
Internet Engineering Task Force (IETF) C. Lever, Ed.
Request for Comments: 8166 Oracle
Obsoletes: 5666 W. Simpson
Category: Standards Track Red Hat
ISSN: 2070-1721 T. Talpey
 Microsoft
 June 2017

 Remote Direct Memory Access Transport for
 Remote Procedure Call Version 1

Abstract

 This document specifies a protocol for conveying Remote Procedure
 Call (RPC) messages on physical transports capable of Remote Direct
 Memory Access (RDMA). This protocol is referred to as the RPC-over-
 RDMA version 1 protocol in this document. It requires no revision to
 application RPC protocols or the RPC protocol itself. This document
 obsoletes RFC 5666.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8166.

Lever, et al. Standards Track [Page 1]

RFC 8166 RPC-over-RDMA Version 1 June 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Lever, et al. Standards Track [Page 2]

RFC 8166 RPC-over-RDMA Version 1 June 2017

Table of Contents

 1. Introduction . 4
 1.1. RPCs on RDMA Transports 4
 2. Terminology . 5
 2.1. Requirements Language 5
 2.2. RPCs . 5
 2.3. RDMA . 8
 3. RPC-over-RDMA Protocol Framework 10
 3.1. Transfer Models . 10
 3.2. Message Framing . 11
 3.3. Managing Receiver Resources 11
 3.4. XDR Encoding with Chunks 14
 3.5. Message Size . 19
 4. RPC-over-RDMA in Operation 23
 4.1. XDR Protocol Definition 23
 4.2. Fixed Header Fields 28
 4.3. Chunk Lists . 30
 4.4. Memory Registration 33
 4.5. Error Handling . 34
 4.6. Protocol Elements No Longer Supported 37
 4.7. XDR Examples . 38
 5. RPC Bind Parameters . 39
 6. ULB Specifications . 41
 6.1. DDP-Eligibility . 41
 6.2. Maximum Reply Size 43
 6.3. Additional Considerations 43
 6.4. ULP Extensions . 43
 7. Protocol Extensibility 44
 7.1. Conventional Extensions 44
 8. Security Considerations 44
 8.1. Memory Protection . 44
 8.2. RPC Message Security 46
 9. IANA Considerations . 49
 10. References . 50
 10.1. Normative References 50
 10.2. Informative References 51
 Appendix A. Changes from RFC 5666 53
 A.1. Changes to the Specification 53
 A.2. Changes to the Protocol 53
 Acknowledgments . 54
 Authors’ Addresses . 55

Lever, et al. Standards Track [Page 3]

RFC 8166 RPC-over-RDMA Version 1 June 2017

1. Introduction

 This document specifies the RPC-over-RDMA version 1 protocol, based
 on existing implementations of RFC 5666 and experience gained through
 deployment. This document obsoletes RFC 5666.

 This specification clarifies text that was subject to multiple
 interpretations and removes support for unimplemented RPC-over-RDMA
 version 1 protocol elements. It clarifies the role of Upper-Layer
 Bindings (ULBs) and describes what they are to contain.

 In addition, this document describes current practice using
 RPCSEC_GSS [RFC7861] on RDMA transports.

 The protocol version number has not been changed because the protocol
 specified in this document fully interoperates with implementations
 of the RPC-over-RDMA version 1 protocol specified in [RFC5666].

1.1. RPCs on RDMA Transports

 RDMA [RFC5040] [RFC5041] [IBARCH] is a technique for moving data
 efficiently between end nodes. By directing data into destination
 buffers as it is sent on a network, and placing it via direct memory
 access by hardware, the benefits of faster transfers and reduced host
 overhead are obtained.

 Open Network Computing Remote Procedure Call (ONC RPC, often
 shortened in NFSv4 documents to RPC) [RFC5531] is a remote procedure
 call protocol that runs over a variety of transports. Most RPC
 implementations today use UDP [RFC768] or TCP [RFC793]. On UDP, RPC
 messages are encapsulated inside datagrams, while on a TCP byte
 stream, RPC messages are delineated by a record marking protocol. An
 RDMA transport also conveys RPC messages in a specific fashion that
 must be fully described if RPC implementations are to interoperate.

 RDMA transports present semantics that differ from either UDP or TCP.
 They retain message delineations like UDP but provide reliable and
 sequenced data transfer like TCP. They also provide an offloaded
 bulk transfer service not provided by UDP or TCP. RDMA transports
 are therefore appropriately viewed as a new transport type by RPC.

 In this context, the Network File System (NFS) protocols, as
 described in [RFC1094], [RFC1813], [RFC7530], [RFC5661], and future
 NFSv4 minor versions, are all obvious beneficiaries of RDMA
 transports. A complete problem statement is presented in [RFC5532].
 Many other RPC-based protocols can also benefit.

Lever, et al. Standards Track [Page 4]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 Although the RDMA transport described herein can provide relatively
 transparent support for any RPC application, this document also
 describes mechanisms that can optimize data transfer even further,
 when RPC applications are willing to exploit awareness of RDMA as the
 transport.

2. Terminology

2.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2.2. RPCs

 This section highlights key elements of the RPC [RFC5531] and
 External Data Representation (XDR) [RFC4506] protocols, upon which
 RPC-over-RDMA version 1 is constructed. Strong grounding with these
 protocols is recommended before reading this document.

2.2.1. Upper-Layer Protocols

 RPCs are an abstraction used to implement the operations of an Upper-
 Layer Protocol (ULP). "ULP" refers to an RPC Program and Version
 tuple, which is a versioned set of procedure calls that comprise a
 single well-defined API. One example of a ULP is the Network File
 System Version 4.0 [RFC7530].

 In this document, the term "RPC consumer" refers to an implementation
 of a ULP running on an RPC client endpoint.

2.2.2. Requesters and Responders

 Like a local procedure call, every RPC procedure has a set of
 "arguments" and a set of "results". A calling context invokes a
 procedure, passing arguments to it, and the procedure subsequently
 returns a set of results. Unlike a local procedure call, the called
 procedure is executed remotely rather than in the local application’s
 execution context.

 The RPC protocol as described in [RFC5531] is fundamentally a
 message-passing protocol between one or more clients (where RPC
 consumers are running) and a server (where a remote execution context
 is available to process RPC transactions on behalf of those
 consumers).

Lever, et al. Standards Track [Page 5]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 ONC RPC transactions are made up of two types of messages:

 CALL
 An "RPC Call message" requests that work be done. This type of
 message is designated by the value zero (0) in the message’s
 msg_type field. An arbitrary unique value is placed in the
 message’s XID field in order to match this RPC Call message to a
 corresponding RPC Reply message.

 REPLY
 An "RPC Reply message" reports the results of work requested by an
 RPC Call message. An RPC Reply message is designated by the value
 one (1) in the message’s msg_type field. The value contained in
 an RPC Reply message’s XID field is copied from the RPC Call
 message whose results are being reported.

 The RPC client endpoint acts as a "Requester". It serializes the
 procedure’s arguments and conveys them to a server endpoint via an
 RPC Call message. This message contains an RPC protocol header, a
 header describing the requested upper-layer operation, and all
 arguments.

 The RPC server endpoint acts as a "Responder". It deserializes the
 arguments and processes the requested operation. It then serializes
 the operation’s results into another byte stream. This byte stream
 is conveyed back to the Requester via an RPC Reply message. This
 message contains an RPC protocol header, a header describing the
 upper-layer reply, and all results.

 The Requester deserializes the results and allows the original caller
 to proceed. At this point, the RPC transaction designated by the XID
 in the RPC Call message is complete, and the XID is retired.

 In summary, RPC Call messages are sent by Requesters to Responders to
 initiate RPC transactions. RPC Reply messages are sent by Responders
 to Requesters to complete the processing on an RPC transaction.

2.2.3. RPC Transports

 The role of an "RPC transport" is to mediate the exchange of RPC
 messages between Requesters and Responders. An RPC transport bridges
 the gap between the RPC message abstraction and the native operations
 of a particular network transport.

 RPC-over-RDMA is a connection-oriented RPC transport. When a
 connection-oriented transport is used, clients initiate transport
 connections, while servers wait passively for incoming connection
 requests.

Lever, et al. Standards Track [Page 6]

RFC 8166 RPC-over-RDMA Version 1 June 2017

2.2.4. External Data Representation

 One cannot assume that all Requesters and Responders represent data
 objects the same way internally. RPC uses External Data
 Representation (XDR) to translate native data types and serialize
 arguments and results [RFC4506].

 The XDR protocol encodes data independently of the endianness or size
 of host-native data types, allowing unambiguous decoding of data on
 the receiving end. RPC Programs are specified by writing an XDR
 definition of their procedures, argument data types, and result data
 types.

 XDR assumes that the number of bits in a byte (octet) and their order
 are the same on both endpoints and on the physical network. The
 smallest indivisible unit of XDR encoding is a group of four octets.
 XDR also flattens lists, arrays, and other complex data types so they
 can be conveyed as a stream of bytes.

 A serialized stream of bytes that is the result of XDR encoding is
 referred to as an "XDR stream". A sending endpoint encodes native
 data into an XDR stream and then transmits that stream to a receiver.
 A receiving endpoint decodes incoming XDR byte streams into its
 native data representation format.

2.2.4.1. XDR Opaque Data

 Sometimes, a data item must be transferred as is: without encoding or
 decoding. The contents of such a data item are referred to as
 "opaque data". XDR encoding places the content of opaque data items
 directly into an XDR stream without altering it in any way. ULPs or
 applications perform any needed data translation in this case.
 Examples of opaque data items include the content of files or generic
 byte strings.

2.2.4.2. XDR Roundup

 The number of octets in a variable-length data item precedes that
 item in an XDR stream. If the size of an encoded data item is not a
 multiple of four octets, octets containing zero are added after the
 end of the item; this is the case so that the next encoded data item
 in the XDR stream starts on a four-octet boundary. The encoded size
 of the item is not changed by the addition of the extra octets.
 These extra octets are never exposed to ULPs.

 This technique is referred to as "XDR roundup", and the extra octets
 are referred to as "XDR roundup padding".

Lever, et al. Standards Track [Page 7]

RFC 8166 RPC-over-RDMA Version 1 June 2017

2.3. RDMA

 RPC Requesters and Responders can be made more efficient if large RPC
 messages are transferred by a third party, such as intelligent
 network-interface hardware (data movement offload), and placed in the
 receiver’s memory so that no additional adjustment of data alignment
 has to be made (direct data placement or "DDP"). RDMA transports
 enable both optimizations.

2.3.1. DDP

 Typically, RPC implementations copy the contents of RPC messages into
 a buffer before being sent. An efficient RPC implementation sends
 bulk data without copying it into a separate send buffer first.

 However, socket-based RPC implementations are often unable to receive
 data directly into its final place in memory. Receivers often need
 to copy incoming data to finish an RPC operation: sometimes, only to
 adjust data alignment.

 In this document, "RDMA" refers to the physical mechanism an RDMA
 transport utilizes when moving data. Although this may not be
 efficient, before an RDMA transfer, a sender may copy data into an
 intermediate buffer. After an RDMA transfer, a receiver may copy
 that data again to its final destination.

 In this document, the term "DDP" refers to any optimized data
 transfer where it is unnecessary for a receiving host’s CPU to copy
 transferred data to another location after it has been received.

 Just as [RFC5666] did, this document focuses on the use of RDMA Read
 and Write operations to achieve both data movement offload and DDP.
 However, not all RDMA-based data transfer qualifies as DDP, and DDP
 can be achieved using non-RDMA mechanisms.

2.3.2. RDMA Transport Requirements

 To achieve good performance during receive operations, RDMA
 transports require that RDMA consumers provision resources in advance
 to receive incoming messages.

 An RDMA consumer might provide Receive buffers in advance by posting
 an RDMA Receive Work Request for every expected RDMA Send from a
 remote peer. These buffers are provided before the remote peer posts
 RDMA Send Work Requests; thus, this is often referred to as "pre-
 posting" buffers.

Lever, et al. Standards Track [Page 8]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 An RDMA Receive Work Request remains outstanding until hardware
 matches it to an inbound Send operation. The resources associated
 with that Receive must be retained in host memory, or "pinned", until
 the Receive completes.

