
Internet Engineering Task Force (IETF) H. Song
Request for Comments: 7851 X. Jiang
Category: Standards Track R. Even
ISSN: 2070-1721 Huawei
 D. Bryan
 ethernot.org
 Y. Sun
 ICT
 May 2016

 Peer-to-Peer (P2P) Overlay Diagnostics

Abstract

 This document describes mechanisms for Peer-to-Peer (P2P) overlay
 diagnostics. It defines extensions to the REsource LOcation And
 Discovery (RELOAD) base protocol to collect diagnostic information
 and details the protocol specifications for these extensions. Useful
 diagnostic information for connection and node status monitoring is
 also defined. The document also describes the usage scenarios and
 provides examples of how these methods are used to perform
 diagnostics.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7851.

Song, et al. Standards Track [Page 1]

RFC 7851 P2P Overlay Diagnostics May 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Song, et al. Standards Track [Page 2]

RFC 7851 P2P Overlay Diagnostics May 2016

Table of Contents

 1. Introduction . 4
 2. Terminology . 5
 3. Diagnostic Scenarios . 5
 4. Data Collection Mechanisms 6
 4.1. Overview of Operations 6
 4.2. "Ping-like" Behavior: Extending Ping 8
 4.2.1. RELOAD Request Extension: Ping 9
 4.3. "Traceroute-like" Behavior: The PathTrack Method 9
 4.3.1. New RELOAD Request: PathTrack 10
 4.4. Error Code Extensions 12
 5. Diagnostic Data Structures 13
 5.1. DiagnosticsRequest Data Structure 13
 5.2. DiagnosticsResponse Data Structure 15
 5.3. dMFlags and Diagnostic Kind ID Types 16
 6. Message Processing . 19
 6.1. Message Creation and Transmission 19
 6.2. Message Processing: Intermediate Peers 20
 6.3. Message Response Creation 21
 6.4. Interpreting Results 22
 7. Authorization through Overlay Configuration 23
 8. Security Considerations 23
 9. IANA Considerations . 24
 9.1. Diagnostics Flag . 24
 9.2. Diagnostic Kind ID 25
 9.3. Message Codes . 26
 9.4. Error Code . 26
 9.5. Message Extension . 26
 9.6. XML Name Space Registration 27
 10. References . 27
 10.1. Normative References 27
 10.2. Informative References 28
 Appendix A. Examples . 29
 A.1. Example 1 . 29
 A.2. Example 2 . 29
 A.3. Example 3 . 29
 Appendix B. Problems with Generating Multiple Responses on Path 29
 Acknowledgments . 30
 Authors’ Addresses . 30

Song, et al. Standards Track [Page 3]

RFC 7851 P2P Overlay Diagnostics May 2016

1. Introduction

 In the last few years, overlay networks have rapidly evolved and
 emerged as a promising platform for deployment of new applications
 and services in the Internet. One of the reasons overlay networks
 are seen as an excellent platform for large-scale distributed systems
 is their resilience in the presence of failures. This resilience has
 three aspects: data replication, routing recovery, and static
 resilience. Routing recovery algorithms are used to repopulate the
 routing table with live nodes when failures are detected. Static
 resilience measures the extent to which an overlay can route around
 failures even before the recovery algorithm repairs the routing
 table. Both routing recovery and static resilience rely on accurate
 and timely detection of failures.

 There are a number of situations in which some nodes in a Peer-to-
 Peer (P2P) overlay may malfunction or behave badly. For example,
 these nodes may be disabled, congested, or may be misrouting
 messages. The impact of these malfunctions on the overlay network
 may be a degradation of quality of service provided collectively by
 the peers in the overlay network or an interruption of the overlay
 services. It is desirable to identify malfunctioning or badly
 behaving peers through diagnostic tools and exclude or reject them
 from the P2P system. Node failures may also be caused by failures of
 underlying layers. For example, recovery from an incorrect overlay
 topology may be slow when the speed at which IP routing recovers
 after link failures is very slow. Moreover, if a backbone link fails
 and the failover is slow, the network may be partitioned, leading to
 partitions of overlay topologies and inconsistent routing results
 between different partitioned components.

 Some keep-alive algorithms based on periodic probe and acknowledge
 mechanisms enable accurate and timely detection of failures of one
 node’s neighbors [Overlay-Failure-Detection], but these algorithms by
 themselves can only detect the disabled neighbors using the periodic
 method. This may not be sufficient for the service provider
 operating the overlay network.

 A P2P overlay diagnostic framework supporting periodic and on-demand
 methods for detecting node failures and network failures is
 desirable. This document describes a general P2P overlay diagnostic
 extension to the base protocol RELOAD [RFC6940] and is intended as a
 complement to keep-alive algorithms in the P2P overlay itself.
 Readers are advised to consult [P2PSIP-CONCEPTS] for further
 background on the problem domain.

Song, et al. Standards Track [Page 4]

RFC 7851 P2P Overlay Diagnostics May 2016

2. Terminology

 This document uses the concepts defined in RELOAD [RFC6940]. In
 addition, the following terms are used in the document:

 overlay hop:
 One overlay hop is one portion of path between the initiator
 node and the destination peer in a RELOAD overlay. Each time
 packets are passed to the next node in the RELOAD overlay, one
 overlay hop occurs.

 underlay hop:
 An underlay hop is one portion of the path between source and
 destination in the IP layer. Each time packets are passed to
 the next IP-layer device, an underlay hop occurs.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Diagnostic Scenarios

 P2P systems are self-organizing, and ideally the setup and
 configuration of individual P2P nodes requires no network management
 in the traditional sense. However, users of an overlay as well as
 P2P service providers may contemplate usage scenarios where some
 monitoring and diagnostics are required. We present a simple
 connectivity test and some useful diagnostic information that may be
 used in such diagnostics.

 The common usage scenarios for P2P diagnostics can be broadly
 categorized in three classes:

 a. Automatic diagnostics built into the P2P overlay routing
 protocol. Nodes perform periodic checks of known neighbors and
 remove those nodes from the routing tables that fail to respond
 to connectivity checks [Handling_Churn_in_a_DHT]. Unresponsive
 nodes may only be temporarily disabled, for example, due to a
 local cryptographic processing overload, disk processing
 overload, or link overload. It is therefore useful to repeat the
 connectivity checks to see nodes have recovered and can be again
 placed in the routing tables. This process is known as ’failed
 node recovery’ and can be optimized as described in the paper
 "Handling Churn in a DHT" [Handling_Churn_in_a_DHT].

