
Internet Engineering Task Force (IETF) D. Borman
Request for Comments: 7323 Quantum Corporation
Obsoletes: 1323 B. Braden
Category: Standards Track University of Southern California
ISSN: 2070-1721 V. Jacobson
 Google, Inc.
 R. Scheffenegger, Ed.
 NetApp, Inc.
 September 2014

 TCP Extensions for High Performance

Abstract

 This document specifies a set of TCP extensions to improve
 performance over paths with a large bandwidth * delay product and to
 provide reliable operation over very high-speed paths. It defines
 the TCP Window Scale (WS) option and the TCP Timestamps (TS) option
 and their semantics. The Window Scale option is used to support
 larger receive windows, while the Timestamps option can be used for
 at least two distinct mechanisms, Protection Against Wrapped
 Sequences (PAWS) and Round-Trip Time Measurement (RTTM), that are
 also described herein.

 This document obsoletes RFC 1323 and describes changes from it.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7323.

Borman, et al. Standards Track [Page 1]

RFC 7323 TCP Extensions for High Performance September 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Borman, et al. Standards Track [Page 2]

RFC 7323 TCP Extensions for High Performance September 2014

Table of Contents

 1. Introduction . 4
 1.1. TCP Performance . 4
 1.2. TCP Reliability . 5
 1.3. Using TCP options . 6
 1.4. Terminology . 7
 2. TCP Window Scale Option 8
 2.1. Introduction . 8
 2.2. Window Scale Option 8
 2.3. Using the Window Scale Option 9
 2.4. Addressing Window Retraction 10
 3. TCP Timestamps Option . 11
 3.1. Introduction . 11
 3.2. Timestamps Option . 12
 4. The RTTM Mechanism . 14
 4.1. Introduction . 14
 4.2. Updating the RTO Value 15
 4.3. Which Timestamp to Echo 16
 5. PAWS - Protection Against Wrapped Sequences 19
 5.1. Introduction . 19
 5.2. The PAWS Mechanism 19
 5.3. Basic PAWS Algorithm 20
 5.4. Timestamp Clock . 22
 5.5. Outdated Timestamps 24
 5.6. Header Prediction . 25
 5.7. IP Fragmentation . 26
 5.8. Duplicates from Earlier Incarnations of Connection . . . 26
 6. Conclusions and Acknowledgments 27
 7. Security Considerations 27
 7.1. Privacy Considerations 29
 8. IANA Considerations . 29
 9. References . 30
 9.1. Normative References 30
 9.2. Informative References 30
 Appendix A. Implementation Suggestions 34
 Appendix B. Duplicates from Earlier Connection Incarnations . . 35
 B.1. System Crash with Loss of State 35
 B.2. Closing and Reopening a Connection 35
 Appendix C. Summary of Notation 37
 Appendix D. Event Processing Summary 38
 Appendix E. Timestamps Edge Cases 44
 Appendix F. Window Retraction Example 44
 Appendix G. RTO Calculation Modification 45
 Appendix H. Changes from RFC 1323 46

Borman, et al. Standards Track [Page 3]

RFC 7323 TCP Extensions for High Performance September 2014

1. Introduction

 The TCP protocol [RFC0793] was designed to operate reliably over
 almost any transmission medium regardless of transmission rate,
 delay, corruption, duplication, or reordering of segments. Over the
 years, advances in networking technology have resulted in ever-higher
 transmission speeds, and the fastest paths are well beyond the domain
 for which TCP was originally engineered.

 This document defines a set of modest extensions to TCP to extend the
 domain of its application to match the increasing network capability.
 It is an update to and obsoletes [RFC1323], which in turn is based
 upon and obsoletes [RFC1072] and [RFC1185].

 Changes between [RFC1323] and this document are detailed in
 Appendix H. These changes are partly due to errata in [RFC1323], and
 partly due to the improved understanding of how the involved
 components interact.

 For brevity, the full discussions of the merits and history behind
 the TCP options defined within this document have been omitted.
 [RFC1323] should be consulted for reference. It is recommended that
 a modern TCP stack implements and make use of the extensions
 described in this document.

1.1. TCP Performance

 TCP performance problems arise when the bandwidth * delay product is
 large. A network having such paths is referred to as a "long, fat
 network" (LFN).

 There are two fundamental performance problems with basic TCP over
 LFN paths:

 (1) Window Size Limit

 The TCP header uses a 16-bit field to report the receive window
 size to the sender. Therefore, the largest window that can be
 used is 2^16 = 64 KiB. For LFN paths where the bandwidth *
 delay product exceeds 64 KiB, the receive window limits the
 maximum throughput of the TCP connection over the path, i.e.,
 the amount of unacknowledged data that TCP can send in order to
 keep the pipeline full.

Borman, et al. Standards Track [Page 4]

RFC 7323 TCP Extensions for High Performance September 2014

 To circumvent this problem, Section 2 of this memo defines a TCP
 option, "Window Scale", to allow windows larger than 2^16. This
 option defines an implicit scale factor, which is used to
 multiply the window size value found in a TCP header to obtain
 the true window size.

