
Internet Engineering Task Force (IETF) B. Campbell
Request for Comments: 7521 Ping Identity
Category: Standards Track C. Mortimore
ISSN: 2070-1721 Salesforce
 M. Jones
 Y. Goland
 Microsoft
 May 2015

 Assertion Framework for OAuth 2.0 Client Authentication and
 Authorization Grants

Abstract

 This specification provides a framework for the use of assertions
 with OAuth 2.0 in the form of a new client authentication mechanism
 and a new authorization grant type. Mechanisms are specified for
 transporting assertions during interactions with a token endpoint;
 general processing rules are also specified.

 The intent of this specification is to provide a common framework for
 OAuth 2.0 to interwork with other identity systems using assertions
 and to provide alternative client authentication mechanisms.

 Note that this specification only defines abstract message flows and
 processing rules. In order to be implementable, companion
 specifications are necessary to provide the corresponding concrete
 instantiations.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7521.

Campbell, et al. Standards Track [Page 1]

RFC 7521 OAuth Assertion Framework May 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..3
 2. Notational Conventions ..4
 3. Framework ...4
 4. Transporting Assertions ...7
 4.1. Using Assertions as Authorization Grants7
 4.1.1. Error Responses8
 4.2. Using Assertions for Client Authentication9
 4.2.1. Error Responses10
 5. Assertion Content and Processing10
 5.1. Assertion Metamodel10
 5.2. General Assertion Format and Processing Rules12
 6. Common Scenarios ...12
 6.1. Client Authentication13
 6.2. Client Acting on Behalf of Itself13
 6.3. Client Acting on Behalf of a User13
 6.3.1. Client Acting on Behalf of an Anonymous User14
 7. Interoperability Considerations14
 8. Security Considerations ..15
 8.1. Forged Assertion ..15
 8.2. Stolen Assertion ..15
 8.3. Unauthorized Disclosure of Personal Information16
 8.4. Privacy Considerations17
 9. IANA Considerations ..17
 9.1. "assertion" Parameter Registration17
 9.2. "client_assertion" Parameter Registration18
 9.3. "client_assertion_type" Parameter Registration18
 10. References ..18
 10.1. Normative References18
 10.2. Informative References18
 Acknowledgements ..20
 Authors’ Addresses ..20

Campbell, et al. Standards Track [Page 2]

RFC 7521 OAuth Assertion Framework May 2015

1. Introduction

 An assertion is a package of information that facilitates the sharing
 of identity and security information across security domains.
 Section 3 provides a more detailed description of the concept of an
 assertion for the purpose of this specification.

 OAuth 2.0 [RFC6749] is an authorization framework that enables a
 third-party application to obtain limited access to a protected HTTP
 resource. In OAuth, those third-party applications are called
 clients; they access protected resources by presenting an access
 token to the HTTP resource. Access tokens are issued to clients by
 an authorization server with the (sometimes implicit) approval of the
 resource owner. These access tokens are typically obtained by
 exchanging an authorization grant, which represents the authorization
 granted by the resource owner (or by a privileged administrator).
 Several authorization grant types are defined to support a wide range
 of client types and user experiences. OAuth also provides an
 extensibility mechanism for defining additional grant types, which
 can serve as a bridge between OAuth and other protocol frameworks.

 This specification provides a general framework for the use of
 assertions as authorization grants with OAuth 2.0. It also provides
 a framework for assertions to be used for client authentication. It
 provides generic mechanisms for transporting assertions during
 interactions with an authorization server’s token endpoint as well as
 general rules for the content and processing of those assertions.
 The intent is to provide an alternative client authentication
 mechanism (one that doesn’t send client secrets) and to facilitate
 the use of OAuth 2.0 in client-server integration scenarios, where
 the end user may not be present.