Song, et al. Standards Track [Page 5]

RFC 7851 P2P Overlay Diagnostics May 2016

 b. Diagnostics used by a particular node to follow up on an
 individual user complaint or failure. For example, a technical
 support staff member may use a desktop sharing application (with
 the permission of the user) to remotely determine the health of,
 and possible problems with, the malfunctioning node. Part of the
 remote diagnostics may consist of simple connectivity tests with
 other nodes in the P2P overlay and retrieval of statistics from
 nodes in the overlay. The simple connectivity tests are not
 dependent on the type of P2P overlay. Note that other tests may
 be required as well, including checking the health and
 performance of the user’s computer or mobile device and checking
 the bandwidth of the link connecting the user to the Internet.

 c. P2P system-wide diagnostics used to check the overall health of
 the P2P overlay network. These include checking the consumption
 of network bandwidth, checking for the presence of problem links,
 and checking for abusive or malicious nodes. This is not a
 trivial problem and has been studied in detail for content and
 streaming P2P overlays [Diagnostic_Framework] and has not been
 addressed in earlier documents. While this is a difficult
 problem, a great deal of information that can help in diagnosing
 these problems can be obtained by obtaining basic diagnostic
 information for peers and the network. This document provides a
 framework for obtaining this information.

4. Data Collection Mechanisms

4.1. Overview of Operations

 The diagnostic mechanisms described in this document are primarily
 intended to detect and locate failures or monitor performance in P2P
 overlay networks. It provides mechanisms to detect and locate
 malfunctioning or badly behaving nodes including disabled nodes,
 congested nodes, and misrouting peers. It provides a mechanism to
 detect direct connectivity or connectivity to a specified node, a
 mechanism to detect the availability of specified resource records,
 and a mechanism to discover P2P overlay topology and the underlay
 topology failures.

 The RELOAD diagnostics extensions define two mechanisms to collect
 data. The first is an extension to the RELOAD Ping mechanism that
 allows diagnostic data to be queried from a node as well as to
 diagnose the path to that node. The second is a new method,
 PathTrack, for collecting diagnostic information iteratively.
 Payloads for these mechanisms allowing diagnostic data to be
 collected and represented are presented, and additional error codes
 are introduced. Essentially, this document reuses the RELOAD
 specification [RFC6940] and extends it to introduce the new

Song, et al. Standards Track [Page 6]

RFC 7851 P2P Overlay Diagnostics May 2016

 diagnostics methods. The extensions strictly follow how RELOAD
 specifies message routing, transport, NAT traversal, and other RELOAD
 protocol features.

 This document primarily describes how to detect and locate failures
 including disabled nodes, congested nodes, misrouting behaviors, and
 underlying network faults in P2P overlay networks through a simple
 and efficient mechanism. This mechanism is modeled after the ping/
 traceroute paradigm: ping [RFC792] is used for connectivity checks,
 and traceroute is used for hop-by-hop fault localization as well as
 path tracing. This document specifies a "ping-like" mode (by
 extending the RELOAD Ping method to gather diagnostics) and a
 "traceroute-like" mode (by defining the new PathTrack method) for
 diagnosing P2P overlay networks.

 One way these tools can be used is to detect the connectivity to the
 specified node or the availability of the specified resource record
 through the extended Ping operation. Once the overlay network
 receives some alarms about overlay service degradation or
 interruption, a Ping is sent. If the Ping fails, one can then send a
 PathTrack to determine where the fault lies.

 The diagnostic information can only be provided to authorized nodes.
 Some diagnostic information can be provided to all the participants
 in the P2P overlay, and some other diagnostic information can only be
 provided to the nodes authorized by the local or overlay policy. The
 authorization depends on the type of the diagnostic information and
 the administrative considerations and is application specific.

 This document considers the general administrative scenario based on
 diagnostic Kind, where a whole overlay can authorize a certain kind
 of diagnostic information to a small list of particular nodes (e.g.,
 administrative nodes). That means if a node gets the authorization
 to access a diagnostic Kind, it can access that information from all
 nodes in the overlay network. It leaves the scenario where a
 particular node authorizes its diagnostic information to a particular
 list of nodes out of scope. This could be achieved by extension of
 this document if there is a requirement in the near future. The
 default policy or access rule for a type of diagnostic information is
 "deny" unless specified in the diagnostics extension document. As
 the RELOAD protocol already requires that each message carries the
 message signature of the sender, the receiver of the diagnostics
 requests can use the signature to identify the sender. It can then
 use the overlay configuration file with this signature to determine
 which types of diagnostic information that node is authorized for.

Song, et al. Standards Track [Page 7]

RFC 7851 P2P Overlay Diagnostics May 2016

 In the remainder of this section we define mechanisms for collecting
 data, as well as the specific protocol extensions (message
 extensions, new methods, and error codes) required to collect this
 information. In Section 5 we discuss the format of the data
 collected, and in Section 6 we discuss detailed message processing.

 It is important to note that the mechanisms described in this
 document do not guarantee that the information collected is in fact
 related to the previous failures. However, using the information
 from previous traversed nodes, the user (or management system) may be
 able to infer the problem. Symmetric routing can be achieved by
 using the Via List [RFC6940] (or an alternate DHT routing algorithm),
 but the response path is not guaranteed to be the same.

4.2. "Ping-like" Behavior: Extending Ping

 To provide "ping-like" behavior, the RELOAD Ping method is extended
 to collect diagnostic data along the path. The request message is
 forwarded by the intermediate peers along the path and then
 terminated by the responsible peer. After optional local
 diagnostics, the responsible peer returns a response message. If an
 error is found when routing, an error response is sent to the
 initiator node by the intermediate peer.

 The message flow of a Ping message (with diagnostic extensions) is as
 follows:

 Peer A Peer B Peer C Peer D
 | | | |
 |(1). PingReq | | |
 |------------------->|(2). PingReq | |
 | |------------------->|(3). PingReq |
 | | |------------------->|
 | | | |
 | | |<-------------------|
 | |<-------------------|(4). PingAns |
 |<-------------------|(5). PingAns | |
 |(6). PingAns | | |
 | | | |

 Figure 1: Ping Diagnostic Message Flow

Song, et al. Standards Track [Page 8]

RFC 7851 P2P Overlay Diagnostics May 2016

4.2.1. RELOAD Request Extension: Ping

 To extend the Ping request for use in diagnostics, a new extension of
 RELOAD is defined. The structure for a MessageExtension in RELOAD is
 defined as:

 struct {
 MessageExtensionType type;
 Boolean critical;
 opaque extension_contents<0..2^32-1>;
 } MessageExtension;

 For the Ping request extension, we define a new MessageExtensionType,
 extension 0x2 named "Diagnostic_Ping", as specified in Table 4. The
 extension contents consists of a DiagnosticsRequest structure,
 defined in Section 5.1. This extension MAY be used for new requests
 of the Ping method and MUST NOT be included in requests using any
 other method.

 This extension is not critical. If a peer does not support the
 extension, they will simply ignore the diagnostic portion of the
 message and will treat the message as if it were a normal ping.
 Senders MUST accept a response that lacks diagnostic information and
 SHOULD NOT resend the message expecting a reply. Receivers who
 receive a method other than Ping including this extension MUST ignore
 the extension.

