
Independent Submission F. Hao, Ed.
Request for Comments: 8236 Newcastle University (UK)
Category: Informational September 2017
ISSN: 2070-1721

 J-PAKE: Password-Authenticated Key Exchange by Juggling

Abstract

 This document specifies a Password-Authenticated Key Exchange by
 Juggling (J-PAKE) protocol. This protocol allows the establishment
 of a secure end-to-end communication channel between two remote
 parties over an insecure network solely based on a shared password,
 without requiring a Public Key Infrastructure (PKI) or any trusted
 third party.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This is a contribution to the RFC Series, independently of any other
 RFC stream. The RFC Editor has chosen to publish this document at
 its discretion and makes no statement about its value for
 implementation or deployment. Documents approved for publication by
 the RFC Editor are not a candidate for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8236.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Hao Informational [Page 1]

RFC 8236 J-PAKE September 2017

Table of Contents

 1. Introduction . 2
 1.1. Requirements Language 3
 1.2. Notation . 3
 2. J-PAKE over Finite Field 4
 2.1. Protocol Setup . 4
 2.2. Two-Round Key Exchange 5
 2.3. Computational Cost 6
 3. J-PAKE over Elliptic Curve 7
 3.1. Protocol Setup . 7
 3.2. Two-Round Key Exchange 7
 3.3. Computational Cost 8
 4. Three-Pass Variant . 8
 5. Key Confirmation . 9
 6. Security Considerations 11
 7. IANA Considerations . 12
 8. References . 12
 8.1. Normative References 12
 8.2. Informative References 14
 Acknowledgements . 15
 Author’s Address . 15

1. Introduction

 Password-Authenticated Key Exchange (PAKE) is a technique that aims
 to establish secure communication between two remote parties solely
 based on their shared password, without relying on a Public Key
 Infrastructure or any trusted third party [BM92]. The first PAKE
 protocol, called Encrypted Key Exchange (EKE), was proposed by Steven
 Bellovin and Michael Merrit in 1992 [BM92]. Other well-known PAKE
 protocols include Simple Password Exponential Key Exchange (SPEKE) by
 David Jablon in 1996 [Jab96] and Secure Remote Password (SRP) by Tom
 Wu in 1998 [Wu98]. SRP has been revised several times to address
 reported security and efficiency issues. In particular, the version
 6 of SRP, commonly known as SRP-6, is specified in [RFC5054].

 This document specifies a PAKE protocol called Password-Authenticated
 Key Exchange by Juggling (J-PAKE), which was designed by Feng Hao and
 Peter Ryan in 2008 [HR08]. There are a few factors that may be
 considered in favor of J-PAKE. First, J-PAKE has security proofs,
 while equivalent proofs are lacking in EKE, SPEKE and SRP-6. Second,
 J-PAKE follows a completely different design approach from all other
 PAKE protocols, and is built upon a well-established Zero Knowledge
 Proof (ZKP) primitive: Schnorr NIZK proof [RFC8235]. Third, J-PAKE
 adopts novel engineering techniques to optimize the use of ZKP so
 that overall the protocol is sufficiently efficient for practical
 use. Fourth, J-PAKE is designed to work generically in both the

Hao Informational [Page 2]

RFC 8236 J-PAKE September 2017

 finite field and elliptic curve settings (i.e., DSA and ECDSA-like
 groups, respectively). Unlike SPEKE, it does not require any extra
 primitive to hash passwords onto a designated elliptic curve. Unlike
 SPAKE2 [AP05] and SESPAKE [SOAA15], it does not require a trusted
 setup (i.e., the so-called common reference model) to define a pair
 of generators whose discrete logarithm must be unknown. Finally,
 J-PAKE has been used in real-world applications at a relatively large
 scale, e.g., Firefox sync [MOZILLA], Pale moon sync [PALEMOON], and
 Google Nest products [ABM15]. It has been included into widely
 distributed open source libraries such as OpenSSL [BOINC], Network
 Security Services (NSS) [MOZILLA_NSS], and the Bouncy Castle
 [BOUNCY]. Since 2015, J-PAKE has been included in Thread [THREAD] as
 a standard key agreement mechanism for IoT (Internet of Things)
 applications, and also included in ISO/IEC 11770-4:2017
 [ISO.11770-4].