 It must be noted that the use of large receive windows increases
 the chance of too quickly wrapping sequence numbers, as
 described below in Section 1.2, (1).

 (2) Recovery from Losses

 Packet losses in an LFN can have a catastrophic effect on
 throughput.

 To generalize the Fast Retransmit / Fast Recovery mechanism to
 handle multiple packets dropped per window, Selective
 Acknowledgments are required. Unlike the normal cumulative
 acknowledgments of TCP, Selective Acknowledgments give the
 sender a complete picture of which segments are queued at the
 receiver and which have not yet arrived.

 Selective Acknowledgments and their use are specified in
 separate documents, "TCP Selective Acknowledgment Options"
 [RFC2018], "An Extension to the Selective Acknowledgement (SACK)
 Option for TCP" [RFC2883], and "A Conservative Loss Recovery
 Algorithm Based on Selective Acknowledgment (SACK) for TCP"
 [RFC6675], and are not further discussed in this document.

1.2. TCP Reliability

 An especially serious kind of error may result from an accidental
 reuse of TCP sequence numbers in data segments. TCP reliability
 depends upon the existence of a bound on the lifetime of a segment:
 the "Maximum Segment Lifetime" or MSL.

 Duplication of sequence numbers might happen in either of two ways:

 (1) Sequence number wrap-around on the current connection

 A TCP sequence number contains 32 bits. At a high enough
 transfer rate of large volumes of data (at least 4 GiB in the
 same session), the 32-bit sequence space may be "wrapped"
 (cycled) within the time that a segment is delayed in queues.

Borman, et al. Standards Track [Page 5]

RFC 7323 TCP Extensions for High Performance September 2014

 (2) Earlier incarnation of the connection

 Suppose that a connection terminates, either by a proper close
 sequence or due to a host crash, and the same connection (i.e.,
 using the same pair of port numbers) is immediately reopened. A
 delayed segment from the terminated connection could fall within
 the current window for the new incarnation and be accepted as
 valid.

 Duplicates from earlier incarnations, case (2), are avoided by
 enforcing the current fixed MSL of the TCP specification, as
 explained in Section 5.8 and Appendix B. In addition, the
 randomizing of ephemeral ports can also help to probabilistically
 reduce the chances of duplicates from earlier connections. However,
 case (1), avoiding the reuse of sequence numbers within the same
 connection, requires an upper bound on MSL that depends upon the
 transfer rate, and at high enough rates, a dedicated mechanism is
 required.

 A possible fix for the problem of cycling the sequence space would be
 to increase the size of the TCP sequence number field. For example,
 the sequence number field (and also the acknowledgment field) could
 be expanded to 64 bits. This could be done either by changing the
 TCP header or by means of an additional option.

 Section 5 presents a different mechanism, which we call PAWS, to
 extend TCP reliability to transfer rates well beyond the foreseeable
 upper limit of network bandwidths. PAWS uses the TCP Timestamps
 option defined in Section 3.2 to protect against old duplicates from
 the same connection.

1.3. Using TCP options

 The extensions defined in this document all use TCP options.

 When [RFC1323] was published, there was concern that some buggy TCP
 implementation might crash on the first appearance of an option on a
 non-<SYN> segment. However, bugs like that can lead to denial-of-
 service (DoS) attacks against a TCP. Research has shown that most
 TCP implementations will properly handle unknown options on non-<SYN>
 segments ([Medina04], [Medina05]). But it is still prudent to be
 conservative in what you send, and avoiding buggy TCP implementation
 is not the only reason for negotiating TCP options on <SYN> segments.

Borman, et al. Standards Track [Page 6]

RFC 7323 TCP Extensions for High Performance September 2014

 The Window Scale option negotiates fundamental parameters of the TCP
 session. Therefore, it is only sent during the initial handshake.
 Furthermore, the Window Scale option will be sent in a <SYN,ACK>
 segment only if the corresponding option was received in the initial
 <SYN> segment.

 The Timestamps option may appear in any data or <ACK> segment, adding
 10 bytes (up to 12 bytes including padding) to the 20-byte TCP
 header. It is required that this TCP option will be sent on all
 non-<SYN> segments after an exchange of options on the <SYN> segments
 has indicated that both sides understand this extension.

 Research has shown that the use of the Timestamps option to take
 additional RTT samples within each RTT has little effect on the
 ultimate retransmission timeout value [Allman99]. However, there are
 other uses of the Timestamps option, such as the Eifel mechanism
 ([RFC3522], [RFC4015]) and PAWS (see Section 5), which improve
 overall TCP security and performance. The extra header bandwidth
 used by this option should be evaluated for the gains in performance
 and security in an actual deployment.

 Appendix A contains a recommended layout of the options in TCP
 headers to achieve reasonable data field alignment.