4.3. "Traceroute-like" Behavior: The PathTrack Method

 We define a simple PathTrack method for retrieving diagnostic
 information iteratively.

 The operation of this request is shown below in Figure 2. The
 initiator node A asks its neighbor B which is the next hop peer to
 the destination ID, and B returns a message with the next hop peer C
 information, along with optional diagnostic information for B to the
 initiator node. Then the initiator node A asks the next hop peer C
 (direct response routing [RFC7263] or via symmetric routing) to
 return next hop peer D information and diagnostic information of C.
 Unless a failure prevents the message from being forwarded, this step
 can be repeated until the request reaches responsible peer D for the
 destination ID and retrieves the diagnostic information of peer D.

Song, et al. Standards Track [Page 9]

RFC 7851 P2P Overlay Diagnostics May 2016

 The message flow of a PathTrack message (with diagnostic extensions)
 is as follows:

 Peer-A Peer-B Peer-C Peer-D
 | | | |
 |(1).PathTrackReq | | |
 |------------------->| | |
 |(2).PathTrackAns | | |
 |<-------------------| | |
 | |(3).PathTrackReq | |
 |--------------------|------------------->| |
 | |(4).PathTrackAns | |
 |<-------------------|--------------------| |
 | | |(5).PathTrackReq |
 |--------------------|--------------------|------------------->|
 | | |(6).PathTrackAns |
 |<-------------------|--------------------|--------------------|
 | | | |

 Figure 2: PathTrack Diagnostic Message Flow

 There have been proposals that RouteQuery and a series of Fetch
 requests can be used to replace the PathTrack mechanism; however, in
 the presence of high rates of churn, such an operation would not,
 strictly speaking, provide identical results, as the path may change
 between RouteQuery and Fetch operations. While obviously the path
 could change between steps of PathTrack as well, with a single
 message rather than two messages for query and fetch, less
 inconsistency is likely, and thus the use of a single message is
 preferred.

 Given that in a typical diagnostic scenario the peer sending the
 PathTrack request desires to obtain information about the current
 path to the destination, in the event that successive calls to
 PathTrack return different paths, the results should be discarded and
 the request resent, ensuring that the second request traverses the
 appropriate path.

4.3.1. New RELOAD Request: PathTrack

 This document defines a new RELOAD method, PathTrack, to retrieve the
 diagnostic information from the intermediate peers along the routing
 path. At each step of the PathTrack request, the responsible peer
 responds to the initiator node with requested status information.
 Status information can include a peer’s congestion state, processing
 power, available bandwidth, the number of entries in its neighbor
 table, uptime, identity, network address information, and next hop
 peer information.

Song, et al. Standards Track [Page 10]

RFC 7851 P2P Overlay Diagnostics May 2016

 A PathTrack request specifies which diagnostic information is
 requested using a DiagnosticsRequest data structure, which is defined
 and discussed in detail in Section 5.1. Base information is
 requested by setting the appropriate flags in the data structure in
 the request. If all flags are clear (no bits are set), then the
 PathTrack request is only used for requesting the next hop
 information. In this case, the iterative mode of PathTrack is
 degraded to a RouteQuery method that is only used for checking the
 liveness of the peers along the routing path. The PathTrack request
 can be routed using direct response routing or other routing methods
 chosen by the initiator node.

 A response to a successful PathTrackReq is a PathTrackAns message.
 The PathTrackAns contains general diagnostic information in the
 payload, returned using a DiagnosticResponse data structure. This
 data structure is defined and discussed in detail in Section 5.2.
 The information returned is determined based on the information
 requested in the flags in the corresponding request.

4.3.1.1. PathTrack Request

 The structure of the PathTrack request is as follows:

 struct{
 Destination destination;
 DiagnosticsRequest request;
 }PathTrackReq;

 The fields of the PathTrackReq are as follows:

 destination: The destination that the initiator node is interested
 in. This may be any valid destination object, including a NodeID,
 opaque ids, or ResourceID. One example should be noted that, for
 debugging purposes, the initiator will use the destination ID as
 it was used when failure happened.

 request: A DiagnosticsRequest, as discussed in Section 5.1.

4.3.1.2. PathTrack Response

 The structure of the PathTrack response is as follows:

 struct{
 Destination next_hop;
 DiagnosticsResponse response;
 }PathTrackAns;

Song, et al. Standards Track [Page 11]

RFC 7851 P2P Overlay Diagnostics May 2016

 The fields of the PathTrackAns are as follows:

 next_hop: The information of the next hop node from the responding
 intermediate peer to the destination. If the responding peer is
 the responsible peer for the destination ID, then the next_hop
 node ID equals the responding node ID, and after receiving a
 PathTrackAns where the next_hop node ID equals the responding node
 ID, the initiator MUST stop the iterative process.

 response: A DiagnosticsResponse, as discussed in Section 5.2.

4.4. Error Code Extensions

 This document extends the error response method defined in the RELOAD
 specification to support error cases resulting from diagnostic
 queries. When an error is encountered in RELOAD, the Message Code
 0xffff is returned. The ErrorResponse structure includes an error
 code. We define new error codes to report possible error conditions
 detected while performing diagnostics:

 Code Value Error Code Name
 0x15 Error_Underlay_Destination_Unreachable
 0x16 Error_Underlay_Time_Exceeded
 0x17 Error_Message_Expired
 0x18 Error_Upstream_Misrouting
 0x19 Error_Loop_Detected
 0x1a Error_TTL_Hops_Exceeded

 The error code is returned by the upstream node before the failure
 node. The upstream node uses the normal ping to detect the failure
 type and return it to the initiator node, which will help the user
 (initiator node) to understand where the failure happened and what
 kind of error happened, as the failure may happen at the same
 location and for the same reason when sending the normal message and
 the diagnostics message.

 As defined in RELOAD, additional information may be stored (in an
 implementation-specific way) in the optional error_info byte string.
 While the specifics are obviously left to the implementation, as an
 example, in the case of 0x15, the error_field could be used to
 provide additional information as to why the underlay destination is
 unreachable (net unreachable, host unreachable, fragmentation needed,
 etc.).

Song, et al. Standards Track [Page 12]

RFC 7851 P2P Overlay Diagnostics May 2016

5. Diagnostic Data Structures

 Both the extended Ping method and PathTrack method use the following
 common diagnostics data structures to collect data. Two common
 structures are defined: DiagnosticsRequest for requesting data and
 DiagnosticsResponse for returning the information.

