
Internet Engineering Task Force (IETF) R. Peon
Request for Comments: 7541 Google, Inc
Category: Standards Track H. Ruellan
ISSN: 2070-1721 Canon CRF
 May 2015

 HPACK: Header Compression for HTTP/2

Abstract

 This specification defines HPACK, a compression format for
 efficiently representing HTTP header fields, to be used in HTTP/2.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7541.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Peon & Ruellan Standards Track [Page 1]

RFC 7541 HPACK May 2015

Table of Contents

 1. Introduction ..4
 1.1. Overview ...4
 1.2. Conventions ..5
 1.3. Terminology ..5
 2. Compression Process Overview6
 2.1. Header List Ordering6
 2.2. Encoding and Decoding Contexts6
 2.3. Indexing Tables ..6
 2.3.1. Static Table ..6
 2.3.2. Dynamic Table6
 2.3.3. Index Address Space7
 2.4. Header Field Representation8
 3. Header Block Decoding ...8
 3.1. Header Block Processing8
 3.2. Header Field Representation Processing9
 4. Dynamic Table Management ..9
 4.1. Calculating Table Size10
 4.2. Maximum Table Size ..10
 4.3. Entry Eviction When Dynamic Table Size Changes11
 4.4. Entry Eviction When Adding New Entries11
 5. Primitive Type Representations11
 5.1. Integer Representation11
 5.2. String Literal Representation13
 6. Binary Format ..14
 6.1. Indexed Header Field Representation14
 6.2. Literal Header Field Representation15
 6.2.1. Literal Header Field with Incremental Indexing15
 6.2.2. Literal Header Field without Indexing16
 6.2.3. Literal Header Field Never Indexed17
 6.3. Dynamic Table Size Update18
 7. Security Considerations ..19
 7.1. Probing Dynamic Table State19
 7.1.1. Applicability to HPACK and HTTP20
 7.1.2. Mitigation ...20
 7.1.3. Never-Indexed Literals21
 7.2. Static Huffman Encoding22
 7.3. Memory Consumption ..22
 7.4. Implementation Limits23
 8. References ...23
 8.1. Normative References23
 8.2. Informative References24
 Appendix A. Static Table Definition25
 Appendix B. Huffman Code ..27

Peon & Ruellan Standards Track [Page 2]

RFC 7541 HPACK May 2015

 Appendix C. Examples ..33
 C.1. Integer Representation Examples33
 C.1.1. Example 1: Encoding 10 Using a 5-Bit Prefix33
 C.1.2. Example 2: Encoding 1337 Using a 5-Bit Prefix33
 C.1.3. Example 3: Encoding 42 Starting at an Octet Boundary ...34
 C.2. Header Field Representation Examples34
 C.2.1. Literal Header Field with Indexing34
 C.2.2. Literal Header Field without Indexing35
 C.2.3. Literal Header Field Never Indexed36
 C.2.4. Indexed Header Field37
 C.3. Request Examples without Huffman Coding37
 C.3.1. First Request ..37
 C.3.2. Second Request ...38
 C.3.3. Third Request ..39
 C.4. Request Examples with Huffman Coding41
 C.4.1. First Request ..41
 C.4.2. Second Request ...42
 C.4.3. Third Request ..43
 C.5. Response Examples without Huffman Coding45
 C.5.1. First Response ...45
 C.5.2. Second Response ..46
 C.5.3. Third Response ...47
 C.6. Response Examples with Huffman Coding49
 C.6.1. First Response ...49
 C.6.2. Second Response ..51
 C.6.3. Third Response ...52
 Acknowledgments ...55
 Authors’ Addresses ..55

Peon & Ruellan Standards Track [Page 3]

RFC 7541 HPACK May 2015

1. Introduction

 In HTTP/1.1 (see [RFC7230]), header fields are not compressed. As
 web pages have grown to require dozens to hundreds of requests, the
 redundant header fields in these requests unnecessarily consume
 bandwidth, measurably increasing latency.

 SPDY [SPDY] initially addressed this redundancy by compressing header
 fields using the DEFLATE [DEFLATE] format, which proved very
 effective at efficiently representing the redundant header fields.
 However, that approach exposed a security risk as demonstrated by the
 CRIME (Compression Ratio Info-leak Made Easy) attack (see [CRIME]).

 This specification defines HPACK, a new compressor that eliminates
 redundant header fields, limits vulnerability to known security
 attacks, and has a bounded memory requirement for use in constrained
 environments. Potential security concerns for HPACK are described in
 Section 7.

 The HPACK format is intentionally simple and inflexible. Both
 characteristics reduce the risk of interoperability or security
 issues due to implementation error. No extensibility mechanisms are
 defined; changes to the format are only possible by defining a
 complete replacement.

1.1. Overview

 The format defined in this specification treats a list of header
 fields as an ordered collection of name-value pairs that can include
 duplicate pairs. Names and values are considered to be opaque
 sequences of octets, and the order of header fields is preserved
 after being compressed and decompressed.

 Encoding is informed by header field tables that map header fields to
 indexed values. These header field tables can be incrementally
 updated as new header fields are encoded or decoded.

 In the encoded form, a header field is represented either literally
 or as a reference to a header field in one of the header field
 tables. Therefore, a list of header fields can be encoded using a
 mixture of references and literal values.

 Literal values are either encoded directly or use a static Huffman
 code.

 The encoder is responsible for deciding which header fields to insert
 as new entries in the header field tables. The decoder executes the
 modifications to the header field tables prescribed by the encoder,

Peon & Ruellan Standards Track [Page 4]

RFC 7541 HPACK May 2015

 reconstructing the list of header fields in the process. This
 enables decoders to remain simple and interoperate with a wide
 variety of encoders.

 Examples illustrating the use of these different mechanisms to
 represent header fields are available in Appendix C.

1.2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 All numeric values are in network byte order. Values are unsigned
 unless otherwise indicated. Literal values are provided in decimal
 or hexadecimal as appropriate.

1.3. Terminology

 This specification uses the following terms:

 Header Field: A name-value pair. Both the name and value are
 treated as opaque sequences of octets.

 Dynamic Table: The dynamic table (see Section 2.3.2) is a table that
 associates stored header fields with index values. This table is
 dynamic and specific to an encoding or decoding context.

 Static Table: The static table (see Section 2.3.1) is a table that
 statically associates header fields that occur frequently with
 index values. This table is ordered, read-only, always
 accessible, and it may be shared amongst all encoding or decoding
 contexts.

 Header List: A header list is an ordered collection of header fields
 that are encoded jointly and can contain duplicate header fields.
 A complete list of header fields contained in an HTTP/2 header
 block is a header list.

 Header Field Representation: A header field can be represented in
 encoded form either as a literal or as an index (see Section 2.4).

 Header Block: An ordered list of header field representations,
 which, when decoded, yields a complete header list.

Peon & Ruellan Standards Track [Page 5]

RFC 7541 HPACK May 2015

2. Compression Process Overview

 This specification does not describe a specific algorithm for an
 encoder. Instead, it defines precisely how a decoder is expected to
 operate, allowing encoders to produce any encoding that this
 definition permits.

2.1. Header List Ordering

 HPACK preserves the ordering of header fields inside the header list.
 An encoder MUST order header field representations in the header
 block according to their ordering in the original header list. A
 decoder MUST order header fields in the decoded header list according
 to their ordering in the header block.

2.2. Encoding and Decoding Contexts

 To decompress header blocks, a decoder only needs to maintain a
 dynamic table (see Section 2.3.2) as a decoding context. No other
 dynamic state is needed.

 When used for bidirectional communication, such as in HTTP, the
 encoding and decoding dynamic tables maintained by an endpoint are
 completely independent, i.e., the request and response dynamic tables
 are separate.

2.3. Indexing Tables

 HPACK uses two tables for associating header fields to indexes. The
 static table (see Section 2.3.1) is predefined and contains common
 header fields (most of them with an empty value). The dynamic table
 (see Section 2.3.2) is dynamic and can be used by the encoder to
 index header fields repeated in the encoded header lists.

 These two tables are combined into a single address space for
 defining index values (see Section 2.3.3).

2.3.1. Static Table

 The static table consists of a predefined static list of header
 fields. Its entries are defined in Appendix A.

2.3.2. Dynamic Table

 The dynamic table consists of a list of header fields maintained in
 first-in, first-out order. The first and newest entry in a dynamic
 table is at the lowest index, and the oldest entry of a dynamic table
 is at the highest index.

Peon & Ruellan Standards Track [Page 6]

RFC 7541 HPACK May 2015

 The dynamic table is initially empty. Entries are added as each
 header block is decompressed.

 The dynamic table can contain duplicate entries (i.e., entries with
 the same name and same value). Therefore, duplicate entries MUST NOT
 be treated as an error by a decoder.

 The encoder decides how to update the dynamic table and as such can
 control how much memory is used by the dynamic table. To limit the
 memory requirements of the decoder, the dynamic table size is
 strictly bounded (see Section 4.2).

 The decoder updates the dynamic table during the processing of a list
 of header field representations (see Section 3.2).

2.3.3. Index Address Space

 The static table and the dynamic table are combined into a single
 index address space.

 Indices between 1 and the length of the static table (inclusive)
 refer to elements in the static table (see Section 2.3.1).

 Indices strictly greater than the length of the static table refer to
 elements in the dynamic table (see Section 2.3.2). The length of the
 static table is subtracted to find the index into the dynamic table.

 Indices strictly greater than the sum of the lengths of both tables
 MUST be treated as a decoding error.

 For a static table size of s and a dynamic table size of k, the
 following diagram shows the entire valid index address space.

 <---------- Index Address Space ---------->
 <-- Static Table --> <-- Dynamic Table -->
 +---+-----------+---+ +---+-----------+---+
 | 1 | ... | s | |s+1| ... |s+k|
 +---+-----------+---+ +---+-----------+---+
 ^ |
 | V
 Insertion Point Dropping Point

 Figure 1: Index Address Space

Peon & Ruellan Standards Track [Page 7]

RFC 7541 HPACK May 2015

2.4. Header Field Representation

 An encoded header field can be represented either as an index or as a
 literal.

 An indexed representation defines a header field as a reference to an
 entry in either the static table or the dynamic table (see
 Section 6.1).

 A literal representation defines a header field by specifying its
 name and value. The header field name can be represented literally
 or as a reference to an entry in either the static table or the
 dynamic table. The header field value is represented literally.

