
Internet Engineering Task Force (IETF) I. Liusvaara
Request for Comments: 8037 Independent
Category: Standards Track January 2017
ISSN: 2070-1721

 CFRG Elliptic Curve Diffie-Hellman (ECDH) and Signatures
 in JSON Object Signing and Encryption (JOSE)

Abstract

 This document defines how to use the Diffie-Hellman algorithms
 "X25519" and "X448" as well as the signature algorithms "Ed25519" and
 "Ed448" from the IRTF CFRG elliptic curves work in JSON Object
 Signing and Encryption (JOSE).

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8037.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Liusvaara Standards Track [Page 1]

RFC 8037 CFRG ECDH and Signatures in JOSE January 2017

Table of Contents

 1. Introduction . 2
 1.1. Terminology . 3
 2. Key Type "OKP" . 3
 3. Algorithms . 4
 3.1. Signatures . 4
 3.1.1. Signing . 4
 3.1.2. Verification . 4
 3.2. ECDH-ES . 4
 3.2.1. Performing the ECDH Operation 5
 4. Security Considerations 5
 5. IANA Considerations . 6
 6. References . 8
 6.1. Normative References 8
 6.2. Informative References 8
 Appendix A. Examples . 9
 A.1. Ed25519 Private Key 9
 A.2. Ed25519 Public Key 9
 A.3. JWK Thumbprint Canonicalization 9
 A.4. Ed25519 Signing . 10
 A.5. Ed25519 Validation 11
 A.6. ECDH-ES with X25519 11
 A.7. ECDH-ES with X448 . 12
 Acknowledgements . 14
 Author’s Address . 14

1. Introduction

 The Internet Research Task Force (IRTF) Crypto Forum Research Group
 (CFRG) selected new Diffie-Hellman algorithms ("X25519" and "X448";
 [RFC7748]) and signature algorithms ("Ed25519" and "Ed448";
 [RFC8032]) for asymmetric key cryptography. This document defines
 how to use those algorithms in JOSE in an interoperable manner.

 This document defines the conventions to use in the context of
 [RFC7515], [RFC7516], and [RFC7517].

 While the CFRG also defined two pairs of isogenous elliptic curves
 that underlie these algorithms, these curves are not directly
 exposed, as the algorithms laid on top are sufficient for the
 purposes of JOSE and are much easier to use.

 All inputs to and outputs from the Elliptic Curve Diffie-Hellman
 (ECDH) and signature functions are defined to be octet strings, with
 the exception of outputs of verification functions, which are
 booleans.

Liusvaara Standards Track [Page 2]

RFC 8037 CFRG ECDH and Signatures in JOSE January 2017

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 "JWS Signing Input" and "JWS Signature" are defined by [RFC7515].

 "Key Agreement with Elliptic Curve Diffie-Hellman Ephemeral Static"
 is defined by Section 4.6 of [RFC7518].

 The JOSE key format ("JSON Web Key (JWK)") is defined by [RFC7517]
 and thumbprints for it ("JSON Web Key (JWK) Thumbprint") in
 [RFC7638].

2. Key Type "OKP"

 A new key type (kty) value "OKP" (Octet Key Pair) is defined for
 public key algorithms that use octet strings as private and public
 keys. It has the following parameters:

 o The parameter "kty" MUST be "OKP".

 o The parameter "crv" MUST be present and contain the subtype of the
 key (from the "JSON Web Elliptic Curve" registry).

 o The parameter "x" MUST be present and contain the public key
 encoded using the base64url [RFC4648] encoding.

 o The parameter "d" MUST be present for private keys and contain the
 private key encoded using the base64url encoding. This parameter
 MUST NOT be present for public keys.

 Note: Do not assume that there is an underlying elliptic curve,
 despite the existence of the "crv" and "x" parameters. (For
 instance, this key type could be extended to represent Diffie-Hellman
 (DH) algorithms based on hyperelliptic surfaces.)

 When calculating JWK Thumbprints [RFC7638], the three public key
 fields are included in the hash input in lexicographic order: "crv",
 "kty", and "x".

Liusvaara Standards Track [Page 3]

RFC 8037 CFRG ECDH and Signatures in JOSE January 2017

3. Algorithms

3.1. Signatures

 For the purpose of using the Edwards-curve Digital Signature
 Algorithm (EdDSA) for signing data using "JSON Web Signature (JWS)"
 [RFC7515], algorithm "EdDSA" is defined here, to be applied as the
 value of the "alg" parameter.