5.1. DiagnosticsRequest Data Structure

 The DiagnosticsRequest data structure is used to request diagnostic
 information and has the following form:

 enum{ (2^16-1) } DiagnosticKindId;

 struct{
 DiagnosticKindId kind;
 opaque diagnostic_extension_contents<0..2^32-1>;
 }DiagnosticExtension;

 struct{
 uint64 expiration;
 uint64 timestamp_initiated;
 uint64 dMFlags;
 uint32 ext_length;
 DiagnosticExtension diagnostic_extensions_list<0..2^32-1>;
 }DiagnosticsRequest;

 The fields in the DiagnosticsRequest are as follows:

 expiration: The time when the request will expire represented as the
 number of milliseconds elapsed since midnight Jan 1, 1970 UTC (not
 counting leap seconds). This will have the same values for
 seconds as standard UNIX time or POSIX time. More information can
 be found at "Unix time" in Wikipedia [UnixTime]. This value MUST
 have a value between 1 and 600 seconds in the future. This value
 is used to prevent replay attacks.

 timestamp_initiated: The time when the diagnostics request was
 initiated, represented as the number of milliseconds elapsed since
 midnight Jan 1, 1970 UTC (not counting leap seconds). This will
 have the same values for seconds as standard UNIX time or POSIX
 time.

Song, et al. Standards Track [Page 13]

RFC 7851 P2P Overlay Diagnostics May 2016

 dMFlags: A mandatory field that is an unsigned 64-bit integer
 indicating which base diagnostic information the request initiator
 node is interested in. The initiator sets different bits to
 retrieve different kinds of diagnostic information. If dMFlags is
 set to zero, then no base diagnostic information is conveyed in
 the PathTrack response. If dMFlags is set to all "1"s, then all
 base diagnostic information values are requested. A request may
 set any number of the flags to request the corresponding
 diagnostic information.

 Note this memo specifies the initial set of flags; the flags can
 be extended. The dMflags indicate general diagnostic information.
 The mapping between the bits in the dMFlags and the diagnostic
 Kind ID presented is as described in Section 9.1.

 ext_length: The length of the extended diagnostic request
 information in bytes. If the value is greater than or equal to 1,
 then some extended diagnostic information is being requested on
 the assumption this information will be included in the response
 if the recipient understands the extended request and is willing
 to provide it. The specific diagnostic information requested is
 defined in the diagnostic_extensions_list below. A value of zero
 indicates no extended diagnostic information is being requested.
 The value of ext_length MUST NOT be negative. Note that it is not
 the length of the entire DiagnosticsRequest data structure, but of
 the data making up the diagnostic_extensions_list.

 diagnostic_extensions_list: Consists of one or more
 DiagnosticExtension structures (see below) documenting additional
 diagnostic information being requested. Each DiagnosticExtension
 consists of the following fields:

 kind: A numerical code indicating the type of extension
 diagnostic information (see Section 9.2). Note that kinds
 0xf000 - 0xfffe are reserved for overlay specific diagnostics
 and may be used without IANA registration for local diagnostic
 information. Kinds from 0x0000 to 0x003f MUST NOT be indicated
 in the diagnostic_extensions_list in the message request, as
 they may be represented using the dMFlags in a much simpler
 (and more space efficient) way.

 diagnostic_extension_contents: The opaque data containing the
 request for this particular extension. This data is extension
 dependent.

Song, et al. Standards Track [Page 14]

RFC 7851 P2P Overlay Diagnostics May 2016

5.2. DiagnosticsResponse Data Structure

 The DiagnosticsResponse data structure is used to return the
 diagnostic information and has the following form:

 enum { (2^16-1) } DiagnosticKindId;
 struct{
 DiagnosticKindId kind;
 opaque diagnostic_info_contents<0..2^16-1>;
 }DiagnosticInfo;

 struct{
 uint64 expiration;
 uint64 timestamp_initiated;
 uint64 timestamp_received;
 uint8 hop_counter;
 uint32 ext_length;
 DiagnosticInfo diagnostic_info_list<0..2^32-1>;
 }DiagnosticsResponse;

 The fields in the DiagnosticsResponse are as follows:

 expiration: The time when the response will expire represented as
 the number of milliseconds elapsed since midnight Jan 1, 1970 UTC
 (not counting leap seconds). This will have the same values for
 seconds as standard UNIX time or POSIX time. This value MUST have
 a value between 1 and 600 seconds in the future.

 timestamp_initiated: This value is copied from the diagnostics
 request message. The benefit of containing such a value in the
 response message is that the initiator node does not have to
 maintain the state.

 timestamp_received: The time when the diagnostic request was
 received represented as the number of milliseconds elapsed since
 midnight Jan 1, 1970 UTC (not counting leap seconds). This will
 have the same values for seconds as standard UNIX time or POSIX
 time.

 hop_counter: This field only appears in diagnostic responses. It
 MUST be exactly copied from the TTL field of the forwarding header
 in the received request. This information is sent back to the
 request initiator, allowing it to compute the number of hops that
 the message traversed in the overlay.

Song, et al. Standards Track [Page 15]

RFC 7851 P2P Overlay Diagnostics May 2016

 ext_length: The length of the returned DiagnosticInfo information in
 bytes. If the value is greater than or equal to 1, then some
 extended diagnostic information (as specified in the
 DiagnosticsRequest) was available and is being returned. In that
 case, this value indicates the length of the returned information.
 A value of zero indicates no extended diagnostic information is
 included either because none was requested or the request could
 not be accommodated. The value of ext_length MUST NOT be
 negative. Note that it is not the length of the entire
 DiagnosticsRequest data structure but of the data making up the
 diagnostic_info_list.

 diagnostic_info_list: consists of one or more DiagnosticInfo
 structures containing the requested diagnostic_info_contents. The
 fields in the DiagnosticInfo structure are as follows:

 kind: A numeric code indicating the type of information being
 returned. For base data requested using the dMFlags, this code
 corresponds to the dMFlag set and is described in Section 5.1.
 For diagnostic extensions, this code will be identical to the
 value of the DiagnosticKindId set in the "kind" field of the
 DiagnosticExtension of the request. See Section 9.2.

 diagnostic_info_contents: Data containing the value for the
 diagnostic information being reported. Various kinds of
 diagnostic information can be retrieved. Please refer to
 Section 5.3 for details of the diagnostic Kind ID for the base
 diagnostic information that may be reported.

5.3. dMFlags and Diagnostic Kind ID Types

 The dMFlags field described above is a 64-bit field that allows
 initiator nodes to identify up to 62 items of base information to
 request in a request message (the first and last flags being
 reserved). The dMFlags also reserves all "0"s, which means nothing
 is requested, and all "1"s, which means everything is requested. But
 at the same time, the first and last bits cannot be used for other
 purposes, and they MUST be set to 0 when other particular diagnostic
 Kind IDs are requested. When the requested base information is
 returned in the response, the value of the diagnostic Kind ID will
 correspond to the numeric field marked in the dMFlags in the request.
 The values for the dMFlags are defined in Section 9.1 and the
 diagnostic Kind IDs are defined in Section 9.2. The information
 contained for each value is described in this section. Access to
 each kind of diagnostic information MUST NOT be allowed unless
 compliant to the rules defined in Section 7.

