
Independent Submission C. Schmitt
Request for Comments: 8272 B. Stiller
Category: Informational University of Zurich
ISSN: 2070-1721 B. Trammell
 ETH Zurich
 November 2017

 TinyIPFIX for Smart Meters in Constrained Networks

Abstract

 This document specifies the TinyIPFIX protocol that is used for
 transmitting smart-metering data in constrained networks such as IPv6
 over Low-Power Wireless Personal Area Networks (6LoWPAN, RFC 4944).
 TinyIPFIX is derived from IP Flow Information Export (RFC 7011) and
 adopted to the needs of constrained networks. This document
 specifies how the TinyIPFIX Data and Template Records are transmitted
 in constrained networks such as 6LoWPAN and how TinyIPFIX data can be
 converted into data that is not TinyIPFIX in a proxy device.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This is a contribution to the RFC Series, independently of any other
 RFC stream. The RFC Editor has chosen to publish this document at
 its discretion and makes no statement about its value for
 implementation or deployment. Documents approved for publication by
 the RFC Editor are not a candidate for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8272.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Schmitt, et al. Informational [Page 1]

RFC 8272 TinyIPFIX November 2017

Table of Contents

 1. Introduction . 3
 1.1. Document Structure 3
 2. Terminology . 4
 3. Constraints . 6
 3.1. Hardware Constraints 6
 3.2. Energy Constraints 7
 3.3. Packet Size Constraints 7
 3.4. Transport Protocol Constraints 8
 4. Application Scenarios for TinyIPFIX 9
 5. Architecture for TinyIPFIX 11
 6. TinyIPFIX Message Format 14
 6.1. TinyIPFIX Message Header 15
 6.2. TinyIPFIX Set . 18
 6.3. TinyIPFIX Template Record Format 19
 6.4. Field Specifier Format 20
 6.5. TinyIPFIX Data Record Format 21
 7. TinyIPFIX Mediation . 21
 7.1. Expanding the Message Header 24
 7.2. Translating the Set Headers 25
 7.3. Expanding the Template Record Header 25
 8. Template Management . 25
 8.1. TCP/SCTP . 26
 8.2. UDP . 26
 9. Security Considerations 26
 10. IANA Considerations . 26
 11. References . 27
 11.1. Normative References 27
 11.2. Informative References 28
 Acknowledgments . 29
 Authors’ Addresses . 30

Schmitt, et al. Informational [Page 2]

RFC 8272 TinyIPFIX November 2017

1. Introduction

 Smart meters that form a constrained wireless network need an
 application-layer protocol that allows the efficient transmission of
 metering data from the devices to a central analysis device. The
 meters used to build such networks are usually equipped with low-cost
 and low-power hardware. This leads to constraints in computational
 capacities, available memory, and networking resources.

 The devices are often battery powered and are expected to run for a
 long time without having the possibility of recharging themselves.
 In order to save energy, smart meters often power off their wireless
 networking device. Hence, they don’t have a steady network
 connection; they are only part of the wireless network as needed when
 there is data to be exported. A push protocol like TinyIPFIX, where
 data is transmitted autonomically from the meters to one or more
 collectors, is suitable for reporting metering data in such networks.

 TinyIPFIX is derived from IPFIX [RFC7011]; therefore, it inherits
 most of IPFIX’s properties. One of these properties is the
 separation of data and its data description by encoding the former in
 Data Sets and the latter in Template Sets.

 Transforming TinyIPFIX to IPFIX as per [RFC7011] is very simple and
 can be done on the border between the constrained network and the
 more general network. The transformation between one form of IPFIX
 data into another is known as "IPFIX Mediation" [RFC5982]. Hence,
 smart-metering networks that are based on TinyIPFIX can be easily
 integrated into an existing IPFIX measurement infrastructure.

1.1. Document Structure

 Section 2 introduces the terminology used in this document.
 Afterwards, hardware and software constraints in constrained
 networks, which will motivate our modifications to the IPFIX
 protocol, are discussed in Section 3. Section 4 describes the
 application scenarios and Section 5 describes the architecture for
 TinyIPFIX. Section 6 defines the TinyIPFIX protocol itself and
 discusses the differences between TinyIPFIX and IPFIX. The Mediation
 Process from TinyIPFIX to IPFIX is described in Section 7. Section 8
 defines the process of Template Management on the Exporter and the
 Collector. Section 9 and Section 10 discuss the security and IANA
 considerations for TinyIPFIX.

Schmitt, et al. Informational [Page 3]

RFC 8272 TinyIPFIX November 2017

2. Terminology

 Most of the terms used in this document are defined in [RFC7011].
 Each of these terms begins with a capital letter. Most of the terms
 that are defined for IPFIX can be used to describe TinyIPFIX. This
 document uses the term "IPFIX" to refer to IPFIX as defined in
 [RFC7011] and the term TinyIPFIX for the protocol specified in this
 draft document assuming constrained networks. The prefix "Tiny" is
 added to IPFIX to distinguish between the IPFIX version and the
 TinyIPFIX version.

 The terms IPFIX Message, IPFIX Device, Set, Data Set, Template Set,
 Data Record, Template Record, Collecting Process, Collector,
 Exporting Process, and Exporter are defined as in [RFC7011]. The
 term IPFIX Mediator is defined in [RFC5982]. The terms Intermediate
 Process, IPFIX Proxy, IPFIX Concentrator are defined in [RFC6183].

 All the terms above have been adapted from the IPFIX definitions. As
 they keep a similar notion but in a different context of constrained
 networks, the term "TinyIPFIX" now precedes the defined terms.

 The term "smart meter" is used to refer to constrained devices like
 wireless sensor nodes, motes, or any other kind of small constrained
 device that can be part of a network that is based on IEEE 802.15.4
 and 6LoWPAN [RFC4944].

 TinyIPFIX Exporting Process

 The TinyIPFIX Exporting Process is a process that exports
 TinyIPFIX Records.

 TinyIPFIX Exporter

 A TinyIPFIX Exporter is device that contains at least one
 TinyIPFIX Exporting Process.

 TinyIPFIX Collecting Process

 The TinyIPFIX Collecting Process is a process inside a device that
 is able to receive and process TinyIPFIX Records.

 TinyIPFIX Collector

 A TinyIPFIX Collector is a device that contains at least one
 TinyIPFIX Collecting Process.

Schmitt, et al. Informational [Page 4]

RFC 8272 TinyIPFIX November 2017

 TinyIPFIX Device

 A TinyIPFIX Device is a device that contains one or more TinyIPFIX
 Collectors or one or more TinyIPFIX Exporters.

