
Internet Engineering Task Force (IETF) M. Douglass
Request for Comments: 7808 Spherical Cow Group
Category: Standards Track C. Daboo
ISSN: 2070-1721 Apple
 March 2016

 Time Zone Data Distribution Service

Abstract

 This document defines a time zone data distribution service that
 allows reliable, secure, and fast delivery of time zone data and
 leap-second rules to client systems such as calendaring and
 scheduling applications or operating systems.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7808.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Douglass & Daboo Standards Track [Page 1]

RFC 7808 TZDIST Service March 2016

Table of Contents

 1. Introduction . 4
 1.1. Conventions . 4
 2. Architectural Overview 5
 3. General Considerations 7
 3.1. Time Zone . 7
 3.2. Time Zone Data . 7
 3.3. Time Zone Metadata 7
 3.4. Time Zone Data Server 7
 3.5. Observance . 7
 3.6. Time Zone Identifiers 7
 3.7. Time Zone Aliases . 8
 3.8. Time Zone Localized Names 8
 3.9. Truncating Time Zones 9
 3.10. Time Zone Versions 10
 4. Time Zone Data Distribution Service Protocol 10
 4.1. Server Protocol . 10
 4.1.1. Time Zone Queries 11
 4.1.2. Time Zone Formats 11
 4.1.3. Time Zone Localization 12
 4.1.4. Conditional Time Zone Requests 12
 4.1.5. Expanded Time Zone Data 14
 4.1.6. Server Requirements 14
 4.1.7. Error Responses 14
 4.1.8. Extensions . 14
 4.2. Client Guidelines . 14
 4.2.1. Discovery . 14
 4.2.1.1. SRV Service Labels for the Time Zone Data
 Distribution Service 15
 4.2.1.2. TXT Records for a Time Zone Data Distribution
 Service . 15
 4.2.1.3. Well-Known URI for a Time Zone Data Distribution
 Service . 16
 4.2.1.3.1. Example: Well-Known URI Redirects to Actual
 Context Path 17
 4.2.2. Synchronization of Time Zones 17
 4.2.2.1. Initial Synchronization of All Time Zones 17
 4.2.2.2. Subsequent Synchronization of All Time Zones . . 17
 4.2.2.3. Synchronization with Preexisting Time Zone Data . 18
 5. Actions . 18
 5.1. "capabilities" Action 18
 5.1.1. Example: get capabilities 19
 5.2. "list" Action . 21
 5.2.1. Example: List Time Zone Identifiers 22
 5.3. "get" Action . 23
 5.3.1. Example: Get Time Zone Data 24
 5.3.2. Example: Conditional Get Time Zone Data 25

Douglass & Daboo Standards Track [Page 2]

RFC 7808 TZDIST Service March 2016

 5.3.3. Example: Get Time Zone Data Using a Time Zone Alias . 25
 5.3.4. Example: Get Truncated Time Zone Data 26
 5.3.5. Example: Request for a Nonexistent Time Zone 27
 5.4. "expand" Action . 27
 5.4.1. Example: Expanded JSON Data Format 29
 5.5. "find" Action . 30
 5.5.1. Example: find action 31
 5.6. "leapseconds" Action 32
 5.6.1. Example: Get Leap-Second Information 33
 6. JSON Definitions . 34
 6.1. capabilities Action Response 34
 6.2. list/find Action Response 37
 6.3. expand Action Response 38
 6.4. leapseconds Action Response 39
 7. New iCalendar Properties 40
 7.1. Time Zone Upper Bound 40
 7.2. Time Zone Identifier Alias Property 41
 8. Security Considerations 42
 9. Privacy Considerations 43
 10. IANA Considerations . 44
 10.1. Service Actions Registration 45
 10.1.1. Service Actions Registration Procedure 45
 10.1.2. Registration Template for Actions 46
 10.1.3. Actions Registry 47
 10.2. timezone Well-Known URI Registration 47
 10.3. Service Name Registrations 47
 10.3.1. timezone Service Name Registration 47
 10.3.2. timezones Service Name Registration 48
 10.4. TZDIST Identifiers Registry 48
 10.4.1. Registration of invalid-action Error URN 49
 10.4.2. Registration of invalid-changedsince Error URN . . . 49
 10.4.3. Registration of tzid-not-found Error URN 50
 10.4.4. Registration of invalid-format Error URN 50
 10.4.5. Registration of invalid-start Error URN 50
 10.4.6. Registration of invalid-end Error URN 51
 10.4.7. Registration of invalid-pattern Error URN 51
 10.5. iCalendar Property Registrations 52
 11. References . 52
 11.1. Normative References 52
 11.2. Informative References 55
 Acknowledgements . 55
 Authors’ Addresses . 56

Douglass & Daboo Standards Track [Page 3]

RFC 7808 TZDIST Service March 2016

1. Introduction

 Time zone data typically combines a coordinated universal time (UTC)
 offset with daylight saving time (DST) rules. Time zones are
 typically tied to specific geographic and geopolitical regions.
 Whilst the UTC offset for particular regions changes infrequently,
 DST rules can change frequently and sometimes with very little notice
 (maybe hours before a change comes into effect).

 Calendaring and scheduling systems, such as those that use iCalendar
 [RFC5545], as well as operating systems, critically rely on time zone
 data to determine the correct local time. As such, they need to be
 kept up to date with changes to time zone data. To date, there has
 been no fast and easy way to do that. Time zone data is often
 supplied in the form of a set of data files that have to be
 "compiled" into a suitable database format for use by the client
 application or operating system. In the case of operating systems,
 often those changes only get propagated to client machines when there
 is an operating system update, which can be infrequent, resulting in
 inaccurate time zone data being present for significant amounts of
 time. In some cases, old versions of operating systems stop being
 supported, but are still in use and thus require users to manually
 "patch" their system to keep up to date with time zone changes.

 Along with time zone data, it is also important to track the use of
 leap seconds to allow a mapping between International Atomic Time
 (TAI) and UTC. Leap seconds can be added (or possibly removed) at
 various times of year in an irregular pattern typically determined by
 precise astronomical observations. The insertion of leap seconds
 into UTC is currently the responsibility of the International Earth
 Rotation Service.

 This specification defines a time zone data distribution service
 protocol that allows for fast, reliable, and accurate delivery of
 time zone data and leap-second information to client systems. This
 protocol is based on HTTP [RFC7230] using a simple JSON-based API
 [RFC7159].

 This specification does not define the source of the time zone data
 or leap-second information. It is assumed that a reliable and
 accurate source is available. One such source is the IANA-hosted
 time zone database [RFC6557].

1.1. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Douglass & Daboo Standards Track [Page 4]

RFC 7808 TZDIST Service March 2016

 Unless otherwise indicated, UTC date-time values as specified in
 [RFC3339] use a "Z" suffix, and not fixed numeric offsets.

 This specification contains examples of HTTP requests and responses.
 In some cases, additional line breaks have been introduced into the
 request or response data to match maximum line-length limits of this
 document.

2. Architectural Overview

 The overall process for the delivery of time zone data can be
 visualized via the diagram below.

 ==================== ====================
 (a) | Contributors | | Contributors |
 ==================== ====================
 | |
 ==================== ====================
 (b) | Publisher A | | Publisher B |
 ==================== ====================
 \ /
 ====================
 (c) | Root Provider |
 ====================
 / | \
 / | \
 ====================== | ======================
 (d) | Secondary Provider | | | Secondary Provider |
 ====================== | ======================
 | | | |
 | | | |
 ========== ========== ========== ==========
 (e) | Client | | Client | | Client | | Client |
 ========== ========== ========== ==========

 Figure 1: Time Zone Data Distribution Service Architecture

 The overall service is made up of several layers:

 (a) Contributors: Individuals, governments, or organizations that
 provide information about time zones to the publishing process.
 There can be many contributors. Note this specification does not
 address how contributions are made.

Douglass & Daboo Standards Track [Page 5]

RFC 7808 TZDIST Service March 2016

 (b) Publishers: Publishers aggregate information from contributors,
 determine the reliability of the information and, based on that,
 generate time zone data. There can be many publishers, each
 getting information from many different contributors. In some
 cases, a publisher may choose to "republish" data from another
 publisher.

 (c) Root Providers: Servers that obtain and then provide the time
 zone data from publishers and make that available to other
 servers or clients. There can be many root providers. Root
 providers can choose to supply time zone data from one or more
 publishers.

 (d) Secondary Providers: Servers that handle the bulk of the
 requests and reduce the load on root servers. These will
 typically be simple, caches of the root server, located closer to
 clients. For example a large Internet Service Provider (ISP) may
 choose to set up their own secondary provider to allow clients
 within their network to make requests of that server rather than
 make requests of servers outside their network. Secondary
 servers will cache and periodically refresh data from the root
 servers.

 (e) Clients: Applications, operating systems, etc., that make use of
 time zone data and retrieve that from either root or secondary
 providers.

 Some of those layers may be coalesced by implementors. For example,
 a vendor may choose to implement the entire service as a single
 monolithic virtual server with the address embedded in distributed
 systems. Others may choose to provide a service consisting of
 multiple layers of providers, many secondary servers, and a small
 number of root servers.

 This specification is concerned only with the protocol used to
 exchange data between providers and from provider to client. This
 specification does not define how contributors pass their information
 to publishers, nor how those publishers vet that information to
 obtain trustworthy data, nor the format of the data produced by the
 publishers.

Douglass & Daboo Standards Track [Page 6]

RFC 7808 TZDIST Service March 2016

3. General Considerations

 This section defines several terms and explains some key concepts
 used in this specification.

3.1. Time Zone

 A time zone is a description of the past and predicted future
 timekeeping practices of a collection of clocks that are intended to
 agree.

 Note that the term "time zone" does not have the common meaning of a
 region of the world at a specific UTC offset, possibly modified by
 daylight saving time. For example, the "Central European Time" zone
 can correspond to several time zones "Europe/Berlin", "Europe/Paris",
 etc., because subregions have kept time differently in the past.

3.2. Time Zone Data

 Time zone data is data that defines a single time zone, including an
 identifier, UTC offset values, DST rules, and other information such
 as time zone abbreviations.

3.3. Time Zone Metadata

 Time zone metadata is data that describes additional properties of a
 time zone that is not itself included in the time zone data. This
 can include such things as the publisher name, version identifier,
 aliases, and localized names (see below).

3.4. Time Zone Data Server

 A time zone data server is a server implementing the Time Zone Data
 Distribution Service Protocol defined by this specification.

3.5. Observance

 A time zone with varying rules for the UTC offset will have adjacent
 periods of time that use different UTC offsets. Each period of time
 with a constant UTC offset is called an observance.

