expire for context initiation.
 A return value of 0 indicates that the credential is already expired.

 Parameters:

 mechOID The mechanism for which information should be
 returned.

7.3.7. getRemainingAcceptLifetime

 public int getRemainingAcceptLifetime(Oid mech) throws GSSException

 Returns the remaining lifetime in seconds for the credential to
 remain capable of accepting security contexts under the specified
 mechanism. A return value of GSSCredential.INDEFINITE_LIFETIME
 indicates that the credential does not expire for context acceptance.
 A return value of 0 indicates that the credential is already expired.

Upadhyay, et al. Standards Track [Page 51]

RFC 8353 Java GSS-API Update May 2018

 Parameters:

 mechOID The mechanism for which information should be
 returned.

7.3.8. getUsage

 public int getUsage() throws GSSException

 Returns the credential usage flag as a union over all mechanisms.
 The return value will be one of GSSCredential.INITIATE_AND_ACCEPT(0),
 GSSCredential.INITIATE_ONLY(1), or GSSCredential.ACCEPT_ONLY(2).

 Specifically, GSSCredential.INITIATE_AND_ACCEPT(0) SHOULD be returned
 as long as there exists one credential element allowing context
 initiation and one credential element allowing context acceptance.
 These two credential elements are not necessarily the same one, nor
 do they need to use the same mechanism(s).

7.3.9. getUsage

 public int getUsage(Oid mechOID) throws GSSException

 Returns the credential usage flag for the specified mechanism only.
 The return value will be one of GSSCredential.INITIATE_AND_ACCEPT(0),
 GSSCredential.INITIATE_ONLY(1), or GSSCredential.ACCEPT_ONLY(2).

 Parameters:

 mechOID The mechanism for which information should be
 returned.

7.3.10. getMechs

 public Oid[] getMechs() throws GSSException

 Returns an array of mechanisms supported by this credential.

7.3.11. add

 public void add(GSSName aName, int initLifetime, int acceptLifetime,
 Oid mech, int usage) throws GSSException

 Adds a mechanism-specific credential element to an existing
 credential. This method allows the construction of credentials one
 mechanism at a time.

Upadhyay, et al. Standards Track [Page 52]

RFC 8353 Java GSS-API Update May 2018

 This routine is envisioned to be used mainly by context acceptors
 during the creation of acceptance credentials, which are to be used
 with a variety of clients using different security mechanisms.

 This routine adds the new credential element "in-place". To add the
 element in a new credential, first call clone() to obtain a copy of
 this credential, then call its add() method.

 Parameters:

 aName Name of the principal for whom this credential is
 to be acquired. Use "null" to specify the
 default principal.

 initLifetime The number of seconds that credentials should
 remain valid for initiating security contexts.
 Use GSSCredential.INDEFINITE_LIFETIME to request
 that the credentials have the maximum permitted
 lifetime. Use GSSCredential.DEFAULT_LIFETIME to
 request default credential lifetime.

 acceptLifetime The number of seconds that credentials should
 remain valid for accepting security contexts.

 Use GSSCredential.INDEFINITE_LIFETIME to request
 that the credentials
 have the maximum permitted lifetime. Use
 GSSCredential.DEFAULT_LIFETIME to request default
 credential lifetime.

 mech The mechanisms over which the credential is to be
 acquired.

 usage The intended usage for this credential object.
 The value of this parameter MUST be one of:

 GSSCredential.INITIATE_AND_ACCEPT(0),
 GSSCredential.INITIATE_ONLY(1), or
 GSSCredential.ACCEPT_ONLY(2)

7.3.12. equals

 public boolean equals(Object another)

 Tests if this GSSCredential refers to the same entity as the supplied
 object. The two credentials MUST be acquired over the same
 mechanisms and MUST refer to the same principal. Returns "true" if
 the two GSSCredentials refer to the same entity, or "false"

Upadhyay, et al. Standards Track [Page 53]

RFC 8353 Java GSS-API Update May 2018

 otherwise. (Note that the Java language specification [JLS] requires
 that two objects that are equal according to the equals(Object)
 method MUST return the same integer result when the hashCode() method
 is called on them.)

 Parameters:

 another Another GSSCredential object for comparison.

7.3.13. Example Code

 This example code demonstrates the creation of a GSSCredential
 implementation for a specific entity, querying of its fields, and its
 release when it is no longer needed.

 <CODE BEGINS>
 GSSManager mgr = GSSManager.getInstance();

 // start by creating a name object for the entity
 GSSName name = mgr.createName("userName", GSSName.NT_USER_NAME);

 // now acquire credentials for the entity
 GSSCredential cred = mgr.createCredential(name,
 GSSCredential.INDEFINITE_LIFETIME,
 (Oid[])null,
 GSSCredential.ACCEPT_ONLY);

 // display credential information - name, remaining lifetime,
 // and the mechanisms it has been acquired over
 print(cred.getName().toString());
 print(cred.getRemainingLifetime());

 Oid[] mechs = cred.getMechs();
 if (mechs != null) {
 for (int i = 0; i < mechs.length; i++)
 print(mechs[i].toString());
 }
 // release system resources held by the credential
 cred.dispose();
 <CODE ENDS>

7.4. public interface GSSContext

 This interface encapsulates the GSS-API security context and provides
 the security services (wrap, unwrap, getMIC, and verifyMIC) that are
 available over the context. Security contexts are established
 between peers using locally acquired credentials. Multiple contexts
 may exist simultaneously between a pair of peers, using the same or

Upadhyay, et al. Standards Track [Page 54]

RFC 8353 Java GSS-API Update May 2018

 different set of credentials. GSS-API functions in a manner
 independent of the underlying transport protocol and depends on its
 calling application to transport its tokens between peers.

 Before the context establishment phase is initiated, the context
 initiator may request specific characteristics desired of the
 established context. These can be set using the set methods. After
 the context is established, the caller can check the actual
 characteristic and services offered by the context using the query
 methods.

 The context establishment phase begins with the first call to the
 init method by the context initiator. During this phase, the
 initSecContext and acceptSecContext methods will produce GSS-API
 authentication tokens, which the calling application needs to send to
 its peer. If an error occurs at any point, an exception will get
 thrown and the code will start executing in a catch block where the
 exception may contain an output token that should be sent to the peer
 for debugging or informational purpose. If not, the normal flow of
 code continues, and the application can make a call to the
 isEstablished() method. If this method returns "false", it indicates
 that a token is needed from its peer in order to continue the context
 establishment phase. A return value of "true" signals that the local
 end of the context is established. This may still require that a
 token be sent to the peer, if one is produced by GSS-API. During the
 context establishment phase, the isProtReady() method may be called
 to determine if the context can be used for the per-message
 operations. This allows applications to use per-message operations
 on contexts that aren’t fully established.

 After the context has been established or the isProtReady() method
 returns "true", the query routines can be invoked to determine the
 actual characteristics and services of the established context. The
 application can also start using the per-message methods of wrap and
 getMIC to obtain cryptographic operations on application-supplied
 data.

 When the context is no longer needed, the application SHOULD call
 dispose to release any system resources the context may be using.

7.4.1. Static Constants

 public static final int DEFAULT_LIFETIME

 A lifetime constant representing the default context lifetime. The
 value of this constant is 0.

Upadhyay, et al. Standards Track [Page 55]

RFC 8353 Java GSS-API Update May 2018

 public static final int INDEFINITE_LIFETIME

 A lifetime constant representing indefinite context lifetime. The
 value of this constant is the maximum integer value in Java --
 Integer.MAX_VALUE.