Song, et al. Standards Track [Page 16]

RFC 7851 P2P Overlay Diagnostics May 2016

 STATUS_INFO (8 bits): A single-value element containing an unsigned
 byte representing whether or not the node is in congestion status.
 An example usage of STATUS_INFO is for congestion-aware routing.
 In this scenario, each peer has to update its congestion status
 periodically. An intermediate peer in the Distributed Hash
 Table (DHT) network will choose its next hop according to both the
 DHT routing algorithm and the status information. This is done to
 avoid increasing load on congested peers. The rightmost 4 bits
 are used and other bits MUST be cleared to "0"s for future use.

 There are 16 levels of congestion status, with 0x00 representing
 zero load and 0x0f representing congestion. This document does
 not provide a specific method for congestion and leaves this
 decision to each overlay implementation. One possible option for
 an overlay implementation would be to take node’s CPU/memory/
 bandwidth usage percentage in the past 600 seconds and normalize
 the highest value to the range from 0x00 to 0x0f. An overlay
 implementation can also decide to not use all the 16 values from
 0x00 to 0x0f. A future document may define an objective measure
 or specific algorithm for this.

 ROUTING_TABLE_SIZE (32 bits): A single-value element containing an
 unsigned 32-bit integer representing the number of peers in the
 peer’s routing table. The administrator of the overlay may be
 interested in statistics of this value for reasons such as routing
 efficiency.

 PROCESS_POWER (64 bits): A single-value element containing an
 unsigned 64-bit integer specifying the processing power of the
 node with MIPS as the unit. Fractional values are rounded up.

 UPSTREAM_BANDWIDTH (64 bits): A single-value element containing an
 unsigned 64-bit integer specifying the upstream network bandwidth
 (provisioned or maximum, not available) of the node with units of
 kbit/s. Fractional values are rounded up. For multihomed hosts,
 this should be the link used to send the response.

 DOWNSTREAM_BANDWIDTH (64 bits): A single-value element containing an
 unsigned 64-bit integer specifying the downstream network
 bandwidth (provisioned or maximum, not available) of the node with
 kbit/s as the unit. Fractional values are rounded up. For
 multihomed hosts, this should be the link the request was received
 from.

Song, et al. Standards Track [Page 17]

RFC 7851 P2P Overlay Diagnostics May 2016

 SOFTWARE_VERSION: A single-value element containing a US-ASCII
 string that identifies the manufacture, model, operating system
 information, and the version of the software. Given that there
 are a very large number of peers in some networks, and no peer is
 likely to know all other peer’s software, this information may be
 very useful to help determine if the cause of certain groups of
 misbehaving peers is related to specific software versions. While
 the format is peer defined, a suggested format is as follows:
 "ApplicationProductToken (Platform; OS-or-CPU) VendorProductToken
 (VendorComment)", for example, "MyReloadApp/1.0 (Unix; Linux
 x86_64) libreload-java/0.7.0 (Stonyfish Inc.)". The string is a
 C-style string and MUST be terminated by "\0"."\0" MUST NOT be
 included in the string itself to prevent confusion with the
 delimiter.

 MACHINE_UPTIME (64 bits): A single-value element containing an
 unsigned 64-bit integer specifying the time the node’s underlying
 system has been up (in seconds).

 APP_UPTIME (64 bits): A single-value element containing an unsigned
 64-bit integer specifying the time the P2P application has been up
 (in seconds).

 MEMORY_FOOTPRINT (64 bits): A single-value element containing an
 unsigned 64-bit integer representing the memory footprint of the
 peer program in kilobytes (1024 bytes). Fractional values are
 rounded up.

 DATASIZE_STORED (64 bits): An unsigned 64-bit integer representing
 the number of bytes of data being stored by this node.

 INSTANCES_STORED: An array element containing the number of
 instances of each kind stored. The array is indexed by Kind-ID.
 Each entry is an unsigned 64-bit integer.

 MESSAGES_SENT_RCVD: An array element containing the number of
 messages sent and received. The array is indexed by method code.
 Each entry in the array is a pair of unsigned 64-bit integers
 (packed end to end) representing sent and received.

 EWMA_BYTES_SENT (32 bits): A single-value element containing an
 unsigned 32-bit integer representing an exponential weighted
 average of bytes sent per second by this peer:

 sent = alpha x sent_present + (1 - alpha) x sent_last

 where sent_present represents the bytes sent per second since the
 last calculation and sent_last represents the last calculation of

Song, et al. Standards Track [Page 18]

RFC 7851 P2P Overlay Diagnostics May 2016

 bytes sent per second. A suitable value for alpha is 0.8 (or
 another value as determined by the implementation). This value is
 calculated every five seconds (or another time period as
 determined by the implementation). The value for the very first
 time period should simply be the average of bytes sent in that
 time period.

 EWMA_BYTES_RCVD (32 bits): A single-value element containing an
 unsigned 32-bit integer representing an exponential weighted
 average of bytes received per second by this peer:

 rcvd = alpha x rcvd_present + (1 - alpha) x rcvd_last

 where rcvd_present represents the bytes received per second since
 the last calculation and rcvd_last represents the last calculation
 of bytes received per second. A suitable value for alpha is 0.8
 (or another value as determined by the implementation). This
 value is calculated every five seconds (or another time period as
 determined by the implementation). The value for the very first
 time period should simply be the average of bytes received in that
 time period.

 UNDERLAY_HOP (8 bits): Indicates the IP-layer hops from the
 intermediate peer, which receives the diagnostics message to the
 next-hop peer for this message. (Note: RELOAD does not require
 the intermediate peers to look into the message body. So, here we
 use PathTrack to gather underlay hops for diagnostics purpose).

 BATTERY_STATUS (8 bits): The leftmost bit is used to indicate
 whether this peer is using a battery or not. If this bit is clear
 (set to "0"), then the peer is using a battery for power. The
 other 7 bits are to be determined by specific applications.

6. Message Processing

6.1. Message Creation and Transmission

 When constructing either a Ping message with diagnostic extensions or
 a PathTrack message, the sender first creates and populates a
 DiagnosticsRequest data structure. The timestamp_initiated field is
 set to the current time, and the expiration field is constructed
 based on this time. The sender includes the dMFlags field in the
 structure, setting any number (including all) of the flags to request
 particular diagnostic information. The sender MAY leave all the bits
 unset, thereby requesting no particular diagnostic information.

 The sender MAY also include diagnostic extensions in the
 DiagnosticsRequest data structure to request additional information.

Song, et al. Standards Track [Page 19]

RFC 7851 P2P Overlay Diagnostics May 2016

 If the sender includes any extensions, it MUST calculate the length
 of these extensions and set the ext_length field to this value. If
 no extensions are included, the sender MUST set ext_length to zero.

 The format of the DiagnosticRequest data structure and its fields
 MUST follow the restrictions defined in Section 5.1.