3.6. Time Zone Identifiers

 Time zone identifiers are unique names associated with each time
 zone, as defined by publishers. The iCalendar [RFC5545]
 specification has a "TZID" property and parameter whose value is set
 to the corresponding time zone identifier and used to identify time
 zone data and relate time zones to start and end dates in events,

Douglass & Daboo Standards Track [Page 7]

RFC 7808 TZDIST Service March 2016

 etc. This specification does not define what format of time zone
 identifiers should be used. It is possible that time zone
 identifiers from different publishers overlap, and there might be a
 need for a provider to distinguish those with some form of
 "namespace" prefix identifying the publisher. However, development
 of a standard (global) naming scheme for time zone identifiers is out
 of scope for this specification.

3.7. Time Zone Aliases

 Time zone aliases map a name onto a time zone identifier. For
 example, "US/Eastern" is usually mapped on to "America/New_York".
 Time zone aliases are typically used interchangeably with time zone
 identifiers when presenting information to users.

 A time zone data distribution service needs to maintain time zone
 alias mapping information and expose that data to clients as well as
 allow clients to query for time zone data using aliases. When
 returning time zone data to a client, the server returns the data
 with an identifier matching the query, but it can include one or more
 additional identifiers in the data to provide a hint to the client
 that alternative identifiers are available. For example, a query for
 "US/Eastern" could include additional identifiers for "America/
 New_York" or "America/Montreal".

 The set of aliases may vary depending on whether time zone data is
 truncated (see Section 3.9). For example, a client located in the US
 state of Michigan may see "US/Eastern" as an alias for "America/
 Detroit", whereas a client in the US state of New Jersey may see it
 as an alias for "America/New_York", and all three names may be
 aliases if time zones are truncated to post-2013 data.

3.8. Time Zone Localized Names

 Localized names are names for time zones that can be presented to a
 user in their own language. Each time zone may have one or more
 localized names associated with it. Names would typically be unique
 in their own locale as they might be presented to the user in a list.
 Localized names are distinct from abbreviations commonly used for UTC
 offsets within a time zone. For example, the time zone "America/
 New_York" may have the localized name "Nueva York" in a Spanish
 locale, as distinct from the abbreviations "EST" and "EDT", which may
 or may not have their own localizations.

 A time zone data distribution service might need to maintain
 localized name information, for one or more chosen languages, as well
 as allow clients to query for time zone data using localized names.

Douglass & Daboo Standards Track [Page 8]

RFC 7808 TZDIST Service March 2016

3.9. Truncating Time Zones

 Time zone data can contain information about past and future UTC
 offsets that may not be relevant for a particular server’s intended
 clients. For example, calendaring and scheduling clients are likely
 most concerned with time zone data that covers a period for one or
 two years in the past on into the future, as users typically create
 new events only for the present and future. Similarly, time zone
 data might contain a large amount of "future" information about
 transitions occurring many decades into the future. Again, clients
 might be concerned only with a smaller range into the future, and
 data past that point might be unnecessary.

 To avoid having to send unnecessary data, servers can choose to
 truncate time zone data to a range determined by start- and end-point
 date-time values, and to provide only offsets and rules between those
 points. If such truncation is done, the server MUST include the
 ranges it is using in the "capabilities" action response (see
 Section 6.1), so that clients can take appropriate action if they
 need time zone data for times outside of those ranges.

 The truncation points at the start and end of a range are always a
 UTC date-time value, with the start point being "inclusive" to the
 overall range, and the end point being "exclusive" to the overall
 range (i.e., the end value is just past the end of the last valid
 value in the range). A server will advertise a truncation range for
 the truncated data it can supply or will provide an indicator that it
 can truncate at any start or end point to produce arbitrary ranges.
 In addition, the server can advertise that it supplies untruncated
 data -- that is, data that covers the full range of times available
 from the source publisher. In the absence of any indication of
 truncated data available on the server, the server will supply only
 untruncated data.

 When truncating the start of a "VTIMEZONE" component, the server MUST
 include exactly one "STANDARD" or "DAYLIGHT" subcomponent with a
 "DTSTART" property value that matches the start point of the
 truncation range, and appropriate "TZOFFSETFROM" and "TZOFFSETTO"
 properties to indicate the correct offset in effect right before and
 after the start point of the truncation range. This subcomponent,
 which is the first observance defined by the time zone data,
 represents the earliest valid date-time covered by the time zone data
 in the truncated "VTIMEZONE" component.

 When truncating the end of a "VTIMEZONE" component, the server MUST
 include a "TZUNTIL" iCalendar property (Section 7.1) in the
 "VTIMEZONE" component to indicate the end point of the truncation
 range.

Douglass & Daboo Standards Track [Page 9]

RFC 7808 TZDIST Service March 2016

3.10. Time Zone Versions

 Time zone data changes over time, and it is important for consumers
 of that data to stay up to date with the latest versions. As a
 result, it is useful to identify individual time zones with a
 specific version number or version identifier as supplied by the time
 zone data publisher. There are two common models that time zone data
 publishers might use to publish updates to time zone data:

 a. with the "monolithic" model, the data for all time zones is
 published in one go, with a single version number or identifier
 applied to the entire data set. For example, a publisher
 producing data several times a year might use version identifiers
 "2015a", "2015b", etc.

 b. with the "incremental" model, each time zone has its own version
 identifier, so that each time zone can be independently updated
 without impacting any others. For example, if the initial data
 has version "A.1" for time zone "A", and "B.1" for time zone "B",
 and then time zone "B" changes; when the data is next published,
 time zone "A" will still have version "A.1", but time zone "B"
 will now have "B.2".

 A time zone data distribution service needs to ensure that the
 version identifiers used by the time zone data publisher are
 available to any client, along with the actual publisher name on a
 per-time-zone basis. This allows clients to compare publisher/
 version details on any server, with existing locally cached client
 data, and only fetch those time zones that have actually changed (see
 Section 4.2.2 for more details on how clients synchronize data from
 the server).

4. Time Zone Data Distribution Service Protocol

4.1. Server Protocol

 The time zone data distribution service protocol uses HTTP [RFC7230]
 for query and delivery of time zone data, metadata, and leap-second
 information. The interactions with the HTTP server can be broken
 down into a set of "actions" that define the overall function being
 requested (see Section 5). Each action targets a specific HTTP
 resource using the GET method, with various request-URI parameters
 altering the behavior as needed.

 The HTTP resources used for requests will be identified via URI
 templates [RFC6570]. The overall time zone data distribution service
 has a "context path" request-URI template defined as "{/service-
 prefix}". This "root" prefix is discovered by the client as per

Douglass & Daboo Standards Track [Page 10]

RFC 7808 TZDIST Service March 2016

 Section 4.2.1. Request-URIs that target time zone data directly use
 the prefix template "{/service-prefix,data-prefix}". The second
 component of the prefix template can be used to introduce additional
 path segments in the request-URI to allow for alternative ways to
 "partition" the time zone data. For example, time zone data might be
 partitioned by publisher release dates or version identifiers. This
 specification does not define any partitions; that is left for future
 extensions. When the "data-prefix" variable is empty, the server is
 expected to return the current version of time zone data it has for
 all publishers it supports.

 All URI template variable values, and URI request parameters that
 contain text values, MUST be encoded using the UTF-8 [RFC3629]
 character set. All responses MUST return data using the UTF-8
 [RFC3629] character set. It is important to note that any "/"
 characters, which are frequently found in time zone identifiers, are
 percent-encoded when used in the value of a path segment expansion
 variable in a URI template (as per Section 3.2.6 of [RFC6570]).
 Thus, the time zone identifier "America/New_York" would appear as
 "America%2FNew_York" when used as the value for the "{/tzid}" URI
 template variable defined later in this specification.

 The server provides time zone metadata in the form of a JSON
 [RFC7159] object. Clients can directly request the time zone
 metadata or issue queries for subsets of metadata that match specific
 criteria.

 Security and privacy considerations for this protocol are discussed
 in detail in Sections 8 and 9, respectively.

4.1.1. Time Zone Queries

 Time zone identifiers, aliases, or localized names can be used to
 query for time zone data or metadata. This will be more explicitly
 defined below for each action. In general, however, if a "tzid" URI
 template variable is used, then the value may be an identifier or an
 alias. When the "pattern" URI query parameter is used, it may be an
 identifier, an alias, or a localized name.

4.1.2. Time Zone Formats

 The default media type [RFC2046] format for returning time zone data
 is the iCalendar [RFC5545] data format. In addition, the iCalendar-
 in-XML [RFC6321] and iCalendar-in-JSON [RFC7265] representations are
 available. Clients use the HTTP Accept header field (see
 Section 5.3.2 of [RFC7231]) to indicate their preference for the
 returned data format. Servers indicate the available formats that
 they support via the "capabilities" action response (Section 5.1).

Douglass & Daboo Standards Track [Page 11]

RFC 7808 TZDIST Service March 2016

4.1.3. Time Zone Localization

 As per Section 3.8, time zone data can support localized names.
 Clients use the HTTP Accept-Language header field (see Section 5.3.5
 of [RFC7231]) to indicate their preference for the language used for
 localized names in the response data.

4.1.4. Conditional Time Zone Requests

 When time zone data or metadata changes, it needs to be distributed
 in a timely manner because changes to local time offsets might occur
 within a few days of the publication of the time zone data changes.
 Typically, the number of time zones that change is small, whilst the
 overall number of time zones can be large. Thus, when a client is
 using more than a few time zones, it is more efficient for the client
 to be able to download only those time zones that have changed (an
 incremental update).

 Clients initially request a full list of time zones from the server
 using a "list" action request (see Section 5.2). The response to
 that request includes two items the client caches for use with
 subsequent "conditional" (incremental update) requests:

 1. An opaque synchronization token in the "synctoken" JSON member.
 This token changes whenever there is a change to any metadata
 associated with one or more time zones (where the metadata is the
 information reported in the "list" action response for each time
 zone).

 2. The HTTP ETag header field value for each time zone returned in
 the response. The ETag header field value is returned in the
 "etag" JSON member, and it corresponds to the ETag header field
 value that would be returned when executing a "get" action
 request (see Section 5.3) against the corresponding time zone
 data resource.

 For subsequent updates to cached data, clients can use the following
 procedure:

 a. Send a "list" action request with a "changedsince" URI query
 parameter with its value set to the last opaque synchronization
 token returned by the server. The server will return time zone
 metadata for only those time zones that have changed since the
 last request.

 b. The client will cache the new opaque synchronization token
 returned in the response for the next incremental update, along
 with the returned time zone metadata information.

Douglass & Daboo Standards Track [Page 12]

RFC 7808 TZDIST Service March 2016

 c. The client will check each time zone metadata to see if the
 "etag" value is different from that of any cached time zone data
 it has.

 d. The client will use a "get" action request to update any cached
 time zone data for those time zones whose ETag header field value
 has changed.

 Note that time zone metadata will always change when the
 corresponding time zone data changes. However, the converse is not
 true: it is possible for some piece of the time zone metadata to
 change without the corresponding time zone data changing. e.g., for
 the case of a "monolithic" publisher (see Section 3.10), the version
 identifier in every time zone metadata element will change with each
 new published revision; however, only a small subset of time zone
 data will actually change.