 Three different literal representations are defined:

 o A literal representation that adds the header field as a new entry
 at the beginning of the dynamic table (see Section 6.2.1).

 o A literal representation that does not add the header field to the
 dynamic table (see Section 6.2.2).

 o A literal representation that does not add the header field to the
 dynamic table, with the additional stipulation that this header
 field always use a literal representation, in particular when re-
 encoded by an intermediary (see Section 6.2.3). This
 representation is intended for protecting header field values that
 are not to be put at risk by compressing them (see Section 7.1.3
 for more details).

 The selection of one of these literal representations can be guided
 by security considerations, in order to protect sensitive header
 field values (see Section 7.1).

 The literal representation of a header field name or of a header
 field value can encode the sequence of octets either directly or
 using a static Huffman code (see Section 5.2).

3. Header Block Decoding

3.1. Header Block Processing

 A decoder processes a header block sequentially to reconstruct the
 original header list.

 A header block is the concatenation of header field representations.
 The different possible header field representations are described in
 Section 6.

Peon & Ruellan Standards Track [Page 8]

RFC 7541 HPACK May 2015

 Once a header field is decoded and added to the reconstructed header
 list, the header field cannot be removed. A header field added to
 the header list can be safely passed to the application.

 By passing the resulting header fields to the application, a decoder
 can be implemented with minimal transitory memory commitment in
 addition to the memory required for the dynamic table.

3.2. Header Field Representation Processing

 The processing of a header block to obtain a header list is defined
 in this section. To ensure that the decoding will successfully
 produce a header list, a decoder MUST obey the following rules.

 All the header field representations contained in a header block are
 processed in the order in which they appear, as specified below.
 Details on the formatting of the various header field representations
 and some additional processing instructions are found in Section 6.

 An _indexed representation_ entails the following actions:

 o The header field corresponding to the referenced entry in either
 the static table or dynamic table is appended to the decoded
 header list.

 A _literal representation_ that is _not added_ to the dynamic table
 entails the following action:

 o The header field is appended to the decoded header list.

 A _literal representation_ that is _added_ to the dynamic table
 entails the following actions:

 o The header field is appended to the decoded header list.

 o The header field is inserted at the beginning of the dynamic
 table. This insertion could result in the eviction of previous
 entries in the dynamic table (see Section 4.4).

4. Dynamic Table Management

 To limit the memory requirements on the decoder side, the dynamic
 table is constrained in size.

Peon & Ruellan Standards Track [Page 9]

RFC 7541 HPACK May 2015

4.1. Calculating Table Size

 The size of the dynamic table is the sum of the size of its entries.

 The size of an entry is the sum of its name’s length in octets (as
 defined in Section 5.2), its value’s length in octets, and 32.

 The size of an entry is calculated using the length of its name and
 value without any Huffman encoding applied.

 Note: The additional 32 octets account for an estimated overhead
 associated with an entry. For example, an entry structure using
 two 64-bit pointers to reference the name and the value of the
 entry and two 64-bit integers for counting the number of
 references to the name and value would have 32 octets of overhead.

4.2. Maximum Table Size

 Protocols that use HPACK determine the maximum size that the encoder
 is permitted to use for the dynamic table. In HTTP/2, this value is
 determined by the SETTINGS_HEADER_TABLE_SIZE setting (see
 Section 6.5.2 of [HTTP2]).

 An encoder can choose to use less capacity than this maximum size
 (see Section 6.3), but the chosen size MUST stay lower than or equal
 to the maximum set by the protocol.

 A change in the maximum size of the dynamic table is signaled via a
 dynamic table size update (see Section 6.3). This dynamic table size
 update MUST occur at the beginning of the first header block
 following the change to the dynamic table size. In HTTP/2, this
 follows a settings acknowledgment (see Section 6.5.3 of [HTTP2]).

 Multiple updates to the maximum table size can occur between the
 transmission of two header blocks. In the case that this size is
 changed more than once in this interval, the smallest maximum table
 size that occurs in that interval MUST be signaled in a dynamic table
 size update. The final maximum size is always signaled, resulting in
 at most two dynamic table size updates. This ensures that the
 decoder is able to perform eviction based on reductions in dynamic
 table size (see Section 4.3).

 This mechanism can be used to completely clear entries from the
 dynamic table by setting a maximum size of 0, which can subsequently
 be restored.

Peon & Ruellan Standards Track [Page 10]

RFC 7541 HPACK May 2015

4.3. Entry Eviction When Dynamic Table Size Changes

 Whenever the maximum size for the dynamic table is reduced, entries
 are evicted from the end of the dynamic table until the size of the
 dynamic table is less than or equal to the maximum size.

4.4. Entry Eviction When Adding New Entries

 Before a new entry is added to the dynamic table, entries are evicted
 from the end of the dynamic table until the size of the dynamic table
 is less than or equal to (maximum size - new entry size) or until the
 table is empty.

 If the size of the new entry is less than or equal to the maximum
 size, that entry is added to the table. It is not an error to
 attempt to add an entry that is larger than the maximum size; an
 attempt to add an entry larger than the maximum size causes the table
 to be emptied of all existing entries and results in an empty table.

 A new entry can reference the name of an entry in the dynamic table
 that will be evicted when adding this new entry into the dynamic
 table. Implementations are cautioned to avoid deleting the
 referenced name if the referenced entry is evicted from the dynamic
 table prior to inserting the new entry.

5. Primitive Type Representations

 HPACK encoding uses two primitive types: unsigned variable-length
 integers and strings of octets.

5.1. Integer Representation

 Integers are used to represent name indexes, header field indexes, or
 string lengths. An integer representation can start anywhere within
 an octet. To allow for optimized processing, an integer
 representation always finishes at the end of an octet.

 An integer is represented in two parts: a prefix that fills the
 current octet and an optional list of octets that are used if the
 integer value does not fit within the prefix. The number of bits of
 the prefix (called N) is a parameter of the integer representation.

 If the integer value is small enough, i.e., strictly less than 2^N-1,
 it is encoded within the N-bit prefix.

Peon & Ruellan Standards Track [Page 11]

RFC 7541 HPACK May 2015

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | ? | ? | ? | Value |
 +---+---+---+-------------------+

 Figure 2: Integer Value Encoded within the Prefix (Shown for N = 5)

 Otherwise, all the bits of the prefix are set to 1, and the value,
 decreased by 2^N-1, is encoded using a list of one or more octets.
 The most significant bit of each octet is used as a continuation
 flag: its value is set to 1 except for the last octet in the list.
 The remaining bits of the octets are used to encode the decreased
 value.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | ? | ? | ? | 1 1 1 1 1 |
 +---+---+---+-------------------+
 | 1 | Value-(2^N-1) LSB |
 +---+---------------------------+
 ...
 +---+---------------------------+
 | 0 | Value-(2^N-1) MSB |
 +---+---------------------------+

 Figure 3: Integer Value Encoded after the Prefix (Shown for N = 5)

 Decoding the integer value from the list of octets starts by
 reversing the order of the octets in the list. Then, for each octet,
 its most significant bit is removed. The remaining bits of the
 octets are concatenated, and the resulting value is increased by
 2^N-1 to obtain the integer value.

 The prefix size, N, is always between 1 and 8 bits. An integer
 starting at an octet boundary will have an 8-bit prefix.

 Pseudocode to represent an integer I is as follows:

 if I < 2^N - 1, encode I on N bits
 else
 encode (2^N - 1) on N bits
 I = I - (2^N - 1)
 while I >= 128
 encode (I % 128 + 128) on 8 bits
 I = I / 128
 encode I on 8 bits

Peon & Ruellan Standards Track [Page 12]

RFC 7541 HPACK May 2015

 Pseudocode to decode an integer I is as follows:

 decode I from the next N bits
 if I < 2^N - 1, return I
 else
 M = 0
 repeat
 B = next octet
 I = I + (B & 127) * 2^M
 M = M + 7
 while B & 128 == 128
 return I

 Examples illustrating the encoding of integers are available in
 Appendix C.1.

 This integer representation allows for values of indefinite size. It
 is also possible for an encoder to send a large number of zero
 values, which can waste octets and could be used to overflow integer
 values. Integer encodings that exceed implementation limits -- in
 value or octet length -- MUST be treated as decoding errors.
 Different limits can be set for each of the different uses of
 integers, based on implementation constraints.

5.2. String Literal Representation

 Header field names and header field values can be represented as
 string literals. A string literal is encoded as a sequence of
 octets, either by directly encoding the string literal’s octets or by
 using a Huffman code (see [HUFFMAN]).

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | H | String Length (7+) |
 +---+---------------------------+
 | String Data (Length octets) |
 +-------------------------------+

 Figure 4: String Literal Representation

 A string literal representation contains the following fields:

 H: A one-bit flag, H, indicating whether or not the octets of the
 string are Huffman encoded.

 String Length: The number of octets used to encode the string
 literal, encoded as an integer with a 7-bit prefix (see
 Section 5.1).

Peon & Ruellan Standards Track [Page 13]

RFC 7541 HPACK May 2015

 String Data: The encoded data of the string literal. If H is ’0’,
 then the encoded data is the raw octets of the string literal. If
 H is ’1’, then the encoded data is the Huffman encoding of the
 string literal.

 String literals that use Huffman encoding are encoded with the
 Huffman code defined in Appendix B (see examples for requests in
 Appendix C.4 and for responses in Appendix C.6). The encoded data is
 the bitwise concatenation of the codes corresponding to each octet of
 the string literal.

 As the Huffman-encoded data doesn’t always end at an octet boundary,
 some padding is inserted after it, up to the next octet boundary. To
 prevent this padding from being misinterpreted as part of the string
 literal, the most significant bits of the code corresponding to the
 EOS (end-of-string) symbol are used.

 Upon decoding, an incomplete code at the end of the encoded data is
 to be considered as padding and discarded. A padding strictly longer
 than 7 bits MUST be treated as a decoding error. A padding not
 corresponding to the most significant bits of the code for the EOS
 symbol MUST be treated as a decoding error. A Huffman-encoded string
 literal containing the EOS symbol MUST be treated as a decoding
 error.

6. Binary Format

 This section describes the detailed format of each of the different
 header field representations and the dynamic table size update
 instruction.

6.1. Indexed Header Field Representation

 An indexed header field representation identifies an entry in either
 the static table or the dynamic table (see Section 2.3).

 An indexed header field representation causes a header field to be
 added to the decoded header list, as described in Section 3.2.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | Index (7+) |
 +---+---------------------------+

 Figure 5: Indexed Header Field

Peon & Ruellan Standards Track [Page 14]

RFC 7541 HPACK May 2015

 An indexed header field starts with the ’1’ 1-bit pattern, followed
 by the index of the matching header field, represented as an integer
 with a 7-bit prefix (see Section 5.1).