 When constructing a Ping message with diagnostic extensions, the
 sender MUST create a MessageExtension structure as defined in RELOAD
 [RFC6940], setting the value of type to 0x2 and the value of critical
 to FALSE. The value of extension_contents MUST be a
 DiagnosticsRequest structure as defined above. The message MAY be
 directed to a particular NodeID or ResourceID but MUST NOT be sent to
 the broadcast NodeID.

 When constructing a PathTrack message, the sender MUST set the
 message_code for the RELOAD MessageContents structure to
 path_track_req 0x27. The request field of the PathTrackReq MUST be
 set to the DiagnosticsRequest data structure defined above. The
 destination field MUST be set to the desired destination, which MAY
 be either a NodeID or ResourceID but SHOULD NOT be the broadcast
 NodeID.

6.2. Message Processing: Intermediate Peers

 When a request arrives at a peer, if the peer’s responsible ID space
 does not cover the destination ID of the request, then the peer MUST
 continue processing this request according to the overlay specified
 routing mode from RELOAD protocol.

 In P2P overlay, error responses to a message can be generated by
 either an intermediate peer or the responsible peer. When a request
 is received at a peer, the peer may find connectivity failures or
 malfunctioning peers through the predefined rules of the overlay
 network, e.g., by analyzing the Via List or underlay error messages.
 In this case, the intermediate peer returns an error response to the
 initiator node, reporting any malfunction node information available
 in the error message payload. All error responses generated MUST
 contain the appropriate error code.

 Each intermediate peer receiving a Ping message with extensions (and
 that understands the extension) or receiving a PathTrack request /
 response MUST check the expiration value (Unix time format) to
 determine if the message is expired. If the message expired, the
 intermediate peer MUST generate a response with error code 0x17
 "Error_Message_Expired", return the response to the initiator node,
 and discard the message.

Song, et al. Standards Track [Page 20]

RFC 7851 P2P Overlay Diagnostics May 2016

 The intermediate peer MUST return an error response with the error
 code 0x15 "Error_Underlay_Destination_Unreachable" when it receives
 an ICMP message with "Destination Unreachable" information after
 forwarding the received request to the destination peer.

 The intermediate peer MUST return an error response with the error
 code 0x16 "Error_Underlay_Time_Exceeded" when it receives an ICMP
 message with "Time Exceeded" information after forwarding the
 received request.

 The peer MUST return an error response with error code 0x18
 "Error_Upstream_Misrouting" when it finds its upstream peer disobeys
 the routing rules defined in the overlay. The immediate upstream
 peer information MUST also be conveyed to the initiator node.

 The peer MUST return an error response with error code 0x19
 "Error_Loop_Detected" when it finds a loop through the analysis of
 the Via List.

 The peer MUST return an error response with error code 0x1a
 "Error_TTL_Hops_Exceeded" when it finds that the TTL field value is
 no more than 0 when forwarding.

6.3. Message Response Creation

 When a diagnostic request message arrives at a peer, it is
 responsible for the destination ID specified in the forwarding
 header, and assuming it understands the extension (in the case of
 Ping) or the new request type PathTrack, it MUST follow the
 specifications defined in RELOAD to form the response header, and
 perform the following operations:

 o When constructing a PathTrack response, the sender MUST set the
 message_code for the RELOAD MessageContents structure to
 path_track_ans 0x28.

 o The receiver MUST check the expiration value (Unix time format) in
 the DiagnosticsRequest to determine if the message is expired. If
 the message is expired, the peer MUST generate a response with the
 error code 0x17 "Error_Message_Expired", return the response to
 the initiator node, and discard the message.

 o If the message is not expired, the receiver MUST construct a
 DiagnosticsResponse structure as follows: 1) the TTL value from
 the forwarding header is copied to the hop_counter field of the
 DiagnosticsResponse structure (note that the default value for TTL
 at the beginning represents 100 hops unless the overlay
 configuration has overridden the value), and 2) the receiver

Song, et al. Standards Track [Page 21]

RFC 7851 P2P Overlay Diagnostics May 2016

 generates a Unix time format timestamp for the current time of day
 and places it in the timestamp_received field and constructs a new
 expiration time and places it in the expiration field of the
 DiagnosticsResponse.

 o The destination peer MUST check if the initiator node has the
 authority to request specific types of diagnostic information, and
 if appropriate, append the diagnostic information requested in the
 dMFlags and diagnostic_extensions (if any) using the
 diagnostic_info_list field to the DiagnosticsResponse structure.
 If any information is returned, the receiver MUST calculate the
 length of the response and set ext_length appropriately. If no
 diagnostic information is returned, ext_length MUST be set to
 zero.

 o The format of the DiagnosticResponse data structure and its fields
 MUST follow the restrictions defined in Section 5.2.

 o In the event of an error, an error response containing the error
 code followed by the description (if they exist) MUST be created
 and sent to the sender. If the initiator node asks for diagnostic
 information that they are not authorized to query, the receiving
 peer MUST return an error response with the error code 2
 "Error_Forbidden".

6.4. Interpreting Results

 The initiator node, as well as the responding peer, may compute the
 overlay One-Way-Delay time through the value in timestamp_received
 and the timestamp_initiated field. However, for a single hop
 measurement, the traditional measurement methods (IP-layer ping) MUST
 be used instead of the overlay layer diagnostics methods.

 The P2P overlay network using the diagnostics methods specified in
 this document MUST enforce time synchronization with a central time
 server. The Network Time Protocol [RFC5905] can usually maintain
 time to within tens of milliseconds over the public Internet and can
 achieve better than one millisecond accuracy in local area networks
 under ideal conditions. However, this document does not specify the
 choice for time resolution and synchronization, leaving it to the
 implementation.

 The initiator node receiving the Ping response may check the
 hop_counter field and compute the overlay hops to the destination
 peer for the statistics of connectivity quality from the perspective
 of overlay hops.

Song, et al. Standards Track [Page 22]

RFC 7851 P2P Overlay Diagnostics May 2016

7. Authorization through Overlay Configuration

 Different level of access control can be made for different users/
 nodes. For example, diagnostic information A can be accessed by
 nodes 1 and 2, but diagnostic information B can only be accessed by
 node 2.

 The overlay configuration file MUST contain the following XML
 elements for authorizing a node to access the relative diagnostic
 Kinds.

 diagnostic-kind: This has the attribute "kind" with the hexadecimal
 number indicating the diagnostic Kind ID. This attribute has the
 same value with Section 9.2 and at least one subelement "access-
 node".

 access-node: This element contains one hexadecimal number indicating
 a NodeID, and the node with this NodeID is allowed to access the
 diagnostic "kind" under the same diagnostic-kind element.