 If a client needs data for only one or a small set of time zones
 (e.g., a clock in a fixed location), then it can use a conditional
 HTTP request to determine if the time zone data has changed and
 retrieve the new data. The full details of HTTP conditional requests
 are described in [RFC7232]; what follows is a brief summary of what a
 client typically does.

 a. When the client retrieves the time zone data from the server
 using a "get" action (see Section 5.3), the server will include
 an HTTP ETag header field in the response.

 b. The client will store the value of that header field along with
 the request-URI used for the request.

 c. When the client wants to check for an update, it issues another
 "get" action HTTP request on the original request-URI, but this
 time it includes an If-None-Match HTTP request header field, with
 a value set to the ETag header field value from the previous
 response. If the data for the time zone has not changed, the
 server will return a 304 (Not Modified) HTTP response. If the
 data has changed, the server will return a normal HTTP success
 response that will include the changed data, as well as a new
 value for the ETag header field.

 Clients SHOULD poll for changes, using an appropriate conditional
 request, at least once a day. A server acting as a secondary
 provider, caching time zone data from another server, SHOULD poll for
 changes once per hour. See Section 8 on expected client and server
 behavior regarding high request rates.

Douglass & Daboo Standards Track [Page 13]

RFC 7808 TZDIST Service March 2016

4.1.5. Expanded Time Zone Data

 Determining time zone offsets at a particular point in time is often
 a complicated process, as the rules for daylight saving time can be
 complex. To help with this, the time zone data distribution service
 provides an action that allows clients to request the server to
 expand a time zone into a set of "observances" over a fixed period of
 time (see Section 5.4). Each of these observances describes a UTC
 onset time and UTC offsets for the prior time and the observance
 time. Together, these provide a quick way for "thin" clients to
 determine an appropriate UTC offset for an arbitrary date without
 having to do full time zone expansion themselves.

4.1.6. Server Requirements

 To enable a simple client implementation, servers SHOULD ensure that
 they provide or cache data for all commonly used time zones, from
 various publishers. That allows client implementations to configure
 a single server to get all time zone data. In turn, any server can
 refresh any of the data from any other server -- though the root
 servers may provide the most up-to-date copy of the data.

4.1.7. Error Responses

 When an HTTP error response is returned to the client, the server
 SHOULD return a JSON "problem details" object in the response body,
 as per [RFC7807]. Every JSON "problem details" object MUST include a
 "type" member with a URI value matching the applicable error code
 (defined for each action in Section 5).

4.1.8. Extensions

 This protocol is designed to be extensible through a standards-based
 registration mechanism (see Section 10). It is anticipated that
 other useful time zone actions will be added in the future (e.g.,
 mapping a geographical location to time zone identifiers, getting
 change history for time zones), and so, servers MUST return a
 description of their capabilities. This will allow clients to
 determine if new features have been installed and, if not, fall back
 on earlier features or disable some client capabilities.

4.2. Client Guidelines

4.2.1. Discovery

 Client implementations need to either know where the time zone data
 distribution service is located or discover it through some
 mechanism. To use a time zone data distribution service, a client

Douglass & Daboo Standards Track [Page 14]

RFC 7808 TZDIST Service March 2016

 needs a Fully Qualified Domain Name (FQDN), port, and HTTP request-
 URI path. The request-URI path found via discovery is the "context
 path" for the service itself. The "context path" is used as the
 value of the "service-prefix" URI template variable when executing
 actions (see Section 5).

 The following subsections describe two methods of service discovery
 using DNS SRV records [RFC2782] and an HTTP "well-known" [RFC5785]
 resource. However, alternative mechanisms could also be used (e.g.,
 a DHCP server option [RFC2131]).

4.2.1.1. SRV Service Labels for the Time Zone Data Distribution Service

 [RFC2782] defines a DNS-based service discovery protocol that has
 been widely adopted as a means of locating particular services within
 a local area network and beyond, using SRV RR records. This can be
 used to discover a service’s FQDN and port.

 This specification adds two service types for use with SRV records:

 timezone: Identifies a time zone data distribution server that uses
 HTTP without Transport Layer Security ([RFC2818]).

 timezones: Identifies a time zone data distribution server that uses
 HTTP with Transport Layer Security ([RFC2818]).

 Clients MUST honor "TTL", "Priority", and "Weight" values in the SRV
 records, as described by [RFC2782].

 Example: service record for server without Transport Layer Security.

 _timezone._tcp SRV 0 1 80 tz.example.com.

 Example: service record for server with transport layer security.

 _timezones._tcp SRV 0 1 443 tz.example.com.

4.2.1.2. TXT Records for a Time Zone Data Distribution Service

 When SRV RRs are used to advertise a time zone data distribution
 service, it is also convenient to be able to specify a "context path"
 in the DNS to be retrieved at the same time. To enable that, this
 specification uses a TXT RR that follows the syntax defined in
 Section 6 of [RFC6763] and defines a "path" key for use in that
 record. The value of the key MUST be the actual "context path" to
 the corresponding service on the server.

Douglass & Daboo Standards Track [Page 15]

RFC 7808 TZDIST Service March 2016

 A site might provide TXT records in addition to SRV records for each
 service. When present, clients MUST use the "path" value as the
 "context path" for the service in HTTP requests. When not present,
 clients use the ".well-known" URI approach described in
 Section 4.2.1.3.

 As per Section 8, the server MAY require authentication when a client
 tries to access the path URI specified by the TXT RR (i.e., the
 server would return a 401 status response to the unauthenticated
 request from the client, then return a redirect response after a
 successful authentication by the client).

 Example: text record for service with Transport Layer Security.

 _timezones._tcp TXT path=/timezones

4.2.1.3. Well-Known URI for a Time Zone Data Distribution Service

 A "well-known" URI [RFC5785] is registered by this specification for
 the Time Zone Data Distribution service, "timezone" (see Section 10).
 This URI points to a resource that the client can use as the initial
 "context path" for the service they are trying to connect to. The
 server MUST redirect HTTP requests for that resource to the actual
 "context path" using one of the available mechanisms provided by HTTP
 (e.g., using an appropriate 3xx status response). Clients MUST
 handle HTTP redirects on the ".well-known" URI, taking into account
 security restrictions on redirects described in Section 8. Servers
 MUST NOT locate the actual time zone data distribution service
 endpoint at the ".well-known" URI as per Section 1.1 of [RFC5785].
 The "well-known" URI MUST be present on the server, even when a TXT
 RR (Section 4.2.1.2) is used in the DNS to specify a "context path".

 Servers SHOULD set an appropriate Cache-Control header field value
 (as per Section 5.2 of [RFC7234]) in the redirect response to ensure
 caching occurs as needed, or as required by the type of response
 generated. For example, if it is anticipated that the location of
 the redirect might change over time, then an appropriate "max-age"
 value would be used.

 As per Section 8, the server MAY require authentication when a client
 tries to access the ".well-known" URI (i.e., the server would return
 a 401 status response to the unauthenticated request from the client,
 then return the redirect response after a successful authentication
 by the client).

Douglass & Daboo Standards Track [Page 16]

RFC 7808 TZDIST Service March 2016

4.2.1.3.1. Example: Well-Known URI Redirects to Actual Context Path

 A time zone data distribution server has a "context path" that is
 "/servlet/timezone". The client will use "/.well-known/timezone" as
 the path for the service after it has first found the FQDN and port
 number via an SRV lookup or via manual entry of information by the
 user. When the client makes its initial HTTP request against
 "/.well-known/timezone", the server would issue an HTTP 301 redirect
 response with a Location response header field using the path
 "/servlet/timezone". The client would then "follow" this redirect to
 the new resource and continue making HTTP requests there. The client
 would also cache the redirect information, subject to any Cache-
 Control directive, for use in subsequent requests.

4.2.2. Synchronization of Time Zones

 This section discusses possible client synchronization strategies
 using the various protocol elements provided by the server for that
 purpose.

4.2.2.1. Initial Synchronization of All Time Zones

 When a secondary service or a client wishing to cache all time zone
 data first starts, or wishes to do a full refresh, it synchronizes
 with another server by issuing a "list" action to retrieve all the
 time zone metadata. The client preserves the returned opaque token
 for subsequent use (see "synctoken" in Section 5.2.1). The client
 stores the metadata for each time zone returned in the response.
 Time zone data for each corresponding time zone can then be fetched
 and stored locally. In addition, a mapping of aliases to time zones
 can be built from the metadata. A typical "list" action response
 size is about 50-100 KB of "pretty printed" JSON data, for a service
 using the IANA time zone database [RFC6557], as of the time of
 publication of this specification.

4.2.2.2. Subsequent Synchronization of All Time Zones

 A secondary service or a client caching all time zones needs to
 periodically synchronize with a server. To do so, it issues a "list"
 action with the "changedsince" URI query parameter set to the value
 of the opaque token returned by the last synchronization. The client
 again preserves the returned opaque token for subsequent use. The
 client updates its stored time zone metadata using the new values
 returned in the response, which contains just the time zone metadata
 for those time zones changed since the last synchronization. In
 addition, it compares the "etag" value in each time zone metadata to
 the ETag header field value for the corresponding time zone data
 resource it has previously cached; if they are different, it fetches

Douglass & Daboo Standards Track [Page 17]

RFC 7808 TZDIST Service March 2016

 the new time zone data. Note that if the client presents the server
 with a "changedsince" value that the server does not support, all
 time zone data is returned, as it would for the case where the
 request did not include a "changedsince" value.

 Publishers should take into account the fact that the "outright"
 deletion of time zone names will cause problems to simple clients,
 and so aliasing a deleted time zone identifier to a suitable
 alternate one is preferable.

4.2.2.3. Synchronization with Preexisting Time Zone Data

 A client might be pre-provisioned with time zone data from a source
 other than the time zone data distribution service it is configured
 to use. In such cases, the client might want to minimize the amount
 of time zone data it synchronizes by doing an initial "list" action
 to retrieve all the time zone metadata, but then only fetch time zone
 data for those time zones that do not match the publisher and version
 details for the pre-provisioned data.

5. Actions

 Servers MUST support the following actions. The information below
 shows details about each action: the request-URI the client targets
 (in the form of a URI template [RFC6570]), a description, the set of
 allowed query parameters, the nature of the response, and a set of
 possible error codes for the response (see Section 4.1.7).

 For any error not covered by the specific error codes defined below,
 the "urn:ietf:params:tzdist:error:invalid-action" error code is
 returned to the client in the JSON "problem details" object.

 The examples in the following subsections presume that the timezone
 context path has been discovered to be "/servlet/timezone" (as in the
 example in Section 4.2.1.3.1).

5.1. "capabilities" Action

 Name: capabilities

 Request-URI Template:
 {/service-prefix}/capabilities

 Description: This action returns the capabilities of the server,
 allowing clients to determine if a specific feature has been
 deployed and/or enabled.

