
Internet Engineering Task Force (IETF) K. Bhargavan, Ed.
Request for Comments: 7627 A. Delignat-Lavaud
Updates: 5246 A. Pironti
Category: Standards Track Inria Paris-Rocquencourt
ISSN: 2070-1721 A. Langley
 Google Inc.
 M. Ray
 Microsoft Corp.
 September 2015

 Transport Layer Security (TLS) Session Hash and
 Extended Master Secret Extension

Abstract

 The Transport Layer Security (TLS) master secret is not
 cryptographically bound to important session parameters such as the
 server certificate. Consequently, it is possible for an active
 attacker to set up two sessions, one with a client and another with a
 server, such that the master secrets on the two sessions are the
 same. Thereafter, any mechanism that relies on the master secret for
 authentication, including session resumption, becomes vulnerable to a
 man-in-the-middle attack, where the attacker can simply forward
 messages back and forth between the client and server. This
 specification defines a TLS extension that contextually binds the
 master secret to a log of the full handshake that computes it, thus
 preventing such attacks.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7627.

Bhargavan, et al. Standards Track [Page 1]

RFC 7627 TLS Session Hash Extension September 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..3
 2. Requirements Notation ...5
 3. The TLS Session Hash ..5
 4. The Extended Master Secret6
 5. Extension Negotiation ...6
 5.1. Extension Definition6
 5.2. Client and Server Behavior: Full Handshake7
 5.3. Client and Server Behavior: Abbreviated Handshake7
 5.4. Interoperability Considerations9
 6. Security Considerations ...9
 6.1. Triple Handshake Preconditions and Impact9
 6.2. Cryptographic Properties of the Hash Function11
 6.3. Handshake Messages Included in the Session Hash11
 6.4. No SSL 3.0 Support ..12
 7. IANA Considerations ..12
 8. References ...12
 8.1. Normative References12
 8.2. Informative References13
 Acknowledgments ...14
 Authors’ Addresses ..15

Bhargavan, et al. Standards Track [Page 2]

RFC 7627 TLS Session Hash Extension September 2015

1. Introduction

 In TLS [RFC5246], every session has a "master_secret" computed as:

 master_secret = PRF(pre_master_secret, "master secret",
 ClientHello.random + ServerHello.random)
 [0..47];

 where the "pre_master_secret" is the result of some key exchange
 protocol. For example, when the handshake uses an RSA ciphersuite,
 this value is generated uniformly at random by the client, whereas
 for Ephemeral Diffie-Hellman (DHE) ciphersuites, it is the result of
 a Diffie-Hellman key agreement.

 As described in [TRIPLE-HS], in both the RSA and DHE key exchanges,
 an active attacker can synchronize two TLS sessions so that they
 share the same "master_secret". For an RSA key exchange where the
 client is unauthenticated, this is achieved as follows. Suppose a
 client C connects to a server A. C does not realize that A is
 malicious and that A connects in the background to an honest server S
 and completes both handshakes. For simplicity, assume that C and S
 only use RSA ciphersuites.

 1. C sends a "ClientHello" to A, and A forwards it to S.

 2. S sends a "ServerHello" to A, and A forwards it to C.

 3. S sends a "Certificate", containing its certificate chain, to A.
 A replaces it with its own certificate chain and sends it to C.

 4. S sends a "ServerHelloDone" to A, and A forwards it to C.

 5. C sends a "ClientKeyExchange" to A, containing the
 "pre_master_secret", encrypted with A’s public key. A decrypts
 the "pre_master_secret", re-encrypts it with S’s public key, and
 sends it on to S.

 6. C sends a "Finished" to A. A computes a "Finished" for its
 connection with S and sends it to S.

 7. S sends a "Finished" to A. A computes a "Finished" for its
 connection with C and sends it to C.

 At this point, both connections (between C and A, and between A and
 S) have new sessions that share the same "pre_master_secret",
 "ClientHello.random", "ServerHello.random", as well as other session
 parameters, including the session identifier and, optionally, the
 session ticket. Hence, the "master_secret" value will be equal for

Bhargavan, et al. Standards Track [Page 3]

RFC 7627 TLS Session Hash Extension September 2015

 the two sessions and will be associated both at C and S with the same
 session ID, even though the server identities on the two connections
 are different. Recall that C only sees A’s certificate and is
 unaware of A’s connection with S. Moreover, the record keys on the
 two connections will also be the same.