8. Security Considerations

 The authorization for diagnostic information must be designed with
 care to prevent it becoming a method to retrieve information for both
 attacks. It should also be noted that attackers can use diagnostics
 to analyze overlay information to attack certain key peers. For
 example, diagnostic information might be used to fingerprint a peer
 where the peer will lose its anonymity characteristics, but anonymity
 might be very important for some P2P overlay networks, and defenses
 against such fingerprinting are probably very hard. As such,
 networks where anonymity is of very high importance may find
 implementation of diagnostics problematic or even undesirable,
 despite the many advantages it offers. As this document is a RELOAD
 extension, it follows RELOAD message header and routing
 specifications. The common security considerations described in the
 base document [RFC6940] are also applicable to this document.
 Overlays may define their own requirements on who can collect/share
 diagnostic information.

Song, et al. Standards Track [Page 23]

RFC 7851 P2P Overlay Diagnostics May 2016

9. IANA Considerations

9.1. Diagnostics Flag

 IANA has created a "RELOAD Diagnostics Flag" registry under protocol
 RELOAD. Entries in this registry are 1-bit flags contained in a
 64-bit integer dMFlags denoting diagnostic information to be
 retrieved as described in Section 4.3.1. New entries SHALL be
 defined via Standards Action as per [RFC5226]. The initial contents
 of this registry are:

 +-------------------------+----------------------------+----------+
 | Diagnostic Information |Diagnostic Flag in dMFlags | Reference|
 |-------------------------+----------------------------+----------|
 |Reserved All 0s value | 0x 0000 0000 0000 0000 | RFC 7851 |
 |Reserved First Bit | 0x 0000 0000 0000 0001 | RFC 7851 |
 |STATUS_INFO | 0x 0000 0000 0000 0002 | RFC 7851 |
 |ROUTING_TABLE_SIZE | 0x 0000 0000 0000 0004 | RFC 7851 |
 |PROCESS_POWER | 0x 0000 0000 0000 0008 | RFC 7851 |
 |UPSTREAM_BANDWIDTH | 0x 0000 0000 0000 0010 | RFC 7851 |
 |DOWNSTREAM_ BANDWIDTH | 0x 0000 0000 0000 0020 | RFC 7851 |
 |SOFTWARE_VERSION | 0x 0000 0000 0000 0040 | RFC 7851 |
 |MACHINE_UPTIME | 0x 0000 0000 0000 0080 | RFC 7851 |
 |APP_UPTIME | 0x 0000 0000 0000 0100 | RFC 7851 |
 |MEMORY_FOOTPRINT | 0x 0000 0000 0000 0200 | RFC 7851 |
 |DATASIZE_STORED | 0x 0000 0000 0000 0400 | RFC 7851 |
 |INSTANCES_STORED | 0x 0000 0000 0000 0800 | RFC 7851 |
 |MESSAGES_SENT_RCVD | 0x 0000 0000 0000 1000 | RFC 7851 |
 |EWMA_BYTES_SENT | 0x 0000 0000 0000 2000 | RFC 7851 |
 |EWMA_BYTES_RCVD | 0x 0000 0000 0000 4000 | RFC 7851 |
 |UNDERLAY_HOP | 0x 0000 0000 0000 8000 | RFC 7851 |
 |BATTERY_STATUS | 0x 0000 0000 0001 0000 | RFC 7851 |
 |Reserved Last Bit | 0x 8000 0000 0000 0000 | RFC 7851 |
 |Reserved All 1s value | 0x ffff ffff ffff ffff | RFC 7851 |
 +-------------------------+----------------------------+----------+

Song, et al. Standards Track [Page 24]

RFC 7851 P2P Overlay Diagnostics May 2016

9.2. Diagnostic Kind ID

 IANA has created a "RELOAD Diagnostic Kind ID" registry under
 protocol RELOAD. Entries in this registry are 16-bit integers
 denoting diagnostics extension data kinds carried in the diagnostic
 request and response messages, as described in Sections and 5.1 and
 5.2. Code points from 0x0001 to 0x003e are asked to be assigned
 together with flags within the "RELOAD Diagnostics Flag" registry.
 The registration procedure for the "RELOAD Diagnostic Kind ID"
 registry is Standards Action as defined in RFC 5226.

 +----------------------+---------------+---------------+
 | Diagnostic Kind | Code | Specification |
 +----------------------+---------------+---------------+
 | Reserved | 0x0000 | RFC 7851 |
 | STATUS_INFO | 0x0001 | RFC 7851 |
 | ROUTING_TABLE_SIZE | 0x0002 | RFC 7851 |
 | PROCESS_POWER | 0x0003 | RFC 7851 |
 | UPSTREAM_BANDWIDTH | 0x0004 | RFC 7851 |
 | DOWNSTREAM_BANDWIDTH | 0x0005 | RFC 7851 |
 | SOFTWARE_VERSION | 0x0006 | RFC 7851 |
 | MACHINE_UPTIME | 0x0007 | RFC 7851 |
 | APP_UPTIME | 0x0008 | RFC 7851 |
 | MEMORY_FOOTPRINT | 0x0009 | RFC 7851 |
 | DATASIZE_STORED | 0x000a | RFC 7851 |
 | INSTANCES_STORED | 0x000b | RFC 7851 |
 | MESSAGES_SENT_RCVD | 0x000c | RFC 7851 |
 | EWMA_BYTES_SENT | 0x000d | RFC 7851 |
 | EWMA_BYTES_RCVD | 0x000e | RFC 7851 |
 | UNDERLAY_HOP | 0x000f | RFC 7851 |
 | BATTERY_STATUS | 0x0010 | RFC 7851 |
 | Unassigned | 0x0011-0x003e | RFC 7851 |
 | local use (Reserved) | 0xf000-0xfffe | RFC 7851 |
 | Reserved | 0xffff | RFC 7851 |
 +----------------------+---------------+---------------+

 Table 1: Diagnostic Kind

Song, et al. Standards Track [Page 25]

RFC 7851 P2P Overlay Diagnostics May 2016

9.3. Message Codes

 This document introduces two new types of messages and their
 responses, so the following additions have been made to the "RELOAD
 Message Codes" registry defined in RELOAD [RFC6940].

 +-------------------+------------+----------+
 | Message Code Name | Code Value | RFC |
 +-------------------+------------+----------+
 | path_track_req | 0x27 | RFC 7851 |
 | path_track_ans | 0x28 | RFC 7851 |
 +-------------------+------------+----------+

 Table 2: Extensions to RELOAD Message Codes

9.4. Error Code

 This document introduces the following new error codes, which have
 been added to the "RELOAD Error Codes" registry.

