
Internet Engineering Task Force (IETF) M. Naik
Request for Comments: 8276 Nutanix
Category: Standards Track M. Eshel
ISSN: 2070-1721 IBM Almaden
 December 2017

 File System Extended Attributes in NFSv4

Abstract

 This document describes an optional feature extending the NFSv4
 protocol. This feature allows extended attributes (hereinafter also
 referred to as xattrs) to be interrogated and manipulated using NFSv4
 clients. Xattrs are provided by a file system to associate opaque
 metadata, not interpreted by the file system, with files and
 directories. Such support is present in many modern local file
 systems. New file attributes are provided to allow clients to query
 the server for xattr support, with that support consisting of new
 operations to get and set xattrs on file system objects.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8276.

Naik & Eshel Standards Track [Page 1]

RFC 8276 Extended Attributes in NFSv4 December 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Naik & Eshel Standards Track [Page 2]

RFC 8276 Extended Attributes in NFSv4 December 2017

Table of Contents

 1. Introduction . 4
 1.1. Terminology . 5
 2. Uses of Extended Attributes 5
 3. Functional Gaps Due to Lack of NFSv4 Extended Attribute
 Support . 5
 4. File System Support for Extended Attributes 6
 5. Namespaces . 7
 6. Relationship with Named Attributes 7
 7. XDR Description . 8
 7.1. Code Components Licensing Notice 9
 7.2. XDR for Xattr Extension 11
 8. Protocol Extensions . 11
 8.1. New Definitions . 11
 8.2. New Attribute . 12
 8.2.1. xattr_support . 12
 8.3. New Error Definitions 12
 8.3.1. NFS4ERR_NOXATTR (Error Code 10095) 12
 8.3.2. NFS4ERR_XATTR2BIG (Error Code 10096) 13
 8.4. New Operations . 13
 8.4.1. GETXATTR - Get an Extended Attribute of a File . . . 14
 8.4.2. SETXATTR - Set an Extended Attribute of a File . . . 15
 8.4.3. LISTXATTRS - List Extended Attributes of a File . . . 17
 8.4.4. REMOVEXATTR - Remove an Extended Attribute of a File 18
 8.4.5. Valid Errors . 19
 8.5. Modifications to Existing Operations 21
 8.6. Numeric Values Assigned to Protocol Extensions 22
 8.7. Caching . 23
 8.8. Xattrs and File Locking 25
 8.9. pNFS Considerations 25
 9. Security Considerations 25
 10. IANA Considerations . 25
 11. References . 26
 11.1. Normative References 26
 11.2. Informative References 27
 Acknowledgments . 28
 Authors’ Addresses . 28

Naik & Eshel Standards Track [Page 3]

RFC 8276 Extended Attributes in NFSv4 December 2017

1. Introduction

 Extended attributes, also called xattrs, are a means to associate
 opaque metadata with file system objects, organized as key/value
 pairs. They are especially useful when they add information that is
 not, or cannot be, present in the associated object itself. User-
 space applications can arbitrarily create, interrogate, and modify
 the key/value pairs.

 Extended attributes are file system agnostic; applications use an
 interface not specific to any file system to manipulate them.
 Applications are not concerned about how the key/value pairs are
 stored internally within the underlying file system. All major
 operating systems provide facilities to access and modify extended
 attributes. Many user-space tools allow xattrs to be included
 together with regular attributes that need to be preserved when
 objects are updated, moved, or copied.

 Extended attributes have not previously been included within the
 NFSv4 specification. Some issues that need to be addressed in order
 to be included are that, as with named attributes, some aspects of
 the handling of xattrs are not precisely defined and xattrs are not
 formally documented by any standard such as POSIX [POSIX].
 Nevertheless, it appears that xattrs are widely deployed, and their
 support in modern disk-based file systems is nearly universal.

 There is no current specification of how xattrs could be mapped to
 any existing file attributes defined in the NFSv4 protocol [RFC5661]
 [RFC7530] [RFC7862]. As a result, most NFSv4 client implementations
 ignore application-specified xattrs. This state of affairs results
 in data loss if one copies, over the NFSv4 protocol, a file with
 xattrs from one file system to another that also supports xattrs.

 There is thus a need to provide a means by which such data loss can
 be avoided. This will involve exposing xattrs within the NFSv4
 protocol, despite the lack of completely compatible file system
 implementations.

 This document discusses (in Section 5) the reasons that NFSv4-named
 attributes, as currently standardized in [RFC5661], are unsuitable
 for representing xattrs. Instead, it describes a separate protocol
 mechanism to support xattrs. As a consequence, xattrs and named
 attributes will both be OPTIONAL features with servers free to
 support either, both, or neither.

Naik & Eshel Standards Track [Page 4]

RFC 8276 Extended Attributes in NFSv4 December 2017

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Uses of Extended Attributes

 Applications can store tracking information in extended attributes.
 Examples include storing metadata identifying the application that
 created the file, a tag to indicate when the file was last verified
 by a data integrity scrubber, or a tag to hold a checksum/crypto hash
 of the file contents along with the date of that signature. Xattrs
 can also be used for decorations or annotations. For example, a file
 downloaded from a web server can be tagged with the URL, which can be
 convenient if its source has to be determined in the future.
 Likewise, an email attachment, when saved, can be tagged with the
 message-id of the email, making it possible to trace the original
 message.

 Applications may need to behave differently when handling files of
 varying types. For example, file managers, such as GNOMEs, offer
 unique icons, different click behavior, and special lists of
 operations to perform depending on the file format. This can be
 achieved by looking at the file extension (Windows), or the type can
 be interpreted by inspecting it (Unix MIME type). Some file managers
 generate this information on the fly; others generate the information
 once and then cache it. Those that cache the information tend to put
 it in a custom database. The file manager must work to keep this
 database in sync with the files, which can change without the file
 manager’s knowledge. A better approach is to dispense with the
 custom database and store such metadata in extended attributes. This
 is easier to maintain, provides faster access, and is readily
 accessible by applications [Love].