 The index value of 0 is not used. It MUST be treated as a decoding
 error if found in an indexed header field representation.

6.2. Literal Header Field Representation

 A literal header field representation contains a literal header field
 value. Header field names are provided either as a literal or by
 reference to an existing table entry, either from the static table or
 the dynamic table (see Section 2.3).

 This specification defines three forms of literal header field
 representations: with indexing, without indexing, and never indexed.

6.2.1. Literal Header Field with Incremental Indexing

 A literal header field with incremental indexing representation
 results in appending a header field to the decoded header list and
 inserting it as a new entry into the dynamic table.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | Index (6+) |
 +---+---+-----------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Figure 6: Literal Header Field with Incremental Indexing -- Indexed
 Name

Peon & Ruellan Standards Track [Page 15]

RFC 7541 HPACK May 2015

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | 0 |
 +---+---+-----------------------+
 | H | Name Length (7+) |
 +---+---------------------------+
 | Name String (Length octets) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Figure 7: Literal Header Field with Incremental Indexing -- New Name

 A literal header field with incremental indexing representation
 starts with the ’01’ 2-bit pattern.

 If the header field name matches the header field name of an entry
 stored in the static table or the dynamic table, the header field
 name can be represented using the index of that entry. In this case,
 the index of the entry is represented as an integer with a 6-bit
 prefix (see Section 5.1). This value is always non-zero.

 Otherwise, the header field name is represented as a string literal
 (see Section 5.2). A value 0 is used in place of the 6-bit index,
 followed by the header field name.

 Either form of header field name representation is followed by the
 header field value represented as a string literal (see Section 5.2).

6.2.2. Literal Header Field without Indexing

 A literal header field without indexing representation results in
 appending a header field to the decoded header list without altering
 the dynamic table.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | 0 | Index (4+) |
 +---+---+-----------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Figure 8: Literal Header Field without Indexing -- Indexed Name

Peon & Ruellan Standards Track [Page 16]

RFC 7541 HPACK May 2015

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | 0 | 0 |
 +---+---+-----------------------+
 | H | Name Length (7+) |
 +---+---------------------------+
 | Name String (Length octets) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Figure 9: Literal Header Field without Indexing -- New Name

 A literal header field without indexing representation starts with
 the ’0000’ 4-bit pattern.

 If the header field name matches the header field name of an entry
 stored in the static table or the dynamic table, the header field
 name can be represented using the index of that entry. In this case,
 the index of the entry is represented as an integer with a 4-bit
 prefix (see Section 5.1). This value is always non-zero.

 Otherwise, the header field name is represented as a string literal
 (see Section 5.2). A value 0 is used in place of the 4-bit index,
 followed by the header field name.

 Either form of header field name representation is followed by the
 header field value represented as a string literal (see Section 5.2).

6.2.3. Literal Header Field Never Indexed

 A literal header field never-indexed representation results in
 appending a header field to the decoded header list without altering
 the dynamic table. Intermediaries MUST use the same representation
 for encoding this header field.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | 1 | Index (4+) |
 +---+---+-----------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Figure 10: Literal Header Field Never Indexed -- Indexed Name

Peon & Ruellan Standards Track [Page 17]

RFC 7541 HPACK May 2015

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | 1 | 0 |
 +---+---+-----------------------+
 | H | Name Length (7+) |
 +---+---------------------------+
 | Name String (Length octets) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Figure 11: Literal Header Field Never Indexed -- New Name

 A literal header field never-indexed representation starts with the
 ’0001’ 4-bit pattern.

 When a header field is represented as a literal header field never
 indexed, it MUST always be encoded with this specific literal
 representation. In particular, when a peer sends a header field that
 it received represented as a literal header field never indexed, it
 MUST use the same representation to forward this header field.

 This representation is intended for protecting header field values
 that are not to be put at risk by compressing them (see Section 7.1
 for more details).

 The encoding of the representation is identical to the literal header
 field without indexing (see Section 6.2.2).

6.3. Dynamic Table Size Update

 A dynamic table size update signals a change to the size of the
 dynamic table.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 1 | Max size (5+) |
 +---+---------------------------+

 Figure 12: Maximum Dynamic Table Size Change

 A dynamic table size update starts with the ’001’ 3-bit pattern,
 followed by the new maximum size, represented as an integer with a
 5-bit prefix (see Section 5.1).

Peon & Ruellan Standards Track [Page 18]

RFC 7541 HPACK May 2015

 The new maximum size MUST be lower than or equal to the limit
 determined by the protocol using HPACK. A value that exceeds this
 limit MUST be treated as a decoding error. In HTTP/2, this limit is
 the last value of the SETTINGS_HEADER_TABLE_SIZE parameter (see
 Section 6.5.2 of [HTTP2]) received from the decoder and acknowledged
 by the encoder (see Section 6.5.3 of [HTTP2]).

 Reducing the maximum size of the dynamic table can cause entries to
 be evicted (see Section 4.3).

7. Security Considerations

 This section describes potential areas of security concern with
 HPACK:

 o Use of compression as a length-based oracle for verifying guesses
 about secrets that are compressed into a shared compression
 context.

 o Denial of service resulting from exhausting processing or memory
 capacity at a decoder.

7.1. Probing Dynamic Table State

 HPACK reduces the length of header field encodings by exploiting the
 redundancy inherent in protocols like HTTP. The ultimate goal of
 this is to reduce the amount of data that is required to send HTTP
 requests or responses.

 The compression context used to encode header fields can be probed by
 an attacker who can both define header fields to be encoded and
 transmitted and observe the length of those fields once they are
 encoded. When an attacker can do both, they can adaptively modify
 requests in order to confirm guesses about the dynamic table state.
 If a guess is compressed into a shorter length, the attacker can
 observe the encoded length and infer that the guess was correct.

 This is possible even over the Transport Layer Security (TLS)
 protocol (see [TLS12]), because while TLS provides confidentiality
 protection for content, it only provides a limited amount of
 protection for the length of that content.

 Note: Padding schemes only provide limited protection against an
 attacker with these capabilities, potentially only forcing an
 increased number of guesses to learn the length associated with a
 given guess. Padding schemes also work directly against
 compression by increasing the number of bits that are transmitted.

Peon & Ruellan Standards Track [Page 19]

RFC 7541 HPACK May 2015

 Attacks like CRIME [CRIME] demonstrated the existence of these
 general attacker capabilities. The specific attack exploited the
 fact that DEFLATE [DEFLATE] removes redundancy based on prefix
 matching. This permitted the attacker to confirm guesses a character
 at a time, reducing an exponential-time attack into a linear-time
 attack.

7.1.1. Applicability to HPACK and HTTP

 HPACK mitigates but does not completely prevent attacks modeled on
 CRIME [CRIME] by forcing a guess to match an entire header field
 value rather than individual characters. Attackers can only learn
 whether a guess is correct or not, so they are reduced to brute-force
 guesses for the header field values.

 The viability of recovering specific header field values therefore
 depends on the entropy of values. As a result, values with high
 entropy are unlikely to be recovered successfully. However, values
 with low entropy remain vulnerable.

 Attacks of this nature are possible any time that two mutually
 distrustful entities control requests or responses that are placed
 onto a single HTTP/2 connection. If the shared HPACK compressor
 permits one entity to add entries to the dynamic table and the other
 to access those entries, then the state of the table can be learned.

 Having requests or responses from mutually distrustful entities
 occurs when an intermediary either:

 o sends requests from multiple clients on a single connection toward
 an origin server, or

 o takes responses from multiple origin servers and places them on a
 shared connection toward a client.

 Web browsers also need to assume that requests made on the same
 connection by different web origins [ORIGIN] are made by mutually
 distrustful entities.

7.1.2. Mitigation

 Users of HTTP that require confidentiality for header fields can use
 values with entropy sufficient to make guessing infeasible. However,
 this is impractical as a general solution because it forces all users
 of HTTP to take steps to mitigate attacks. It would impose new
 constraints on how HTTP is used.

Peon & Ruellan Standards Track [Page 20]

RFC 7541 HPACK May 2015

 Rather than impose constraints on users of HTTP, an implementation of
 HPACK can instead constrain how compression is applied in order to
 limit the potential for dynamic table probing.

 An ideal solution segregates access to the dynamic table based on the
 entity that is constructing header fields. Header field values that
 are added to the table are attributed to an entity, and only the
 entity that created a particular value can extract that value.

 To improve compression performance of this option, certain entries
 might be tagged as being public. For example, a web browser might
 make the values of the Accept-Encoding header field available in all
 requests.

 An encoder without good knowledge of the provenance of header fields
 might instead introduce a penalty for a header field with many
 different values, such that a large number of attempts to guess a
 header field value results in the header field no longer being
 compared to the dynamic table entries in future messages, effectively
 preventing further guesses.

 Note: Simply removing entries corresponding to the header field
 from the dynamic table can be ineffectual if the attacker has a
 reliable way of causing values to be reinstalled. For example, a
 request to load an image in a web browser typically includes the
 Cookie header field (a potentially highly valued target for this
 sort of attack), and web sites can easily force an image to be
 loaded, thereby refreshing the entry in the dynamic table.

 This response might be made inversely proportional to the length of
 the header field value. Marking a header field as not using the
 dynamic table anymore might occur for shorter values more quickly or
 with higher probability than for longer values.

7.1.3. Never-Indexed Literals

 Implementations can also choose to protect sensitive header fields by
 not compressing them and instead encoding their value as literals.

 Refusing to generate an indexed representation for a header field is
 only effective if compression is avoided on all hops. The never-
 indexed literal (see Section 6.2.3) can be used to signal to
 intermediaries that a particular value was intentionally sent as a
 literal.

Peon & Ruellan Standards Track [Page 21]

RFC 7541 HPACK May 2015

 An intermediary MUST NOT re-encode a value that uses the never-
 indexed literal representation with another representation that would
 index it. If HPACK is used for re-encoding, the never-indexed
 literal representation MUST be used.

 The choice to use a never-indexed literal representation for a header
 field depends on several factors. Since HPACK doesn’t protect
 against guessing an entire header field value, short or low-entropy
 values are more readily recovered by an adversary. Therefore, an
 encoder might choose not to index values with low entropy.

 An encoder might also choose not to index values for header fields
 that are considered to be highly valuable or sensitive to recovery,
 such as the Cookie or Authorization header fields.

 On the contrary, an encoder might prefer indexing values for header
 fields that have little or no value if they were exposed. For
 instance, a User-Agent header field does not commonly vary between
 requests and is sent to any server. In that case, confirmation that
 a particular User-Agent value has been used provides little value.

 Note that these criteria for deciding to use a never-indexed literal
 representation will evolve over time as new attacks are discovered.