 TinyIPFIX Smart Meter

 A TinyIPFIX Smart Meter is a device that contains the
 functionality of a TinyIPFIX Device. It is usually equipped with
 one or more sensors that meter a physical quantity, like power
 consumption, temperature, or physical tampering with the device.
 Every TinyIPFIX Smart Meter MUST at least contain a TinyIPFIX
 Exporting Process. It MAY contain a TinyIPFIX Collecting Process
 in order to work as a TinyIPFIX Proxy or TinyIPFIX Concentrator.

 TinyIPFIX Data Record

 A TinyIPFIX Data Record equals an IPFIX Data Record in [RFC7011].
 The term is used to distinguish between IPFIX and TinyIPFIX
 throughout this document.

 TinyIPFIX Template Record

 A TinyIPFIX Template Record is similar to an IPFIX Template Record
 in [RFC7011]. The Template Record Header is substituted with a
 TinyIPFIX Template Record Header and is otherwise equal to a
 Template Record. See Section 6.3.

 TinyIPFIX Set

 The TinyIPFIX Set is a group of TinyIPFIX Data Records or
 TinyIPFIX Template Records with a TinyIPFIX Set Header. Its
 format is defined in Section 6.2.

 TinyIPFIX Data Set

 The TinyIPFIX Data Set is a TinyIPFIX Set that contains TinyIPFIX
 Data Records.

 TinyIPFIX Template Set

 A TinyIPFIX Template Set is a TinyIPFIX Set that contains
 TinyIPFIX Template Records.

Schmitt, et al. Informational [Page 5]

RFC 8272 TinyIPFIX November 2017

 TinyIPFIX Message

 The TinyIPFIX Message is a message originated by a TinyIPFIX
 Exporter. It is composed of a TinyIPFIX Message Header and one or
 more TinyIPFIX Sets. The TinyIPFIX Message Format is defined in
 Section 6.

 TinyIPFIX Intermediate Process

 A TinyIPFIX Intermediate Process is an IPFIX Intermediate Process
 that can handle TinyIPFIX Messages.

 TinyIPFIX Proxy

 A TinyIPFIX Proxy is an IPFIX Proxy that can handle TinyIPFIX
 Messages.

 TinyIPFIX Concentrator

 A TinyIPFIX Concentrator is device that can handle TinyIPFIX
 Messages (e.g., pre-process them) and is not constrained.

 TinyIPFIX Proxy

 A TinyIPFIX Proxy is an IPFIX Proxy that can handle TinyIPFIX
 Messages and is not constrained.

 A TinyIPFIX Transport Session is defined by the communication between
 a TinyIPFIX Exporter (identified by an 6LoWPAN-Address, the Transport
 Protocol, and the Transport Port) and a TinyIPFIX Collector
 (identified by the same properties).

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Constraints

3.1. Hardware Constraints

 The target devices for TinyIPFIX are usually equipped with low-cost
 hardware; therefore, they face several constraints concerning CPU and
 memory [Schmitt09]. For example, the IRIS mote from Crossbow
 Technologies, Inc. has a size of 58 x 32 x 7 mm (without a battery
 pack) [IRIS]. Thus, there is little space for a micro-controller,
 memory (128 kb program flash, 512 kb measurement serial flash, 8 kb

Schmitt, et al. Informational [Page 6]

RFC 8272 TinyIPFIX November 2017

 RAM, 4 kb configuration EEPROM), and radio-frequency transceiver,
 which are located on the board. The TelosB motes produced by
 Crossbow Technologies, Inc. [TelosB] and ADVANTIC SISTEMAS Y
 SERVICIOS S.L. [Advantic] are similar sized, but offering more
 memory (48 kb flash, 1024 kb serial, flash, 10 kb RAM, 16 kb
 configuration EEPROM). The same holds for OpenMote, but the offering
 is 512 kb flash and 32 kb RAM [openMote].

 Network protocols used on such hardware need to respect these
 constraints. They must be simple to implement using little code and
 little run-time memory and should produce little overhead when
 encoding the application payload.

3.2. Energy Constraints

 Smart meters that are battery powered have hard energy constraints
 [Schmitt09]. If two AA 2800-mAh batteries power the mote, they
 contain approximately 30,240 Joule of energy. If they run out of
 power, their battery has to be changed, which means physical
 manipulation to the device is necessary. Therefore, using as little
 energy as possible for network communication is desired.

 A smart-metering device can save a lot of energy, if it powers down
 its radio-frequency transceiver. Such devices do not have permanent
 network connectivity; they are only part of the network as needed. A
 push protocol, where only one side is sending data, is suitable for
 transmitting application data under such circumstances. As the
 communication is unidirectional, a meter can completely power down
 its radio-frequency transceivers as long as it does not have any data
 to send. If the metering device is able to keep a few measurements
 in memory, and if real-time metering is not a requirement, the
 TinyIPFIX Data Records can be pushed less frequently, therefore
 saving some more energy on the radio-frequency transceivers.

3.3. Packet Size Constraints

 TinyIPFIX is mainly targeted for the use in 6LoWPAN networks, which
 are based on IEEE 802.15.4 [RFC4944]. However, the protocol can also
 be used to transmit data in other networks when a mediator is used
 for translating the TinyIPFIX data into the data format used in the
 other network (e.g., IPFIX). And the protocol is able to map the
 6LoWPAN addresses to the addresses used in the other network. This
 operation typically consists of per-message re-encapsulation and/or
 re-encoding. As defined [RFC4944], IEEE 802.15.4 starts from a
 maximum physical layer packet size of 127 octets (aMaxPHYPacketSize)
 and a maximum frame overhead of 25 octets (aMaxFrameOverhead),
 leaving a maximum frame size of 102 octets at the media access
 control (MAC) layer. On the other hand, IPv6 defines a minimum MTU

Schmitt, et al. Informational [Page 7]

RFC 8272 TinyIPFIX November 2017

 of 1280 octets. Hence, fragmentation has to be implemented in order
 to transmit such large packets. While fragmentation allows the
 transmission of large messages, its use is problematic in networks
 with high packet loss because the complete message has to be
 discarded if only a single fragment gets lost.

 TinyIPFIX enhances IPFIX by a header-compression scheme, which allows
 the header size overhead to be significantly reduced. Additionally,
 the overall TinyIPFIX Message size is reduced, which reduces the need
 for fragmentation.