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Notation

 The following notation is used in this document:

 o Alice: the assumed identity of the prover in the protocol

 o Bob: the assumed identity of the verifier in the protocol

 o s: a low-entropy secret shared between Alice and Bob

 o a | b: a divides b

 o a || b: concatenation of a and b

 o [a, b]: the interval of integers between and including a and b

 o H: a secure cryptographic hash function

 o p: a large prime

 o q: a large prime divisor of p-1, i.e., q | p-1

 o Zp*: a multiplicative group of integers modulo p

Hao Informational [Page 3]

RFC 8236 J-PAKE September 2017

 o Gq: a subgroup of Zp* with prime order q

 o g: a generator of Gq

 o g^d: g raised to the power of d

 o a mod b: a modulo b

 o Fp: a finite field of p elements, where p is a prime

 o E(Fp): an elliptic curve defined over Fp

 o G: a generator of the subgroup over E(Fp) with prime order n

 o n: the order of G

 o h: the cofactor of the subgroup generated by G, which is equal to
 the order of the elliptic curve divided by n

 o P x [b]: multiplication of a point P with a scalar b over E(Fp)

 o KDF(a): Key Derivation Function with input a

 o MAC(MacKey, MacData): MAC function with MacKey as the key and
 MacData as the input data

2. J-PAKE over Finite Field

2.1. Protocol Setup

 When implemented over a finite field, J-PAKE may use the same group
 parameters as DSA [FIPS186-4]. Let p and q be two large primes such
 that q | p-1. Let Gq denote a subgroup of Zp* with prime order q.
 Let g be a generator for Gq. Any non-identity element in Gq can be a
 generator. The two communicating parties, Alice and Bob, both agree
 on (p, q, g), which can be hard-wired in the software code. They can
 also use the method in NIST FIPS 186-4, Appendix A [FIPS186-4] to
 generate (p, q, g). Here, DSA group parameters are used only as an
 example. Other multiplicative groups suitable for cryptography can
 also be used for the implementation, e.g., groups defined in
 [RFC4419]. A group setting that provides 128-bit security or above
 is recommended. The security proof of J-PAKE depends on the
 Decisional Diffie-Hellman (DDH) problem being intractable in the
 considered group.

 Let s be a secret value derived from a low-entropy password shared
 between Alice and Bob. The value of s is REQUIRED to fall within the
 range of [1, q-1]. (Note that s must not be 0 for any non-empty

Hao Informational [Page 4]

RFC 8236 J-PAKE September 2017

 secret.) This range is defined as a necessary condition in [HR08]
 for proving the "on-line dictionary attack resistance", since s, s+q,
 s+2q, ..., are all considered equivalent values as far as the
 protocol specification is concerned. In a practical implementation,
 one may obtain s by taking a cryptographic hash of the password and
 wrapping the result with respect to modulo q. Alternatively, one may
 simply treat the password as an octet string and convert the string
 to an integer modulo q by following the method defined in
 Section 2.3.8 of [SEC1]. In either case, one MUST ensure s is not
 equal to 0 modulo q.

2.2. Two-Round Key Exchange

 Round 1: Alice selects an ephemeral private key x1 uniformly at
 random from [0, q-1] and another ephemeral private key x2 uniformly
 at random from [1, q-1]. Similarly, Bob selects an ephemeral private
 key x3 uniformly at random from [0, q-1] and another ephemeral
 private key x4 uniformly at random from [1, q-1].