 The following key subtypes are defined here for use with EdDSA:

 "crv" EdDSA Variant
 Ed25519 Ed25519
 Ed448 Ed448

 The key type used with these keys is "OKP" and the algorithm used for
 signing is "EdDSA". These subtypes MUST NOT be used for Elliptic
 Curve Diffie-Hellman Ephemeral Static (ECDH-ES).

 The EdDSA variant used is determined by the subtype of the key
 (Ed25519 for "Ed25519" and Ed448 for "Ed448").

3.1.1. Signing

 Signing for these is performed by applying the signing algorithm
 defined in [RFC8032] to the private key (as private key), public key
 (as public key), and the JWS Signing Input (as message). The
 resulting signature is the JWS Signature. All inputs and outputs are
 octet strings.

3.1.2. Verification

 Verification is performed by applying the verification algorithm
 defined in [RFC8032] to the public key (as public key), the JWS
 Signing Input (as message), and the JWS Signature (as signature).
 All inputs are octet strings. If the algorithm accepts, the
 signature is valid; otherwise, the signature is invalid.

3.2. ECDH-ES

 The following key subtypes are defined here for purpose of "Key
 Agreement with Elliptic Curve Diffie-Hellman Ephemeral Static"
 (ECDH-ES):

 "crv" ECDH Function Applied
 X25519 X25519
 X448 X448

Liusvaara Standards Track [Page 4]

RFC 8037 CFRG ECDH and Signatures in JOSE January 2017

 The key type used with these keys is "OKP". These subtypes MUST NOT
 be used for signing.

 Section 4.6 of [RFC7518] defines the ECDH-ES algorithms
 "ECDH-ES+A128KW", "ECDH-ES+A192KW", "ECDH-ES+A256KW", and "ECDH-ES".

3.2.1. Performing the ECDH Operation

 The "x" parameter of the "epk" field is set as follows:

 Apply the appropriate ECDH function to the ephemeral private key (as
 scalar input) and the standard base point (as u-coordinate input).
 The base64url encoding of the output is the value for the "x"
 parameter of the "epk" field. All inputs and outputs are octet
 strings.

 The Z value (raw key agreement output) for key agreement (to be used
 in subsequent Key Derivation Function (KDF) as per Section 4.6.2 of
 [RFC7518]) is determined as follows:

 Apply the appropriate ECDH function to the ephemeral private key (as
 scalar input) and receiver public key (as u-coordinate input). The
 output is the Z value. All inputs and outputs are octet strings.

4. Security Considerations

 Security considerations from [RFC7748] and [RFC8032] apply here.

 Do not separate key material from information about what key subtype
 it is for. When using keys, check that the algorithm is compatible
 with the key subtype for the key. To do otherwise opens the system
 up to attacks via mixing up algorithms. It is particularly dangerous
 to mix up signature and Message Authentication Code (MAC) algorithms.

 Although for Ed25519 and Ed448, the signature binds the key used for
 signing, do not assume this, as there are many signature algorithms
 that fail to make such a binding. If key-binding is desired, include
 the key used for signing either inside the JWS protected header or
 the data to sign.

 If key generation or batch signature verification is performed, a
 well-seeded cryptographic random number generator is REQUIRED.
 Signing and non-batch signature verification are deterministic
 operations and do not need random numbers of any kind.

Liusvaara Standards Track [Page 5]

RFC 8037 CFRG ECDH and Signatures in JOSE January 2017

 The JSON Web Algorithm (JWA) ECDH-ES KDF construction does not mix
 keys into the final shared secret. In key exchange, such mixing
 could be a bad mistake; whereas here either the receiver public key
 has to be chosen maliciously or the sender has to be malicious in
 order to cause problems. In either case, all security evaporates.

 The nominal security strengths of X25519 and X448 are ˜126 and ˜223
 bits. Therefore, using 256-bit symmetric encryption (especially key
 wrapping and encryption) with X448 is RECOMMENDED.

5. IANA Considerations

 The following has been added to the "JSON Web Key Types" registry:

 o "kty" Parameter Value: "OKP"
 o Key Type Description: Octet string key pairs
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 2 of RFC 8037

 The following has been added to the "JSON Web Key Parameters"
 registry:

 o Parameter Name: "crv"
 o Parameter Description: The subtype of key pair
 o Parameter Information Class: Public
 o Used with "kty" Value(s): "OKP"
 o Change Controller: IESG
 o Specification Document(s): Section 2 of RFC 8037

 o Parameter Name: "d"
 o Parameter Description: The private key
 o Parameter Information Class: Private
 o Used with "kty" Value(s): "OKP"
 o Change Controller: IESG
 o Specification Document(s): Section 2 of RFC 8037

 o Parameter Name: "x"
 o Parameter Description: The public key
 o Parameter Information Class: Public
 o Used with "kty" Value(s): "OKP"
 o Change Controller: IESG
 o Specification Document(s): Section 2 of RFC 8037