3.4. Transport Protocol Constraints

 The IPFIX standard [RFC7011] defines several transport protocol
 bindings for the transmission of IPFIX Messages. Stream Control
 Transmission Protocol (SCTP) support is REQUIRED for any IPFIX Device
 to achieve standard conformance [RFC7011], and its use is highly
 recommended. However, sending IPFIX over UDP and TCP MAY also be
 implemented.

 This transport protocol recommendation is not suitable for TinyIPFIX.
 A header compression scheme that allows a compression of an IPv6
 header from 40 octets down to 2 octets is defined in 6LoWPAN. There
 is a similar compression scheme for UDP, but there is no such
 compression for TCP or SCTP headers. If header compression can be
 employed, more space for application payload is available.

 Therefore, using UDP on the transport layer for transmitting
 TinyIPFIX Messages is RECOMMENDED. Furthermore, TCP or SCTP are
 currently not supported on some platforms, like on TinyOS [Harvan08].
 Hence, UDP may be the only option.

 Every TinyIPFIX Exporter and Collector MUST implement UDP transport-
 layer support for transmitting data in a constrained network
 environment. It MAY also offer TCP or SCTP support. In the case in
 which TCP or SCTP MAY be used, power consumption will grow and the
 available size of application payload compared to the use of UDP May
 be reduced. If TinyIPFIX is transmitted over a unconstrained
 network, using SCTP as a transport-layer protocol is RECOMMENDED.
 TinyIPFIX works independent of the target environment, because it
 MUST only be ensured that all intermediate devices can understand
 TinyIPFIX and be able to extract needed packet information (e.g., IP
 destination address). TinyIPFIX messages can be included in other
 transport protocols in the payload whenever is necessary, making
 TinyIPFIX highly flexible and usable for different communication
 protocols (e.g., Constrained Application Protocol (CoAP), UDP, TCP).
 TinyIPFIX itself just specifies a messages format for the collected
 data to be transmitted.

Schmitt, et al. Informational [Page 8]

RFC 8272 TinyIPFIX November 2017

 The constraints on UDP usage given in Section 6.2 of [RFC5153] apply
 to TinyIPFIX as well. TinyIPFIX is not intended for use over the
 open Internet. In general, the networks on which it runs are
 considered dedicated for sensor operations and are under the control
 of a single administrative domain.

4. Application Scenarios for TinyIPFIX

 TinyIPFIX is derived from IPFIX [RFC7011]; therefore, it is a
 unidirectional push protocol assuming UDP usage. This means all
 communication that employs TinyIPFIX is unidirectional from an
 Exporting Process to a Collecting Process. Hence, TinyIPFIX only
 fits for application scenarios where meters transmit data to one or
 more Collectors. In case pull requests should also be supported by
 TinyIPFIX, it is RECOMMENDED not to change the code of TinyIPFIX much
 to get along with the restricted memory available [Schmitt2017].
 Meaning including just a one bit field, called type, to distinguish
 between push and pull messages would be feasible, but the filtering
 SHOULD be done by the gateway and not by the constrained device;
 meaning if a pull is performed, the constrained device is triggered
 to create a TinyIPFIX message immediately as usual, set the type
 field to one instead of zero (for a push message), and send message
 to the gateway. At the gateway, the filtering is performed based on
 the pull request.

 If TinyIPFIX is used over UDP, as recommended, packet loss can occur.
 Furthermore, if an initial Template Message gets lost, and is
 therefore unknown to the Collector, all TinyIPFIX Data Sets that
 reference this Template cannot be decoded. Hence, all these Messages
 are lost if they are not cached by the Collector. It should be clear
 to an application developer that TinyIPFIX can only be used over UDP
 if these TinyIPFIX Message losses are not a problem. To avoid this
 loss, it is RECOMMENDED to repeat the Template Message periodically,
 keeping in mind that a Template never changes for a constrained
 device after deployment. Even when Template Messages become lost in
 the network, the data can be manually translated later when the
 Template Messages is re-sent. Including an acknowledgement mechanism
 is NOT RECOMMENDED due to overhead, because this would require
 storage of any sent data on the constrained devices until it was
 acknowledged. In critical applications, it is RECOMMENDED to repeat
 the Template Message more often.

 TinyIPFIX over UDP is especially not a suitable protocol for
 applications where sensor data trigger policy decisions or
 configuration updates for which packet loss is not tolerable.

Schmitt, et al. Informational [Page 9]

RFC 8272 TinyIPFIX November 2017

 Applications that use smart sensors for accounting purposes for long-
 term measurements can benefit from the use of TinyIPFIX. One
 application for IPFIX is long-term monitoring of large physical
 volumes. In [Tolle05], Tolle et al. built a system for monitoring a
 "70-meter tall redwood tree, at a density interval of 5 minutes in
 time and 2 meters in space". The sensor node infrastructure was
 deployed to measure the air temperature, relative humidity, and
 photosynthetically active solar radiation over a long-term period.

 TinyIPFIX is a good fit for such scenarios. Data can be measured by
 the sensors of the TinyIPFIX Smart Meter over several 5-minute time
 intervals; the measurements can be accumulated into a single
 TinyIPFIX Message. As soon as enough measurements are stored in the
 TinyIPFIX Message, e.g., if the TinyIPFIX Message size fills the
 available payload in a single IEEE 802.15.4 packet, the wireless
 transceiver can be activated and the TinyIPFIX Message can be
 exported to a TinyIPFIX Collector.

 Similar sensor networks have been built to monitor the habitat of
 animals, e.g., in the "Great Duck Island Project" [GreatDuck]
 [SMPC04]. The purpose of the sensor network was to monitor the birds
 by deploying sensors in and around their burrows. The measured
 sensor data was collected and stored in a database for offline
 analysis and visualization. Again, the sensors can perform their
 measurements periodically, accumulate the sensor data, and export
 them to a TinyIPFIX Collector.

 Other application scenarios for TinyIPFIX could be applications where
 sensor networks are used for long-term structural health monitoring
 in order to investigate long-term weather conditions on the structure
 of a building. For example, a smart-metering network has been built
 to monitor the structural health of the Golden Gate Bridge [Kim07].
 If a sensor network is deployed to perform a long-term measurement of
 the structural integrity, TinyIPFIX can be used to collect the
 sensor-measurement data.

 If an application developer wants to decide whether to use TinyIPFIX
 for transmitting data from smart meters, he must take the following
 considerations into account:

 1. The application should require a push protocol by default. The
 timing intervals of when to push data should be predefined before
 deployment. The property above allows a TinyIPFIX Smart Meter to
 turn off its wireless device in order to save energy, as it does
 not have to receive any data.