 The scenario above shows that TLS does not guarantee that the master
 secrets and keys used on different connections will be different.
 Even if client authentication is used, the scenario still works,
 except that the two sessions now differ on both client and server
 identities.

 A similar scenario can be achieved when the handshake uses a DHE
 ciphersuite. Note that even if the client or server does not prefer
 using RSA or DHE, the attacker can force them to use it by offering
 only RSA or DHE in its hello messages. Handshakes using Ephemeral
 Elliptic Curve Diffie-Hellman (ECDHE) ciphersuites are also
 vulnerable if they allow arbitrary explicit curves or use curves with
 small subgroups. Against more powerful adversaries, other key
 exchanges, such as Secure Remote Password (SRP) and Pre-Shared Key
 (PSK), have also been shown to be vulnerable [VERIFIED-BINDINGS].

 Once A has synchronized the two connections, since the keys are the
 same on the two sides, it can step away and transparently forward
 messages between C and S, reading and modifying when it desires. In
 the key exchange literature, such occurrences are called unknown key-
 share attacks, since C and S share a secret but they both think that
 their secret is shared only with A. In themselves, these attacks do
 not break integrity or confidentiality between honest parties, but
 they offer a useful starting point from which to mount impersonation
 attacks on C and S.

 Suppose C tries to resume its session on a new connection with A. A
 can then resume its session with S on a new connection and forward
 the abbreviated handshake messages unchanged between C and S. Since
 the abbreviated handshake only relies on the master secret for
 authentication and does not mention client or server identities, both
 handshakes complete successfully, resulting in the same session keys
 and the same handshake log. A still knows the connection keys and
 can send messages to both C and S.

 Critically, at the new connection, even the handshake log is the same
 on C and S, thus defeating any man-in-the-middle protection scheme
 that relies on the uniqueness of finished messages, such as the
 secure renegotiation indication extension [RFC5746] or TLS channel
 bindings [RFC5929]. [TRIPLE-HS] describes several exploits based on
 such session synchronization attacks. In particular, it describes a
 man-in-the-middle attack, called the "triple handshake", that

Bhargavan, et al. Standards Track [Page 4]

RFC 7627 TLS Session Hash Extension September 2015

 circumvents the protections of [RFC5746] to break client-
 authenticated TLS renegotiation after session resumption. Similar
 attacks apply to application-level authentication mechanisms that
 rely on channel bindings [RFC5929] or on key material exported from
 TLS [RFC5705].

 The underlying protocol issue leading to these attacks is that the
 TLS master secret is not guaranteed to be unique across sessions,
 since it is not context-bound to the full handshake that generated
 it. If we fix this problem in the initial master secret computation,
 then all these attacks can be prevented. This specification
 introduces a TLS extension that changes the way the "master_secret"
 value is computed in a full handshake by including the log of the
 handshake messages, so that different sessions will, by construction,
 have different master secrets. This prevents the attacks described
 in [TRIPLE-HS] and documented in Section 2.11 of [RFC7457].

2. Requirements Notation

 This document uses the same notation and terminology used in the TLS
 protocol specification [RFC5246].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

3. The TLS Session Hash

 When a full TLS handshake takes place, we define

 session_hash = Hash(handshake_messages)

 where "handshake_messages" refers to all handshake messages sent or
 received, starting at the ClientHello up to and including the
 ClientKeyExchange message, including the type and length fields of
 the handshake messages. This is the concatenation of all the
 exchanged Handshake structures, as defined in Section 7.4 of
 [RFC5246].

 For TLS 1.2, the "Hash" function is the one defined in Section 7.4.9
 of [RFC5246] for the Finished message computation. For all previous
 versions of TLS, the "Hash" function computes the concatenation of
 MD5 and SHA1.

 There is no "session_hash" for resumed handshakes, as they do not
 lead to the creation of a new session.

Bhargavan, et al. Standards Track [Page 5]

RFC 7627 TLS Session Hash Extension September 2015

4. The Extended Master Secret

 When the extended master secret extension is negotiated in a full
 handshake, the "master_secret" is computed as

 master_secret = PRF(pre_master_secret, "extended master secret",
 session_hash)
 [0..47];

 The extended master secret computation differs from that described in
 [RFC5246] in the following ways:

 o The "extended master secret" label is used instead of "master
 secret".

 o The "session_hash" is used instead of the "ClientHello.random" and
 "ServerHello.random".