 o Alice -> Bob: g1 = g^x1 mod p, g2 = g^x2 mod p and ZKPs for x1 and
 x2

 o Bob -> Alice: g3 = g^x3 mod p, g4 = g^x4 mod p and ZKPs for x3 and
 x4

 In this round, the sender must send zero knowledge proofs to
 demonstrate the knowledge of the ephemeral private keys. A suitable
 technique is to use the Schnorr NIZK proof [RFC8235]. As an example,
 suppose one wishes to prove the knowledge of the exponent for D = g^d
 mod p. The generated Schnorr NIZK proof will contain: {UserID,
 V = g^v mod p, r = v - d * c mod q}, where UserID is the unique
 identifier for the prover, v is a number chosen uniformly at random
 from [0, q-1] and c = H(g || V || D || UserID). The "uniqueness" of
 UserID is defined from the user’s perspective -- for example, if
 Alice communicates with several parties, she shall associate a unique
 identity with each party. Upon receiving a Schnorr NIZK proof, Alice
 shall check the prover’s UserID is a valid identity and is different
 from her own identity. During the key exchange process using J-PAKE,
 each party shall ensure that the other party has been consistently
 using the same identity throughout the protocol execution. Details
 about the Schnorr NIZK proof, including the generation and the
 verification procedures, can be found in [RFC8235].

 When this round finishes, Alice verifies the received ZKPs as
 specified in [RFC8235] and also checks that g4 != 1 mod p.
 Similarly, Bob verifies the received ZKPs and also checks that
 g2 != 1 mod p. If any of these checks fails, this session should be
 aborted.

Hao Informational [Page 5]

RFC 8236 J-PAKE September 2017

 Round 2:

 o Alice -> Bob: A = (g1*g3*g4)^(x2*s) mod p and a ZKP for x2*s

 o Bob -> Alice: B = (g1*g2*g3)^(x4*s) mod p and a ZKP for x4*s

 In this round, the Schnorr NIZK proof is computed in the same way as
 in the previous round except that the generator is different. For
 Alice, the generator used is (g1*g3*g4) instead of g; for Bob, the
 generator is (g1*g2*g3) instead of g. Since any non-identity element
 in Gq can be used as a generator, Alice and Bob just need to ensure
 g1*g3*g4 != 1 mod p and g1*g2*g3 != 1 mod p. With overwhelming
 probability, these inequalities are statistically guaranteed even
 when the user is communicating with an adversary (i.e., in an active
 attack). Nonetheless, for absolute guarantee, the receiving party
 shall explicitly check if these inequalities hold, and abort the
 session in case such a check fails.

 When the second round finishes, Alice and Bob verify the received
 ZKPs. If the verification fails, the session is aborted. Otherwise,
 the two parties compute the common key material as follows:

 o Alice computes Ka = (B/g4^(x2*s))^x2 mod p

 o Bob computes Kb = (A/g2^(x4*s))^x4 mod p

 Here, Ka = Kb = g^((x1+x3)*x2*x4*s) mod p. Let K denote the same key
 material held by both parties. Using K as input, Alice and Bob then
 apply a Key Derivation Function (KDF) to derive a common session key
 k. If the subsequent secure communication uses a symmetric cipher in
 an authenticated mode (say AES-GCM), then one key is sufficient,
 i.e., k = KDF(K). Otherwise, the session key should comprise an
 encryption key (for confidentiality) and a MAC key (for integrity),
 i.e., k = k_enc || k_mac, where k_enc = KDF(K || "JPAKE_ENC") and
 k_mac = KDF(K || "JPAKE_MAC"). The exact choice of the KDF is left
 to specific applications to define.

2.3. Computational Cost

 The computational cost is estimated based on counting the number of
 modular exponentiations since they are the predominant cost factors.
 Note that it takes one exponentiation to generate a Schnorr NIZK
 proof and two to verify it [RFC8235]. For Alice, she needs to
 perform 8 exponentiations in the first round, 4 in the second round,
 and 2 in the final computation of the session key. Hence, that is 14
 modular exponentiations in total. Based on the symmetry, the
 computational cost for Bob is exactly the same.