7.4.2. initSecContext

 public byte[] initSecContext(byte[] inputBuf, int offset, int len)
 throws GSSException

 Called by the context initiator to start the context creation
 process. This method MAY return an output token that the application
 will need to send to the peer for processing by the accept call. The
 application can call isEstablished() to determine if the context
 establishment phase is complete for this peer. A return value of
 "false" from isEstablished() indicates that more tokens are expected
 to be supplied to the initSecContext() method. Note that it is
 possible that the initSecContext() method will return a token for the
 peer and isEstablished() will return "true" also. This indicates
 that the token needs to be sent to the peer, but the local end of the
 context is now fully established.

 Upon completion of the context establishment, the available context
 options may be queried through the get methods.

 A GSSException will be thrown if the call fails. Users SHOULD call
 its getOutputToken() method to find out if there is a token that can
 be sent to the acceptor to communicate the reason for the error.

 Parameters:

 inputBuf Token generated by the peer. This parameter is
 ignored on the first call.

 offset The offset within the inputBuf where the token
 begins.

 len The length of the token within the inputBuf
 (starting at the offset).

7.4.3. acceptSecContext

 public byte[] acceptSecContext(byte[] inTok, int offset, int len)
 throws GSSException

 Called by the context acceptor upon receiving a token from the peer.

Upadhyay, et al. Standards Track [Page 56]

RFC 8353 Java GSS-API Update May 2018

 This method MAY return an output token that the application will need
 to send to the peer for further processing by the init call.

 The "null" return value indicates that no token needs to be sent to
 the peer. The application can call isEstablished() to determine if
 the context establishment phase is complete for this peer. A return
 value of "false" from isEstablished() indicates that more tokens are
 expected to be supplied to this method.

 Note that it is possible that acceptSecContext() will return a token
 for the peer and isEstablished() will return "true" also. This
 indicates that the token needs to be sent to the peer, but the local
 end of the context is now fully established.

 Upon completion of the context establishment, the available context
 options may be queried through the get methods.

 A GSSException will be thrown if the call fails. Users SHOULD call
 its getOutputToken() method to find out if there is a token that can
 be sent to the initiator to communicate the reason for the error.

 Parameters:

 inTok Token generated by the peer.

 offset The offset within the inTok where the token
 begins.

 len The length of the token within the inTok
 (starting at the offset).

7.4.4. isEstablished

 public boolean isEstablished()

 Used during context establishment to determine the state of the
 context. Returns "true" if this is a fully established context on
 the caller’s side and no more tokens are needed from the peer.
 Should be called after a call to initSecContext() or
 acceptSecContext() when no GSSException is thrown.

7.4.5. dispose

 public void dispose() throws GSSException

 Releases any system resources and cryptographic information stored in
 the context object. This will invalidate the context.

Upadhyay, et al. Standards Track [Page 57]

RFC 8353 Java GSS-API Update May 2018

7.4.6. getWrapSizeLimit

 public int getWrapSizeLimit(int qop, boolean confReq,
 int maxTokenSize) throws GSSException

 Returns the maximum message size that, if presented to the wrap
 method with the same confReq and qop parameters, will result in an
 output token containing no more than the maxTokenSize bytes.

 This call is intended for use by applications that communicate over
 protocols that impose a maximum message size. It enables the
 application to fragment messages prior to applying protection.

 GSS-API implementations are RECOMMENDED but not required to detect
 invalid QOP values when getWrapSizeLimit is called. This routine
 guarantees only a maximum message size, not the availability of
 specific QOP values for message protection.

 Successful completion of this call does not guarantee that wrap will
 be able to protect a message of the computed length, since this
 ability may depend on the availability of system resources at the
 time that wrap is called. However, if the implementation itself
 imposes an upper limit on the length of messages that may be
 processed by wrap, the implementation SHOULD NOT return a value that
 is greater than this length.

 Parameters:

 qop Indicates the level of protection wrap will be
 asked to provide.

 confReq Indicates if wrap will be asked to provide
 privacy service.

 maxTokenSize The desired maximum size of the token emitted by
 wrap.

7.4.7. wrap

 public byte[] wrap(byte[] inBuf, int offset, int len,
 MessageProp msgProp) throws GSSException

 Applies per-message security services over the established security
 context. The method will return a token with a cryptographic MIC and
 MAY optionally encrypt the specified inBuf. The returned byte array
 will contain both the MIC and the message.

Upadhyay, et al. Standards Track [Page 58]

RFC 8353 Java GSS-API Update May 2018

 The MessageProp object is instantiated by the application and used to
 specify a QOP value that selects cryptographic algorithms and a
 privacy service to optionally encrypt the message. The underlying
 mechanism that is used in the call may not be able to provide the
 privacy service. It sets the actual privacy service that it does
 provide in this MessageProp object, which the caller SHOULD then
 query upon return. If the mechanism is not able to provide the
 requested QOP, it throws a GSSException with the BAD_QOP code.

 Since some application-level protocols may wish to use tokens emitted
 by wrap to provide "secure framing", implementations SHOULD support
 the wrapping of zero-length messages.

 The application will be responsible for sending the token to the
 peer.

 Parameters:

 inBuf Application data to be protected.

 offset The offset within the inBuf where the data
 begins.

 len The length of the data within the inBuf (starting
 at the offset).

 msgProp Instance of MessageProp that is used by the
 application to set the desired QOP and privacy
 state. Set the desired QOP to 0 to request the
 default QOP. Upon return from this method, this
 object will contain the actual privacy state that
 was applied to the message by the underlying
 mechanism.

7.4.8. unwrap

 public byte[] unwrap(byte[] inBuf, int offset, int len,
 MessageProp msgProp) throws GSSException

 Used by the peer application to process tokens generated with the
 wrap call. The method will return the message supplied in the peer
 application to the wrap call, verifying the embedded MIC.

 The MessageProp object is instantiated by the application and is used
 by the underlying mechanism to return information to the caller such
 as the QOP, whether confidentiality was applied to the message, and
 other supplementary message state information.

Upadhyay, et al. Standards Track [Page 59]

RFC 8353 Java GSS-API Update May 2018

 Since some application-level protocols may wish to use tokens emitted
 by wrap to provide "secure framing", implementations SHOULD support
 the wrapping and unwrapping of zero-length messages.

 Parameters:

 inBuf GSS-API wrap token received from peer.

 offset The offset within the inBuf where the token
 begins.

 len The length of the token within the inBuf
 (starting at the offset).

 msgProp Upon return from the method, this object will
 contain the applied QOP, the privacy state of the
 message, and supplementary information, described
 in Section 5.12.3, stating whether the token was
 a duplicate, old, out of sequence, or arriving
 after a gap.

7.4.9. getMIC

 public byte[] getMIC(byte[] inMsg, int offset, int len,
 MessageProp msgProp) throws GSSException

 Returns a token containing a cryptographic MIC for the supplied
 message for transfer to the peer application. Unlike wrap, which
 encapsulates the user message in the returned token, only the message
 MIC is returned in the output token.

 Note that privacy can only be applied through the wrap call.

 Since some application-level protocols may wish to use tokens emitted
 by getMIC to provide "secure framing", implementations SHOULD support
 derivation of MICs from zero-length messages.

 Parameters:

 inMsg Message over which to generate MIC.

 offset The offset within the inMsg where the token
 begins.

 len The length of the token within the inMsg
 (starting at the offset).

Upadhyay, et al. Standards Track [Page 60]

RFC 8353 Java GSS-API Update May 2018

 msgProp Instance of MessageProp that is used by the
 application to set the desired QOP. Set the
 desired QOP to 0 in msgProp to request the
 default QOP. Alternatively, pass in "null" for
 msgProp to request default QOP.

7.4.10. verifyMIC

 public void verifyMIC(byte[] inTok, int tokOffset, int tokLen,
 byte[] inMsg, int msgOffset, int msgLen,
 MessageProp msgProp) throws GSSException

 Verifies the cryptographic MIC, contained in the token parameter,
 over the supplied message.

 The MessageProp object is instantiated by the application and is used
 by the underlying mechanism to return information to the caller such
 as the QOP indicating the strength of protection that was applied to
 the message and other supplementary message state information.