3. Functional Gaps Due to Lack of NFSv4 Extended Attribute Support

 In addition to the prospect of data loss (discussed in Section 1)
 that arises from use of xattrs on local file systems, application use
 of xattrs poses further difficulties given the current lack of xattr
 support within NFSv4. As a result, certain applications may not be
 supported by NFSv4 or may be supported in an unsatisfactory way.
 Some examples are discussed below.

Naik & Eshel Standards Track [Page 5]

RFC 8276 Extended Attributes in NFSv4 December 2017

 Swift, the OpenStack distributed object store, uses xattrs to store
 an object’s metadata along with all the data together in one file.
 Swift-on-File [Swift] transfers the responsibility of maintaining
 object durability and availability to the underlying file system. At
 the time of writing, this requires a native file system client to
 mount the volumes. Xattr support in NFSv4 would open up the
 possibility of storing and consuming data from other storage systems
 and facilitate the migration of data between different backend
 storage systems.

 Baloo, the file indexing and search framework for Key Distribution
 Exchange (KDE), has moved to storing metadata such as tags, ratings,
 and comments in file system xattrs instead of a custom database for
 simplicity. Starting with KDE Plasma 5.1, NFS is no longer supported
 due to its lack of xattr support [KDE].

4. File System Support for Extended Attributes

 Extended attributes are supported by most modern file systems.

 Some of the file systems that support extended attributes in Linux
 are as follows: ext3, ext4, JFS, XFS, and Btrfs. The getfattr and
 setfattr utilities can be used to retrieve and set xattrs. The names
 of the extended attributes must be prefixed by the name of the
 category and a dot; hence, these categories are generally qualified
 as namespaces. Currently, four namespaces exist: user, trusted,
 security, and system [Linux]. Recommendations on how they should be
 used have been published [freedesktop].

 FreeBSD supports extended attributes in two universal namespaces --
 user and system -- although individual file systems are allowed to
 implement additional namespaces [FreeBSD].

 Some file systems have facilities that are capable of storing both
 extended attributes and named attributes. For discussion regarding
 the relationship between these features, see Section 5. Solaris 9
 and later provide file "forks", logically represented as files within
 a hidden directory that is associated with the target file [fsattr].
 In the New Technology File System (NTFS), extended attributes may be
 stored within "file streams" [NTFS].

 Xattrs can be retrieved and set through system calls or shell
 commands and are generally supported by user-space tools that
 preserve other file attributes. For example, the "rsync" remote copy
 program will correctly preserve user-extended attributes between
 Linux/ext4 and OSX/hfs by stripping off the Linux-specific "user."
 prefix.

Naik & Eshel Standards Track [Page 6]

RFC 8276 Extended Attributes in NFSv4 December 2017

5. Namespaces

 Operating systems may define multiple "namespaces" in which xattrs
 can be set. Namespaces are more than organizational classes; the
 operating system may enforce different access policies and allow
 different capabilities depending on the namespace. Linux, for
 example, defines "security", "system", "trusted", and "user"
 namespaces, the first three being specific to Linux [freedesktop].

 Implementations generally agree on the semantics of a "user"
 namespace, which allows applications to store arbitrary user
 attribute data with file system objects. Access to this namespace is
 controlled via the normal file system attributes. As such, getting
 and setting xattrs from the user namespace can be considered
 interoperable across platforms and vendor implementations.
 Attributes from other namespaces are typically platform specific.

 This document provides support for namespaces related to user-managed
 metadata only, thus avoiding the need to specify the semantics
 applicable to particular system-interpreted xattrs. The values of
 xattrs are considered application data just as the contents of named
 attributes, files, and symbolic links are. Servers have a
 responsibility to store whatever value the client specifies and to
 return it on demand. Xattr keys and values MUST NOT be interpreted
 by the NFS clients and servers, as such behavior would lead to
 non-interoperable implementations. If there were a need to specify
 one or more attributes that servers need to act upon, the appropriate
 semantics would be specified by adding a new attribute for the
 purpose as provided for by [RFC5661] and [RFC8178].

6. Relationship with Named Attributes

 [RFC7530] defines named attributes as opaque byte streams that are
 associated with a directory or file and referred to by a string name.
 Named attributes are intended to be used by client applications as a
 method to associate application-specific data with a regular file or
 directory. Although this makes xattrs similar in concept and use to
 named attributes, there are important semantic differences.

 File systems typically define operations to get and set individual
 xattrs as being atomic, although collectively they may be
 independent. Xattrs generally have size limits ranging from a few
 bytes to several kilobytes; the maximum supported size is not
 universally defined and is usually restricted by the file system.
 Similar to Access Control Lists (ACLs), the amount of xattr data
 exchanged between the client and server for get/set operations can be
 considered to fit in a single COMPOUND request, bounded by the

Naik & Eshel Standards Track [Page 7]

RFC 8276 Extended Attributes in NFSv4 December 2017

 channel’s negotiated maximum size for requests. Named attributes, on
 the other hand, are unbounded data streams and do not impose
 atomicity requirements.

 Individual named attributes are analogous to files and are opened and
 closed just as files are. Caching of the data for these needs to be
 handled just as data caching is for ordinary files following
 close-to-open semantics. Xattrs, on the other hand, have caching
 requirements similar to other file attributes.

 Named attributes and xattrs have different semantics and are treated
 by applications as belonging to disjoint namespaces. As a result,
 mapping from one to the other would be, at best, a compromise.
 Despite these differences, the underlying file system structure used
 to store named attributes is generally capable of storing xattrs.
 However, the converse is typically not the case because of the size
 limits applicable to xattrs.

 While it might be possible to write guidance about how a client can
 use the named attribute mechanism to act like xattrs, such as by
 carving out some namespace and specifying locking primitives to
 enforce atomicity constraints on individual get/set operations, such
 an approach is sufficiently problematic; thus, it will not be
 attempted here. A client application trying to use xattrs through
 named attributes with a server that supported xattrs directly would
 get a lower level of service and could fail to cooperate on a local
 application running on the server unless the server file system
 defined its own interoperability constraints. File systems that
 already implement xattrs and named attributes natively would need
 additional guidance such as reserving a named attribute namespace
 specifically for implementation purposes.