7.2. Static Huffman Encoding

 There is no currently known attack against a static Huffman encoding.
 A study has shown that using a static Huffman encoding table created
 an information leakage; however, this same study concluded that an
 attacker could not take advantage of this information leakage to
 recover any meaningful amount of information (see [PETAL]).

7.3. Memory Consumption

 An attacker can try to cause an endpoint to exhaust its memory.
 HPACK is designed to limit both the peak and state amounts of memory
 allocated by an endpoint.

 The amount of memory used by the compressor is limited by the
 protocol using HPACK through the definition of the maximum size of
 the dynamic table. In HTTP/2, this value is controlled by the
 decoder through the setting parameter SETTINGS_HEADER_TABLE_SIZE (see
 Section 6.5.2 of [HTTP2]). This limit takes into account both the
 size of the data stored in the dynamic table, plus a small allowance
 for overhead.

Peon & Ruellan Standards Track [Page 22]

RFC 7541 HPACK May 2015

 A decoder can limit the amount of state memory used by setting an
 appropriate value for the maximum size of the dynamic table. In
 HTTP/2, this is realized by setting an appropriate value for the
 SETTINGS_HEADER_TABLE_SIZE parameter. An encoder can limit the
 amount of state memory it uses by signaling a lower dynamic table
 size than the decoder allows (see Section 6.3).

 The amount of temporary memory consumed by an encoder or decoder can
 be limited by processing header fields sequentially. An
 implementation does not need to retain a complete list of header
 fields. Note, however, that it might be necessary for an application
 to retain a complete header list for other reasons; even though HPACK
 does not force this to occur, application constraints might make this
 necessary.

7.4. Implementation Limits

 An implementation of HPACK needs to ensure that large values for
 integers, long encoding for integers, or long string literals do not
 create security weaknesses.

 An implementation has to set a limit for the values it accepts for
 integers, as well as for the encoded length (see Section 5.1). In
 the same way, it has to set a limit to the length it accepts for
 string literals (see Section 5.2).

8. References

8.1. Normative References

 [HTTP2] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
 Transfer Protocol (HTTP/1.1): Message Syntax and
 Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

Peon & Ruellan Standards Track [Page 23]

RFC 7541 HPACK May 2015

8.2. Informative References

 [CANONICAL] Schwartz, E. and B. Kallick, "Generating a canonical
 prefix encoding", Communications of the ACM, Volume 7
 Issue 3, pp. 166-169, March 1964, <https://dl.acm.org/
 citation.cfm?id=363991>.

 [CRIME] Wikipedia, "CRIME", May 2015, <http://en.wikipedia.org/w/
 index.php?title=CRIME&oldid=660948120>.

 [DEFLATE] Deutsch, P., "DEFLATE Compressed Data Format
 Specification version 1.3", RFC 1951,
 DOI 10.17487/RFC1951, May 1996,
 <http://www.rfc-editor.org/info/rfc1951>.

 [HUFFMAN] Huffman, D., "A Method for the Construction of Minimum-
 Redundancy Codes", Proceedings of the Institute of Radio
 Engineers, Volume 40, Number 9, pp. 1098-1101, September
 1952, <http://ieeexplore.ieee.org/xpl/
 articleDetails.jsp?arnumber=4051119>.

 [ORIGIN] Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <http://www.rfc-editor.org/info/rfc6454>.

 [PETAL] Tan, J. and J. Nahata, "PETAL: Preset Encoding
 Table Information Leakage", April 2013,
 <http://www.pdl.cmu.edu/PDL-FTP/associated/
 CMU-PDL-13-106.pdf>.

 [SPDY] Belshe, M. and R. Peon, "SPDY Protocol", Work in
 Progress, draft-mbelshe-httpbis-spdy-00, February 2012.

 [TLS12] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

Peon & Ruellan Standards Track [Page 24]

RFC 7541 HPACK May 2015

Appendix A. Static Table Definition

 The static table (see Section 2.3.1) consists in a predefined and
 unchangeable list of header fields.

 The static table was created from the most frequent header fields
 used by popular web sites, with the addition of HTTP/2-specific
 pseudo-header fields (see Section 8.1.2.1 of [HTTP2]). For header
 fields with a few frequent values, an entry was added for each of
 these frequent values. For other header fields, an entry was added
 with an empty value.

 Table 1 lists the predefined header fields that make up the static
 table and gives the index of each entry.

 +-------+-----------------------------+---------------+
 | Index | Header Name | Header Value |
 +-------+-----------------------------+---------------+
 | 1 | :authority | |
 | 2 | :method | GET |
 | 3 | :method | POST |
 | 4 | :path | / |
 | 5 | :path | /index.html |
 | 6 | :scheme | http |
 | 7 | :scheme | https |
 | 8 | :status | 200 |
 | 9 | :status | 204 |
 | 10 | :status | 206 |
 | 11 | :status | 304 |
 | 12 | :status | 400 |
 | 13 | :status | 404 |
 | 14 | :status | 500 |
 | 15 | accept-charset | |
 | 16 | accept-encoding | gzip, deflate |
 | 17 | accept-language | |
 | 18 | accept-ranges | |
 | 19 | accept | |
 | 20 | access-control-allow-origin | |
 | 21 | age | |
 | 22 | allow | |
 | 23 | authorization | |
 | 24 | cache-control | |
 | 25 | content-disposition | |
 | 26 | content-encoding | |
 | 27 | content-language | |
 | 28 | content-length | |
 | 29 | content-location | |
 | 30 | content-range | |

Peon & Ruellan Standards Track [Page 25]

RFC 7541 HPACK May 2015

 | 31 | content-type | |
 | 32 | cookie | |
 | 33 | date | |
 | 34 | etag | |
 | 35 | expect | |
 | 36 | expires | |
 | 37 | from | |
 | 38 | host | |
 | 39 | if-match | |
 | 40 | if-modified-since | |
 | 41 | if-none-match | |
 | 42 | if-range | |
 | 43 | if-unmodified-since | |
 | 44 | last-modified | |
 | 45 | link | |
 | 46 | location | |
 | 47 | max-forwards | |
 | 48 | proxy-authenticate | |
 | 49 | proxy-authorization | |
 | 50 | range | |
 | 51 | referer | |
 | 52 | refresh | |
 | 53 | retry-after | |
 | 54 | server | |
 | 55 | set-cookie | |
 | 56 | strict-transport-security | |
 | 57 | transfer-encoding | |
 | 58 | user-agent | |
 | 59 | vary | |
 | 60 | via | |
 | 61 | www-authenticate | |
 +-------+-----------------------------+---------------+

 Table 1: Static Table Entries

Peon & Ruellan Standards Track [Page 26]

RFC 7541 HPACK May 2015

Appendix B. Huffman Code

 The following Huffman code is used when encoding string literals with
 a Huffman coding (see Section 5.2).

 This Huffman code was generated from statistics obtained on a large
 sample of HTTP headers. It is a canonical Huffman code (see
 [CANONICAL]) with some tweaking to ensure that no symbol has a unique
 code length.

 Each row in the table defines the code used to represent a symbol:

 sym: The symbol to be represented. It is the decimal value of an
 octet, possibly prepended with its ASCII representation. A
 specific symbol, "EOS", is used to indicate the end of a string
 literal.

 code as bits: The Huffman code for the symbol represented as a
 base-2 integer, aligned on the most significant bit (MSB).

 code as hex: The Huffman code for the symbol, represented as a
 hexadecimal integer, aligned on the least significant bit (LSB).

 len: The number of bits for the code representing the symbol.

 As an example, the code for the symbol 47 (corresponding to the ASCII
 character "/") consists in the 6 bits "0", "1", "1", "0", "0", "0".
 This corresponds to the value 0x18 (in hexadecimal) encoded in 6
 bits.

 code
 code as bits as hex len
 sym aligned to MSB aligned in
 to LSB bits
 (0) |11111111|11000 1ff8 [13]
 (1) |11111111|11111111|1011000 7fffd8 [23]
 (2) |11111111|11111111|11111110|0010 fffffe2 [28]
 (3) |11111111|11111111|11111110|0011 fffffe3 [28]
 (4) |11111111|11111111|11111110|0100 fffffe4 [28]
 (5) |11111111|11111111|11111110|0101 fffffe5 [28]
 (6) |11111111|11111111|11111110|0110 fffffe6 [28]
 (7) |11111111|11111111|11111110|0111 fffffe7 [28]
 (8) |11111111|11111111|11111110|1000 fffffe8 [28]
 (9) |11111111|11111111|11101010 ffffea [24]
 (10) |11111111|11111111|11111111|111100 3ffffffc [30]
 (11) |11111111|11111111|11111110|1001 fffffe9 [28]
 (12) |11111111|11111111|11111110|1010 fffffea [28]
 (13) |11111111|11111111|11111111|111101 3ffffffd [30]

Peon & Ruellan Standards Track [Page 27]

RFC 7541 HPACK May 2015

 (14) |11111111|11111111|11111110|1011 fffffeb [28]
 (15) |11111111|11111111|11111110|1100 fffffec [28]
 (16) |11111111|11111111|11111110|1101 fffffed [28]
 (17) |11111111|11111111|11111110|1110 fffffee [28]
 (18) |11111111|11111111|11111110|1111 fffffef [28]
 (19) |11111111|11111111|11111111|0000 ffffff0 [28]
 (20) |11111111|11111111|11111111|0001 ffffff1 [28]
 (21) |11111111|11111111|11111111|0010 ffffff2 [28]
 (22) |11111111|11111111|11111111|111110 3ffffffe [30]
 (23) |11111111|11111111|11111111|0011 ffffff3 [28]
 (24) |11111111|11111111|11111111|0100 ffffff4 [28]
 (25) |11111111|11111111|11111111|0101 ffffff5 [28]
 (26) |11111111|11111111|11111111|0110 ffffff6 [28]
 (27) |11111111|11111111|11111111|0111 ffffff7 [28]
 (28) |11111111|11111111|11111111|1000 ffffff8 [28]
 (29) |11111111|11111111|11111111|1001 ffffff9 [28]
 (30) |11111111|11111111|11111111|1010 ffffffa [28]
 (31) |11111111|11111111|11111111|1011 ffffffb [28]
 ’ ’ (32) |010100 14 [6]
 ’!’ (33) |11111110|00 3f8 [10]
 ’"’ (34) |11111110|01 3f9 [10]
 ’#’ (35) |11111111|1010 ffa [12]
 ’$’ (36) |11111111|11001 1ff9 [13]
 ’%’ (37) |010101 15 [6]
 ’&’ (38) |11111000 f8 [8]
 ’’’ (39) |11111111|010 7fa [11]
 ’(’ (40) |11111110|10 3fa [10]
 ’)’ (41) |11111110|11 3fb [10]
 ’*’ (42) |11111001 f9 [8]
 ’+’ (43) |11111111|011 7fb [11]
 ’,’ (44) |11111010 fa [8]
 ’-’ (45) |010110 16 [6]
 ’.’ (46) |010111 17 [6]
 ’/’ (47) |011000 18 [6]
 ’0’ (48) |00000 0 [5]
 ’1’ (49) |00001 1 [5]
 ’2’ (50) |00010 2 [5]
 ’3’ (51) |011001 19 [6]
 ’4’ (52) |011010 1a [6]
 ’5’ (53) |011011 1b [6]
 ’6’ (54) |011100 1c [6]
 ’7’ (55) |011101 1d [6]
 ’8’ (56) |011110 1e [6]
 ’9’ (57) |011111 1f [6]
 ’:’ (58) |1011100 5c [7]
 ’;’ (59) |11111011 fb [8]
 ’<’ (60) |11111111|1111100 7ffc [15]
 ’=’ (61) |100000 20 [6]

