
Internet Engineering Task Force (IETF) K. Davies
Request for Comments: 7940 ICANN
Category: Standards Track A. Freytag
ISSN: 2070-1721 ASMUS, Inc.
 August 2016

 Representing Label Generation Rulesets Using XML

Abstract

 This document describes a method of representing rules for validating
 identifier labels and alternate representations of those labels using
 Extensible Markup Language (XML). These policies, known as "Label
 Generation Rulesets" (LGRs), are used for the implementation of
 Internationalized Domain Names (IDNs), for example. The rulesets are
 used to implement and share that aspect of policy defining which
 labels and Unicode code points are permitted for registrations, which
 alternative code points are considered variants, and what actions may
 be performed on labels containing those variants.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7940.

Davies & Freytag Standards Track [Page 1]

RFC 7940 Label Generation Rulesets in XML August 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..4
 2. Design Goals ..5
 3. Normative Language ..6
 4. LGR Format ..6
 4.1. Namespace ..7
 4.2. Basic Structure ..7
 4.3. Metadata ...8
 4.3.1. The "version" Element8
 4.3.2. The "date" Element9
 4.3.3. The "language" Element9
 4.3.4. The "scope" Element10
 4.3.5. The "description" Element10
 4.3.6. The "validity-start" and "validity-end" Elements ...11
 4.3.7. The "unicode-version" Element11
 4.3.8. The "references" Element12
 5. Code Points and Variants13
 5.1. Sequences ...14
 5.2. Conditional Contexts15
 5.3. Variants ..16
 5.3.1. Basic Variants16
 5.3.2. The "type" Attribute17
 5.3.3. Null Variants18
 5.3.4. Variants with Reflexive Mapping19
 5.3.5. Conditional Variants20
 5.4. Annotations ...22
 5.4.1. The "ref" Attribute22
 5.4.2. The "comment" Attribute23
 5.5. Code Point Tagging ..23

Davies & Freytag Standards Track [Page 2]

RFC 7940 Label Generation Rulesets in XML August 2016

 6. Whole Label and Context Evaluation23
 6.1. Basic Concepts ..23
 6.2. Character Classes ...25
 6.2.1. Declaring and Invoking Named Classes25
 6.2.2. Tag-Based Classes26
 6.2.3. Unicode Property-Based Classes26
 6.2.4. Explicitly Declared Classes28
 6.2.5. Combined Classes29
 6.3. Whole Label and Context Rules30
 6.3.1. The "rule" Element31
 6.3.2. The Match Operators32
 6.3.3. The "count" Attribute33
 6.3.4. The "name" and "by-ref" Attributes34
 6.3.5. The "choice" Element34
 6.3.6. Literal Code Point Sequences35
 6.3.7. The "any" Element35
 6.3.8. The "start" and "end" Elements35
 6.3.9. Example Context Rule from IDNA Specification36
 6.4. Parameterized Context or When Rules37
 6.4.1. The "anchor" Element37
 6.4.2. The "look-behind" and "look-ahead" Elements38
 6.4.3. Omitting the "anchor" Element40
 7. The "action" Element ...40
 7.1. The "match" and "not-match" Attributes41
 7.2. Actions with Variant Type Triggers41
 7.2.1. The "any-variant", "all-variants", and
 "only-variants" Attributes41
 7.2.2. Example from Tables in the Style of RFC 374344
 7.3. Recommended Disposition Values45
 7.4. Precedence ..45
 7.5. Implied Actions ...45
 7.6. Default Actions ...46
 8. Processing a Label against an LGR47
 8.1. Determining Eligibility for a Label47
 8.1.1. Determining Eligibility Using Reflexive
 Variant Mappings47
 8.2. Determining Variants for a Label48
 8.3. Determining a Disposition for a Label or Variant Label49
 8.4. Duplicate Variant Labels50
 8.5. Checking Labels for Collision50
 9. Conversion to and from Other Formats51
 10. Media Type ..51
 11. IANA Considerations ...52
 11.1. Media Type Registration52
 11.2. URN Registration ...53
 11.3. Disposition Registry53

Davies & Freytag Standards Track [Page 3]

RFC 7940 Label Generation Rulesets in XML August 2016

 12. Security Considerations54
 12.1. LGRs Are Only a Partial Remedy for Problem Space54
 12.2. Computational Expense of Complex Tables54
 13. References ..55
 13.1. Normative References55
 13.2. Informative References56
 Appendix A. Example Tables ..58
 Appendix B. How to Translate Tables Based on RFC 3743 into the
 XML Format ..63
 Appendix C. Indic Syllable Structure Example68
 C.1. Reducing Complexity70
 Appendix D. RELAX NG Compact Schema71
 Acknowledgements ..82
 Authors’ Addresses ..82

1. Introduction

 This document specifies a method of using Extensible Markup Language
 (XML) to describe Label Generation Rulesets (LGRs). LGRs are
 algorithms used to determine whether, and under what conditions, a
 given identifier label is permitted, based on the code points it
 contains and their context. These algorithms comprise a list of
 permissible code points, variant code point mappings, and a set of
 rules that act on the code points and mappings. LGRs form part of an
 administrator’s policies. In deploying Internationalized Domain
 Names (IDNs), they have also been known as IDN tables or variant
 tables.

 There are other kinds of policies relating to labels that are not
 normally covered by LGRs and are therefore not necessarily
 representable by the XML format described here. These include, but
 are not limited to, policies around trademarks, or prohibition of
 fraudulent or objectionable words.

 Administrators of the zones for top-level domain registries have
 historically published their LGRs using ASCII text or HTML. The
 formatting of these documents has been loosely based on the format
 used for the Language Variant Table described in [RFC3743].
 [RFC4290] also provides a "model table format" that describes a
 similar set of functionality. Common to these formats is that the
 algorithms used to evaluate the data therein are implicit or
 specified elsewhere.

 Through the first decade of IDN deployment, experience has shown that
 LGRs derived from these formats are difficult to consistently
 implement and compare, due to their differing formats. A universal

Davies & Freytag Standards Track [Page 4]

RFC 7940 Label Generation Rulesets in XML August 2016

 format, such as one using a structured XML format, will assist by
 improving machine readability, consistency, reusability, and
 maintainability of LGRs.

 When used to represent a simple list of permitted code points, the
 format is quite straightforward. At the cost of some complexity in
 the resulting file, it also allows for an implementation of more
 sophisticated handling of conditional variants that reflects the
 known requirements of current zone administrator policies.

 Another feature of this format is that it allows many of the
 algorithms to be made explicit and machine implementable. A
 remaining small set of implicit algorithms is described in this
 document to allow commonality in implementation.

 While the predominant usage of this specification is to represent IDN
 label policy, the format is not limited to IDN usage and may also be
 used for describing ASCII domain name label rulesets, or other types
 of identifier labels beyond those used for domain names.

2. Design Goals

 The following goals informed the design of this format:

 o The format needs to be implementable in a reasonably
 straightforward manner in software.

 o The format should be able to be automatically checked for
 formatting errors, so that common mistakes can be caught.

 o An LGR needs to be able to express the set of valid code points
 that are allowed for registration under a specific administrator’s
 policies.

 o An LGR needs to be able to express computed alternatives to a
 given identifier based on mapping relationships between code
 points, whether one-to-one or many-to-many. These computed
 alternatives are commonly known as "variants".

 o Variant code points should be able to be tagged with explicit
 dispositions or categories that can be used to support registry
 policy (such as whether to allocate the computed variant or to
 merely block it from usage or registration).

 o Variants and code points must be able to be stipulated based on
 contextual information. For example, some variants may only be
 applicable when they follow a certain code point or when the code
 point is displayed in a specific presentation form.

Davies & Freytag Standards Track [Page 5]

RFC 7940 Label Generation Rulesets in XML August 2016

 o The data contained within an LGR must be able to be interpreted
 unambiguously, so that independent implementations that utilize
 the contents will arrive at the same results.

 o To the largest extent possible, policy rules should be able to be
 specified in the XML format without relying on hidden or built-in
 algorithms in implementations.

 o LGRs should be suitable for comparison and reuse, such that one
 could easily compare the contents of two or more to see the
 differences, to merge them, and so on.

 o As many existing IDN tables as practicable should be able to be
 migrated to the LGR format with all applicable interpretation
 logic retained.

 These requirements are partly derived from reviewing the existing
 corpus of published IDN tables, plus the requirements of ICANN’s work
 to implement an LGR for the DNS root zone [LGR-PROCEDURE]. In
 particular, Section B of that document identifies five specific
 requirements for an LGR methodology.

 The syntax and rules in [RFC5892] and [RFC3743] were also reviewed.

 It is explicitly not the goal of this format to stipulate what code
 points should be listed in an LGR by a zone administrator. Which
 registration policies are used for a particular zone are outside the
 scope of this memo.

3. Normative Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

4. LGR Format

 An LGR is expressed as a well-formed XML document [XML] that conforms
 to the schema defined in Appendix D.

 As XML is case sensitive, an LGR must be authored with the correct
 casing. For example, the XML element names MUST be in lowercase as
 described in this specification, and matching of attribute values is
 only performed in a case-sensitive manner.

 A document that is not well-formed, is non-conforming, or violates
 other constraints specified in this specification MUST be rejected.

Davies & Freytag Standards Track [Page 6]

RFC 7940 Label Generation Rulesets in XML August 2016

4.1. Namespace

 The XML Namespace URI is "urn:ietf:params:xml:ns:lgr-1.0".

 See Section 11.2 for more information.

4.2. Basic Structure

 The basic XML framework of the document is as follows:

 <?xml version="1.0"?>
 <lgr xmlns="urn:ietf:params:xml:ns:lgr-1.0">
 ...
 </lgr>

 The "lgr" element contains up to three sub-elements or sections.
 First is an optional "meta" element that contains all metadata
 associated with the LGR, such as its authorship, what it is used for,
 implementation notes, and references. This is followed by a required
 "data" element that contains the substantive code point data.
 Finally, an optional "rules" element contains information on rules
 for evaluating labels, if any, along with "action" elements providing
 for the disposition of labels and computed variant labels.

 <?xml version="1.0"?>
 <lgr xmlns="urn:ietf:params:xml:ns:lgr-1.0">
 <meta>
 ...
 </meta>
 <data>
 ...
 </data>
 <rules>
 ...
 </rules>
 </lgr>

 A document MUST contain exactly one "lgr" element. Each "lgr"
 element MUST contain zero or one "meta" element, exactly one "data"
 element, and zero or one "rules" element; and these three elements
 MUST be in that order.

 Some elements that are direct or nested child elements of the "rules"
 element MUST be placed in a specific relative order to other elements
 for the LGR to be valid. An LGR that violates these constraints MUST
 be rejected. In other cases, changing the ordering would result in a
 valid, but different, specification.

Davies & Freytag Standards Track [Page 7]

RFC 7940 Label Generation Rulesets in XML August 2016

 In the following descriptions, required, non-repeating elements or
 attributes are generally not called out explicitly, in contrast to
 "OPTIONAL" ones, or those that "MAY" be repeated. For attributes
 that take lists as values, the elements MUST be space-separated.

4.3. Metadata

 The "meta" element expresses metadata associated with the LGR, and
 the element SHOULD be included so that the associated metadata are
 available as part of the LGR and cannot become disassociated. The
 following subsections describe elements that may appear within the
 "meta" element.

 The "meta" element can be used to identify the author or relevant
 contact person, explain the intended usage of the LGR, and provide
 implementation notes as well as references. Detailed metadata allow
 the LGR document to become self-documenting -- for example, if
 rendered in a human-readable format by an appropriate tool.

 Providing metadata pertaining to the date and version of the LGR is
 particularly encouraged to make it easier for interoperating
 consumers to ensure that they are using the correct LGR.

 With the exception of the "unicode-version" element, the data
 contained within is not required by software consuming the LGR in
 order to calculate valid labels or to calculate variants. If
 present, the "unicode-version" element MUST be used by a consumer of
 the table to identify that it has the correct Unicode property data
 to perform operations on the table. This ensures that possible
 differences in code point properties between editions of the Unicode
 Standard do not impact the product of calculations utilizing an LGR.

4.3.1. The "version" Element

 The "version" element is OPTIONAL. It is used to uniquely
 identify each version of the LGR. No specific format is required,
 but it is RECOMMENDED that it be the decimal representation of a
 single positive integer, which is incremented with each revision of
 the file.

 An example of a typical first edition of a document:

 <version>1</version>

 The "version" element may have an OPTIONAL "comment" attribute.

 <version comment="draft">1</version>

Davies & Freytag Standards Track [Page 8]

RFC 7940 Label Generation Rulesets in XML August 2016

4.3.2. The "date" Element

 The OPTIONAL "date" element is used to identify the date the LGR was
 posted. The contents of this element MUST be a valid ISO 8601
 "full-date" string as described in [RFC3339].

 Example of a date:

 <date>2009-11-01</date>

4.3.3. The "language" Element

 Each OPTIONAL "language" element identifies a language or script for
 which the LGR is intended. The value of the "language" element MUST
 be a valid language tag as described in [RFC5646]. The tag may refer
 to a script plus undefined language if the LGR is not intended for a
 specific language.

 Example of an LGR for the English language:

 <language>en</language>

 If the LGR applies to a script rather than a specific language, the
 "und" language tag SHOULD be used followed by the relevant script
 subtag from [RFC5646]. For example, for a Cyrillic script LGR:

 <language>und-Cyrl</language>

 If the LGR covers a set of multiple languages or scripts, the
 "language" element MAY be repeated. However, for cases of a
 script-specific LGR exhibiting insignificant admixture of code points
 from other scripts, it is RECOMMENDED to use a single "language"
 element identifying the predominant script. In the exceptional case
 of a multi-script LGR where no script is predominant, use Zyyy
 (Common):

 <language>und-Zyyy</language>

Davies & Freytag Standards Track [Page 9]

RFC 7940 Label Generation Rulesets in XML August 2016

4.3.4. The "scope" Element

 This OPTIONAL element refers to a scope, such as a domain, to which
 this policy is applied. The "type" attribute specifies the type of
 scope being defined. A type of "domain" means that the scope is a
 domain that represents the apex of the DNS zone to which the LGR is
 applied. For that type, the content of the "scope" element MUST be a
 domain name written relative to the root zone, in presentation format
 with no trailing dot. However, in the unique case of the DNS root
 zone, it is represented as ".".

 <scope type="domain">example.com</scope>

 There may be multiple "scope" tags used -- for example, to reflect a
 list of domains to which the LGR is applied.

 No other values of the "type" attribute are defined by this
 specification; however, this specification can be used for
 applications other than domain names. Implementers of LGRs for
 applications other than domain names SHOULD define the scope
 extension grammar in an IETF specification or use XML namespaces to
 distinguish their scoping mechanism distinctly from the base LGR
 namespace. An explanation of any custom usage of the scope in the
 "description" element is RECOMMENDED.

 <scope xmlns="http://example.com/ns/scope/1.0">
 ... content per alternate namespace ...
 </scope>

4.3.5. The "description" Element

 The "description" element is an OPTIONAL, free-form element that
 contains any additional relevant description that is useful for the
 user in its interpretation. Typically, this field contains
 authorship information, as well as additional context on how the LGR
 was formulated and how it applies, such as citations and references
 that apply to the LGR as a whole.

 This field should not be relied upon for providing instructions on
 how to parse or utilize the data contained elsewhere in the
 specification. Authors of tables should expect that software
 applications that parse and use LGRs will not use the "description"
 element to condition the application of the LGR’s data and rules.

Davies & Freytag Standards Track [Page 10]

RFC 7940 Label Generation Rulesets in XML August 2016

 The element has an OPTIONAL "type" attribute, which refers to the
 Internet media type [RFC2045] of the enclosed data. Typical types
 would be "text/plain" or "text/html". The attribute SHOULD be a
 valid media type. If supplied, it will be assumed that the contents
 are of that media type. If the description lacks a "type" value, it
 will be assumed to be plain text ("text/plain").

4.3.6. The "validity-start" and "validity-end" Elements

 The "validity-start" and "validity-end" elements are OPTIONAL
 elements that describe the time period from which the contents of the
 LGR become valid (are used in registry policy) and time when the
 contents of the LGR cease to be used, respectively.

 The dates MUST conform to the "full-date" format described in
 Section 5.6 of [RFC3339].

 <validity-start>2014-03-12</validity-start>

4.3.7. The "unicode-version" Element

 Whenever an LGR depends on character properties from a given version
 of the Unicode Standard, the version number used in creating the LGR
 MUST be listed in the form x.y.z, where x, y, and z are positive
 decimal integers (see [Unicode-Versions]). If any software
 processing the table does not have access to character property data
 of the requisite version, it MUST NOT perform any operations relating
 to whole-label evaluation relying on Unicode character properties
 (Section 6.2.3).