 The "session_hash" depends upon a handshake log that includes
 "ClientHello.random" and "ServerHello.random", in addition to
 ciphersuites, key exchange information, and certificates (if any)
 from the client and server. Consequently, the extended master secret
 depends upon the choice of all these session parameters.

 This design reflects the recommendation that keys should be bound to
 the security contexts that compute them [SP800-108]. The technique
 of mixing a hash of the key exchange messages into master key
 derivation is already used in other well-known protocols such as
 Secure Shell (SSH) [RFC4251].

 Clients and servers SHOULD NOT accept handshakes that do not use the
 extended master secret, especially if they rely on features like
 compound authentication that fall into the vulnerable cases described
 in Section 6.1.

5. Extension Negotiation

5.1. Extension Definition

 This document defines a new TLS extension, "extended_master_secret"
 (with extension type 0x0017), which is used to signal both client and
 server to use the extended master secret computation. The
 "extension_data" field of this extension is empty. Thus, the entire
 encoding of the extension is 00 17 00 00 (in hexadecimal.)

 Although this document refers only to TLS, the extension proposed
 here can also be used with Datagram TLS (DTLS) [RFC6347].

Bhargavan, et al. Standards Track [Page 6]

RFC 7627 TLS Session Hash Extension September 2015

 If the client and server agree on this extension and a full handshake
 takes place, both client and server MUST use the extended master
 secret derivation algorithm, as defined in Section 4. All other
 cryptographic computations remain unchanged.

5.2. Client and Server Behavior: Full Handshake

 In the following, we use the phrase "abort the handshake" as
 shorthand for terminating the handshake by sending a fatal
 "handshake_failure" alert.

 In all handshakes, a client implementing this document MUST send the
 "extended_master_secret" extension in its ClientHello.

 If a server implementing this document receives the
 "extended_master_secret" extension, it MUST include the extension in
 its ServerHello message.

 If both the ClientHello and ServerHello contain the extension, the
 new session uses the extended master secret computation.

 If the server receives a ClientHello without the extension, it SHOULD
 abort the handshake if it does not wish to interoperate with legacy
 clients. If it chooses to continue the handshake, then it MUST NOT
 include the extension in the ServerHello.

 If a client receives a ServerHello without the extension, it SHOULD
 abort the handshake if it does not wish to interoperate with legacy
 servers.

 If the client and server choose to continue a full handshake without
 the extension, they MUST use the standard master secret derivation
 for the new session. In this case, the new session is not protected
 by the mechanisms described in this document. So, implementers
 should follow the guidelines in Section 5.4 to avoid dangerous usage
 scenarios. In particular, the master secret derived from the new
 session should not be used for application-level authentication.

5.3. Client and Server Behavior: Abbreviated Handshake

 The client SHOULD NOT offer an abbreviated handshake to resume a
 session that does not use an extended master secret. Instead, it
 SHOULD offer a full handshake.

 If the client chooses to offer an abbreviated handshake even for such
 sessions in order to support legacy insecure resumption, then the
 current connection is not protected by the mechanisms in this
 document. So, the client should follow the guidelines in Section 5.4

Bhargavan, et al. Standards Track [Page 7]

RFC 7627 TLS Session Hash Extension September 2015

 to avoid dangerous usage scenarios. In particular, renegotiation is
 no longer secure on this connection, even if the client and server
 support the renegotiation indication extension [RFC5746].

 When offering an abbreviated handshake, the client MUST send the
 "extended_master_secret" extension in its ClientHello.

 If a server receives a ClientHello for an abbreviated handshake
 offering to resume a known previous session, it behaves as follows:

 o If the original session did not use the "extended_master_secret"
 extension but the new ClientHello contains the extension, then the
 server MUST NOT perform the abbreviated handshake. Instead, it
 SHOULD continue with a full handshake (as described in
 Section 5.2) to negotiate a new session.

 o If the original session used the "extended_master_secret"
 extension but the new ClientHello does not contain it, the server
 MUST abort the abbreviated handshake.

 o If neither the original session nor the new ClientHello uses the
 extension, the server SHOULD abort the handshake. If it continues
 with an abbreviated handshake in order to support legacy insecure
 resumption, the connection is no longer protected by the
 mechanisms in this document, and the server should follow the
 guidelines in Section 5.4.

 o If the new ClientHello contains the extension and the server
 chooses to continue the handshake, then the server MUST include
 the "extended_master_secret" extension in its ServerHello message.