Liusvaara Standards Track [Page 6]

RFC 8037 CFRG ECDH and Signatures in JOSE January 2017

 The following has been added to the "JSON Web Signature and
 Encryption Algorithms" registry:

 o Algorithm Name: "EdDSA"
 o Algorithm Description: EdDSA signature algorithms
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG

 o Specification Document(s): Section 3.1 of RFC 8037
 o Algorithm Analysis Documents(s): [RFC8032]

 The following has been added to the "JSON Web Key Elliptic Curve"
 registry:

 o Curve Name: "Ed25519"
 o Curve Description: Ed25519 signature algorithm key pairs
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 3.1 of RFC 8037

 o Curve Name: "Ed448"
 o Curve Description: Ed448 signature algorithm key pairs
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 3.1 of RFC 8037

 o Curve name: "X25519"
 o Curve Description: X25519 function key pairs
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 3.2 of RFC 8037
 o Analysis Documents(s): [RFC7748]

 o Curve Name: "X448"
 o Curve Description: X448 function key pairs
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 3.2 of RFC 8037
 o Analysis Documents(s): [RFC7748]

Liusvaara Standards Track [Page 7]

RFC 8037 CFRG ECDH and Signatures in JOSE January 2017

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <http://www.rfc-editor.org/info/rfc4648>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <http://www.rfc-editor.org/info/rfc7515>.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <http://www.rfc-editor.org/info/rfc7517>.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <http://www.rfc-editor.org/info/rfc7518>.

 [RFC7638] Jones, M. and N. Sakimura, "JSON Web Key (JWK)
 Thumbprint", RFC 7638, DOI 10.17487/RFC7638, September
 2015, <http://www.rfc-editor.org/info/rfc7638>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <http://www.rfc-editor.org/info/rfc7748>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <http://www.rfc-editor.org/info/rfc8032>.

6.2. Informative References

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
 RFC 7516, DOI 10.17487/RFC7516, May 2015,
 <http://www.rfc-editor.org/info/rfc7516>.

Liusvaara Standards Track [Page 8]

RFC 8037 CFRG ECDH and Signatures in JOSE January 2017

Appendix A. Examples

 To the extent possible, these examples use material taken from test
 vectors of [RFC7748] and [RFC8032].

A.1. Ed25519 Private Key

 {"kty":"OKP","crv":"Ed25519",
 "d":"nWGxne_9WmC6hEr0kuwsxERJxWl7MmkZcDusAxyuf2A",
 "x":"11qYAYKxCrfVS_7TyWQHOg7hcvPapiMlrwIaaPcHURo"}

 The hexadecimal dump of private key is:

 9d 61 b1 9d ef fd 5a 60 ba 84 4a f4 92 ec 2c c4
 44 49 c5 69 7b 32 69 19 70 3b ac 03 1c ae 7f 60

 And of the public key is:

 d7 5a 98 01 82 b1 0a b7 d5 4b fe d3 c9 64 07 3a
 0e e1 72 f3 da a6 23 25 af 02 1a 68 f7 07 51 1a

A.2. Ed25519 Public Key

 This is the public part of the previous private key (which just omits
 "d"):

 {"kty":"OKP","crv":"Ed25519",
 "x":"11qYAYKxCrfVS_7TyWQHOg7hcvPapiMlrwIaaPcHURo"}

A.3. JWK Thumbprint Canonicalization

 The JWK Thumbprint canonicalization of the two examples above (with a
 linebreak inserted for formatting reasons) is:

 {"crv":"Ed25519","kty":"OKP","x":"11qYAYKxCrfVS_7TyWQHOg7hcvPapiMlrwI
 aaPcHURo"}

 Which has the SHA-256 hash (in hexadecimal) of
 90facafea9b1556698540f70c0117a22ea37bd5cf3ed3c47093c1707282b4b89,
 which results in the base64url encoded JWK Thumbprint representation
 of "kPrK_qmxVWaYVA9wwBF6Iuo3vVzz7TxHCTwXBygrS4k".