 The value of a given Unicode character property may change between
 versions of the Unicode Character Database [UAX44], unless such
 change has been explicitly disallowed in [Unicode-Stability]. It is
 RECOMMENDED to only reference properties defined as stable or
 immutable. As an alternative to referencing the property, the
 information can be presented explicitly in the LGR.

 <unicode-version>6.3.0</unicode-version>

 It is not necessary to include a "unicode-version" element for LGRs
 that do not make use of Unicode character properties; however, it is
 RECOMMENDED.

Davies & Freytag Standards Track [Page 11]

RFC 7940 Label Generation Rulesets in XML August 2016

4.3.8. The "references" Element

 An LGR may define a list of references that are used to associate
 various individual elements in the LGR to one or more normative
 references. A common use for references is to annotate that code
 points belong to an externally defined collection or standard or to
 give normative references for rules.

 References are specified in an OPTIONAL "references" element
 containing one or more "reference" elements, each with a unique "id"
 attribute. It is RECOMMENDED that the "id" attribute be a zero-based
 integer; however, in addition to digits 0-9, it MAY contain uppercase
 letters A-Z, as well as a period, hyphen, colon, or underscore. The
 value of each "reference" element SHOULD be the citation of a
 standard, dictionary, or other specification in any suitable format.
 In addition to an "id" attribute, a "reference" element MAY have a
 "comment" attribute for an optional free-form annotation.

 <references>
 <reference id="0">The Unicode Consortium. The Unicode
 Standard, Version 8.0.0, (Mountain View, CA: The Unicode
 Consortium, 2015. ISBN 978-1-936213-10-8)
 http://www.unicode.org/versions/Unicode8.0.0/</reference>
 <reference id="1">Big-5: Computer Chinese Glyph and Character
 Code Mapping Table, Technical Report C-26, 1984</reference>
 <reference id="2" comment="synchronized with Unicode 6.1">
 ISO/IEC
 10646:2012 3rd edition</reference>
 ...
 </references>
 ...
 <data>
 <char cp="0620" ref="0 2" />
 ...
 </data>

 A reference is associated with an element by using its id as part of
 an optional "ref" attribute (see Section 5.4.1). The "ref" attribute
 may be used with many kinds of elements in the "data" or "rules"
 sections of the LGR, most notably those defining code points,
 variants, and rules. However, a "ref" attribute may not occur in
 certain kinds of elements, including references to named character
 classes or rules. See below for the description of these elements.

Davies & Freytag Standards Track [Page 12]

RFC 7940 Label Generation Rulesets in XML August 2016

5. Code Points and Variants

 The bulk of an LGR is a description of which set of code points is
 eligible for a given label. For rulesets that perform operations
 that result in potential variants, the code point-level relationships
 between variants need to also be described.

 The code point data is collected within the "data" element. Within
 this element, a series of "char" and "range" elements describe
 eligible code points or ranges of code points, respectively.
 Collectively, these are known as the repertoire.

 Discrete permissible code points or code point sequences (see
 Section 5.1) are declared with a "char" element. Here is a minimal
 example declaration for a single code point, with the code point
 value given in the "cp" attribute:

 <char cp="002D"/>

 As described below, a full declaration for a "char" element, whether
 or not it is used for a single code point or for a sequence (see
 Section 5.1), may have optional child elements defining variants.
 Both the "char" and "range" elements can take a number of optional
 attributes for conditional inclusion, commenting, cross-referencing,
 and character tagging, as described below.

 Ranges of permissible code points may be declared with a "range"
 element, as in this minimal example:

 <range first-cp="0030" last-cp="0039"/>

 The range is inclusive of the first and last code points. Any
 additional attributes defined for a "range" element act as if applied
 to each code point within. A "range" element has no child elements.

 It is always possible to substitute a list of individually specified
 code points for a "range" element. The reverse is not necessarily
 the case. Whenever such a substitution is possible, it makes no
 difference in processing the data. Tools reading or writing the LGR
 format are free to aggregate sequences of consecutive code points of
 the same properties into "range" elements.

 Code points MUST be represented according to the standard Unicode
 convention but without the prefix "U+": they are expressed in
 uppercase hexadecimal and are zero-padded to a minimum of 4 digits.

Davies & Freytag Standards Track [Page 13]

RFC 7940 Label Generation Rulesets in XML August 2016

 The rationale for not allowing other encoding formats, including
 native Unicode encoding in XML, is explored in [UAX42]. The XML
 conventions used in this format, such as element and attribute names,
 mirror this document where practical and reasonable to do so. It is
 RECOMMENDED to list all "char" elements in ascending order of the
 "cp" attribute. Not doing so makes it unnecessarily difficult for
 authors and reviewers to check for errors, such as duplications, or
 to review and compare against listing of code points in other
 documents and specifications.

 All "char" elements in the "data" section MUST have distinct "cp"
 attributes. The "range" elements MUST NOT specify code point ranges
 that overlap either another range or any single code point "char"
 elements. An LGR that defines the same code point more than once by
 any combination of "char" or "range" elements MUST be rejected.

5.1. Sequences

 A sequence of two or more code points may be specified in an LGR --
 for example, when defining the source for n:m variant mappings.
 Another use of sequences would be in cases when the exact sequence of
 code points is required to occur in order for the constituent
 elements to be eligible, such as when some code point is only
 eligible when preceded or followed by a certain code point. The
 following would define the eligibility of the MIDDLE DOT (U+00B7)
 only when both preceded and followed by the LATIN SMALL LETTER L
 (U+006C):

 <char cp="006C 00B7 006C" comment="Catalan middle dot"/>

 All sequences defined this way must be distinct, but sub-sequences
 may be defined. Thus, the sequence defined here may coexist with
 single code point definitions such as:

 <char cp="006C" />

 As an alternative to using sequences to define a required context, a
 "char" or "range" element may specify a conditional context using an
 optional "when" attribute as described below in Section 5.2. Using a
 conditional context is more flexible because a context is not limited
 to a specific sequence of code points. In addition, using a context
 allows the choice of specifying either a prohibited or a required
 context.

Davies & Freytag Standards Track [Page 14]

RFC 7940 Label Generation Rulesets in XML August 2016

5.2. Conditional Contexts

 A conditional context is specified by a rule that must be satisfied
 (or, alternatively, must not be satisfied) for a code point in a
 given label, often at a particular location in a label.

 To specify a conditional context, either a "when" or "not-when"
 attribute may be used. The value of each "when" or "not-when"
 attribute is a context rule as described below in Section 6.3. This
 rule can be a rule evaluating the whole label or a parameterized
 context rule. The context condition is met when the rule specified
 in the "when" attribute is matched or when the rule in the "not-when"
 attribute fails to match. It is an error to reference a rule that is
 not actually defined in the "rules" element.

 A parameterized context rule (see Section 6.4) defines the context
 immediately surrounding a given code point; unlike a sequence, the
 context is not limited to a specific fixed code point but, for
 example, may designate any member of a certain character class or a
 code point that has a certain Unicode character property.

 Given a suitable definition of a parameterized context rule named
 "follows-virama", this example specifies that a ZERO WIDTH JOINER
 (U+200D) is restricted to immediately follow any of several code
 points classified as virama:

 <char cp="200D" when="follows-virama" />

 For a complete example, see Appendix A.

 In contrast, a whole label rule (see Section 6.3) specifies a
 condition to be met by the entire label -- for example, that it must
 contain at least one code point from a given script anywhere in the
 label. In the following example, no digit from either range may
 occur in a label that mixes digits from both ranges:

 <data>
 <range first-cp="0660" last-cp="0669" not-when="mixed-digits"
 tag="arabic-indic-digits" />
 <range first-cp="06F0" last-cp="06F9" not-when="mixed-digits"
 tag="extended-arabic-indic-digits" />
 </data>

 (See Section 6.3.9 for an example of the "mixed-digits" rule.)

Davies & Freytag Standards Track [Page 15]

RFC 7940 Label Generation Rulesets in XML August 2016

 The OPTIONAL "when" or "not-when" attributes are mutually exclusive.
 They MAY be applied to both "char" and "range" elements in the "data"
 element, including "char" elements defining sequences of code points,
 as well as to "var" elements (see Section 5.3.5).

 If a label contains one or more code points that fail to satisfy a
 conditional context, the label is invalid (see Section 7.5). For
 variants, the conditional context restricts the definition of the
 variant to the case where the condition is met. Outside the
 specified context, a variant is not defined.

5.3. Variants

 Most LGRs typically only determine simple code point eligibility, and
 for them, the elements described so far would be the only ones
 required for their "data" section. Others additionally specify a
 mapping of code points to other code points, known as "variants".
 What constitutes a variant code point is a matter of policy and
 varies for each implementation. The following examples are intended
 to demonstrate the syntax; they are not necessarily typical.

5.3.1. Basic Variants

 Variant code points are specified using one of more "var" elements as
 children of a "char" element. The target mapping is specified using
 the "cp" attribute. Other, optional attributes for the "var" element
 are described below.

 For example, to map LATIN SMALL LETTER V (U+0076) as a variant of
 LATIN SMALL LETTER U (U+0075):

 <char cp="0075">
 <var cp="0076"/>
 </char>

 A sequence of multiple code points can be specified as a variant of a
 single code point. For example, the sequence of LATIN SMALL LETTER O
 (U+006F) then LATIN SMALL LETTER E (U+0065) might hypothetically be
 specified as a variant for a LATIN SMALL LETTER O WITH DIAERESIS
 (U+00F6) as follows:

 <char cp="00F6">
 <var cp="006F 0065"/>
 </char>

 The source and target of a variant mapping may both be sequences but
 not ranges.

Davies & Freytag Standards Track [Page 16]

RFC 7940 Label Generation Rulesets in XML August 2016

 If the source of one mapping is a prefix sequence of the source for
 another, both variant mappings will be considered at the same
 location in the input label when generating permuted variant labels.
 If poorly designed, an LGR containing such an instance of a prefix
 relation could generate multiple instances of the same variant label
 for the same original label, but with potentially different
 dispositions. Any duplicate variant labels encountered MUST be
 treated as an error (see Section 8.4).

 The "var" element specifies variant mappings in only one direction,
 even though the variant relation is usually considered symmetric;
 that is, if A is a variant of B, then B should also be a variant of
 A. The format requires that the inverse of the variant be given
 explicitly to fully specify symmetric variant relations in the LGR.
 This has the beneficial side effect of making the symmetry explicit:

 <char cp="006F 0065">
 <var cp="00F6"/>
 </char>

 Variant relations are normally not only symmetric but also
 transitive. If A is a variant of B and B is a variant of C, then A
 is also a variant of C. As with symmetry, these transitive relations
 are only part of the LGR if spelled out explicitly. Implementations
 that require an LGR to be symmetric and transitive should verify this
 mechanically.

 All variant mappings are unique. For a given "char" element, all
 "var" elements MUST have a unique combination of "cp", "when", and
 "not-when" attributes. It is RECOMMENDED to list the "var" elements
 in ascending order of their target code point sequence. (For "when"
 and "not-when" attributes, see Section 5.3.5.)

5.3.2. The "type" Attribute

 Variants may be tagged with an OPTIONAL "type" attribute. The value
 of the "type" attribute may be any non-empty value not starting with
 an underscore and not containing spaces. This value is used to
 resolve the disposition of any variant labels created using a given
 variant. (See Section 7.2.)

 By default, the values of the "type" attribute directly describe the
 target policy status (disposition) for a variant label that was
 generated using a particular variant, with any variant label being
 assigned a disposition corresponding to the most restrictive variant
 type. Several conventional disposition values are predefined below
 in Section 7. Whenever these values can represent the desired
 policy, they SHOULD be used.

Davies & Freytag Standards Track [Page 17]

RFC 7940 Label Generation Rulesets in XML August 2016

 <char cp="767C">
 <var cp="53D1" type="allocatable"/>
 <var cp="5F42" type="blocked"/>
 <var cp="9AEA" type="blocked"/>
 <var cp="9AEE" type="blocked"/>
 </char>

 By default, if a variant label contains any instance of one of the
 variants of type "blocked", the label would be blocked, but if it
 contained only instances of variants to be allocated, it could be
 allocated. See the discussion about implied actions in Section 7.6.

 The XML format for the LGR makes the relation between the values of
 the "type" attribute on variants and the resulting disposition of
 variant labels fully explicit. See the discussion in Section 7.2.
 Making this relation explicit allows a generalization of the "type"
 attribute from directly reflecting dispositions to a more
 differentiated intermediate value that is then used in the resolution
 of label disposition. Instead of the default action of applying the
 most restrictive disposition to the entire label, such a generalized
 resolution can be used to achieve additional goals, such as limiting
 the set of allocatable variant labels or implementing other policies
 found in existing LGRs (see, for example, Appendix B).

 Because variant mappings MUST be unique, it is not possible to define
 the same variant for the same "char" element with different "type"
 attributes (however, see Section 5.3.5).

5.3.3. Null Variants

 A null variant is a variant string that maps to no code point. This
 is used when a particular code point sequence is considered
 discretionary in the context of a whole label. To specify a null
 variant, use an empty "cp" attribute. For example, to mark a string
 with a ZERO WIDTH NON-JOINER (U+200C) to the same string without the
 ZERO WIDTH NON-JOINER:

 <char cp="200C">
 <var cp=""/>
 </char>

 This is useful in expressing the intent that some code points in a
 label are to be mapped away when generating a canonical variant of
 the label. However, in tables that are designed to have symmetric
 variant mappings, this could lead to combinatorial explosion if not
 handled carefully.

Davies & Freytag Standards Track [Page 18]

RFC 7940 Label Generation Rulesets in XML August 2016

 The symmetric form of a null variant is expressed as follows:

 <char cp="">
 <var cp="200C" type="invalid" />
 </char>

 A "char" element with an empty "cp" attribute MUST specify at least
 one variant mapping. It is strongly RECOMMENDED to use a type of
 "invalid" or equivalent when defining variant mappings from null
 sequences, so that variant mappings from null sequences are removed
 in variant label generation (see Section 5.3.2).

5.3.4. Variants with Reflexive Mapping

 At first glance, there seems to be no call for adding variant
 mappings for which source and target code points are the same -- that
 is, for which the mapping is reflexive, or, in other words, an
 identity mapping. Yet, such reflexive mappings occur frequently in
 LGRs that follow [RFC3743].

 Adding a "var" element allows both a type and a reference id to be
 specified for it. While the reference id is not used in processing,
 the type of the variant can be used to trigger actions. In permuting
 the label to generate all possible variants, the type associated with
 a reflexive variant mapping is applied to any of the permuted labels
 containing the original code point.

 In the following example, let’s assume that the goal is to allocate
 only those labels that contain a variant that is considered
 "preferred" in some way. As defined in the example, the code point
 U+3473 exists both as a variant of U+3447 and as a variant of itself
 (reflexive mapping). Assuming an original label of "U+3473 U+3447",
 the permuted variant "U+3473 U+3473" would consist of the reflexive
 variant of U+3473 followed by a variant of U+3447. Given the variant
 mappings as defined here, the types for both of the variant mappings
 used to generate that particular permutation would have the value
 "preferred":

 <char cp="3447" ref="0">
 <var cp="3473" type="preferred" ref="1 3" />
 </char>
 <char cp="3473" ref="0">
 <var cp="3447" type="blocked" ref="1 3" />
 <var cp="3473" type="preferred" ref="0" />
 </char>

Davies & Freytag Standards Track [Page 19]

RFC 7940 Label Generation Rulesets in XML August 2016

 Having established the variant types in this way, a set of actions
 could be defined that return a disposition of "allocatable" or
 "activated" for a label consisting exclusively of variants with type
 "preferred", for example. (For details on how to define actions
 based on variant types, see Section 7.2.1.)

 In general, using reflexive variant mappings in this manner makes it
 possible to calculate disposition values using a uniform approach for
 all labels, whether they consist of mapped variant code points,
 original code points, or a mixture of both. In particular, the
 dispositions for two otherwise identical labels may differ based on
 which variant mappings were executed in order to generate each of
 them. (For details on how to generate variants and evaluate
 dispositions, see Section 8.)

 Another useful convention that uses reflexive variants is described
 below in Section 7.2.1.

5.3.5. Conditional Variants

 Fundamentally, variants are mappings between two sequences of code
 points. However, in some instances, for a variant relationship to
 exist, some context external to the code point sequence must also be
 considered. For example, a positional context may determine whether
 two code point sequences are variants of each other.