 This specification only defines abstract message flows and processing
 rules. In order to be implementable, companion specifications are
 necessary to provide the corresponding concrete instantiations. For
 instance, "Security Assertion Markup Language (SAML) 2.0 Profile for
 OAuth 2.0 Client Authentication and Authorization Grants" [RFC7522]
 defines a concrete instantiation for Security Assertion Markup
 Language (SAML) 2.0 Assertions and "JSON Web Token (JWT) Profile for
 OAuth 2.0 Client Authentication and Authorization Grants" [RFC7523]
 defines a concrete instantiation for JWTs.

 Note: The use of assertions for client authentication is orthogonal
 to and separable from using assertions as an authorization grant.
 They can be used either in combination or separately. Client
 assertion authentication is nothing more than an alternative way for
 a client to authenticate to the token endpoint and must be used in
 conjunction with some grant type to form a complete and meaningful

Campbell, et al. Standards Track [Page 3]

RFC 7521 OAuth Assertion Framework May 2015

 protocol request. Assertion authorization grants may be used with or
 without client authentication or identification. Whether or not
 client authentication is needed in conjunction with an assertion
 authorization grant, as well as the supported types of client
 authentication, are policy decisions at the discretion of the
 authorization server.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Throughout this document, values are quoted to indicate that they are
 to be taken literally. When using these values in protocol messages,
 the quotes must not be used as part of the value.

3. Framework

 An assertion is a package of information that allows identity and
 security information to be shared across security domains. An
 assertion typically contains information about a subject or
 principal, information about the party that issued the assertion and
 when was it issued, and the conditions under which the assertion is
 to be considered valid, such as when and where it can be used.

 The entity that creates and signs or integrity-protects the assertion
 is typically known as the "Issuer", and the entity that consumes the
 assertion and relies on its information is typically known as the
 "Relying Party". In the context of this document, the authorization
 server acts as a relying party.

 Assertions used in the protocol exchanges defined by this
 specification MUST always be integrity protected using a digital
 signature or Message Authentication Code (MAC) applied by the issuer,
 which authenticates the issuer and ensures integrity of the assertion
 content. In many cases, the assertion is issued by a third party,
 and it must be protected against tampering by the client that
 presents it. An assertion MAY additionally be encrypted, preventing
 unauthorized parties (such as the client) from inspecting the
 content.

 Although this document does not define the processes by which the
 client obtains the assertion (prior to sending it to the
 authorization server), there are two common patterns described below.

Campbell, et al. Standards Track [Page 4]

RFC 7521 OAuth Assertion Framework May 2015

 In the first pattern, depicted in Figure 1, the client obtains an
 assertion from a third-party entity capable of issuing, renewing,
 transforming, and validating security tokens. Typically, such an
 entity is known as a "security token service" (STS) or just "token
 service", and a trust relationship (usually manifested in the
 exchange of some kind of key material) exists between the token
 service and the relying party. The token service is the assertion
 issuer; its role is to fulfill requests from clients, which present
 various credentials, and mint assertions as requested, fill them with
 appropriate information, and integrity-protect them with a signature
 or message authentication code. WS-Trust [OASIS.WS-Trust] is one
 available standard for requesting security tokens (assertions).

 Relying
 Party Client Token Service
 | | |
 | | 1) Request Assertion |
 | |------------------------>|
 | | |
 | | 2) Assertion |
 | |<------------------------|
 | 3) Assertion | |
 |<-------------------------| |
 | | |
 | 4) OK or Failure | |
 |------------------------->| |
 | | |
 | | |

 Figure 1: Assertion Created by Third Party

 In the second pattern, depicted in Figure 2, the client creates
 assertions locally. To apply the signatures or message
 authentication codes to assertions, it has to obtain key material:
 either symmetric keys or asymmetric key pairs. The mechanisms for
 obtaining this key material are beyond the scope of this
 specification.

 Although assertions are usually used to convey identity and security
 information, self-issued assertions can also serve a different
 purpose. They can be used to demonstrate knowledge of some secret,
 such as a client secret, without actually communicating the secret
 directly in the transaction. In that case, additional information
 included in the assertion by the client itself will be of limited
 value to the relying party, and for this reason, only a bare minimum
 of information is typically included in such an assertion, such as
 information about issuing and usage conditions.