 Since some application-level protocols may wish to use tokens emitted
 by getMIC to provide "secure framing", implementations SHOULD support
 the calculation and verification of MICs over zero-length messages.

 Parameters:

 inTok Token generated by peer’s getMIC method.

 tokOffset The offset within the inTok where the token
 begins.

 tokLen The length of the token within the inTok
 (starting at the offset).

 inMsg Application message over which to verify the
 cryptographic MIC.

 msgOffset The offset within the inMsg where the message
 begins.

 msgLen The length of the message within the inMsg
 (starting at the offset).

Upadhyay, et al. Standards Track [Page 61]

RFC 8353 Java GSS-API Update May 2018

 msgProp Upon return from the method, this object will
 contain the applied QOP and supplementary
 information, described in Section 5.12.3, stating
 whether the token was a duplicate, old, out of
 sequence, or arriving after a gap. The
 confidentiality state will be set to "false".

7.4.11. export

 public byte[] export() throws GSSException

 Provided to support the sharing of work between multiple processes.
 This routine will typically be used by the context acceptor, in an
 application where a single process receives incoming connection
 requests and accepts security contexts over them, then passes the
 established context to one or more other processes for message
 exchange.

 This method deactivates the security context and creates an inter-
 process token that, when passed to the byte array constructor of the
 GSSContext interface in another process, will re-activate the context
 in the second process. Only a single instantiation of a given
 context may be active at any one time; a subsequent attempt by a
 context exporter to access the exported security context will fail.

 The implementation MAY constrain the set of processes by which the
 inter-process token may be imported, either as a function of local
 security policy or as a result of implementation decisions. For
 example, some implementations may constrain contexts to be passed
 only between processes that run under the same account, or which are
 part of the same process group.

 The inter-process token MAY contain security-sensitive information
 (for example, cryptographic keys). While mechanisms are encouraged
 either to avoid placing such sensitive information within inter-
 process tokens or to encrypt the token before returning it to the
 application, in a typical GSS-API implementation, this may not be
 possible. Thus, the application MUST take care to protect the inter-
 process token and ensure that any process to which the token is
 transferred is trustworthy.

7.4.12. requestMutualAuth

 public void requestMutualAuth(boolean state) throws GSSException

 Sets the request state of the mutual authentication flag for the
 context. This method is only valid before the context creation
 process begins and only for the initiator.

Upadhyay, et al. Standards Track [Page 62]

RFC 8353 Java GSS-API Update May 2018

 Parameters:

 state Boolean representing if mutual authentication
 should be requested during context establishment.

7.4.13. requestReplayDet

 public void requestReplayDet(boolean state) throws GSSException

 Sets the request state of the replay detection service for the
 context. This method is only valid before the context creation
 process begins and only for the initiator.

 Parameters:

 state Boolean representing if replay detection is
 desired over the established context.

7.4.14. requestSequenceDet

 public void requestSequenceDet(boolean state) throws GSSException

 Sets the request state for the sequence-checking service of the
 context. This method is only valid before the context creation
 process begins and only for the initiator.

 Parameters:

 state Boolean representing if sequence detection is
 desired over the established context.

7.4.15. requestCredDeleg

 public void requestCredDeleg(boolean state) throws GSSException

 Sets the request state for the credential delegation flag for the
 context. This method is only valid before the context creation
 process begins and only for the initiator.

 Parameters:

 state Boolean representing if credential delegation is
 desired.

Upadhyay, et al. Standards Track [Page 63]

RFC 8353 Java GSS-API Update May 2018

7.4.16. requestAnonymity

 public void requestAnonymity(boolean state) throws GSSException

 Requests anonymous support over the context. This method is only
 valid before the context creation process begins and only for the
 initiator.

 Parameters:

 state Boolean representing if anonymity support is
 requested.

7.4.17. requestConf

 public void requestConf(boolean state) throws GSSException

 Requests that confidentiality service be available over the context.
 This method is only valid before the context creation process begins
 and only for the initiator.

 Parameters:

 state Boolean indicating if confidentiality services
 are to be requested for the context.

7.4.18. requestInteg

 public void requestInteg(boolean state) throws GSSException

 Requests that integrity services be available over the context. This
 method is only valid before the context creation process begins and
 only for the initiator.

 Parameters:

 state Boolean indicating if integrity services are to
 be requested for the context.

7.4.19. requestLifetime

 public void requestLifetime(int lifetime) throws GSSException

 Sets the desired lifetime for the context in seconds. This method is
 only valid before the context creation process begins and only for
 the initiator. Use GSSContext.INDEFINITE_LIFETIME and
 GSSContext.DEFAULT_LIFETIME to request indefinite or default context
 lifetime.

Upadhyay, et al. Standards Track [Page 64]

RFC 8353 Java GSS-API Update May 2018

 Parameters:

 lifetime The desired context lifetime in seconds.

7.4.20. setChannelBinding

 public void setChannelBinding(ChannelBinding cb) throws GSSException

 Sets the channel bindings to be used during context establishment.
 This method is only valid before the context creation process begins.

 Parameters:

 cb Channel bindings to be used.

7.4.21. getCredDelegState

 public boolean getCredDelegState()

 Returns the state of the delegated credentials for the context. When
 issued before context establishment is completed or when the
 isProtReady method returns "false", it returns the desired state;
 otherwise, it will indicate the actual state over the established
 context.

7.4.22. getMutualAuthState

 public boolean getMutualAuthState()

 Returns the state of the mutual authentication option for the
 context. When issued before context establishment completes or when
 the isProtReady method returns "false", it returns the desired state;
 otherwise, it will indicate the actual state over the established
 context.

7.4.23. getReplayDetState

 public boolean getReplayDetState()

 Returns the state of the replay detection option for the context.
 When issued before context establishment completes or when the
 isProtReady method returns "false", it returns the desired state;
 otherwise, it will indicate the actual state over the established
 context.

Upadhyay, et al. Standards Track [Page 65]

RFC 8353 Java GSS-API Update May 2018

7.4.24. getSequenceDetState

 public boolean getSequenceDetState()

 Returns the state of the sequence detection option for the context.
 When issued before context establishment completes or when the
 isProtReady method returns "false", it returns the desired state;
 otherwise, it will indicate the actual state over the established
 context.

7.4.25. getAnonymityState

 public boolean getAnonymityState()

 Returns "true" if this is an anonymous context. When issued before
 context establishment completes or when the isProtReady method
 returns "false", it returns the desired state; otherwise, it will
 indicate the actual state over the established context.

7.4.26. isTransferable

 public boolean isTransferable() throws GSSException

 Returns "true" if the context is transferable to other processes
 through the use of the export method. This call is only valid on
 fully established contexts.

7.4.27. isProtReady

 public boolean isProtReady()

 Returns "true" if the per-message operations can be applied over the
 context. Some mechanisms may allow the usage of per-message
 operations before the context is fully established. This will also
 indicate that the get methods will return actual context state
 characteristics instead of the desired ones.

7.4.28. getConfState

 public boolean getConfState()

 Returns the confidentiality service state over the context. When
 issued before context establishment completes or when the isProtReady
 method returns "false", it returns the desired state; otherwise, it
 will indicate the actual state over the established context.

Upadhyay, et al. Standards Track [Page 66]

RFC 8353 Java GSS-API Update May 2018

7.4.29. getIntegState

 public boolean getIntegState()

 Returns the integrity service state over the context. When issued
 before context establishment completes or when the isProtReady method
 returns "false", it returns the desired state; otherwise, it will
 indicate the actual state over the established context.

7.4.30. getLifetime

 public int getLifetime()

 Returns the context lifetime in seconds. When issued before context
 establishment completes or when the isProtReady method returns
 "false", it returns the desired lifetime; otherwise, it will indicate
 the remaining lifetime for the context.