 Given these basic tenets of RDMA transport operation, the RPC-over-
 RDMA version 1 protocol assumes each transport provides the following
 abstract operations. A more complete discussion of these operations
 is found in [RFC5040].

 Registered Memory
 Registered memory is a region of memory that is assigned a
 steering tag that temporarily permits access by the RDMA provider
 to perform data-transfer operations. The RPC-over-RDMA version 1
 protocol assumes that each region of registered memory MUST be
 identified with a steering tag of no more than 32 bits and memory
 addresses of up to 64 bits in length.

 RDMA Send
 The RDMA provider supports an RDMA Send operation, with completion
 signaled on the receiving peer after data has been placed in a
 pre-posted buffer. Sends complete at the receiver in the order
 they were issued at the sender. The amount of data transferred by
 a single RDMA Send operation is limited by the size of the remote
 peer’s pre-posted buffers.

 RDMA Receive
 The RDMA provider supports an RDMA Receive operation to receive
 data conveyed by incoming RDMA Send operations. To reduce the
 amount of memory that must remain pinned awaiting incoming Sends,
 the amount of pre-posted memory is limited. Flow control to
 prevent overrunning receiver resources is provided by the RDMA
 consumer (in this case, the RPC-over-RDMA version 1 protocol).

 RDMA Write
 The RDMA provider supports an RDMA Write operation to place data
 directly into a remote memory region. The local host initiates an
 RDMA Write, and completion is signaled there. No completion is
 signaled on the remote peer. The local host provides a steering
 tag, memory address, and length of the remote peer’s memory
 region.

 RDMA Writes are not ordered with respect to one another, but are
 ordered with respect to RDMA Sends. A subsequent RDMA Send
 completion obtained at the write initiator guarantees that prior
 RDMA Write data has been successfully placed in the remote peer’s
 memory.

Lever, et al. Standards Track [Page 9]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 RDMA Read
 The RDMA provider supports an RDMA Read operation to place peer
 source data directly into the read initiator’s memory. The local
 host initiates an RDMA Read, and completion is signaled there. No
 completion is signaled on the remote peer. The local host
 provides steering tags, memory addresses, and a length for the
 remote source and local destination memory region.

 The local host signals Read completion to the remote peer as part
 of a subsequent RDMA Send message. The remote peer can then
 release steering tags and subsequently free associated source
 memory regions.

 The RPC-over-RDMA version 1 protocol is designed to be carried over
 RDMA transports that support the above abstract operations. This
 protocol conveys information sufficient for an RPC peer to direct an
 RDMA provider to perform transfers containing RPC data and to
 communicate their result(s).

3. RPC-over-RDMA Protocol Framework

3.1. Transfer Models

 A "transfer model" designates which endpoint exposes its memory and
 which is responsible for initiating the transfer of data. To enable
 RDMA Read and Write operations, for example, an endpoint first
 exposes regions of its memory to a remote endpoint, which initiates
 these operations against the exposed memory.

 Read-Read
 Requesters expose their memory to the Responder, and the Responder
 exposes its memory to Requesters. The Responder reads, or pulls,
 RPC arguments or whole RPC calls from each Requester. Requesters
 pull RPC results or whole RPC relies from the Responder.

 Write-Write
 Requesters expose their memory to the Responder, and the Responder
 exposes its memory to Requesters. Requesters write, or push, RPC
 arguments or whole RPC calls to the Responder. The Responder
 pushes RPC results or whole RPC relies to each Requester.

 Read-Write
 Requesters expose their memory to the Responder, but the Responder
 does not expose its memory. The Responder pulls RPC arguments or
 whole RPC calls from each Requester. The Responder pushes RPC
 results or whole RPC relies to each Requester.

Lever, et al. Standards Track [Page 10]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 Write-Read
 The Responder exposes its memory to Requesters, but Requesters do
 not expose their memory. Requesters push RPC arguments or whole
 RPC calls to the Responder. Requesters pull RPC results or whole
 RPC relies from the Responder.

3.2. Message Framing

 On an RPC-over-RDMA transport, each RPC message is encapsulated by an
 RPC-over-RDMA message. An RPC-over-RDMA message consists of two XDR
 streams.

 RPC Payload Stream
 The "Payload stream" contains the encapsulated RPC message being
 transferred by this RPC-over-RDMA message. This stream always
 begins with the Transaction ID (XID) field of the encapsulated RPC
 message.

 Transport Stream
 The "Transport stream" contains a header that describes and
 controls the transfer of the Payload stream in this RPC-over-RDMA
 message. This header is analogous to the record marking used for
 RPC on TCP sockets but is more extensive, since RDMA transports
 support several modes of data transfer.

 In its simplest form, an RPC-over-RDMA message consists of a
 Transport stream followed immediately by a Payload stream conveyed
 together in a single RDMA Send. To transmit large RPC messages, a
 combination of one RDMA Send operation and one or more other RDMA
 operations is employed.

 RPC-over-RDMA framing replaces all other RPC framing (such as TCP
 record marking) when used atop an RPC-over-RDMA association, even
 when the underlying RDMA protocol may itself be layered atop a
 transport with a defined RPC framing (such as TCP).

 However, it is possible for RPC-over-RDMA to be dynamically enabled
 in the course of negotiating the use of RDMA via a ULP exchange.
 Because RPC framing delimits an entire RPC request or reply, the
 resulting shift in framing must occur between distinct RPC messages,
 and in concert with the underlying transport.

3.3. Managing Receiver Resources

 It is critical to provide RDMA Send flow control for an RDMA
 connection. If any pre-posted Receive buffer on the connection is
 not large enough to accept an incoming RDMA Send, or if a pre-posted
 Receive buffer is not available to accept an incoming RDMA Send, the

Lever, et al. Standards Track [Page 11]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 RDMA connection can be terminated. This is different than
 conventional TCP/IP networking, in which buffers are allocated
 dynamically as messages are received.

 The longevity of an RDMA connection mandates that sending endpoints
 respect the resource limits of peer receivers. To ensure messages
 can be sent and received reliably, there are two operational
 parameters for each connection.

3.3.1. RPC-over-RDMA Credits

 Flow control for RDMA Send operations directed to the Responder is
 implemented as a simple request/grant protocol in the RPC-over-RDMA
 header associated with each RPC message.

 An RPC-over-RDMA version 1 credit is the capability to handle one
 RPC-over-RDMA transaction. Each RPC-over-RDMA message sent from
 Requester to Responder requests a number of credits from the
 Responder. Each RPC-over-RDMA message sent from Responder to
 Requester informs the Requester how many credits the Responder has
 granted. The requested and granted values are carried in each RPC-
 over-RDMA message’s rdma_credit field (see Section 4.2.3).

 Practically speaking, the critical value is the granted value. A
 Requester MUST NOT send unacknowledged requests in excess of the
 Responder’s granted credit limit. If the granted value is exceeded,
 the RDMA layer may signal an error, possibly terminating the
 connection. The granted value MUST NOT be zero, since such a value
 would result in deadlock.

 RPC calls complete in any order, but the current granted credit limit
 at the Responder is known to the Requester from RDMA Send ordering
 properties. The number of allowed new requests the Requester may
 send is then the lower of the current requested and granted credit
 values, minus the number of requests in flight. Advertised credit
 values are not altered when individual RPCs are started or completed.

 The requested and granted credit values MAY be adjusted to match the
 needs or policies in effect on either peer. For instance, a
 Responder may reduce the granted credit value to accommodate the
 available resources in a Shared Receive Queue. The Responder MUST
 ensure that an increase in receive resources is effected before the
 next RPC Reply message is sent.

 A Requester MUST maintain enough receive resources to accommodate
 expected replies. Responders have to be prepared for there to be no
 receive resources available on Requesters with no pending RPC
 transactions.

Lever, et al. Standards Track [Page 12]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 Certain RDMA implementations may impose additional flow-control
 restrictions, such as limits on RDMA Read operations in progress at
 the Responder. Accommodation of such restrictions is considered the
 responsibility of each RPC-over-RDMA version 1 implementation.

3.3.2. Inline Threshold

 An "inline threshold" value is the largest message size (in octets)
 that can be conveyed in one direction between peer implementations
 using RDMA Send and Receive. The inline threshold value is the
 smaller of the largest number of bytes the sender can post via a
 single RDMA Send operation and the largest number of bytes the
 receiver can accept via a single RDMA Receive operation. Each
 connection has two inline threshold values: one for messages flowing
 from Requester-to-Responder (referred to as the "call inline
 threshold") and one for messages flowing from Responder-to-Requester
 (referred to as the "reply inline threshold").

 Unlike credit limits, inline threshold values are not advertised to
 peers via the RPC-over-RDMA version 1 protocol, and there is no
 provision for inline threshold values to change during the lifetime
 of an RPC-over-RDMA version 1 connection.

3.3.3. Initial Connection State

 When a connection is first established, peers might not know how many
 receive resources the other has, nor how large the other peer’s
 inline thresholds are.

 As a basis for an initial exchange of RPC requests, each RPC-over-
 RDMA version 1 connection provides the ability to exchange at least
 one RPC message at a time, whose RPC Call and Reply messages are no
 more than 1024 bytes in size. A Responder MAY exceed this basic
 level of configuration, but a Requester MUST NOT assume more than one
 credit is available and MUST receive a valid reply from the Responder
 carrying the actual number of available credits, prior to sending its
 next request.

 Receiver implementations MUST support inline thresholds of 1024 bytes
 but MAY support larger inline thresholds values. An independent
 mechanism for discovering a peer’s inline thresholds before a
 connection is established may be used to optimize the use of RDMA
 Send and Receive operations. In the absence of such a mechanism,
 senders and receives MUST assume the inline thresholds are 1024
 bytes.

Lever, et al. Standards Track [Page 13]

RFC 8166 RPC-over-RDMA Version 1 June 2017

3.4. XDR Encoding with Chunks

 When a DDP capability is available, the transport places the contents
 of one or more XDR data items directly into the receiver’s memory,
 separately from the transfer of other parts of the containing XDR
 stream.

3.4.1. Reducing an XDR Stream

 RPC-over-RDMA version 1 provides a mechanism for moving part of an
 RPC message via a data transfer distinct from an RDMA Send/Receive
 pair. The sender removes one or more XDR data items from the Payload
 stream. They are conveyed via other mechanisms, such as one or more
 RDMA Read or Write operations. As the receiver decodes an incoming
 message, it skips over directly placed data items.

 The portion of an XDR stream that is split out and moved separately
 is referred to as a "chunk". In some contexts, data in an RPC-over-
 RDMA header that describes these split out regions of memory may also
 be referred to as a "chunk".

 A Payload stream after chunks have been removed is referred to as a
 "reduced" Payload stream. Likewise, a data item that has been
 removed from a Payload stream to be transferred separately is
 referred to as a "reduced" data item.

3.4.2. DDP-Eligibility

 Not all XDR data items benefit from DDP. For example, small data
 items or data items that require XDR unmarshaling by the receiver do
 not benefit from DDP. In addition, it is impractical for receivers
 to prepare for every possible XDR data item in a protocol to be
 transferred in a chunk.

 To maintain interoperability on an RPC-over-RDMA transport, a
 determination must be made of which few XDR data items in each ULP
 are allowed to use DDP.

 This is done by additional specifications that describe how ULPs
 employ DDP. A "ULB specification" identifies which specific
 individual XDR data items in a ULP MAY be transferred via DDP. Such
 data items are referred to as "DDP-eligible". All other XDR data
 items MUST NOT be reduced.

 Detailed requirements for ULBs are provided in Section 6.

Lever, et al. Standards Track [Page 14]

RFC 8166 RPC-over-RDMA Version 1 June 2017

3.4.3. RDMA Segments

 When encoding a Payload stream that contains a DDP-eligible data
 item, a sender may choose to reduce that data item. When it chooses
 to do so, the sender does not place the item into the Payload stream.
 Instead, the sender records in the RPC-over-RDMA header the location
 and size of the memory region containing that data item.

 The Requester provides location information for DDP-eligible data
 items in both RPC Call and Reply messages. The Responder uses this
 information to retrieve arguments contained in the specified region
 of the Requester’s memory or place results in that memory region.

