I nternet Engi neering Task Force (I ETF) N. WIIliams
Request for Comments: 7464 Crypt onect or
Cat egory: Standards Track February 2015
| SSN: 2070-1721

JavaScript Object Notation (JSON) Text Sequences
Abst r act

Thi s docunent describes the JavaScript Cbject Notation (JSON) text
sequence format and associ ated nedia type "application/json-seq". A
JSON text sequence consists of any nunber of JSON texts, all encoded
in UTF-8, each prefixed by an ASCI1 Record Separator (Ox1E), and each
ending with an ASCI| Line Feed character (0xO0A).

Status of This Menp
This is an Internet Standards Track document.

Thi s docunent is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformati on about the current status of this document, any errata,
and how to provide feedback on it nmay be obtained at
http://ww. rfc-editor.org/info/rfc7464.

Copyri ght Notice

Copyright (c) 2015 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the | ETF Trust’'s Lega

Provi sions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

WIIlians St andards Track [ Page 1]



RFC 7464 JSON Text Sequences February 2015

Tabl e of Contents

1

1

1. Introduction and Motivation ......... ... . . . . . . . . . .. 2
1.1. Conventions Used in This Docunent .......................... 2
2. JSON Text Sequence Format . ......... ... ... .. 3
2.1. JSON Text Sequence ParsSing ..........c.uuiiiinienenannnn 3
2.2. JSON Text Sequence Encoding ............ ... 4
2.3. Inconplete/lnvalid JSON Texts Need Not Be Fatal ............ 4
2.4. Top-Level Values: nunbers, true, false, and null ........... 5
3. Security Considerati ONS . ..... ... .. 6
4. TANA Considerati ONS . ... ... e e e 6
5. Normative References ......... ... e 7
ACKNOW edgenmBNt S . ... . 8
AUt hor’ s AdAr €SS .. . i e 8

I ntroduction and Motivation

The JavaScript Object Notation (JSON) [RFC7159] is a very handy
serialization format. However, when serializing a | arge sequence of
val ues as an array, or a possibly indeterm nate-length or never-
endi ng sequence of val ues, JSON becones difficult to work with.

Consi der a sequence of one mllion values, each possibly one kil obyte
when encoded -- roughly one gigabyte. It is often desirable to
process such a dataset in an increnental manner w thout having to
first read all of it before beginning to produce results.
Traditionally, the way to do this with JSONis to use a "streamn ng"
parser, but these are not widely avail able, w dely used, or easy to
use.

Thi s docunent describes the concept and format of "JSON text
sequences", which are specifically not JSON texts thensel ves but are
conposed of (possible) JSON texts. JSON text sequences can be parsed
(and produced) increnentally w thout having to have a stream ng
parser (nor stream ng encoder).

Conventions Used in This Docunent

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in

[ RFC2119] .

WIIlians St andards Track [ Page 2]



RFC 7464 JSON Text Sequences February 2015

2.

2.

JSON Text Sequence For mat

Two different sets of ABNF rules are provided for the definition of
JSON text sequences: one for parsers and one for encoders. Having
two different sets of rules permts recovery by parsers from
sequences where sonme of the elenents are truncated for whatever
reason. The syntax for parsers is specified in ternms of octet
strings that are then interpreted as JSON texts, if possible. The
syntax for encoders, on the other hand, assunmes that sequence

el ements are not truncated.

JSON text sequences MJST use UTF-8 encodi ng; other encodi ngs of JSON
(i.e., UTF-16 and UTF-32) MJST NOT be used.

JSON Text Sequence Parsing

The ABNF [ RFC5234] for the JSON text sequence parser is as given in
Figure 1.

i nput - JSON- sequence = *(1*RS possi bl e- JSON)
RS = %1E;, "record separator" (RS), see RFC 20
; Also known as: Uni code Character | NFORVATI ON SEPARATOR
; TWO ( UH+001E)
possi bl e-JSON = 1*(not-RS); attenpt to parse as UTF-8-encoded
; JSON text (see RFC 7159)
not-RS = %00-1d / % 1f-ff; any octets other than RS

Figure 1: JSON Text Sequence ABNF

In prose: a series of octet strings, each containing any octet other
than a record separator (RS) (Ox1E) [RFC20]. All octet strings are
preceded by an RS byte. Each octet string in the sequence is to be
parsed as a JSON text in the UTF-8 encodi ng [ RFC3629].