Hao Informational [Page 6]

RFC 8236 J-PAKE September 2017

3. J-PAKE over Elliptic Curve

3.1. Protocol Setup

 The J-PAKE protocol works basically the same in the elliptic curve
 (EC) setting, except that the underlying multiplicative group over a
 finite field is replaced by an additive group over an elliptic curve.
 Nonetheless, the EC version of J-PAKE is specified here for
 completeness.

 When implemented over an elliptic curve, J-PAKE may use the same EC
 parameters as ECDSA [FIPS186-4]. The FIPS 186-4 standard [FIPS186-4]
 defines three types of curves suitable for ECDSA: pseudorandom curves
 over prime fields, pseudorandom curves over binary fields, and
 special curves over binary fields called Koblitz curves or anomalous
 binary curves. All these curves that are suitable for ECDSA can also
 be used to implement J-PAKE. However, for illustration purposes,
 only curves over prime fields are described in this document.
 Typically, such curves include NIST P-256, P-384, and P-521. When
 choosing a curve, a level of 128-bit security or above is
 recommended. Let E(Fp) be an elliptic curve defined over a finite
 field Fp, where p is a large prime. Let G be a generator for the
 subgroup over E(Fp) of prime order n. Here, the NIST curves are used
 only as an example. Other secure curves such as Curve25519 are also
 suitable for implementation. The security proof of J-PAKE relies on
 the assumption that the DDH problem is intractable in the considered
 group.

 As before, let s denote the shared secret between Alice and Bob. The
 value of s falls within [1, n-1]. In particular, note that s MUST
 not be equal to 0 mod n.

3.2. Two-Round Key Exchange

 Round 1: Alice selects ephemeral private keys x1 and x2 uniformly at
 random from [1, n-1]. Similarly, Bob selects ephemeral private keys
 x3 and x4 uniformly at random from [1, n-1].

 o Alice -> Bob: G1 = G x [x1], G2 = G x [x2] and ZKPs for x1 and x2

 o Bob -> Alice: G3 = G x [x3], G4 = G x [x4] and ZKPs for x3 and x4

 When this round finishes, Alice and Bob verify the received ZKPs as
 specified in [RFC8235]. As an example, to prove the knowledge of the
 discrete logarithm of D = G x [d] with respect to the base point G,
 the ZKP contains: {UserID, V = G x [v], r = v - d * c mod n}, where
 UserID is the unique identifier for the prover, v is a number chosen
 uniformly at random from [1, n-1] and c = H(G || V || D || UserID).

Hao Informational [Page 7]

RFC 8236 J-PAKE September 2017

 The verifier shall check the prover’s UserID is a valid identity and
 is different from its own identity. If the verification of the ZKP
 fails, the session is aborted.

 Round 2:

 o Alice -> Bob: A = (G1 + G3 + G4) x [x2*s] and a ZKP for x2*s

 o Bob -> Alice: B = (G1 + G2 + G3) x [x4*s] and a ZKP for x4*s

 When the second round finishes, Alice and Bob verify the received
 ZKPs. The ZKPs are computed in the same way as in the previous round
 except that the generator is different. For Alice, the new generator
 is G1 + G3 + G4; for Bob, it is G1 + G2 + G3. Alice and Bob shall
 check that these new generators are not points at infinity. If any
 of these checks fails, the session is aborted. Otherwise, the two
 parties compute the common key material as follows:

 o Alice computes Ka = (B - (G4 x [x2*s])) x [x2]

 o Bob computes Kb = (A - (G2 x [x4*s])) x [x4]

 Here, Ka = Kb = G x [(x1+x3)*(x2*x4*s)]. Let K denote the same key
 material held by both parties. Using K as input, Alice and Bob then
 apply a Key Derivation Function (KDF) to derive a common session key
 k.