Peon & Ruellan Standards Track [Page 28]

RFC 7541 HPACK May 2015

 ’>’ (62) |11111111|1011 ffb [12]
 ’?’ (63) |11111111|00 3fc [10]
 ’@’ (64) |11111111|11010 1ffa [13]
 ’A’ (65) |100001 21 [6]
 ’B’ (66) |1011101 5d [7]
 ’C’ (67) |1011110 5e [7]
 ’D’ (68) |1011111 5f [7]
 ’E’ (69) |1100000 60 [7]
 ’F’ (70) |1100001 61 [7]
 ’G’ (71) |1100010 62 [7]
 ’H’ (72) |1100011 63 [7]
 ’I’ (73) |1100100 64 [7]
 ’J’ (74) |1100101 65 [7]
 ’K’ (75) |1100110 66 [7]
 ’L’ (76) |1100111 67 [7]
 ’M’ (77) |1101000 68 [7]
 ’N’ (78) |1101001 69 [7]
 ’O’ (79) |1101010 6a [7]
 ’P’ (80) |1101011 6b [7]
 ’Q’ (81) |1101100 6c [7]
 ’R’ (82) |1101101 6d [7]
 ’S’ (83) |1101110 6e [7]
 ’T’ (84) |1101111 6f [7]
 ’U’ (85) |1110000 70 [7]
 ’V’ (86) |1110001 71 [7]
 ’W’ (87) |1110010 72 [7]
 ’X’ (88) |11111100 fc [8]
 ’Y’ (89) |1110011 73 [7]
 ’Z’ (90) |11111101 fd [8]
 ’[’ (91) |11111111|11011 1ffb [13]
 ’\’ (92) |11111111|11111110|000 7fff0 [19]
 ’]’ (93) |11111111|11100 1ffc [13]
 ’^’ (94) |11111111|111100 3ffc [14]
 ’_’ (95) |100010 22 [6]
 ’‘’ (96) |11111111|1111101 7ffd [15]
 ’a’ (97) |00011 3 [5]
 ’b’ (98) |100011 23 [6]
 ’c’ (99) |00100 4 [5]
 ’d’ (100) |100100 24 [6]
 ’e’ (101) |00101 5 [5]
 ’f’ (102) |100101 25 [6]
 ’g’ (103) |100110 26 [6]
 ’h’ (104) |100111 27 [6]
 ’i’ (105) |00110 6 [5]
 ’j’ (106) |1110100 74 [7]
 ’k’ (107) |1110101 75 [7]
 ’l’ (108) |101000 28 [6]
 ’m’ (109) |101001 29 [6]

Peon & Ruellan Standards Track [Page 29]

RFC 7541 HPACK May 2015

 ’n’ (110) |101010 2a [6]
 ’o’ (111) |00111 7 [5]
 ’p’ (112) |101011 2b [6]
 ’q’ (113) |1110110 76 [7]
 ’r’ (114) |101100 2c [6]
 ’s’ (115) |01000 8 [5]
 ’t’ (116) |01001 9 [5]
 ’u’ (117) |101101 2d [6]
 ’v’ (118) |1110111 77 [7]
 ’w’ (119) |1111000 78 [7]
 ’x’ (120) |1111001 79 [7]
 ’y’ (121) |1111010 7a [7]
 ’z’ (122) |1111011 7b [7]
 ’{’ (123) |11111111|1111110 7ffe [15]
 ’|’ (124) |11111111|100 7fc [11]
 ’}’ (125) |11111111|111101 3ffd [14]
 ’˜’ (126) |11111111|11101 1ffd [13]
 (127) |11111111|11111111|11111111|1100 ffffffc [28]
 (128) |11111111|11111110|0110 fffe6 [20]
 (129) |11111111|11111111|010010 3fffd2 [22]
 (130) |11111111|11111110|0111 fffe7 [20]
 (131) |11111111|11111110|1000 fffe8 [20]
 (132) |11111111|11111111|010011 3fffd3 [22]
 (133) |11111111|11111111|010100 3fffd4 [22]
 (134) |11111111|11111111|010101 3fffd5 [22]
 (135) |11111111|11111111|1011001 7fffd9 [23]
 (136) |11111111|11111111|010110 3fffd6 [22]
 (137) |11111111|11111111|1011010 7fffda [23]
 (138) |11111111|11111111|1011011 7fffdb [23]
 (139) |11111111|11111111|1011100 7fffdc [23]
 (140) |11111111|11111111|1011101 7fffdd [23]
 (141) |11111111|11111111|1011110 7fffde [23]
 (142) |11111111|11111111|11101011 ffffeb [24]
 (143) |11111111|11111111|1011111 7fffdf [23]
 (144) |11111111|11111111|11101100 ffffec [24]
 (145) |11111111|11111111|11101101 ffffed [24]
 (146) |11111111|11111111|010111 3fffd7 [22]
 (147) |11111111|11111111|1100000 7fffe0 [23]
 (148) |11111111|11111111|11101110 ffffee [24]
 (149) |11111111|11111111|1100001 7fffe1 [23]
 (150) |11111111|11111111|1100010 7fffe2 [23]
 (151) |11111111|11111111|1100011 7fffe3 [23]
 (152) |11111111|11111111|1100100 7fffe4 [23]
 (153) |11111111|11111110|11100 1fffdc [21]
 (154) |11111111|11111111|011000 3fffd8 [22]
 (155) |11111111|11111111|1100101 7fffe5 [23]
 (156) |11111111|11111111|011001 3fffd9 [22]
 (157) |11111111|11111111|1100110 7fffe6 [23]

Peon & Ruellan Standards Track [Page 30]

RFC 7541 HPACK May 2015

 (158) |11111111|11111111|1100111 7fffe7 [23]
 (159) |11111111|11111111|11101111 ffffef [24]
 (160) |11111111|11111111|011010 3fffda [22]
 (161) |11111111|11111110|11101 1fffdd [21]
 (162) |11111111|11111110|1001 fffe9 [20]
 (163) |11111111|11111111|011011 3fffdb [22]
 (164) |11111111|11111111|011100 3fffdc [22]
 (165) |11111111|11111111|1101000 7fffe8 [23]
 (166) |11111111|11111111|1101001 7fffe9 [23]
 (167) |11111111|11111110|11110 1fffde [21]
 (168) |11111111|11111111|1101010 7fffea [23]
 (169) |11111111|11111111|011101 3fffdd [22]
 (170) |11111111|11111111|011110 3fffde [22]
 (171) |11111111|11111111|11110000 fffff0 [24]
 (172) |11111111|11111110|11111 1fffdf [21]
 (173) |11111111|11111111|011111 3fffdf [22]
 (174) |11111111|11111111|1101011 7fffeb [23]
 (175) |11111111|11111111|1101100 7fffec [23]
 (176) |11111111|11111111|00000 1fffe0 [21]
 (177) |11111111|11111111|00001 1fffe1 [21]
 (178) |11111111|11111111|100000 3fffe0 [22]
 (179) |11111111|11111111|00010 1fffe2 [21]
 (180) |11111111|11111111|1101101 7fffed [23]
 (181) |11111111|11111111|100001 3fffe1 [22]
 (182) |11111111|11111111|1101110 7fffee [23]
 (183) |11111111|11111111|1101111 7fffef [23]
 (184) |11111111|11111110|1010 fffea [20]
 (185) |11111111|11111111|100010 3fffe2 [22]
 (186) |11111111|11111111|100011 3fffe3 [22]
 (187) |11111111|11111111|100100 3fffe4 [22]
 (188) |11111111|11111111|1110000 7ffff0 [23]
 (189) |11111111|11111111|100101 3fffe5 [22]
 (190) |11111111|11111111|100110 3fffe6 [22]
 (191) |11111111|11111111|1110001 7ffff1 [23]
 (192) |11111111|11111111|11111000|00 3ffffe0 [26]
 (193) |11111111|11111111|11111000|01 3ffffe1 [26]
 (194) |11111111|11111110|1011 fffeb [20]
 (195) |11111111|11111110|001 7fff1 [19]
 (196) |11111111|11111111|100111 3fffe7 [22]
 (197) |11111111|11111111|1110010 7ffff2 [23]
 (198) |11111111|11111111|101000 3fffe8 [22]
 (199) |11111111|11111111|11110110|0 1ffffec [25]
 (200) |11111111|11111111|11111000|10 3ffffe2 [26]
 (201) |11111111|11111111|11111000|11 3ffffe3 [26]
 (202) |11111111|11111111|11111001|00 3ffffe4 [26]
 (203) |11111111|11111111|11111011|110 7ffffde [27]
 (204) |11111111|11111111|11111011|111 7ffffdf [27]
 (205) |11111111|11111111|11111001|01 3ffffe5 [26]

Peon & Ruellan Standards Track [Page 31]