7.4.31. getSrcName

 public GSSName getSrcName() throws GSSException

 Returns the name of the context initiator. This call is valid only
 after the context is fully established or the isProtReady method
 returns "true". It is guaranteed to return an MN.

7.4.32. getTargName

 public GSSName getTargName() throws GSSException

 Returns the name of the context target (acceptor). This call is
 valid only after the context is fully established or the isProtReady
 method returns "true". It is guaranteed to return an MN.

7.4.33. getMech

 public Oid getMech() throws GSSException

 Returns the mechanism OID for this context. This method MAY be
 called before the context is fully established, but the mechanism
 returned MAY change on successive calls in a negotiated mechanism
 case.

Upadhyay, et al. Standards Track [Page 67]

RFC 8353 Java GSS-API Update May 2018

7.4.34. getDelegCred

 public GSSCredential getDelegCred() throws GSSException

 Returns the delegated credential object on the acceptor’s side. To
 check for availability of delegated credentials, call
 getDelegCredState. This call is only valid on fully established
 contexts.

7.4.35. isInitiator

 public boolean isInitiator() throws GSSException

 Returns "true" if this is the initiator of the context. This call is
 only valid after the context creation process has started.

7.4.36. Example Code

 The example code presented below demonstrates the usage of the
 GSSContext interface for the initiating peer. Different operations
 on the GSSContext object are presented, including: object
 instantiation, setting of desired flags, context establishment, query
 of actual context flags, per-message operations on application data,
 and finally context deletion.

 <CODE BEGINS>
 GSSManager mgr = GSSManager.getInstance();

 // start by creating the name for a service entity
 GSSName targetName = mgr.createName("service@host",
 GSSName.NT_HOSTBASED_SERVICE);
 // create a context using default credentials for the above entity
 // and the implementation-specific default mechanism
 GSSContext context = mgr.createContext(targetName,
 null, /* default mechanism */
 null, /* default credentials */
 GSSContext.INDEFINITE_LIFETIME);

 // set desired context options - all others are "false" by default
 context.requestConf(true);
 context.requestMutualAuth(true);
 context.requestReplayDet(true);
 context.requestSequenceDet(true);

 // establish a context between peers - using byte arrays
 byte[] inTok = new byte[0];

Upadhyay, et al. Standards Track [Page 68]

RFC 8353 Java GSS-API Update May 2018

 try {
 do {
 byte[] outTok = context.initSecContext(inTok, 0,
 inTok.length);

 // send the token if present
 if (outTok != null)
 sendToken(outTok);

 // check if we should expect more tokens
 if (context.isEstablished())
 break;

 // another token expected from peer
 inTok = readToken();

 } while (true);

 } catch (GSSException e) {
 print("GSSAPI error: " + e.getMessage());

 // If the exception contains an output token,
 // it should be sent to the acceptor.
 byte[] outTok = e.getOutputToken();
 if (outTok != null) {
 sendToken(outTok);
 }

 return;
 }

 // display context information
 print("Remaining lifetime in seconds = " + context.getLifetime());
 print("Context mechanism = " + context.getMech().toString());
 print("Initiator = " + context.getSrcName().toString());
 print("Acceptor = " + context.getTargName().toString());

 if (context.getConfState())
 print("Confidentiality security service available");

 if (context.getIntegState())
 print("Integrity security service available");

 // perform wrap on an application-supplied message, appMsg,
 // using QOP = 0, and requesting privacy service
 byte[] appMsg ...

 MessageProp mProp = new MessageProp(0, true);

Upadhyay, et al. Standards Track [Page 69]

RFC 8353 Java GSS-API Update May 2018

 byte[] tok = context.wrap(appMsg, 0, appMsg.length, mProp);

 if (mProp.getPrivacy())
 print("Message protected with privacy.");

 sendToken(tok);

 // release the local end of the context
 context.dispose();
 <CODE ENDS>

7.5. public class MessageProp

 This is a utility class used within the per-message GSSContext
 methods to convey per-message properties.

 When used with the GSSContext interface’s wrap and getMIC methods, an
 instance of this class is used to indicate the desired QOP and to
 request if confidentiality services are to be applied to caller-
 supplied data (wrap only). To request default QOP, the value of 0
 should be used for QOP. A QOP is an integer value defined by an
 mechanism.

 When used with the unwrap and verifyMIC methods of the GSSContext
 interface, an instance of this class will be used to indicate the
 applied QOP and confidentiality services over the supplied message.
 In the case of verifyMIC, the confidentiality state will always be
 "false". Upon return from these methods, this object will also
 contain any supplementary status values applicable to the processed
 token. The supplementary status values can indicate old tokens, out
 of sequence tokens, gap tokens, or duplicate tokens.

7.5.1. Constructors

 public MessageProp(boolean privState)

 Constructor that sets QOP to 0 indicating that the default QOP is
 requested.

 Parameters:

 privState The desired privacy state. "true" for privacy and
 "false" for integrity only.

 public MessageProp(int qop, boolean privState)

 Constructor that sets the values for the QOP and privacy state.

Upadhyay, et al. Standards Track [Page 70]

RFC 8353 Java GSS-API Update May 2018

 Parameters:

 qop The desired QOP. Use 0 to request a default QOP.

 privState The desired privacy state. "true" for privacy and
 "false" for integrity only.

7.5.2. getQOP

 public int getQOP()

 Retrieves the QOP value.

7.5.3. getPrivacy

 public boolean getPrivacy()

 Retrieves the privacy state.

7.5.4. getMinorStatus

 public int getMinorStatus()

 Retrieves the minor status that the underlying mechanism might have
 set.

7.5.5. getMinorString

 public String getMinorString()

 Returns a string explaining the mechanism-specific error code. "null"
 will be returned when no mechanism error code has been set.

7.5.6. setQOP

 public void setQOP(int qopVal)

 Sets the QOP value.

 Parameters:

 qopVal The QOP value to be set. Use 0 to request a
 default QOP value.

Upadhyay, et al. Standards Track [Page 71]

RFC 8353 Java GSS-API Update May 2018

7.5.7. setPrivacy

 public void setPrivacy(boolean privState)

 Sets the privacy state.

 Parameters:

 privState The privacy state to set.

7.5.8. isDuplicateToken

 public boolean isDuplicateToken()

 Returns "true" if this is a duplicate of an earlier token.

7.5.9. isOldToken

 public boolean isOldToken()

 Returns "true" if the token’s validity period has expired.

7.5.10. isUnseqToken

 public boolean isUnseqToken()

 Returns "true" if a later token has already been processed.

7.5.11. isGapToken

 public boolean isGapToken()

 Returns "true" if an expected per-message token was not received.

7.5.12. setSupplementaryStates

 public void setSupplementaryStates(boolean duplicate,
 boolean old, boolean unseq, boolean gap,
 int minorStatus, String minorString)

 This method sets the state for the supplementary information flags
 and the minor status in MessageProp. It is not used by the
 application but by the GSS implementation to return this information
 to the caller of a per-message context method.

Upadhyay, et al. Standards Track [Page 72]

RFC 8353 Java GSS-API Update May 2018

 Parameters:

 duplicate "true" if the token was a duplicate of an earlier
 token; otherwise, "false".

 old "true" if the token’s validity period has
 expired; otherwise, "false".

 unseq "true" if a later token has already been
 processed; otherwise, "false".

 gap "true" if one or more predecessor tokens have not
 yet been successfully processed; otherwise,
 "false".

 minorStatus The integer minor status code that the underlying
 mechanism wants to set.

 minorString The textual representation of the minorStatus
 value.

7.6. public class ChannelBinding

 The GSS-API accommodates the concept of caller-provided channel-
 binding information. Channel bindings are used to strengthen the
 quality with which peer entity authentication is provided during
 context establishment. They enable the GSS-API callers to bind the
 establishment of the security context to relevant characteristics
 like addresses or to application-specific data.