7. XDR Description

 This document contains the External Data Representation (XDR)
 [RFC4506] description of the extended attributes. The XDR
 description is embedded in this document in a way that makes it
 simple for the reader to extract into a ready-to-compile form. The
 reader can feed this document into the following shell script to
 produce the machine-readable XDR description of extended attributes:

 <CODE BEGINS>

 #! /bin/sh
 grep ’^ *///’ $* | sed ’s?^ */// ??’ | sed ’s?^ *///$??’

 <CODE ENDS>

Naik & Eshel Standards Track [Page 8]

RFC 8276 Extended Attributes in NFSv4 December 2017

 That is, if the above script is stored in a file called "extract.sh",
 and this document is in a file called "spec.txt", then the reader can
 do:

 sh extract.sh < spec.txt > xattr_prot.x

 The effect of the script is to remove leading white space from each
 line, plus a sentinel sequence of "///".

 The initial section of the embedded XDR file header follows.
 Subsequent XDR descriptions, with the sentinel sequence, are embedded
 throughout the document.

 Note that the XDR code contained in this document depends on types
 from the NFSv4.2 nfs4_prot.x file [RFC7863]. This includes both nfs
 types that end with a 4, such as nfs_cookie4, count4, etc., as well
 as more-generic types, such as opaque and bool.

 To produce a compilable XDR file, the following procedure is
 suggested:

 o Extract the file nfs4_prot.x as described in [RFC7863].

 o Extract xattr_prot.x from this document as described above.

 o Apply any changes required for other extensions to be included
 together with the xattr extension.

 o Perform modifications to nfs4_prot.x as described by comments
 within xattr_prot.x.

 o Extend the unions nfs_argop4 and nfs_resop4 to include cases for
 the new operations defined in this document.

 o Combine the XDR files for the base NFSv4.2 protocol and all needed
 extensions by either concatenating the relevant XDR files or using
 file inclusion.

7.1. Code Components Licensing Notice

 Both the XDR description and the scripts used for extracting the XDR
 description are Code Components as described in "Legal Provisions
 Relating to IETF Documents", Section 4 of [LEGAL]. These Code
 Components are licensed according to the terms of that document.

Naik & Eshel Standards Track [Page 9]

RFC 8276 Extended Attributes in NFSv4 December 2017

 <CODE BEGINS>

 /// /*
 /// * Copyright (c) 2017 IETF Trust and the persons identified
 /// * as authors of the code. All rights reserved.
 /// *
 /// * Redistribution and use in source and binary forms, with
 /// * or without modification, are permitted provided that the
 /// * following conditions are met:
 /// *
 /// * o Redistributions of source code must retain the above
 /// * copyright notice, this list of conditions and the
 /// * following disclaimer.
 /// *
 /// * o Redistributions in binary form must reproduce the above
 /// * copyright notice, this list of conditions and the
 /// * following disclaimer in the documentation and/or other
 /// * materials provided with the distribution.
 /// *
 /// * o Neither the name of Internet Society, IETF or IETF
 /// * Trust, nor the names of specific contributors, may be
 /// * used to endorse or promote products derived from this
 /// * software without specific prior written permission.
 /// *
 /// * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
 /// * AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
 /// * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 /// * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 /// * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
 /// * EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 /// * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 /// * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 /// * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 /// * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 /// * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 /// * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 /// * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 /// * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 /// * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 /// *
 /// * This code was derived from RFC 8276.
 /// * Please reproduce this note if possible.
 /// */

 <CODE ENDS>

Naik & Eshel Standards Track [Page 10]

RFC 8276 Extended Attributes in NFSv4 December 2017

7.2. XDR for Xattr Extension

 <CODE BEGINS>

 /// /*
 /// * xattr_prot.x
 /// */

 /// /*
 /// * The following includes statements that are for example only.
 /// * The actual XDR definition files are generated separately
 /// * and independently and are likely to have a different name.
 /// * %#include <rpc_prot.x>
 /// * %#include <nfsv42.x>
 /// */

 <CODE ENDS>

8. Protocol Extensions

 This section documents extensions to the NFSv4 protocol operations to
 allow xattrs to be queried and modified by clients. A new attribute
 is added to allow clients to determine if the file system being
 accessed provides support for xattrs. New operations are defined to
 allow xattr keys and values to be queried and set. In addition, the
 ACCESS operation is extended by adding new mask bits to provide
 access information relating to xattrs.

 These changes follow applicable guidelines for valid NFSv4 XDR
 protocol extension, as specified in [RFC8178], and obey the rules for
 extensions capable of being made without a change in minor version
 number.

8.1. New Definitions

 <CODE BEGINS>

 /// typedef component4 xattrkey4;
 /// typedef opaque xattrvalue4<>;

 <CODE ENDS>

 Each xattr is a key/value pair. xattrkey4 is a string denoting the
 xattr key name and an attrvalue4, which is a variable-length string
 that identifies the value of the xattr. The handling of xattrkey4
 with regard to internationalization-related issues is the same as
 that for NFSv4 file names and named attribute names, as described in
 [RFC7530]. Any regular file or directory may have a set of extended

Naik & Eshel Standards Track [Page 11]

RFC 8276 Extended Attributes in NFSv4 December 2017

 attributes, each consisting of a key and associated value. The NFS
 client or server MUST NOT interpret the contents of xattrkey4 or
 xattrvalue4.

8.2. New Attribute

 The per-fs read-only attribute described below may be used to
 determine if xattrs are supported. Servers need not support this
 attribute, and some NFSv4.2 servers may be unaware of its existence.
 Before interrogating this attribute using GETATTR, a client should
 determine whether it is a supported attribute by interrogating the
 supported_attrs attribute.