 If a client receives a ServerHello that accepts an abbreviated
 handshake, it behaves as follows:

 o If the original session did not use the "extended_master_secret"
 extension but the new ServerHello contains the extension, the
 client MUST abort the handshake.

 o If the original session used the extension but the new ServerHello
 does not contain the extension, the client MUST abort the
 handshake.

 If the client and server continue the abbreviated handshake, they
 derive the connection keys for the new session as usual from the
 master secret of the original session.

Bhargavan, et al. Standards Track [Page 8]

RFC 7627 TLS Session Hash Extension September 2015

5.4. Interoperability Considerations

 To allow interoperability with legacy clients and servers, a TLS peer
 may decide to accept full handshakes that use the legacy master
 secret computation. If so, they need to differentiate between
 sessions that use legacy and extended master secrets by adding a flag
 to the session state.

 If a client or server chooses to continue with a full handshake
 without the extended master secret extension, then the new session
 becomes vulnerable to the man-in-the-middle key synchronization
 attack described in Section 1. Hence, the client or server MUST NOT
 export any key material based on the new master secret for any
 subsequent application-level authentication. In particular, it MUST
 disable [RFC5705] and any Extensible Authentication Protocol (EAP)
 relying on compound authentication [COMPOUND-AUTH].

 If a client or server chooses to continue an abbreviated handshake to
 resume a session that does not use the extended master secret, then
 the current connection becomes vulnerable to a man-in-the-middle
 handshake log synchronization attack as described in Section 1.
 Hence, the client or server MUST NOT use the current handshake’s
 "verify_data" for application-level authentication. In particular,
 the client MUST disable renegotiation and any use of the "tls-unique"
 channel binding [RFC5929] on the current connection.

 If the original session uses an extended master secret but the
 ClientHello or ServerHello in the abbreviated handshake does not
 include the extension, it MAY be safe to continue the abbreviated
 handshake since it is protected by the extended master secret of the
 original session. This scenario may occur, for example, when a
 server that implements this extension establishes a session but the
 session is subsequently resumed at a different server that does not
 support the extension. Since such situations are unusual and likely
 to be the result of transient or inadvertent misconfigurations, this
 document recommends that the client and server MUST abort such
 handshakes.

6. Security Considerations

6.1. Triple Handshake Preconditions and Impact

 One way to mount a triple handshake attack is described in Section 1,
 along with a mention of the security mechanisms that break due to the
 attack; more in-depth discussion and diagrams can be found in
 [TRIPLE-HS]. Here, some further discussion is presented about attack
 preconditions and impact.

Bhargavan, et al. Standards Track [Page 9]

RFC 7627 TLS Session Hash Extension September 2015

 To mount a triple handshake attack, it must be possible to force the
 same master secret on two different sessions. For this to happen,
 two preconditions must be met:

 o The client, C, must be willing to connect to a malicious server,
 A. In certain contexts, like the web, this can be easily
 achieved, since a browser can be instructed to load content from
 an untrusted origin.

 o The pre-master secret must be synchronized on the two sessions.
 This is particularly easy to achieve with the RSA and DHE key
 exchanges, but under some conditions, ECDHE, SRP, and PSK key
 exchanges can be exploited to this effect as well.

 Once the master secret is synchronized on two sessions, any security
 property that relies on the uniqueness of the master secret is
 compromised. For example, a TLS exporter [RFC5705] no longer
 provides a unique key bound to the current session.

 TLS session resumption also relies on the uniqueness of the master
 secret to authenticate the resuming peers. Hence, if a synchronized
 session is resumed, the peers cannot be sure about each other’s
 identities, and the attacker knows the connection keys. Clearly, a
 precondition to this step of the attack is that both client and
 server support session resumption (either via session identifier or
 session tickets [RFC5077]).

 Additionally, in a synchronized abbreviated handshake, the whole
 transcript (which includes the "verify_data" values) is synchronized.
 So, after an abbreviated handshake, channel bindings like
 "tls-unique" [RFC5929] will not uniquely identify the connection
 anymore.

 Synchronization of the "verify_data" in abbreviated handshakes also
 undermines the security guarantees of the renegotiation indication
 extension [RFC5746], re-enabling a prefix-injection flaw similar to
 the renegotiation attack [Ray09]. However, in a triple handshake
 attack, the client sees the server certificate changing across
 different full handshakes. Hence, a precondition to mount this stage
 of the attack is that the client accepts different certificates at
 each handshake, even if their common names do not match. Before the
 triple handshake attack was discovered, this used to be widespread
 behavior, at least among some web browsers; such browsers were hence
 vulnerable to the attack.