Campbell, et al. Standards Track [Page 5]

RFC 7521 OAuth Assertion Framework May 2015

 Relying
 Party Client
 | |
 | | 1) Create
 | | Assertion
 | |--------------+
 | | |
 | | 2) Assertion |
 | |<-------------+
 | 3) Assertion |
 |<-------------------------|
 | |
 | 4) OK or Failure |
 |------------------------->|
 | |
 | |

 Figure 2: Self-Issued Assertion

 Deployments need to determine the appropriate variant to use based on
 the required level of security, the trust relationship between the
 entities, and other factors.

 From the perspective of what must be done by the entity presenting
 the assertion, there are two general types of assertions:

 1. Bearer Assertions: Any entity in possession of a bearer assertion
 (the bearer) can use it to get access to the associated resources
 (without demonstrating possession of a cryptographic key). To
 prevent misuse, bearer assertions need to be protected from
 disclosure in storage and in transport. Secure communication
 channels are required between all entities to avoid leaking the
 assertion to unauthorized parties.

 2. Holder-of-Key Assertions: To access the associated resources, the
 entity presenting the assertion must demonstrate possession of
 additional cryptographic material. The token service thereby
 binds a key identifier to the assertion, and the client has to
 demonstrate to the relying party that it knows the key
 corresponding to that identifier when presenting the assertion.

 The protocol parameters and processing rules defined in this document
 are intended to support a client presenting a bearer assertion to an
 authorization server. They are not directly suitable for use with
 holder-of-key assertions. While they could be used as a baseline for
 a holder-of-key assertion system, there would be a need for

Campbell, et al. Standards Track [Page 6]

RFC 7521 OAuth Assertion Framework May 2015

 additional mechanisms (to support proof-of-possession of the secret
 key), and possibly changes to the security model (e.g., to relax the
 requirement for an Audience).

4. Transporting Assertions

 This section defines HTTP parameters for transporting assertions
 during interactions with a token endpoint of an OAuth authorization
 server. Because requests to the token endpoint result in the
 transmission of clear-text credentials (in both the HTTP request and
 response), all requests to the token endpoint MUST use Transport
 Layer Security (TLS), as mandated in Section 3.2 of OAuth 2.0
 [RFC6749].

4.1. Using Assertions as Authorization Grants

 This section defines the use of assertions as authorization grants,
 based on the definition provided in Section 4.5 of OAuth 2.0
 [RFC6749]. When using assertions as authorization grants, the client
 includes the assertion and related information using the following
 HTTP request parameters:

 grant_type
 REQUIRED. The format of the assertion as defined by the
 authorization server. The value will be an absolute URI.

 assertion
 REQUIRED. The assertion being used as an authorization grant.
 Specific serialization of the assertion is defined by profile
 documents.

 scope
 OPTIONAL. The requested scope as described in Section 3.3 of
 OAuth 2.0 [RFC6749]. When exchanging assertions for access
 tokens, the authorization for the token has been previously
 granted through some out-of-band mechanism. As such, the
 requested scope MUST be equal to or less than the scope originally
 granted to the authorized accessor. The authorization server MUST
 limit the scope of the issued access token to be equal to or less
 than the scope originally granted to the authorized accessor.

 Authentication of the client is optional, as described in
 Section 3.2.1 of OAuth 2.0 [RFC6749], and consequently, the
 "client_id" is only needed when a form of client authentication that
 relies on the parameter is used.

Campbell, et al. Standards Track [Page 7]

RFC 7521 OAuth Assertion Framework May 2015

 The following example demonstrates an assertion being used as an
 authorization grant (with extra line breaks for display purposes
 only):

 POST /token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Asaml2-bearer&
 assertion=PHNhbWxwOl...[omitted for brevity]...ZT4

 An assertion used in this context is generally a short-lived
 representation of the authorization grant, and authorization servers
 SHOULD NOT issue access tokens with a lifetime that exceeds the
 validity period of the assertion by a significant period. In
 practice, that will usually mean that refresh tokens are not issued
 in response to assertion grant requests, and access tokens will be
 issued with a reasonably short lifetime. Clients can refresh an
 expired access token by requesting a new one using the same
 assertion, if it is still valid, or with a new assertion.