Schmitt, et al. Informational [Page 10]

RFC 8272 TinyIPFIX November 2017

 2. If real-time reporting is not required, the application might
 benefit from combining several measurements into a single
 TinyIPFIX Message, causing delay but lowering traffic in the
 network. TinyIPFIX easily allow the combination of several
 measurements into a single TinyIPFIX Message (or a single
 packet). This combination can happen on the TinyIPFIX Smart
 Meter that combines several of its own measurements. Or, it can
 happen within a multi-hop wireless network where one IPFIX Proxy
 combines several TinyIPFIX Messages into a single TinyIPFIX
 Message before forwarding them.

 3. The application must accept potential packet loss. TinyIPFIX
 only fits for applications where metering data is stored for
 accounting purposes and not for applications where the sensor
 data triggers configuration changes or policy decisions, except
 when Message loss is acceptable for some reason.

 4. The application must not require per-message export timestamps
 (e.g., for auditing). TinyIPFIX removes export timestamps,
 generally only useful for Template Management operations, which
 it also does not support, from IPFIX. This is a minor
 inconvenience, since per-record timestamp Information Elements
 are also available in IPFIX.

5. Architecture for TinyIPFIX

 The TinyIPFIX architecture is similar to the IPFIX architecture,
 which is described in [RFC5470]. The most common deployment of
 TinyIPFIX Smart Meters is shown in Figure 1, where each TinyIPFIX
 Smart Meter can have different sensors available (e.g., IRIS:
 Temperature, Humidity, Sound; TelosB: Temperature, Bridgeness,
 Humidity, GPS) building the sensor data.

Schmitt, et al. Informational [Page 11]

RFC 8272 TinyIPFIX November 2017

 +------------------------+ +------------------------+
 | TinyIPFIX Device | ... | TinyIPFIX Device |
 | [Exporting Process] | | [Exporting Process] |
 +------------------------+ +------------------------+
 | |
 TinyIPFIX | | TinyIPFIX
 | |
 v v
 +----------------------------------+
 |
 v
 +----------------------------+
 | TinyIPFIX Collector |
 | [Collecting Process(es)] |
 +----------------------------+
 |
 v
 +-----------------------+
 | |
 v v
 +----------------+ +----------------+
 |[*Application 1]| ... |[*Application n]|
 +----------------+ +----------------+

 Figure 1: Direct Transmission between TinyIPFIX
 Devices and Applications

 A TinyIPFIX Smart Meter (S.M.) receives measurement data from its
 internal sensors to create its TinyIPFIX Messages. Then, it encodes
 the results into a TinyIPFIX Message using a TinyIPFIX Exporting
 Process and exports this TinyIPFIX Message to one or more TinyIPFIX
 Collectors. The TinyIPFIX Collector runs one or more applications
 that process the collected sensor data. The TinyIPFIX Collector can
 be deployed on unconstrained devices at the constrained network
 border.

 A second way to deploy TinyIPFIX Smart Meter can employ accumulation
 on TinyIPFIX Messages during their journey through the constrained
 network as shown in Figure 2. This accumulation can be performed by
 TinyIPFIX Concentrators. Such devices must have enough resources to
 perform the accumulation.

Schmitt, et al. Informational [Page 12]

RFC 8272 TinyIPFIX November 2017

 +------------------------+ +------------------------+
 | TinyIPFIX Device | ... | TinyIPFIX Device |
 | [Exporting Process] | | [Exporting Process] |
 +------------------------+ +------------------------+
 | |
 TinyIPFIX | | TinyIPFIX
 | |
 v v
 +----------------------------------+
 |
 v
 +------------------------+
 | TinyIPFIX Concentrator |
 | [Collecting Process] |
 | [Exporting Process] |
 +------------------------+
 |
 TinyIPFIX |
 |
 v
 +--------------------------+
 | Collector |
 | [Collecting Process(es)] |
 +--------------------------+

 Figure 2: Accumulation of TinyIPFIX

 TinyIPFIX Smart Meters send their data to a TinyIPFIX Concentrator,
 which needs to have enough storage space to store the incoming data.
 If the TinyIPFIX Concentrator is hosted in a TinyIPFIX Smart Meter,
 it MAY also be able to collect data from it sensors, if activated.
 It may also accumulate the incoming data with its own measurement
 data. The accumulated data can then be re-exported to one or more
 Collectors. In that case, the TinyIPFIX Concentrator can be viewed
 as receiving data from multiple Smart Meters: one locally and some
 remotely.

 The last deployment, shown in Figure 3, employs another TinyIPFIX
 Mediation process.

Schmitt, et al. Informational [Page 13]

RFC 8272 TinyIPFIX November 2017

 +-------------------------+ +-------------------------+
 | Remote Smart Meter | | Local Smart Meter |
 +-------------------------+ +-------------------------+
 | TinyIPFIX Device | | TinyIPFIX Device |
 | [Exporting Process] | | [Exporting Process] |
 +-------------------------+ +-------------------------+
 | |
 TinyIPFIX | | TinyIPFIX
 | |
 v v
 +-------------------------+
 | TinyIPFIX Concentrator |
 | [Collecting Process] |
 +-------------------------+

 Figure 3: TinyIPFIX Mediator

 In this deployment, the TinyIPFIX Smart Meters transmit their
 TinyIPFIX Messages to one node, e.g., the base station, which
 translates the TinyIPFIX Messages to IPFIX Messages. The IPFIX
 Messages can then be exported into an existing IPFIX infrastructure.
 The Mediation process from TinyIPFIX to IPFIX is described in
 Section 7.

6. TinyIPFIX Message Format

 A TinyIPFIX IPFIX Message starts with a TinyIPFIX Message Header,
 followed by one or more TinyIPFIX Sets. The TinyIPFIX Sets can be
 either of type TinyIPFIX Template Set or of type TinyIPFIX Data Set.
 A TinyIPFIX Message MUST only contain one type of TinyIPFIX Set. The
 format of the TinyIPFIX Message is shown in Figure 4.