RFC 7541 HPACK May 2015

 (206) |11111111|11111111|11110001 fffff1 [24]
 (207) |11111111|11111111|11110110|1 1ffffed [25]
 (208) |11111111|11111110|010 7fff2 [19]
 (209) |11111111|11111111|00011 1fffe3 [21]
 (210) |11111111|11111111|11111001|10 3ffffe6 [26]
 (211) |11111111|11111111|11111100|000 7ffffe0 [27]
 (212) |11111111|11111111|11111100|001 7ffffe1 [27]
 (213) |11111111|11111111|11111001|11 3ffffe7 [26]
 (214) |11111111|11111111|11111100|010 7ffffe2 [27]
 (215) |11111111|11111111|11110010 fffff2 [24]
 (216) |11111111|11111111|00100 1fffe4 [21]
 (217) |11111111|11111111|00101 1fffe5 [21]
 (218) |11111111|11111111|11111010|00 3ffffe8 [26]
 (219) |11111111|11111111|11111010|01 3ffffe9 [26]
 (220) |11111111|11111111|11111111|1101 ffffffd [28]
 (221) |11111111|11111111|11111100|011 7ffffe3 [27]
 (222) |11111111|11111111|11111100|100 7ffffe4 [27]
 (223) |11111111|11111111|11111100|101 7ffffe5 [27]
 (224) |11111111|11111110|1100 fffec [20]
 (225) |11111111|11111111|11110011 fffff3 [24]
 (226) |11111111|11111110|1101 fffed [20]
 (227) |11111111|11111111|00110 1fffe6 [21]
 (228) |11111111|11111111|101001 3fffe9 [22]
 (229) |11111111|11111111|00111 1fffe7 [21]
 (230) |11111111|11111111|01000 1fffe8 [21]
 (231) |11111111|11111111|1110011 7ffff3 [23]
 (232) |11111111|11111111|101010 3fffea [22]
 (233) |11111111|11111111|101011 3fffeb [22]
 (234) |11111111|11111111|11110111|0 1ffffee [25]
 (235) |11111111|11111111|11110111|1 1ffffef [25]
 (236) |11111111|11111111|11110100 fffff4 [24]
 (237) |11111111|11111111|11110101 fffff5 [24]
 (238) |11111111|11111111|11111010|10 3ffffea [26]
 (239) |11111111|11111111|1110100 7ffff4 [23]
 (240) |11111111|11111111|11111010|11 3ffffeb [26]
 (241) |11111111|11111111|11111100|110 7ffffe6 [27]
 (242) |11111111|11111111|11111011|00 3ffffec [26]
 (243) |11111111|11111111|11111011|01 3ffffed [26]
 (244) |11111111|11111111|11111100|111 7ffffe7 [27]
 (245) |11111111|11111111|11111101|000 7ffffe8 [27]
 (246) |11111111|11111111|11111101|001 7ffffe9 [27]
 (247) |11111111|11111111|11111101|010 7ffffea [27]
 (248) |11111111|11111111|11111101|011 7ffffeb [27]
 (249) |11111111|11111111|11111111|1110 ffffffe [28]
 (250) |11111111|11111111|11111101|100 7ffffec [27]
 (251) |11111111|11111111|11111101|101 7ffffed [27]
 (252) |11111111|11111111|11111101|110 7ffffee [27]
 (253) |11111111|11111111|11111101|111 7ffffef [27]

Peon & Ruellan Standards Track [Page 32]

RFC 7541 HPACK May 2015

 (254) |11111111|11111111|11111110|000 7fffff0 [27]
 (255) |11111111|11111111|11111011|10 3ffffee [26]
 EOS (256) |11111111|11111111|11111111|111111 3fffffff [30]

Appendix C. Examples

 This appendix contains examples covering integer encoding, header
 field representation, and the encoding of whole lists of header
 fields for both requests and responses, with and without Huffman
 coding.

C.1. Integer Representation Examples

 This section shows the representation of integer values in detail
 (see Section 5.1).

C.1.1. Example 1: Encoding 10 Using a 5-Bit Prefix

 The value 10 is to be encoded with a 5-bit prefix.

 o 10 is less than 31 (2^5 - 1) and is represented using the 5-bit
 prefix.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | X | X | X | 0 | 1 | 0 | 1 | 0 | 10 stored on 5 bits
 +---+---+---+---+---+---+---+---+

C.1.2. Example 2: Encoding 1337 Using a 5-Bit Prefix

 The value I=1337 is to be encoded with a 5-bit prefix.

 1337 is greater than 31 (2^5 - 1).

 The 5-bit prefix is filled with its max value (31).

 I = 1337 - (2^5 - 1) = 1306.

 I (1306) is greater than or equal to 128, so the while loop
 body executes:

 I % 128 == 26

 26 + 128 == 154

 154 is encoded in 8 bits as: 10011010

 I is set to 10 (1306 / 128 == 10)

Peon & Ruellan Standards Track [Page 33]

RFC 7541 HPACK May 2015

 I is no longer greater than or equal to 128, so the while
 loop terminates.

 I, now 10, is encoded in 8 bits as: 00001010.

 The process ends.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | X | X | X | 1 | 1 | 1 | 1 | 1 | Prefix = 31, I = 1306
 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1306>=128, encode(154), I=1306/128
 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 10<128, encode(10), done
 +---+---+---+---+---+---+---+---+

C.1.3. Example 3: Encoding 42 Starting at an Octet Boundary

 The value 42 is to be encoded starting at an octet boundary. This
 implies that a 8-bit prefix is used.

 o 42 is less than 255 (2^8 - 1) and is represented using the 8-bit
 prefix.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 42 stored on 8 bits
 +---+---+---+---+---+---+---+---+

C.2. Header Field Representation Examples

 This section shows several independent representation examples.

C.2.1. Literal Header Field with Indexing

 The header field representation uses a literal name and a literal
 value. The header field is added to the dynamic table.

 Header list to encode:

 custom-key: custom-header

 Hex dump of encoded data:

 400a 6375 7374 6f6d 2d6b 6579 0d63 7573 | @.custom-key.cus
 746f 6d2d 6865 6164 6572 | tom-header

Peon & Ruellan Standards Track [Page 34]

RFC 7541 HPACK May 2015

 Decoding process:

 40 | == Literal indexed ==
 0a | Literal name (len = 10)
 6375 7374 6f6d 2d6b 6579 | custom-key
 0d | Literal value (len = 13)
 6375 7374 6f6d 2d68 6561 6465 72 | custom-header
 | -> custom-key:
 | custom-header

 Dynamic Table (after decoding):

 [1] (s = 55) custom-key: custom-header
 Table size: 55

 Decoded header list:

 custom-key: custom-header

C.2.2. Literal Header Field without Indexing

 The header field representation uses an indexed name and a literal
 value. The header field is not added to the dynamic table.

 Header list to encode:

 :path: /sample/path

 Hex dump of encoded data:

 040c 2f73 616d 706c 652f 7061 7468 | ../sample/path

 Decoding process:

 04 | == Literal not indexed ==
 | Indexed name (idx = 4)
 | :path
 0c | Literal value (len = 12)
 2f73 616d 706c 652f 7061 7468 | /sample/path
 | -> :path: /sample/path

 Dynamic table (after decoding): empty.

 Decoded header list:

 :path: /sample/path

Peon & Ruellan Standards Track [Page 35]

RFC 7541 HPACK May 2015

C.2.3. Literal Header Field Never Indexed

 The header field representation uses a literal name and a literal
 value. The header field is not added to the dynamic table and must
 use the same representation if re-encoded by an intermediary.

 Header list to encode:

 password: secret

 Hex dump of encoded data:

 1008 7061 7373 776f 7264 0673 6563 7265 | ..password.secre
 74 | t

 Decoding process:

 10 | == Literal never indexed ==
 08 | Literal name (len = 8)
 7061 7373 776f 7264 | password
 06 | Literal value (len = 6)
 7365 6372 6574 | secret
 | -> password: secret

 Dynamic table (after decoding): empty.

 Decoded header list:

 password: secret

Peon & Ruellan Standards Track [Page 36]

RFC 7541 HPACK May 2015

C.2.4. Indexed Header Field

 The header field representation uses an indexed header field from the
 static table.

 Header list to encode:

 :method: GET

 Hex dump of encoded data:

 82 | .

 Decoding process:

 82 | == Indexed - Add ==
 | idx = 2
 | -> :method: GET

 Dynamic table (after decoding): empty.

 Decoded header list:

 :method: GET

C.3. Request Examples without Huffman Coding

 This section shows several consecutive header lists, corresponding to
 HTTP requests, on the same connection.

C.3.1. First Request

 Header list to encode:

 :method: GET
 :scheme: http
 :path: /
 :authority: www.example.com

 Hex dump of encoded data:

 8286 8441 0f77 7777 2e65 7861 6d70 6c65 | ...A.www.example
 2e63 6f6d | .com

Peon & Ruellan Standards Track [Page 37]

RFC 7541 HPACK May 2015

 Decoding process:

 82 | == Indexed - Add ==
 | idx = 2
 | -> :method: GET
 86 | == Indexed - Add ==
 | idx = 6
 | -> :scheme: http
 84 | == Indexed - Add ==
 | idx = 4
 | -> :path: /
 41 | == Literal indexed ==
 | Indexed name (idx = 1)
 | :authority
 0f | Literal value (len = 15)
 7777 772e 6578 616d 706c 652e 636f 6d | www.example.com
 | -> :authority:
 | www.example.com

 Dynamic Table (after decoding):

 [1] (s = 57) :authority: www.example.com
 Table size: 57

 Decoded header list:

 :method: GET
 :scheme: http
 :path: /
 :authority: www.example.com

C.3.2. Second Request

 Header list to encode:

 :method: GET
 :scheme: http
 :path: /
 :authority: www.example.com
 cache-control: no-cache

 Hex dump of encoded data:

 8286 84be 5808 6e6f 2d63 6163 6865 |X.no-cache

Peon & Ruellan Standards Track [Page 38]

RFC 7541 HPACK May 2015

 Decoding process:

 82 | == Indexed - Add ==
 | idx = 2
 | -> :method: GET
 86 | == Indexed - Add ==
 | idx = 6
 | -> :scheme: http
 84 | == Indexed - Add ==
 | idx = 4
 | -> :path: /
 be | == Indexed - Add ==
 | idx = 62
 | -> :authority:
 | www.example.com
 58 | == Literal indexed ==
 | Indexed name (idx = 24)
 | cache-control
 08 | Literal value (len = 8)
 6e6f 2d63 6163 6865 | no-cache
 | -> cache-control: no-cache

 Dynamic Table (after decoding):

 [1] (s = 53) cache-control: no-cache
 [2] (s = 57) :authority: www.example.com
 Table size: 110

 Decoded header list:

 :method: GET
 :scheme: http
 :path: /
 :authority: www.example.com
 cache-control: no-cache

C.3.3. Third Request

 Header list to encode:

 :method: GET
 :scheme: https
 :path: /index.html
 :authority: www.example.com
 custom-key: custom-value

Peon & Ruellan Standards Track [Page 39]

RFC 7541 HPACK May 2015

 Hex dump of encoded data:

 8287 85bf 400a 6375 7374 6f6d 2d6b 6579 |@.custom-key
 0c63 7573 746f 6d2d 7661 6c75 65 | .custom-value

 Decoding process:

 82 | == Indexed - Add ==
 | idx = 2
 | -> :method: GET
 87 | == Indexed - Add ==
 | idx = 7
 | -> :scheme: https
 85 | == Indexed - Add ==
 | idx = 5
 | -> :path: /index.html
 bf | == Indexed - Add ==
 | idx = 63
 | -> :authority:
 | www.example.com
 40 | == Literal indexed ==
 0a | Literal name (len = 10)
 6375 7374 6f6d 2d6b 6579 | custom-key
 0c | Literal value (len = 12)
 6375 7374 6f6d 2d76 616c 7565 | custom-value
 | -> custom-key:
 | custom-value

 Dynamic Table (after decoding):

 [1] (s = 54) custom-key: custom-value
 [2] (s = 53) cache-control: no-cache
 [3] (s = 57) :authority: www.example.com
 Table size: 164

 Decoded header list:

 :method: GET
 :scheme: https
 :path: /index.html
 :authority: www.example.com
 custom-key: custom-value

Peon & Ruellan Standards Track [Page 40]

RFC 7541 HPACK May 2015

C.4. Request Examples with Huffman Coding

 This section shows the same examples as the previous section but uses
 Huffman encoding for the literal values.