 An IETF URN for use as the "grant_type" value can be requested using
 the template in [RFC6755]. A URN of the form
 urn:ietf:params:oauth:grant-type:* is suggested.

4.1.1. Error Responses

 If an assertion is not valid or has expired, the authorization server
 constructs an error response as defined in OAuth 2.0 [RFC6749]. The
 value of the "error" parameter MUST be the "invalid_grant" error
 code. The authorization server MAY include additional information
 regarding the reasons the assertion was considered invalid using the
 "error_description" or "error_uri" parameters.

 For example:

 HTTP/1.1 400 Bad Request
 Content-Type: application/json
 Cache-Control: no-store

 {
 "error":"invalid_grant",
 "error_description":"Audience validation failed"
 }

Campbell, et al. Standards Track [Page 8]

RFC 7521 OAuth Assertion Framework May 2015

4.2. Using Assertions for Client Authentication

 The following section defines the use of assertions as client
 credentials as an extension of Section 2.3 of OAuth 2.0 [RFC6749].
 When using assertions as client credentials, the client includes the
 assertion and related information using the following HTTP request
 parameters:

 client_assertion_type
 REQUIRED. The format of the assertion as defined by the
 authorization server. The value will be an absolute URI.

 client_assertion
 REQUIRED. The assertion being used to authenticate the client.
 Specific serialization of the assertion is defined by profile
 documents.

 client_id
 OPTIONAL. The client identifier as described in Section 2.2 of
 OAuth 2.0 [RFC6749]. The "client_id" is unnecessary for client
 assertion authentication because the client is identified by the
 subject of the assertion. If present, the value of the
 "client_id" parameter MUST identify the same client as is
 identified by the client assertion.

 The following example demonstrates a client authenticating using an
 assertion during an access token request, as defined in Section 4.1.3
 of OAuth 2.0 [RFC6749] (with extra line breaks for display purposes
 only):

 POST /token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code&
 code=n0esc3NRze7LTCu7iYzS6a5acc3f0ogp4&
 client_assertion_type=urn%3Aietf%3Aparams%3Aoauth
 %3Aclient-assertion-type%3Asaml2-bearer&
 client_assertion=PHNhbW...[omitted for brevity]...ZT

 Token endpoints can differentiate between assertion-based credentials
 and other client credential types by looking for the presence of the
 "client_assertion" and "client_assertion_type" parameters, which will
 only be present when using assertions for client authentication.

 An IETF URN for use as the "client_assertion_type" value may be
 requested using the template in [RFC6755]. A URN of the form
 urn:ietf:params:oauth:client-assertion-type:* is suggested.

Campbell, et al. Standards Track [Page 9]

RFC 7521 OAuth Assertion Framework May 2015

4.2.1. Error Responses

 If an assertion is invalid for any reason or if more than one client
 authentication mechanism is used, the authorization server constructs
 an error response as defined in OAuth 2.0 [RFC6749]. The value of
 the "error" parameter MUST be the "invalid_client" error code. The
 authorization server MAY include additional information regarding the
 reasons the client assertion was considered invalid using the
 "error_description" or "error_uri" parameters.

 For example:

 HTTP/1.1 400 Bad Request
 Content-Type: application/json
 Cache-Control: no-store

 {
 "error":"invalid_client"
 "error_description":"assertion has expired"
 }

5. Assertion Content and Processing

 This section provides a general content and processing model for the
 use of assertions in OAuth 2.0 [RFC6749].

5.1. Assertion Metamodel

 The following are entities and metadata involved in the issuance,
 exchange, and processing of assertions in OAuth 2.0. These are
 general terms, abstract from any particular assertion format.
 Mappings of these terms into specific representations are provided by
 profiles of this specification.