 The caller initiating the security context MUST determine the
 appropriate channel-binding values to set in the GSSContext object.
 The acceptor MUST provide an identical binding in order to validate
 that received tokens possess correct channel-related characteristics.

 Use of channel bindings is OPTIONAL in GSS-API. Since channel-
 binding information may be transmitted in context establishment
 tokens, applications SHOULD therefore not use confidential data as
 channel-binding components.

7.6.1. Constructors

 public ChannelBinding(InetAddress initAddr, InetAddress acceptAddr,
 byte[] appData)

 Create a ChannelBinding object with user-supplied address information
 and data. "null" values can be used for any fields that the
 application does not want to specify.

Upadhyay, et al. Standards Track [Page 73]

RFC 8353 Java GSS-API Update May 2018

 Parameters:

 initAddr The address of the context initiator. The "null"
 value can be supplied to indicate that the
 application does not want to set this value.

 acceptAddr The address of the context acceptor. The "null"
 value can be supplied to indicate that the
 application does not want to set this value.

 appData Application-supplied data to be used as part of
 the channel bindings. The "null" value can be
 supplied to indicate that the application does
 not want to set this value.

 public ChannelBinding(byte[] appData)

 Creates a ChannelBinding object without any addressing information.

 Parameters:

 appData Application-supplied data to be used as part of
 the channel bindings.

7.6.2. getInitiatorAddress

 public InetAddress getInitiatorAddress()

 Returns the initiator’s address for this channel binding. "null" is
 returned if the address has not been set.

7.6.3. getAcceptorAddress

 public InetAddress getAcceptorAddress()

 Returns the acceptor’s address for this channel binding. "null" is
 returned if the address has not been set.

7.6.4. getApplicationData

 public byte[] getApplicationData()

 Returns application data being used as part of the ChannelBinding.
 "null" is returned if no application data has been specified for the
 channel binding.

Upadhyay, et al. Standards Track [Page 74]

RFC 8353 Java GSS-API Update May 2018

7.6.5. equals

 public boolean equals(Object obj)

 Returns "true" if two channel bindings match. (Note that the Java
 language specification requires that two objects that are equal
 according to the equals(Object) method MUST return the same integer
 result when the hashCode() method is called on them.)

 Parameters:

 obj Another channel binding with which to compare.

7.7. public class Oid

 This class represents Universal OIDs and their associated operations.

 OIDs are hierarchically globally interpretable identifiers used
 within the GSS-API framework to identify mechanisms and name formats.

 The structure and encoding of OIDs is defined in ISOIEC-8824
 [ISOIEC-8824] and ISOIEC-8825 [ISOIEC-8825]. For example, the OID
 representation of the Kerberos v5 mechanism is
 "1.2.840.113554.1.2.2".

 The GSSName name class contains public static Oid objects
 representing the standard name types defined in GSS-API.

7.7.1. Constructors

 public Oid(String strOid) throws GSSException

 Creates an Oid object from a string representation of its integer
 components (e.g., "1.2.840.113554.1.2.2").

 Parameters:

 strOid The string representation for the OID.

 public Oid(InputStream derOid) throws GSSException

 Creates an Oid object from its DER encoding. This refers to the full
 encoding including tag and length. The structure and encoding of
 OIDs is defined in ISOIEC-8824 [ISOIEC-8824] and ISOIEC-8825
 [ISOIEC-8825]. This method is identical in functionality to its byte
 array counterpart.

Upadhyay, et al. Standards Track [Page 75]

RFC 8353 Java GSS-API Update May 2018

 Parameters:

 derOid Stream containing the DER-encoded OID.

 public Oid(byte[] derOid) throws GSSException

 Creates an Oid object from its DER encoding. This refers to the full
 encoding including tag and length. The structure and encoding of
 OIDs is defined in ISOIEC-8824 [ISOIEC-8824] and ISOIEC-8825
 [ISOIEC-8825]. This method is identical in functionality to its byte
 array counterpart.

 Parameters:

 derOid Byte array storing a DER-encoded OID.

7.7.2. toString

 public String toString()

 Returns a string representation of the OID’s integer components in
 dot-separated notation (e.g., "1.2.840.113554.1.2.2").

7.7.3. equals

 public boolean equals(Object Obj)

 Returns "true" if the two Oid objects represent the same OID value.
 (Note that the Java language specification [JLS] requires that two
 objects that are equal according to the equals(Object) method MUST
 return the same integer result when the hashCode() method is called
 on them.)

 Parameters:

 obj Another Oid object with which to compare.

7.7.4. getDER

 public byte[] getDER()

 Returns the full ASN.1 DER encoding for this Oid object, which
 includes the tag and length.

Upadhyay, et al. Standards Track [Page 76]

RFC 8353 Java GSS-API Update May 2018

7.7.5. containedIn

 public boolean containedIn(Oid[] oids)

 A utility method to test if an Oid object is contained within the
 supplied Oid object array.

 Parameters:

 oids An array of OIDs to search.

7.8. public class GSSException extends Exception

 This exception is thrown whenever a fatal GSS-API error occurs
 including mechanism-specific errors. It MAY contain both, the major
 and minor, GSS-API status codes. The mechanism implementors are
 responsible for setting appropriate minor status codes when throwing
 this exception. Aside from delivering the numeric error code(s) to
 the caller, this class performs the mapping from their numeric values
 to textual representations. This exception MAY also include an
 output token that SHOULD be sent to the peer. For example, when an
 initSecContext call fails due to a fatal error, the mechanism MAY
 define an error token that SHOULD be sent to the peer for debugging
 or informational purposes. All Java GSS-API methods are declared
 throwing this exception.

 All implementations are encouraged to use the Java
 internationalization techniques to provide local translations of the
 message strings.

7.8.1. Static Constants

 All valid major GSS-API error code values are declared as constants
 in this class.

 public static final int BAD_BINDINGS

 Channel-bindings mismatch error. The value of this constant is 1.

 public static final int BAD_MECH

 Unsupported mechanism requested error. The value of this constant is
 2.

 public static final int BAD_NAME

 Invalid name provided error. The value of this constant is 3.

Upadhyay, et al. Standards Track [Page 77]

RFC 8353 Java GSS-API Update May 2018

 public static final int BAD_NAMETYPE

 Name of unsupported type provided error. The value of this constant
 is 4.

 public static final int BAD_STATUS

 Invalid status code error - this is the default status value. The
 value of this constant is 5.

 public static final int BAD_MIC

 Token had invalid integrity check error. The value of this constant
 is 6.

 public static final int CONTEXT_EXPIRED

 Specified security context expired error. The value of this constant
 is 7.

 public static final int CREDENTIALS_EXPIRED

 Expired credentials detected error. The value of this constant is 8.

 public static final int DEFECTIVE_CREDENTIAL

 Defective credential error. The value of this constant is 9.

 public static final int DEFECTIVE_TOKEN

 Defective token error. The value of this constant is 10.

 public static final int FAILURE

 General failure, unspecified at GSS-API level. The value of this
 constant is 11.

 public static final int NO_CONTEXT

 Invalid security context error. The value of this constant is 12.

 public static final int NO_CRED

 Invalid credentials error. The value of this constant is 13.

 public static final int BAD_QOP

 Unsupported QOP value error. The value of this constant is 14.