 Parameters: None

Douglass & Daboo Standards Track [Page 18]

RFC 7808 TZDIST Service March 2016

 Response: A JSON object containing a "version" member, an "info"
 member, and an "actions" member; see Section 6.1.

 Possible Error Codes: No specific code.

5.1.1. Example: get capabilities

 >> Request <<

 GET /servlet/timezone/capabilities HTTP/1.1
 Host: tz.example.com

 >> Response <<

 HTTP/1.1 200 OK
 Date: Wed, 4 Jun 2008 09:32:12 GMT
 Content-Type: application/json; charset="utf-8"
 Content-Length: xxxx

 {
 "version": 1,

 "info": {
 "primary-source": "Olson:2011m",
 "formats": [
 "text/calendar",
 "application/calendar+xml",
 "application/calendar+json"
],
 "truncated" : {
 "any": false,
 "ranges": [
 {
 "start": "1970-01-01T00:00:00Z",
 "end": "*"
 },
 {
 "start":"2010-01-01T00:00:00Z",
 "end":"2020-01-01T00:00:00Z"
 }
],
 "untruncated": true
 },
 "provider-details": "http://tz.example.com/about.html",
 "contacts": ["mailto:tzs@example.org"]
 },

Douglass & Daboo Standards Track [Page 19]

RFC 7808 TZDIST Service March 2016

 "actions": [
 {
 "name": "capabilities",
 "uri-template": "/servlet/timezone/capabilities",
 "parameters": []
 },

 {
 "name": "list",
 "uri-template": "/servlet/timezone/zones{?changedsince}",
 "parameters": [
 {
 "name": "changedsince",
 "required": false,
 "multi": false
 }
]
 },

 {
 "name": "get",
 "uri-template": "/servlet/timezone/zones{/tzid}{?start,end}",
 "parameters": [
 {
 "name": "start",
 "required": false,
 "multi": false
 },
 {
 "name": "end",
 "required": false,
 "multi": false
 }
]
 },

 {
 "name": "expand",
 "uri-template":
 "/servlet/timezone/zones{/tzid}/observances{?start,end}",
 "parameters": [
 {
 "name": "start",
 "required": true,
 "multi": false
 },
 {
 "name": "end",

Douglass & Daboo Standards Track [Page 20]

RFC 7808 TZDIST Service March 2016

 "required": true,
 "multi": false
 }
]
 },

 {
 "name": "find",
 "uri-template": "/servlet/timezone/zones{?pattern}",
 "parameters": [
 {
 "name": "pattern",
 "required": true,
 "multi": false
 }
]
 },

 {
 "name": "leapseconds",
 "uri-template": "/servlet/timezone/leapseconds",
 "parameters": []
 }
]
 }

5.2. "list" Action

 Name: list

 Request-URI Template:
 {/service-prefix,data-prefix}/zones{?changedsince}

 Description: This action lists all time zone identifiers in summary
 format, with publisher, version, aliases, and optional localized
 data. In addition, it returns an opaque synchronization token for
 the entire response. If the "changedsince" URI query parameter is
 present, its value MUST correspond to a previously returned
 synchronization token value. When "changedsince" is used, the
 server MUST return only those time zones that have changed since
 the specified synchronization token. If the "changedsince" value
 is not supported by the server, the server MUST return all time
 zones, treating the request as if it had no "changedsince".

 Parameters:

 changedsince
 OPTIONAL, and MUST NOT occur more than once.

Douglass & Daboo Standards Track [Page 21]

RFC 7808 TZDIST Service March 2016

 Response: A JSON object containing a "synctoken" member and a
 "timezones" member; see Section 6.2.

 Possible Error Codes:

 urn:ietf:params:tzdist:error:invalid-changedsince

 The "changedsince" URI query parameter appears more than once.

5.2.1. Example: List Time Zone Identifiers

 In this example the client requests the full set of time zone
 identifiers.

 >> Request <<

 GET /servlet/timezone/zones HTTP/1.1
 Host: tz.example.com

 >> Response <<

 HTTP/1.1 200 OK
 Date: Wed, 4 Jun 2008 09:32:12 GMT
 Content-Type: application/json; charset="utf-8"
 Content-Length: xxxx

 {
 "synctoken": "2009-10-11T09:32:11Z",
 "timezones": [
 {
 "tzid": "America/New_York",
 "etag": "123456789-000-111",
 "last-modified": "2009-09-17T01:39:34Z",
 "publisher": "Example.com",
 "version": "2015a",
 "aliases":["US/Eastern"],
 "local-names": [
 {
 "name": "America/New_York",
 "lang": "en_US"
 }
]
 },
 ...other time zones...
]
 }

Douglass & Daboo Standards Track [Page 22]

RFC 7808 TZDIST Service March 2016

5.3. "get" Action

 Name: get

 Request-URI Template:
 {/service-prefix,data-prefix}/zones{/tzid}{?start,end}

 The "tzid" variable value is REQUIRED in order to distinguish this
 action from the "list" action.

 Description: This action returns a time zone. The response MUST
 contain an ETag response header field indicating the current value
 of the strong entity tag of the time zone resource.

 In the absence of any Accept HTTP request header field, the server
 MUST return time zone data with the "text/calendar" media type.

 If the "tzid" variable value is actually a time zone alias, the
 server will return the matching time zone data with the alias as
 the identifier in the time zone data. The server MAY include one
 or more "TZID-ALIAS-OF" properties (see Section 7.2) in the time
 zone data to indicate additional identifiers that have the
 matching time zone identifier as an alias.

 Parameters:

 start=<date-time>
 OPTIONAL, and MUST NOT occur more than once. Specifies the
 inclusive UTC date-time value at which the returned time zone
 data is truncated at its start.

 end=<date-time>
 OPTIONAL, and MUST NOT occur more than once. Specifies the
 exclusive UTC date-time value at which the returned time zone
 data is truncated at its end.

 Response: A document containing all the requested time zone data in
 the format specified.

 Possible Error Codes:

 urn:ietf:params:tzdist:error:tzid-not-found
 No time zone associated with the specified "tzid" path segment
 value was found.

Douglass & Daboo Standards Track [Page 23]

RFC 7808 TZDIST Service March 2016

 urn:ietf:params:tzdist:error:invalid-format
 The Accept request header field supplied by the client did not
 contain a media type for time zone data supported by the
 server.

 urn:ietf:params:tzdist:error:invalid-start
 The "start" URI query parameter has an incorrect value, or
 appears more than once, or does not match one of the fixed
 truncation range start values advertised in the "capabilities"
 action response.

 urn:ietf:params:tzdist:error:invalid-end
 The "end" URI query parameter has an incorrect value, or
 appears more than once, or has a value less than or equal to
 the "start" URI query parameter, or does not match one of the
 fixed truncation range end values advertised in the
 "capabilities" action response.

5.3.1. Example: Get Time Zone Data

 In this example, the client requests that the time zone with a
 specific time zone identifier be returned.

 >> Request <<

 GET /servlet/timezone/zones/America%2FNew_York HTTP/1.1
 Host: tz.example.com
 Accept:text/calendar

 >> Response <<

 HTTP/1.1 200 OK
 Date: Wed, 4 Jun 2008 09:32:12 GMT
 Content-Type: text/calendar; charset="utf-8"
 Content-Length: xxxx
 ETag: "123456789-000-111"

 BEGIN:VCALENDAR
 ...
 BEGIN:VTIMEZONE
 TZID:America/New_York
 ...
 END:VTIMEZONE
 END:VCALENDAR

Douglass & Daboo Standards Track [Page 24]

RFC 7808 TZDIST Service March 2016

5.3.2. Example: Conditional Get Time Zone Data

 In this example the client requests that the time zone with a
 specific time zone identifier be returned, but uses an If-None-Match
 header field in the request, set to the value of a previously
 returned ETag header field, or the value of the "etag" member in a
 JSON "timezone" object returned from a "list" action response. In
 this example, the data on the server has not changed, so a 304
 response is returned.

 >> Request <<

 GET /servlet/timezone/zones/America%2FNew_York HTTP/1.1
 Host: tz.example.com
 Accept:text/calendar
 If-None-Match: "123456789-000-111"

 >> Response <<

 HTTP/1.1 304 Not Modified
 Date: Wed, 4 Jun 2008 09:32:12 GMT

5.3.3. Example: Get Time Zone Data Using a Time Zone Alias

 In this example, the client requests that the time zone with an
 aliased time zone identifier be returned, and the server returns the
 time zone data with that identifier and two aliases.

 >> Request <<

 GET /servlet/timezone/zones/US%2FEastern HTTP/1.1
 Host: tz.example.com
 Accept:text/calendar

 >> Response <<

 HTTP/1.1 200 OK
 Date: Wed, 4 Jun 2008 09:32:12 GMT
 Content-Type: text/calendar; charset="utf-8"
 Content-Length: xxxx
 ETag: "123456789-000-111"

 BEGIN:VCALENDAR
 ...
 BEGIN:VTIMEZONE
 TZID:US/Eastern
 TZID-ALIAS-OF:America/New_York
 TZID-ALIAS-OF:America/Montreal

Douglass & Daboo Standards Track [Page 25]

RFC 7808 TZDIST Service March 2016

 ...
 END:VTIMEZONE
 END:VCALENDAR

5.3.4. Example: Get Truncated Time Zone Data

 Assume the server advertises a "truncated" object in its
 "capabilities" response that appears as:

 "truncated": {
 "any": false,
 "ranges": [
 {"start": "1970-01-01T00:00:00Z", "end": "*"},
 {"start":"2010-01-01T00:00:00Z", "end":"2020-01-01T00:00:00Z"}
],
 "untruncated": false
 }

 In this example, the client requests that the time zone with a
 specific time zone identifier truncated at one of the ranges
 specified by the server be returned. Note the presence of a
 "STANDARD" component that matches the start point of the truncation
 range (converted to the local time for the UTC offset in effect at
 the matching UTC time). Also, note the presence of the "TZUNTIL"
 (Section 7.1) iCalendar property in the "VTIMEZONE" component,
 indicating the upper bound on the validity period of the time zone
 data.

 >> Request <<

 GET /servlet/timezone/zones/America%2FNew_York
 ?start=2010-01-01T00:00:00Z&end=2020-01-01T00:00:00Z HTTP/1.1
 Host: tz.example.com
 Accept:text/calendar

 >> Response <<

 HTTP/1.1 200 OK
 Date: Wed, 4 Jun 2008 09:32:12 GMT
 Content-Type: text/calendar; charset="utf-8"
 Content-Length: xxxx
 ETag: "123456789-000-111"

 BEGIN:VCALENDAR
 ...
 BEGIN:VTIMEZONE
 TZID:America/New_York
 TZUNTIL:20200101T000000Z

Douglass & Daboo Standards Track [Page 26]

RFC 7808 TZDIST Service March 2016

 BEGIN:STANDARD
 DTSTART:20101231T190000
 TZNAME:EST
 TZOFFSETFROM:-0500
 TZOFFSETTO:-0500
 END:STANDARD
 ...
 END:VTIMEZONE
 END:VCALENDAR

5.3.5. Example: Request for a Nonexistent Time Zone

 In this example, the client requests that the time zone with a
 specific time zone identifier be returned. As it turns out, no time
 zone exists with that identifier.