3.3. Computational Cost

 In the EC setting, the computational cost of J-PAKE is estimated
 based on counting the number of scalar multiplications over the
 elliptic curve. Note that it takes one multiplication to generate a
 Schnorr NIZK proof and one to verify it [RFC8235]. For Alice, she
 has to perform 6 multiplications in the first round, 3 in the second
 round, and 2 in the final computation of the session key. Hence,
 that is 11 multiplications in total. Based on the symmetry, the
 computational cost for Bob is exactly the same.

4. Three-Pass Variant

 The two-round J-PAKE protocol is completely symmetric, which
 significantly simplifies the security analysis. In practice, one
 party normally initiates the communication and the other party
 responds. In that case, the protocol will be completed in three
 passes instead of two rounds. The two-round J-PAKE protocol can be
 trivially changed to three passes without losing security. Take the
 finite field setting as an example, and assume Alice initiates the
 key exchange. The three-pass variant works as follows:

Hao Informational [Page 8]

RFC 8236 J-PAKE September 2017

 1. Alice -> Bob: g1 = g^x1 mod p, g2 = g^x2 mod p, ZKPs for x1 and
 x2.

 2. Bob -> Alice: g3 = g^x3 mod p, g4 = g^x4 mod p,
 B = (g1*g2*g3)^(x4*s) mod p, ZKPs for x3, x4, and x4*s.

 3. Alice -> Bob: A = (g1*g3*g4)^(x2*s) mod p and a ZKP for x2*s.

 Both parties compute the session keys in exactly the same way as
 before.

5. Key Confirmation

 The two-round J-PAKE protocol (or the three-pass variant) provides
 cryptographic guarantee that only the authenticated party who used
 the same password at the other end is able to compute the same
 session key. So far, the authentication is only implicit. The key
 confirmation is also implicit [Stinson06]. The two parties may use
 the derived key straight away to start secure communication by
 encrypting messages in an authenticated mode. Only the party with
 the same derived session key will be able to decrypt and read those
 messages.

 For achieving explicit authentication, an additional key confirmation
 procedure should be performed. This provides explicit assurance that
 the other party has actually derived the same key. In this case, the
 key confirmation is explicit [Stinson06].

 In J-PAKE, explicit key confirmation is recommended whenever the
 network bandwidth allows it. It has the benefit of providing
 explicit and immediate confirmation if the two parties have derived
 the same key and hence are authenticated to each other. This allows
 a practical implementation of J-PAKE to effectively detect online
 dictionary attacks (if any), and stop them accordingly by setting a
 threshold for the consecutively failed connection attempts.

 To achieve explicit key confirmation, there are several methods
 available. They are generically applicable to all key exchange
 protocols, not just J-PAKE. In general, it is recommended that a
 different key from the session key be used for key confirmation --
 say, k’ = KDF(K || "JPAKE_KC"). The advantage of using a different
 key for key confirmation is that the session key remains
 indistinguishable from random after the key confirmation process.
 (However, this perceived advantage is actually subtle and only
 theoretical.) Two explicit key confirmation methods are presented
 here.

Hao Informational [Page 9]

RFC 8236 J-PAKE September 2017

 The first method is based on the one used in the SPEKE protocol
 [Jab96]. Suppose Alice initiates the key confirmation. Alice sends
 to Bob H(H(k’)), which Bob will verify. If the verification is
 successful, Bob sends back to Alice H(k’), which Alice will verify.
 This key confirmation procedure needs to be completed in two rounds,
 as shown below.

 1. Alice -> Bob: H(H(k’))

 2. Bob -> Alice: H(k’)

 The above procedure requires two rounds instead of one, because the
 second message depends on the first. If both parties attempt to send
 the first message at the same time without an agreed order, they
 cannot tell if the message that they receive is a genuine challenge
 or a replayed message, and consequently may enter a deadlock.

 The second method is based on the unilateral key confirmation scheme
 specified in NIST SP 800-56A Revision 1 [BJS07]. Alice and Bob send
 to each other a MAC tag, which they will verify accordingly. This
 key confirmation procedure can be completed in one round.