 Issuer
 A unique identifier for the entity that issued the assertion.
 Generally, this is the entity that holds the key material used to
 sign or integrity-protect the assertion. Examples of issuers are
 OAuth clients (when assertions are self-issued) and third-party
 security token services. If the assertion is self-issued, the
 Issuer value is the client identifier. If the assertion was
 issued by a security token service (STS), the Issuer should
 identify the STS in a manner recognized by the authorization
 server. In the absence of an application profile specifying
 otherwise, compliant applications MUST compare Issuer values using
 the Simple String Comparison method defined in Section 6.2.1 of
 RFC 3986 [RFC3986].

Campbell, et al. Standards Track [Page 10]

RFC 7521 OAuth Assertion Framework May 2015

 Subject
 A unique identifier for the principal that is the subject of the
 assertion.

 * When using assertions for client authentication, the Subject
 identifies the client to the authorization server using the
 value of the "client_id" of the OAuth client.

 * When using assertions as an authorization grant, the Subject
 identifies an authorized accessor for which the access token is
 being requested (typically, the resource owner or an authorized
 delegate).

 Audience
 A value that identifies the party or parties intended to process
 the assertion. The URL of the token endpoint, as defined in
 Section 3.2 of OAuth 2.0 [RFC6749], can be used to indicate that
 the authorization server is a valid intended audience of the
 assertion. In the absence of an application profile specifying
 otherwise, compliant applications MUST compare the Audience values
 using the Simple String Comparison method defined in Section 6.2.1
 of RFC 3986 [RFC3986].

 Issued At
 The time at which the assertion was issued. While the
 serialization may differ by assertion format, it is REQUIRED that
 the time be expressed in UTC with no time zone component.

 Expires At
 The time at which the assertion expires. While the serialization
 may differ by assertion format, it is REQUIRED that the time be
 expressed in UTC with no time zone component.

 Assertion ID
 A nonce or unique identifier for the assertion. The Assertion ID
 may be used by implementations requiring message de-duplication
 for one-time use assertions. Any entity that assigns an
 identifier MUST ensure that there is negligible probability for
 that entity or any other entity to accidentally assign the same
 identifier to a different data object.

Campbell, et al. Standards Track [Page 11]

RFC 7521 OAuth Assertion Framework May 2015

5.2. General Assertion Format and Processing Rules

 The following are general format and processing rules for the use of
 assertions in OAuth:

 o The assertion MUST contain an Issuer. The Issuer identifies the
 entity that issued the assertion as recognized by the
 authorization server. If an assertion is self-issued, the Issuer
 MUST be the value of the client’s "client_id".

 o The assertion MUST contain a Subject. The Subject typically
 identifies an authorized accessor for which the access token is
 being requested (i.e., the resource owner or an authorized
 delegate) but, in some cases, may be a pseudonymous identifier or
 other value denoting an anonymous user. When the client is acting
 on behalf of itself, the Subject MUST be the value of the client’s
 "client_id".

 o The assertion MUST contain an Audience that identifies the
 authorization server as the intended audience. The authorization
 server MUST reject any assertion that does not contain its own
 identity as the intended audience.

 o The assertion MUST contain an Expires At entity that limits the
 time window during which the assertion can be used. The
 authorization server MUST reject assertions that have expired
 (subject to allowable clock skew between systems). Note that the
 authorization server may reject assertions with an Expires At
 attribute value that is unreasonably far in the future.

 o The assertion MAY contain an Issued At entity containing the UTC
 time at which the assertion was issued.

 o The authorization server MUST reject assertions with an invalid
 signature or MAC. The algorithm used to validate the signature or
 message authentication code and the mechanism for designating the
 secret used to generate the signature or message authentication
 code over the assertion are beyond the scope of this
 specification.

6. Common Scenarios

 The following provides additional guidance, beyond the format and
 processing rules defined in Sections 4 and 5, on assertion use for a
 number of common use cases.