8.2.1. xattr_support

 xattr_support is set to True, if the object’s file system supports
 extended attributes.

 Since xattr_support is not a REQUIRED attribute, the server need not
 support it. However, a client may reasonably assume that a server
 (or file system) that does not support the xattr_support attribute
 does not provide xattr support, and it acts on that basis.

 Note that the protocol does not enforce any limits on the number of
 keys, the length of a key, the size of a value, or the total size of
 xattrs that are allowed for a file. The server file system MAY
 impose additional limits. In addition, a single xattr key or value
 exchanged between the client and server for get/set operations is
 limited by the channel’s negotiated maximum size for requests and
 responses.

8.3. New Error Definitions

 <CODE BEGINS>

 /// /* Following lines are to be added to enum nfsstat4 */
 /// /*
 /// NFS4ERR_NOXATTR = 10095, /* xattr does not exist */
 /// NFS4ERR_XATTR2BIG = 10096 /* xattr value is too big */
 /// */

 <CODE ENDS>

8.3.1. NFS4ERR_NOXATTR (Error Code 10095)

 The specified xattr does not exist or the server is unable to
 retrieve it.

Naik & Eshel Standards Track [Page 12]

RFC 8276 Extended Attributes in NFSv4 December 2017

8.3.2. NFS4ERR_XATTR2BIG (Error Code 10096)

 The size of the xattr value specified as part of a SETXATTR
 operation, or the collective size of all xattrs of the file resulting
 from the SETXATTR operation, is bigger than that supported by the
 underlying file system.

8.4. New Operations

 Applications need to perform the following operations on a given
 file’s extended attributes [Love]:

 o Given a file, return a list of all of the file’s assigned extended
 attribute keys.

 o Given a file and a key, return the corresponding value.

 o Given a file, a key, and a value, assign that value to the key.

 o Given a file and a key, remove that extended attribute from the
 file.

 In order to meet these requirements, this section introduces four new
 OPTIONAL operations: GETXATTR, SETXATTR, LISTXATTRS and REMOVEXATTR.
 These operations are to query, set, list, and remove xattrs,
 respectively. A server MUST support all four operations when they
 are directed to a file system that supports the xattr_support
 attribute and returns TRUE when it is interrogated. For file systems
 that either do not support the xattr_support attribute or return
 FALSE when the xattr_support attribute is interrogated, all of the
 above operations MUST NOT be supported. GETXATTR allows obtaining
 the value of an xattr key, SETXATTR allows creating or replacing an
 xattr key with a value, LISTXATTRS enumerates all the xattrs names,
 and REMOVEXATTR allows deleting a single xattr.

 Note that some server implementations may not be aware of the
 existence of these operations, thereby a client cannot always expect
 that issuing one of them will either succeed or return
 NFS4ERR_NOTSUPP. In some cases, NFS4ERR_OP_ILLEGAL may be returned
 or the request may encounter an XDR decode error on the server. As a
 result, clients should only issue these operations after determining
 that support is present.

Naik & Eshel Standards Track [Page 13]

RFC 8276 Extended Attributes in NFSv4 December 2017

8.4.1. GETXATTR - Get an Extended Attribute of a File

8.4.1.1. ARGUMENTS

 <CODE BEGINS>

 /// struct GETXATTR4args {
 /// /* CURRENT_FH: file */
 /// xattrkey4 gxa_name;
 /// };

 <CODE ENDS>

8.4.1.2. RESULTS

 <CODE BEGINS>

 /// union GETXATTR4res switch (nfsstat4 gxr_status) {
 /// case NFS4_OK:
 /// xattrvalue4 gxr_value;
 /// default:
 /// void;
 /// };

 <CODE ENDS>

8.4.1.3. DESCRIPTION

 The GETXATTR operation will obtain the value for the given extended
 attribute key for the file system object specified by the current
 filehandle.

 The server will fetch the xattr value for the key that the client
 requests if xattrs are supported by the server for the target file
 system. If the server does not support xattrs on the target file
 system, then it MUST NOT return a value and MUST return the
 NFS4ERR_NOTSUPP error or another error indicating the request was not
 understood. The server also MUST return NFS4ERR_NOXATTR if it
 supports xattrs on the target but cannot obtain the requested data.
 If the xattr value contained in the server response is such as to
 cause the channel’s negotiated maximum response size to be exceeded,
 then the server MUST return NFS4ERR_REP_TOO_BIG in gxr_status.

8.4.1.4. IMPLEMENTATION

 Clients that have cached an xattr may avoid the need to do a GETXATTR
 by determining if the change attribute is the same as it was when the
 xattr was fetched. If the client does not hold a delegation for the

Naik & Eshel Standards Track [Page 14]

RFC 8276 Extended Attributes in NFSv4 December 2017

 file in question, it can obtain the change attribute with a GETATTR
 request and compare that change attribute’s value to the change
 attribute value fetched when the xattr value was obtained. This
 handling is similar to how a client would revalidate other file
 attributes such as ACLs.

 When responding to such a GETATTR, the server will, if there is an
 OPEN_DELEGATE_WRITE delegation held by another client for the file in
 question, either obtain the actual current value of these attributes
 from the client holding the delegation by using the CB_GETATTR
 callback or revoke the delegation. See Section 18.7.4 of [RFC5661]
 for details.