 An example of that are Arabic code points, which can have different
 forms based on position, with some code points sharing forms, thus
 making them variants in the positions corresponding to those forms.
 Such positional context cannot be solely derived from the code point
 by itself, as the code point would be the same for the various forms.

 As described in Section 5.2, an OPTIONAL "when" or "not-when"
 attribute may be given for any "var" element to specify required or
 prohibited contextual conditions under which the variant is defined.

 Assuming that the "rules" element contains suitably defined rules for
 "arabic-isolated" and "arabic-final", the following example shows how
 to mark ARABIC LETTER ALEF WITH WAVY HAMZA BELOW (U+0673) as a
 variant of ARABIC LETTER ALEF WITH HAMZA BELOW (U+0625), but only
 when it appears in its isolated or final forms:

 <char cp="0625">
 <var cp="0673" when="arabic-isolated"/>
 <var cp="0673" when="arabic-final"/>
 </char>

Davies & Freytag Standards Track [Page 20]

RFC 7940 Label Generation Rulesets in XML August 2016

 While a "var" element MUST NOT contain multiple conditions (it is
 only allowed a single "when" or "not-when" attribute), multiple "var"
 elements using the same mapping MAY be specified with different
 "when" or "not-when" attributes. The combination of mapping and
 conditional context defines a unique variant.

 For each variant label, care must be taken to ensure that at most one
 of the contextual conditions is met for variants with the same
 mapping; otherwise, duplicate variant labels would be created for the
 same input label. Any such duplicate variant labels MUST be treated
 as an error; see Section 8.4.

 Two contexts may be complementary, as in the following example, which
 shows ARABIC LETTER TEH MARBUTA (U+0629) as a variant of ARABIC
 LETTER HEH (U+0647), but with two different types.

 <char cp="0647" >
 <var cp="0629" not-when="arabic-final" type="blocked" />
 <var cp="0629" when="arabic-final" type="allocatable" />
 </char>

 The intent is that a label that uses U+0629 instead of U+0647 in a
 final position should be considered essentially the same label and,
 therefore, allocatable to the same entity, while the same
 substitution in a non-final position leads to labels that are
 different, but considered confusable, so that either one, but not
 both, should be delegatable.

 For symmetry, the reverse mappings must exist and must agree in their
 "when" or "not-when" attributes. However, symmetry does not apply to
 the other attributes. For example, these are potential reverse
 mappings for the above:

 <char cp="0629" >
 <var cp="0647" not-when="arabic-final" type="allocatable" />
 <var cp="0647" when="arabic-final" type="allocatable" />
 </char>

 Here, both variants have the same "type" attribute. While it is
 tempting to recognize that, in this instance, the "when" and
 "not-when" attributes are complementary; therefore, between them they
 cover every single possible context, it is strongly RECOMMENDED to
 use the format shown in the example that makes the symmetry easily
 verifiable by parsers and tools. (The same applies to entries
 created for transitivity.)

Davies & Freytag Standards Track [Page 21]

RFC 7940 Label Generation Rulesets in XML August 2016

 Arabic is an example of a script for which such conditional variants
 have been implemented based on the joining contexts for Arabic code
 points. The mechanism defined here supports other forms of
 conditional variants that may be required by other scripts.

5.4. Annotations

 Two attributes, the "ref" and "comment" attributes, can be used to
 annotate individual elements in the LGR. They are ignored in
 machine-processing of the LGR. The "ref" attribute is intended for
 formal annotations and the "comment" attribute for free-form
 annotations. The latter can be applied more widely.

5.4.1. The "ref" Attribute

 Reference information MAY optionally be specified by a "ref"
 attribute consisting of a space-delimited sequence of reference
 identifiers (see Section 4.3.8).

 <char cp="5220" ref="0">
 <var cp="5220" ref="5"/>
 <var cp="522A" ref="2 3"/>
 </char>

 This facility is typically used to give source information for code
 points or variant relations. This information is ignored when
 machine-processing an LGR. If applied to a range, the "ref"
 attribute applies to every code point in the range. All reference
 identifiers MUST be from the set declared in the "references" element
 (see Section 4.3.8). It is an error to repeat a reference identifier
 in the same "ref" attribute. It is RECOMMENDED that identifiers be
 listed in ascending order.

 In addition to "char", "range", and "var" elements in the "data"
 section, a "ref" attribute may be present for a number of element
 types contained in the "rules" element as described below: actions
 and literals ("char" inside a rule), as well as for definitions of
 rules and classes, but not for references to named character classes
 or rules using the "by-ref" attribute defined below. (The use of the
 "by-ref" and "ref" attributes is mutually exclusive.) None of the
 elements in the metadata take a "ref" attribute; to provide
 additional information, use the "description" element instead.

Davies & Freytag Standards Track [Page 22]

RFC 7940 Label Generation Rulesets in XML August 2016

5.4.2. The "comment" Attribute

 Any "char", "range", or "variant" element in the "data" section may
 contain an OPTIONAL "comment" attribute. The contents of a "comment"
 attribute are free-form plain text. Comments are ignored in machine
 processing of the table. "comment" attributes MAY also be placed on
 all elements in the "rules" section of the document, such as actions
 and match operators, as well as definitions of classes and rules, but
 not on child elements of the "class" element. Finally, in the
 metadata, only the "version" and "reference" elements MAY have
 "comment" attributes (to match the syntax in [RFC3743]).

5.5. Code Point Tagging

 Typically, LGRs are used to explicitly designate allowable code
 points, where any label that contains a code point not explicitly
 listed in the LGR is considered an ineligible label according to the
 ruleset.

 For more-complex registry rules, there may be a need to discern one
 or more subsets of code points. This can be accomplished by applying
 an OPTIONAL "tag" attribute to "char" or "range" elements that are
 child elements of the "data" element. By collecting code points that
 share the same tag value, character classes may be defined (see
 Section 6.2.2) that can then be used in parameterized context or
 whole label rules (see Section 6.3.2).

 Each "tag" attribute MAY contain multiple values separated by
 white space. A tag value is an identifier that may also include
 certain punctuation marks, such as a colon. Formally, it MUST
 correspond to the XML 1.0 Nmtoken (Name token) production (see [XML]
 Section 2.3). It is an error to duplicate a value within the same
 "tag" attribute. A "tag" attribute for a "range" element applies to
 all code points in the range. Because code point sequences are not
 proper members of a set of code points, a "tag" attribute MUST NOT be
 present in a "char" element defining a code point sequence.

6. Whole Label and Context Evaluation

6.1. Basic Concepts

 The "rules" element contains the specification of both context-based
 and whole label rules. Collectively, these are known as Whole Label
 Evaluation (WLE) rules (Section 6.3). The "rules" element also
 contains the character classes (Section 6.2) that they depend on, and
 any actions (Section 7) that assign dispositions to labels based on
 rules or variant mappings.

Davies & Freytag Standards Track [Page 23]

RFC 7940 Label Generation Rulesets in XML August 2016

 A whole label rule is applied to the whole label. It is used to
 validate both original labels and any variant labels computed
 from them.

 A rule implementing a conditional context as discussed in Section 5.2
 does not necessarily apply to the whole label but may be specific to
 the context around a single code point or code point sequence.
 Certain code points in a label sometimes need to satisfy
 context-based rules -- for example, for the label to be considered
 valid, or to satisfy the context for a variant mapping (see the
 description of the "when" attribute in Section 6.4).

 For example, if a rule is referenced in the "when" attribute of a
 variant mapping, it is used to describe the conditional context under
 which the particular variant mapping is defined to exist.

 Each rule is defined in a "rule" element. A rule may contain the
 following as child elements:

 o literal code points or code point sequences

 o character classes, which define sets of code points to be used for
 context comparisons

 o context operators, which define when character classes and
 literals may appear

 o nested rules, whether defined in place or invoked by reference

 Collectively, these are called "match operators" and are listed in
 Section 6.3.2. An LGR containing rules or match operators that

 1. are incorrectly defined or nested,

 2. have invalid attributes, or

 3. have invalid or undefined attribute values

 MUST be rejected. Note that not all of the constraints defined here
 are validated by the schema.

Davies & Freytag Standards Track [Page 24]

RFC 7940 Label Generation Rulesets in XML August 2016

6.2. Character Classes

 Character classes are sets of characters that often share a
 particular property. While they function like sets in every way,
 even supporting the usual set operators, they are called "character
 classes" here in a nod to the use of that term in regular expression
 syntax. (This also avoids confusion with the term "character set" in
 the sense of character encoding.)

 Character classes can be specified in several ways:

 o by defining the class via matching a tag in the code point data.
 All characters with the same "tag" attribute are part of the same
 class;

 o by referencing a value of one of the Unicode character properties
 defined in the Unicode Character Database;

 o by explicitly listing all the code points in the class; or

 o by defining the class as a set combination of any number of other
 classes.

6.2.1. Declaring and Invoking Named Classes

 A character class has an OPTIONAL "name" attribute consisting of a
 single identifier not containing spaces. All names for classes must
 be unique. If the "name" attribute is omitted, the class is
 anonymous and exists only inside the rule or combined class where it
 is defined. A named character class is defined independently and can
 be referenced by name from within any rules or as part of other
 character class definitions.

 <class name="example" comment="an example class definition">
 0061 4E00
 </class>
 ...
 <rule>
 <class by-ref="example" />
 </rule>

 An empty "class" element with a "by-ref" attribute is a reference to
 an existing named class. The "by-ref" attribute MUST NOT be used in
 the same "class" element with any of these attributes: "name",
 "from-tag", "property", or "ref". The "name" attribute MUST be
 present if and only if the class is a direct child element of the
 "rules" element. It is an error to reference a named class for which
 the definition has not been seen.

Davies & Freytag Standards Track [Page 25]

RFC 7940 Label Generation Rulesets in XML August 2016

6.2.2. Tag-Based Classes

 The "char" or "range" elements that are child elements of the "data"
 element MAY contain a "tag" attribute that consists of one or more
 space-separated tag values; for example:

 <char cp="0061" tag="letter lower"/>
 <char cp="4E00" tag="letter"/>

 This defines two tags for use with code point U+0061, the tag
 "letter" and the tag "lower". Use

 <class name="letter" from-tag="letter" />
 <class name="lower" from-tag="lower" />

 to define two named character classes, "letter" and "lower",
 containing all code points with the respective tags, the first with
 0061 and 4E00 as elements, and the latter with 0061 but not 4E00 as
 an element. The "name" attribute may be omitted for an anonymous
 in-place definition of a nested, tag-based class.

 Tag values are typically identifiers, with the addition of a few
 punctuation symbols, such as a colon. Formally, they MUST correspond
 to the XML 1.0 Nmtoken production. While a "tag" attribute may
 contain a list of tag values, the "from-tag" attribute MUST always
 contain a single tag value.

 If the document contains no "char" or "range" elements with a
 corresponding tag, the character class represents the empty set.
 This is valid, to allow a common "rules" element to be shared across
 files. However, it is RECOMMENDED that implementations allow for a
 warning to ensure that referring to an undefined tag in this way is
 intentional.

6.2.3. Unicode Property-Based Classes

 A class is defined in terms of Unicode properties by giving the
 Unicode property alias and the property value or property value
 alias, separated by a colon.

 <class name="virama" property="ccc:9" />

 The example above selects all code points for which the Unicode
 Canonical Combining Class (ccc) value is 9. This value of the ccc is
 assigned to all code points that encode viramas.

Davies & Freytag Standards Track [Page 26]

RFC 7940 Label Generation Rulesets in XML August 2016

 Unicode property values MUST be designated via a composite of the
 attribute name and value as defined for the property value in
 [UAX42], separated by a colon. Loose matching of property values and
 names as described in [UAX44] is not appropriate for an XML schema
 and is not supported; it is likewise not supported in the XML
 representation [UAX42] of the Unicode Character Database itself.

 A property-based class MAY be anonymous, or, when defined as an
 immediate child of the "rules" element, it MAY be named to relate a
 formal property definition to its usage, such as the use of the value
 9 for ccc to designate a virama (or halant) in various scripts.

 Unicode properties may, in principle, change between versions of the
 Unicode Standard. However, the values assigned for a given version
 are fixed. If Unicode properties are used, a Unicode version MUST be
 declared in the "unicode-version" element in the header. (Note: Some
 Unicode properties are by definition stable across versions and do
 not change once assigned; see [Unicode-Stability].)

 All implementations processing LGR files SHOULD provide support for
 the following minimal set of Unicode properties:

 o General Category (gc)

 o Script (sc)

 o Canonical Combining Class (ccc)

 o Bidi Class (bc)

 o Arabic Joining Type (jt)

 o Indic Syllabic Category (InSC)

 o Deprecated (Dep)

 The short name for each property is given in parentheses.

 If a program that is using an LGR to determine the validity of a
 label encounters a property that it does not support, it MUST abort
 with an error.

Davies & Freytag Standards Track [Page 27]

RFC 7940 Label Generation Rulesets in XML August 2016

6.2.4. Explicitly Declared Classes

 A class of code points may also be declared by listing all code
 points that are members of the class. This is useful when tagging
 cannot be used because code points are not listed individually as
 part of the eligible set of code points for the given LGR -- for
 example, because they only occur in code point sequences.

 To define a class in terms of an explicit list of code points, use a
 space-separated list of hexadecimal code point values:

 <class name="abcd">0061 0062 0063 0064</class>

 This defines a class named "abcd" containing the code points for
 characters "a", "b", "c", and "d". The ordering of the code points
 is not material, but it is RECOMMENDED to list them in ascending
 order; not doing so makes it unnecessarily difficult for users to
 detect errors such as duplicates or to compare and review these
 classes against other specifications.

 In a class definition, ranges of code points are represented by a
 hexadecimal start and end value separated by a hyphen. The following
 declaration is equivalent to the preceding:

 <class name="abcd">0061-0064</class>

 Range and code point declarations can be freely intermixed:

 <class name="abcd">0061 0062-0063 0064</class>

 The contents of a class differ from a repertoire in that the latter
 MAY contain sequences as elements, while the former MUST NOT.
 Instead, they closely resemble character classes as found in regular
 expressions.

Davies & Freytag Standards Track [Page 28]

RFC 7940 Label Generation Rulesets in XML August 2016

6.2.5. Combined Classes

 Classes may be combined using operators for set complement, union,
 intersection, difference (elements of the first class that are not in
 the second), and symmetric difference (elements in either class but
 not both). Because classes fundamentally function like sets, the
 union of several character classes is itself a class, for example.

 +-------------------+--+
 | Logical Operation | Example |
 +-------------------+--+
 | Complement | <complement><class by-ref="xxx"></complement>|
 +-------------------+--+
Union	<union>
	<class by-ref="class-1"/>
	<class by-ref="class-2"/>
	<class by-ref="class-3"/>
	</union>
+-------------------+--+	
Intersection	<intersection>
	<class by-ref="class-1"/>
	<class by-ref="class-2"/>
	</intersection>
+-------------------+--+	
Difference	<difference>
	<class by-ref="class-1"/>
	<class by-ref="class-2"/>
	</difference>
+-------------------+--+	
Symmetric	<symmetric-difference>
Difference	<class by-ref="class-1"/>
	<class by-ref="class-2"/>
	</symmetric-difference>
 +-------------------+--+

 Set Operators

 The elements from this table may be arbitrarily nested inside each
 other, subject to the following restriction: a "complement" element
 MUST contain precisely one "class" or one of the operator elements,
 while an "intersection", "symmetric-difference", or "difference"
 element MUST contain precisely two, and a "union" element MUST
 contain two or more of these elements.

Davies & Freytag Standards Track [Page 29]

RFC 7940 Label Generation Rulesets in XML August 2016

 An anonymous combined class can be defined directly inside a rule or
 any of the match operator elements that allow child elements (see
 Section 6.3.2) by using the set combination as the outer element.

 <rule>
 <union>
 <class by-ref="xxx"/>
 <class by-ref="yyy"/>
 </union>
 </rule>

 The example shows the definition of an anonymous combined class that
 represents the union of classes "xxx" and "yyy". There is no need to
 wrap this union inside another "class" element, and, in fact, set
 combination elements MUST NOT be nested inside a "class" element.

 Lastly, to create a named combined class that can be referenced in
 other classes or in rules as <class by-ref="xxxyyy"/>, add a "name"
 attribute to the set combination element -- for example,
 <union name="xxxyyy" /> -- and place it at the top level immediately
 below the "rules" element (see Section 6.2.1).