Campbell, et al. Standards Track [Page 12]

RFC 7521 OAuth Assertion Framework May 2015

6.1. Client Authentication

 A client uses an assertion to authenticate to the authorization
 server’s token endpoint by using the "client_assertion_type" and
 "client_assertion" parameters as defined in Section 4.2. The Subject
 of the assertion identifies the client. If the assertion is self-
 issued by the client, the Issuer of the assertion also identifies the
 client.

 The example in Section 4.2 shows a client authenticating using an
 assertion during an access token request.

6.2. Client Acting on Behalf of Itself

 When a client is accessing resources on behalf of itself, it does so
 in a manner analogous to the Client Credentials Grant defined in
 Section 4.4 of OAuth 2.0 [RFC6749]. This is a special case that
 combines both the authentication and authorization grant usage
 patterns. In this case, the interactions with the authorization
 server should be treated as using an assertion for Client
 Authentication according to Section 4.2, while using the "grant_type"
 parameter with the value "client_credentials" to indicate that the
 client is requesting an access token using only its client
 credentials.

 The following example demonstrates an assertion being used for a
 client credentials access token request, as defined in Section 4.4.2
 of OAuth 2.0 [RFC6749] (with extra line breaks for display purposes
 only):

 POST /token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=client_credentials&
 client_assertion_type=urn%3Aietf%3Aparams%3Aoauth
 %3Aclient-assertion-type%3Asaml2-bearer&
 client_assertion=PHNhbW...[omitted for brevity]...ZT

6.3. Client Acting on Behalf of a User

 When a client is accessing resources on behalf of a user, it does so
 by using the "grant_type" and "assertion" parameters as defined in
 Section 4.1. The Subject identifies an authorized accessor for which
 the access token is being requested (typically, the resource owner or
 an authorized delegate).

Campbell, et al. Standards Track [Page 13]

RFC 7521 OAuth Assertion Framework May 2015

 The example in Section 4.1 shows a client making an access token
 request using an assertion as an authorization grant.

6.3.1. Client Acting on Behalf of an Anonymous User

 When a client is accessing resources on behalf of an anonymous user,
 a mutually agreed-upon Subject identifier indicating anonymity is
 used. The Subject value might be an opaque persistent or transient
 pseudonymous identifier for the user or be an agreed-upon static
 value indicating an anonymous user (e.g., "anonymous"). The
 authorization may be based upon additional criteria, such as
 additional attributes or claims provided in the assertion. For
 example, a client might present an assertion from a trusted issuer
 asserting that the bearer is over 18 via an included claim. In this
 case, no additional information about the user’s identity is
 included, yet all the data needed to issue an access token is
 present.

 More information about anonymity, pseudonymity, and privacy
 considerations in general can be found in [RFC6973].

7. Interoperability Considerations

 This specification defines a framework for using assertions with
 OAuth 2.0. However, as an abstract framework in which the data
 formats used for representing many values are not defined, on its
 own, this specification is not sufficient to produce interoperable
 implementations.

 Two other specifications that profile this framework for specific
 assertions have been developed: [RFC7522] uses SAML 2.0 Assertions
 and [RFC7523] uses JSON Web Tokens (JWTs). These two instantiations
 of this framework specify additional details about the assertion
 encoding and processing rules for using those kinds of assertions
 with OAuth 2.0.

 However, even when profiled for specific assertion types, agreements
 between system entities regarding identifiers, keys, and endpoints
 are required in order to achieve interoperable deployments. Specific
 items that require agreement are as follows: values for the Issuer
 and Audience identifiers, supported assertion and client
 authentication types, the location of the token endpoint, the key
 used to apply and verify the digital signature or MAC over the
 assertion, one-time use restrictions on assertions, maximum assertion
 lifetime allowed, and the specific Subject and attribute requirements
 of the assertion. The exchange of such information is explicitly out
 of the scope of this specification. Deployments for particular trust
 frameworks, circles of trust, or other uses cases will need to agree

Campbell, et al. Standards Track [Page 14]

RFC 7521 OAuth Assertion Framework May 2015

 among the participants on the kinds of values to be used for some
 abstract fields defined by this specification. In some cases,
 additional profiles may be created that constrain or prescribe these
 values or specify how they are to be exchanged. The "OAuth 2.0
 Dynamic Client Registration Core Protocol" [OAUTH-DYN-REG] is one
 such profile that enables OAuth Clients to register metadata about
 themselves at an authorization server.