 >> Request <<

 GET /servlet/timezone/zones/America%2FPittsburgh HTTP/1.1
 Host: tz.example.com
 Accept:application/calendar+json

 >> Response <<

 HTTP/1.1 404 Not Found
 Date: Wed, 4 Jun 2008 09:32:12 GMT
 Content-Type: application/problem+json; charset="utf-8"
 Content-Language: en
 Content-Length: xxxx

 {
 "type": "urn:ietf:params:tzdist:error:tzid-not-found",
 "title": "Time zone identifier was not found on this server",
 "status": 404
 }

5.4. "expand" Action

 Name: expand

 Request-URI Template:
 {/service-prefix,data-prefix}/zones{/tzid}/observances{?start,end}

 The "tzid" variable value is REQUIRED.

Douglass & Daboo Standards Track [Page 27]

RFC 7808 TZDIST Service March 2016

 Description: This action expands the specified time zone into a list
 of onset start date/time values (in UTC) and UTC offsets. The
 response MUST contain an ETag response header field indicating the
 current value of the strong entity tag of the time zone being
 expanded.

 Parameters:

 start=<date-time>: REQUIRED, and MUST occur only once. Specifies
 the inclusive UTC date-time value for the start of the period
 of interest.

 end=<date-time>: REQUIRED, and MUST occur only once. Specifies
 the exclusive UTC date-time value for the end of the period of
 interest. Note that this is the exclusive end value, i.e., it
 represents the date just after the range of interest. For if a
 client wants the expanded date just for the year 2014, it would
 use a start value of "2014-01-01T00:00:00Z" and an end value of
 "2015-01-01T00:00:00Z". An error occurs if the end value is
 less than or equal to the start value.

 Response: A JSON object containing a "tzid" member and an
 "observances" member; see Section 6.3. If the time zone being
 expanded is not fully defined over the requested time range (e.g.,
 because of truncation), then the server MUST include "start" and/
 or "end" members in the JSON response to indicate the actual start
 and end points for the observances being returned. The server
 MUST include an expanded observance representing the time zone
 information in effect at the start of the returned observance
 period.

 Possible Error Codes

 urn:ietf:params:tzdist:error:tzid-not-found
 No time zone associated with the specified "tzid" path segment
 value was found.

 urn:ietf:params:tzdist:error:invalid-start
 The "start" URI query parameter has an incorrect value, or
 appears more than once, or is missing, or has a value outside
 any fixed truncation ranges advertised in the "capabilities"
 action response.

 urn:ietf:params:tzdist:error:invalid-end
 The "end" URI query parameter has an incorrect value, or
 appears more than once, or has a value less than or equal to

Douglass & Daboo Standards Track [Page 28]

RFC 7808 TZDIST Service March 2016

 the "start" URI query parameter, or has a value outside any
 fixed truncation ranges advertised in the "capabilities" action
 response.

5.4.1. Example: Expanded JSON Data Format

 In this example, the client requests a time zone in the expanded
 form.

 >> Request <<

 GET /servlet/timezone/zones/America%2FNew_York/observances
 ?start=2008-01-01T00:00:00Z&end=2009-01-01T00:00:00Z HTTP/1.1
 Host: tz.example.com

 >> Response <<

 HTTP/1.1 200 OK
 Date: Mon, 11 Oct 2009 09:32:12 GMT
 Content-Type: application/json; charset="utf-8"
 Content-Length: xxxx
 ETag: "123456789-000-111"

 {
 "tzid": "America/New_York",
 "observances": [
 {
 "name": "Standard",
 "onset": "2008-01-01T00:00:00Z",
 "utc-offset-from": -18000,
 "utc-offset-to": -18000
 },
 {
 "name": "Daylight",
 "onset": "2008-03-09T07:00:00Z",
 "utc-offset-from": -18000,
 "utc-offset-to": -14400
 },
 {
 "name": "Standard",
 "onset": "2008-11-02T06:00:00Z",
 "utc-offset-from": -14400,
 "utc-offset-to": -18000
 },
]
 }

Douglass & Daboo Standards Track [Page 29]

RFC 7808 TZDIST Service March 2016

5.5. "find" Action

 Name: find

 Request-URI Template:
 {/service-prefix,data-prefix}/zones{?pattern}

 Description: This action allows a client to query the time zone data
 distribution service for a matching identifier, alias, or
 localized name, using a simple "glob" style patter match against
 the names known to the server (with an asterisk (*) as the
 wildcard character). Pattern-match strings (which have to be
 percent-encoded and then decoded when used in the URI query
 parameter) have the following options:

 * not present: An exact text match is done, e.g., "xyz"

 * first character only: An ends-with text match is done, e.g.,
 "*xyz"

 * last character only: A starts-with text match is done, e.g.,
 "xyz*"

 * first and last characters only: A substring text match is done,
 e.g., "*xyz*"

 Escaping \ and *: To match 0x2A ("*") and 0x5C ("\") characters
 in a time zone identifier, those characters have to be
 "escaped" in the pattern by prepending a single 0x5C ("\")
 character. For example, a pattern "*Test\\Time*Zone*" is
 used for an exact match against the time zone identifier
 "*Test\Time*Zone*". An unescaped "*" character MUST NOT appear
 in the middle of the string and MUST result in an error. An
 unescaped "\" character MUST NOT appear anywhere in the string
 and MUST result in an error.

 In addition, when matching:

 Underscores: Underscore characters (0x5F) in time zone
 identifiers MUST be mapped to a single space character (0x20)
 prior to string comparison in both the pattern and time zone
 identifiers being matched. This allows time zone identifiers
 such as "America/New_York" to match a query for "*New York*".

 Case mapping: ASCII characters in the range 0x41 ("A") through
 0x5A ("Z") MUST be mapped to their lowercase equivalents in
 both the pattern and time zone identifiers being matched.

Douglass & Daboo Standards Track [Page 30]

RFC 7808 TZDIST Service March 2016

 Parameters:

 pattern=<text>
 REQUIRED, and MUST occur only once.

 Response: The response has the same format as the "list" action,
 with one result object per successful match; see Section 6.2.

 Possible Error Codes

 urn:ietf:params:tzdist:error:invalid-pattern
 The "pattern" URI query parameter has an incorrect value or
 appears more than once.

5.5.1. Example: find action

 In this example, the client asks for data about the time zone
 "US/Eastern".

 >> Request <<

 GET /servlet/timezone/zones?pattern=US/Eastern HTTP/1.1
 Host: tz.example.com

 >> Response <<

 HTTP/1.1 200 OK
 Date: Wed, 4 Jun 2008 09:32:12 GMT
 Content-Type: application/json; charset="utf-8"
 Content-Length: xxxx

 {
 "synctoken": "2009-10-11T09:32:11Z",
 "timezones": [
 {
 "tzid": "America/New_York",
 "etag": "123456789-000-111",
 "last-modified": "2009-09-17T01:39:34Z",
 "publisher": "Example.com",
 "version": "2015a",
 "aliases":["US/Eastern"],
 "local-names": [
 {
 "name": "America/New_York",
 "lang": "en_US"
 }
]
 },

Douglass & Daboo Standards Track [Page 31]

RFC 7808 TZDIST Service March 2016

 {
 "tzid": "America/Detroit",
 "etag": "123456789-999-222",
 "last-modified": "2009-09-17T01:39:34Z",
 "publisher": "Example.com",
 "version": "2015a",
 "aliases":["US/Eastern"],
 "local-names": [
 {
 "name": "America/Detroit",
 "lang": "en_US"
 }
]
 },
 ...
]
 }

5.6. "leapseconds" Action

 Name: leapseconds

 Request-URI Template:
 {/service-prefix,data-prefix}/leapseconds

 Description: This action allows a client to query the time zone data
 distribution service to retrieve the current leap-second
 information available on the server.

 Parameters: None

 Response: A JSON object containing an "expires" member, a
 "publisher" member, a "version" member, and a "leapseconds"
 member; see Section 6.4. The "expires" member in the JSON
 response indicates the latest date covered by leap-second
 information. For example (as in Section 5.6.1), if the "expires"
 value is set to "2014-06-28" and the latest leap-second change
 indicated was at "2012-07-01", then the data indicates that there
 are no leap seconds added (or removed) between those two dates,
 and information for leap seconds beyond the "expires" date is not
 yet available.

 The "leapseconds" member contains a list of JSON objects each of
 which contains a "utc-offset" and "onset" member. The "onset"
 member specifies the date (with the implied time of 00:00:00 UTC)
 at which the corresponding UTC offset from TAI takes effect. In
 other words, a leap second is added or removed just prior to time
 00:00:00 UTC of the specified onset date. When a leap second is

Douglass & Daboo Standards Track [Page 32]

RFC 7808 TZDIST Service March 2016

 added, the "utc-offset" value will be incremented by one; when a
 leap second is removed, the "utc-offset" value will be decremented
 by one.

 Possible Error Codes No specific code.

5.6.1. Example: Get Leap-Second Information

 In this example, the client requests the current leap-second
 information from the server.

 >> Request <<

 GET /servlet/timezone/leapseconds HTTP/1.1
 Host: tz.example.com

 >> Response <<

 HTTP/1.1 200 OK
 Date: Wed, 4 Jun 2008 09:32:12 GMT
 Content-Type: application/json; charset="utf-8"
 Content-Length: xxxx

 {
 "expires": "2015-12-28",
 "publisher": "Example.com",
 "version": "2015d",
 "leapseconds": [
 {
 "utc-offset": 10,
 "onset": "1972-01-01",
 },
 {
 "utc-offset": 11,
 "onset": "1972-07-01",
 },
 ...
 {
 "utc-offset": 35,
 "onset": "2012-07-01",
 },
 {
 "utc-offset": 36,
 "onset": "2015-07-01",
 }
]
 }

Douglass & Daboo Standards Track [Page 33]

RFC 7808 TZDIST Service March 2016

6. JSON Definitions

 [RFC7159] defines the structure of JSON objects using a set of
 primitive elements. The structure of JSON objects used by this
 specification is described by the following set of rules:

 OBJECT represents a JSON object, defined in Section 4 of [RFC7159].
 "OBJECT" is followed by a parenthesized list of "MEMBER" rule
 names. If a member rule name is preceded by a "?" (0x3F)
 character, that member is optional; otherwise, all members are
 required. If two or more member rule names are present, each
 separated from the other by a "|" (0x7C) character, then only one
 of those members MUST be present in the JSON object. JSON object
 members are unordered, and thus the order used in the rules is not
 significant.

 MEMBER represents a member of a JSON object, defined in Section 4 of
 [RFC7159]. "MEMBER" is followed by a rule name, the name of the
 member, a ":", and then the value. A value can be one of
 "OBJECT", "ARRAY", "NUMBER", "STRING", or "BOOLEAN" rules.