 +--+
 | TinyIPFIX Message Header |
 +--+
 | TinyIPFIX Set |
 +--+
 | TinyIPFIX Set |
 +--+
 ...
 +--+
 | TinyIPFIX Set |
 +--+

 Figure 4: TinyIPFIX Message Format

Schmitt, et al. Informational [Page 14]

RFC 8272 TinyIPFIX November 2017

6.1. TinyIPFIX Message Header

 The TinyIPFIX Message Header is derived from the IPFIX Message
 Header, with some optimization using field compression. The IPFIX
 Message Header from [RFC7011] is shown in Figure 5.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version Number | Length |
 +-+
 | Export Time |
 +-+
 | Sequence Number |
 +-+
 | Observation ID |
 +-+

 Figure 5: IPFIX Message Header

 The length of the IPFIX Message Header is 16 octets, and every IPFIX
 Message has to be started with it. The TinyIPFIX Message Header
 needs to be smaller due to the packet size constraints discussed in
 Section 3.3. The TinyIPFIX Header consists of a fixed part of three
 octets as shown in Figure 6, followed by a variable part as shown in
 Figures 7 to 10.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |E|E| SetID | Length | Sequence | Ext. Sequence |
 |1|2|Lookup | | Number | Number |
 +-+
 | Ext. SetID |
 +-+-+-+-+-+-+-+-+

 Figure 6: Format of the TinyIPFIX Message Header
 including Fixed and Optional Parts

 The fixed part has a length of 3 octets and consists of the "E1"
 field (1 bit), the "E2" field (1 bit), the "SetID Lookup" field (4
 bits), the "Length" field (10 bits), and the "Sequence Number" field
 (8 bits). The variable part has a variable length defined by the
 "E1" and "E2" fields in the fixed header. The four variants are
 illustrated in Figure 7 to Figure 10 below.

Schmitt, et al. Informational [Page 15]

RFC 8272 TinyIPFIX November 2017

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 |0|0| SetID | Length | Sequence |
 | | |Lookup | | Number |
 +-+

 Figure 7: TinyIPFIX Message Header Format if E1 = E2 = 0

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |1|0| SetID | Length | Sequence | Ext. SetID |
 | | |Lookup | | Number | |
 +-+

 Figure 8: TinyIPFIX Message Header Format if E1 = 1 and E2 = 0

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |E|E| SetID | Length | Sequence | Ext. Sequenz |
 |1|2|Lookup | | Number | Number |
 +-+

 Figure 9: TinyIPFIX Message Header Format if E1 = 0 and E2 = 1

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |1|1| SetID | Length | Sequence | Ext. Sequenz |
 | | |Lookup | | Number | Number |
 +-+
 | Ext. SetID |
 +-+-+-+-+-+-+-+-+

 Figure 10: TinyIPFIX Message Header Format if E1 = E2 = 1

 The fixed header fields are defined as follows [Kothmayr10]
 [Schmitt2014]:

 E1 and E2

 The bits marked "E1" and "E2" control the presence of the field
 "Ext. SetID" and the presence of the field "Ext. Sequence
 Number", respectively.

Schmitt, et al. Informational [Page 16]

RFC 8272 TinyIPFIX November 2017

 In case E1 = E2 = 0, the TinyIPFIX Message Header has the format
 shown in Figure 7. The fields Extended Sequence Number and
 Extended SetID MUST NOT be present.

 When E1 = 1, the extended SetID field MUST be present. Custom
 SetIDs can be specified in the extended SetID field, setting all
 SetID Lookup bits to 1 (cf. Figure 8.) When evaluated, the value
 specified in the extended SetID field is shifted left by 8 bits to
 prevent collisions with the reserved SetIDs 0-255. To reference
 these, shifting can be disabled by setting all SetID lookup bits
 to 1.

 Depending on the application, sampling rates might be larger than
 in typical constrained networks (e.g., Wireless Sensor Networks
 (WSNs), Cyber-Physical-Systems (CPS)); thus, they may have a large
 quantity of records per packet. In order to make TinyIPFIX
 applicable for those cases, E2 = 1 is set (cf. Figure 9). This
 means the Extended Sequence Number field MUST be present, offering
 8-bit more sequence numbers as usual. Depending on the
 constrained network settings, the combination E1 = E2 = 1 is also
 possible, resulting in the maximum TinyIPFIX Message header shown
 in Figure 10 where the Extended Sequence Number field and Extended
 SetID field MUST both be present.

 SetID Lookup

 This field acts as a lookup field for the SetIDs and provides
 shortcuts to often used SetIDs. Four values are defined:

 Value = 0; Look up extended SetID field, Shifting enabled.

 Value = 1; SetID = 2 and message contains a Template definition.

 Value = 2; SetID = 256 and message contains Data Record for
 Template 256. This places special importance on a single template
 ID, but, since most sensor nodes only define a single template
 directly after booting and continue to stream data with this
 template ID during the whole session lifetime, this shorthand is
 useful for this case.

 Value = 3-14; SetIDs are reserved for future extensions.

 Value = 15; look up extended SetID field, shifting enabled.

 Length

 The length field has a fixed length of 10 bits.

Schmitt, et al. Informational [Page 17]

RFC 8272 TinyIPFIX November 2017

 Sequence Number

 Due to the low sampling rate in typical WSNs, the "Sequence
 Number" field is only one byte long. However, some applications
 may have a large quantity of records per packet. In this case,
 the sequence field can be extended to 16 bit by setting the E2-bit
 to 1.

 Since TinyIPFIX packets are always transported via a network
 protocol, which specifies the source of the packet, the "Observation
 Domain" can be equated with the source of a TinyIPFIX packet.
 Therefore, this IPFIX field has been removed from the TinyIPFIX
 Header. Should an application require explicit Observation Domain
 information, each Data Record in the TinyIPFIX data message may
 contain an Observation Domain ID Information Element; see Section 3.1
 of [RFC7011]. The version field has been removed since the SetID
 lookup field provides room for future extensions. The specification
 of a 32-bit timestamp in seconds would require the time
 synchronization across a wireless-sensor network and produces too
 much overhead. Thus, the "Export Time" field has been removed. If
 applications should require a concrete observation time (e.g.,
 timestamp), it is RECOMMENDED to include it as a separate Information
 Element in the TinyIPFIX Records.

6.2. TinyIPFIX Set

 A TinyIPFIX Set is a set of TinyIPFIX Template or TinyIPFIX Data
 Records. Depending on the TinyIPFIX Record type, the TinyIPFIX Set
 can be either a TinyIPFIX Template Set or a TinyIPFIX Data Set. Every
 TinyIPFIX Set starts with a TinyIPFIX Set Header and is followed by
 one or more TinyIPFIX Records.