I f parsing of such an octet string as a UTF-8-encoded JSON t ext
fails, the parser SHOULD nonet hel ess continue parsing the remai nder
of the sequence. The parser can report such failures to
applications, which mght then choose to terninate parsing of a
sequence. Miltiple consecutive RS octets do not denote enpty
sequence el ements between them and can be ignored.

Thi s docunent does not define a nechanismfor reliably identifying
text sequence by position (for exanple, when sending individua

el ements of an array as uni que text sequences). For applications
where truncation is a possibility, this neans that intended sequence
el ements can be truncated and can even be missing entirely;
therefore, a reference to an nth el ement woul d be unreliable.

WIIlians St andards Track [ Page 3]



RFC 7464 JSON Text Sequences February 2015

There is no end of sequence indicator.
2.2. JSON Text Sequence Encoding
The ABNF for the JSON text sequence encoder is given in Figure 2.

JSON- sequence = *(RS JSON-text LF)

RS = %&1E; see RFC 20
; Al'so known as: Unicode Character | NFORMATI ON SEPARATOR
; TWO ( UH001E)

LF = %0A; "line feed" (LF), see RFC 20

JSON-text = <given by RFC 7159, using UTF-8 encodi ng>

Figure 2: JSON Text Sequence ABNF

In prose: any nunber of JSON texts, each encoded in UTF-8 [ RFC3629],
each preceded by one ASCI|I RS character, and each followed by a |ine
feed (LF). Since RSis an ASCI|I control character, it nay only
appear in JSON strings in escaped form (see [ RFC7159]), and since RS
may not appear in JSON texts in any other form RS unanbi guously
delimts the start of any element in the sequence. RS is sufficient
to unanbi guously delimt all top-level JSON val ue types other than
nunbers. Followi ng each JSON text in the sequence with an LF all ows
detection of truncated JSON texts consisting of a nunber at the top-
| evel ; see Section 2.4.

JSON text sequence encoders are expected to ensure that the sequence
el ements are properly forned. Wen the JSON text sequence encoder
does the JSON text encoding, the sequence elenments will naturally be
properly formed. Wen the JSON text sequence encoder accepts

al ready-encoded JSON texts, the JSON text sequence encoder ought to
parse them before adding themto a sequence.

Note that on sone systens it"s possible to input RS by typing
"ctrl-~"; on sone systemor applications, the correct sequence nmay be
“ctrl-v ctrl-~". This is hel pful when constructing a sequence
manual ly with a text editor.

2.3. Inconplete/lnvalid JSON Texts Need Not Be Fata

Per Section 2.1, JSON text sequence parsers should not abort when an
octet string contains a malforned JSON text. Instead, the JSON text
sequence parser should skip to the next RS. Such a situation may
arise in contexts where, for exanple, data that is appended to |og
files tolog files is truncated by the filesystem(e.g., due to a
crash or administrative process termnation).

WIIlians St andards Track [ Page 4]



RFC 7464 JSON Text Sequences February 2015

Increnmental JSON text parsers may be used, though of course failure
to parse a given text may result after first produci ng sone
i ncrenental parse results.

Sequence parsers shoul d have an option to warn about truncated JSON
texts.

2.4. Top-Level Values: nunbers, true, false, and nul

VWi |l e objects, arrays, and strings are self-delimted in JSON texts,
nunbers and the values "true’, 'false’', and "null’ are not. Only
whi t espace can delimt the latter four kinds of val ues.

JSON text sequences use Ox0A as a "canary" octet to detect
truncation.

Parsers MJST check that any JSON texts that are a top-I|evel nunber,
or that might be "true’, "false’', or "null’, include JSON whitespace
(at | east one byte matching the "ws" ABNF rule from [RFC7159]) after
that val ue; otherw se, the JSON-text nay have been truncated. Note
that the LF follow ng each JSON text nmatches the "ws" ABNF rul e.

Parsers MJST drop JSON-text sequence el ements consisting of non-self-
delimted top-level values that may have been truncated (that are not
delimted by whitespace). Parsers can report such texts as warnings
(including, optionally, the parsed text and/or the original octet
string).

For exanple, '<RS>123<RS>" m ght have been intended to carry the top-
| evel nunber 1234, but it got truncated. Simlarly, '<RS>true<RS>’

nm ght have been intended to carry the invalid text 'trueish’
'<RS>truefal se<RS>' is not two top-level values, 'true’, and 'false’
it is sinply not a valid JSON text.

| mpl ement ati ons may produce a val ue when parsing ' <RS>"foo0" <RS>’
because their JSON text parser m ght be able to consune bytes
increnentally; since the JSON text in this case is a self-delimting
top-1evel value, the parser can produce the result w thout consum ng
an additional byte. Such inplenmentations ought to skip to the next
RS byte, possibly reporting any interveni ng non-whitespace bytes.