 ARRAY represents a JSON array, defined in Section 5 of [RFC7159].
 "ARRAY" is followed by a value (one of "OBJECT", "ARRAY",
 "NUMBER", "STRING", or "BOOLEAN"), indicating the type of items
 used in the array.

 NUMBER represents a JSON number, defined in Section 6 of [RFC7159].

 STRING represents a JSON string, defined in Section 7 of [RFC7159].

 BOOLEAN represents either of the JSON values "true" or "false",
 defined in Section 3 of [RFC7159].

 ; a line starting with a ";" (0x3B) character is a comment.

 Note, clients MUST ignore any unexpected JSON members in responses
 from the server.

6.1. capabilities Action Response

 Below are the rules for the JSON document returned for a
 "capabilities" action request.

 ; root object
 OBJECT (version, info, actions)

 ; The version number of the protocol supported - MUST be 1
 MEMBER version "version" : NUMBER

Douglass & Daboo Standards Track [Page 34]

RFC 7808 TZDIST Service March 2016

 ; object containing service information
 ; Only one of primary_source or secondary_source MUST be present
 MEMBER info "info" : OBJECT (
 primary_source | secondary_source,
 formats,
 ?truncated,
 ?provider_details,
 ?contacts
)

 ; The source of the time zone data provided by a "primary" server
 MEMBER primary_source "primary-source" : STRING

 ; The time zone data server from which data is provided by a
 ; "secondary" server
 MEMBER secondary_source "secondary-source" : STRING

 ; Array of one or more media types for the time zone data formats
 ; that the server can return
 MEMBER formats "formats" : ARRAY STRING

 ; Present if the server is providing truncated time zone data. The
 ; value is an object providing details of the supported truncation
 ; modes.
 MEMBER truncated "truncated" : OBJECT: (
 any,
 ?ranges,
 ?untruncated
)

 ; Indicates whether the server can truncate time zone data at any
 ; start or end point. When set to "true", any start or end point is
 ; a valid value for use with the "start" and "end" URI query
 ; parameters in a "get" action request.
 MEMBER any "any" : BOOLEAN

 ; Indicates which ranges of time the server has truncated data for.
 ; A value from this list may be used with the "start" and "end" URI
 ; query parameters in a "get" action request. Not present if "any"
 ; is set to "true".
 MEMBER ranges "ranges" : ARRAY OBJECT (range-start, range-end)

 ; UTC date-time value (per [RFC3339]) for inclusive start of the
 ; range, or the single character "*" to indicate a value
 ; corresponding to the lower bound supplied by the publisher of the
 ; time zone data
 MEMBER range-start "start" : STRING

Douglass & Daboo Standards Track [Page 35]

RFC 7808 TZDIST Service March 2016

 ; UTC date-time value (per [RFC3339]) for exclusive end of the range,
 ; or the single character "*" to indicate a value corresponding to
 ; the upper bound supplied by the publisher of the time zone data
 MEMBER range-end "end" : STRING

 ; Indicates whether the server can supply untruncated data. When
 ; set to "true", indicates that, in addition to truncated data being
 ; available, the server can return untruncated data if a "get"
 ; action request is executed without a "start" or "end" URI query
 ; parameter.
 MEMBER untruncated "untruncated" : BOOLEAN

 ; A URI where human-readable details about the time zone service
 ; is available
 MEMBER provider_details "provider-details" : STRING

 ; Array of URIs providing contact details for the server
 ; administrator
 MEMBER contacts "contacts" : ARRAY STRING

 ; Array of actions supported by the server
 MEMBER actions "actions" : ARRAY OBJECT (
 action_name,
 action_params
)

 ; Name of the action
 MEMBER action_name: "name" : STRING

 ; Array of request-URI query parameters supported by the action
 MEMBER action_params: "parameters" ARRAY OBJECT (
 param_name,
 ?param_required,
 ?param_multi,
 ?param_values
)

 ; Name of the parameter
 MEMBER param_name "name" : STRING

 ; If true, the parameter has to be present in the request-URI
 ; default is false
 MEMBER param_required "required" : BOOLEAN

 ; If true, the parameter can occur more than once in the request-URI
 ; default is false
 MEMBER param_multi "multi" : BOOLEAN,

Douglass & Daboo Standards Track [Page 36]

RFC 7808 TZDIST Service March 2016

 ; An array that defines the allowed set of values for the parameter
 ; In the absence of this member, any string value is acceptable
 MEMBER param_values "values" ARRAY STRING

6.2. list/find Action Response

 Below are the rules for the JSON document returned for a "list" or
 "find" action request.

 ; root object
 OBJECT (synctoken, timezones)

 ; Server-generated opaque token used for synchronizing changes
 MEMBER synctoken "synctoken" : STRING

 ; Array of time zone objects
 MEMBER timezones "timezones" : ARRAY OBJECT (
 tzid,
 etag,
 last_modified,
 publisher,
 version,
 ?aliases,
 ?local_names,
)

 ; Time zone identifier
 MEMBER tzid "tzid" : STRING

 ; Current ETag for the corresponding time zone data resource
 MEMBER etag "etag" : STRING

 ; Date/time when the time zone data was last modified
 ; UTC date-time value as specified in [RFC3339]
 MEMBER last_modified "last-modified" : STRING

 ; Time zone data publisher
 MEMBER publisher "publisher" : STRING

 ; Current version of the time zone data as defined by the
 ; publisher
 MEMBER version "version" : STRING

 ; An array that lists the set of time zone aliases available
 ; for the corresponding time zone
 MEMBER aliases "aliases" : ARRAY STRING

Douglass & Daboo Standards Track [Page 37]

RFC 7808 TZDIST Service March 2016

 ; An array that lists the set of localized names available
 ; for the corresponding time zone
 MEMBER local_names "local-names" : ARRAY OBJECT (
 lname, lang, ?pref
)

 ; Language tag for the language of the associated name
 MEMBER: lang "lang" : STRING

 ; Localized name
 MEMBER lname "name" : STRING

 ; Indicates whether this is the preferred name for the associated
 ; language default: false
 MEMBER pref "pref" : BOOLEAN

6.3. expand Action Response

 Below are the rules for the JSON document returned for a "expand"
 action request.

 ; root object
 OBJECT (
 tzid,
 ?start,
 ?end,
 observances
)

 ; Time zone identifier
 MEMBER tzid "tzid" : STRING

 ; The actual inclusive start point for the returned observances
 ; if different from the value of the "start" URI query parameter
 MEMBER start "start" : STRING

 ; The actual exclusive end point for the returned observances
 ; if different from the value of the "end" URI query parameter
 MEMBER end "end" : STRING

 ; Array of time zone objects
 MEMBER observances "observances" : ARRAY OBJECT (
 oname,
 ?olocal_names,
 onset,
 utc_offset_from,
 utc_offset_to
)

Douglass & Daboo Standards Track [Page 38]

RFC 7808 TZDIST Service March 2016

 ; Observance name
 MEMBER oname "name" : STRING

 ; Array of localized observance names
 MEMBER olocal_names "local-names" : ARRAY STRING

 ; UTC date-time value (per [RFC3339]) at which the observance takes
 ; effect
 MEMBER onset "onset" : STRING

 ; The UTC offset in seconds before the start of this observance
 MEMBER utc_offset_from "utc-offset-from" : NUMBER

 ; The UTC offset in seconds at and after the start of this observance
 MEMBER utc_offset_to "utc-offset-to" : NUMBER

6.4. leapseconds Action Response

 Below are the rules for the JSON document returned for a
 "leapseconds" action request.

 ; root object
 OBJECT (
 expires,
 publisher,
 version,
 leapseconds
)

 ; Last valid date covered by the data in this response
 ; full-date value as specified in [RFC3339]
 MEMBER expires "expires" : STRING

 ; Leap-second information publisher
 MEMBER publisher "publisher" : STRING

 ; Current version of the leap-second information as defined by the
 ; publisher
 MEMBER version "version" : STRING

 ; Array of leap-second objects
 MEMBER leapseconds "leapseconds" : ARRAY OBJECT (
 utc_offset,
 onset
)

Douglass & Daboo Standards Track [Page 39]

RFC 7808 TZDIST Service March 2016

 ; The UTC offset from TAI in seconds in effect at and after the
 ; specified date
 MEMBER utc_offset "utc-offset" : NUMBER

 ; full-date value (per [RFC3339]) at which the new UTC offset takes
 ; effect, at T00:00:00Z
 MEMBER onset "onset" : STRING

7. New iCalendar Properties

7.1. Time Zone Upper Bound

 Property Name: TZUNTIL

 Purpose: This property specifies an upper bound for the validity
 period of data within a "VTIMEZONE" component.

 Value Type: DATE-TIME

 Property Parameters: IANA and non-standard property parameters can
 be specified on this property.

 Conformance: This property can be specified zero times or one time
 within "VTIMEZONE" calendar components.

 Description: The value MUST be specified in the UTC time format.

 Time zone data in a "VTIMEZONE" component might cover only a fixed
 period of time. The start of such a period is clearly indicated
 by the earliest observance defined by the "STANDARD" and
 "DAYLIGHT" subcomponents. However, an upper bound on the validity
 period of the time zone data cannot be simply derived from the
 observance with the latest onset time, and [RFC5545] does not
 define a way to get such an upper bound. This specification
 introduces the "TZUNTIL" property for that purpose. It specifies
 an "exclusive" UTC date-time value that indicates the last time at
 which the time zone data is to be considered valid.

 This property is also used by time zone data distribution servers
 to indicate the truncation range end point of time zone data (as
 described in Section 3.9).

 Format Definition: This property is defined by the following
 notation in ABNF [RFC5234]:

 tzuntil = "TZUNTIL" tzuntilparam ":" date-time CRLF

 tzuntilparam = *(";" other-param)

Douglass & Daboo Standards Track [Page 40]

RFC 7808 TZDIST Service March 2016

 Example: Suppose a time zone based on astronomical observations has
 well-defined onset times through the year 2025, but the first
 onset in 2026 is currently known only approximately. In that
 case, the "TZUNTIL" property could be specified as follows:

 TZUNTIL:20260101T000000Z

7.2. Time Zone Identifier Alias Property

 Property Name: TZID-ALIAS-OF

 Purpose: This property specifies a time zone identifier for which
 the main time zone identifier is an alias.

 Value Type: TEXT

 Property Parameters: IANA and non-standard property parameters can
 be specified on this property.

 Conformance: This property can be specified zero or more times
 within "VTIMEZONE" calendar components.

 Description: When the "VTIMEZONE" component uses a time zone
 identifier alias for the "TZID" property value, the "TZID-ALIAS-
 OF" property is used to indicate the time zone identifier of the
 other time zone (see Section 3.7).

 Format Definition: This property is defined by the following
 notation in ABNF [RFC5234]:

 tzid-alias-of = "TZID-ALIAS-OF" tzidaliasofparam ":"
 [tzidprefix] text CRLF

 tzidaliasofparam = *(";" other-param)

 ;tzidprefix defined in [RFC5545].