 <rules>
 <union name="xxxyyy">
 <class by-ref="xxx"/>
 <class by-ref="yyy"/>
 </union>
 ...
 </rules>

 Because (as for ordinary sets) a combination of classes is itself a
 class, no matter by what combinations of set operators a combined
 class is created, a reference to it always uses the "class" element
 as described in Section 6.2.1. That is, a named class is always
 referenced via an empty "class" element using the "by-ref" attribute
 containing the name of the class to be referenced.

6.3. Whole Label and Context Rules

 Each rule comprises a series of matching operators that must be
 satisfied in order to determine whether a label meets a given
 condition. Rules may reference other rules or character classes
 defined elsewhere in the table.

Davies & Freytag Standards Track [Page 30]

RFC 7940 Label Generation Rulesets in XML August 2016

6.3.1. The "rule" Element

 A matching rule is defined by a "rule" element, the child elements of
 which are one of the match operators from Section 6.3.2. In
 evaluating a rule, each child element is matched in order. "rule"
 elements MAY be nested inside each other and inside certain match
 operators.

 A simple rule to match a label where all characters are members of
 some class called "preferred-codepoint":

 <rule name="preferred-label">
 <start />
 <class by-ref="preferred-codepoint" count="1+"/>
 <end />
 </rule>

 Rules are paired with explicit and implied actions, triggering these
 actions when a rule matches a label. For example, a simple explicit
 action for the rule shown above would be:

 <action disp="allocatable" match="preferred-label" />

 The rule in this example would have the effect of setting the policy
 disposition for a label made up entirely of preferred code points to
 "allocatable". Explicit actions are further discussed in Section 7
 and implicit actions in Section 7.5. Another use of rules is in
 defining conditional contexts for code points and variants as
 discussed in Sections 5.2 and 5.3.5.

 A rule that is an immediate child element of the "rules" element MUST
 be named using a "name" attribute containing a single identifier
 string with no spaces. A named rule may be incorporated into another
 rule by reference and may also be referenced by an "action" element,
 "when" attribute, or "not-when" attribute. If the "name" attribute
 is omitted, the rule is anonymous and MUST be nested inside another
 rule or match operator.

Davies & Freytag Standards Track [Page 31]

RFC 7940 Label Generation Rulesets in XML August 2016

6.3.2. The Match Operators

 The child elements of a rule are a series of match operators, which
 are listed here by type and name and with a basic example or two.

 +------------+-------------+------------------------------------+
 | Type | Operator | Examples |
 +------------+-------------+------------------------------------+
 | logical | any | <any /> |
 | +-------------+------------------------------------+
	choice	<choice>
		<rule by-ref="alternative1"/>
		<rule by-ref="alternative2"/>
		</choice>
+--------------------------+------------------------------------+		
positional	start	<start />
+-------------+------------------------------------+		
	end	<end />
+--------------------------+------------------------------------+		
literal	char	<char cp="0061 0062 0063" />
+--------------------------+------------------------------------+		
set	class	<class by-ref="class1" />
		<class>0061 0064-0065</class>
+--------------------------+------------------------------------+		
group	rule	<rule by-ref="rule1" />
		<rule><any /></rule>
+--------------------------+------------------------------------+		
contextual	anchor	<anchor />
+-------------+------------------------------------+		
	look-ahead	<look-ahead><any /></look-ahead>
+-------------+------------------------------------+		
	look-behind	<look-behind><any /></look-behind>
 +--------------------------+------------------------------------+

 Match Operators

 Any element defining an anonymous class can be used as a match
 operator, including any of the set combination operators (see
 Section 6.2.5) as well as references to named classes.

 All match operators shown as empty elements in the Examples column of
 the table above do not support child elements of their own;
 otherwise, match operators MAY be nested. In particular, anonymous
 "rule" elements can be used for grouping.

Davies & Freytag Standards Track [Page 32]

RFC 7940 Label Generation Rulesets in XML August 2016

6.3.3. The "count" Attribute

 The OPTIONAL "count" attribute, when present, specifies the minimally
 required or maximal permitted number of times a match operator is
 used to match input. If the "count" attribute is

 n the match operator matches the input exactly n times, where n is
 1 or greater.

 n+ the match operator matches the input at least n times, where n
 is 0 or greater.

 n:m the match operator matches the input at least n times, where n
 is 0 or greater, but matches the input up to m times in total,
 where m > n. If m = n and n > 0, the match operator matches the
 input exactly n times.

 If there is no "count" attribute, the match operator matches the
 input exactly once.

 In matching, greedy evaluation is used in the sense defined for
 regular expressions: beyond the required number or times, the input
 is matched as many times as possible, but not so often as to prevent
 a match of the remainder of the rule.

 A "count" attribute MUST NOT be applied to any element that contains
 a "name" attribute but MAY be applied to operators such as "class"
 that declare anonymous classes (including combined classes) or invoke
 any predefined classes by reference. The "count" attribute MUST NOT
 be applied to any "class" element, or element defining a combined
 class, when it is nested inside a combined class.

 A "count" attribute MUST NOT be applied to match operators of type
 "start", "end", "anchor", "look-ahead", or "look-behind" or to any
 operators, such as "rule" or "choice", that contain a nested instance
 of them. This limitation applies recursively and irrespective of
 whether a "rule" element containing these nested instances is
 declared in place or used by reference.

 However, the "count" attribute MAY be applied to any other instances
 of either an anonymous "rule" element or a "choice" element,
 including those instances nested inside other match operators. It
 MAY also be applied to the elements "any" and "char", when used as
 match operators.

Davies & Freytag Standards Track [Page 33]

RFC 7940 Label Generation Rulesets in XML August 2016

6.3.4. The "name" and "by-ref" Attributes

 Like classes (see Section 6.2.1), rules declared as immediate child
 elements of the "rules" element MUST be named using a unique "name"
 attribute, and all other instances MUST NOT be named. Anonymous
 rules and classes or references to named rules and classes can be
 nested inside other match operators by reference.

 To reference a named rule or class inside a rule or match operator,
 use a "rule" or "class" element with an OPTIONAL "by-ref" attribute
 containing the name of the referenced element. It is an error to
 reference a rule or class for which the complete definition has not
 been seen. In other words, it is explicitly not possible to define
 recursive rules or class definitions. The "by-ref" attribute
 MUST NOT appear in the same element as the "name" attribute or in an
 element that has any child elements.

 The example shows several named classes and a named rule referencing
 some of them by name.

 <class name="letter" property="gc:L"/>
 <class name="combining-mark" property="gc:M"/>
 <class name="digit" property="gc:Nd" />
 <rule name="letter-grapheme">
 <class by-ref="letter" count="1+"/>
 <class by-ref="combining-mark" count="0+"/>
 </rule>

6.3.5. The "choice" Element

 The "choice" element is used to represent a list of two or more
 alternatives:

 <rule name="ldh">
 <choice count="1+">
 <class by-ref="letter"/>
 <class by-ref="digit"/>
 <char cp="002D" comment="literal HYPHEN"/>
 </choice>
 </rule>

 Each child element of a "choice" element represents one alternative.
 The first matching alternative determines the match for the
 "choice" element. To express a choice where an alternative itself
 consists of a sequence of elements, the sequence must be wrapped in
 an anonymous rule.

Davies & Freytag Standards Track [Page 34]

RFC 7940 Label Generation Rulesets in XML August 2016

6.3.6. Literal Code Point Sequences

 A literal code point sequence matches a single code point or a
 sequence. It is defined by a "char" element, with the code point or
 sequence to be matched given by the "cp" attribute. When used as a
 literal, a "char" element MAY contain a "count" attribute in addition
 to the "cp" attribute and OPTIONAL "comment" or "ref" attributes. No
 other attributes or child elements are permitted.

6.3.7. The "any" Element

 The "any" element is an empty element that matches any single code
 point. It MAY have a "count" attribute. For an example, see
 Section 6.3.9.

 Unlike a literal, the "any" element MUST NOT have a "ref" attribute.

6.3.8. The "start" and "end" Elements

 To match the beginning or end of a label, use the "start" or "end"
 element. An empty label would match this rule:

 <rule name="empty-label">
 <start/>
 <end/>
 </rule>

 Conceptually, whole label rules evaluate the label as a whole, but in
 practice, many rules do not actually need to be specified to match
 the entire label. For example, to express a requirement of not
 starting a label with a digit, a rule needs to describe only the
 initial part of a label.

 This example uses the previously defined rules, together with "start"
 and "end" elements, to define a rule that requires that an entire
 label be well-formed. For this example, that means that it must
 start with a letter and that it contains no leading digits or
 combining marks nor combining marks placed on digits.

 <rule name="leading-letter" >
 <start />
 <rule by-ref="letter-grapheme" count="1"/>
 <choice count="0+">
 <rule by-ref="letter-grapheme" count="0+"/>
 <class by-ref="digit" count="0+"/>
 </choice>
 <end />
 </rule>

Davies & Freytag Standards Track [Page 35]

RFC 7940 Label Generation Rulesets in XML August 2016

 Each "start" or "end" element occurs at most once in a rule, except
 if nested inside a "choice" element in such a way that in matching
 each alternative at most one occurrence of each is encountered.
 Otherwise, the result is an error, as is any case where a "start" or
 "end" element is not encountered as the first or last element to be
 matched, respectively, in matching a rule. "start" and "end"
 elements are empty elements that do not have a "count" attribute or
 any other attribute other than "comment". It is an error for any
 match operator enclosing a nested "start" or "end" element to have a
 "count" attribute.

6.3.9. Example Context Rule from IDNA Specification

 This is an example of the WLE rule from [RFC5892] forbidding the
 mixture of the Arabic-Indic and extended Arabic-Indic digits in the
 same label. It is implemented as a whole label rule associated with
 the code point ranges using the "not-when" attribute, which defines
 an impermissible context. The example also demonstrates several
 instances of the use of anonymous rules for grouping.

 <data>
 <range first-cp="0660" last-cp="0669" not-when="mixed-digits"
 tag="arabic-indic-digits" />
 <range first-cp="06F0" last-cp="06F9" not-when="mixed-digits"
 tag="extended-arabic-indic-digits" />
 </data>
 <rules>
 <rule name="mixed-digits">
 <choice>
 <rule>
 <class from-tag="arabic-indic-digits"/>
 <any count="0+"/>
 <class from-tag="extended-arabic-indic-digits"/>
 </rule>
 <rule>
 <class from-tag="extended-arabic-indic-digits"/>
 <any count="0+"/>
 <class from-tag="arabic-indic-digits"/>
 </rule>
 </choice>
 </rule>
 </rules>

 As specified in the example, a label containing a code point from
 either of the two digit ranges is invalid for any label matching the
 "mixed-digits" rule, that is, any time that a code point from the
 other range is also present. Note that invalidating the label is not

Davies & Freytag Standards Track [Page 36]

RFC 7940 Label Generation Rulesets in XML August 2016

 the same as invalidating the definition of the "range" elements; in
 particular, the definition of the tag values does not depend on the
 "when" attribute.

6.4. Parameterized Context or When Rules

 To recap: When a rule is intended to provide a context for evaluating
 the validity of a code point or variant mapping, it is invoked by the
 "when" or "not-when" attributes described in Section 5.2. For "char"
 and "range" elements, an action implied by a context rule always has
 a disposition of "invalid" whenever the rule given by the "when"
 attribute is not matched (see Section 7.5). Conversely, a "not-when"
 attribute results in a disposition of "invalid" whenever the rule is
 matched. When a rule is used in this way, it is called a context or
 "when" rule.

 The example in the previous section shows a whole label rule used as
 a context rule, essentially making the whole label the context. The
 next sections describe several match operators that can be used to
 provide a more specific specification of a context, allowing a
 parameterized context rule. See Section 7 for an alternative method
 of defining an invalid disposition for a label not matching a whole
 label rule.

6.4.1. The "anchor" Element

 Such parameterized context rules are rules that contain a special
 placeholder represented by an "anchor" element. As each When Rule is
 evaluated, if an "anchor" element is present, it is replaced by a
 literal corresponding to the "cp" attribute of the element containing
 the "when" (or "not-when") attribute. The match to the "anchor"
 element must be at the same position in the label as the code point
 or variant mapping triggering the When Rule.

 For example, the Greek lower numeral sign is invalid if not
 immediately preceding a character in the Greek script. This is most
 naturally addressed with a parameterized When Rule using
 "look-ahead":

 <char cp="0375" when="preceding-greek"/>
 ...
 <class name="greek-script" property="sc:Grek"/>
 <rule name="preceding-greek">
 <anchor/>
 <look-ahead>
 <class by-ref="greek-script"/>
 </look-ahead>
 </rule>

Davies & Freytag Standards Track [Page 37]

RFC 7940 Label Generation Rulesets in XML August 2016

 In evaluating this rule, the "anchor" element is treated as if it was
 replaced by a literal

 <char cp="0375"/>

 but only the instance of U+0375 at the given position is evaluated.
 If a label had two instances of U+0375 with the first one matching
 the rule and the second not, then evaluating the When Rule MUST
 succeed for the first instance and fail for the second.

 Unlike other rules, rules containing an "anchor" element MUST only be
 invoked via the "when" or "not-when" attributes on code points or
 variants; otherwise, their "anchor" elements cannot be evaluated.
 However, it is possible to invoke rules not containing an "anchor"
 element from a "when" or "not-when" attribute. (See Section 6.4.3.)

 The "anchor" element is an empty element, with no attributes
 permitted except "comment".

6.4.2. The "look-behind" and "look-ahead" Elements

 Context rules use the "look-behind" and "look-ahead" elements to
 define context before and after the code point sequence matched by
 the "anchor" element. If the "anchor" element is omitted, neither
 the "look-behind" nor the "look-ahead" element may be present in
 a rule.

Davies & Freytag Standards Track [Page 38]

RFC 7940 Label Generation Rulesets in XML August 2016

 Here is an example of a rule that defines an "initial" context for an
 Arabic code point:

 <class name="transparent" property="jt:T"/>
 <class name="right-joining" property="jt:R"/>
 <class name="left-joining" property="jt:L"/>
 <class name="dual-joining" property="jt:D"/>
 <class name="non-joining" property="jt:U"/>
 <rule name="Arabic-initial">
 <look-behind>
 <choice>
 <start/>
 <rule>
 <class by-ref="transparent" count="0+"/>
 <class by-ref="non-joining"/>
 </rule>
 </choice>
 </look-behind>
 <anchor/>
 <look-ahead>
 <class by-ref="transparent" count="0+" />
 <choice>
 <class by-ref="right-joining" />
 <class by-ref="dual-joining" />
 </choice>
 </look-ahead>
 </rule>

 A "when" rule (or context rule) is a named rule that contains any
 combination of "look-behind", "anchor", and "look-ahead" elements, in
 that order. Each of these elements occurs at most once, except if
 nested inside a "choice" element in such a way that in matching each
 alternative at most one occurrence of each is encountered.
 Otherwise, the result is undefined. None of these elements takes a
 "count" attribute, nor does any enclosing match operator; otherwise,
 the result is undefined. If a context rule contains a "look-ahead"
 or "look-behind" element, it MUST contain an "anchor" element. If,
 because of a "choice" element, a required anchor is not actually
 encountered, the results are undefined.

Davies & Freytag Standards Track [Page 39]

RFC 7940 Label Generation Rulesets in XML August 2016

6.4.3. Omitting the "anchor" Element

 If the "anchor" element is omitted, the evaluation of the context
 rule is not tied to the position of the code point or sequence
 associated with the "when" attribute.

 According to [RFC5892], the Katakana middle dot is invalid in any
 label not containing at least one Japanese character anywhere in the
 label. Because this requirement is independent of the position of
 the middle dot, the rule does not require an "anchor" element.

 <char cp="30FB" when="japanese-in-label"/>
 <rule name="japanese-in-label">
 <union>
 <class property="sc:Hani"/>
 <class property="sc:Kata"/>
 <class property="sc:Hira"/>
 </union>
 </rule>

 The Katakana middle dot is used only with Han, Katakana, or Hiragana.
 The corresponding When Rule requires that at least one code point in
 the label be in one of these scripts, but the position of that code
 point is independent of the location of the middle dot; therefore, no
 anchor is required. (Note that the Katakana middle dot itself is of
 script Common, that is, "sc:Zyyy".)

7. The "action" Element

 The purpose of an action is to assign a disposition to a label in
 response to being triggered by the label meeting a specified
 condition. Often, the action simply results in blocking or
 invalidating a label that does not match a rule. An example of an
 action invalidating a label because it does not match a rule named
 "leading-letter" is as follows:

 <action disp="invalid" not-match="leading-letter"/>

 If an action is to be triggered on matching a rule, a "match"
 attribute is used instead. Actions are evaluated in the order that
 they appear in the XML file. Once an action is triggered by a label,
 the disposition defined in the "disp" attribute is assigned to the
 label and no other actions are evaluated for that label.