 An "RDMA segment", or "plain segment", is an RPC-over-RDMA Transport
 header data object that contains the precise coordinates of a
 contiguous memory region that is to be conveyed separately from the
 Payload stream. Plain segments contain the following information:

 Handle
 Steering tag (STag) or R_key generated by registering this memory
 with the RDMA provider.

 Length
 The length of the RDMA segment’s memory region, in octets. An
 "empty segment" is an RDMA segment with the value zero (0) in its
 length field.

 Offset
 The offset or beginning memory address of the RDMA segment’s
 memory region.

 See [RFC5040] for further discussion.

3.4.4. Chunks

 In RPC-over-RDMA version 1, a "chunk" refers to a portion of the
 Payload stream that is moved independently of the RPC-over-RDMA
 Transport header and Payload stream. Chunk data is removed from the
 sender’s Payload stream, transferred via separate operations, and
 then reinserted into the receiver’s Payload stream to form a complete
 RPC message.

 Each chunk is comprised of RDMA segments. Each RDMA segment
 represents a single contiguous piece of that chunk. A Requester MAY
 divide a chunk into RDMA segments using any boundaries that are
 convenient. The length of a chunk is the sum of the lengths of the
 RDMA segments that comprise it.

Lever, et al. Standards Track [Page 15]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 The RPC-over-RDMA version 1 transport protocol does not place a limit
 on chunk size. However, each ULP may cap the amount of data that can
 be transferred by a single RPC (for example, NFS has "rsize" and
 "wsize", which restrict the payload size of NFS READ and WRITE
 operations). The Responder can use such limits to sanity check chunk
 sizes before using them in RDMA operations.

3.4.4.1. Counted Arrays

 If a chunk contains a counted array data type, the count of array
 elements MUST remain in the Payload stream, while the array elements
 MUST be moved to the chunk. For example, when encoding an opaque
 byte array as a chunk, the count of bytes stays in the Payload
 stream, while the bytes in the array are removed from the Payload
 stream and transferred within the chunk.

 Individual array elements appear in a chunk in their entirety. For
 example, when encoding an array of arrays as a chunk, the count of
 items in the enclosing array stays in the Payload stream, but each
 enclosed array, including its item count, is transferred as part of
 the chunk.

3.4.4.2. Optional-Data

 If a chunk contains an optional-data data type, the "is present"
 field MUST remain in the Payload stream, while the data, if present,
 MUST be moved to the chunk.

3.4.4.3. XDR Unions

 A union data type MUST NOT be made DDP-eligible, but one or more of
 its arms MAY be DDP-eligible, subject to the other requirements in
 this section.

3.4.4.4. Chunk Roundup

 Except in special cases (covered in Section 3.5.3), a chunk MUST
 contain exactly one XDR data item. This makes it straightforward to
 reduce variable-length data items without affecting the XDR alignment
 of data items in the Payload stream.

 When a variable-length XDR data item is reduced, the sender MUST
 remove XDR roundup padding for that data item from the Payload stream
 so that data items remaining in the Payload stream begin on four-byte
 alignment.

Lever, et al. Standards Track [Page 16]

RFC 8166 RPC-over-RDMA Version 1 June 2017

3.4.5. Read Chunks

 A "Read chunk" represents an XDR data item that is to be pulled from
 the Requester to the Responder.

 A Read chunk is a list of one or more RDMA read segments. An RDMA
 read segment consists of a Position field followed by a plain
 segment. See Section 4.1.2 for details.

 Position
 The byte offset in the unreduced Payload stream where the receiver
 reinserts the data item conveyed in a chunk. The Position value
 MUST be computed from the beginning of the unreduced Payload
 stream, which begins at Position zero. All RDMA read segments
 belonging to the same Read chunk have the same value in their
 Position field.

 While constructing an RPC Call message, a Requester registers memory
 regions that contain data to be transferred via RDMA Read operations.
 It advertises the coordinates of these regions in the RPC-over-RDMA
 Transport header of the RPC Call message.

 After receiving an RPC Call message sent via an RDMA Send operation,
 a Responder transfers the chunk data from the Requester using RDMA
 Read operations. The Responder reconstructs the transferred chunk
 data by concatenating the contents of each RDMA segment, in list
 order, into the received Payload stream at the Position value
 recorded in that RDMA segment.

 Put another way, the Responder inserts the first RDMA segment in a
 Read chunk into the Payload stream at the byte offset indicated by
 its Position field. RDMA segments whose Position field value match
 this offset are concatenated afterwards, until there are no more RDMA
 segments at that Position value.

 The Position field in a read segment indicates where the containing
 Read chunk starts in the Payload stream. The value in this field
 MUST be a multiple of four. All segments in the same Read chunk
 share the same Position value, even if one or more of the RDMA
 segments have a non-four-byte-aligned length.

Lever, et al. Standards Track [Page 17]

RFC 8166 RPC-over-RDMA Version 1 June 2017

3.4.5.1. Decoding Read Chunks

 While decoding a received Payload stream, whenever the XDR offset in
 the Payload stream matches that of a Read chunk, the Responder
 initiates an RDMA Read to pull the chunk’s data content into
 registered local memory.

 The Responder acknowledges its completion of use of Read chunk source
 buffers when it sends an RPC Reply message to the Requester. The
 Requester may then release Read chunks advertised in the request.

3.4.5.2. Read Chunk Roundup

 When reducing a variable-length argument data item, the Requester
 SHOULD NOT include the data item’s XDR roundup padding in the chunk.
 The length of a Read chunk is determined as follows:

 o If the Requester chooses to include roundup padding in a Read
 chunk, the chunk’s total length MUST be the sum of the encoded
 length of the data item and the length of the roundup padding.
 The length of the data item that was encoded into the Payload
 stream remains unchanged.

 The sender can increase the length of the chunk by adding another
 RDMA segment containing only the roundup padding, or it can do so
 by extending the final RDMA segment in the chunk.

 o If the sender chooses not to include roundup padding in the chunk,
 the chunk’s total length MUST be the same as the encoded length of
 the data item.

3.4.6. Write Chunks

 While constructing an RPC Call message, a Requester prepares memory
 regions in which to receive DDP-eligible result data items. A "Write
 chunk" represents an XDR data item that is to be pushed from a
 Responder to a Requester. It is made up of an array of zero or more
 plain segments.

 Write chunks are provisioned by a Requester long before the Responder
 has prepared the reply Payload stream. A Requester often does not
 know the actual length of the result data items to be returned, since
 the result does not yet exist. Thus, it MUST register Write chunks
 long enough to accommodate the maximum possible size of each returned
 data item.

Lever, et al. Standards Track [Page 18]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 In addition, the XDR position of DDP-eligible data items in the
 reply’s Payload stream is not predictable when a Requester constructs
 an RPC Call message. Therefore, RDMA segments in a Write chunk do
 not have a Position field.

 For each Write chunk provided by a Requester, the Responder pushes
 one data item to the Requester, filling the chunk contiguously and in
 segment array order until that data item has been completely written
 to the Requester. The Responder MUST copy the segment count and all
 segments from the Requester-provided Write chunk into the RPC Reply
 message’s Transport header. As it does so, the Responder updates
 each segment length field to reflect the actual amount of data that
 is being returned in that segment. The Responder then sends the RPC
 Reply message via an RDMA Send operation.

 An "empty Write chunk" is a Write chunk with a zero segment count.
 By definition, the length of an empty Write chunk is zero. An
 "unused Write chunk" has a non-zero segment count, but all of its
 segments are empty segments.

3.4.6.1. Decoding Write Chunks

 After receiving the RPC Reply message, the Requester reconstructs the
 transferred data by concatenating the contents of each segment, in
 array order, into the RPC Reply message’s XDR stream at the known XDR
 position of the associated DDP-eligible result data item.

3.4.6.2. Write Chunk Roundup

 When provisioning a Write chunk for a variable-length result data
 item, the Requester SHOULD NOT include additional space for XDR
 roundup padding. A Responder MUST NOT write XDR roundup padding into
 a Write chunk, even if the Requester made space available for it.
 Therefore, when returning a single variable-length result data item,
 a returned Write chunk’s total length MUST be the same as the encoded
 length of the result data item.

3.5. Message Size

 A receiver of RDMA Send operations is required by RDMA to have
 previously posted one or more adequately sized buffers. Memory
 savings are achieved on both Requesters and Responders by posting
 small Receive buffers. However, not all RPC messages are small.
 RPC-over-RDMA version 1 provides several mechanisms that allow
 messages of any size to be conveyed efficiently.

Lever, et al. Standards Track [Page 19]

RFC 8166 RPC-over-RDMA Version 1 June 2017

3.5.1. Short Messages

 RPC messages are frequently smaller than typical inline thresholds.
 For example, the NFS version 3 GETATTR operation is only 56 bytes: 20
 bytes of RPC header, a 32-byte file handle argument, and 4 bytes for
 its length. The reply to this common request is about 100 bytes.

 Since all RPC messages conveyed via RPC-over-RDMA require an RDMA
 Send operation, the most efficient way to send an RPC message that is
 smaller than the inline threshold is to append the Payload stream
 directly to the Transport stream. An RPC-over-RDMA header with a
 small RPC Call or Reply message immediately following is transferred
 using a single RDMA Send operation. No other operations are needed.

 An RPC-over-RDMA transaction using Short Messages:

 Requester Responder
 | RDMA Send (RDMA_MSG) |
 Call | ------------------------------> |
 | |
 | | Processing
 | |
 | RDMA Send (RDMA_MSG) |
 | <------------------------------ | Reply

3.5.2. Chunked Messages

 If DDP-eligible data items are present in a Payload stream, a sender
 MAY reduce some or all of these items by removing them from the
 Payload stream. The sender uses a separate mechanism to transfer the
 reduced data items. The Transport stream with the reduced Payload
 stream immediately following is then transferred using a single RDMA
 Send operation.

 After receiving the Transport and Payload streams of an RPC Call
 message accompanied by Read chunks, the Responder uses RDMA Read
 operations to move reduced data items in Read chunks. Before sending
 the Transport and Payload streams of an RPC Reply message containing
 Write chunks, the Responder uses RDMA Write operations to move
 reduced data items in Write and Reply chunks.

Lever, et al. Standards Track [Page 20]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 An RPC-over-RDMA transaction with a Read chunk:

 Requester Responder
 | RDMA Send (RDMA_MSG) |
 Call | ------------------------------> |
 | RDMA Read |
 | <------------------------------ |
 | RDMA Response (arg data) |
 | ------------------------------> |
 | |
 | | Processing
 | |
 | RDMA Send (RDMA_MSG) |
 | <------------------------------ | Reply

 An RPC-over-RDMA transaction with a Write chunk:

 Requester Responder
 | RDMA Send (RDMA_MSG) |
 Call | ------------------------------> |
 | |
 | | Processing
 | |
 | RDMA Write (result data) |
 | <------------------------------ |
 | RDMA Send (RDMA_MSG) |
 | <------------------------------ | Reply

3.5.3. Long Messages

 When a Payload stream is larger than the receiver’s inline threshold,
 the Payload stream is reduced by removing DDP-eligible data items and
 placing them in chunks to be moved separately. If there are no DDP-
 eligible data items in the Payload stream, or the Payload stream is
 still too large after it has been reduced, the RDMA transport MUST
 use RDMA Read or Write operations to convey the Payload stream
 itself. This mechanism is referred to as a "Long Message".

 To transmit a Long Message, the sender conveys only the Transport
 stream with an RDMA Send operation. The Payload stream is not
 included in the Send buffer in this instance. Instead, the Requester
 provides chunks that the Responder uses to move the Payload stream.

 Long Call
 To send a Long Call message, the Requester provides a special Read
 chunk that contains the RPC Call message’s Payload stream. Every
 RDMA read segment in this chunk MUST contain zero in its Position
 field. Thus, this chunk is known as a "Position Zero Read chunk".

Lever, et al. Standards Track [Page 21]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 Long Reply
 To send a Long Reply, the Requester provides a single special
 Write chunk in advance, known as the "Reply chunk", that will
 contain the RPC Reply message’s Payload stream. The Requester
 sizes the Reply chunk to accommodate the maximum expected reply
 size for that upper-layer operation.