 Example: The following is an example of this property:

 TZID-ALIAS-OF:America/New_York

Douglass & Daboo Standards Track [Page 41]

RFC 7808 TZDIST Service March 2016

8. Security Considerations

 Time zone data is critical in determining local or UTC time for
 devices and in calendaring and scheduling operations. As such, it is
 vital that a reliable source of time zone data is used. Servers
 providing a time zone data distribution service MUST support HTTP
 over Transport Layer Security (TLS) (as defined by [RFC2818] and
 [RFC5246], with best practices described in [RFC7525]). Servers MAY
 support a time zone data distribution service over HTTP without TLS.
 However, secondary servers MUST use TLS to fetch data from a primary
 server.

 Clients SHOULD use Transport Layer Security as defined by [RFC2818],
 unless they are specifically configured otherwise. Clients that have
 been configured to use the TLS-based service MUST NOT fall back to
 using the non-TLS service if the TLS-based service is not available.
 In addition, clients MUST NOT follow HTTP redirect requests from a
 TLS service to a non-TLS service. When using TLS, clients MUST
 verify the identity of the server, using a standard, secure mechanism
 such as the certificate verification process specified in [RFC6125]
 or DANE [RFC6698].

 A malicious attacker with access to the DNS server data, or able to
 get spoofed answers cached in a recursive resolver, can potentially
 cause clients to connect to any server chosen by the attacker. In
 the absence of a secure DNS option, clients SHOULD check that the
 target FQDN returned in the SRV record is the same as the original
 service domain that was queried, or is a sub-domain of the original
 service domain. In many cases, the client configuration is likely to
 be handled automatically without any user input; as such, any
 mismatch between the original service domain and the target FQDN is
 treated as a failure and the client MUST NOT attempt to connect to
 the target server. In addition, when Transport Layer Security is
 being used, the Transport Layer Security certificate SHOULD include
 an SRV-ID field as per [RFC4985] matching the expected DNS SRV
 queries clients will use for service discovery. If an SRV-ID field
 is present in a certificate, clients MUST match the SRV-ID value with
 the service type and domain that matches the DNS SRV request made by
 the client to discover the service.

 Time zone data servers SHOULD protect themselves against poorly
 implemented or malicious clients by throttling high request rates or
 frequent requests for large amounts of data. Clients can avoid being
 throttled by using the polling capabilities outlined in
 Section 4.1.4. Servers MAY require some form of authentication or
 authorization of clients (including secondary servers), as per
 [RFC7235], to restrict which clients are allowed to access their
 service or provide better identification of problematic clients.

Douglass & Daboo Standards Track [Page 42]

RFC 7808 TZDIST Service March 2016

9. Privacy Considerations

 The type and pattern of requests that a client makes can be used to
 "fingerprint" specific clients or devices and thus potentially used
 to track information about what the users of the clients might be
 doing. In particular, a client that only downloads time zone data on
 an as-needed basis, will leak the fact that a user’s device has moved
 from one time zone to another or that the user is receiving
 scheduling messages from another user in a different time zone.

 Clients need to be aware of the potential ways in which an untrusted
 server or a network observer might be able to track them and take
 precautions such as the following:

 1. Always use TLS to connect to the server.

 2. Avoid use of TLS session resumption.

 3. Always fetch and synchronize the entire set of time zone data to
 avoid leaking information about which time zones are actually in
 use by the client.

 4. Randomize the order in which individual time zones are fetched
 using the "get" action, when retrieving a set of time zones based
 on a "list" action response.

 5. Avoid use of conditional HTTP requests [RFC7232] with the "get"
 action to prevent tracking of clients by servers generating
 client-specific ETag header field values.

 6. Avoid use of cookies in HTTP requests [RFC6265].

 7. Avoid use of authenticated HTTP requests.

 8. When doing periodic polling to check for updates, apply a random
 (positive or negative) offset to the next poll time to avoid
 servers being able to identify the client by the specific
 periodicity of its polling behavior.

 9. A server trying to "fingerprint" clients might insert a "fake"
 time zone into the time zone data, using a unique identifier for
 each client making a request. The server can then watch for
 client requests that refer to that "fake" time zone and thus
 track the activity of each client. It is hard for clients to
 identify a "fake" time zone given that new time zones are added
 occasionally. One option to mitigate this would be for the
 client to make use of two time zone data distribution servers
 from two independent providers that provide time zone data from

Douglass & Daboo Standards Track [Page 43]

RFC 7808 TZDIST Service March 2016

 the same publisher. The client can then compare the list of time
 zones from each server (assuming they both have the same version
 of time zone data from the common publisher) and detect ones that
 appear to be added on one server and not the other.
 Alternatively, the client can check the publisher data directly
 to verify that time zones match the set the publisher has.

 Note that some of the above recommendations will result in less
 efficient use of the protocol due to fetching data that might not be
 relevant to the client.

 An organization can set up a secondary server within their own domain
 and configure their clients to use that server to protect the
 organization’s users from the possibility of being tracked by an
 untrusted time zone data distribution server. Clients can then use
 more-efficient protocol interactions, free from the concerns above,
 on the basis that their organization’s server is trusted. When doing
 this, the secondary server would follow the recommendations for
 clients (listed in the previous paragraph) so that the untrusted
 server is not able to gain information about the organization as a
 whole. Note, however, that client requests to the secondary server
 are subject to tracking by a network observer, so clients ought to
 apply some of the randomization techniques from the list above.

 Servers that want to avoid accidentally storing information that
 could be used to identify clients can take the following precautions:

 1. Avoid logging client request activity, or anonymize information
 in any logs (e.g., client IP address, client user-agent details,
 authentication credentials, etc.).

 2. Add an unused HTTP response header to each response with a random
 amount of data in it (e.g., to pad the overall request size to
 the nearest power-of-2 or 128-byte boundary) to avoid exposing
 which time zones are being fetched when TLS is being used, via
 network traffic analysis.

10. IANA Considerations

 This specification defines a new registry of "actions" for the time
 zone data distribution service protocol, defines a "well-known" URI
 using the registration procedure and template from Section 5.1 of
 [RFC5785], creates two new SRV service label aliases, and defines one
 new iCalendar property parameter as per the registration procedure in
 [RFC5545]. It also adds a new "TZDIST Identifiers Registry" to the
 IETF parameters URN sub-namespace as per [RFC3553] for use with
 protocol related error codes.

Douglass & Daboo Standards Track [Page 44]

RFC 7808 TZDIST Service March 2016

10.1. Service Actions Registration

 IANA has created a new top-level category called "Time Zone Data
 Distribution Service (TZDIST) Parameters" and has put all the
 registries created herein into that category.

 IANA has created a new registry called "TZDIST Service Actions", as
 defined below.

10.1.1. Service Actions Registration Procedure

 This registry uses the "Specification Required" policy defined in
 [RFC5226], which makes use of a designated expert to review potential
 registrations.

 The IETF has created a mailing list, tzdist-service@ietf.org, which
 is used for public discussion of time zone data distribution service
 actions proposals prior to registration. The IESG has appointed a
 designated expert who will monitor the tzdist-service@ietf.org
 mailing list and review registrations.

 A Standards Track RFC is REQUIRED for changes to actions previously
 documented in a Standards Track RFC; otherwise, any public
 specification that satisfies the requirements of [RFC5226] is
 acceptable.

 The registration procedure begins when a completed registration
 template, as defined below, is sent to tzdist-service@ietf.org and
 iana@iana.org. The designated expert is expected to tell IANA and
 the submitter of the registration whether the registration is
 approved, approved with minor changes, or rejected with cause, within
 two weeks. When a registration is rejected with cause, it can be
 resubmitted if the concerns listed in the cause are addressed.
 Decisions made by the designated expert can be appealed as per
 Section 7 of [RFC5226].

 The designated expert MUST take the following requirements into
 account when reviewing the registration:

 1. A valid registration template MUST be provided by the submitter,
 with a clear description of what the action does.

 2. A proposed new action name MUST NOT conflict with any existing
 registered action name. A conflict includes a name that
 duplicates an existing one or that appears to be very similar to
 an existing one and could be a potential source of confusion.

Douglass & Daboo Standards Track [Page 45]

RFC 7808 TZDIST Service March 2016

 3. A proposed new action MUST NOT exactly duplicate the
 functionality of any existing actions. In cases where the new
 action functionality is very close to an existing action, the
 designated expert SHOULD clarify whether the submitter is aware
 of the existing action, and has an adequate reason for creating a
 new action with slight differences from an existing one.

 4. If a proposed action is an extension to an existing action, the
 changes MUST NOT conflict with the intent of the existing action,
 or in a way that could cause interoperability problems for
 existing deployments of the protocol.

 The IANA registry contains the name of the action ("Action Name") and
 a reference to the section of the specification where the action
 registration template is defined ("Reference").

10.1.2. Registration Template for Actions

 An action is defined by completing the following template.

 Name: The name of the action.

 Request-URI Template: The URI template used in HTTP requests for the
 action.

 Description: A general description of the action, its purpose, etc.

 Parameters: A list of allowed request URI query parameters,
 indicating whether they are "REQUIRED" or "OPTIONAL" and whether
 they can occur only once or multiple times, together with the
 expected format of the parameter values.

 Response: The nature of the response to the HTTP request, e.g., what
 format the response data is in.

 Possible Error Codes: Possible error codes reported in a JSON
 "problem details" object if an HTTP request fails.

Douglass & Daboo Standards Track [Page 46]

RFC 7808 TZDIST Service March 2016

10.1.3. Actions Registry

 The following table provides the initial content of the actions
 registry.

 +---------------+------------------------+
 | Action Name | Reference |
 +---------------+------------------------+
 | capabilities | RFC 7808, Section 5.1 |
 | list | RFC 7808, Section 5.2 |
 | get | RFC 7808, Section 5.3 |
 | expand | RFC 7808, Section 5.4 |
 | find | RFC 7808, Section 5.5 |
 | leapseconds | RFC 7808, Section 5.6 |
 +---------------+------------------------+

10.2. timezone Well-Known URI Registration

 IANA has added the following to the "Well-Known URIs" [RFC5785]
 registry:

 URI suffix: timezone

 Change controller: IESG.

 Specification document(s): RFC 7808

 Related information: None.

10.3. Service Name Registrations

 IANA has added two new service names to the "Service Name and
 Transport Protocol Port Number Registry" [RFC6335], as defined below.

10.3.1. timezone Service Name Registration

 Service Name: timezone

 Transport Protocol(s): TCP

 Assignee: IESG <iesg@ietf.org>

 Contact: IETF Chair <chair@ietf.org>

 Description: Time Zone Data Distribution Service - non-TLS

 Reference: RFC 7808

Douglass & Daboo Standards Track [Page 47]

RFC 7808 TZDIST Service March 2016

 Assignment Note: This is an extension of the http service. Defined
 TXT keys: path=<context path> (as per Section 6 of [RFC6763]).