 The IPFIX Set Header consists of a 2-octet "Set ID" field and a
 2-octet "Length" field. These two fields are compressed to 1 octet
 each for the TinyIPFIX Set Header. The format of the TinyIPFIX Set
 Header is shown in Figure 11.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Tiny Set ID | Length |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 11: TinyIPFIX Set Header

Schmitt, et al. Informational [Page 18]

RFC 8272 TinyIPFIX November 2017

 The two fields are defined as follows:

 TinyIPFIX Set ID

 The "Tiny Set ID" identifies the type of data that is transported
 in the TinyIPFIX Set. A TinyIPFIX Template Set is identified by
 TinyIPFIX Set ID 2. This corresponds to the Template Set IDs that
 are used by IPFIX [RFC7011]. TinyIPFIX Set ID number 3 MUST NOT
 be used, as Options Templates are not supported; a TinyIPFIX
 Collector MUST ignore and SHOULD log any Set with Set ID 3. All
 values from 4 to 127 are reserved for future use. Values above
 127 are used for TinyIPFIX Data Sets.

 Length

 The "Length" Field contains the total length of the TinyIPFIX Set,
 including the TinyIPFIX Set Header.

6.3. TinyIPFIX Template Record Format

 The format of the TinyIPFIX Template Records is shown in Figure 12.
 The TinyIPFIX Template Record starts with a TinyIPFIX Template Record
 Header and this is followed by one or more Field Specifiers. The
 Field Specifier format is defined as in Section 6.4 and is identical
 to the Field Specifier definition in [RFC7011].

 +--+
 | TinyIPFIX Template Record Header |
 +--+
 | Field Specifier |
 +--+
 | Field Specifier |
 +--+
 ...
 +--+
 | Field Specifier |
 +--+

 Figure 12: TinyIPFIX Template Format

 The format of the TinyIPFIX Template Record Header is shown in
 Figure 13.

Schmitt, et al. Informational [Page 19]

RFC 8272 TinyIPFIX November 2017

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Template ID | Field Count |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 13: TinyIPFIX Template Record Header

 TinyIPFIX Template ID

 Each TinyIPFIX Template Record must have a unique TinyIPFIX
 Template ID (Comp. Temp ID) between 128 and 255. The TinyIPFIX
 Template ID must be unique for the given TinyIPFIX Transport
 Session.

 Field Count

 The number of fields placed in the TinyIPFIX Template Record.

6.4. Field Specifier Format

 The type and length of the transmitted data is encoded in Field
 Specifiers within TinyIPFIX Template Records. The Field Specifier is
 shown in Figure 14 and is identical with the Field Specifier that was
 defined for IPFIX [RFC7011].

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |E| Information Element ident. | Field Length |
 +-+
 | Enterprise Number |
 +-+

 Figure 14: TinyIPFIX Data Field Specifier

 Where:

 E

 Enterprise bit. This is the first bit of the Field Specifier. If
 this bit is zero, the Information Element Identifier identifies an
 IETF-specified Information Element, and the four-octet Enterprise
 Number field MUST NOT be present. If this bit is one, the
 Information Element Identifier identifies an enterprise-specific
 Information Element, and the Enterprise Number field MUST be
 present.

Schmitt, et al. Informational [Page 20]

RFC 8272 TinyIPFIX November 2017

 Information Element Identifier

 A numeric value that represents the type of Information Element.

 Field Length

 The length of the corresponding encoded Information Element, in
 octets. Refer to [RFC7012]. The value 65535 is illegal in
 TinyIPFIX, as variable-length Information Elements are not
 supported.

 Enterprise Number

 IANA Private Enterprise Number of the authority defining the
 Information Element identifier in this Template Record.

 Vendors can easily define their own data model by registering a
 Enterprise ID with IANA. Using their own Enterprise ID, they can use
 any ID in the way they want them to use.

6.5. TinyIPFIX Data Record Format

 The Data Records are sent in TinyIPFIX Data Sets. The format of the
 Data Records is shown in Figure 15 and matches the Data Record format
 from IPFIX.

 +--+
 | Field Value |
 +--+
 | Field Value |
 +--+
 ...
 +--+
 | Field Value |
 +--+

 Figure 15: Data Record Format

7. TinyIPFIX Mediation

 There are two types of TinyIPFIX Intermediate Processes. The first
 one can occur on the transition between a constrained network (e.g.,
 6LoWPAN) and the unconstrained network. This mediation changes the
 network and transport protocol from 6LoWPAN preferring UDP to
 IP/(SCTP|TCP|UDP) and is shown in Figure 16.

Schmitt, et al. Informational [Page 21]

RFC 8272 TinyIPFIX November 2017

 +-----------------------+
 | TinyIPFIX Device |
 | [Exporting Process] |
 +-----------------------+
 |
 TinyIPFIX |
 over 6LoWPAN/UDP |
 v
 +-------------------------+
 | TinyIPFIX mediator |
 | [Collecting Process] |
 | [Exporting Process] |
 +-------------------------+
 |
 TinyIPFIX |
 IP/(UDP/SCTP|TCP) |
 v
 +--------------------------+
 | Collector |
 | [Collecting Process(es)] |
 +--------------------------+

 Figure 16: Translation from TinyIPFIX over 6LoWPAN/UDP
 to TinyIPFIX over IP/(SCTP|TCP|UDP)

 The mediator removes the TinyIPFIX Messages from the 6LoWPAN/UDP
 packets and wraps them into the new network and transport protocols.
 Templates MUST be managed the same way as in the constrained
 environment after the translation to IP/(SCTP|UDP|TCP) (see
 Section 8).

 The second type of mediation transforms TinyIPFIX into IPFIX. This
 process MUST be combined with the transport protocol mediation as
 shown in Figure 17.

Schmitt, et al. Informational [Page 22]

RFC 8272 TinyIPFIX November 2017

 +-----------------------+
 | TinyIPFIX Device |
 | [Exporting Process] |
 +-----------------------+
 |
 TinyIPFIX |
 |
 v
 +-------------------------+
 | TinyIPFIX mediator |
 | [Collecting Process] |
 | [Exporting Process] |
 +-------------------------+
 |
 IPFIX |
 IP/(UDP/SCTP|TCP) |
 v
 +--------------------------+
 | Collector |
 | [Collecting Process(es)] |
 +--------------------------+

 Figure 17: Transformation from TinyIPFIX to IPFIX

 This mediation can also be performed by an IPFIX Collector before
 parsing the IPFIX message as shown in Figure 18. There is no need
 for a parser from TinyIPFIX to IPFIX if such a mediation process can
 be employed in front of an existing IPFIX collector.