8.4.2. SETXATTR - Set an Extended Attribute of a File

8.4.2.1. ARGUMENTS

 <CODE BEGINS>

 /// enum setxattr_option4 {
 /// SETXATTR4_EITHER = 0,
 /// SETXATTR4_CREATE = 1,
 /// SETXATTR4_REPLACE = 2
 /// };

 /// struct SETXATTR4args {
 /// /* CURRENT_FH: file */
 /// setxattr_option4 sxa_option;
 /// xattrkey4 sxa_key;
 /// xattrvalue4 sxa_value;
 /// };

 <CODE ENDS>

8.4.2.2. RESULTS

 <CODE BEGINS>

 /// union SETXATTR4res switch (nfsstat4 sxr_status) {
 /// case NFS4_OK:
 /// change_info4 sxr_info;
 /// default:
 /// void;
 /// };

 <CODE ENDS>

Naik & Eshel Standards Track [Page 15]

RFC 8276 Extended Attributes in NFSv4 December 2017

8.4.2.3. DESCRIPTION

 The SETXATTR operation changes one extended attribute of a file
 system object. The change desired is specified by sxa_option.
 SETXATTR4_CREATE is used to associate the given value with the given
 extended attribute key for the file system object specified by the
 current filehandle. The server MUST return NFS4ERR_EXIST if the
 attribute key already exists. SETXATTR4_REPLACE is also used to set
 an xattr, but the server MUST return NFS4ERR_NOXATTR if the attribute
 key does not exist. By default (SETXATTR4_EITHER), the extended
 attribute will be created if need be, or its value will be replaced
 if the attribute exists.

 If the xattr key and value contained in the client request are such
 that the request would exceed the channel’s negotiated maximum
 request size, then the server MUST return NFS4ERR_REQ_TOO_BIG in
 sxr_status. If the server file system imposes additional limits on
 the size of the key name or value, it MAY return NFS4ERR_XATTR2BIG.

 A successful SETXATTR MUST change the file time_metadata and change
 attributes if the xattr is created or the value assigned to xattr
 changes. However, it is not necessary to change these attributes if
 there has been no actual change in the xattr value. Avoiding
 attribute change in such situations is desirable as it avoids
 unnecessary cache invalidation.

 On success, the server returns the change_info4 information in
 sxr_info. With the atomic field of the change_info4 data type, the
 server will indicate if the before and after change attributes were
 obtained atomically with respect to the SETXATTR operation. This
 allows the client to determine if its cached xattrs are still valid
 after the operation. See Section 8.7 for a discussion on xattr
 caching.

8.4.2.4. IMPLEMENTATION

 If the object whose xattr is being changed has a file delegation that
 is held by a client other than the one doing the SETXATTR, the
 delegation(s) must be recalled, and the operation cannot proceed to
 actually change the xattr until each such delegation is returned or
 revoked. In all cases in which delegations are recalled, the server
 is likely to return one or more NFS4ERR_DELAY errors while the
 delegation(s) remains outstanding, although it might not do that if
 the delegations are returned quickly.

Naik & Eshel Standards Track [Page 16]

RFC 8276 Extended Attributes in NFSv4 December 2017

8.4.3. LISTXATTRS - List Extended Attributes of a File

8.4.3.1. ARGUMENTS

 <CODE BEGINS>

 /// struct LISTXATTRS4args {
 /// /* CURRENT_FH: file */
 /// nfs_cookie4 lxa_cookie;
 /// count4 lxa_maxcount;
 /// };

 <CODE ENDS>

8.4.3.2. RESULTS

 <CODE BEGINS>

 /// struct LISTXATTRS4resok {
 /// nfs_cookie4 lxr_cookie;
 /// xattrkey4 lxr_names<>;
 /// bool lxr_eof;
 /// };

 /// union LISTXATTRS4res switch (nfsstat4 lxr_status) {
 /// case NFS4_OK:
 /// LISTXATTRS4resok lxr_value;
 /// default:
 /// void;
 /// };

 <CODE ENDS>

8.4.3.3. DESCRIPTION

 The LISTXATTRS operation retrieves a variable number of extended
 attribute keys from the file system object specified by the current
 filehandle, along with information to allow the client to request
 additional attribute keys in a subsequent LISTXATTRS.

 The arguments contain a cookie value that represents where the
 LISTXATTRS should start within the list of xattrs. A value of 0
 (zero) for lxa_cookie is used to start reading at the beginning of
 the list. For subsequent LISTXATTRS requests, the client specifies a
 cookie value that is provided by the server on a previous LISTXATTRS
 request.

Naik & Eshel Standards Track [Page 17]

RFC 8276 Extended Attributes in NFSv4 December 2017

 The lxa_maxcount value of the argument is the maximum number of bytes
 for the result. This maximum size represents all of the data being
 returned within the LISTXATTRS4resok structure and includes the XDR
 overhead. The server may return less data. If the server is unable
 to return a single xattr name within the maxcount limit, the error
 NFS4ERR_TOOSMALL will be returned to the client.

 On successful return, the server’s response will provide a list of
 extended attribute keys. The "lxr_eof" flag has a value of TRUE if
 there are no more keys for the object.

 The cookie value is only meaningful to the server and is used as a
 "bookmark" for the xattr key. As mentioned, this cookie is used by
 the client for subsequent LISTXATTRS operations so that it may
 continue listing keys. The cookie is similar in concept to a READDIR
 cookie or the READ offset but should not be interpreted as such by
 the client.

 On success, the current filehandle retains its value.

8.4.3.4. IMPLEMENTATION

 The handling of a cookie is similar to that of the READDIR operation.
 It should be a rare occurrence that a server is unable to continue
 properly listing xattrs with the provided cookie. The server should
 make every effort to avoid this condition since the application at
 the client may not be able to properly handle this type of failure.

8.4.4. REMOVEXATTR - Remove an Extended Attribute of a File

8.4.4.1. ARGUMENTS

 <CODE BEGINS>

 /// struct REMOVEXATTR4args {
 /// /* CURRENT_FH: file */
 /// xattrkey4 rxa_name;
 /// };

 <CODE ENDS>

Naik & Eshel Standards Track [Page 18]

RFC 8276 Extended Attributes in NFSv4 December 2017

8.4.4.2. RESULTS

 <CODE BEGINS>

 /// union REMOVEXATTR4res switch (nfsstat4 rxr_status) {
 /// case NFS4_OK:
 /// change_info4 rxr_info;
 /// default:
 /// void;
 /// };

 <CODE ENDS>

8.4.4.3. DESCRIPTION

 The REMOVEXATTR operation deletes one extended attribute of a file
 system object specified by rxa_name. The server MUST return
 NFS4ERR_NOXATTR if the attribute key does not exist.