 The goal of the LGR is to identify all labels and variant labels and
 to assign them disposition values. These dispositions are then fed
 into a further process that ultimately implements all aspects of
 policy. To allow this specification to be used with the widest range

Davies & Freytag Standards Track [Page 40]

RFC 7940 Label Generation Rulesets in XML August 2016

 of policies, the permissible values for the "disp" attribute are
 neither defined nor restricted. Nevertheless, a set of commonly used
 disposition values is RECOMMENDED. (See Section 7.3.)

7.1. The "match" and "not-match" Attributes

 An OPTIONAL "match" or "not-match" attribute specifies a rule that
 must be matched or not matched as a condition for triggering an
 action. Only a single rule may be named as the value of a "match" or
 "not-match" attribute. Because rules may be composed of other rules,
 this restriction to a single attribute value does not impose any
 limitation on the contexts that can trigger an action.

 An action MUST NOT contain both a "match" and a "not-match"
 attribute, and the value of either attribute MUST be the name of a
 previously defined rule; otherwise, the document MUST be rejected.
 An action without any attributes is triggered by all labels
 unconditionally. For a very simple LGR, the following action would
 allocate all labels that match the repertoire:

 <action disp="allocatable" />

 Since rules are evaluated for all labels, whether they are the
 original label or computed by permuting the defined and valid variant
 mappings for the label’s code points, actions based on matching or
 not matching a rule may be triggered for both original and variant
 labels, but the rules are not affected by the disposition attributes
 of the variant mappings. To trigger any actions based on these
 dispositions requires the use of additional optional attributes for
 actions described next.

7.2. Actions with Variant Type Triggers

7.2.1. The "any-variant", "all-variants", and "only-variants"
 Attributes

 An action may contain one of the OPTIONAL attributes "any-variant",
 "all-variants", or "only-variants" defining triggers based on variant
 types. The permitted value for these attributes consists of one or
 more variant type values, separated by spaces. These MAY include
 type values that are not used in any "var" element in the LGR. When
 a variant label is generated, these variant type values are compared
 to the set of type values on the variant mappings used to generate
 the particular variant label (see Section 8).

 Any single match may trigger an action that contains an "any-variant"
 attribute, while for an "all-variants" or "only-variants" attribute,
 the variant type for all variant code points must match one or

Davies & Freytag Standards Track [Page 41]

RFC 7940 Label Generation Rulesets in XML August 2016

 several of the type values specified in the attribute to trigger the
 action. There is no requirement that the entire list of variant type
 values be matched, as long as all variant code points match at least
 one of the values.

 An "only-variants" attribute will trigger the action only if all code
 points of the variant label have variant mappings from the original
 code points. In other words, the label contains no original code
 points other than those with a reflexive mapping (see Section 5.3.4).

 <char cp="0078" comment="x">
 <var cp="0078" type="allocatable" comment="reflexive" />
 <var cp="0079" type="blocked" />
 </char>
 <char cp="0079" comment="y">
 <var cp="0078" type="allocatable" />
 </char>
 ...
 <action disp="blocked" any-variant="blocked" />
 <action disp="allocatable" only-variants="allocatable" />
 <action disp="some-disp" any-variant="allocatable" />

 In the example above, the label "xx" would have variant labels "xx",
 "xy", "yx", and "yy". The first action would result in blocking any
 variant label containing "y", because the variant mapping from "x" to
 "y" is of type "blocked", triggering the "any-variant" condition.
 Because in this example "x" has a reflexive variant mapping to itself
 of type "allocatable", the original label "xx" has a reflexive
 variant "xx" that would trigger the "only-variants" condition on the
 second action.

 A label "yy" would have the variants "xy", "yx", and "xx". Because
 the variant mapping from "y" to "x" is of type "allocatable" and a
 mapping from "y" to "y" is not defined, the labels "xy" and "yx"
 trigger the "any-variant" condition on the third label. The variant
 "xx", being generated using the mapping from "y" to "x" of type
 "allocatable", would trigger the "only-variants" condition on the
 section action. As there is no reflexive variant "yy", the original
 label "yy" cannot trigger any variant type triggers. However, it
 could still trigger an action defined as matching or not matching
 a rule.

 In each action, one variant type trigger may be present by itself or
 in conjunction with an attribute matching or not matching a rule. If
 variant triggers and rule-matching triggers are used together, the
 label MUST "match" or respectively "not-match" the specified rule AND
 satisfy the conditions on the variant type values given by the
 "any-variant", "all-variants", or "only-variants" attribute.

Davies & Freytag Standards Track [Page 42]

RFC 7940 Label Generation Rulesets in XML August 2016

 A useful convention combines the "any-variant" trigger with reflexive
 variant mappings (Section 5.3.4). This convention is used, for
 example, when multiple LGRs are defined within the same registry and
 for overlapping repertoire. In some cases, the delegation of a label
 from one LGR must prohibit the delegation of another label in some
 other LGR. This can be done using a variant of type "blocked" as in
 this example from an Armenian LGR, where the Armenian, Latin, and
 Cyrillic letters all look identical:

 <char cp="0570" comment="ARMENIAN SMALL LETTER HO">
 <var cp="0068" type="blocked" comment="LATIN SMALL LETTER H" />
 <var cp="04BB" type="blocked"
 comment="CYRILLIC SMALL LETTER SHHA" />
 </char>

 The issue is that the target code points for these two variants are
 both outside the Armenian repertoire. By using a reflexive variant
 with the following convention:

 <char cp="0068" comment="not part of repertoire">
 <var cp="0068" type="out-of-repertoire-var"
 comment="reflexive mapping" />
 <var cp="04BB" type="blocked" />
 <var cp="0570" type="blocked" />
 </char>
 ...

 and associating this with an action of the form:

 <action disp="invalid" any-variant="out-of-repertoire-var" />

 it is possible to list the symmetric and transitive variant mappings
 in the LGR even where they involve out-of-repertoire code points. By
 associating the action shown with the special type for these
 reflexive mappings, any original labels containing one or more of the
 out-of-repertoire code points are filtered out, just as if these code
 points had not been listed in the LGR in the first place.
 Nevertheless, they do participate in the permutation of variant
 labels for n-repertoire labels (Armenian in the example), and these
 permuted variants can be used to detect collisions with out-of-
 repertoire labels (see Section 8).

Davies & Freytag Standards Track [Page 43]

RFC 7940 Label Generation Rulesets in XML August 2016

7.2.2. Example from Tables in the Style of RFC 3743

 This section gives an example of using variant type triggers,
 combined with variants with reflexive mappings (Section 5.3.4), to
 achieve LGRs that implement tables like those defined according to
 [RFC3743] where the goal is to allow as variants only labels that
 consist entirely of simplified or traditional variants, in addition
 to the original label.

 This example assumes an LGR where all variants have been given
 suitable "type" attributes of "blocked", "simplified", "traditional",
 or "both", similar to the ones discussed in Appendix B. Given such
 an LGR, the following example actions evaluate the disposition for
 the variant label:

 <action disp="blocked" any-variant="blocked" />
 <action disp="allocatable" only-variants="simplified both" />
 <action disp="allocatable" only-variants="traditional both" />
 <action disp="blocked" all-variants="simplified traditional" />
 <action disp="allocatable" />

 The first action matches any variant label for which at least one of
 the code point variants is of type "blocked". The second matches any
 variant label for which all of the code point variants are of type
 "simplified" or "both" -- in other words, an all-simplified label.
 The third matches any label for which all variants are of type
 "traditional" or "both" -- that is, all traditional. These two
 actions are not triggered by any variant labels containing some
 original code points, unless each of those code points has a variant
 defined with a reflexive mapping (Section 5.3.4).

 The final two actions rely on the fact that actions are evaluated in
 sequence and that the first action triggered also defines the final
 disposition for a variant label (see Section 7.4). They further rely
 on the assumption that the only variants with type "both" are also
 reflexive variants.

 Given these assumptions, any remaining simplified or traditional
 variants must then be part of a mixed label and so are blocked; all
 labels surviving to the last action are original code points only
 (that is, the original label). The example assumes that an original
 label may be a mixed label; if that is not the case, the disposition
 for the last action would be set to "blocked".

 There are exceptions where the assumption on reflexive mappings made
 above does not hold, so this basic scheme needs some refinements to
 cover all cases. For a more complete example, see Appendix B.

Davies & Freytag Standards Track [Page 44]

RFC 7940 Label Generation Rulesets in XML August 2016

7.3. Recommended Disposition Values

 The precise nature of the policy action taken in response to a
 disposition and the name of the corresponding "disp" attributes are
 only partially defined here. It is strongly RECOMMENDED to use the
 following dispositions only in their conventional sense.

 invalid The resulting string is not a valid label. This disposition
 may be assigned implicitly; see Section 7.5. No variant labels
 should be generated from a variant mapping with this type.

 blocked The resulting string is a valid label but should be blocked
 from registration. This would typically apply for a derived
 variant that is undesirable due to having no practical use or
 being confusingly similar to some other label.

 allocatable The resulting string should be reserved for use by the
 same operator of the origin string but not automatically
 allocated for use.

 activated The resulting string should be activated for use. (This
 is the same as a Preferred Variant [RFC3743].)

 valid The resultant string is a valid label. (This is the typical
 default action if no dispositions are defined.)

7.4. Precedence

 Actions are applied in the order of their appearance in the file.
 This defines their relative precedence. The first action triggered
 by a label defines the disposition for that label. To define the
 order of precedence, list the actions in the desired order. The
 conventional order of precedence for the actions defined in
 Section 7.3 is "invalid", "blocked", "allocatable", "activated", and
 then "valid". This default precedence is used for the default
 actions defined in Section 7.6.

7.5. Implied Actions

 The context rules on code points ("not-when" or "when" rules) carry
 an implied action with a disposition of "invalid" (not eligible) if a
 "when" context is not satisfied or a "not-when" context is matched,
 respectively. These rules are evaluated at the time the code points
 for a label or its variant labels are checked for validity (see
 Section 8). In other words, they are evaluated before any of the
 actions are applied, and with higher precedence. The context rules
 for variant mappings are evaluated when variants are generated and/or
 when variant tables are made symmetric and transitive. They have an

Davies & Freytag Standards Track [Page 45]

RFC 7940 Label Generation Rulesets in XML August 2016

 implied action with a disposition of "invalid", which means that a
 putative variant mapping does not exist whenever the given context
 matches a "not-when" rule or fails to match a "when" rule specified
 for that mapping. The result of that disposition is that the variant
 mapping is ignored in generating variant labels and the value is
 therefore not accessible to trigger any explicit actions.

 Note that such non-existing variant mapping is different from a
 blocked variant, which is a variant code point mapping that exists
 but results in a label that may not be allocated.

7.6. Default Actions

 If a label does not trigger any of the actions defined explicitly in
 the LGR, the following implicitly defined default actions are
 evaluated. They are shown below in their relative order of
 precedence (see Section 7.4). Default actions have a lower order of
 precedence than explicit actions (see Section 8.3).

 The default actions for variant labels are defined as follows. The
 first set is triggered based on the standard variant type values of
 "invalid", "blocked", "allocatable", and "activated":

 <action disp="invalid" any-variant="invalid"/>
 <action disp="blocked" any-variant="blocked"/>
 <action disp="allocatable" any-variant="allocatable"/>
 <action disp="activated" all-variants="activated"/>

 A final default action sets the disposition to "valid" for any label
 matching the repertoire for which no other action has been triggered.
 This "catch-all" action also matches all remaining variant labels
 from variants that do not have a type value.

 <action disp="valid" comment="Catch-all if other rules not met"/>

 Conceptually, the implicitly defined default actions act just like a
 block of "action" elements that is added (virtually) beyond the last
 of the user-supplied actions. Any label not processed by the
 user-supplied actions would thus be processed by the default actions
 as if they were present in the LGR. As the last default action is a
 "catch-all", all processing is guaranteed to end with a definite
 disposition for the label.

Davies & Freytag Standards Track [Page 46]

RFC 7940 Label Generation Rulesets in XML August 2016

8. Processing a Label against an LGR

8.1. Determining Eligibility for a Label

 In order to test a given label for membership in the LGR, a consumer
 of the LGR must iterate through each code point within a given label
 and test that each instance of a code point is a member of the LGR.
 If any instance of a code point is not a member of the LGR, the label
 shall be deemed invalid.

 An individual instance of a code point is deemed a member of the LGR
 when it is listed using a "char" element, or is part of a range
 defined with a "range" element, and all necessary conditions in any
 "when" or "not-when" attributes are correctly satisfied for that
 instance.

 Alternatively, an instance of a code point is also deemed a member of
 the LGR when it forms part of a sequence that corresponds to a
 sequence listed using a "char" element for which the "cp" attribute
 defines a sequence, and all necessary conditions in any "when" or
 "not-when" attributes are correctly satisfied for that instance of
 the sequence.

 In determining eligibility, at each position the longest possible
 sequence of code points is evaluated first. If that sequence matches
 a sequence defined in the LGR and satisfies any required context at
 that position, the instances of its constituent code points are
 deemed members of the LGR and evaluation proceeds with the next code
 point following the sequence. If the sequence does not match a
 defined sequence or does not satisfy the required context,
 successively shorter sequences are evaluated until only a single code
 point remains. The eligibility of that code point is determined as
 described above for an individual code point instance.

 A label must also not trigger any action that results in a
 disposition of "invalid"; otherwise, it is deemed not eligible.
 (This step may need to be deferred until variant code point
 dispositions have been determined.)

8.1.1. Determining Eligibility Using Reflexive Variant Mappings

 For LGRs that contain reflexive variant mappings (defined in
 Section 5.3.4), the final evaluation of eligibility for the label
 must be deferred until variants are generated. In essence, LGRs that
 use this feature treat the original label as the (identity) variant
 of itself. For such LGRs, the ordinary determination of eligibility
 described here is but a first step that generally excludes only a
 subset of invalid labels.

Davies & Freytag Standards Track [Page 47]

RFC 7940 Label Generation Rulesets in XML August 2016

 To further check the validity of a label with reflexive mappings, it
 is not necessary to generate all variant labels. Only a single
 variant needs to be created, where any reflexive variants are applied
 for each code point, and the label disposition is evaluated (as
 described in Section 8.3). A disposition of "invalid" results in the
 label being not eligible. (In the exceptional case where context
 rules are present on reflexive mappings, multiple reflexive variants
 may be defined, but for each original label, at most one of these can
 be valid at each code position. However, see Section 8.4.)

8.2. Determining Variants for a Label

 For a given eligible label, the set of variant labels is deemed to
 consist of each possible permutation of original code points and
 substituted code points or sequences defined in "var" elements,
 whereby all "when" and "not-when" attributes are correctly satisfied
 for each "char" or "var" element in the given permutation and all
 applicable whole label rules are satisfied as follows:

 1. Create each possible permutation of a label by substituting each
 code point or code point sequence in turn by any defined variant
 mapping (including any reflexive mappings).

 2. Apply variant mappings with "when" or "not-when" attributes only
 if the conditions are satisfied; otherwise, they are not defined.

 3. Record each of the "type" values on the variant mappings used in
 creating a given variant label in a disposition set; for any
 unmapped code point, record the "type" value of any reflexive
 variant (see Section 5.3.4).

 4. Determine the disposition for each variant label per Section 8.3.

 5. If the disposition is "invalid", remove the label from the set.

 6. If final evaluation of the disposition for the unpermuted label
 per Section 8.3 results in a disposition of "invalid", remove all
 associated variant labels from the set.

 The number of potential permutations can be very large. In practice,
 implementations would use suitable optimizations to avoid having to
 actually create all permutations (see Section 8.5).

 In determining the permuted set of variant labels in step (1) above,
 all eligible partitions into sequences must be evaluated. A label
 "ab" that matches a sequence "ab" defined in the LGR but also matches

Davies & Freytag Standards Track [Page 48]

RFC 7940 Label Generation Rulesets in XML August 2016

 the sequence of individual code points "a" and "b" (both defined in
 the LGR) must be permuted using any defined variant mappings for both
 the sequence "ab" and the code points "a" and "b" individually.

8.3. Determining a Disposition for a Label or Variant Label

 For a given label (variant or original), its disposition is
 determined by evaluating, in order of their appearance, all actions
 for which the label or variant label satisfies the conditions.

 1. For any label that contains code points or sequences not defined
 in the repertoire, or does not satisfy the context rules on all
 of its code points and variants, the disposition is "invalid".