 Though the purpose of a Long Message is to handle large RPC messages,
 Requesters MAY use a Long Message at any time to convey an RPC Call
 message.

 A Responder chooses which form of reply to use based on the chunks
 provided by the Requester. If Write chunks were provided and the
 Responder has a DDP-eligible result, it first reduces the reply
 Payload stream. If a Reply chunk was provided and the reduced
 Payload stream is larger than the reply inline threshold, the
 Responder MUST use the Requester-provided Reply chunk for the reply.

 XDR data items may appear in these special chunks without regard to
 their DDP-eligibility. As these chunks contain a Payload stream,
 such chunks MUST include appropriate XDR roundup padding to maintain
 proper XDR alignment of their contents.

 An RPC-over-RDMA transaction using a Long Call:

 Requester Responder
 | RDMA Send (RDMA_NOMSG) |
 Call | ------------------------------> |
 | RDMA Read |
 | <------------------------------ |
 | RDMA Response (RPC call) |
 | ------------------------------> |
 | |
 | | Processing
 | |
 | RDMA Send (RDMA_MSG) |
 | <------------------------------ | Reply

Lever, et al. Standards Track [Page 22]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 An RPC-over-RDMA transaction using a Long Reply:

 Requester Responder
 | RDMA Send (RDMA_MSG) |
 Call | ------------------------------> |
 | |
 | | Processing
 | |
 | RDMA Write (RPC reply) |
 | <------------------------------ |
 | RDMA Send (RDMA_NOMSG) |
 | <------------------------------ | Reply

4. RPC-over-RDMA in Operation

 Every RPC-over-RDMA version 1 message has a header that includes a
 copy of the message’s transaction ID, data for managing RDMA flow-
 control credits, and lists of RDMA segments describing chunks. All
 RPC-over-RDMA header content is contained in the Transport stream;
 thus, it MUST be XDR encoded.

 RPC message layout is unchanged from that described in [RFC5531]
 except for the possible reduction of data items that are moved by
 separate operations.

 The RPC-over-RDMA protocol passes RPC messages without regard to
 their type (CALL or REPLY). Apart from restrictions imposed by ULBs,
 each endpoint of a connection MAY send RDMA_MSG or RDMA_NOMSG message
 header types at any time (subject to credit limits).

4.1. XDR Protocol Definition

 This section contains a description of the core features of the RPC-
 over-RDMA version 1 protocol, expressed in the XDR language
 [RFC4506].

 This description is provided in a way that makes it simple to extract
 into ready-to-compile form. The reader can apply the following shell
 script to this document to produce a machine-readable XDR description
 of the RPC-over-RDMA version 1 protocol.

 <CODE BEGINS>

 #!/bin/sh
 grep ’^ *///’ | sed ’s?^ /// ??’ | sed ’s?^ *///$??’

 <CODE ENDS>

Lever, et al. Standards Track [Page 23]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 That is, if the above script is stored in a file called "extract.sh"
 and this document is in a file called "spec.txt", then the reader can
 do the following to extract an XDR description file:

 <CODE BEGINS>

 sh extract.sh < spec.txt > rpcrdma_corev1.x

 <CODE ENDS>

4.1.1. Code Component License

 Code components extracted from this document must include the
 following license text. When the extracted XDR code is combined with
 other complementary XDR code, which itself has an identical license,
 only a single copy of the license text need be preserved.

Lever, et al. Standards Track [Page 24]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 <CODE BEGINS>

 /// /*
 /// * Copyright (c) 2010-2017 IETF Trust and the persons
 /// * identified as authors of the code. All rights reserved.
 /// *
 /// * The authors of the code are:
 /// * B. Callaghan, T. Talpey, and C. Lever
 /// *
 /// * Redistribution and use in source and binary forms, with
 /// * or without modification, are permitted provided that the
 /// * following conditions are met:
 /// *
 /// * - Redistributions of source code must retain the above
 /// * copyright notice, this list of conditions and the
 /// * following disclaimer.
 /// *
 /// * - Redistributions in binary form must reproduce the above
 /// * copyright notice, this list of conditions and the
 /// * following disclaimer in the documentation and/or other
 /// * materials provided with the distribution.
 /// *
 /// * - Neither the name of Internet Society, IETF or IETF
 /// * Trust, nor the names of specific contributors, may be
 /// * used to endorse or promote products derived from this
 /// * software without specific prior written permission.
 /// *
 /// * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
 /// * AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
 /// * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 /// * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 /// * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
 /// * EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 /// * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 /// * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 /// * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 /// * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 /// * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 /// * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 /// * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 /// * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 /// * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 /// */
 ///

 <CODE ENDS>

Lever, et al. Standards Track [Page 25]

RFC 8166 RPC-over-RDMA Version 1 June 2017

4.1.2. RPC-over-RDMA Version 1 XDR

 XDR data items defined in this section encodes the Transport Header
 Stream in each RPC-over-RDMA version 1 message. Comments identify
 items that cannot be changed in subsequent versions.

 <CODE BEGINS>

 /// /*
 /// * Plain RDMA segment (Section 3.4.3)
 /// */
 /// struct xdr_rdma_segment {
 /// uint32 handle; /* Registered memory handle */
 /// uint32 length; /* Length of the chunk in bytes */
 /// uint64 offset; /* Chunk virtual address or offset */
 /// };
 ///
 /// /*
 /// * RDMA read segment (Section 3.4.5)
 /// */
 /// struct xdr_read_chunk {
 /// uint32 position; /* Position in XDR stream */
 /// struct xdr_rdma_segment target;
 /// };
 ///
 /// /*
 /// * Read list (Section 4.3.1)
 /// */
 /// struct xdr_read_list {
 /// struct xdr_read_chunk entry;
 /// struct xdr_read_list *next;
 /// };
 ///
 /// /*
 /// * Write chunk (Section 3.4.6)
 /// */
 /// struct xdr_write_chunk {
 /// struct xdr_rdma_segment target<>;
 /// };
 ///
 /// /*
 /// * Write list (Section 4.3.2)
 /// */
 /// struct xdr_write_list {
 /// struct xdr_write_chunk entry;
 /// struct xdr_write_list *next;
 /// };
 ///

Lever, et al. Standards Track [Page 26]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 /// /*
 /// * Chunk lists (Section 4.3)
 /// */
 /// struct rpc_rdma_header {
 /// struct xdr_read_list *rdma_reads;
 /// struct xdr_write_list *rdma_writes;
 /// struct xdr_write_chunk *rdma_reply;
 /// /* rpc body follows */
 /// };
 ///
 /// struct rpc_rdma_header_nomsg {
 /// struct xdr_read_list *rdma_reads;
 /// struct xdr_write_list *rdma_writes;
 /// struct xdr_write_chunk *rdma_reply;
 /// };
 ///
 /// /* Not to be used */
 /// struct rpc_rdma_header_padded {
 /// uint32 rdma_align;
 /// uint32 rdma_thresh;
 /// struct xdr_read_list *rdma_reads;
 /// struct xdr_write_list *rdma_writes;
 /// struct xdr_write_chunk *rdma_reply;
 /// /* rpc body follows */
 /// };
 ///
 /// /*
 /// * Error handling (Section 4.5)
 /// */
 /// enum rpc_rdma_errcode {
 /// ERR_VERS = 1, /* Value fixed for all versions */
 /// ERR_CHUNK = 2
 /// };
 ///
 /// /* Structure fixed for all versions */
 /// struct rpc_rdma_errvers {
 /// uint32 rdma_vers_low;
 /// uint32 rdma_vers_high;
 /// };
 ///
 /// union rpc_rdma_error switch (rpc_rdma_errcode err) {
 /// case ERR_VERS:
 /// rpc_rdma_errvers range;
 /// case ERR_CHUNK:
 /// void;
 /// };
 ///
 /// /*

Lever, et al. Standards Track [Page 27]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 /// * Procedures (Section 4.2.4)
 /// */
 /// enum rdma_proc {
 /// RDMA_MSG = 0, /* Value fixed for all versions */
 /// RDMA_NOMSG = 1, /* Value fixed for all versions */
 /// RDMA_MSGP = 2, /* Not to be used */
 /// RDMA_DONE = 3, /* Not to be used */
 /// RDMA_ERROR = 4 /* Value fixed for all versions */
 /// };
 ///
 /// /* The position of the proc discriminator field is
 /// * fixed for all versions */
 /// union rdma_body switch (rdma_proc proc) {
 /// case RDMA_MSG:
 /// rpc_rdma_header rdma_msg;
 /// case RDMA_NOMSG:
 /// rpc_rdma_header_nomsg rdma_nomsg;
 /// case RDMA_MSGP: /* Not to be used */
 /// rpc_rdma_header_padded rdma_msgp;
 /// case RDMA_DONE: /* Not to be used */
 /// void;
 /// case RDMA_ERROR:
 /// rpc_rdma_error rdma_error;
 /// };
 ///
 /// /*
 /// * Fixed header fields (Section 4.2)
 /// */
 /// struct rdma_msg {
 /// uint32 rdma_xid; /* Position fixed for all versions */
 /// uint32 rdma_vers; /* Position fixed for all versions */
 /// uint32 rdma_credit; /* Position fixed for all versions */
 /// rdma_body rdma_body;
 /// };

 <CODE ENDS>

4.2. Fixed Header Fields

 The RPC-over-RDMA header begins with four fixed 32-bit fields that
 control the RDMA interaction.

 The first three words are individual fields in the rdma_msg
 structure. The fourth word is the first word of the rdma_body union,
 which acts as the discriminator for the switched union. The contents
 of this field are described in Section 4.2.4.

Lever, et al. Standards Track [Page 28]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 These four fields must remain with the same meanings and in the same
 positions in all subsequent versions of the RPC-over-RDMA protocol.

4.2.1. Transaction ID (XID)

 The XID generated for the RPC Call and Reply messages. Having the
 XID at a fixed location in the header makes it easy for the receiver
 to establish context as soon as each RPC-over-RDMA message arrives.
 This XID MUST be the same as the XID in the RPC message. The
 receiver MAY perform its processing based solely on the XID in the
 RPC-over-RDMA header, and thereby ignore the XID in the RPC message,
 if it so chooses.

4.2.2. Version Number

 For RPC-over-RDMA version 1, this field MUST contain the value one
 (1). Rules regarding changes to this transport protocol version
 number can be found in Section 7.

4.2.3. Credit Value

 When sent with an RPC Call message, the requested credit value is
 provided. When sent with an RPC Reply message, the granted credit
 value is returned. Further discussion of how the credit value is
 determined can be found in Section 3.3.

4.2.4. Procedure Number

 RDMA_MSG = 0 indicates that chunk lists and a Payload stream
 follow. The format of the chunk lists is
 discussed below.

 RDMA_NOMSG = 1 indicates that after the chunk lists there is no
 Payload stream. In this case, the chunk lists
 provide information to allow the Responder to
 transfer the Payload stream using explicit RDMA
 operations.

 RDMA_MSGP = 2 is reserved.

 RDMA_DONE = 3 is reserved.

 RDMA_ERROR = 4 is used to signal an encoding error in the RPC-
 over-RDMA header.

 An RDMA_MSG procedure conveys the Transport stream and the Payload
 stream via an RDMA Send operation. The Transport stream contains the
 four fixed fields followed by the Read and Write lists and the Reply

Lever, et al. Standards Track [Page 29]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 chunk, though any or all three MAY be marked as not present. The
 Payload stream then follows, beginning with its XID field. If a Read
 or Write chunk list is present, a portion of the Payload stream has
 been reduced and is conveyed via separate operations.

 An RDMA_NOMSG procedure conveys the Transport stream via an RDMA Send
 operation. The Transport stream contains the four fixed fields
 followed by the Read and Write chunk lists and the Reply chunk.
 Though any of these MAY be marked as not present, one MUST be present
 and MUST hold the Payload stream for this RPC-over-RDMA message. If
 a Read or Write chunk list is present, a portion of the Payload
 stream has been excised and is conveyed via separate operations.

 An RDMA_ERROR procedure conveys the Transport stream via an RDMA Send
 operation. The Transport stream contains the four fixed fields
 followed by formatted error information. No Payload stream is
 conveyed in this type of RPC-over-RDMA message.