 +------------------------+ +----------------------+
 | TinyIPFIX Device | TinyIPFIX | IPFIX Mediator |
 | [Exporting Processes] |----------------->| [Collecting Process] |
 +------------------------+ | [Exporting Process] |
 | | |
 | |IPFIX |
 | | |
 | v |
 | Collector |
 | [Collecting Process] |
 +----------------------+

 Figure 18: Transformation from TinyIPFIX to IPFIX

Schmitt, et al. Informational [Page 23]

RFC 8272 TinyIPFIX November 2017

 The TinyIPFIX Mediation Process has to translate the TinyIPFIX
 Message Header, the TinyIPFIX Set Headers, and the TinyIPFIX Template
 Record Header into their counterparts in IPFIX. Afterwards, the new
 IPFIX Message Length needs to be calculated and inserted into the
 IPFIX Message header.

7.1. Expanding the Message Header

 The fields of the IPFIX Message Header that are shown in Figure 5 can
 be determined from a TinyIPFIX Message Header as follows:

 Version

 This is always 0x000a.

 Length

 The IPFIX Message Length can only be calculated after the complete
 TinyIPFIX Message has been translated. The new length can be
 calculated by adding the length of the IPFIX Message Header, which
 is 16 octets, and the length of all Sets that are contained in the
 IPFIX Message.

 Export Time

 The "Export Time" MUST be generated by the Mediator, and contains
 the time in seconds since 00:00 UTC Jan 1, 1970, at which the
 IPFIX Message leaves the Mediator.

 Sequence Number

 If the TinyIPFIX Sequence Number has a length of 4 octets, the
 original value MUST be used for the IPFIX Message. If the
 TinyIPFIX Sequence Number has a size of one or two octets, the
 TinyIPFIX Mediator MUST expand the TinyIPFIX Sequence Number into
 a four octet field. If the TinyIPFIX Sequence Number was omitted,
 the Mediator needs to calculate the Sequence Number as per
 [RFC7011].

 Observation Domain ID

 Since the Observation Domain ID is used to scope templates in
 IPFIX, it MUST be set to a unique value per TinyIPFIX Exporting
 Process, using either a mapping algorithmically determined by the
 Intermediate Process or directly configured by an administrator.

Schmitt, et al. Informational [Page 24]

RFC 8272 TinyIPFIX November 2017

7.2. Translating the Set Headers

 Both fields in the TinyIPFIX Set Header have a size of 1 octet and
 need to be expanded:

 Set ID

 The field needs to be expanded from 1 octet to 2 octets. If the
 Set ID is below 128, no recalculation needs to be performed. This
 is because all IDs below 128 are reserved for special messages and
 match the IDs used in IPFIX. The TinyIPFIX Set IDs starting with
 128 identify TinyIPFIX Data Sets. Therefore, every TinyIPFIX Set
 ID above number 127 needs to be incremented by number 128 because
 IPFIX Data Set IDs are numbered above 255.

 Set Length

 The field needs to be expanded from one octet to two octets. It
 needs to be recalculated by adding a value of 2 octets to match
 the additional size of the Set Header. For each TinyIPFIX
 Template Record that is contained in the TinyIPFIX Set, 2 more
 octets need to be added to the length.

7.3. Expanding the Template Record Header

 Both fields in the TinyIPFIX Template Record Header have a length of
 one octet and therefore need translation:

 Template ID

 The field needs to be expanded from one octet to two octets. The
 Template ID needs to be increased by a value of 128.

 Field Count

 The field needs to be expanded from one octet to 2 octets.

8. Template Management

 As with IPFIX, TinyIPFIX Template Management depends on the transport
 protocol used. If TCP or SCTP is used, it can be ensured that
 TinyIPFIX Templates are delivered reliably. If UDP is used,
 reliability cannot be guaranteed: template loss can occur. If a
 Template is lost on its way to the Collector, any following TinyIPFIX
 Data Records that refer to this TinyIPFIX Template cannot be decoded.
 Template Withdrawals are not supported in TinyIPFIX. This is
 generally not a problem, because most sensor nodes only define a
 single static template directly after booting.

Schmitt, et al. Informational [Page 25]

RFC 8272 TinyIPFIX November 2017

8.1. TCP/SCTP

 If TCP or SCTP is used for the transmission of TinyIPFIX, Template
 Management MUST be performed as defined in [RFC7011] for IPFIX, with
 the exception of Template Withdrawals, which are not supported in
 TinyIPFIX. Template Withdrawals MUST NOT be sent by TinyIPFIX
 Exporters.

8.2. UDP

 All specifications for Template Management from [RFC7011] apply
 unless specified otherwise in this document.

 TinyIPFIX Templates MUST be sent by a TinyIPFIX Exporter before any
 TinyIPFIX Data Set that refers to the TinyIPFIX Template is
 transmitted. TinyIPFIX Templates are not expected to change over
 time in TinyIPFIX and, thus, they should be pre-shared. TinyIPFIX
 Devices have a default setup when deployed; after booting, they
 announce their TinyIPFIX Template directly to the network and MAY
 repeat it if UDP is used. Hence, a TinyIPFIX Template that has been
 sent once MAY NOT be withdrawn and MUST NOT expire. If a TinyIPFIX
 Smart Meter wants to use another TinyIPFIX Template, it MUST use a
 new TinyIPFIX Template ID for the TinyIPFIX Template.

 While UDP is used, reliable transport of TinyIPFIX Templates cannot
 be, guaranteed and TinyIPFIX Templates can be lost. A TinyIPFIX
 Exporter MUST expect TinyIPFIX Template loss. Therefore, it MUST
 re-send its TinyIPFIX Templates periodically. A TinyIPFIX Template
 MUST be re-sent after a fixed number N of TinyIPFIX Messages that
 contain TinyIPFIX Data Sets referring to the TinyIPFIX Template. The
 number N MUST be configured by the application developer.
 Retransmission and the specification of N can be avoided if TinyIPFIX
 Exporter and TinyIPFIX Collector use pre-shared templates.

9. Security Considerations

 The same security considerations as for the IPFIX Protocol [RFC7011]
 apply.

10. IANA Considerations

 This document does not require any IANA actions.

Schmitt, et al. Informational [Page 26]

RFC 8272 TinyIPFIX November 2017

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
 <https://www.rfc-editor.org/info/rfc4944>.

 [RFC5153] Boschi, E., Mark, L., Quittek, J., Stiemerling, M., and P.
 Aitken, "IP Flow Information Export (IPFIX) Implementation
 Guidelines", RFC 5153, DOI 10.17487/RFC5153, April 2008,
 <https://www.rfc-editor.org/info/rfc5153>.

 [RFC5470] Sadasivan, G., Brownlee, N., Claise, B., and J. Quittek,
 "Architecture for IP Flow Information Export", RFC 5470,
 DOI 10.17487/RFC5470, March 2009,
 <https://www.rfc-editor.org/info/rfc5470>.