 2. For all other labels, the disposition is given by the value of
 the "disp" attribute for the first action triggered by the label.
 An action is triggered if all of the following are true:

 * the label matches the whole label rule given in the "match"
 attribute for that action;

 * the label does not match the whole label rule given in the
 "not-match" attribute for that action;

 * any of the recorded variant types for a variant label match
 the types given in the "any-variant" attribute for that
 action;

 * all of the recorded variant types for a variant label match
 the types given in the "all-variants" or "only-variants"
 attribute given for that action;

 * in case of an "only-variants" attribute, the label contains
 only code points that are the target of applied variant
 mappings;

 or

 * the action does not contain any "match", "not-match",
 "any-variant", "all-variants", or "only-variants" attributes:
 catch-all.

 3. For any remaining variant label, assign the variant label the
 disposition using the default actions defined in Section 7.6.
 For this step, variant types outside the predefined recommended
 set (see Section 7.3) are ignored.

 4. For any remaining label, set the disposition to "valid".

Davies & Freytag Standards Track [Page 49]

RFC 7940 Label Generation Rulesets in XML August 2016

8.4. Duplicate Variant Labels

 For a poorly designed LGR, it is possible to generate duplicate
 variant labels from the same input label, but with different, and
 potentially conflicting, dispositions. Implementations MUST treat
 any duplicate variant labels encountered as an error, irrespective of
 their dispositions.

 This situation can arise in two ways. One is described in
 Section 5.3.5 and involves defining the same variant mapping with two
 context rules that are formally distinct but nevertheless overlap so
 that they are not mutually exclusive for the same label.

 The other case involves variants defined for sequences, where one
 sequence is a prefix of another (see Section 5.3.1). The following
 shows such an example resulting in conflicting reflexive variants:

 <char cp="0061">
 <var cp="0061" type="allocatable"/>
 </char>
 <char cp="0062"/>
 <char cp="0061 0062">
 <var cp="0061 0062" type="blocked"/>
 </char>

 A label "ab" would generate the variant labels "{a}{b}" and "{ab}"
 where the curly braces show the sequence boundaries as they were
 applied during variant mapping. The result is a duplicate variant
 label "ab", one based on a variant of type "allocatable" plus an
 original code point "b" that has no variant, and another one based on
 a single variant of type "blocked", thus creating two variant labels
 with conflicting dispositions.

 In the general case, it is difficult to impossible to prove by
 mechanical inspection of the LGR that duplicate variant labels will
 never occur, so implementations have to be prepared to detect this
 error during variant label generation. The condition is easily
 avoided by careful design of context rules and special attention to
 the relation among code point sequences with variants.

8.5. Checking Labels for Collision

 The obvious method for checking for collision between labels is to
 generate the fully permuted set of variants for one of them and see
 whether it contains the other label as a member. As discussed above,
 this can be prohibitive and is not necessary.

Davies & Freytag Standards Track [Page 50]

RFC 7940 Label Generation Rulesets in XML August 2016

 Because of symmetry and transitivity, all variant mappings form
 disjoint sets. In each of these sets, the source and target of each
 mapping are also variants of the sources and targets of all the other
 mappings. However, members of two different sets are never variants
 of each other.

 If two labels have code points at the same position that are members
 of two different variant mapping sets, any variant labels of one
 cannot be variant labels of the other: the sets of their variant
 labels are likewise disjoint. Instead of generating all permutations
 to compare all possible variants, it is enough to find out whether
 code points at the same position belong to the same variant set
 or not.

 For that, it is sufficient to substitute an "index" mapping that
 identifies the set. This index mapping could be, for example, the
 variant mapping for which the target code point (or sequence) comes
 first in some sorting order. This index mapping would, in effect,
 identify the set of variant mappings for that position.

 To check for collision then means generating a single variant label
 from the original by substituting the respective "index" value for
 each code point. This results in an "index label". Two labels
 collide whenever the index labels for them are the same.

9. Conversion to and from Other Formats

 Both [RFC3743] and [RFC4290] provide different grammars for IDN
 tables. The formats in those documents are unable to fully support
 the increased requirements of contemporary IDN variant policies.

 This specification is a superset of functionality provided by the
 older IDN table formats; thus, any table expressed in those formats
 can be expressed in this new format. Automated conversion can be
 conducted between tables conformant with the grammar specified in
 each document.

 For notes on how to translate a table in the style of RFC 3743, see
 Appendix B.

10. Media Type

 Well-formed LGRs that comply with this specification SHOULD be
 transmitted with a media type of "application/lgr+xml". This media
 type will signal to an LGR-aware client that the content is designed
 to be interpreted as an LGR.

Davies & Freytag Standards Track [Page 51]

RFC 7940 Label Generation Rulesets in XML August 2016

11. IANA Considerations

 IANA has completed the following actions:

11.1. Media Type Registration

 The media type "application/lgr+xml" has been registered to denote
 transmission of LGRs that are compliant with this specification, in
 accordance with [RFC6838].

 Type name: application

 Subtype name: lgr+xml

 Required parameters: N/A

 Optional parameters: charset (as for application/xml per [RFC7303])

 Security considerations: See the security considerations for
 application/xml in [RFC7303] and the specific security
 considerations for Label Generation Rulesets (LGRs) in RFC 7940

 Interoperability considerations: As for application/xml per
 [RFC7303]

 Published specification: See RFC 7940

 Applications that use this media type: Software using LGRs for
 international identifiers, such as IDNs, including registry
 applications and client validators.

 Additional information:

 Deprecated alias names for this type: N/A

 Magic number(s): N/A

 File extension(s): .lgr

 Macintosh file type code(s): N/A

 Person & email address to contact for further information:

 Kim Davies <kim.davies@icann.org>

 Asmus Freytag <asmus@unicode.org>

 Intended usage: COMMON

Davies & Freytag Standards Track [Page 52]

RFC 7940 Label Generation Rulesets in XML August 2016

 Restrictions on usage: N/A

 Author:

 Kim Davies <kim.davies@icann.org>

 Asmus Freytag <asmus@unicode.org>

 Change controller: IESG

 Provisional registration? (standards tree only): No

11.2. URN Registration

 This specification uses a URN to describe the XML namespace, in
 accordance with [RFC3688].

 URI: urn:ietf:params:xml:ns:lgr-1.0

 Registrant Contact: See the Authors of this document.

 XML: None.

11.3. Disposition Registry

 This document establishes a vocabulary of "Label Generation Ruleset
 Dispositions", which has been reflected as a new IANA registry. This
 registry is divided into two subregistries:

 o Standard Dispositions - This registry lists dispositions that have
 been defined in published specifications, i.e., the eligibility
 for such registrations is "Specification Required" [RFC5226]. The
 initial set of registrations are the five dispositions in this
 document described in Section 7.3.

 o Private Dispositions - This registry lists dispositions that have
 been registered "First Come First Served" [RFC5226] by third
 parties with the IANA. Such dispositions must take the form
 "entity:disposition" where the entity is a domain name that
 uniquely identifies the private user of the namespace. For
 example, "example.org:reserved" could be a private extension used
 by the example organization to denote a disposition relating to
 reserved labels. These extensions are not intended to be
 interoperable, but registration is designed to minimize potential
 conflicts. It is strongly recommended that any new dispositions
 that require interoperability and have applicability beyond a
 single organization be defined as Standard Dispositions.

Davies & Freytag Standards Track [Page 53]

RFC 7940 Label Generation Rulesets in XML August 2016

 In order to distinguish them from Private Dispositions, Standard
 Dispositions MUST NOT contain the ":" character. All disposition
 names shall be in lowercase ASCII.

 The IANA registry provides data on the name of the disposition, the
 intended purposes, and the registrant or defining specification for
 the disposition.

12. Security Considerations

12.1. LGRs Are Only a Partial Remedy for Problem Space

 Substantially unrestricted use of non-ASCII characters in security-
 relevant identifiers such as domain name labels may cause user
 confusion and invite various types of attacks. In many languages, in
 particular those using complex or large scripts, an attacker has an
 opportunity to divert or confuse users as a result of different code
 points with identical appearance or similar semantics.

 The use of an LGR provides a partial remedy for these risks by
 supplying a framework for prohibiting inappropriate code points or
 sequences from being registered at all and for permitting "variant"
 code points to be grouped together so that labels containing them may
 be mutually exclusive or registered only to the same owner.

 In addition, by being fully machine processable the format may enable
 automated checks for known weaknesses in label generation rules.
 However, the use of this format, or compliance with this
 specification, by itself does not ensure that the LGRs expressed in
 this format are free of risk. Additional approaches may be
 considered, depending on the acceptable trade-off between flexibility
 and risk for a given application. One method of managing risk may
 involve a case-by-case evaluation of a proposed label in context with
 already-registered labels -- for example, when reviewing labels for
 their degree of visual confusability.

12.2. Computational Expense of Complex Tables

 A naive implementation attempting to generate all variant labels for
 a given label could lead to the possibility of exhausting the
 resources on the machine running the LGR processor, potentially
 causing denial-of-service consequences. For many operations,
 brute-force generation can be avoided by optimization, and if needed,
 the number of permuted labels can be estimated more cheaply ahead
 of time.

Davies & Freytag Standards Track [Page 54]

RFC 7940 Label Generation Rulesets in XML August 2016

 The implementation of WLE rules, using certain backtracking
 algorithms, can take exponential time for pathological rules or
 labels and exhaust stack resources. This can be mitigated by
 proper implementation and enforcing the restrictions on permissible
 label length.

13. References

13.1. Normative References

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
 <http://www.rfc-editor.org/info/rfc2045>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <http://www.rfc-editor.org/info/rfc3339>.

 [RFC5646] Phillips, A., Ed., and M. Davis, Ed., "Tags for
 Identifying Languages", BCP 47, RFC 5646,
 DOI 10.17487/RFC5646, September 2009,
 <http://www.rfc-editor.org/info/rfc5646>.

 [UAX42] The Unicode Consortium, "Unicode Character Database in
 XML", May 2016, <http://unicode.org/reports/tr42/>.

 [Unicode-Stability]
 The Unicode Consortium, "Unicode Encoding Stability
 Policy, Property Value Stability", April 2015,
 <http://www.unicode.org/policies/
 stability_policy.html#Property_Value>.

 [Unicode-Versions]
 The Unicode Consortium, "Unicode Version Numbering",
 June 2016,
 <http://unicode.org/versions/#Version_Numbering>.

 [XML] Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", World Wide Web Consortium, November 2008,
 <http://www.w3.org/TR/REC-xml/>.

Davies & Freytag Standards Track [Page 55]

RFC 7940 Label Generation Rulesets in XML August 2016

13.2. Informative References

 [ASIA-TABLE]
 DotAsia Organisation, ".ASIA ZH IDN Language Table",
 February 2012,
 <http://www.dot.asia/policies/ASIA-ZH-1.2.pdf>.

 [LGR-PROCEDURE]
 Internet Corporation for Assigned Names and Numbers,
 "Procedure to Develop and Maintain the Label Generation
 Rules for the Root Zone in Respect of IDNA Labels",
 December 2012, <http://www.icann.org/en/resources/idn/
 draft-lgr-procedure-07dec12-en.pdf>.

 [RELAX-NG] The Organization for the Advancement of Structured
 Information Standards (OASIS), "RELAX NG Compact Syntax",
 November 2002, <https://www.oasis-open.org/committees/
 relax-ng/compact-20021121.html>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <http://www.rfc-editor.org/info/rfc3688>.

 [RFC3743] Konishi, K., Huang, K., Qian, H., and Y. Ko, "Joint
 Engineering Team (JET) Guidelines for Internationalized
 Domain Names (IDN) Registration and Administration for
 Chinese, Japanese, and Korean", RFC 3743,
 DOI 10.17487/RFC3743, April 2004,
 <http://www.rfc-editor.org/info/rfc3743>.

 [RFC4290] Klensin, J., "Suggested Practices for Registration of
 Internationalized Domain Names (IDN)", RFC 4290,
 DOI 10.17487/RFC4290, December 2005,
 <http://www.rfc-editor.org/info/rfc4290>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5564] El-Sherbiny, A., Farah, M., Oueichek, I., and A. Al-Zoman,
 "Linguistic Guidelines for the Use of the Arabic Language
 in Internet Domains", RFC 5564, DOI 10.17487/RFC5564,
 February 2010, <http://www.rfc-editor.org/info/rfc5564>.

Davies & Freytag Standards Track [Page 56]

RFC 7940 Label Generation Rulesets in XML August 2016

 [RFC5891] Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891,
 DOI 10.17487/RFC5891, August 2010,
 <http://www.rfc-editor.org/info/rfc5891>.

 [RFC5892] Faltstrom, P., Ed., "The Unicode Code Points and
 Internationalized Domain Names for Applications (IDNA)",
 RFC 5892, DOI 10.17487/RFC5892, August 2010,
 <http://www.rfc-editor.org/info/rfc5892>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <http://www.rfc-editor.org/info/rfc6838>.

 [RFC7303] Thompson, H. and C. Lilley, "XML Media Types", RFC 7303,
 DOI 10.17487/RFC7303, July 2014,
 <http://www.rfc-editor.org/info/rfc7303>.

 [TDIL-HINDI]
 Technology Development for Indian Languages (TDIL)
 Programme, "Devanagari Script Behaviour for Hindi Ver2.0",
 <http://tdil-dc.in/index.php?option=com_download&task=show
 resourceDetails&toolid=1625&lang=en>.

 [UAX44] The Unicode Consortium, "Unicode Character Database",
 June 2016, <http://unicode.org/reports/tr44/>.

 [WLE-RULES]
 Internet Corporation for Assigned Names and Numbers,
 "Whole Label Evaluation (WLE) Rules", August 2016,
 <https://community.icann.org/download/
 attachments/43989034/WLE-Rules.pdf>.

Davies & Freytag Standards Track [Page 57]

RFC 7940 Label Generation Rulesets in XML August 2016

Appendix A. Example Tables

 The following presents a minimal LGR table defining the lowercase LDH
 (letters, digits, hyphen) repertoire and containing no rules or
 metadata elements. Many simple LGR tables will look quite similar,
 except that they would contain some metadata.

 <?xml version="1.0" encoding="utf-8"?>
 <lgr xmlns="urn:ietf:params:xml:ns:lgr-1.0">
 <data>
 <char cp="002D" comment="HYPHEN (-)" />
 <range first-cp="0030" last-cp="0039"
 comment="DIGIT ZERO - DIGIT NINE" />
 <range first-cp="0061" last-cp="007A"
 comment="LATIN SMALL LETTER A - LATIN SMALL LETTER Z" />
 </data>
 </lgr>

 In practice, any LGR that includes the hyphen might also contain
 rules invalidating any labels beginning with a hyphen, ending with a
 hyphen, and containing consecutive hyphens in the third and fourth
 positions as required by [RFC5891].

 <?xml version="1.0" encoding="utf-8"?>
 <lgr xmlns="urn:ietf:params:xml:ns:lgr-1.0">
 <data>
 <char cp="002D"
 not-when="hyphen-minus-disallowed" />
 <range first-cp="0030" last-cp="0039" />
 <range first-cp="0061" last-cp="007A" />
 </data>
 <rules>
 <rule name="hyphen-minus-disallowed"
 comment="RFC5891 restrictions on U+002D">
 <choice>
 <rule comment="no leading hyphen">
 <look-behind>
 <start />
 </look-behind>
 <anchor />
 </rule>
 <rule comment="no trailing hyphen">
 <anchor />
 <look-ahead>
 <end />
 </look-ahead>
 </rule>

Davies & Freytag Standards Track [Page 58]

RFC 7940 Label Generation Rulesets in XML August 2016

 <rule comment="no consecutive hyphens
 in third and fourth positions">
 <look-behind>
 <start />
 <any />
 <any />
 <char cp="002D" comment="hyphen-minus" />
 </look-behind>
 <anchor />
 </rule>
 </choice>
 </rule>
 </rules>
 </lgr>

 The following sample LGR shows a more complete collection of the
 elements and attributes defined in this specification in a somewhat
 typical context.