C.4.1. First Request

 Header list to encode:

 :method: GET
 :scheme: http
 :path: /
 :authority: www.example.com

 Hex dump of encoded data:

 8286 8441 8cf1 e3c2 e5f2 3a6b a0ab 90f4 | ...A......:k....
 ff | .

 Decoding process:

 82 | == Indexed - Add ==
 | idx = 2
 | -> :method: GET
 86 | == Indexed - Add ==
 | idx = 6
 | -> :scheme: http
 84 | == Indexed - Add ==
 | idx = 4
 | -> :path: /
 41 | == Literal indexed ==
 | Indexed name (idx = 1)
 | :authority
 8c | Literal value (len = 12)
 | Huffman encoded:
 f1e3 c2e5 f23a 6ba0 ab90 f4ff |:k.....
 | Decoded:
 | www.example.com
 | -> :authority:
 | www.example.com

 Dynamic Table (after decoding):

 [1] (s = 57) :authority: www.example.com
 Table size: 57

Peon & Ruellan Standards Track [Page 41]

RFC 7541 HPACK May 2015

 Decoded header list:

 :method: GET
 :scheme: http
 :path: /
 :authority: www.example.com

C.4.2. Second Request

 Header list to encode:

 :method: GET
 :scheme: http
 :path: /
 :authority: www.example.com
 cache-control: no-cache

 Hex dump of encoded data:

 8286 84be 5886 a8eb 1064 9cbf |X....d..

 Decoding process:

 82 | == Indexed - Add ==
 | idx = 2
 | -> :method: GET
 86 | == Indexed - Add ==
 | idx = 6
 | -> :scheme: http
 84 | == Indexed - Add ==
 | idx = 4
 | -> :path: /
 be | == Indexed - Add ==
 | idx = 62
 | -> :authority:
 | www.example.com
 58 | == Literal indexed ==
 | Indexed name (idx = 24)
 | cache-control
 86 | Literal value (len = 6)
 | Huffman encoded:
 a8eb 1064 9cbf | ...d..
 | Decoded:
 | no-cache
 | -> cache-control: no-cache

Peon & Ruellan Standards Track [Page 42]

RFC 7541 HPACK May 2015

 Dynamic Table (after decoding):

 [1] (s = 53) cache-control: no-cache
 [2] (s = 57) :authority: www.example.com
 Table size: 110

 Decoded header list:

 :method: GET
 :scheme: http
 :path: /
 :authority: www.example.com
 cache-control: no-cache

C.4.3. Third Request

 Header list to encode:

 :method: GET
 :scheme: https
 :path: /index.html
 :authority: www.example.com
 custom-key: custom-value

 Hex dump of encoded data:

 8287 85bf 4088 25a8 49e9 5ba9 7d7f 8925 |@.%.I.[.}..%
 a849 e95b b8e8 b4bf | .I.[....

Peon & Ruellan Standards Track [Page 43]

RFC 7541 HPACK May 2015

 Decoding process:

 82 | == Indexed - Add ==
 | idx = 2
 | -> :method: GET
 87 | == Indexed - Add ==
 | idx = 7
 | -> :scheme: https
 85 | == Indexed - Add ==
 | idx = 5
 | -> :path: /index.html
 bf | == Indexed - Add ==
 | idx = 63
 | -> :authority:
 | www.example.com
 40 | == Literal indexed ==
 88 | Literal name (len = 8)
 | Huffman encoded:
 25a8 49e9 5ba9 7d7f | %.I.[.}.
 | Decoded:
 | custom-key
 89 | Literal value (len = 9)
 | Huffman encoded:
 25a8 49e9 5bb8 e8b4 bf | %.I.[....
 | Decoded:
 | custom-value
 | -> custom-key:
 | custom-value

 Dynamic Table (after decoding):

 [1] (s = 54) custom-key: custom-value
 [2] (s = 53) cache-control: no-cache
 [3] (s = 57) :authority: www.example.com
 Table size: 164

 Decoded header list:

 :method: GET
 :scheme: https
 :path: /index.html
 :authority: www.example.com
 custom-key: custom-value

Peon & Ruellan Standards Track [Page 44]

RFC 7541 HPACK May 2015

C.5. Response Examples without Huffman Coding

 This section shows several consecutive header lists, corresponding to
 HTTP responses, on the same connection. The HTTP/2 setting parameter
 SETTINGS_HEADER_TABLE_SIZE is set to the value of 256 octets, causing
 some evictions to occur.

C.5.1. First Response

 Header list to encode:

 :status: 302
 cache-control: private
 date: Mon, 21 Oct 2013 20:13:21 GMT
 location: https://www.example.com

 Hex dump of encoded data:

 4803 3330 3258 0770 7269 7661 7465 611d | H.302X.privatea.
 4d6f 6e2c 2032 3120 4f63 7420 3230 3133 | Mon, 21 Oct 2013
 2032 303a 3133 3a32 3120 474d 546e 1768 | 20:13:21 GMTn.h
 7474 7073 3a2f 2f77 7777 2e65 7861 6d70 | ttps://www.examp
 6c65 2e63 6f6d | le.com

 Decoding process:

 48 | == Literal indexed ==
 | Indexed name (idx = 8)
 | :status
 03 | Literal value (len = 3)
 3330 32 | 302
 | -> :status: 302
 58 | == Literal indexed ==
 | Indexed name (idx = 24)
 | cache-control
 07 | Literal value (len = 7)
 7072 6976 6174 65 | private
 | -> cache-control: private
 61 | == Literal indexed ==
 | Indexed name (idx = 33)
 | date
 1d | Literal value (len = 29)
 4d6f 6e2c 2032 3120 4f63 7420 3230 3133 | Mon, 21 Oct 2013
 2032 303a 3133 3a32 3120 474d 54 | 20:13:21 GMT
 | -> date: Mon, 21 Oct 2013
 | 20:13:21 GMT
 6e | == Literal indexed ==
 | Indexed name (idx = 46)

Peon & Ruellan Standards Track [Page 45]

RFC 7541 HPACK May 2015

 | location
 17 | Literal value (len = 23)
 6874 7470 733a 2f2f 7777 772e 6578 616d | https://www.exam
 706c 652e 636f 6d | ple.com
 | -> location:
 | https://www.example.com

 Dynamic Table (after decoding):

 [1] (s = 63) location: https://www.example.com
 [2] (s = 65) date: Mon, 21 Oct 2013 20:13:21 GMT
 [3] (s = 52) cache-control: private
 [4] (s = 42) :status: 302
 Table size: 222

 Decoded header list:

 :status: 302
 cache-control: private
 date: Mon, 21 Oct 2013 20:13:21 GMT
 location: https://www.example.com

C.5.2. Second Response

 The (":status", "302") header field is evicted from the dynamic table
 to free space to allow adding the (":status", "307") header field.

 Header list to encode:

 :status: 307
 cache-control: private
 date: Mon, 21 Oct 2013 20:13:21 GMT
 location: https://www.example.com

 Hex dump of encoded data:

 4803 3330 37c1 c0bf | H.307...

 Decoding process:

 48 | == Literal indexed ==
 | Indexed name (idx = 8)
 | :status
 03 | Literal value (len = 3)
 3330 37 | 307
 | - evict: :status: 302
 | -> :status: 307
 c1 | == Indexed - Add ==

Peon & Ruellan Standards Track [Page 46]

RFC 7541 HPACK May 2015

 | idx = 65
 | -> cache-control: private
 c0 | == Indexed - Add ==
 | idx = 64
 | -> date: Mon, 21 Oct 2013
 | 20:13:21 GMT
 bf | == Indexed - Add ==
 | idx = 63
 | -> location:
 | https://www.example.com

 Dynamic Table (after decoding):

 [1] (s = 42) :status: 307
 [2] (s = 63) location: https://www.example.com
 [3] (s = 65) date: Mon, 21 Oct 2013 20:13:21 GMT
 [4] (s = 52) cache-control: private
 Table size: 222

 Decoded header list:

 :status: 307
 cache-control: private
 date: Mon, 21 Oct 2013 20:13:21 GMT
 location: https://www.example.com

C.5.3. Third Response

 Several header fields are evicted from the dynamic table during the
 processing of this header list.