8. Security Considerations

 This section discusses security considerations that apply when using
 assertions with OAuth 2.0 as described in this document. As
 discussed in Section 3, there are two different ways to obtain
 assertions: either as self-issued or obtained from a third-party
 token service. While the actual interactions for obtaining an
 assertion are outside the scope of this document, the details are
 important from a security perspective. Section 3 discusses the high-
 level architectural aspects. Many of the security considerations
 discussed in this section are applicable to both the OAuth exchange
 as well as the client obtaining the assertion.

 The remainder of this section focuses on the exchanges that concern
 presenting an assertion for client authentication and for the
 authorization grant.

8.1. Forged Assertion

 Threat:
 An adversary could forge or alter an assertion in order to obtain
 an access token (in the case of the authorization grant) or to
 impersonate a client (in the case of the client authentication
 mechanism).

 Countermeasures:
 To avoid this kind of attack, the entities must assure that proper
 mechanisms for protecting the integrity of the assertion are
 employed. This includes the issuer digitally signing the
 assertion or computing a MAC over the assertion.

8.2. Stolen Assertion

 Threat:
 An adversary may be able obtain an assertion (e.g., by
 eavesdropping) and then reuse it (replay it) at a later point in
 time.

Campbell, et al. Standards Track [Page 15]

RFC 7521 OAuth Assertion Framework May 2015

 Countermeasures:
 The primary mitigation for this threat is the use of secure
 communication channels with server authentication for all network
 exchanges.

 An assertion may also contain several elements to prevent replay
 attacks. There is, however, a clear trade-off between reusing an
 assertion for multiple exchanges and obtaining and creating new,
 fresh assertions.

 Authorization servers and resource servers may use a combination
 of the Assertion ID and Issued At/Expires At attributes for replay
 protection. Previously processed assertions may be rejected based
 on the Assertion ID. The addition of the validity window relieves
 the authorization server from maintaining an infinite state table
 of processed Assertion IDs.

8.3. Unauthorized Disclosure of Personal Information

 Threat:
 The ability for other entities to obtain information about an
 individual, such as authentication information, role in an
 organization, or other authorization-relevant information, raises
 privacy concerns.

 Countermeasures:
 To address this threat, two cases need to be differentiated:

 First, a third party that did not participate in any of the
 exchange is prevented from eavesdropping on the content of the
 assertion by employing confidentiality protection of the exchange
 using TLS. This ensures that an eavesdropper on the wire is
 unable to obtain information. However, this does not prevent
 legitimate protocol entities from obtaining information that they
 are not allowed to possess from assertions. Some assertion
 formats allow for the assertion to be encrypted, preventing
 unauthorized parties from inspecting the content.

 Second, an authorization server may obtain an assertion that was
 created by a third-party token service and that token service may
 have placed attributes into the assertion. To mitigate potential
 privacy problems, prior consent for the release of such attribute
 information from the resource owner should be obtained. OAuth
 itself does not directly provide such capabilities, but this
 consent approval may be obtained using other identity management
 protocols or user consent interactions; it may also be obtained in
 an out-of-band fashion.

Campbell, et al. Standards Track [Page 16]

RFC 7521 OAuth Assertion Framework May 2015

 For the cases where a third-party token service creates assertions
 to be used for client authentication, privacy concerns are
 typically lower, since many of these clients are Web servers
 rather than individual devices operated by humans. If the
 assertions are used for client authentication of devices or
 software that can be closely linked to end users, then privacy
 protection safeguards need to be taken into consideration.

 Further guidance on privacy friendly protocol design can be found
 in [RFC6973].