 A successful REMOVEXATTR MUST change the file time_metadata and
 change attributes.

 Similar to SETXATTR, the server communicates the value of the change
 attribute immediately prior to, and immediately following, a
 successful REMOVEXATTR operation in rxr_info. This allows the client
 to determine if its cached xattrs are still valid after the
 operation. See Section 8.7 for a discussion on xattr caching.

8.4.4.4. IMPLEMENTATION

 If the object whose xattr is being removed has a file delegation that
 is held by a client other than the one doing the REMOVEXATTR, the
 delegation(s) must be recalled, and the operation cannot proceed to
 delete the xattr until each such delegation is returned or revoked.
 In all cases in which delegations are recalled, the server is likely
 to return one or more NFS4ERR_DELAY errors while the delegation(s)
 remains outstanding, although it might not do that if the delegations
 are returned quickly.

8.4.5. Valid Errors

 This section contains a table that gives the valid error returns for
 each new protocol operation. The error code NFS4_OK (indicating no
 error) is not listed but should be understood to be returnable by all
 new operations. The error values for all other operations are
 defined in Section 13.2 of [RFC7530] and Section 11.2 of [RFC7862].

Naik & Eshel Standards Track [Page 19]

RFC 8276 Extended Attributes in NFSv4 December 2017

 +-------------+---+
 | Operation | Errors |
 +-------------+---+
GETXATTR	NFS4ERR_ACCESS, NFS4ERR_BADXDR,
	NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
	NFS4ERR_FHEXPIRED, NFS4ERR_INVAL, NFS4ERR_IO,
	NFS4ERR_MOVED, NFS4ERR_NAMETOOLONG,
	NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTSUPP,
	NFS4ERR_NOXATTR, NFS4ERR_OP_NOT_IN_SESSION,
	NFS4ERR_PERM, NFS4ERR_REP_TOO_BIG,
	NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
	NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
	NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS,
	NFS4ERR_WRONG_TYPE
SETXATTR	NFS4ERR_ACCESS, NFS4ERR_BADCHAR, NFS4ERR_BADXDR,
	NFS4ERR_DEADSESSION, NFS4ERR_DELAY, NFS4ERR_DQUOT,
	NFS4ERR_EXIST, NFS4ERR_FHEXPIRED, NFS4ERR_INVAL,
	NFS4ERR_IO, NFS4ERR_MOVED, NFS4ERR_NAMETOOLONG,
	NFS4ERR_NOFILEHANDLE, NFS4ERR_NOSPC,
	NFS4ERR_NOXATTR, NFS4ERR_OP_NOT_IN_SESSION,
	NFS4ERR_PERM, NFS4ERR_REP_TOO_BIG,
	NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
	NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_ROFS,
	NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
	NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONG_TYPE,
	NFS4ERR_XATTR2BIG
LISTXATTRS	NFS4ERR_ACCESS, NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
	NFS4ERR_INVAL, NFS4ERR_IO, NFS4ERR_MOVED,
	NFS4ERR_NAMETOOLONG, NFS4ERR_NOFILEHANDLE,
	NFS4ERR_NOTSUPP, NFS4ERR_NOXATTR,
	NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_PERM,
	NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
	NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
	NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
	NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONG_TYPE
REMOVEXATTR	NFS4ERR_ACCESS, NFS4ERR_BADCHAR, NFS4ERR_BADXDR,
	NFS4ERR_DEADSESSION, NFS4ERR_DELAY, NFS4ERR_DQUOT,
	NFS4ERR_EXIST, NFS4ERR_INVAL, NFS4ERR_IO,
	NFS4ERR_LOCKED, NFS4ERR_MOVED, NFS4ERR_NAMETOOLONG,
	NFS4ERR_NOFILEHANDLE, NFS4ERR_NOSPC,
	NFS4ERR_NOXATTR,, NFS4ERR_OLD_STATEID,
	NFS4ERR_OPENMODE, NFS4ERR_OP_NOT_IN_SESSION,
	NFS4ERR_PERM, NFS4ERR_RETRY_UNCACHED_REP,
	NFS4ERR_ROFS, NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
	NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONG_TYPE
 +-------------+---+

 Valid Error Returns for Each New Protocol Operation

Naik & Eshel Standards Track [Page 20]

RFC 8276 Extended Attributes in NFSv4 December 2017

8.5. Modifications to Existing Operations

 In order to provide fine-grained access control to query or modify
 extended attributes, new access rights are defined that can be
 checked to determine if the client is permitted to perform the xattr
 operation.

 Note that in general, as explained in Section 18.1.4 of [RFC5661], a
 client cannot reliably perform an access check with only current file
 attributes and must verify access with the server.

 This section extends the semantics of the ACCESS operation documented
 in Section 18.1 of [RFC5661]. Three new access permissions can be
 requested:

 ACCESS4_XAREAD Query a file or directory for its xattr value
 given a key.

 ACCESS4_XAWRITE Modify xattr keys and/or values of a file or
 directory.

 ACCESS4_XALIST Query a file or directory to list its xattr keys.

 As with the existing access permissions, the results of ACCESS are
 advisory in nature, with no implication that such access will be
 allowed or denied in the future.

 The rules for the client and server follow:

 o If the client is sending ACCESS in order to determine if the user
 can read an xattr of the file with GETXATTR, the client should set
 ACCESS4_XAREAD in the request’s access field.

 o If the client is sending ACCESS in order to determine if the user
 can modify an xattr of the file with SETXATTR or REMOVEXATTR, the
 client should set ACCESS4_XAWRITE in the request’s access field.

 o If the client is sending ACCESS in order to determine if the user
 can list the xattr keys of the file with LISTXATTRS, the client
 should set ACCESS4_XALIST in the request’s access field.

Naik & Eshel Standards Track [Page 21]

RFC 8276 Extended Attributes in NFSv4 December 2017

8.6. Numeric Values Assigned to Protocol Extensions

 This section lists the numeric values that are assigned new
 attributes and operations to implement the xattr feature. To avoid
 inconsistent assignments, these have been checked against the most
 recent protocol version [RFC5661] and the current minor version
 [RFC7862]. Development of interoperable prototypes is possible using
 these values.