Liusvaara Standards Track [Page 9]

RFC 8037 CFRG ECDH and Signatures in JOSE January 2017

A.4. Ed25519 Signing

 The JWS protected header is:

 {"alg":"EdDSA"}

 This has the base64url encoding of:

 eyJhbGciOiJFZERTQSJ9

 The payload is (text):

 Example of Ed25519 signing

 This has the base64url encoding of:

 RXhhbXBsZSBvZiBFZDI1NTE5IHNpZ25pbmc

 The JWS signing input is (a concatenation of base64url encoding of
 the (protected) header, a dot, and base64url encoding of the payload)
 is:

 eyJhbGciOiJFZERTQSJ9.RXhhbXBsZSBvZiBFZDI1NTE5IHNpZ25pbmc

 Applying the Ed25519 signing algorithm using the private key, public
 key, and the JWS signing input yields the signature (hex):

 86 0c 98 d2 29 7f 30 60 a3 3f 42 73 96 72 d6 1b
 53 cf 3a de fe d3 d3 c6 72 f3 20 dc 02 1b 41 1e
 9d 59 b8 62 8d c3 51 e2 48 b8 8b 29 46 8e 0e 41
 85 5b 0f b7 d8 3b b1 5b e9 02 bf cc b8 cd 0a 02

 Converting this to base64url yields:

 hgyY0il_MGCjP0JzlnLWG1PPOt7-09PGcvMg3AIbQR6dWbhijcNR4ki4iylGjg5BhVsPt
 9g7sVvpAr_MuM0KAg

 So the compact serialization of the JWS is (a concatenation of
 signing input, a dot, and base64url encoding of the signature):

 eyJhbGciOiJFZERTQSJ9.RXhhbXBsZSBvZiBFZDI1NTE5IHNpZ25pbmc.hgyY0il_MGCj
 P0JzlnLWG1PPOt7-09PGcvMg3AIbQR6dWbhijcNR4ki4iylGjg5BhVsPt9g7sVvpAr_Mu
 M0KAg

Liusvaara Standards Track [Page 10]

RFC 8037 CFRG ECDH and Signatures in JOSE January 2017

A.5. Ed25519 Validation

 The JWS from the example above is:

 eyJhbGciOiJFZERTQSJ9.RXhhbXBsZSBvZiBFZDI1NTE5IHNpZ25pbmc.hgyY0il_MGCj
 P0JzlnLWG1PPOt7-09PGcvMg3AIbQR6dWbhijcNR4ki4iylGjg5BhVsPt9g7sVvpAr_Mu
 M0KAg

 This has 2 dots in it, so it might be valid a JWS. Base64url
 decoding the protected header yields:

 {"alg":"EdDSA"}

 So this is an EdDSA signature. Now the key has: "kty":"OKP" and
 "crv":"Ed25519", so the signature is Ed25519 signature.

 The signing input is the part before the second dot:

 eyJhbGciOiJFZERTQSJ9.RXhhbXBsZSBvZiBFZDI1NTE5IHNpZ25pbmc

 Applying the Ed25519 verification algorithm to the public key, JWS
 signing input, and the signature yields true. So the signature is
 valid. The message is the base64url decoding of the part between the
 dots:

 Example of Ed25519 Signing

A.6. ECDH-ES with X25519

 The public key to encrypt to is:

 {"kty":"OKP","crv":"X25519","kid":"Bob",
 "x":"3p7bfXt9wbTTW2HC7OQ1Nz-DQ8hbeGdNrfx-FG-IK08"}

 The public key from the target key is (hex):

 de 9e db 7d 7b 7d c1 b4 d3 5b 61 c2 ec e4 35 37
 3f 83 43 c8 5b 78 67 4d ad fc 7e 14 6f 88 2b 4f

 The ephemeral secret happens to be (hex):

 77 07 6d 0a 73 18 a5 7d 3c 16 c1 72 51 b2 66 45
 df 4c 2f 87 eb c0 99 2a b1 77 fb a5 1d b9 2c 2a

 So the ephemeral public key is X25519(ephkey, G) (hex):

 85 20 f0 09 89 30 a7 54 74 8b 7d dc b4 3e f7 5a
 0d bf 3a 0d 26 38 1a f4 eb a4 a9 8e aa 9b 4e 6a

Liusvaara Standards Track [Page 11]

RFC 8037 CFRG ECDH and Signatures in JOSE January 2017

 This is represented as the ephemeral public key value:

 {"kty":"OKP","crv":"X25519",
 "x":"hSDwCYkwp1R0i33ctD73Wg2_Og0mOBr066SpjqqbTmo"}

 So the protected header could be, for example:

 {"alg":"ECDH-ES+A128KW","epk":{"kty":"OKP","crv":"X25519",
 "x":"hSDwCYkwp1R0i33ctD73Wg2_Og0mOBr066SpjqqbTmo"},
 "enc":"A128GCM","kid":"Bob"}

 And the sender computes the DH Z value as X25519(ephkey, recv_pub)
 (hex):

 4a 5d 9d 5b a4 ce 2d e1 72 8e 3b f4 80 35 0f 25
 e0 7e 21 c9 47 d1 9e 33 76 f0 9b 3c 1e 16 17 42

 The receiver computes the DH Z value as X25519(seckey, ephkey_pub)
 (hex):

 4a 5d 9d 5b a4 ce 2d e1 72 8e 3b f4 80 35 0f 25
 e0 7e 21 c9 47 d1 9e 33 76 f0 9b 3c 1e 16 17 42

 This is the same as the sender’s value (both sides run this through
 the KDF before using it as a direct encryption key or AES128-KW key).