 A Requester MUST NOT send an RPC-over-RDMA header with the RDMA_ERROR
 procedure. A Responder MUST silently discard RDMA_ERROR procedures.

 The Transport stream and Payload stream can be constructed in
 separate buffers. However, the total length of the gathered buffers
 cannot exceed the inline threshold.

4.3. Chunk Lists

 The chunk lists in an RPC-over-RDMA version 1 header are three XDR
 optional-data fields that follow the fixed header fields in RDMA_MSG
 and RDMA_NOMSG procedures. Read Section 4.19 of [RFC4506] carefully
 to understand how optional-data fields work. Examples of XDR-encoded
 chunk lists are provided in Section 4.7 as an aid to understanding.

 Often, an RPC-over-RDMA message has no associated chunks. In this
 case, the Read list, Write list, and Reply chunk are all marked "not
 present".

4.3.1. Read List

 Each RDMA_MSG or RDMA_NOMSG procedure has one "Read list". The Read
 list is a list of zero or more RDMA read segments, provided by the
 Requester, that are grouped by their Position fields into Read
 chunks. Each Read chunk advertises the location of argument data the
 Responder is to pull from the Requester. The Requester has reduced
 the data items in these chunks from the call’s Payload stream.

Lever, et al. Standards Track [Page 30]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 A Requester may transmit the Payload stream of an RPC Call message
 using a Position Zero Read chunk. If the RPC Call message has no
 argument data that is DDP-eligible and the Position Zero Read chunk
 is not being used, the Requester leaves the Read list empty.

 Responders MUST leave the Read list empty in all replies.

4.3.1.1. Matching Read Chunks to Arguments

 When reducing a DDP-eligible argument data item, a Requester records
 the XDR stream offset of that data item in the Read chunk’s Position
 field. The Responder can then tell unambiguously where that chunk is
 to be reinserted into the received Payload stream to form a complete
 RPC Call message.

4.3.2. Write List

 Each RDMA_MSG or RDMA_NOMSG procedure has one "Write list". The
 Write list is a list of zero or more Write chunks, provided by the
 Requester. Each Write chunk is an array of plain segments; thus, the
 Write list is a list of counted arrays.

 If an RPC Reply message has no possible DDP-eligible result data
 items, the Requester leaves the Write list empty. When a Requester
 provides a Write list, the Responder MUST push data corresponding to
 DDP-eligible result data items to Requester memory referenced in the
 Write list. The Responder removes these data items from the reply’s
 Payload stream.

4.3.2.1. Matching Write Chunks to Results

 A Requester constructs the Write list for an RPC transaction before
 the Responder has formulated its reply. When there is only one DDP-
 eligible result data item, the Requester inserts only a single Write
 chunk in the Write list. If the returned Write chunk is not an
 unused Write chunk, the Requester knows with certainty which result
 data item is contained in it.

 When a Requester has provided multiple Write chunks, the Responder
 fills in each Write chunk with one DDP-eligible result until there
 are either no more DDP-eligible results or no more Write chunks.

 The Requester might not be able to predict in advance which DDP-
 eligible data item goes in which chunk. Thus, the Requester is
 responsible for allocating and registering Write chunks large enough
 to accommodate the largest result data item that might be associated
 with each chunk in the Write list.

Lever, et al. Standards Track [Page 31]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 As a Requester decodes a reply Payload stream, it is clear from the
 contents of the RPC Reply message which Write chunk contains which
 result data item.

4.3.2.2. Unused Write Chunks

 There are occasions when a Requester provides a non-empty Write chunk
 but the Responder is not able to use it. For example, a ULP may
 define a union result where some arms of the union contain a DDP-
 eligible data item while other arms do not. The Responder is
 required to use Requester-provided Write chunks in this case, but if
 the Responder returns a result that uses an arm of the union that has
 no DDP-eligible data item, that Write chunk remains unconsumed.

 If there is a subsequent DDP-eligible result data item in the RPC
 Reply message, it MUST be placed in that unconsumed Write chunk.
 Therefore, the Requester MUST provision each Write chunk so it can be
 filled with the largest DDP-eligible data item that can be placed in
 it.

 If this is the last or only Write chunk available and it remains
 unconsumed, the Responder MUST return this Write chunk as an unused
 Write chunk (see Section 3.4.6). The Responder sets the segment
 count to a value matching the Requester-provided Write chunk, but
 returns only empty segments in that Write chunk.

 Unused Write chunks, or unused bytes in Write chunk segments, are
 returned to the RPC consumer as part of RPC completion. Even if a
 Responder indicates that a Write chunk is not consumed, the Responder
 may have written data into one or more segments before choosing not
 to return that data item. The Requester MUST NOT assume that the
 memory regions backing a Write chunk have not been modified.

4.3.2.3. Empty Write Chunks

 To force a Responder to return a DDP-eligible result inline, a
 Requester employs the following mechanism:

 o When there is only one DDP-eligible result item in an RPC Reply
 message, the Requester provides an empty Write list.

 o When there are multiple DDP-eligible result data items and a
 Requester prefers that a data item is returned inline, the
 Requester provides an empty Write chunk for that item (see
 Section 3.4.6). The Responder MUST return the corresponding
 result data item inline and MUST return an empty Write chunk in
 that Write list position in the RPC Reply message.

Lever, et al. Standards Track [Page 32]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 As always, a Requester and Responder must prepare for a Long Reply to
 be used if the resulting RPC Reply might be too large to be conveyed
 in an RDMA Send.

4.3.3. Reply Chunk

 Each RDMA_MSG or RDMA_NOMSG procedure has one "Reply chunk" slot. A
 Requester MUST provide a Reply chunk whenever the maximum possible
 size of the RPC Reply message’s Transport and Payload streams is
 larger than the inline threshold for messages from Responder to
 Requester. Otherwise, the Requester marks the Reply chunk as not
 present.

 If the Transport stream and Payload stream together are smaller than
 the reply inline threshold, the Responder MAY return the RPC Reply
 message as a Short message rather than using the Requester-provided
 Reply chunk.

 When a Requester provides a Reply chunk in an RPC Call message, the
 Responder MUST copy that chunk into the Transport header of the RPC
 Reply message. As with Write chunks, the Responder modifies the
 copied Reply chunk in the RPC Reply message to reflect the actual
 amount of data that is being returned in the Reply chunk.

4.4. Memory Registration

 The cost of registering and invalidating memory can be a significant
 proportion of the cost of an RPC-over-RDMA transaction. Thus, an
 important implementation consideration is how to minimize
 registration activity without exposing system memory needlessly.

4.4.1. Registration Longevity

 Data transferred via RDMA Read and Write can reside in a memory
 allocation not in the control of the RPC-over-RDMA transport. These
 memory allocations can persist outside the bounds of an RPC
 transaction. They are registered and invalidated as needed, as part
 of each RPC transaction.

 The Requester endpoint must ensure that memory regions associated
 with each RPC transaction are protected from Responder access before
 allowing upper-layer access to the data contained in them. Moreover,
 the Requester must not access these memory regions while the
 Responder has access to them.

Lever, et al. Standards Track [Page 33]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 This includes memory regions that are associated with canceled RPCs.
 A Responder cannot know that the Requester is no longer waiting for a
 reply, and it might proceed to read or even update memory that the
 Requester might have released for other use.

4.4.2. Communicating DDP-Eligibility

 The interface by which a ULP implementation communicates the
 eligibility of a data item locally to its local RPC-over-RDMA
 endpoint is not described by this specification.

 Depending on the implementation and constraints imposed by ULBs, it
 is possible to implement reduction transparently to upper layers.
 Such implementations may lead to inefficiencies, either because they
 require the RPC layer to perform expensive registration and
 invalidation of memory "on the fly", or they may require using RDMA
 chunks in RPC Reply messages, along with the resulting additional
 handshaking with the RPC-over-RDMA peer.

 However, these issues are internal and generally confined to the
 local interface between RPC and its upper layers, one in which
 implementations are free to innovate. The only requirement, beyond
 constraints imposed by the ULB, is that the resulting RPC-over-RDMA
 protocol sent to the peer be valid for the upper layer.

4.4.3. Registration Strategies

 The choice of which memory registration strategies to employ is left
 to Requester and Responder implementers. To support the widest array
 of RDMA implementations, as well as the most general steering tag
 scheme, an Offset field is included in each RDMA segment.

 While zero-based offset schemes are available in many RDMA
 implementations, their use by RPC requires individual registration of
 each memory region. For such implementations, this can be a
 significant overhead. By providing an offset in each chunk, many
 pre-registration or region-based registrations can be readily
 supported.

4.5. Error Handling

 A receiver performs basic validity checks on the RPC-over-RDMA header
 and chunk contents before it passes the RPC message to the RPC layer.
 If an incoming RPC-over-RDMA message is not as long as a minimal size
 RPC-over-RDMA header (28 bytes), the receiver cannot trust the value
 of the XID field; therefore, it MUST silently discard the message
 before performing any parsing. If other errors are detected in the
 RPC-over-RDMA header of an RPC Call message, a Responder MUST send an

Lever, et al. Standards Track [Page 34]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 RDMA_ERROR message back to the Requester. If errors are detected in
 the RPC-over-RDMA header of an RPC Reply message, a Requester MUST
 silently discard the message.

 To form an RDMA_ERROR procedure:

 o The rdma_xid field MUST contain the same XID that was in the
 rdma_xid field in the failing request;

 o The rdma_vers field MUST contain the same version that was in the
 rdma_vers field in the failing request;

 o The rdma_proc field MUST contain the value RDMA_ERROR; and

 o The rdma_err field contains a value that reflects the type of
 error that occurred, as described below.

 An RDMA_ERROR procedure indicates a permanent error. Receipt of this
 procedure completes the RPC transaction associated with XID in the
 rdma_xid field. A receiver MUST silently discard an RDMA_ERROR
 procedure that it cannot decode.

4.5.1. Header Version Mismatch

 When a Responder detects an RPC-over-RDMA header version that it does
 not support (currently this document defines only version 1), it MUST
 reply with an RDMA_ERROR procedure and set the rdma_err value to
 ERR_VERS, also providing the low and high inclusive version numbers
 it does, in fact, support.

4.5.2. XDR Errors

 A receiver might encounter an XDR parsing error that prevents it from
 processing the incoming Transport stream. Examples of such errors
 include an invalid value in the rdma_proc field; an RDMA_NOMSG
 message where the Read list, Write list, and Reply chunk are marked
 not present; or the value of the rdma_xid field does not match the
 value of the XID field in the accompanying RPC message. If the
 rdma_vers field contains a recognized value, but an XDR parsing error
 occurs, the Responder MUST reply with an RDMA_ERROR procedure and set
 the rdma_err value to ERR_CHUNK.

 When a Responder receives a valid RPC-over-RDMA header but the
 Responder’s ULP implementation cannot parse the RPC arguments in the
 RPC Call message, the Responder SHOULD return an RPC Reply message
 with status GARBAGE_ARGS, using an RDMA_MSG procedure. This type of
 parsing failure might be due to mismatches between chunk sizes or
 offsets and the contents of the Payload stream, for example.

Lever, et al. Standards Track [Page 35]

RFC 8166 RPC-over-RDMA Version 1 June 2017

4.5.3. Responder RDMA Operational Errors

 In RPC-over-RDMA version 1, the Responder initiates RDMA Read and
 Write operations that target the Requester’s memory. Problems might
 arise as the Responder attempts to use Requester-provided resources
 for RDMA operations. For example:

 o Usually, chunks can be validated only by using their contents to
 perform data transfers. If chunk contents are invalid (e.g., a
 memory region is no longer registered or a chunk length exceeds
 the end of the registered memory region), a Remote Access Error
 occurs.

 o If a Requester’s Receive buffer is too small, the Responder’s Send
 operation completes with a Local Length Error.

 o If the Requester-provided Reply chunk is too small to accommodate
 a large RPC Reply message, a Remote Access Error occurs. A
 Responder might detect this problem before attempting to write
 past the end of the Reply chunk.

 RDMA operational errors are typically fatal to the connection. To
 avoid a retransmission loop and repeated connection loss that
 deadlocks the connection, once the Requester has re-established a
 connection, the Responder should send an RDMA_ERROR reply with an
 rdma_err value of ERR_CHUNK to indicate that no RPC-level reply is
 possible for that XID.