 <?xml version="1.0" encoding="utf-8"?>

 <!-- This example uses a large subset of the features of this
 specification. It does not include every set operator,
 match operator element, or action trigger attribute, their
 use being largely parallel to the ones demonstrated. -->

 <lgr xmlns="urn:ietf:params:xml:ns:lgr-1.0">
 <!-- meta element with all optional elements -->
 <meta>
 <version comment="initial version">1</version>
 <date>2010-01-01</date>
 <language>sv</language>
 <scope type="domain">example.com</scope>
 <validity-start>2010-01-01</validity-start>
 <validity-end>2013-12-31</validity-end>
 <description type="text/html">
 <![CDATA[
 This language table was developed with the
 Swedish
 examples institute.
]]>
 </description>

Davies & Freytag Standards Track [Page 59]

RFC 7940 Label Generation Rulesets in XML August 2016

 <unicode-version>6.3.0</unicode-version>
 <references>
 <reference id="0" comment="the most recent" >The
 Unicode Standard 9.0</reference>
 <reference id="1" >RFC 5892</reference>
 <reference id="2" >Big-5: Computer Chinese Glyph
 and Character Code Mapping Table, Technical Report
 C-26, 1984</reference>
 </references>
 </meta>

 <!-- the "data" section describing the repertoire -->
 <data>
 <!-- single code point "char" element -->
 <char cp="002D" ref="1" comment="HYPHEN" />

 <!-- "range" elements for contiguous code points, with tags -->
 <range first-cp="0030" last-cp="0039" ref="1" tag="digit" />
 <range first-cp="0061" last-cp="007A" ref ="1" tag="letter" />

 <!-- code point sequence -->
 <char cp="006C 00B7 006C" comment="Catalan middle dot" />

 <!-- alternatively, use a When Rule -->
 <char cp="00B7" when="catalan-middle-dot" />

 <!-- code point with context rule -->
 <char cp="200D" when="joiner" ref="2" />

 <!-- code points with variants -->
 <char cp="4E16" tag="preferred" ref="0">
 <var cp="4E17" type="blocked" ref="2" />
 <var cp="534B" type="allocatable" ref="2" />
 </char>
 <char cp="4E17" ref="0">
 <var cp="4E16" type="allocatable" ref="2" />
 <var cp="534B" type="allocatable" ref="2" />
 </char>
 <char cp="534B" ref="0">
 <var cp="4E16" type="allocatable" ref="2" />
 <var cp="4E17" type="blocked" ref="2" />
 </char>
 </data>

Davies & Freytag Standards Track [Page 60]

RFC 7940 Label Generation Rulesets in XML August 2016

 <!-- Context and whole label rules -->
 <rules>
 <!-- Require the given code point to be between two 006C
 code points -->
 <rule name="catalan-middle-dot" ref="0">
 <look-behind>
 <char cp="006C" />
 </look-behind>
 <anchor />
 <look-ahead>
 <char cp="006C" />
 </look-ahead>
 </rule>

 <!-- example of a context rule based on property -->
 <class name="virama" property="ccc:9" />
 <rule name="joiner" ref="1" >
 <look-behind>
 <class by-ref="virama" />
 </look-behind>
 <anchor />
 </rule>

 <!-- example of using set operators -->

 <!-- Subtract vowels from letters to get
 consonant, demonstrating the different
 set notations and the difference operator -->
 <difference name="consonants">
 <class comment="all letters">0061-007A</class>
 <class comment="all vowels">
 0061 0065 0069 006F 0075
 </class>
 </difference>

 <!-- by using the start and end, rule matches whole label -->
 <rule name="three-or-more-consonants">
 <start />
 <!-- reference the class defined by the difference,
 and require three or more matches -->
 <class by-ref="consonants" count="3+" />
 <end />
 </rule>

Davies & Freytag Standards Track [Page 61]

RFC 7940 Label Generation Rulesets in XML August 2016

 <!-- rule for negative matching -->
 <rule name="non-preferred"
 comment="matches any non-preferred code point">
 <complement comment="non-preferred" >
 <class from-tag="preferred" />
 </complement>
 </rule>

 <!-- actions triggered by matching rules and/or
 variant types -->
 <action disp="invalid"
 match="three-or-more-consonants" />
 <action disp="blocked" any-variant="blocked" />
 <action disp="allocatable" all-variants="allocatable"
 not-match="non-preferred" />
 </rules>
 </lgr>

Davies & Freytag Standards Track [Page 62]

RFC 7940 Label Generation Rulesets in XML August 2016

Appendix B. How to Translate Tables Based on RFC 3743 into the XML
 Format

 As background, the rules specified in [RFC3743] work as follows:

 1. The original (requested) label is checked to make sure that all
 the code points are a subset of the repertoire.

 2. If it passes the check, the original label is allocatable.

 3. Generate the all-simplified and all-traditional variant labels
 (union of all the labels generated using all the simplified
 variants of the code points) for allocation.

 To illustrate by example, here is one of the more complicated set of
 variants:

 U+4E7E
 U+4E81
 U+5E72
 U+5E79
 U+69A6
 U+6F27

 The following shows the relevant section of the Chinese language
 table published by the .ASIA registry [ASIA-TABLE]. Its
 entries read:

 <codepoint>;<simpl-variant(s)>;<trad-variant(s)>;<other-variant(s)>

 These are the lines corresponding to the set of variants
 listed above:

 U+4E7E;U+4E7E,U+5E72;U+4E7E;U+4E81,U+5E72,U+6F27,U+5E79,U+69A6
 U+4E81;U+5E72;U+4E7E;U+5E72,U+6F27,U+5E79,U+69A6
 U+5E72;U+5E72;U+5E72,U+4E7E,U+5E79;U+4E7E,U+4E81,U+69A6,U+6F27
 U+5E79;U+5E72;U+5E79;U+69A6,U+4E7E,U+4E81,U+6F27
 U+69A6;U+5E72;U+69A6;U+5E79,U+4E7E,U+4E81,U+6F27
 U+6F27;U+4E7E;U+6F27;U+4E81,U+5E72,U+5E79,U+69A6

Davies & Freytag Standards Track [Page 63]

RFC 7940 Label Generation Rulesets in XML August 2016

 The corresponding "data" section XML format would look like this:

 <data>
 <char cp="4E7E">
 <var cp="4E7E" type="both" comment="identity" />
 <var cp="4E81" type="blocked" />
 <var cp="5E72" type="simp" />
 <var cp="5E79" type="blocked" />
 <var cp="69A6" type="blocked" />
 <var cp="6F27" type="blocked" />
 </char>
 <char cp="4E81">
 <var cp="4E7E" type="trad" />
 <var cp="5E72" type="simp" />
 <var cp="5E79" type="blocked" />
 <var cp="69A6" type="blocked" />
 <var cp="6F27" type="blocked" />
 </char>
 <char cp="5E72">
 <var cp="4E7E" type="trad"/>
 <var cp="4E81" type="blocked"/>
 <var cp="5E72" type="both" comment="identity"/>
 <var cp="5E79" type="trad"/>
 <var cp="69A6" type="blocked"/>
 <var cp="6F27" type="blocked"/>
 </char>
 <char cp="5E79">
 <var cp="4E7E" type="blocked"/>
 <var cp="4E81" type="blocked"/>
 <var cp="5E72" type="simp"/>
 <var cp="5E79" type="trad" comment="identity"/>
 <var cp="69A6" type="blocked"/>
 <var cp="6F27" type="blocked"/>
 </char>
 <char cp="69A6">
 <var cp="4E7E" type="blocked"/>
 <var cp="4E81" type="blocked"/>
 <var cp="5E72" type="simp"/>
 <var cp="5E79" type="blocked"/>
 <var cp="69A6" type="trad" comment="identity"/>
 <var cp="6F27" type="blocked"/>
 </char>

Davies & Freytag Standards Track [Page 64]

RFC 7940 Label Generation Rulesets in XML August 2016

 <char cp="6F27">
 <var cp="4E7E" type="simp"/>
 <var cp="4E81" type="blocked"/>
 <var cp="5E72" type="blocked"/>
 <var cp="5E79" type="blocked"/>
 <var cp="69A6" type="blocked"/>
 <var cp="6F27" type="trad" comment="identity"/>
 </char>
 </data>

 Here, the simplified variants have been given a type of "simp" and
 the traditional variants one of "trad", and all other ones are given
 "blocked".

 Because some variant mappings show in more than one column, while the
 XML format allows only a single type value, they have been given the
 type of "both".

 Note that some variant mappings map to themselves (identity); that
 is, the mapping is reflexive (see Section 5.3.4). In creating the
 permutation of all variant labels, these mappings have no effect,
 other than adding a value to the variant type list for the variant
 label containing them.

 In the example so far, all of the entries with type="both" are also
 mappings where source and target are identical. That is, they are
 reflexive mappings as defined in Section 5.3.4.

 Given a label "U+4E7E U+4E81", the following labels would be ruled
 allocatable per [RFC3743], based on how that standard is commonly
 implemented in domain registries:

 Original label: U+4E7E U+4E81
 Simplified label 1: U+4E7E U+5E72
 Simplified label 2: U+5E72 U+5E72
 Traditional label: U+4E7E U+4E7E

 However, if allocatable labels were generated simply by a straight
 permutation of all variants with type other than type="blocked" and
 without regard to the simplified and traditional variants, we would
 end up with an extra allocatable label of "U+5E72 U+4E7E". This
 label is composed of both a Simplified Chinese character and a
 Traditional Chinese code point and therefore shouldn’t be
 allocatable.

Davies & Freytag Standards Track [Page 65]

RFC 7940 Label Generation Rulesets in XML August 2016

 To more fully resolve the dispositions requires several actions to be
 defined, as described in Section 7.2.2, that will override the
 default actions from Section 7.6. After blocking all labels that
 contain a variant with type "blocked", these actions will set to
 "allocatable" labels based on the following variant types: "simp",
 "trad", and "both". Note that these variant types do not directly
 relate to dispositions for the variant label, but that the actions
 will resolve them to the Standard Dispositions on labels, i.e.,
 "blocked" and "allocatable".

 To resolve label dispositions requires five actions to be defined (in
 the "rules" section of the XML document in question); these actions
 apply in order, and the first one triggered defines the disposition
 for the label. The actions are as follows:

 1. Block all variant labels containing at least one blocked variant.

 2. Allocate all labels that consist entirely of variants that are
 "simp" or "both".

 3. Also allocate all labels that are entirely "trad" or "both".

 4. Block all surviving labels containing any one of the dispositions
 "simp" or "trad" or "both", because they are now known to be part
 of an undesirable mixed simplified/traditional label.

 5. Allocate any remaining label; the original label would be such a
 label.

 The rules declarations would be represented as:

 <rules>
 <!--"action" elements - order defines precedence-->
 <action disp="blocked" any-variant="blocked" />
 <action disp="allocatable" only-variants="simp both" />
 <action disp="allocatable" only-variants="trad both" />
 <action disp="blocked" any-variant="simp trad" />
 <action disp="allocatable" comment="catch-all" />
 </rules>

 Up to now, variants with type "both" have occurred only associated
 with reflexive variant mappings. The "action" elements defined above
 rely on the assumption that this is always the case. However,
 consider the following set of variants:

 U+62E0;U+636E;U+636E;U+64DA
 U+636E;U+636E;U+64DA;U+62E0
 U+64DA;U+636E;U+64DA;U+62E0

Davies & Freytag Standards Track [Page 66]

RFC 7940 Label Generation Rulesets in XML August 2016

 The corresponding XML would be:

 <char cp="62E0">
 <var cp="636E" type="both" comment="both, but not reflexive" />
 <var cp="64DA" type="blocked" />
 </char>
 <char cp="636E">
 <var cp="636E" type="simp" comment="reflexive, but not both" />
 <var cp="64DA" type="trad" />
 <var cp="62E0" type="blocked" />
 </char>
 <char cp="64DA">
 <var cp="636E" type="simp" />
 <var cp="64DA" type="trad" comment="reflexive" />
 <var cp="62E0" type="blocked" />
 </char>

 To make such variant sets work requires a way to selectively trigger
 an action based on whether a variant type is associated with an
 identity or reflexive mapping, or is associated with an ordinary
 variant mapping. This can be done by adding a prefix "r-" to the
 "type" attribute on reflexive variant mappings. For example, the
 "trad" for code point U+64DA in the preceding figure would become
 "r-trad".

 With the dispositions prepared in this way, only a slight
 modification to the actions is needed to yield the correct set of
 allocatable labels:

 <action disp="blocked" any-variant="blocked" />
 <action disp="allocatable" only-variants="simp r-simp both r-both" />
 <action disp="allocatable" only-variants="trad r-trad both r-both" />
 <action disp="blocked" all-variants="simp trad both" />
 <action disp="allocatable" />

 The first three actions get triggered by the same labels as before.

 The fourth action blocks any label that combines an original code
 point with any mix of ordinary variant mappings; however, no labels
 that are a combination of only original code points (code points
 having either no variant mappings or a reflexive mapping) would be
 affected. These are the original labels, and they are allocated in
 the last action.

Davies & Freytag Standards Track [Page 67]

RFC 7940 Label Generation Rulesets in XML August 2016

 Using this scheme of assigning types to ordinary and reflexive
 variants, all tables in the style of RFC 3743 can be converted to
 XML. By defining a set of actions as outlined above, the LGR will
 yield the correct set of allocatable variants: all variants
 consisting completely of variant code points preferred for simplified
 or traditional, respectively, will be allocated, as will be the
 original label. All other variant labels will be blocked.

Appendix C. Indic Syllable Structure Example

 In LGRs for Indic scripts, it may be desirable to restrict valid
 labels to sequences of valid Indic syllables, or aksharas. This
 appendix gives a sample set of rules designed to enforce this
 restriction.

 Below is an example of BNF for an akshara, which has been published
 in "Devanagari Script Behaviour for Hindi" [TDIL-HINDI]. The rules
 for other languages and scripts used in India are expected to be
 generally similar.

 For Hindi, the BNF has the form:

 V[m]|{C[N]H}C[N](H|[v][m])

 Where:

 V (uppercase) is any independent vowel

 m is any vowel modifier (Devanagari Anusvara, Visarga, and
 Candrabindu)

 C is any consonant (with inherent vowel)

 N is Nukta

 H is a halant (or virama)

 v (lowercase) is any dependent vowel sign (matra)

 {} encloses items that may be repeated one or more times

 [] encloses items that may or may not be present

 | separates items, out of which only one can be present

Davies & Freytag Standards Track [Page 68]

RFC 7940 Label Generation Rulesets in XML August 2016

 By using the Unicode character property "InSC" or
 "Indic_Syllabic_Category", which corresponds rather directly to the
 classification of characters in the BNF above, we can translate the
 BNF into a set of WLE rules matching the definition of an akshara.

 <rules>
 <!--Character class definitions go here-->
 <class name="halant" property="InSC:Virama" />
 <union name="vowel-modifier">
 <class property="InSC:Visarga" />
 <class property="InSC:Bindu" comment="includes anusvara" />
 </union>
 <!--Whole label evaluation and context rules go here-->
 <rule name="consonant-with-optional-nukta">
 <class by-ref="InSC:Consonant" />
 <class by-ref="InSC:Nukta" count="0:1"/>
 </rule>
 <rule name="independent-vowel-with-optional-modifier">
 <class by-ref="InSC:Vowel_Independent" />
 <class by-ref="vowel-modifier" count="0:1" />
 </rule>
 <rule name="optional-dependent-vowel-with-opt-modifier" >
 <class by-ref="InSC:Vowel_Dependent" count="0:1" />
 <class by-ref="vowel-modifier" count="0:1" />
 </rule>
 <rule name="consonant-cluster">
 <rule count="0+">
 <rule by-ref="consonant-with-optional-nukta" />
 <class by-ref="halant" />
 </rule>
 <rule by-ref="consonant-with-optional-nukta" />
 <choice>
 <class by-ref="halant" />
 <rule by-ref="optional-dependent-vowel-with-opt-modifier" />
 </choice>
 </rule>
 <rule name="akshara">
 <choice>
 <rule by-ref="independent-vowel-with-optional-modifier" />
 <rule by-ref="consonant-cluster" />
 </choice>
 </rule>

Davies & Freytag Standards Track [Page 69]

RFC 7940 Label Generation Rulesets in XML August 2016

 <rule name="WLE-akshara-or-other" comment="series of one or
 more aksharas, possibly alternating with other types of
 code points such as digits">
 <start />
 <choice count="1+">
 <class property="InSC:other" />
 <rule by-ref="akshara" />
 </choice>
 <end />
 </rule>
 <!--"action" elements go here - order defines precedence-->
 <action disp="invalid" not-match="WLE-akshara-or-other" />
 </rules>

 With the rules and classes as defined above, the final action assigns
 a disposition of "invalid" to all labels that are not composed of a
 sequence of well-formed aksharas, optionally interspersed with other
 characters, perhaps digits, for example.

 The relevant Unicode character property could be replicated by
 tagging repertoire values directly in the LGR; this would remove the
 dependency on any specific version of the Unicode Standard.

 Generally, dependent vowels may only follow consonant expressions;
 however, for some scripts, like Bengali, the Unicode Standard
 supports sequences of dependent vowels or their application on
 independent vowels. This makes the definition of akshara less
 restrictive.