 Header list to encode:

 :status: 200
 cache-control: private
 date: Mon, 21 Oct 2013 20:13:22 GMT
 location: https://www.example.com
 content-encoding: gzip
 set-cookie: foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU; max-age=3600; version=1

Peon & Ruellan Standards Track [Page 47]

RFC 7541 HPACK May 2015

 Hex dump of encoded data:

 88c1 611d 4d6f 6e2c 2032 3120 4f63 7420 | ..a.Mon, 21 Oct
 3230 3133 2032 303a 3133 3a32 3220 474d | 2013 20:13:22 GM
 54c0 5a04 677a 6970 7738 666f 6f3d 4153 | T.Z.gzipw8foo=AS
 444a 4b48 514b 425a 584f 5157 454f 5049 | DJKHQKBZXOQWEOPI
 5541 5851 5745 4f49 553b 206d 6178 2d61 | UAXQWEOIU; max-a
 6765 3d33 3630 303b 2076 6572 7369 6f6e | ge=3600; version
 3d31 | =1

 Decoding process:

 88 | == Indexed - Add ==
 | idx = 8
 | -> :status: 200
 c1 | == Indexed - Add ==
 | idx = 65
 | -> cache-control: private
 61 | == Literal indexed ==
 | Indexed name (idx = 33)
 | date
 1d | Literal value (len = 29)
 4d6f 6e2c 2032 3120 4f63 7420 3230 3133 | Mon, 21 Oct 2013
 2032 303a 3133 3a32 3220 474d 54 | 20:13:22 GMT
 | - evict: cache-control:
 | private
 | -> date: Mon, 21 Oct 2013
 | 20:13:22 GMT
 c0 | == Indexed - Add ==
 | idx = 64
 | -> location:
 | https://www.example.com
 5a | == Literal indexed ==
 | Indexed name (idx = 26)
 | content-encoding
 04 | Literal value (len = 4)
 677a 6970 | gzip
 | - evict: date: Mon, 21 Oct
 | 2013 20:13:21 GMT
 | -> content-encoding: gzip
 77 | == Literal indexed ==
 | Indexed name (idx = 55)
 | set-cookie
 38 | Literal value (len = 56)
 666f 6f3d 4153 444a 4b48 514b 425a 584f | foo=ASDJKHQKBZXO
 5157 454f 5049 5541 5851 5745 4f49 553b | QWEOPIUAXQWEOIU;
 206d 6178 2d61 6765 3d33 3630 303b 2076 | max-age=3600; v
 6572 7369 6f6e 3d31 | ersion=1

Peon & Ruellan Standards Track [Page 48]

RFC 7541 HPACK May 2015

 | - evict: location:
 | https://www.example.com
 | - evict: :status: 307
 | -> set-cookie: foo=ASDJKHQ
 | KBZXOQWEOPIUAXQWEOIU; ma
 | x-age=3600; version=1

 Dynamic Table (after decoding):

 [1] (s = 98) set-cookie: foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU;
 max-age=3600; version=1
 [2] (s = 52) content-encoding: gzip
 [3] (s = 65) date: Mon, 21 Oct 2013 20:13:22 GMT
 Table size: 215

 Decoded header list:

 :status: 200
 cache-control: private
 date: Mon, 21 Oct 2013 20:13:22 GMT
 location: https://www.example.com
 content-encoding: gzip
 set-cookie: foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU; max-age=3600; version=1

C.6. Response Examples with Huffman Coding

 This section shows the same examples as the previous section but uses
 Huffman encoding for the literal values. The HTTP/2 setting
 parameter SETTINGS_HEADER_TABLE_SIZE is set to the value of 256
 octets, causing some evictions to occur. The eviction mechanism uses
 the length of the decoded literal values, so the same evictions occur
 as in the previous section.

C.6.1. First Response

 Header list to encode:

 :status: 302
 cache-control: private
 date: Mon, 21 Oct 2013 20:13:21 GMT
 location: https://www.example.com

 Hex dump of encoded data:

 4882 6402 5885 aec3 771a 4b61 96d0 7abe | H.d.X...w.Ka..z.
 9410 54d4 44a8 2005 9504 0b81 66e0 82a6 | ..T.D.f...
 2d1b ff6e 919d 29ad 1718 63c7 8f0b 97c8 | -..n..)...c.....
 e9ae 82ae 43d3 |C.

Peon & Ruellan Standards Track [Page 49]

RFC 7541 HPACK May 2015

 Decoding process:

 48 | == Literal indexed ==
 | Indexed name (idx = 8)
 | :status
 82 | Literal value (len = 2)
 | Huffman encoded:
 6402 | d.
 | Decoded:
 | 302
 | -> :status: 302
 58 | == Literal indexed ==
 | Indexed name (idx = 24)
 | cache-control
 85 | Literal value (len = 5)
 | Huffman encoded:
 aec3 771a 4b | ..w.K
 | Decoded:
 | private
 | -> cache-control: private
 61 | == Literal indexed ==
 | Indexed name (idx = 33)
 | date
 96 | Literal value (len = 22)
 | Huffman encoded:
 d07a be94 1054 d444 a820 0595 040b 8166 | .z...T.D.f
 e082 a62d 1bff | ...-..
 | Decoded:
 | Mon, 21 Oct 2013 20:13:21
 | GMT
 | -> date: Mon, 21 Oct 2013
 | 20:13:21 GMT
 6e | == Literal indexed ==
 | Indexed name (idx = 46)
 | location
 91 | Literal value (len = 17)
 | Huffman encoded:
 9d29 ad17 1863 c78f 0b97 c8e9 ae82 ae43 | .)...c.........C
 d3 | .
 | Decoded:
 | https://www.example.com
 | -> location:
 | https://www.example.com

Peon & Ruellan Standards Track [Page 50]

RFC 7541 HPACK May 2015

 Dynamic Table (after decoding):

 [1] (s = 63) location: https://www.example.com
 [2] (s = 65) date: Mon, 21 Oct 2013 20:13:21 GMT
 [3] (s = 52) cache-control: private
 [4] (s = 42) :status: 302
 Table size: 222

 Decoded header list:

 :status: 302
 cache-control: private
 date: Mon, 21 Oct 2013 20:13:21 GMT
 location: https://www.example.com

C.6.2. Second Response

 The (":status", "302") header field is evicted from the dynamic table
 to free space to allow adding the (":status", "307") header field.

 Header list to encode:

 :status: 307
 cache-control: private
 date: Mon, 21 Oct 2013 20:13:21 GMT
 location: https://www.example.com

 Hex dump of encoded data:

 4883 640e ffc1 c0bf | H.d.....

 Decoding process:

 48 | == Literal indexed ==
 | Indexed name (idx = 8)
 | :status
 83 | Literal value (len = 3)
 | Huffman encoded:
 640e ff | d..
 | Decoded:
 | 307
 | - evict: :status: 302
 | -> :status: 307
 c1 | == Indexed - Add ==
 | idx = 65
 | -> cache-control: private
 c0 | == Indexed - Add ==
 | idx = 64

Peon & Ruellan Standards Track [Page 51]

RFC 7541 HPACK May 2015

 | -> date: Mon, 21 Oct 2013
 | 20:13:21 GMT
 bf | == Indexed - Add ==
 | idx = 63
 | -> location:
 | https://www.example.com

 Dynamic Table (after decoding):

 [1] (s = 42) :status: 307
 [2] (s = 63) location: https://www.example.com
 [3] (s = 65) date: Mon, 21 Oct 2013 20:13:21 GMT
 [4] (s = 52) cache-control: private
 Table size: 222

 Decoded header list:

 :status: 307
 cache-control: private
 date: Mon, 21 Oct 2013 20:13:21 GMT
 location: https://www.example.com

C.6.3. Third Response

 Several header fields are evicted from the dynamic table during the
 processing of this header list.

 Header list to encode:

 :status: 200
 cache-control: private
 date: Mon, 21 Oct 2013 20:13:22 GMT
 location: https://www.example.com
 content-encoding: gzip
 set-cookie: foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU; max-age=3600; version=1

 Hex dump of encoded data:

 88c1 6196 d07a be94 1054 d444 a820 0595 | ..a..z...T.D. ..
 040b 8166 e084 a62d 1bff c05a 839b d9ab | ...f...-...Z....
 77ad 94e7 821d d7f2 e6c7 b335 dfdf cd5b | w..........5...[
 3960 d5af 2708 7f36 72c1 ab27 0fb5 291f | 9‘..’..6r..’..).
 9587 3160 65c0 03ed 4ee5 b106 3d50 07 | ..1‘e...N...=P.

Peon & Ruellan Standards Track [Page 52]

RFC 7541 HPACK May 2015

 Decoding process:

 88 | == Indexed - Add ==
 | idx = 8
 | -> :status: 200
 c1 | == Indexed - Add ==
 | idx = 65
 | -> cache-control: private
 61 | == Literal indexed ==
 | Indexed name (idx = 33)
 | date
 96 | Literal value (len = 22)
 | Huffman encoded:
 d07a be94 1054 d444 a820 0595 040b 8166 | .z...T.D.f
 e084 a62d 1bff | ...-..
 | Decoded:
 | Mon, 21 Oct 2013 20:13:22
 | GMT
 | - evict: cache-control:
 | private
 | -> date: Mon, 21 Oct 2013
 | 20:13:22 GMT
 c0 | == Indexed - Add ==
 | idx = 64
 | -> location:
 | https://www.example.com
 5a | == Literal indexed ==
 | Indexed name (idx = 26)
 | content-encoding
 83 | Literal value (len = 3)
 | Huffman encoded:
 9bd9 ab | ...
 | Decoded:
 | gzip
 | - evict: date: Mon, 21 Oct
 | 2013 20:13:21 GMT
 | -> content-encoding: gzip
 77 | == Literal indexed ==
 | Indexed name (idx = 55)
 | set-cookie
 ad | Literal value (len = 45)
 | Huffman encoded:
 94e7 821d d7f2 e6c7 b335 dfdf cd5b 3960 |5...[9‘
 d5af 2708 7f36 72c1 ab27 0fb5 291f 9587 | ..’..6r..’..)...
 3160 65c0 03ed 4ee5 b106 3d50 07 | 1‘e...N...=P.
 | Decoded:
 | foo=ASDJKHQKBZXOQWEOPIUAXQ
 | WEOIU; max-age=3600; versi

Peon & Ruellan Standards Track [Page 53]

RFC 7541 HPACK May 2015

 | on=1
 | - evict: location:
 | https://www.example.com
 | - evict: :status: 307
 | -> set-cookie: foo=ASDJKHQ
 | KBZXOQWEOPIUAXQWEOIU; ma
 | x-age=3600; version=1

 Dynamic Table (after decoding):

 [1] (s = 98) set-cookie: foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU;
 max-age=3600; version=1
 [2] (s = 52) content-encoding: gzip
 [3] (s = 65) date: Mon, 21 Oct 2013 20:13:22 GMT
 Table size: 215

 Decoded header list:

 :status: 200
 cache-control: private
 date: Mon, 21 Oct 2013 20:13:22 GMT
 location: https://www.example.com
 content-encoding: gzip
 set-cookie: foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU; max-age=3600; version=1

Peon & Ruellan Standards Track [Page 54]

RFC 7541 HPACK May 2015

Acknowledgments

 This specification includes substantial input from the following
 individuals:

 o Mike Bishop, Jeff Pinner, Julian Reschke, and Martin Thomson
 (substantial editorial contributions).

 o Johnny Graettinger (Huffman code statistics).

Authors’ Addresses

 Roberto Peon
 Google, Inc

 EMail: fenix@google.com

 Herve Ruellan
 Canon CRF

 EMail: herve.ruellan@crf.canon.fr

Peon & Ruellan Standards Track [Page 55]