 In the finite field setting, it works as follows.

 o Alice -> Bob: MacTagAlice = MAC(k’, "KC_1_U" || Alice || Bob || g1
 || g2 || g3 || g4)

 o Bob -> Alice: MacTagBob = MAC(k’, "KC_1_U" || Bob || Alice || g3
 || g4 || g1 || g2)

 In the EC setting, the key confirmation works basically the same.

 o Alice -> Bob: MacTagAlice = MAC(k’, "KC_1_U" || Alice || Bob || G1
 || G2 || G3 || G4)

 o Bob -> Alice: MacTagBob = MAC(k’, "KC_1_U" || Bob || Alice || G3
 || G4 || G1 || G2)

 The second method assumes an additional secure MAC function (e.g.,
 one may use HMAC) and is slightly more complex than the first method.
 However, it can be completed within one round and it preserves the
 overall symmetry of the protocol implementation. For this reason,
 the second method is RECOMMENDED.

Hao Informational [Page 10]

RFC 8236 J-PAKE September 2017

6. Security Considerations

 A PAKE protocol is designed to provide two functions in one protocol
 execution. The first one is to provide zero-knowledge authentication
 of a password. It is called "zero knowledge" because at the end of
 the protocol, the two communicating parties will learn nothing more
 than one bit information: whether the passwords supplied at two ends
 are equal. Therefore, a PAKE protocol is naturally resistant against
 phishing attacks. The second function is to provide session key
 establishment if the two passwords are equal. The session key will
 be used to protect the confidentiality and integrity of the
 subsequent communication.

 More concretely, a secure PAKE protocol shall satisfy the following
 security requirements [HR10].

 1. Offline dictionary attack resistance: It does not leak any
 information that allows a passive/active attacker to perform
 offline exhaustive search of the password.

 2. Forward secrecy: It produces session keys that remain secure even
 when the password is later disclosed.

 3. Known-key security: It prevents a disclosed session key from
 affecting the security of other sessions.

 4. Online dictionary attack resistance: It limits an active attacker
 to test only one password per protocol execution.

 First, a PAKE protocol must resist offline dictionary attacks. A
 password is inherently weak. Typically, it has only about 20-30 bits
 entropy. This level of security is subject to exhaustive search.
 Therefore, in the PAKE protocol, the communication must not reveal
 any data that allows an attacker to learn the password through
 offline exhaustive search.

 Second, a PAKE protocol must provide forward secrecy. The key
 exchange is authenticated based on a shared password. However, there
 is no guarantee on the long-term secrecy of the password. A secure
 PAKE scheme shall protect past session keys even when the password is
 later disclosed. This property also implies that if an attacker
 knows the password but only passively observes the key exchange, he
 cannot learn the session key.

 Third, a PAKE protocol must provide known key security. A session
 key lasts throughout the session. An exposed session key must not
 cause any global impact on the system, affecting the security of
 other sessions.

Hao Informational [Page 11]

RFC 8236 J-PAKE September 2017

 Finally, a PAKE protocol must resist online dictionary attacks. If
 the attacker is directly engaging in the key exchange, there is no
 way to prevent such an attacker trying a random guess of the
 password. However, a secure PAKE scheme should minimize the effect
 of the online attack. In the best case, the attacker can only guess
 exactly one password per impersonation attempt. Consecutively failed
 attempts can be easily detected, and the subsequent attempts shall be
 thwarted accordingly. It is recommended that the false
 authentication counter be handled in such a way that any error (which
 causes the session to fail during the key exchange or key
 confirmation) leads to incrementing the false authentication counter.