 The extended master secret extension thwarts triple handshake attacks
 at their first stage by ensuring that different sessions necessarily
 end up with different master secret values. Hence, all security

Bhargavan, et al. Standards Track [Page 10]

RFC 7627 TLS Session Hash Extension September 2015

 properties relying on the uniqueness of the master secret are now
 expected to hold. In particular, if a TLS session is protected by
 the extended master secret extension, it is safe to resume it, to use
 its channel bindings, and to allow for certificate changes across
 renegotiation, meaning that all certificates are controlled by the
 same peer. A symbolic cryptographic protocol analysis justifying the
 extended master secret extension appears in [VERIFIED-BINDINGS].

6.2. Cryptographic Properties of the Hash Function

 The session hashes of two different sessions need to be distinct;
 hence, the "Hash" function used to compute the "session_hash" needs
 to be collision resistant. As such, hash functions such as MD5 or
 SHA1 are NOT RECOMMENDED.

 We observe that the "Hash" function used in the Finished message
 computation already needs to be collision resistant for the
 renegotiation indication extension [RFC5746] to work, because a
 meaningful collision on the handshake messages (and hence on the
 "verify_data") may re-enable the renegotiation attack [Ray09].

 The hash function used to compute the session hash depends on the TLS
 protocol version. All current ciphersuites defined for TLS 1.2 use
 SHA256 or better, and so does the session hash. For earlier versions
 of the protocol, only MD5 and SHA1 can be assumed to be supported,
 and this document does not require legacy implementations to add
 support for new hash functions. In these versions, the session hash
 uses the concatenation of MD5 and SHA1, as in the Finished message.

6.3. Handshake Messages Included in the Session Hash

 The "session_hash" is intended to encompass all relevant session
 information, including ciphersuite negotiation, key exchange
 messages, and client and server identities. The hash is needed to
 compute the extended master secret and hence must be available before
 the Finished messages.

 This document sets the "session_hash" to cover all handshake messages
 up to and including the ClientKeyExchange. For existing TLS
 ciphersuites, these messages include all the significant contents of
 the new session -- CertificateVerify does not change the session
 content. At the same time, this allows the extended master secret to
 be computed immediately after the pre-master secret, so that
 implementations can shred the temporary pre-master secret from memory
 as early as possible.

Bhargavan, et al. Standards Track [Page 11]

RFC 7627 TLS Session Hash Extension September 2015

 It is possible that new ciphersuites or TLS extensions may include
 additional messages between ClientKeyExchange and Finished that add
 important session context. In such cases, some of the security
 guarantees of this specification may no longer apply, and new man-in-
 the-middle attacks may be possible. For example, if the client and
 server support the session ticket extension [RFC5077], the session
 hash does not cover the new session ticket sent by the server.
 Hence, a man-in-the-middle may be able to cause a client to store a
 session ticket that was not meant for the current session. Attacks
 based on this vector are not yet known, but applications that store
 additional information in session tickets beyond those covered in the
 session hash require careful analysis.

6.4. No SSL 3.0 Support

 The Secure Sockets Layer (SSL) protocol version 3.0 [RFC6101] is a
 predecessor of the TLS protocol, and it is equally vulnerable to
 triple handshake attacks, alongside other vulnerabilities stemming
 from its use of obsolete cryptographic constructions that are now
 considered weak. SSL 3.0 has been deprecated [RFC7568].

 The countermeasure described in this document relies on a TLS
 extension and hence cannot be used with SSL 3.0. Clients and servers
 implementing this document SHOULD refuse SSL 3.0 handshakes. If they
 choose to support SSL 3.0, the resulting sessions MUST use the legacy
 master secret computation, and the interoperability considerations of
 Section 5.4 apply.

7. IANA Considerations

 IANA has added the extension code point 23 (0x0017), which has been
 used by prototype implementations, for the "extended_master_secret"
 extension to the "ExtensionType Values" registry specified in the TLS
 specification [RFC5246].