Upadhyay, et al. Standards Track [Page 78]

RFC 8353 Java GSS-API Update May 2018

 public static final int UNAUTHORIZED

 Operation unauthorized error. The value of this constant is 15.

 public static final int UNAVAILABLE

 Operation unavailable error. The value of this constant is 16.

 public static final int DUPLICATE_ELEMENT

 Duplicate credential element requested error. The value of this
 constant is 17.

 public static final int NAME_NOT_MN

 Name contains multi-mechanism elements error. The value of this
 constant is 18.

 public static final int DUPLICATE_TOKEN

 The token was a duplicate of an earlier token. This is contained in
 an exception only when detected during context establishment, in
 which case it is considered a fatal error. (Non-fatal supplementary
 codes are indicated via the MessageProp object.) The value of this
 constant is 19.

 public static final int OLD_TOKEN

 The token’s validity period has expired. This is contained in an
 exception only when detected during context establishment, in which
 case it is considered a fatal error. (Non-fatal supplementary codes
 are indicated via the MessageProp object.) The value of this
 constant is 20.

 public static final int UNSEQ_TOKEN

 A later token has already been processed. This is contained in an
 exception only when detected during context establishment, in which
 case it is considered a fatal error. (Non-fatal supplementary codes
 are indicated via the MessageProp object.) The value of this
 constant is 21.

Upadhyay, et al. Standards Track [Page 79]

RFC 8353 Java GSS-API Update May 2018

 public static final int GAP_TOKEN

 An expected per-message token was not received. This is contained in
 an exception only when detected during context establishment, in
 which case it is considered a fatal error. (Non-fatal supplementary
 codes are indicated via the MessageProp object.) The value of this
 constant is 22.

7.8.2. Constructors

 public GSSException(int majorCode)

 Creates a GSSException object with a specified major code.

 Calling this constructor is equivalent to calling
 GSSException(majorCode, null, 0, null, null).

 public GSSException(int majorCode, int minorCode, String minorString)

 Creates a GSSException object with the specified major code, minor
 code, and minor code textual explanation. This constructor is to be
 used when the exception is originating from the security mechanism.
 It allows to specify the GSS code and the mechanism code.

 Calling this constructor is equivalent to calling
 GSSException(majorCode, null, minorCode, minorString, null).

 public GSSException(int majorCode, String majorString,
 int minorCode, String minorString,
 byte[] outputToken)

 Creates a GSSException object with the specified major code, major
 code textual explanation, minor code, minor code textual explanation,
 and an output token. This is a general-purpose constructor that can
 be used to create any type of GSSException.

 Parameters:

 majorCode The GSS error code causing this exception to be
 thrown.

 majorString The textual explanation of the GSS error code.
 If null is provided, a default explanation that
 matches the majorCode will be set.

 minorCode The mechanism error code causing this exception
 to be thrown. Can be 0 if no mechanism error
 code is available.

Upadhyay, et al. Standards Track [Page 80]

RFC 8353 Java GSS-API Update May 2018

 minorString The textual explanation of the mechanism error
 code. Can be null if no textual explanation is
 available.

 outputToken The output token that SHOULD be sent to the peer.
 Can be null if no such token is available. It
 MUST NOT be an empty array. When provided, the
 array will be cloned to protect against
 subsequent modifications.

7.8.3. getMajor

 public int getMajor()

 Returns the major code representing the GSS error code that caused
 this exception to be thrown.

7.8.4. getMinor

 public int getMinor()

 Returns the mechanism error code that caused this exception. The
 minor code is set by the underlying mechanism. The value of 0
 indicates that the mechanism error code is not set.

7.8.5. getMajorString

 public String getMajorString()

 Returns a string explaining the GSS major error code causing this
 exception to be thrown.

7.8.6. getMinorString

 public String getMinorString()

 Returns a string explaining the mechanism-specific error code. "null"
 will be returned when no string explaining the mechanism error code
 has been set.

Upadhyay, et al. Standards Track [Page 81]

RFC 8353 Java GSS-API Update May 2018

7.8.7. getOutputToken

 public byte[] getOutputToken

 Returns the output token in a new byte array.

 If the method (for example, GSSContext#initSecContext) that throws
 this GSSException needs to generate an output token that SHOULD be
 sent to the peer, that token will be stored in this GSSException and
 can be retrieved with this method.

 The return value MUST be null if no such token is generated. It MUST
 NOT be an empty byte array.

7.8.8. setMinor

 public void setMinor(int minorCode, String message)

 Used internally by the GSS-API implementation and the underlying
 mechanisms to set the minor code and its textual representation.

 Parameters:

 minorCode The mechanism-specific error code.

 message A textual explanation of the mechanism error
 code.

7.8.9. toString

 public String toString()

 Returns a textual representation of both the major and minor status
 codes.

7.8.10. getMessage

 public String getMessage()

 Returns a detailed message of this exception. Overrides
 Throwable.getMessage. It is customary in Java to use this method to
 obtain exception information.

Upadhyay, et al. Standards Track [Page 82]

RFC 8353 Java GSS-API Update May 2018

8. Sample Applications

8.1. Simple GSS Context Initiator

 <CODE BEGINS>
 import org.ietf.jgss.*;

 /**
 * This is a partial sketch for a simple client program that acts
 * as a GSS context initiator. It illustrates how to use the Java
 * bindings for the GSS-API specified in RFC 8353.
 *
 *
 * This code sketch assumes the existence of a GSS-API
 * implementation that supports the mechanism that it will need
 * and is present as a library package (org.ietf.jgss) either as
 * part of the standard JRE or in the CLASSPATH the application
 * specifies.
 */

 public class SimpleClient {

 private String serviceName; // name of peer (i.e., server)
 private GSSCredential clientCred = null;
 private GSSContext context = null;
 private Oid mech; // underlying mechanism to use

 private GSSManager mgr = GSSManager.getInstance();

 ...
 ...

 private void clientActions() {
 initializeGSS();
 establishContext();
 doCommunication();
 }

 /**
 * Acquire credentials for the client.
 */
 private void initializeGSS() {

 try {

 clientCred = mgr.createCredential(null /*default princ*/,
 GSSCredential.INDEFINITE_LIFETIME /* max lifetime */,
 mech /* mechanism to use */,

Upadhyay, et al. Standards Track [Page 83]

RFC 8353 Java GSS-API Update May 2018

 GSSCredential.INITIATE_ONLY /* init context */);

 print("GSSCredential created for " +
 clientCred.getName().toString());
 print("Credential lifetime (sec)=" +
 clientCred.getRemainingLifetime());
 } catch (GSSException e) {
 print("GSS-API error in credential acquisition: "
 + e.getMessage());
 ...
 ...
 }
 ...
 ...
 }

 /**
 * Does the security context establishment with the
 * server.
 */
 private void establishContext() {

 byte[] inToken = new byte[0];
 byte[] outToken = null;

 try {

 GSSName peer = mgr.createName(serviceName,
 GSSName.NT_HOSTBASED_SERVICE);
 context = mgr.createContext(peer, mech, clientCred,
 GSSContext.INDEFINITE_LIFETIME/*lifetime*/);

 // Will need to support confidentiality
 context.requestConf(true);

 while (!context.isEstablished()) {

 outToken = context.initSecContext(inToken, 0,
 inToken.length);

 if (outToken != null)
 writeGSSToken(outToken);

 if (!context.isEstablished())
 inToken = readGSSToken();
 }

 peer = context.getTargName();

Upadhyay, et al. Standards Track [Page 84]

RFC 8353 Java GSS-API Update May 2018

 print("Security context established with " + peer +
 " using underlying mechanism " + mech.toString());
 } catch (GSSException e) {
 print("GSS-API error during context establishment: "
 + e.getMessage());

 // If the exception contains an output token,
 // it should be sent to the acceptor.
 byte[] outTok = e.getOutputToken();
 if (outTok != null) {
 writeGSSToken(outTok);
 }
 ...
 ...
 }
 ...
 ...
 }

 /**
 * Sends some data to the server and reads back the
 * response.
 */
 private void doCommunication() {
 byte[] inToken = null;
 byte[] outToken = null;
 byte[] buffer;

 // Container for multiple input-output arguments to and
 // from the per-message routines (e.g., wrap/unwrap).
 MessageProp messgInfo = new MessageProp(true);

 try {

 /*
 * Now send some bytes to the server to be
 * processed. They will be integrity protected
 * but not encrypted for privacy.
 */

 buffer = readFromFile();

 // Set privacy to "false" and use the default QOP
 messgInfo.setPrivacy(false);

 outToken = context.wrap(buffer, 0, buffer.length,
 messgInfo);

Upadhyay, et al. Standards Track [Page 85]

RFC 8353 Java GSS-API Update May 2018

 writeGSSToken(outToken);

 /*
 * Now read the response from the server.
 */

 inToken = readGSSToken();
 buffer = context.unwrap(inToken, 0,
 inToken.length, messgInfo);
 // All ok if no exception was thrown!