 It has been proven in [HR10] that J-PAKE satisfies all of the four
 requirements based on the assumptions that the Decisional Diffie-
 Hellman problem is intractable and the underlying Schnorr NIZK proof
 is secure. An independent study that proves security of J-PAKE in a
 model with algebraic adversaries and random oracles can be found in
 [ABM15]. By comparison, it has been known that EKE has the problem
 of leaking partial information about the password to a passive
 attacker, hence not satisfying the first requirement [Jas96]. For
 SPEKE and SRP-6, an attacker may be able to test more than one
 password in one online dictionary attack (see [Zha04] and [Hao10]),
 hence they do not satisfy the fourth requirement in the strict
 theoretical sense. Furthermore, SPEKE is found vulnerable to an
 impersonation attack and a key-malleability attack [HS14]. These two
 attacks affect the SPEKE protocol specified in Jablon’s original 1996
 paper [Jab96] as well in the D26 draft of IEEE P1363.2 and the ISO/
 IEC 11770-4:2006 standard. As a result, the specification of SPEKE
 in ISO/IEC 11770-4:2006 has been revised to address the identified
 problems.

7. IANA Considerations

 This document does not require any IANA actions.

8. References

8.1. Normative References

 [ABM15] Abdalla, M., Benhamouda, F., and P. MacKenzie, "Security
 of the J-PAKE Password-Authenticated Key Exchange
 Protocol", 2015 IEEE Symposium on Security and Privacy,
 DOI 10.1109/sp.2015.41, May 2015.

 [BM92] Bellovin, S. and M. Merrit, "Encrypted Key Exchange:
 Password-based Protocols Secure against Dictionary
 Attacks", IEEE Symposium on Security and Privacy,
 DOI 10.1109/risp.1992.213269, May 1992.

Hao Informational [Page 12]

RFC 8236 J-PAKE September 2017

 [HR08] Hao, F. and P. Ryan, "Password Authenticated Key Exchange
 by Juggling", Lecture Notes in Computer Science, pp.
 159-171, from 16th Security Protocols Workshop (SPW ’08),
 DOI 10.1007/978-3-642-22137-8_23, 2011.

 [HR10] Hao, F. and P. Ryan, "J-PAKE: Authenticated Key Exchange
 Without PKI", Transactions on Computational Science XI,
 pp. 192-206, DOI 10.1007/978-3-642-17697-5_10, 2010.

 [HS14] Hao, F. and S. Shahandashti, "The SPEKE Protocol
 Revisited", Security Standardisation Research, pp. 26-38,
 DOI 10.1007/978-3-319-14054-4_2, December 2014.

 [Jab96] Jablon, D., "Strong Password-Only Authenticated Key
 Exchange", ACM SIGCOMM Computer Communication Review, Vol.
 26, pp. 5-26, DOI 10.1145/242896.242897, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5054] Taylor, D., Wu, T., Mavrogiannopoulos, N., and T. Perrin,
 "Using the Secure Remote Password (SRP) Protocol for TLS
 Authentication", RFC 5054, DOI 10.17487/RFC5054, November
 2007, <https://www.rfc-editor.org/info/rfc5054>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8235] Hao, F., Ed., "Schnorr Non-interactive Zero Knowledge
 Proof", RFC 8235, DOI 10.17487/RFC8235, September 2017,
 <https://www.rfc-editor.org/info/rfc8235>.

 [SEC1] "Standards for Efficient Cryptography. SEC 1: Elliptic
 Curve Cryptography", SECG SEC1-v2, May 2009,
 <http://www.secg.org/sec1-v2.pdf>.

 [Stinson06]
 Stinson, D., "Cryptography: Theory and Practice", 3rd
 Edition, CRC, 2006.

 [Wu98] Wu, T., "The Secure Remote Password Protocol", Internet
 Society Symposium on Network and Distributed System
 Security, March 1998.

Hao Informational [Page 13]

RFC 8236 J-PAKE September 2017

8.2. Informative References

 [AP05] Abdalla, M. and D. Pointcheval, "Simple Password-Based
 Encrypted Key Exchange Protocols", Topics in Cryptology
 CT-RSA, DOI 10.1007/978-3-540-30574-3_14, 2005.

 [BJS07] Barker, E., Johnson, D., and M. Smid, "Recommendation for
 Pair-Wise Key Establishment Schemes Using Discrete
 Logarithm Cryptography (Revised)", NIST Special
 Publication 800-56A, March 2007,
 <http://csrc.nist.gov/publications/nistpubs/800-56A/
 SP800-56A_Revision1_Mar08-2007.pdf>.