4.5.4. Other Operational Errors

 While a Requester is constructing an RPC Call message, an
 unrecoverable problem might occur that prevents the Requester from
 posting further RDMA Work Requests on behalf of that message. As
 with other transports, if a Requester is unable to construct and
 transmit an RPC Call message, the associated RPC transaction fails
 immediately.

 After a Requester has received a reply, if it is unable to invalidate
 a memory region due to an unrecoverable problem, the Requester MUST
 close the connection to protect that memory from Responder access
 before the associated RPC transaction is complete.

 While a Responder is constructing an RPC Reply message or error
 message, an unrecoverable problem might occur that prevents the
 Responder from posting further RDMA Work Requests on behalf of that
 message. If a Responder is unable to construct and transmit an RPC
 Reply or RPC-over-RDMA error message, the Responder MUST close the
 connection to signal to the Requester that a reply was lost.

Lever, et al. Standards Track [Page 36]

RFC 8166 RPC-over-RDMA Version 1 June 2017

4.5.5. RDMA Transport Errors

 The RDMA connection and physical link provide some degree of error
 detection and retransmission. iWARP’s Marker PDU Aligned (MPA) layer
 (when used over TCP), the Stream Control Transmission Protocol
 (SCTP), as well as the InfiniBand [IBARCH] link layer all provide
 Cyclic Redundancy Check (CRC) protection of the RDMA payload, and
 CRC-class protection is a general attribute of such transports.

 Additionally, the RPC layer itself can accept errors from the
 transport and recover via retransmission. RPC recovery can handle
 complete loss and re-establishment of a transport connection.

 The details of reporting and recovery from RDMA link-layer errors are
 described in specific link-layer APIs and operational specifications
 and are outside the scope of this protocol specification. See
 Section 8 for further discussion of the use of RPC-level integrity
 schemes to detect errors.

4.6. Protocol Elements No Longer Supported

 The following protocol elements are no longer supported in RPC-over-
 RDMA version 1. Related enum values and structure definitions remain
 in the RPC-over-RDMA version 1 protocol for backwards compatibility.

4.6.1. RDMA_MSGP

 The specification of RDMA_MSGP in Section 3.9 of [RFC5666] is
 incomplete. To fully specify RDMA_MSGP would require:

 o Updating the definition of DDP-eligibility to include data items
 that may be transferred, with padding, via RDMA_MSGP procedures

 o Adding full operational descriptions of the alignment and
 threshold fields

 o Discussing how alignment preferences are communicated between two
 peers without using CCP

 o Describing the treatment of RDMA_MSGP procedures that convey Read
 or Write chunks

 The RDMA_MSGP message type is beneficial only when the padded data
 payload is at the end of an RPC message’s argument or result list.
 This is not typical for NFSv4 COMPOUND RPCs, which often include a
 GETATTR operation as the final element of the compound operation
 array.

Lever, et al. Standards Track [Page 37]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 Without a full specification of RDMA_MSGP, there has been no fully
 implemented prototype of it. Without a complete prototype of
 RDMA_MSGP support, it is difficult to assess whether this protocol
 element has benefit or can even be made to work interoperably.

 Therefore, senders MUST NOT send RDMA_MSGP procedures. When
 receiving an RDMA_MSGP procedure, Responders SHOULD reply with an
 RDMA_ERROR procedure, setting the rdma_err field to ERR_CHUNK;
 Requesters MUST silently discard the message.

4.6.2. RDMA_DONE

 Because no implementation of RPC-over-RDMA version 1 uses the Read-
 Read transfer model, there is never a need to send an RDMA_DONE
 procedure.

 Therefore, senders MUST NOT send RDMA_DONE messages. Receivers MUST
 silently discard RDMA_DONE messages.

4.7. XDR Examples

 RPC-over-RDMA chunk lists are complex data types. In this section,
 illustrations are provided to help readers grasp how chunk lists are
 represented inside an RPC-over-RDMA header.

 A plain segment is the simplest component, being made up of a 32-bit
 handle (H), a 32-bit length (L), and 64 bits of offset (OO). Once
 flattened into an XDR stream, plain segments appear as

 HLOO

 An RDMA read segment has an additional 32-bit position field (P).
 RDMA read segments appear as

 PHLOO

 A Read chunk is a list of RDMA read segments. Each RDMA read segment
 is preceded by a 32-bit word containing a one if a segment follows or
 a zero if there are no more segments in the list. In XDR form, this
 would look like

 1 PHLOO 1 PHLOO 1 PHLOO 0

 where P would hold the same value for each RDMA read segment
 belonging to the same Read chunk.

Lever, et al. Standards Track [Page 38]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 The Read list is also a list of RDMA read segments. In XDR form,
 this would look like a Read chunk, except that the P values could
 vary across the list. An empty Read list is encoded as a single
 32-bit zero.

 One Write chunk is a counted array of plain segments. In XDR form,
 the count would appear as the first 32-bit word, followed by an HLOO
 for each element of the array. For instance, a Write chunk with
 three elements would look like

 3 HLOO HLOO HLOO

 The Write list is a list of counted arrays. In XDR form, this is a
 combination of optional-data and counted arrays. To represent a
 Write list containing a Write chunk with three segments and a Write
 chunk with two segments, XDR would encode

 1 3 HLOO HLOO HLOO 1 2 HLOO HLOO 0

 An empty Write list is encoded as a single 32-bit zero.

 The Reply chunk is a Write chunk. However, since it is an optional-
 data field, there is a 32-bit field in front of it that contains a
 one if the Reply chunk is present or a zero if it is not. After
 encoding, a Reply chunk with two segments would look like

 1 2 HLOO HLOO

 Frequently, a Requester does not provide any chunks. In that case,
 after the four fixed fields in the RPC-over-RDMA header, there are
 simply three 32-bit fields that contain zero.

5. RPC Bind Parameters

 In setting up a new RDMA connection, the first action by a Requester
 is to obtain a transport address for the Responder. The means used
 to obtain this address, and to open an RDMA connection, is dependent
 on the type of RDMA transport and is the responsibility of each RPC
 protocol binding and its local implementation.

 RPC services normally register with a portmap or rpcbind service
 [RFC1833], which associates an RPC Program number with a service
 address. This policy is no different with RDMA transports. However,
 a different and distinct service address (port number) might
 sometimes be required for ULP operation with RPC-over-RDMA.

Lever, et al. Standards Track [Page 39]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 When mapped atop the iWARP transport [RFC5040] [RFC5041], which uses
 IP port addressing due to its layering on TCP and/or SCTP, port
 mapping is trivial and consists merely of issuing the port in the
 connection process. The NFS/RDMA protocol service address has been
 assigned port 20049 by IANA, for both iWARP/TCP and iWARP/SCTP
 [RFC5667].

 When mapped atop InfiniBand [IBARCH], which uses a service endpoint
 naming scheme based on a Group Identifier (GID), a translation MUST
 be employed. One such translation is described in Annexes A3
 (Application Specific Identifiers), A4 (Sockets Direct Protocol
 (SDP)), and A11 (RDMA IP CM Service) of [IBARCH], which is
 appropriate for translating IP port addressing to the InfiniBand
 network. Therefore, in this case, IP port addressing may be readily
 employed by the upper layer.

 When a mapping standard or convention exists for IP ports on an RDMA
 interconnect, there are several possibilities for each upper layer to
 consider:

 o One possibility is to have the Responder register its mapped IP
 port with the rpcbind service under the netid (or netids) defined
 here. An RPC-over-RDMA-aware Requester can then resolve its
 desired service to a mappable port and proceed to connect. This
 is the most flexible and compatible approach, for those upper
 layers that are defined to use the rpcbind service.

 o A second possibility is to have the Responder’s portmapper
 register itself on the RDMA interconnect at a "well-known" service
 address (on UDP or TCP, this corresponds to port 111). A
 Requester could connect to this service address and use the
 portmap protocol to obtain a service address in response to a
 program number, e.g., an iWARP port number or an InfiniBand GID.

 o Alternately, the Requester could simply connect to the mapped
 well-known port for the service itself, if it is appropriately
 defined. By convention, the NFS/RDMA service, when operating atop
 such an InfiniBand fabric, uses the same 20049 assignment as for
 iWARP.

 Historically, different RPC protocols have taken different approaches
 to their port assignment. Therefore, the specific method is left to
 each RPC-over-RDMA-enabled ULB and is not addressed in this document.

Lever, et al. Standards Track [Page 40]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 In Section 9, this specification defines two new netid values, to be
 used for registration of upper layers atop iWARP [RFC5040] [RFC5041]
 and (when a suitable port translation service is available)
 InfiniBand [IBARCH]. Additional RDMA-capable networks MAY define
 their own netids, or if they provide a port translation, they MAY
 share the one defined in this document.

6. ULB Specifications

 An ULP is typically defined independently of any particular RPC
 transport. An ULB (ULB) specification provides guidance that helps
 the ULP interoperate correctly and efficiently over a particular
 transport. For RPC-over-RDMA version 1, a ULB may provide:

 o A taxonomy of XDR data items that are eligible for DDP

 o Constraints on which upper-layer procedures may be reduced and on
 how many chunks may appear in a single RPC request

 o A method for determining the maximum size of the reply Payload
 stream for all procedures in the ULP

 o An rpcbind port assignment for operation of the RPC Program and
 Version on an RPC-over-RDMA transport

 Each RPC Program and Version tuple that utilizes RPC-over-RDMA
 version 1 needs to have a ULB specification.

6.1. DDP-Eligibility

 An ULB designates some XDR data items as eligible for DDP. As an
 RPC-over-RDMA message is formed, DDP-eligible data items can be
 removed from the Payload stream and placed directly in the receiver’s
 memory.

 An XDR data item should be considered for DDP-eligibility if there is
 a clear benefit to moving the contents of the item directly from the
 sender’s memory to the receiver’s memory. Criteria for DDP-
 eligibility include:

 o The XDR data item is frequently sent or received, and its size is
 often much larger than typical inline thresholds.

 o If the XDR data item is a result, its maximum size must be
 predictable in advance by the Requester.

Lever, et al. Standards Track [Page 41]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 o Transport-level processing of the XDR data item is not needed.
 For example, the data item is an opaque byte array, which requires
 no XDR encoding and decoding of its content.

 o The content of the XDR data item is sensitive to address
 alignment. For example, a data copy operation would be required
 on the receiver to enable the message to be parsed correctly, or
 to enable the data item to be accessed.

 o The XDR data item does not contain DDP-eligible data items.

 In addition to defining the set of data items that are DDP-eligible,
 a ULB may also limit the use of chunks to particular upper-layer
 procedures. If more than one data item in a procedure is DDP-
 eligible, the ULB may also limit the number of chunks that a
 Requester can provide for a particular upper-layer procedure.

 Senders MUST NOT reduce data items that are not DDP-eligible. Such
 data items MAY, however, be moved as part of a Position Zero Read
 chunk or a Reply chunk.

 The programming interface by which an upper-layer implementation
 indicates the DDP-eligibility of a data item to the RPC transport is
 not described by this specification. The only requirements are that
 the receiver can re-assemble the transmitted RPC-over-RDMA message
 into a valid XDR stream, and that DDP-eligibility rules specified by
 the ULB are respected.

 There is no provision to express DDP-eligibility within the XDR
 language. The only definitive specification of DDP-eligibility is a
 ULB.

 In general, a DDP-eligibility violation occurs when:

 o A Requester reduces a non-DDP-eligible argument data item. The
 Responder MUST NOT process this RPC Call message and MUST report
 the violation as described in Section 4.5.2.

 o A Responder reduces a non-DDP-eligible result data item. The
 Requester MUST terminate the pending RPC transaction and report an
 appropriate permanent error to the RPC consumer.

 o A Responder does not reduce a DDP-eligible result data item into
 an available Write chunk. The Requester MUST terminate the
 pending RPC transaction and report an appropriate permanent error
 to the RPC consumer.

Lever, et al. Standards Track [Page 42]

RFC 8166 RPC-over-RDMA Version 1 June 2017

6.2. Maximum Reply Size

 A Requester provides resources for both an RPC Call message and its
 matching RPC Reply message. A Requester forms the RPC Call message
 itself; thus, the Requester can compute the exact resources needed.