 GSSName peer = context.getTargName();

 print("Message from " + peer.toString()
 + " arrived.");
 print("Was it encrypted? " +
 messgInfo.getPrivacy());
 print("Duplicate Token? " +
 messgInfo.isDuplicateToken());
 print("Old Token? " +
 messgInfo.isOldToken());
 print("Unsequenced Token? " +
 messgInfo.isUnseqToken());
 print("Gap Token? " +
 messgInfo.isGapToken());
 ...
 ...
 } catch (GSSException e) {
 print("GSS-API error in per-message calls: "
 + e.getMessage());
 ...
 ...
 }
 ...
 ...
 } // end of doCommunication method

 ...
 ...

 } // end of class SimpleClient
 <CODE ENDS>

Upadhyay, et al. Standards Track [Page 86]

RFC 8353 Java GSS-API Update May 2018

8.2. Simple GSS Context Acceptor

 <CODE BEGINS>
 import org.ietf.jgss.*;

 /**
 * This is a partial sketch for a simple server program that acts
 * as a GSS context acceptor. It illustrates how to use the Java
 * bindings for the GSS-API specified in
 * Generic Security Service API Version 2 : Java Bindings.
 *
 * This code sketch assumes the existence of a GSS-API
 * implementation that supports the mechanisms that it will need
 * and is present as a library package (org.ietf.jgss) either as
 * part of the standard JRE or in the CLASSPATH the application
 * specifies.
 */

 import org.ietf.jgss.*;

 public class SimpleServer {

 private String serviceName;
 private GSSName name;
 private GSSCredential cred;

 private GSSManager mgr;

 ...
 ...

 /**
 * Wait for client connections, establish security contexts,
 * and provide service.
 */
 private void loop() throws Exception {
 ...
 ...
 mgr = GSSManager.getInstance();

 name = mgr.createName(serviceName,
 GSSName.NT_HOSTBASED_SERVICE);

 cred = mgr.createCredential(name,
 GSSCredential.INDEFINITE_LIFETIME,
 (Oid[])null,
 GSSCredential.ACCEPT_ONLY);

Upadhyay, et al. Standards Track [Page 87]

RFC 8353 Java GSS-API Update May 2018

 // Loop infinitely
 while (true) {
 Socket s = serverSock.accept();

 // Start a new thread to serve this connection
 Thread serverThread = new ServerThread(s);
 serverThread.start();
 }
 }

 /**
 * Inner class ServerThread whose run() method provides the
 * secure service to a connection.
 */

 private class ServerThread extends Thread {

 ...
 ...

 /**
 * Deals with the connection from one client. It also
 * handles all GSSException’s thrown while talking to
 * this client.
 */
 public void run() {

 byte[] inToken = null;
 byte[] outToken = null;
 byte[] buffer;

 // Container for multiple input-output arguments to
 // and from the per-message routines
 // (i.e., wrap/unwrap).
 MessageProp supplInfo = new MessageProp(true);

 try {
 // Now do the context establishment loop
 GSSContext context = mgr.createContext(cred);

 while (!context.isEstablished()) {

 inToken = readGSSToken();
 outToken = context.acceptSecContext(inToken,
 0, inToken.length);
 if (outToken != null)
 writeGSSToken(outToken);

Upadhyay, et al. Standards Track [Page 88]

RFC 8353 Java GSS-API Update May 2018

 }

 // SimpleServer wants confidentiality to be
 // available. Check for it.
 if (!context.getConfState()){
 ...
 ...
 }

 GSSName peer = context.getSrcName();
 Oid mech = context.getMech();
 print("Security context established with " +
 peer.toString() +
 " using underlying mechanism " +
 mech.toString());

 // Now read the bytes sent by the client to be
 // processed.
 inToken = readGSSToken();

 // Unwrap the message
 buffer = context.unwrap(inToken, 0,
 inToken.length, supplInfo);
 // All ok if no exception was thrown!

 // Print other supplementary per-message status
 // information.

 print("Message from " +
 peer.toString() + " arrived.");
 print("Was it encrypted? " +
 supplInfo.getPrivacy());
 print("Duplicate Token? " +
 supplInfo.isDuplicateToken());
 print("Old Token? " + supplInfo.isOldToken());
 print("Unsequenced Token? " +
 supplInfo.isUnseqToken());
 print("Gap Token? " + supplInfo.isGapToken());

 /*
 * Now process the bytes and send back an
 * encrypted response.
 */

 buffer = serverProcess(buffer);

Upadhyay, et al. Standards Track [Page 89]

RFC 8353 Java GSS-API Update May 2018

 // Encipher it and send it across

 supplInfo.setPrivacy(true); // privacy requested
 supplInfo.setQOP(0); // default QOP
 outToken = context.wrap(buffer, 0, buffer.length,
 supplInfo);
 writeGSSToken(outToken);

 } catch (GSSException e) {
 print("GSS-API Error: " + e.getMessage());
 // Alternatively, could call e.getMajorMessage()
 // and e.getMinorMessage()

 // If the exception contains an output token,
 // it should be sent to the initiator.
 byte[] outTok = e.getOutputToken();
 if (outTok != null) {
 writeGSSToken(outTok);
 }
 print("Abandoning security context.");
 ...
 ...
 }
 ...
 ...
 } // end of run method in ServerThread

 } // end of inner class ServerThread

 ...
 ...

 } // end of class SimpleServer
 <CODE ENDS>

9. Security Considerations

 The Java language security model allows platform providers to have
 policy-based fine-grained access control over any resource that an
 application wants. When using a Java security manager (such as, but
 not limited to, the case of applets running in browsers), the
 application code is in a sandbox by default.

 Administrators of the platform JRE determine what permissions, if
 any, are to be given to source from different codebases. Thus, the
 administrator has to be aware of any special requirements that the
 GSS provider might have for system resources. For instance, a
 Kerberos provider might wish to make a network connection to the Key

Upadhyay, et al. Standards Track [Page 90]

RFC 8353 Java GSS-API Update May 2018

 Distribution Center (KDC) to obtain initial credentials. This would
 not be allowed under the sandbox unless the administrator had granted
 permissions for this. Also, note that this granting and checking of
 permissions happens transparently to the application and is outside
 the scope of this document.

 The Java language allows administrators to pre-configure a list of
 security service providers in the <JRE>/lib/security/java.security
 file. At runtime, the system approaches these providers in order of
 preference when looking for security-related services. Applications
 have a means to modify this list through methods in the "Security"
 class in the "java.security" package. However, since these
 modifications would be visible in the entire Java Virtual Machine
 (JVM) and thus affect all code executing in it, this operation is not
 available in the sandbox and requires special permissions to perform.
 Thus, when a GSS application has special needs that are met by a
 particular security provider, it has two choices:

 1) Install the provider on a JVM-wide basis using the
 java.security.Security class and then depend on the system to find
 the right provider automatically when the need arises. (This
 would require the application to be granted a "insertProvider
 SecurityPermission".)

 2) Pass an instance of the provider to the local instance of
 GSSManager so that only factory calls going through that
 GSSManager use the desired provider. (This would not require any
 permissions.)

10. IANA Considerations

 This document has no IANA actions.