C.1. Reducing Complexity

 As presented in this example, the rules are rather complex --
 although useful in demonstrating the features of the XML format, such
 complexity would be an undesirable feature in an actual LGR.

 It is possible to reduce the complexity of the rules in this example
 by defining alternate rules that simply define the permissible
 pair-wise context of adjacent code points by character class, such as
 a rule that a halant can only follow a (nuktated) consonant. Such
 pair-wise contexts are easier to understand, implement, and verify,
 and have the additional benefit of allowing tools to better pinpoint
 why a label failed to validate. They also tend to correspond more
 directly to the kind of well-formedness requirements that are most
 relevant to DNS security, like the requirement to limit the
 application of a combining mark (such as a vowel modifier) to only
 selected base characters (in this case, vowels). (See the example
 and discussion in [WLE-RULES].)

Davies & Freytag Standards Track [Page 70]

RFC 7940 Label Generation Rulesets in XML August 2016

Appendix D. RELAX NG Compact Schema

 This schema is provided in RELAX NG Compact format [RELAX-NG].

 <CODE BEGINS>
 #
 # LGR XML Schema 1.0
 #

 default namespace = "urn:ietf:params:xml:ns:lgr-1.0"

 #
 # SIMPLE TYPES
 #

 # RFC 5646 language tag (e.g., "de", "und-Latn")
 language-tag = xsd:token

 # The scope to which the LGR applies. For the "domain" scope type,
 # it should be a fully qualified domain name.
 scope-value = xsd:token {
 minLength = "1"
 }

 ## a single code point
 code-point = xsd:token {
 pattern = "[0-9A-F]{4,6}"
 }

 ## a space-separated sequence of code points
 code-point-sequence = xsd:token {
 pattern = "[0-9A-F]{4,6}([0-9A-F]{4,6})+"
 }

 ## single code point, or a sequence of code points, or empty string
 code-point-literal = code-point | code-point-sequence | ""

 ## code point or sequence only
 non-empty-code-point-literal = code-point | code-point-sequence

 ## code point sent represented in short form
 code-point-set-shorthand = xsd:token {
 pattern = "([0-9A-F]{4,6}|[0-9A-F]{4,6}-[0-9A-F]{4,6})"
 ˜ "(([0-9A-F]{4,6}|[0-9A-F]{4,6}-[0-9A-F]{4,6}))*"
 }

Davies & Freytag Standards Track [Page 71]

RFC 7940 Label Generation Rulesets in XML August 2016

 ## dates are used in information fields in the meta
 ## section ("YYYY-MM-DD")
 date-pattern = xsd:token {
 pattern = "\d{4}-\d\d-\d\d"
 }

 ## variant type
 ## the variant type MUST be non-empty and MUST NOT
 ## start with a "_"; using xsd:NMTOKEN here because
 ## we need space-separated lists of them
 variant-type = xsd:NMTOKEN

 ## variant type list for action triggers
 ## the list MUST NOT be empty, and entries MUST NOT
 ## start with a "_"
 variant-type-list = xsd:NMTOKENS

 ## reference to a rule name (used in "when" and "not-when"
 ## attributes, as well as the "by-ref" attribute of the "rule"
 ## element).
 rule-ref = xsd:IDREF

 ## a space-separated list of tags. Tags should generally follow
 ## xsd:Name syntax. However, we are using the xsd:NMTOKENS here
 ## because there is no native XSD datatype for space-separated
 ## xsd:Name
 tags = xsd:NMTOKENS

 ## The value space of a "from-tag" attribute. Although it is closer
 ## to xsd:IDREF lexically and semantically, tags are not unique in
 ## the document. As such, we are unable to take advantage of
 ## facilities provided by a validator. xsd:NMTOKEN is used instead
 ## of the stricter xsd:Names here so as to be consistent with
 ## the above.
 tag-ref = xsd:NMTOKEN

 ## an identifier type (used by "name" attributes).
 identifier = xsd:ID

 ## used in the class "by-ref" attribute to reference another class of
 ## the same "name" attribute value.
 class-ref = xsd:IDREF

 ## "count" attribute pattern ("n", "n+", or "n:m")
 count-pattern = xsd:token {
 pattern = "\d+(\+|:\d+)?"
 }

Davies & Freytag Standards Track [Page 72]

RFC 7940 Label Generation Rulesets in XML August 2016

 ## "ref" attribute pattern
 ## space-separated list of "id" attribute values for
 ## "reference" elements. These reference ids
 ## must be declared in a "reference" element
 ## before they can be used in a "ref" attribute
 ref-pattern = xsd:token {
 pattern = "[\-_.:0-9A-Z]+([\-_.:0-9A-Z]+)*"
 }

 #
 # STRUCTURES
 #

 ## Representation of a single code point or a sequence of code
 ## points
 char = element char {
 attribute cp { code-point-literal },
 attribute comment { text }?,
 attribute when { rule-ref }?,
 attribute not-when { rule-ref }?,
 attribute tag { tags }?,
 attribute ref { ref-pattern }?,
 variant*
 }

 ## Representation of a range of code points
 range = element range {
 attribute first-cp { code-point },
 attribute last-cp { code-point },
 attribute comment { text }?,
 attribute when { rule-ref }?,
 attribute not-when { rule-ref }?,
 attribute tag { tags }?,
 attribute ref { ref-pattern }?
 }

 ## Representation of a variant code point or sequence
 variant = element var {
 attribute cp { code-point-literal },
 attribute type { xsd:NMTOKEN }?,
 attribute when { rule-ref }?,
 attribute not-when { rule-ref }?,
 attribute comment { text }?,
 attribute ref { ref-pattern }?
 }

Davies & Freytag Standards Track [Page 73]

RFC 7940 Label Generation Rulesets in XML August 2016

 #
 # Classes
 #

 ## a "class" element that references the name of another "class"
 ## (or set-operator like "union") defined elsewhere.
 ## If used as a matcher (appearing under a "rule" element),
 ## the "count" attribute may be present.
 class-invocation = element class { class-invocation-content }

 class-invocation-content =
 attribute by-ref { class-ref },
 attribute count { count-pattern }?,
 attribute comment { text }?

 ## defines a new class (set of code points) using Unicode property
 ## or code points of the same tag value or code point literals
 class-declaration = element class { class-declaration-content }

 class-declaration-content =
 # "name" attribute MUST be present if this is a "top-level"
 # class declaration, i.e., appearing directly under the "rules"
 # element. Otherwise, it MUST be absent.
 attribute name { identifier }?,
 # If used as a matcher (appearing in a "rule" element, but not
 # when nested inside a set-operator or class), the "count"
 # attribute may be present. Otherwise, it MUST be absent.
 attribute count { count-pattern }?,
 attribute comment { text }?,
 attribute ref { ref-pattern }?,
 (
 # define the class by property (e.g., property="sc:Latn"), OR
 attribute property { xsd:NMTOKEN }
 # define the class by tagged code points, OR
 | attribute from-tag { tag-ref }
 # text node to allow for shorthand notation
 # e.g., "0061 0062-0063"
 | code-point-set-shorthand
)

Davies & Freytag Standards Track [Page 74]

RFC 7940 Label Generation Rulesets in XML August 2016

 class-invocation-or-declaration = element class {
 class-invocation-content | class-declaration-content
 }

 class-or-set-operator-nested =
 class-invocation-or-declaration | set-operator

 class-or-set-operator-declaration =
 # a "class" element or set-operator (effectively defining a class)
 # directly in the "rules" element.
 class-declaration | set-operator

 #
 # set-operators
 #

 complement-operator = element complement {
 attribute name { identifier }?,
 attribute comment { text }?,
 attribute ref { ref-pattern }?,
 # "count" attribute MUST only be used when this set-operator is
 # used as a matcher (i.e., nested in a "rule" element but not
 # inside a set-operator or class)
 attribute count { count-pattern }?,
 class-or-set-operator-nested
 }

 union-operator = element union {
 attribute name { identifier }?,
 attribute comment { text }?,
 attribute ref { ref-pattern }?,
 # "count" attribute MUST only be used when this set-operator is
 # used as a matcher (i.e., nested in a "rule" element but not
 # inside a set-operator or class)
 attribute count { count-pattern }?,
 class-or-set-operator-nested,
 # needs two or more child elements
 class-or-set-operator-nested+
 }

Davies & Freytag Standards Track [Page 75]

RFC 7940 Label Generation Rulesets in XML August 2016

 intersection-operator = element intersection {
 attribute name { identifier }?,
 attribute comment { text }?,
 attribute ref { ref-pattern }?,
 # "count" attribute MUST only be used when this set-operator is
 # used as a matcher (i.e., nested in a "rule" element but not
 # inside a set-operator or class)
 attribute count { count-pattern }?,
 class-or-set-operator-nested,
 class-or-set-operator-nested
 }

 difference-operator = element difference {
 attribute name { identifier }?,
 attribute comment { text }?,
 attribute ref { ref-pattern }?,
 # "count" attribute MUST only be used when this set-operator is
 # used as a matcher (i.e., nested in a "rule" element but not
 # inside a set-operator or class)
 attribute count { count-pattern }?,
 class-or-set-operator-nested,
 class-or-set-operator-nested
 }

 symmetric-difference-operator = element symmetric-difference {
 attribute name { identifier }?,
 attribute comment { text }?,
 attribute ref { ref-pattern }?,
 # "count" attribute MUST only be used when this set-operator is
 # used as a matcher (i.e., nested in a "rule" element but not
 # inside a set-operator or class)
 attribute count { count-pattern }?,
 class-or-set-operator-nested,
 class-or-set-operator-nested
 }

 ## operators that transform class(es) into a new class.
 set-operator = complement-operator
 | union-operator
 | intersection-operator
 | difference-operator
 | symmetric-difference-operator

Davies & Freytag Standards Track [Page 76]

RFC 7940 Label Generation Rulesets in XML August 2016

 #
 # Match operators (matchers)
 #

 any-matcher = element any {
 attribute count { count-pattern }?,
 attribute comment { text }?
 }

 choice-matcher = element choice {
 ## "count" attribute MUST only be used when the choice-matcher
 ## contains no nested "start", "end", "anchor", "look-behind",
 ## or "look-ahead" operators and no nested rule-matchers
 ## containing any of these elements
 attribute count { count-pattern }?,
 attribute comment { text }?,
 # two or more match operators
 match-operator-choice,
 match-operator-choice+
 }

 char-matcher =
 # for use as a matcher - like "char" but without a "tag" attribute
 element char {
 attribute cp { non-empty-code-point-literal },
 # If used as a matcher (appearing in a "rule" element), the
 # "count" attribute may be present. Otherwise, it MUST be
 # absent.
 attribute count { count-pattern }?,
 attribute comment { text }?,
 attribute ref { ref-pattern }?
 }

 start-matcher = element start {
 attribute comment { text }?
 }

 end-matcher = element end {
 attribute comment { text }?
 }

 anchor-matcher = element anchor {
 attribute comment { text }?
 }

Davies & Freytag Standards Track [Page 77]

RFC 7940 Label Generation Rulesets in XML August 2016

 look-ahead-matcher = element look-ahead {
 attribute comment { text }?,
 match-operators-non-pos
 }
 look-behind-matcher = element look-behind {
 attribute comment { text }?,
 match-operators-non-pos
 }

 ## non-positional match operator that can be used as a direct child
 ## element of the choice-matcher.
 match-operator-choice = (
 any-matcher | choice-matcher | start-matcher | end-matcher
 | char-matcher | class-or-set-operator-nested | rule-matcher
)

 ## non-positional match operators do not contain any "anchor",
 ## "look-behind", or "look-ahead" elements.
 match-operators-non-pos = (
 start-matcher?,
 (any-matcher | choice-matcher | char-matcher
 | class-or-set-operator-nested | rule-matcher)*,
 end-matcher?
)

 ## positional match operators have an "anchor" element, which may be
 ## preceded by a "look-behind" element, or followed by a "look-ahead"
 ## element, or both.
 match-operators-pos =
 look-behind-matcher?, anchor-matcher, look-ahead-matcher?

 match-operators = match-operators-non-pos | match-operators-pos

Davies & Freytag Standards Track [Page 78]

RFC 7940 Label Generation Rulesets in XML August 2016

 #
 # Rules
 #

 # top-level rule must have "name" attribute
 rule-declaration-top = element rule {
 attribute name { identifier },
 attribute comment { text }?,
 attribute ref { ref-pattern }?,
 match-operators
 }

 ## "rule" element used as a matcher (either "by-ref" or contains
 ## other match operators itself)
 rule-matcher =
 element rule {
 ## "count" attribute MUST only be used when the rule-matcher
 ## contains no nested "start", "end", "anchor", "look-behind",
 ## or "look-ahead" operators and no nested rule-matchers
 ## containing any of these elements
 attribute count { count-pattern }?,
 attribute comment { text }?,
 attribute ref { ref-pattern }?,
 (attribute by-ref { rule-ref } | match-operators)
 }

 #
 # Actions
 #

 action-declaration = element action {
 attribute comment { text }?,
 attribute ref { ref-pattern }?,
 # dispositions are often named after variant types or vice versa
 attribute disp { variant-type },
 (attribute match { rule-ref }
 | attribute not-match { rule-ref })?,
 (attribute any-variant { variant-type-list }
 | attribute all-variants { variant-type-list }
 | attribute only-variants { variant-type-list })?
 }

Davies & Freytag Standards Track [Page 79]

RFC 7940 Label Generation Rulesets in XML August 2016

 # DOCUMENT STRUCTURE

 start = lgr
 lgr = element lgr {
 meta-section?,
 data-section,
 rules-section?
 }

 ## Meta section - information recorded with an LGR that generally
 ## does not affect machine processing (except for "unicode-version").
 ## However, if any "class-declaration" uses the "property" attribute,
 ## a "unicode-version" element MUST be present.
 meta-section = element meta {
 element version {
 attribute comment { text }?,
 text
 }?
 & element date { date-pattern }?
 & element language { language-tag }*
 & element scope {
 # type may by "domain" or an application-defined value
 attribute type { xsd:NCName },
 scope-value
 }*
 & element validity-start { date-pattern }?
 & element validity-end { date-pattern }?
 & element unicode-version {
 xsd:token {
 pattern = "\d+\.\d+\.\d+"
 }
 }?
 & element description {
 # this SHOULD be a valid MIME type
 attribute type { text }?,
 text
 }?

Davies & Freytag Standards Track [Page 80]

RFC 7940 Label Generation Rulesets in XML August 2016

 & element references {
 element reference {
 attribute id {
 xsd:token {
 # limit "id" attribute to uppercase letters,
 # digits, and a few punctuation marks; use of
 # integers is RECOMMENDED
 pattern = "[\-_.:0-9A-Z]*"
 minLength = "1"
 }
 },
 attribute comment { text }?,
 text
 }*
 }?
 }

 data-section = element data { (char | range)+ }

 ## Note that action declarations are strictly order dependent.
 ## class-or-set-operator-declaration and rule-declaration-top
 ## are weakly order dependent; they must precede first use of the
 ## identifier via "by-ref".
 rules-section = element rules {
 (class-or-set-operator-declaration
 | rule-declaration-top
 | action-declaration)*
 }

 <CODE ENDS>

Davies & Freytag Standards Track [Page 81]

RFC 7940 Label Generation Rulesets in XML August 2016

Acknowledgements

 This format builds upon the work on documenting IDN tables by many
 different registry operators. Notably, a comprehensive language
 table for Chinese, Japanese, and Korean was developed by the "Joint
 Engineering Team" [RFC3743]; this table is the basis of many registry
 policies. Also, a set of guidelines for Arabic script registrations
 [RFC5564] was published by the Arabic-language community.

 Contributions that have shaped this document have been provided by
 Francisco Arias, Julien Bernard, Mark Davis, Martin Duerst, Paul
 Hoffman, Sarmad Hussain, Barry Leiba, Alexander Mayrhofer, Alexey
 Melnikov, Nicholas Ostler, Thomas Roessler, Audric Schiltknecht,
 Steve Sheng, Michel Suignard, Andrew Sullivan, Wil Tan, and John
 Yunker.

Authors’ Addresses

 Kim Davies
 Internet Corporation for Assigned Names and Numbers
 12025 Waterfront Drive
 Los Angeles, CA 90094
 United States of America

 Phone: +1 310 301 5800
 Email: kim.davies@icann.org
 URI: http://www.icann.org/

 Asmus Freytag
 ASMUS, Inc.

 Email: asmus@unicode.org

Davies & Freytag Standards Track [Page 82]