 +--+------------+-----------+
 | Error Code Name | Code Value | Reference |
 +--+------------+-----------+
 | Error_Underlay_Destination_Unreachable | 0x15 | RFC 7851 |
 | Error_Underlay_Time_Exceeded | 0x16 | RFC 7851 |
 | Error_Message_Expired | 0x17 | RFC 7851 |
 | Error_Upstream_Misrouting | 0x18 | RFC 7851 |
 | Error_Loop_Detected | 0x19 | RFC 7851 |
 | Error_TTL_Hops_Exceeded | 0x1A | RFC 7851 |
 +--+------------+-----------+

 Table 3: RELOAD Error Codes

9.5. Message Extension

 This document introduces the following new RELOAD extension code:

 +-----------------+------+-----------+
 | Extension Name | Code | Reference |
 +-----------------+------+-----------+
 | Diagnostic_Ping | 0x2 | RFC 7851 |
 +-----------------+------+-----------+

 Table 4: New RELOAD Extension Code

Song, et al. Standards Track [Page 26]

RFC 7851 P2P Overlay Diagnostics May 2016

9.6. XML Name Space Registration

 This document registers a URI for the config-diagnostics XML
 namespace in the IETF XML registry defined in [RFC3688]. All the
 elements defined in this document belong to this namespace.

 URI: urn:ietf:params:xml:ns:p2p:config-diagnostics
 Registrant Contact: The IESG.
 XML: N/A; the requested URIs are XML namespaces

 The overlay configuration file MUST contain the following XML
 language declaring P2P diagnostics as a mandatory extension to
 RELOAD.

 <mandatory-extension>
 urn:ietf:params:xml:ns:p2p:config-diagnostics
 </mandatory-extension>

10. References

10.1. Normative References

 [RFC792] Postel, J., "Internet Control Message Protocol", STD 5,
 RFC 792, DOI 10.17487/RFC0792, September 1981,
 <http://www.rfc-editor.org/info/rfc792>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <http://www.rfc-editor.org/info/rfc3688>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <http://www.rfc-editor.org/info/rfc5905>.

Song, et al. Standards Track [Page 27]

RFC 7851 P2P Overlay Diagnostics May 2016

 [RFC6940] Jennings, C., Lowekamp, B., Ed., Rescorla, E., Baset, S.,
 and H. Schulzrinne, "REsource LOcation And Discovery
 (RELOAD) Base Protocol", RFC 6940, DOI 10.17487/RFC6940,
 January 2014, <http://www.rfc-editor.org/info/rfc6940>.

 [RFC7263] Zong, N., Jiang, X., Even, R., and Y. Zhang, "An Extension
 to the REsource LOcation And Discovery (RELOAD) Protocol
 to Support Direct Response Routing", RFC 7263,
 DOI 10.17487/RFC7263, June 2014,
 <http://www.rfc-editor.org/info/rfc7263>.

10.2. Informative References

 [UnixTime] Wikipedia, "Unix time", April 2016,
 <https://en.wikipedia.org/w/
 index.php?title=Unix_time&oldid=715503178>.

 [P2PSIP-CONCEPTS]
 Bryan, D., Matthews, P., Shim, E., Willis, D., and S.
 Dawkins, "Concepts and Terminology for Peer to Peer SIP",
 Work in Progress, draft-ietf-p2psip-concepts-09, April
 2016.

 [Overlay-Failure-Detection]
 Zhuang, S., Geels, D., Stoica, I., and R. Katz, "On
 failure detection algorithms in overlay networks", In
 Proceedings of the IEEE INFOCOM 2005, pp. 2112-2123,
 DOI 10.1109/INFCOM.2005.1498487, March 2005.

 [Handling_Churn_in_a_DHT]
 Rhea, S., Geels, D., Roscoe, T., and J. Kubiatowicz,
 "Handling Churn in a DHT", In Proceedings of the
 USENIX Annual Technical Conference, June 2004.

 [Diagnostic_Framework]
 Jin, X., Xiong, Y., Zhang, Q., and S. Chan, "A Diagnostic
 Framework for Peer-to-peer Streaming", IEEE ICME 2006,
 July 2006.

Song, et al. Standards Track [Page 28]

RFC 7851 P2P Overlay Diagnostics May 2016

Appendix A. Examples

 Below, we sketch how these metrics can be used.

A.1. Example 1

 A peer may set EWMA_BYTES_SENT and EWMA_BYTES_RCVD flags in the
 PathTrackReq to its direct neighbors. A peer can use EWMA_BYTES_SENT
 and EWMA_BYTES_RCVD of another peer to infer whether it is acting as
 a media relay. It may then choose not to forward any requests for
 media relay to this peer. Similarly, among the various candidates
 for filling up a routing table, a peer may prefer a peer with a large
 UPTIME value, small RTT, and small LAST_CONTACT value.

A.2. Example 2

 A peer may set the STATUS_INFO Flag in the PathTrackReq to a remote
 destination peer. The overlay has its own threshold definition for
 congestion. The peer can obtain knowledge of all the status
 information of the intermediate peers along the path, then it can
 choose other paths to that node for the subsequent requests.

A.3. Example 3

 A peer may use Ping to evaluate the average overlay hops to other
 peers by sending PingReq to a set of random resource or node IDs in
 the overlay. A peer may adjust its timeout value according to the
 change of average overlay hops.

Appendix B. Problems with Generating Multiple Responses on Path

 An earlier draft version of this document considered an approach
 where a response was generated by each intermediate peer as the
 message traversed the overlay. This approach was discarded. One
 reason this approach was discarded was that it could provide a DoS
 mechanism, whereby an attacker could send an arbitrary message
 claiming to be from a spoofed "sender" the real sender wished to
 attack. As a result of sending this one message, many messages would
 be generated and sent back to the spoofed "sender" -- one from each
 intermediate peer on the message path. While authentication
 mechanisms could reduce some risk of this attack, it still resulted
 in a fundamental break from the request-response nature of the RELOAD
 protocol, as multiple responses are generated to a single request.
 Although one request with responses from all the peers in the route
 will be more efficient, it was determined to be too great a security
 risk and a deviation from the RELOAD architecture.

Song, et al. Standards Track [Page 29]

RFC 7851 P2P Overlay Diagnostics May 2016

Acknowledgments

 We would like to thank Zheng Hewen for the contribution of the
 initial draft version of this document. We would also like to thank
 Bruce Lowekamp, Salman Baset, Henning Schulzrinne, Jiang Haifeng, and
 Marc Petit-Huguenin for the email discussion and their valued
 comments, and special thanks to Henry Sinnreich for contributing to
 the usage scenarios text. We would like to thank the authors of the
 RELOAD protocol for transferring text about diagnostics to this
 document.

Authors’ Addresses

 Haibin Song
 Huawei

 Email: haibin.song@huawei.com

 Jiang Xingfeng
 Huawei

 Email: jiangxingfeng@huawei.com

 Roni Even
 Huawei
 14 David Hamelech
 Tel Aviv 64953
 Israel

 Email: ron.even.tlv@gmail.com

 David A. Bryan
 ethernot.org
 Cedar Park, Texas
 United States

 Email: dbryan@ethernot.org

 Yi Sun
 ICT

 Email: sunyi@ict.ac.cn

Song, et al. Standards Track [Page 30]