A.7. ECDH-ES with X448

 The public key to encrypt to (with a linebreak inserted for
 formatting reasons) is:

 {"kty":"OKP","crv":"X448","kid":"Dave",
 "x":"PreoKbDNIPW8_AtZm2_sz22kYnEHvbDU80W0MCfYuXL8PjT7QjKhPKcG3LV67D2
 uB73BxnvzNgk"}

 The public key from the target key is (hex):

 3e b7 a8 29 b0 cd 20 f5 bc fc 0b 59 9b 6f ec cf
 6d a4 62 71 07 bd b0 d4 f3 45 b4 30 27 d8 b9 72
 fc 3e 34 fb 42 32 a1 3c a7 06 dc b5 7a ec 3d ae
 07 bd c1 c6 7b f3 36 09

 The ephemeral secret happens to be (hex):

 9a 8f 49 25 d1 51 9f 57 75 cf 46 b0 4b 58 00 d4
 ee 9e e8 ba e8 bc 55 65 d4 98 c2 8d d9 c9 ba f5
 74 a9 41 97 44 89 73 91 00 63 82 a6 f1 27 ab 1d
 9a c2 d8 c0 a5 98 72 6b

Liusvaara Standards Track [Page 12]

RFC 8037 CFRG ECDH and Signatures in JOSE January 2017

 So the ephemeral public key is X448(ephkey, G) (hex):

 9b 08 f7 cc 31 b7 e3 e6 7d 22 d5 ae a1 21 07 4a
 27 3b d2 b8 3d e0 9c 63 fa a7 3d 2c 22 c5 d9 bb
 c8 36 64 72 41 d9 53 d4 0c 5b 12 da 88 12 0d 53
 17 7f 80 e5 32 c4 1f a0

 This is packed into the ephemeral public key value (a linebreak
 inserted for formatting purposes):

 {"kty":"OKP","crv":"X448",
 "x":"mwj3zDG34-Z9ItWuoSEHSic70rg94Jxj-qc9LCLF2bvINmRyQdlT1AxbEtqIEg1
 TF3-A5TLEH6A"}

 So the protected header could be, for example (a linebreak inserted
 for formatting purposes):

 {"alg":"ECDH-ES+A256KW","epk":{"kty":"OKP","crv":"X448",
 "x":"mwj3zDG34-Z9ItWuoSEHSic70rg94Jxj-qc9LCLF2bvINmRyQdlT1AxbEtqIEg1
 TF3-A5TLEH6A"},"enc":"A256GCM","kid":"Dave"}

 And the sender computes the DH Z value as X448(ephkey,recv_pub)
 (hex):

 07 ff f4 18 1a c6 cc 95 ec 1c 16 a9 4a 0f 74 d1
 2d a2 32 ce 40 a7 75 52 28 1d 28 2b b6 0c 0b 56
 fd 24 64 c3 35 54 39 36 52 1c 24 40 30 85 d5 9a
 44 9a 50 37 51 4a 87 9d

 The receiver computes the DH Z value as X448(seckey, ephkey_pub)
 (hex):

 07 ff f4 18 1a c6 cc 95 ec 1c 16 a9 4a 0f 74 d1
 2d a2 32 ce 40 a7 75 52 28 1d 28 2b b6 0c 0b 56
 fd 24 64 c3 35 54 39 36 52 1c 24 40 30 85 d5 9a
 44 9a 50 37 51 4a 87 9d

 This is the same as the sender’s value (both sides run this through
 KDF before using it as the direct encryption key or AES256-KW key).

Liusvaara Standards Track [Page 13]

RFC 8037 CFRG ECDH and Signatures in JOSE January 2017

Acknowledgements

 Thanks to Michael B. Jones for his comments on an initial draft of
 this document and editorial help.

 Thanks to Matt Miller for some editorial help.

Author’s Address

 Ilari Liusvaara
 Independent

 Email: ilariliusvaara@welho.com

Liusvaara Standards Track [Page 14]