Detection of truncation of non-self-delimted sequence el enents
(nunbers, true, false, and null) is only possible when the sequence
encoder produces or receives conplete JSON texts. |Inplenentations
where the sequence encoder is not also in charge of encoding the

i ndi vidual JSON texts should ensure that those JSON texts are
conpl et e.

WIIlians St andards Track [ Page 5]



RFC 7464 JSON Text Sequences February 2015

3. Security Considerations

Al the security considerations of JSON [ RFC7159] apply. This format
provi des no cryptographic integrity protection of any Kkind.

As usual, parsers nust operate on input that is assuned to be
untrusted. This nmeans that parsers nust fail gracefully in the face
of malicious inputs.

Note that increnental JSON text parsers can produce partial results
and |l ater indicate failure to parse the remainder of a text. A
sequence parser that uses an increnmental JSON text parser mght treat
a sequence like '<RS>"fo00"<LF>456<LF><RS>" as a sequence of one
element ("foo"), while a sequence parser that uses a non-increnenta
JSON text parser night treat the sane sequence as being enpty. This
effect, and texts that fail to parse and are ignored, can be used to

smuggl e data past sequence parsers that don't warn about JSON text
failures.

Repeat ed parsing and re-encodi ng of a JSON text sequence can result
in the addition (or stripping) of trailing LF bytes from (to)
i ndi vi dual sequence el enent JSON texts. This can break signature
validation. JSON has no canonical formfor JSON texts, therefore
neither does the JSON text sequence fornat.

4. | ANA Consi derati ons
The M ME nedia type for JSON text sequences is application/json-seq.
Type nane: application
Subt ype nane: json-seq
Requi red paraneters: N A
Optional parameters: NA
Encodi ng consi derations: binary
Security considerations: See RFC 7464, Section 3.

Interoperability considerations: Described herein

Publ i shed specification: RFC 7464.

WIIlians St andards Track [ Page 6]



RFC 7464 JSON Text Sequences February 2015

Applications that use this nedia type:
<https://stedol an. github.io/jg>
<https://github. com mapbox/cligj>
<https://github.conm hildjj/json-text-sequence>

Fragment identifier considerations: NA

Addi ti onal information:

o Deprecated alias nanes for this type: NA

o Magic nunber(s): NA

0o File extension(s): NA

o Macintosh file type code(s): NA

Person & email address to contact for further information:

json@etf.org

I nt ended usage: COVMON

Author: Nicolas WIllians (nico@ryptonector.com

Change controller: |ETF

5. Normative References

[ RFC20] Cerf, V., "ASCI| format for network interchange", STD 80,
RFC 20, Cctober 1969,
<http://wwv. rfc-editor.org/info/rfc20>.

[ RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997,
<http://ww. rfc-editor.org/info/rfc2119>.

[ RFC3629] Yergeau, F., "UTF-8, a transformation format of |SO
10646", STD 63, RFC 3629, Novenber 2003,
<http://ww.rfc-editor.org/info/rfc3629>.

[ RFC5234] Crocker, D., Ed. and P. Overell, "Augnented BNF for Syntax

Speci fications: ABNF', STD 68, RFC 5234, January 2008,
<http://ww. rfc-editor.org/info/rfc5234>.

WIIlians St andards Track [ Page 7]



RFC 7464 JSON Text Sequences February 2015

[ RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
I nterchange Format", RFC 7159, March 2014,
<http://wwv. rfc-editor.org/info/rfc7159>

Acknowl edgenent s

Phillip Hall am Baker proposed the use of JSON text sequences for

| ogfiles and pointed out the need for resynchronization. Stephen
Dol an created <https://github. conf stedol an/jqg> which uses sonet hing
like JSON text sequences (wWith LF as the separator between texts on
out put, and requiring only such whitespace as needed to di sambi guate
on input). Carsten Bornmann suggested the use of ASCII RS, and Joe
Hi | debrand suggested the use of LF in addition to RS for

di sambi guating top-Ievel nunber values. Paul Hoffnman shepherded the
docunent. Many others contributed reviews and conments on the JSON
Working Group mailing list.

Aut hor’ s Addr ess

Ni colas WIIiams
Cryptonector, LLC

EMai | : ni co@rypt onector.com

WIIlians St andards Track [ Page 8]