11. Changes since RFC 5653

 This document has following changes:

 1) New error token embedded in GSSException

 There is a design flaw in the initSecContext and acceptSecContext
 methods of the GSSContext class defined in "Generic Security
 Service API Version 2: Java Bindings Update" [RFC5653].

 The methods could either return a token (possibly null if no more
 tokens are needed) when the call succeeds or throw a GSSException
 if there is a failure, but NOT both. On the other hand, the
 C-bindings of GSS-API [RFC2744] can return both; that is to say, a

Upadhyay, et al. Standards Track [Page 91]

RFC 8353 Java GSS-API Update May 2018

 call to the GSS_Init_sec_context() function can return a major
 status code, and at the same time, fill in the output_token
 argument if there is one.

 Without the ability to emit an error token when there is a
 failure, a Java application has no mechanism to tell the other
 side what the error is. For example, a "reject" NegTokenResp
 token can never be transmitted for the SPNEGO mechanism [RFC4178].

 While a Java method can never return a value and throw an
 exception at the same time, we can embed the error token inside
 the exception so that the caller has a chance to retrieve it.
 This update adds a new GSSException constructor to include this
 token inside a GSSException object and a getOutputToken() method
 to retrieve the token. The specification for the initSecContext
 and acceptSecContext methods are updated to describe the new
 behavior. Various examples are also updated.

 New JGSS programs SHOULD make use of this new feature, but it is
 not mandatory. A program that intends to run with both old and
 new GSS Java bindings can use reflection to check the availability
 of this new method and call it accordingly.

 2) Removing Stream-Based GSSContext Methods

 The overloaded methods of GSSContext that use input and output
 streams as the means to convey authentication and per-message
 GSS-API tokens as described in Section 5.15 of RFC 5653 [RFC5653]
 are removed in this update as the wire protocol should be defined
 by an application and not a library. It’s also impossible to
 implement these methods correctly when the token has no self-
 framing (where the end cannot be determined), or the library has
 no knowledge of the token format (for example, as a bridge talking
 to another GSS library). These methods include initSecContext
 (Section 7.4.5 of RFC 5653 [RFC5653]), acceptSecContext
 (Section 7.4.9 of RFC 5653 [RFC5653]), wrap (Section 7.4.15 of RFC
 5653 [RFC5653]), unwrap (Section 7.4.17 of RFC 5653 [RFC5653]),
 getMIC (Section 7.4.19 of RFC 5653 [RFC5653]), and verifyMIC
 (Section 7.4.21 of RFC 5653 [RFC5653]).

Upadhyay, et al. Standards Track [Page 92]

RFC 8353 Java GSS-API Update May 2018

12. Changes since RFC 2853

 This document has the following changes:

 1) Major GSS Status Code Constant Values

 RFC 2853 listed all the GSS status code values in two different
 sections: Section 4.12.1 defined numeric values for them, and
 Section 6.8.1 defined them as static constants in the GSSException
 class without assigning any values. Due to an inconsistent
 ordering between these two sections, all of the GSS major status
 codes resulted in misalignment and a subsequent disagreement
 between deployed implementations.

 This document defines the numeric values of the GSS status codes
 in both sections, while maintaining the original ordering from
 Section 6.8.1 of RFC 2853 [RFC2853], and it obsoletes the GSS
 status code values defined in Section 4.12.1. The relevant
 sections in this document are Sections 5.12.1 and 7.8.1.

 2) GSS Credential Usage Constant Values

 RFC 2853, Section 6.3.2 defines static constants for the
 GSSCredential usage flags. However, the values of these constants
 were not defined anywhere in RFC 2853 [RFC2853].

 This document defines the credential usage values in
 Section 7.3.1. The original ordering of these values from
 Section 6.3.2 of RFC 2853 [RFC2853] is maintained.

 3) GSS Host-Based Service Name

 RFC 2853 [RFC2853], Section 6.2.2 defines the static constant for
 the GSS host-based service OID NT_HOSTBASED_SERVICE, using a
 deprecated OID value.

 This document updates the NT_HOSTBASED_SERVICE OID value in
 Section 7.2.1 to be consistent with the C-bindings in RFC 2744
 [RFC2744].

Upadhyay, et al. Standards Track [Page 93]

RFC 8353 Java GSS-API Update May 2018

13. References

13.1. Normative References

 [RFC2025] Adams, C., "The Simple Public-Key GSS-API Mechanism
 (SPKM)", RFC 2025, DOI 10.17487/RFC2025, October 1996,
 <https://www.rfc-editor.org/info/rfc2025>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743,
 DOI 10.17487/RFC2743, January 2000,
 <https://www.rfc-editor.org/info/rfc2743>.

 [RFC2744] Wray, J., "Generic Security Service API Version 2 :
 C-bindings", RFC 2744, DOI 10.17487/RFC2744, January 2000,
 <https://www.rfc-editor.org/info/rfc2744>.

 [RFC2853] Kabat, J. and M. Upadhyay, "Generic Security Service API
 Version 2 : Java Bindings", RFC 2853,
 DOI 10.17487/RFC2853, June 2000,
 <https://www.rfc-editor.org/info/rfc2853>.

 [RFC4121] Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos
 Version 5 Generic Security Service Application Program
 Interface (GSS-API) Mechanism: Version 2", RFC 4121,
 DOI 10.17487/RFC4121, July 2005,
 <https://www.rfc-editor.org/info/rfc4121>.

 [RFC4178] Zhu, L., Leach, P., Jaganathan, K., and W. Ingersoll, "The
 Simple and Protected Generic Security Service Application
 Program Interface (GSS-API) Negotiation Mechanism",
 RFC 4178, DOI 10.17487/RFC4178, October 2005,
 <https://www.rfc-editor.org/info/rfc4178>.

 [RFC5653] Upadhyay, M. and S. Malkani, "Generic Security Service API
 Version 2: Java Bindings Update", RFC 5653,
 DOI 10.17487/RFC5653, August 2009,
 <https://www.rfc-editor.org/info/rfc5653>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Upadhyay, et al. Standards Track [Page 94]

RFC 8353 Java GSS-API Update May 2018

13.2. Informative References

 [ISOIEC-8824]
 International Organization for Standardization,
 "Information technology -- Abstract Syntax Notation One
 (ASN.1): Specification of basic notation", ISO/
 IEC 8824-1:2014, November 2015,
 <https://www.iso.org/standard/68350.html>.

 [ISOIEC-8825]
 International Organization for Standardization,
 "Information technology -- ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ISO/IEC 8825-1:2015, November 2015,
 <https://www.iso.org/standard/68345.html>.

 [JLS] Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A.,
 and D. Smith, "The Java Language Specification", Java SE
 10 Edition, February 2018,
 <https://docs.oracle.com/javase/specs/jls/se10/html/
 index.html>.

Upadhyay, et al. Standards Track [Page 95]

RFC 8353 Java GSS-API Update May 2018

Acknowledgments

 We would like to thank Mike Eisler, Lin Ling, Ram Marti, Michael
 Saltz, and other members of Sun’s development team for their helpful
 input, comments, and suggestions.

 We would also like to thank Greg Hudson, Benjamin Kaduk, Joe Salowey
 and Michael Smith for many insightful ideas and suggestions that have
 contributed to this document.

Authors’ Addresses

 Mayank D. Upadhyay
 Google Inc.
 1600 Amphitheatre Parkway
 Mountain View, CA 94043
 United States of America

 Email: m.d.upadhyay+ietf@gmail.com

 Seema Malkani
 ActivIdentity Corp.
 6623 Dumbarton Circle
 Fremont, California 94555
 United States of America

 Email: Seema.Malkani@gmail.com

 Weijun Wang
 Oracle
 Building No. 24, Zhongguancun Software Park
 Beijing 100193
 China

 Email: weijun.wang@oracle.com

Upadhyay, et al. Standards Track [Page 96]