 [RFC5982] Kobayashi, A., Ed. and B. Claise, Ed., "IP Flow
 Information Export (IPFIX) Mediation: Problem Statement",
 RFC 5982, DOI 10.17487/RFC5982, August 2010,
 <https://www.rfc-editor.org/info/rfc5982>.

 [RFC6183] Kobayashi, A., Claise, B., Muenz, G., and K. Ishibashi,
 "IP Flow Information Export (IPFIX) Mediation: Framework",
 RFC 6183, DOI 10.17487/RFC6183, April 2011,
 <https://www.rfc-editor.org/info/rfc6183>.

 [RFC7011] Claise, B., Ed., Trammell, B., Ed., and P. Aitken,
 "Specification of the IP Flow Information Export (IPFIX)
 Protocol for the Exchange of Flow Information", STD 77,
 RFC 7011, DOI 10.17487/RFC7011, September 2013,
 <https://www.rfc-editor.org/info/rfc7011>.

 [RFC7012] Claise, B., Ed. and B. Trammell, Ed., "Information Model
 for IP Flow Information Export (IPFIX)", RFC 7012,
 DOI 10.17487/RFC7012, September 2013,
 <https://www.rfc-editor.org/info/rfc7012>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Schmitt, et al. Informational [Page 27]

RFC 8272 TinyIPFIX November 2017

11.2. Informative References

 [Advantic] ADVANTIC SISTEMAS Y SERVICIOS S.L.,
 <https://www.advanticsys.com/>, 2017.

 [GreatDuck]
 Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D.,
 and J. Anderson, "Wireless Sensor Networks for Habitat
 Monitoring", In Proceedings of the 1st ACM international
 workshop on Wireless sensor networks and applications ACM,
 pp. 88-97, DOI 10.1145/570738.570751, 2002.

 [Harvan08] Harvan, M. and J. Schoenwaelder, "TinyOS Motes on the
 Internet: IPv6 over 802.15.4 (6LoWPAN)",
 DOI 10.1515/piko.2008.0042, December 2008.

 [IRIS] Memsic, "Data Sheet IRIS", 2017,
 <http://www.memsic.com/userfiles/files/Datasheets/WSN/
 IRIS_Datasheet.pdf>.

 [Kim07] Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G.,
 Glaser, S., and M. Turon, "Health monitoring of civil
 infrastructures using wireless sensor networks",
 Proceedings of the 6th international conference on
 Information processing in sensor networks (IPSN
 2007), Cambridge, MA, ACM Press, pp. 254-263,
 DOI 10.1145/1236360.1236395, April 2007.

 [Kothmayr10]
 Kothmayr, T., "Data Collection in Wireless Sensor Networks
 for Autonomic Home Networking", Bachelor Thesis, Technical
 University of Munich, Munich, Germany, January 2010.

 [openMote] openMote Technologies S.L., 2017, <http://openmote.com>.

 [Schmitt09]
 Schmitt, C. and G. Carle, "Applications for Wireless
 Sensor Networks", Handbook of Research on P2P and Grid
 Systems for Service-Oriented Computing: Models,
 Methodologies and Applications, Edited by Antonopoulos N.,
 Exarchakos G., Li M., and A. Liotta, Information Science
 Publishing, Chapter 46, pp. 1076-1091,
 ISBN: 978-1615206865, 2010.

Schmitt, et al. Informational [Page 28]

RFC 8272 TinyIPFIX November 2017

 [Schmitt2014]
 Schmitt, C., Kothmayr, T., Ertl, B., Hu, W., Braun, L.,
 and G. Carle, "TinyIPFIX: An efficient application
 protocol for data exchange in cyber physical systems",
 Computer Communications, ELSEVIER, Vol. 74, pp. 63-76,
 DOI 10.1016/j.comcom.2014.05.012, 2016.

 [Schmitt2017]
 Schmitt, C., Anliker, C., and B. Stiller, "Efficient and
 Secure Pull Requests for Emergency Cases Using a Mobile
 Access Framework", Managing the Web of Things: Linking the
 Real World to the Web, Edited by Sheng, M., Qin, Y., Yao,
 L., and B. Benatallah, Morgen Kaufmann (imprint of
 Elsevier), Chapter 8, pp. 229-247,
 ISBN: 978-0-12-809764-9, 2017.

 [SMPC04] Szewczyk, R., Mainwaring, A., Polastre, J., and D. Culler,
 "An analysis of a large scale habitat monitoring
 application", Proceedings of the 2nd international
 conference on Embedded networked sensor systems (SenSys
 04), DOI 10.1145/1031495.1031521, November 2004.

 [TelosB] Memsic, "Data Sheet TelosB", 2017,
 <http://www.memsic.com/userfiles/files/DataSheets/WSN/
 telosb_datasheet.pdf>.

 [Tolle05] Tolle, G., Polastre, J., Szewczyk, R., Culler, D., Turner,
 N., Tu, K., Burgess, S., Dawnson, T., Buonadonna, P., Gay,
 D., and W. Hong, "A macroscope in the redwoods",
 Proceedings of the 3rd international conference on
 Embedded networked sensor systems (SenSys 05),
 DOI 10.1145/1098918.1098925, November 2005.

Acknowledgments

 Many thanks to Lothar Braun, Georg Carle, and Benoit Claise, who
 contributed significant work to earlier draft versions of this work,
 especially to the document titled "Compressed IPFIX for Smart Meters
 in Constrained Networks".

 Many thanks to Thomas Kothmayr, Michael Meister, and Livio Sgier, who
 implemented TinyIPFIX (except the mediator) for TinyOS 2.x and
 Contiki 2.7/3.0 for 3 different sensor platforms (IRIS, TelosB, and
 OpenMote).

Schmitt, et al. Informational [Page 29]

RFC 8272 TinyIPFIX November 2017

Authors’ Addresses

 Corinna Schmitt
 University of Zurich
 Department of Informatics
 Communication Systems Group
 Binzmuehlestrasse 14
 Zurich 8050
 Switzerland

 Email: schmitt@ifi.uzh.ch

 Burkhard Stiller
 University of Zurich
 Department of Informatics
 Communication Systems Group
 Binzmuehlestrasse 14
 Zurich 8050
 Switzerland

 Email: stiller@ifi.uzh.ch

 Brian Trammell
 Swiss Federal Institute of Technology
 Gloriastrasse 35
 Zurich 8092
 Switzerland

 Email: ietf@trammell.ch

Schmitt, et al. Informational [Page 30]