 <CODE BEGINS>

 /// /*
 /// * ACCESS - Check Access Rights
 /// */
 /// const ACCESS4_XAREAD = 0x00000040;
 /// const ACCESS4_XAWRITE = 0x00000080;
 /// const ACCESS4_XALIST = 0x00000100;

 /// /*
 /// * New NFSv4 attribute
 /// */
 /// typedef bool fattr4_xattr_support;

 /// /*
 /// * New RECOMMENDED Attribute
 /// */
 /// const FATTR4_XATTR_SUPPORT = 82;

 /// /*
 /// * New NFSv4 operations
 /// */
 /// /* Following lines are to be added to enum nfs_opnum4 */
 /// /*
 /// OP_GETXATTR = 72,
 /// OP_SETXATTR = 73,
 /// OP_LISTXATTRS = 74,
 /// OP_REMOVEXATTR = 75,
 /// */

 /// /*
 /// * New cases for Operation arrays
 /// */
 /// /* Following lines are to be added to nfs_argop4 */
 /// /*
 /// case OP_GETXATTR: GETXATTR4args opgetxattr;
 /// case OP_SETXATTR: SETXATTR4args opsetxattr;
 /// case OP_LISTXATTRS: LISTXATTRS4args oplistxattrs;
 /// case OP_REMOVEXATTR: REMOVEXATTR4args opremovexattr;

Naik & Eshel Standards Track [Page 22]

RFC 8276 Extended Attributes in NFSv4 December 2017

 /// */

 /// /* Following lines are to be added to nfs_resop4 */
 /// /*
 /// case OP_GETXATTR: GETXATTR4res opgetxattr;
 /// case OP_SETXATTR: SETXATTR4res opsetxattr;
 /// case OP_LISTXATTRS: LISTXATTRS4res oplistxattrs;
 /// case OP_REMOVEXATTR: REMOVEXATTR4res opremovexattr;
 /// */

 <CODE ENDS>

8.7. Caching

 The caching behavior for extended attributes is similar to other file
 attributes such as ACLs and is affected by whether or not OPEN
 delegation has been granted to a client.

 Xattrs obtained from, or sent to, the server may be cached and
 clients can use them to avoid subsequent GETXATTR requests, provided
 that the client can ensure that the cached value has not been
 subsequently modified by another client. Such assurance can be based
 on the client holding a delegation for the file in question or the
 client interrogating the change attribute to make sure that any
 cached value is still valid. Such caching may be read-only or write-
 through.

 When a delegation is in effect, some operations by a second client to
 a delegated file will cause the server to recall the delegation
 through a callback. For individual operations, we describe, under
 IMPLEMENTATION, when such operations are required to effect a recall.

 The result of local caching is that the individual xattrs maintained
 on clients may not be up to date. Changes made in one order on the
 server may be seen in a different order on one client and in a third
 order on another client. In order to limit problems that may arise
 due to separate operations to obtain individual xattrs and other file
 attributes, a client should treat xattrs just like other file
 attributes with respect to caching as detailed in Section 10.6 of
 [RFC7530]. A client may validate its cached version of an xattr for
 a file by fetching the change attribute and assuming that if the
 change attribute has the same value as it did when the attributes
 were cached, then xattrs have not changed. If the client holds a
 delegation that ensures that the change attribute cannot be modified
 by another client, it can dispense with actual interrogation of the
 change attribute.

Naik & Eshel Standards Track [Page 23]

RFC 8276 Extended Attributes in NFSv4 December 2017

 When a client is changing xattrs of a file, it needs to determine
 whether there have been changes made to the file by other clients.
 It does this by using the change attribute as reported before and
 after the change operation (SETXATTR or REMOVEXATTR) in the
 associated change_info4 value returned for the operation. The server
 is able to communicate to the client whether the change_info4 data is
 provided atomically with respect to the change operation. If the
 change values are provided atomically, the client has a basis for
 determining, given proper care, whether other clients are modifying
 the file in question.

 An effective way to enable the client to make this determination
 simply is for it to serialize all xattr changes made to a specific
 file. When this is done, and the server provides before and after
 values of the change attribute atomically, the client can simply
 compare the after value of the change attribute from one operation
 with the before value on the subsequent change operation modifying
 the file. When these are equal, the client is assured that no other
 client is modifying the file in question.

 If the comparison indicates that the file was updated by another
 client, the xattr cache associated with the modified file is purged
 from the client. If the comparison indicates no modification, the
 xattr cache can be updated on the client to reflect the file
 operation, and the associated timeout can be extended. The post-
 operation change value needs to be saved as the basis for future
 change_info4 comparisons.

 Xattr caching requires that the client revalidate xattr cache data by
 inspecting the change attribute of a file at the point when an xattr
 was cached. This requires that the server update the change
 attribute when xattrs are modified. For a client to use the
 change_info4 information appropriately and correctly, the server must
 report the pre- and post-operation change attribute values
 atomically. When the server is unable to report the before and after
 values atomically with respect to the xattr update operation, the
 server must indicate that fact in the change_info4 return value.
 When the information is not atomically reported, the client should
 not assume that other clients have not changed the xattrs.

 The protocol does not provide support for write-back caching of
 xattrs. As such, all modifications to xattrs should be done by
 requests to the server. The server should perform such updates
 synchronously.

Naik & Eshel Standards Track [Page 24]

RFC 8276 Extended Attributes in NFSv4 December 2017

8.8. Xattrs and File Locking

 Xattr operations, for the most part, function independent of
 operations related to file locking state. For example, xattrs can be
 interrogated and modified without a corresponding OPEN operation.
 The server does not need to check for locks that conflict with xattr
 access or modify operations. For example, another OPEN specified
 with OPEN4_SHARE_DENY_READ or OPEN4_SHARE_DENY_BOTH does not prevent
 access to or modification of xattrs. Note that the server MUST still
 verify that the client is allowed to perform the xattr operation on
 the basis of access permissions.