 A Requester must allocate resources for the RPC Reply message (an
 RPC-over-RDMA credit, a Receive buffer, and possibly a Write list and
 Reply chunk) before the Responder has formed the actual reply. To
 accommodate all possible replies for the procedure in the RPC Call
 message, a Requester must allocate reply resources based on the
 maximum possible size of the expected RPC Reply message.

 If there are procedures in the ULP for which there is no clear reply
 size maximum, the ULB needs to specify a dependable means for
 determining the maximum.

6.3. Additional Considerations

 There may be other details provided in a ULB.

 o An ULB may recommend inline threshold values or other transport-
 related parameters for RPC-over-RDMA version 1 connections bearing
 that ULP.

 o An ULP may provide a means to communicate these transport-related
 parameters between peers. Note that RPC-over-RDMA version 1 does
 not specify any mechanism for changing any transport-related
 parameter after a connection has been established.

 o Multiple ULPs may share a single RPC-over-RDMA version 1
 connection when their ULBs allow the use of RPC-over-RDMA version
 1 and the rpcbind port assignments for the Protocols allow
 connection sharing. In this case, the same transport parameters
 (such as inline threshold) apply to all Protocols using that
 connection.

 Each ULB needs to be designed to allow correct interoperation without
 regard to the transport parameters actually in use. Furthermore,
 implementations of ULPs must be designed to interoperate correctly
 regardless of the connection parameters in effect on a connection.

6.4. ULP Extensions

 An RPC Program and Version tuple may be extensible. For instance,
 there may be a minor versioning scheme that is not reflected in the
 RPC version number, or the ULP may allow additional features to be
 specified after the original RPC Program specification was ratified.

Lever, et al. Standards Track [Page 43]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 ULBs are provided for interoperable RPC Programs and Versions by
 extending existing ULBs to reflect the changes made necessary by each
 addition to the existing XDR.

7. Protocol Extensibility

 The RPC-over-RDMA header format is specified using XDR, unlike the
 message header used with RPC-over-TCP. To maintain a high degree of
 interoperability among implementations of RPC-over-RDMA, any change
 to this XDR requires a protocol version number change. New versions
 of RPC-over-RDMA may be published as separate protocol specifications
 without updating this document.

 The first four fields in every RPC-over-RDMA header must remain
 aligned at the same fixed offsets for all versions of the RPC-over-
 RDMA protocol. The version number must be in a fixed place to enable
 implementations to detect protocol version mismatches.

 For version mismatches to be reported in a fashion that all future
 version implementations can reliably decode, the rdma_proc field must
 remain in a fixed place, the value of ERR_VERS must always remain the
 same, and the field placement in struct rpc_rdma_errvers must always
 remain the same.

7.1. Conventional Extensions

 Introducing new capabilities to RPC-over-RDMA version 1 is limited to
 the adoption of conventions that make use of existing XDR (defined in
 this document) and allowed abstract RDMA operations. Because no
 mechanism for detecting optional features exists in RPC-over-RDMA
 version 1, implementations must rely on ULPs to communicate the
 existence of such extensions.

 Such extensions must be specified in a Standards Track RFC with
 appropriate review by the NFSv4 Working Group and the IESG. An
 example of a conventional extension to RPC-over-RDMA version 1 is the
 specification of backward direction message support to enable NFSv4.1
 callback operations, described in [RFC8167].

8. Security Considerations

8.1. Memory Protection

 A primary consideration is the protection of the integrity and
 confidentiality of local memory by an RPC-over-RDMA transport. The
 use of an RPC-over-RDMA transport protocol MUST NOT introduce
 vulnerabilities to system memory contents nor to memory owned by user
 processes.

Lever, et al. Standards Track [Page 44]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 It is REQUIRED that any RDMA provider used for RPC transport be
 conformant to the requirements of [RFC5042] in order to satisfy these
 protections. These protections are provided by the RDMA layer
 specifications, and in particular, their security models.

8.1.1. Protection Domains

 The use of Protection Domains to limit the exposure of memory regions
 to a single connection is critical. Any attempt by an endpoint not
 participating in that connection to reuse memory handles needs to
 result in immediate failure of that connection. Because ULP security
 mechanisms rely on this aspect of Reliable Connection behavior,
 strong authentication of remote endpoints is recommended.

8.1.2. Handle Predictability

 Unpredictable memory handles should be used for any operation
 requiring advertised memory regions. Advertising a continuously
 registered memory region allows a remote host to read or write to
 that region even when an RPC involving that memory is not under way.
 Therefore, implementations should avoid advertising persistently
 registered memory.

8.1.3. Memory Protection

 Requesters should register memory regions for remote access only when
 they are about to be the target of an RPC operation that involves an
 RDMA Read or Write.

 Registered memory regions should be invalidated as soon as related
 RPC operations are complete. Invalidation and DMA unmapping of
 memory regions should be complete before message integrity checking
 is done and before the RPC consumer is allowed to continue execution
 and use or alter the contents of a memory region.

 An RPC transaction on a Requester might be terminated before a reply
 arrives if the RPC consumer exits unexpectedly (for example, it is
 signaled or a segmentation fault occurs). When an RPC terminates
 abnormally, memory regions associated with that RPC should be
 invalidated appropriately before the regions are released to be
 reused for other purposes on the Requester.

8.1.4. Denial of Service

 A detailed discussion of denial-of-service exposures that can result
 from the use of an RDMA transport is found in Section 6.4 of
 [RFC5042].

Lever, et al. Standards Track [Page 45]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 A Responder is not obliged to pull Read chunks that are unreasonably
 large. The Responder can use an RDMA_ERROR response to terminate
 RPCs with unreadable Read chunks. If a Responder transmits more data
 than a Requester is prepared to receive in a Write or Reply chunk,
 the RDMA Network Interface Cards (RNICs) typically terminate the
 connection. For further discussion, see Section 4.5. Such repeated
 chunk errors can deny service to other users sharing the connection
 from the errant Requester.

 An RPC-over-RDMA transport implementation is not responsible for
 throttling the RPC request rate, other than to keep the number of
 concurrent RPC transactions at or under the number of credits granted
 per connection. This is explained in Section 3.3.1. A sender can
 trigger a self denial of service by exceeding the credit grant
 repeatedly.

 When an RPC has been canceled due to a signal or premature exit of an
 application process, a Requester may invalidate the RPC’s Write and
 Reply chunks. Invalidation prevents the subsequent arrival of the
 Responder’s reply from altering the memory regions associated with
 those chunks after the memory has been reused.

 On the Requester, a malfunctioning application or a malicious user
 can create a situation where RPCs are continuously initiated and then
 aborted, resulting in Responder replies that terminate the underlying
 RPC-over-RDMA connection repeatedly. Such situations can deny
 service to other users sharing the connection from that Requester.

8.2. RPC Message Security

 ONC RPC provides cryptographic security via the RPCSEC_GSS framework
 [RFC7861]. RPCSEC_GSS implements message authentication
 (rpc_gss_svc_none), per-message integrity checking
 (rpc_gss_svc_integrity), and per-message confidentiality
 (rpc_gss_svc_privacy) in the layer above RPC-over-RDMA. The latter
 two services require significant computation and movement of data on
 each endpoint host. Some performance benefits enabled by RDMA
 transports can be lost.

8.2.1. RPC-over-RDMA Protection at Lower Layers

 For any RPC transport, utilizing RPCSEC_GSS integrity or privacy
 services has performance implications. Protection below the RPC
 transport is often more appropriate in performance-sensitive
 deployments, especially if it, too, can be offloaded. Certain
 configurations of IPsec can be co-located in RDMA hardware, for
 example, without change to RDMA consumers and little loss of data

Lever, et al. Standards Track [Page 46]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 movement efficiency. Such arrangements can also provide a higher
 degree of privacy by hiding endpoint identity or altering the
 frequency at which messages are exchanged, at a performance cost.

 The use of protection in a lower layer MAY be negotiated through the
 use of an RPCSEC_GSS security flavor defined in [RFC7861] in
 conjunction with the Channel Binding mechanism [RFC5056] and IPsec
 Channel Connection Latching [RFC5660]. Use of such mechanisms is
 REQUIRED where integrity or confidentiality is desired and where
 efficiency is required.

8.2.2. RPCSEC_GSS on RPC-over-RDMA Transports

 Not all RDMA devices and fabrics support the above protection
 mechanisms. Also, per-message authentication is still required on
 NFS clients where multiple users access NFS files. In these cases,
 RPCSEC_GSS can protect NFS traffic conveyed on RPC-over-RDMA
 connections.

 RPCSEC_GSS extends the ONC RPC protocol [RFC5531] without changing
 the format of RPC messages. By observing the conventions described
 in this section, an RPC-over-RDMA transport can convey RPCSEC_GSS-
 protected RPC messages interoperably.

 As part of the ONC RPC protocol, protocol elements of RPCSEC_GSS that
 appear in the Payload stream of an RPC-over-RDMA message (such as
 control messages exchanged as part of establishing or destroying a
 security context or data items that are part of RPCSEC_GSS
 authentication material) MUST NOT be reduced.

8.2.2.1. RPCSEC_GSS Context Negotiation

 Some NFS client implementations use a separate connection to
 establish a Generic Security Service (GSS) context for NFS operation.
 These clients use TCP and the standard NFS port (2049) for context
 establishment. To enable the use of RPCSEC_GSS with NFS/RDMA, an NFS
 server MUST also provide a TCP-based NFS service on port 2049.

8.2.2.2. RPC-over-RDMA with RPCSEC_GSS Authentication

 The RPCSEC_GSS authentication service has no impact on the DDP-
 eligibility of data items in a ULP.

 However, RPCSEC_GSS authentication material appearing in an RPC
 message header can be larger than, say, an AUTH_SYS authenticator.
 In particular, when an RPCSEC_GSS pseudoflavor is in use, a Requester

Lever, et al. Standards Track [Page 47]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 needs to accommodate a larger RPC credential when marshaling RPC Call
 messages and needs to provide for a maximum size RPCSEC_GSS verifier
 when allocating reply buffers and Reply chunks.

 RPC messages, and thus Payload streams, are made larger as a result.
 ULP operations that fit in a Short Message when a simpler form of
 authentication is in use might need to be reduced, or conveyed via a
 Long Message, when RPCSEC_GSS authentication is in use. It is more
 likely that a Requester provides both a Read list and a Reply chunk
 in the same RPC-over-RDMA header to convey a Long Call and provision
 a receptacle for a Long Reply. More frequent use of Long Messages
 can impact transport efficiency.

8.2.2.3. RPC-over-RDMA with RPCSEC_GSS Integrity or Privacy

 The RPCSEC_GSS integrity service enables endpoints to detect
 modification of RPC messages in flight. The RPCSEC_GSS privacy
 service prevents all but the intended recipient from viewing the
 cleartext content of RPC arguments and results. RPCSEC_GSS integrity
 and privacy services are end-to-end. They protect RPC arguments and
 results from application to server endpoint, and back.

 The RPCSEC_GSS integrity and encryption services operate on whole RPC
 messages after they have been XDR encoded for transmit, and before
 they have been XDR decoded after receipt. Both sender and receiver
 endpoints use intermediate buffers to prevent exposure of encrypted
 data or unverified cleartext data to RPC consumers. After
 verification, encryption, and message wrapping has been performed,
 the transport layer MAY use RDMA data transfer between these
 intermediate buffers.

 The process of reducing a DDP-eligible data item removes the data
 item and its XDR padding from the encoded XDR stream. XDR padding of
 a reduced data item is not transferred in an RPC-over-RDMA message.
 After reduction, the Payload stream contains fewer octets than the
 whole XDR stream did beforehand. XDR padding octets are often zero
 bytes, but they don’t have to be. Thus, reducing DDP-eligible items
 affects the result of message integrity verification or encryption.

 Therefore, a sender MUST NOT reduce a Payload stream when RPCSEC_GSS
 integrity or encryption services are in use. Effectively, no data
 item is DDP-eligible in this situation, and Chunked Messages cannot
 be used. In this mode, an RPC-over-RDMA transport operates in the
 same manner as a transport that does not support DDP.