 [BOINC] BOINC, "Index of /android-boinc/libssl/crypto/jpake",
 February 2011, <http://boinc.berkeley.edu/
 android-boinc/libssl/crypto/jpake/>.

 [BOUNCY] Bouncy Castle Cryptography Library,
 "org.bouncycastle.crypto.agreement.jpake (Bouncy Castle
 Library 1.57 API Specification)", May 2017,
 <https://www.bouncycastle.org/docs/docs1.5on/org/
 bouncycastle/crypto/agreement/jpake/package-summary.html>.

 [FIPS186-4]
 National Institute of Standards and Technology, "Digital
 Signature Standard (DSS)", FIPS PUB 186-4,
 DOI 10.6028/NIST.FIPS.186-4, July 2013,
 <http://nvlpubs.nist.gov/nistpubs/FIPS/
 NIST.FIPS.186-4.pdf>.

 [Hao10] Hao, F., "On Small Subgroup Non-Confinement Attacks", IEEE
 Conference on Computer and Information Technology,
 DOI 10.1109/CIT.2010.187, 2010.

 [ISO.11770-4]
 ISO/IEC, "Information technology -- Security techniques --
 Key management -- Part 4: Mechanisms based on weak
 secrets", (under development), July 2017,
 <https://www.iso.org/standard/67933.html>.

 [Jas96] Jaspan, B., "Dual-Workfactor Encrypted Key Exchange:
 Efficiently Preventing Password Chaining and Dictionary
 Attacks", USENIX Symposium on Security, July 1996.

 [MOZILLA] Mozilla Wiki, "Services/KeyExchange", August 2011,
 <https://wiki.mozilla.org/index.php?title=Services/
 KeyExchange&oldid=343704>.

Hao Informational [Page 14]

RFC 8236 J-PAKE September 2017

 [MOZILLA_NSS]
 Mozilla Central, "jpake.c - DXR", August 2016,
 <https://dxr.mozilla.org/mozilla-central/source/
 security/nss/lib/freebl/jpake.c>.

 [PALEMOON] Moonchild Productions, "Pale Moon Sync",
 <https://www.palemoon.org/sync/>.

 [RFC4419] Friedl, M., Provos, N., and W. Simpson, "Diffie-Hellman
 Group Exchange for the Secure Shell (SSH) Transport Layer
 Protocol", RFC 4419, DOI 10.17487/RFC4419, March 2006,
 <https://www.rfc-editor.org/info/rfc4419>.

 [SOAA15] Smyshlyaev, S., Oshkin, I., Alekseev, E., and L.
 Ahmetzyanova, "On the Security of One Password
 Authenticated Key Exchange Protocol", 2015,
 <http://eprint.iacr.org/2015/1237.pdf>.

 [THREAD] Thread, "Thread Commissioning", White Paper, July 2015,
 <https://portal.threadgroup.org/DesktopModules/
 Inventures_Document/FileDownload.aspx?ContentID=658>.

 [Zha04] Zhang, M., "Analysis of the SPEKE Password-Authenticated
 Key Exchange Protocol", IEEE Communications Letters,
 Vol. 8, pp. 63-65, DOI 10.1109/lcomm.2003.822506, January
 2004.

Acknowledgements

 The editor would like to thank Dylan Clarke, Siamak Shahandashti,
 Robert Cragie, Stanislav Smyshlyaev, and Russ Housley for many useful
 comments. This work is supported by EPSRC First Grant (EP/J011541/1)
 and ERC Starting Grant (No. 306994).

Author’s Address

 Feng Hao (editor)
 Newcastle University (UK)
 Urban Sciences Building, School of Computing, Newcastle University
 Newcastle Upon Tyne
 United Kingdom

 Phone: +44 (0)191-208-6384
 Email: feng.hao@ncl.ac.uk

Hao Informational [Page 15]