 However, the presence of delegations may dictate how xattr operations
 interact with the state-related logic. Xattrs cannot be modified
 when a delegation for the corresponding file is held by another
 client. On the other hand, xattrs can be interrogated despite the
 holding of a write delegation by another client since updates are
 write-through to the server.

8.9. pNFS Considerations

 All xattr operations are sent to the metadata server, which is
 responsible for fetching data from and effecting necessary changes to
 persistent storage.

9. Security Considerations

 Since xattrs are application data, security issues are exactly the
 same as those relating to the storing of file data and named
 attributes. Clients MUST NOT accord any system-interpreted semantics
 to xattrs, since their use is restricted to user-managed metadata
 only as explained in Section 5. Extended attributes are various
 sorts of application data, and the fact that the means of reference
 is slightly different in each case should not be considered security
 relevant. As such, the additions to the NFS protocol for supporting
 extended attributes do not alter the security considerations of the
 NFSv4 protocol [RFC7530].

10. IANA Considerations

 The addition of xattr support to the NFSv4 protocol does not require
 any actions by IANA. This document limits xattr names to the user
 namespace, where application developers are allowed to define and use
 attributes as needed. Unlike named attributes, there is no namespace
 identifier associated with xattrs that may require registration.

Naik & Eshel Standards Track [Page 25]

RFC 8276 Extended Attributes in NFSv4 December 2017

11. References

11.1. Normative References

 [LEGAL] IETF Trust, "Legal Provisions Relating to IETF Documents",
 Version 5.0, March 2015, <http://trustee.ietf.org/docs/
 IETF-Trust-License-Policy.pdf>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4506] Eisler, M., Ed., "XDR: External Data Representation
 Standard", STD 67, RFC 4506, DOI 10.17487/RFC4506, May
 2006, <https://www.rfc-editor.org/info/rfc4506>.

 [RFC5661] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 Protocol", RFC 5661, DOI 10.17487/RFC5661, January 2010,
 <https://www.rfc-editor.org/info/rfc5661>.

 [RFC7530] Haynes, T., Ed. and D. Noveck, Ed., "Network File System
 (NFS) Version 4 Protocol", RFC 7530, DOI 10.17487/RFC7530,
 March 2015, <https://www.rfc-editor.org/info/rfc7530>.

 [RFC7862] Haynes, T., "Network File System (NFS) Version 4 Minor
 Version 2 Protocol", RFC 7862, DOI 10.17487/RFC7862,
 November 2016, <https://www.rfc-editor.org/info/rfc7862>.

 [RFC7863] Haynes, T., "Network File System (NFS) Version 4 Minor
 Version 2 External Data Representation Standard (XDR)
 Description", RFC 7863, DOI 10.17487/RFC7863, November
 2016, <https://www.rfc-editor.org/info/rfc7863>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8178] Noveck, D., "Rules for NFSv4 Extensions and Minor
 Versions", RFC 8178, DOI 10.17487/RFC8178, July 2017,
 <https://www.rfc-editor.org/info/rfc8178>.

Naik & Eshel Standards Track [Page 26]

RFC 8276 Extended Attributes in NFSv4 December 2017

11.2. Informative References

 [FreeBSD] FreeBSD, "FreeBSD Manual Pages - extattr", FreeBSD System
 Calls Manual, January 2008, <http://www.freebsd.org/
 cgi/man.cgi?query=extattr&sektion=9>.

 [freedesktop]
 freedesktop, "Guidelines for extended attributes", May
 2013, <http://www.freedesktop.org/wiki/
 CommonExtendedAttributes>.

 [fsattr] Oracle, "fsattr - extended file attributes", Man Pages
 Section 5: Standards, Environments, and Macros,
 <http://docs.oracle.com/cd/E19253-01/816-5175/6mbba7f02>.

 [KDE] Handa, V., "Extended Attributes Updates", August 2014,
 <http://vhanda.in/blog/2014/08/
 extended-attributes-updates/>.

 [Linux] The Linux man-pages project, "Linux Programmer’s Manual:
 xattr(7)", Linux man pages: Section 7, September 2017,
 <http://man7.org/linux/man-pages/man7/xattr.7.html>.

 [Love] Love, R., "Linux System Programming: Talking Directly to
 the Kernel and C Library", O’Reilly Media, Inc., February
 2009.

 [NTFS] Microsoft, "File Streams", <http://msdn.microsoft.com/en-
 us/library/windows/desktop/aa364404(v=vs.85).aspx>.

 [POSIX] The Open Group, "System Interfaces of The Open Group Base
 Specifications Issue 7", IEEE Std 1003.1, 2016 Edition
 (HTML Version), ISBN 1937218812, September 2016,
 <http://pubs.opengroup.org/onlinepubs/9699919799/>.

 [Swift] The OpenStack Foundation Wiki, "Swift-on-File", July 2015,
 <https://wiki.openstack.org/wiki/Swiftonfile>.

Naik & Eshel Standards Track [Page 27]

RFC 8276 Extended Attributes in NFSv4 December 2017

Acknowledgments

 This document has attempted to capture the discussion on adding
 xattrs to the NFSv4 protocol from many participants on the IETF NFSv4
 mailing list. Those who provided valuable input and comments on
 draft versions of this document include: Tom Haynes, Christoph
 Hellwig, Nico Williams, Dave Noveck, Benny Halevy, and Andreas
 Gruenbacher.

Authors’ Addresses

 Manoj Naik
 Nutanix
 1740 Technology Drive, Suite 150
 San Jose, CA 95110
 United States of America

 Email: manoj.naik@nutanix.com

 Marc Eshel
 IBM Almaden
 650 Harry Road
 San Jose, CA 95120
 United States of America

 Phone: +1 408-927-1894
 Email: eshel@us.ibm.com

Naik & Eshel Standards Track [Page 28]