10.3.2. timezones Service Name Registration

 Service Name: timezones

 Transport Protocol(s): TCP

 Assignee: IESG <iesg@ietf.org>

 Contact: IETF Chair <chair@ietf.org>

 Description: Time Zone Data Distribution Service - over TLS

 Reference: RFC 7808

 Assignment Note: This is an extension of the https service. Defined
 TXT keys: path=<context path> (as per Section 6 of [RFC6763]).

10.4. TZDIST Identifiers Registry

 IANA has registered a new URN sub-namespace within the IETF URN Sub-
 namespace for Registered Protocol Parameter Identifiers defined in
 [RFC3553].

 Registrations in this registry follow the "IETF Review" [RFC5226]
 policy.

 Registry name: TZDIST Identifiers

 URN prefix: urn:ietf:params:tzdist

 Specification: RFC 7808

 Repository: http://www.iana.org/assignments/tzdist-identifiers

 Index value: Values in this registry are URNs or URN prefixes that
 start with the prefix "urn:ietf:params:tzdist:". Each is
 registered independently. The prefix
 "urn:ietf:params:tzdist:error:" is used to represent specific
 error codes within the protocol as defined in the list of actions
 in Section 5 and used in problem reports (Section 4.1.7).

 Each registration in the "TZDIST Identifiers" registry requires the
 following information:

 URN: The complete URN that is used or the prefix for that URN.

Douglass & Daboo Standards Track [Page 48]

RFC 7808 TZDIST Service March 2016

 Description: A summary description for the URN or URN prefix.

 Specification: A reference to a specification describing the URN or
 URN prefix.

 Contact: Email for the person or groups making the registration.

 Index Value: As described in [RFC3553], URN prefixes that are
 registered include a description of how the URN is constructed.
 This is not applicable for specific URNs.

 The "TZDIST Identifiers" registry has the initial registrations
 included in the following sections.

10.4.1. Registration of invalid-action Error URN

 The following URN has been registered in the "tzdist Identifiers"
 registry.

 URN: urn:ietf:params:tzdist:error:invalid-action

 Description: Generic error code for any invalid action.

 Specification: RFC 7808, Section 5

 Repository: http://www.iana.org/assignments/tzdist-identifiers

 Contact: IESG <iesg@ietf.org>

 Index value: N/A.

10.4.2. Registration of invalid-changedsince Error URN

 The following URN has been registered in the "tzdist Identifiers"
 registry.

 URN: urn:ietf:params:tzdist:error:invalid-changedsince

 Description: Error code for incorrect use of the "changedsince" URI
 query parameter.

 Specification: RFC 7808, Section 5.2

 Repository: http://www.iana.org/assignments/tzdist-identifiers

 Contact: IESG <iesg@ietf.org>

 Index value: N/A.

Douglass & Daboo Standards Track [Page 49]

RFC 7808 TZDIST Service March 2016

10.4.3. Registration of tzid-not-found Error URN

 The following URN has been registered in the "tzdist Identifiers"
 registry.

 URN: urn:ietf:params:tzdist:error:tzid-not-found

 Description: Error code for missing time zone identifier.

 Specification: RFC 7808, Sections 5.3 and 5.4

 Repository: http://www.iana.org/assignments/tzdist-identifiers

 Contact: IESG <iesg@ietf.org>

 Index value: N/A.

10.4.4. Registration of invalid-format Error URN

 The following URN has been registered in the "tzdist Identifiers"
 registry.

 URN: urn:ietf:params:tzdist:error:invalid-format

 Description: Error code for unsupported HTTP Accept request header
 field value.

 Specification: RFC 7808, Section 5.3

 Repository: http://www.iana.org/assignments/tzdist-identifiers

 Contact: IESG <iesg@ietf.org>

 Index value: N/A.

10.4.5. Registration of invalid-start Error URN

 The following URN has been registered in the "tzdist Identifiers"
 registry.

 URN: urn:ietf:params:tzdist:error:invalid-start

 Description: Error code for incorrect use of the "start" URI query
 parameter.

 Specification: RFC 7808, Sections 5.3 and 5.4

 Repository: http://www.iana.org/assignments/tzdist-identifiers

Douglass & Daboo Standards Track [Page 50]

RFC 7808 TZDIST Service March 2016

 Contact: IESG <iesg@ietf.org>

 Index value: N/A.

10.4.6. Registration of invalid-end Error URN

 The following URN has been registered in the "tzdist Identifiers"
 registry.

 URN: urn:ietf:params:tzdist:error:invalid-end

 Description: Error code for incorrect use of the "end" URI query
 parameter.

 Specification: RFC 7808, Sections 5.3 and 5.4

 Repository: http://www.iana.org/assignments/tzdist-identifiers

 Contact: IESG <iesg@ietf.org>

 Index value: N/A.

10.4.7. Registration of invalid-pattern Error URN

 The following URN has been registered in the "tzdist Identifiers"
 registry.

 URN: urn:ietf:params:tzdist:error:invalid-pattern

 Description: Error code for incorrect use of the "pattern" URI query
 parameter.

 Specification: RFC 7808, Section 5.5

 Repository: http://www.iana.org/assignments/tzdist-identifiers

 Contact: IESG <iesg@ietf.org>

 Index value: N/A.

Douglass & Daboo Standards Track [Page 51]

RFC 7808 TZDIST Service March 2016

10.5. iCalendar Property Registrations

 This document defines the following new iCalendar properties, which
 have been added to the "Properties" registry under "iCalendar Element
 Registries" [RFC5545]:

 +----------------+----------+------------------------+
 | Property | Status | Reference |
 +----------------+----------+------------------------+
 | TZUNTIL | Current | RFC 7808, Section 7.1 |
 | TZID-ALIAS-OF | Current | RFC 7808, Section 7.2 |
 +----------------+----------+------------------------+

11. References

11.1. Normative References

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 DOI 10.17487/RFC2046, November 1996,
 <http://www.rfc-editor.org/info/rfc2046>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2782] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 DOI 10.17487/RFC2782, February 2000,
 <http://www.rfc-editor.org/info/rfc2782>.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <http://www.rfc-editor.org/info/rfc2818>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <http://www.rfc-editor.org/info/rfc3339>.

 [RFC3553] Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An
 IETF URN Sub-namespace for Registered Protocol
 Parameters", BCP 73, RFC 3553, DOI 10.17487/RFC3553, June
 2003, <http://www.rfc-editor.org/info/rfc3553>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <http://www.rfc-editor.org/info/rfc3629>.

Douglass & Daboo Standards Track [Page 52]

RFC 7808 TZDIST Service March 2016

 [RFC4985] Santesson, S., "Internet X.509 Public Key Infrastructure
 Subject Alternative Name for Expression of Service Name",
 RFC 4985, DOI 10.17487/RFC4985, August 2007,
 <http://www.rfc-editor.org/info/rfc4985>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5545] Desruisseaux, B., Ed., "Internet Calendaring and
 Scheduling Core Object Specification (iCalendar)",
 RFC 5545, DOI 10.17487/RFC5545, September 2009,
 <http://www.rfc-editor.org/info/rfc5545>.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 DOI 10.17487/RFC5785, April 2010,
 <http://www.rfc-editor.org/info/rfc5785>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <http://www.rfc-editor.org/info/rfc6125>.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <http://www.rfc-editor.org/info/rfc6265>.

 [RFC6321] Daboo, C., Douglass, M., and S. Lees, "xCal: The XML
 Format for iCalendar", RFC 6321, DOI 10.17487/RFC6321,
 August 2011, <http://www.rfc-editor.org/info/rfc6321>.

Douglass & Daboo Standards Track [Page 53]

RFC 7808 TZDIST Service March 2016

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <http://www.rfc-editor.org/info/rfc6335>.

 [RFC6557] Lear, E. and P. Eggert, "Procedures for Maintaining the
 Time Zone Database", BCP 175, RFC 6557,
 DOI 10.17487/RFC6557, February 2012,
 <http://www.rfc-editor.org/info/rfc6557>.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570,
 DOI 10.17487/RFC6570, March 2012,
 <http://www.rfc-editor.org/info/rfc6570>.

 [RFC6698] Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
 of Named Entities (DANE) Transport Layer Security (TLS)
 Protocol: TLSA", RFC 6698, DOI 10.17487/RFC6698, August
 2012, <http://www.rfc-editor.org/info/rfc6698>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <http://www.rfc-editor.org/info/rfc6763>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7232] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Conditional Requests", RFC 7232,
 DOI 10.17487/RFC7232, June 2014,
 <http://www.rfc-editor.org/info/rfc7232>.

Douglass & Daboo Standards Track [Page 54]

RFC 7808 TZDIST Service March 2016

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",
 RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <http://www.rfc-editor.org/info/rfc7234>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <http://www.rfc-editor.org/info/rfc7235>.

 [RFC7265] Kewisch, P., Daboo, C., and M. Douglass, "jCal: The JSON
 Format for iCalendar", RFC 7265, DOI 10.17487/RFC7265, May
 2014, <http://www.rfc-editor.org/info/rfc7265>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <http://www.rfc-editor.org/info/rfc7525>.

 [RFC7807] Nottingham, M. and E. Wilde, "Problem Details for HTTP
 APIs", RFC 7807, DOI 10.17487/RFC7807, March 2016,
 <http://www.rfc-editor.org/info/rfc7807>.

11.2. Informative References

 [RFC2131] Droms, R., "Dynamic Host Configuration Protocol",
 RFC 2131, DOI 10.17487/RFC2131, March 1997,
 <http://www.rfc-editor.org/info/rfc2131>.

Acknowledgements

 The authors would like to thank the members of the Calendaring and
 Scheduling Consortium’s Time Zone Technical Committee, and the
 participants and chairs of the IETF tzdist working group. In
 particular, the following individuals have made important
 contributions to this work: Steve Allen, Lester Caine, Stephen
 Colebourne, Tobias Conradi, Steve Crocker, Paul Eggert, Daniel Kahn
 Gillmor, John Haug, Ciny Joy, Bryan Keller, Barry Leiba, Andrew
 McMillan, Ken Murchison, Tim Parenti, Arnaud Quillaud, Jose Edvaldo
 Saraiva, and Dave Thewlis.

 This specification originated from work at the Calendaring and
 Scheduling Consortium, which has supported the development and
 testing of implementations of the specification.

Douglass & Daboo Standards Track [Page 55]

RFC 7808 TZDIST Service March 2016

Authors’ Addresses

 Michael Douglass
 Spherical Cow Group
 226 3rd Street
 Troy, NY 12180
 United States

 Email: mdouglass@sphericalcowgroup.com
 URI: http://sphericalcowgroup.com

 Cyrus Daboo
 Apple Inc.
 1 Infinite Loop
 Cupertino, CA 95014
 United States

 Email: cyrus@daboo.name
 URI: http://www.apple.com/

Douglass & Daboo Standards Track [Page 56]