8.4. Privacy Considerations

 An assertion may contain privacy-sensitive information and, to
 prevent disclosure of such information to unintended parties, should
 only be transmitted over encrypted channels, such as TLS. In cases
 where it is desirable to prevent disclosure of certain information to
 the client, the assertion (or portions of it) should be encrypted to
 the authorization server.

 Deployments should determine the minimum amount of information
 necessary to complete the exchange and include only such information
 in the assertion. In some cases, the Subject identifier can be a
 value representing an anonymous or pseudonymous user, as described in
 Section 6.3.1.

9. IANA Considerations

 This section registers three values, as listed in the subsections
 below, in the IANA "OAuth Parameters" registry established by RFC
 6749 [RFC6749].

9.1. "assertion" Parameter Registration

 o Name: assertion

 o Parameter Usage Location: token request

 o Change Controller: IESG

 o Specification Document(s): RFC 7521

Campbell, et al. Standards Track [Page 17]

RFC 7521 OAuth Assertion Framework May 2015

9.2. "client_assertion" Parameter Registration

 o Name: client_assertion

 o Parameter Usage Location: token request

 o Change Controller: IESG

 o Specification Document(s): RFC 7521

9.3. "client_assertion_type" Parameter Registration

 o Name: client_assertion_type

 o Parameter Usage Location: token request

 o Change Controller: IESG

 o Specification Document(s): RFC 7521

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <http://www.rfc-editor.org/info/rfc6749>.

10.2. Informative References

 [OASIS.WS-Trust]
 Nadalin, A., Ed., Goodner, M., Ed., Gudgin, M., Ed.,
 Barbir, A., Ed., and H. Granqvist, Ed., "WS-Trust",
 February 2009, <http://docs.oasis-open.org/ws-sx/
 ws-trust/v1.4/ws-trust.html>.

Campbell, et al. Standards Track [Page 18]

RFC 7521 OAuth Assertion Framework May 2015

 [OAUTH-DYN-REG]
 Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
 Work in Progress, draft-ietf-oauth-dyn-reg-29, May 2015.

 [RFC6755] Campbell, B. and H. Tschofenig, "An IETF URN Sub-Namespace
 for OAuth", RFC 6755, DOI 10.17487/RFC6755, October 2012,
 <http://www.rfc-editor.org/info/rfc6755>.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973,
 DOI 10.17487/RFC6973, July 2013,
 <http://www.rfc-editor.org/info/rfc6973>.

 [RFC7522] Campbell, B., Mortimore, C., and M. Jones, "Security
 Assertion Markup Language (SAML) 2.0 Profile for OAuth 2.0
 Client Authentication and Authorization Grants", RFC 7522,
 DOI 10.17487/RFC7522, May 2015,
 <http://www.rfc-editor.org/info/rfc7522>.

 [RFC7523] Jones, M., Campbell, B., and C. Mortimore, "JSON Web Token
 (JWT) Profile for OAuth 2.0 Client Authentication and
 Authorization Grants", RFC 7523, DOI 10.17487/RFC7523, May
 2015, <http://www.rfc-editor.org/info/rfc7523>.

Campbell, et al. Standards Track [Page 19]

RFC 7521 OAuth Assertion Framework May 2015

Acknowledgements

 The authors wish to thank the following people who have influenced or
 contributed to this specification: Paul Madsen, Eric Sachs, Jian Cai,
 Tony Nadalin, Hannes Tschofenig, the authors of the OAuth WRAP
 specification, and the members of the OAuth working group.

Authors’ Addresses

 Brian Campbell
 Ping Identity

 EMail: brian.d.campbell@gmail.com

 Chuck Mortimore
 Salesforce.com

 EMail: cmortimore@salesforce.com

 Michael B. Jones
 Microsoft

 EMail: mbj@microsoft.com
 URI: http://self-issued.info/

 Yaron Y. Goland
 Microsoft

 EMail: yarong@microsoft.com

Campbell, et al. Standards Track [Page 20]