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

Bhargavan, et al. Standards Track [Page 12]

RFC 7627 TLS Session Hash Extension September 2015

8.2. Informative References

 [COMPOUND-AUTH]
 Asokan, N., Valtteri, N., and K. Nyberg, "Man-in-the-
 Middle in Tunnelled Authentication Protocols", Security
 Protocols, LNCS, Volume 3364, DOI 10.1007/11542322_6,
 2005.

 [Ray09] Ray, M., "Authentication Gap in TLS Renegotiation", 2009.

 [RFC4251] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, DOI 10.17487/RFC4251,
 January 2006, <http://www.rfc-editor.org/info/rfc4251>.

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption
 without Server-Side State", RFC 5077,
 DOI 10.17487/RFC5077, January 2008,
 <http://www.rfc-editor.org/info/rfc5077>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <http://www.rfc-editor.org/info/rfc5705>.

 [RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746, DOI 10.17487/RFC5746, February
 2010, <http://www.rfc-editor.org/info/rfc5746>.

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929, DOI 10.17487/RFC5929, July 2010,
 <http://www.rfc-editor.org/info/rfc5929>.

 [RFC6101] Freier, A., Karlton, P., and P. Kocher, "The Secure
 Sockets Layer (SSL) Protocol Version 3.0", RFC 6101,
 DOI 10.17487/RFC6101, August 2011,
 <http://www.rfc-editor.org/info/rfc6101>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC7457] Sheffer, Y., Holz, R., and P. Saint-Andre, "Summarizing
 Known Attacks on Transport Layer Security (TLS) and
 Datagram TLS (DTLS)", RFC 7457, DOI 10.17487/RFC7457,
 February 2015, <http://www.rfc-editor.org/info/rfc7457>.

Bhargavan, et al. Standards Track [Page 13]

RFC 7627 TLS Session Hash Extension September 2015

 [RFC7568] Barnes, R., Thomson, M., Pironti, A., and A. Langley,
 "Deprecating Secure Sockets Layer Version 3.0", RFC 7568,
 DOI 10.17487/RFC7568, June 2015,
 <http://www.rfc-editor.org/info/rfc7568>.

 [SP800-108] Chen, L., "Recommendation for Key Derivation Using
 Pseudorandom Functions (Revised)", NIST Special
 Publication 800-108, 2009.

 [TRIPLE-HS] Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti,
 A., and P-Y. Strub, "Triple Handshakes and Cookie
 Cutters: Breaking and Fixing Authentication over TLS",
 IEEE Symposium on Security and Privacy,
 DOI 10.1109/SP.2014.14, 2014.

 [VERIFIED-BINDINGS]
 Bhargavan, K., Delignat-Lavaud, A., and A. Pironti,
 "Verified Contributive Channel Bindings for Compound
 Authentication", Network and Distributed System Security
 Symposium (NDSS), 2015.

Acknowledgments

 Triple handshake attacks were originally discovered by Antoine
 Delignat-Lavaud, Karthikeyan Bhargavan, and Alfredo Pironti. They
 were further developed by the miTLS team: Cedric Fournet, Pierre-Yves
 Strub, Markulf Kohlweiss, and Santiago Zanella-Beguelin. Many of the
 ideas in this document emerged from discussions with Martin Abadi,
 Ben Laurie, Nikos Mavrogiannopoulos, Manuel Pegourie-Gonnard, Eric
 Rescorla, Martin Rex, and Brian Smith.

Bhargavan, et al. Standards Track [Page 14]

RFC 7627 TLS Session Hash Extension September 2015

Authors’ Addresses

 Karthikeyan Bhargavan (editor)
 Inria Paris-Rocquencourt
 23, Avenue d’Italie
 Paris 75214 CEDEX 13
 France

 Email: karthikeyan.bhargavan@inria.fr

 Antoine Delignat-Lavaud
 Inria Paris-Rocquencourt
 23, Avenue d’Italie
 Paris 75214 CEDEX 13
 France

 Email: antoine.delignat-lavaud@inria.fr

 Alfredo Pironti
 Inria Paris-Rocquencourt
 23, Avenue d’Italie
 Paris 75214 CEDEX 13
 France

 Email: alfredo.pironti@inria.fr

 Adam Langley
 Google Inc.
 1600 Amphitheatre Parkway
 Mountain View, CA 94043
 United States

 Email: agl@google.com

 Marsh Ray
 Microsoft Corp.
 1 Microsoft Way
 Redmond, WA 98052
 United States

 Email: maray@microsoft.com

Bhargavan, et al. Standards Track [Page 15]