Lever, et al. Standards Track [Page 48]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 When an RPCSEC_GSS integrity or privacy service is in use, a
 Requester provides both a Read list and a Reply chunk in the same
 RPC-over-RDMA header to convey a Long Call and provision a receptacle
 for a Long Reply.

8.2.2.4. Protecting RPC-over-RDMA Transport Headers

 Like the base fields in an ONC RPC message (XID, call direction, and
 so on), the contents of an RPC-over-RDMA message’s Transport stream
 are not protected by RPCSEC_GSS. This exposes XIDs, connection
 credit limits, and chunk lists (but not the content of the data items
 they refer to) to malicious behavior, which could redirect data that
 is transferred by the RPC-over-RDMA message, result in spurious
 retransmits, or trigger connection loss.

 In particular, if an attacker alters the information contained in the
 chunk lists of an RPC-over-RDMA header, data contained in those
 chunks can be redirected to other registered memory regions on
 Requesters. An attacker might alter the arguments of RDMA Read and
 RDMA Write operations on the wire to similar effect. If such
 alterations occur, the use of RPCSEC_GSS integrity or privacy
 services enable a Requester to detect unexpected material in a
 received RPC message.

 Encryption at lower layers, as described in Section 8.2.1, protects
 the content of the Transport stream. To address attacks on RDMA
 protocols themselves, RDMA transport implementations should conform
 to [RFC5042].

9. IANA Considerations

 A set of RPC netids for resolving RPC-over-RDMA services is specified
 by this document. This is unchanged from [RFC5666].

 The RPC-over-RDMA transport has been assigned an RPC netid, which is
 an rpcbind [RFC1833] string used to describe the underlying protocol
 in order for RPC to select the appropriate transport framing, as well
 as the format of the service addresses and ports.

 The following netid registry strings are defined for this purpose:

 NC_RDMA "rdma"
 NC_RDMA6 "rdma6"

 The "rdma" netid is to be used when IPv4 addressing is employed by
 the underlying transport, and "rdma6" for IPv6 addressing. The netid
 assignment policy and registry are defined in [RFC5665].

Lever, et al. Standards Track [Page 49]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 These netids MAY be used for any RDMA network that satisfies the
 requirements of Section 2.3.2 and that is able to identify service
 endpoints using IP port addressing, possibly through use of a
 translation service as described in Section 5.

 The use of the RPC-over-RDMA protocol has no effect on RPC Program
 numbers or existing registered port numbers. However, new port
 numbers MAY be registered for use by RPC-over-RDMA-enabled services,
 as appropriate to the new networks over which the services will
 operate.

 For example, the NFS/RDMA service defined in [RFC5667] has been
 assigned the port 20049 in the "Service Name and Transport Protocol
 Port Number Registry". This is distinct from the port number defined
 for NFS on TCP, which is assigned the port 2049 in the same registry.
 NFS clients use the same RPC Program number for NFS (100003) when
 using either transport [RFC5531] (see the "Remote Procedure Call
 (RPC) Program Numbers" registry).

10. References

10.1. Normative References

 [RFC1833] Srinivasan, R., "Binding Protocols for ONC RPC Version 2",
 RFC 1833, DOI 10.17487/RFC1833, August 1995,
 <http://www.rfc-editor.org/info/rfc1833>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4506] Eisler, M., Ed., "XDR: External Data Representation
 Standard", STD 67, RFC 4506, DOI 10.17487/RFC4506, May
 2006, <http://www.rfc-editor.org/info/rfc4506>.

 [RFC5042] Pinkerton, J. and E. Deleganes, "Direct Data Placement
 Protocol (DDP) / Remote Direct Memory Access Protocol
 (RDMAP) Security", RFC 5042, DOI 10.17487/RFC5042, October
 2007, <http://www.rfc-editor.org/info/rfc5042>.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,
 <http://www.rfc-editor.org/info/rfc5056>.

 [RFC5531] Thurlow, R., "RPC: Remote Procedure Call Protocol
 Specification Version 2", RFC 5531, DOI 10.17487/RFC5531,
 May 2009, <http://www.rfc-editor.org/info/rfc5531>.

Lever, et al. Standards Track [Page 50]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 [RFC5660] Williams, N., "IPsec Channels: Connection Latching",
 RFC 5660, DOI 10.17487/RFC5660, October 2009,
 <http://www.rfc-editor.org/info/rfc5660>.

 [RFC5665] Eisler, M., "IANA Considerations for Remote Procedure Call
 (RPC) Network Identifiers and Universal Address Formats",
 RFC 5665, DOI 10.17487/RFC5665, January 2010,
 <http://www.rfc-editor.org/info/rfc5665>.

 [RFC7861] Adamson, A. and N. Williams, "Remote Procedure Call (RPC)
 Security Version 3", RFC 7861, DOI 10.17487/RFC7861,
 November 2016, <http://www.rfc-editor.org/info/rfc7861>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <http://www.rfc-editor.org/info/rfc8174>.

10.2. Informative References

 [IBARCH] InfiniBand Trade Association, "InfiniBand Architecture
 Specification Volume 1", Release 1.3, March 2015,
 <http://www.infinibandta.org/content/
 pages.php?pg=technology_download>.

 [RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <http://www.rfc-editor.org/info/rfc768>.

 [RFC793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <http://www.rfc-editor.org/info/rfc793>.

 [RFC1094] Nowicki, B., "NFS: Network File System Protocol
 specification", RFC 1094, DOI 10.17487/RFC1094, March
 1989, <http://www.rfc-editor.org/info/rfc1094>.

 [RFC1813] Callaghan, B., Pawlowski, B., and P. Staubach, "NFS
 Version 3 Protocol Specification", RFC 1813,
 DOI 10.17487/RFC1813, June 1995,
 <http://www.rfc-editor.org/info/rfc1813>.

 [RFC5040] Recio, R., Metzler, B., Culley, P., Hilland, J., and D.
 Garcia, "A Remote Direct Memory Access Protocol
 Specification", RFC 5040, DOI 10.17487/RFC5040, October
 2007, <http://www.rfc-editor.org/info/rfc5040>.

Lever, et al. Standards Track [Page 51]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 [RFC5041] Shah, H., Pinkerton, J., Recio, R., and P. Culley, "Direct
 Data Placement over Reliable Transports", RFC 5041,
 DOI 10.17487/RFC5041, October 2007,
 <http://www.rfc-editor.org/info/rfc5041>.

 [RFC5532] Talpey, T. and C. Juszczak, "Network File System (NFS)
 Remote Direct Memory Access (RDMA) Problem Statement",
 RFC 5532, DOI 10.17487/RFC5532, May 2009,
 <http://www.rfc-editor.org/info/rfc5532>.

 [RFC5661] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 Protocol", RFC 5661, DOI 10.17487/RFC5661, January 2010,
 <http://www.rfc-editor.org/info/rfc5661>.

 [RFC5662] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 External Data Representation Standard (XDR) Description",
 RFC 5662, DOI 10.17487/RFC5662, January 2010,
 <http://www.rfc-editor.org/info/rfc5662>.

 [RFC5666] Talpey, T. and B. Callaghan, "Remote Direct Memory Access
 Transport for Remote Procedure Call", RFC 5666,
 DOI 10.17487/RFC5666, January 2010,
 <http://www.rfc-editor.org/info/rfc5666>.

 [RFC5667] Talpey, T. and B. Callaghan, "Network File System (NFS)
 Direct Data Placement", RFC 5667, DOI 10.17487/RFC5667,
 January 2010, <http://www.rfc-editor.org/info/rfc5667>.

 [RFC7530] Haynes, T., Ed. and D. Noveck, Ed., "Network File System
 (NFS) Version 4 Protocol", RFC 7530, DOI 10.17487/RFC7530,
 March 2015, <http://www.rfc-editor.org/info/rfc7530>.

 [RFC8167] Lever, C., "Bidirectional Remote Procedure Call on RPC-
 over-RDMA Transports", RFC 8167, DOI 10.17487/RFC8167,
 June 2017, <http://www.rfc-editor.org/info/rfc8167>.

Lever, et al. Standards Track [Page 52]

RFC 8166 RPC-over-RDMA Version 1 June 2017

Appendix A. Changes from RFC 5666

A.1. Changes to the Specification

 The following alterations have been made to the RPC-over-RDMA version
 1 specification. The section numbers below refer to [RFC5666].

 o Section 2 has been expanded to introduce and explain key RPC
 [RFC5531], XDR [RFC4506], and RDMA [RFC5040] terminology. These
 terms are now used consistently throughout the specification.

 o Section 3 has been reorganized and split into subsections to help
 readers locate specific requirements and definitions.

 o Sections 4 and 5 have been combined to improve the organization of
 this information.

 o The optional Connection Configuration Protocol has never been
 implemented. The specification of CCP has been deleted from this
 specification.

 o A section consolidating requirements for ULBs has been added.

 o An XDR extraction mechanism is provided, along with full
 copyright, matching the approach used in [RFC5662].

 o The "Security Considerations" section has been expanded to include
 a discussion of how RPC-over-RDMA security depends on features of
 the underlying RDMA transport.

 o A subsection describing the use of RPCSEC_GSS [RFC7861] with RPC-
 over-RDMA version 1 has been added.

A.2. Changes to the Protocol

 Although the protocol described herein interoperates with existing
 implementations of [RFC5666], the following changes have been made
 relative to the protocol described in that document:

 o Support for the Read-Read transfer model has been removed. Read-
 Read is a slower transfer model than Read-Write. As a result,
 implementers have chosen not to support it. Removal of Read-Read
 simplifies explanatory text, and the RDMA_DONE procedure is no
 longer part of the protocol.

Lever, et al. Standards Track [Page 53]

RFC 8166 RPC-over-RDMA Version 1 June 2017

 o The specification of RDMA_MSGP in [RFC5666] is not adequate,
 although some incomplete implementations exist. Even if an
 adequate specification were provided and an implementation were
 produced, benefit for protocols such as NFSv4.0 [RFC7530] is
 doubtful. Therefore, the RDMA_MSGP message type is no longer
 supported.

 o Technical issues with regard to handling RPC-over-RDMA header
 errors have been corrected.

 o Specific requirements related to implicit XDR roundup and complex
 XDR data types have been added.

 o Explicit guidance is provided related to sizing Write chunks,
 managing multiple chunks in the Write list, and handling unused
 Write chunks.

 o Clear guidance about Send and Receive buffer sizes has been
 introduced. This enables better decisions about when a Reply
 chunk must be provided.

Acknowledgments

 The editor gratefully acknowledges the work of Brent Callaghan and
 Tom Talpey on the original RPC-over-RDMA Version 1 specification
 [RFC5666].

 Dave Noveck provided excellent review, constructive suggestions, and
 consistent navigational guidance throughout the process of drafting
 this document. Dave also contributed much of the organization and
 content of Section 7 and helped the authors understand the
 complexities of XDR extensibility.

 The comments and contributions of Karen Deitke, Dai Ngo, Chunli
 Zhang, Dominique Martinet, and Mahesh Siddheshwar are accepted with
 great thanks. The editor also wishes to thank Bill Baker, Greg
 Marsden, and Matt Benjamin for their support of this work.

 The extract.sh shell script and formatting conventions were first
 described by the authors of the NFSv4.1 XDR specification [RFC5662].

 Special thanks go to Transport Area Director Spencer Dawkins, NFSV4
 Working Group Chair and Document Shepherd Spencer Shepler, and NFSV4
 Working Group Secretary Thomas Haynes for their support.

Lever, et al. Standards Track [Page 54]

RFC 8166 RPC-over-RDMA Version 1 June 2017

Authors’ Addresses

 Charles Lever (editor)
 Oracle Corporation
 1015 Granger Avenue
 Ann Arbor, MI 48104
 United States of America

 Phone: +1 248 816 6463
 Email: chuck.lever@oracle.com

 William Allen Simpson
 Red Hat
 1384 Fontaine
 Madison Heights, MI 48071
 United States of America

 Email: william.allen.simpson@gmail.com

 Tom Talpey
 Microsoft Corp.
 One Microsoft Way
 Redmond, WA 98052
 United States of America

 Phone: +1 425 704-9945
 Email: ttalpey@microsoft.com

Lever, et al. Standards Track [Page 55]