 Finally, we observe that most of the mechanisms defined in this
 document are important for LFNs and/or very high-speed networks. For
 low-speed networks, it might be a performance optimization to NOT use
 these mechanisms. A TCP vendor concerned about optimal performance
 over low-speed paths might consider turning these extensions off for
 low-speed paths, or allow a user or installation manager to disable
 them.

1.4. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 In this document, these words will appear with that interpretation
 only when in UPPER CASE. Lower case uses of these words are not to
 be interpreted as carrying [RFC2119] significance.

Borman, et al. Standards Track [Page 7]

RFC 7323 TCP Extensions for High Performance September 2014

2. TCP Window Scale Option

2.1. Introduction

 The window scale extension expands the definition of the TCP window
 to 30 bits and then uses an implicit scale factor to carry this
 30-bit value in the 16-bit window field of the TCP header (SEG.WND in
 [RFC0793]). The exponent of the scale factor is carried in a TCP
 option, Window Scale. This option is sent only in a <SYN> segment (a
 segment with the SYN bit on), hence the window scale is fixed in each
 direction when a connection is opened.

 The maximum receive window, and therefore the scale factor, is
 determined by the maximum receive buffer space. In a typical modern
 implementation, this maximum buffer space is set by default but can
 be overridden by a user program before a TCP connection is opened.
 This determines the scale factor, and therefore no new user interface
 is needed for window scaling.

2.2. Window Scale Option

 The three-byte Window Scale option MAY be sent in a <SYN> segment by
 a TCP. It has two purposes: (1) indicate that the TCP is prepared to
 both send and receive window scaling, and (2) communicate the
 exponent of a scale factor to be applied to its receive window.
 Thus, a TCP that is prepared to scale windows SHOULD send the option,
 even if its own scale factor is 1 and the exponent 0. The scale
 factor is limited to a power of two and encoded logarithmically, so
 it may be implemented by binary shift operations. The maximum scale
 exponent is limited to 14 for a maximum permissible receive window
 size of 1 GiB (2^(14+16)).

 TCP Window Scale option (WSopt):

 Kind: 3

 Length: 3 bytes

 +---------+---------+---------+
 | Kind=3 |Length=3 |shift.cnt|
 +---------+---------+---------+
 1 1 1

 This option is an offer, not a promise; both sides MUST send Window
 Scale options in their <SYN> segments to enable window scaling in
 either direction. If window scaling is enabled, then the TCP that
 sent this option will right-shift its true receive-window values by
 ’shift.cnt’ bits for transmission in SEG.WND. The value ’shift.cnt’

Borman, et al. Standards Track [Page 8]

RFC 7323 TCP Extensions for High Performance September 2014

 MAY be zero (offering to scale, while applying a scale factor of 1 to
 the receive window).

 This option MAY be sent in an initial <SYN> segment (i.e., a segment
 with the SYN bit on and the ACK bit off). If a Window Scale option
 was received in the initial <SYN> segment, then this option MAY be
 sent in the <SYN,ACK> segment. A Window Scale option in a segment
 without a SYN bit MUST be ignored.

 The window field in a segment where the SYN bit is set (i.e., a <SYN>
 or <SYN,ACK>) MUST NOT be scaled.

2.3. Using the Window Scale Option

 A model implementation of window scaling is as follows, using the
 notation of [RFC0793]:

 o The connection state is augmented by two window shift counters,
 Snd.Wind.Shift and Rcv.Wind.Shift, to be applied to the incoming
 and outgoing window fields, respectively.

 o If a TCP receives a <SYN> segment containing a Window Scale
 option, it SHOULD send its own Window Scale option in the
 <SYN,ACK> segment.

 o The Window Scale option MUST be sent with shift.cnt = R, where R
 is the value that the TCP would like to use for its receive
 window.

 o Upon receiving a <SYN> segment with a Window Scale option
 containing shift.cnt = S, a TCP MUST set Snd.Wind.Shift to S and
 MUST set Rcv.Wind.Shift to R; otherwise, it MUST set both
 Snd.Wind.Shift and Rcv.Wind.Shift to zero.

 o The window field (SEG.WND) in the header of every incoming
 segment, with the exception of <SYN> segments, MUST be left-
 shifted by Snd.Wind.Shift bits before updating SND.WND:

 SND.WND = SEG.WND << Snd.Wind.Shift

 (assuming the other conditions of [RFC0793] are met, and using the
 "C" notation "<<" for left-shift).

 o The window field (SEG.WND) of every outgoing segment, with the
 exception of <SYN> segments, MUST be right-shifted by
 Rcv.Wind.Shift bits:

 SEG.WND = RCV.WND >> Rcv.Wind.Shift

Borman, et al. Standards Track [Page 9]

RFC 7323 TCP Extensions for High Performance September 2014

 TCP determines if a data segment is "old" or "new" by testing whether
 its sequence number is within 2^31 bytes of the left edge of the
 window, and if it is not, discarding the data as "old". To insure
 that new data is never mistakenly considered old and vice versa, the
 left edge of the sender’s window has to be at most 2^31 away from the
 right edge of the receiver’s window. The same is true of the
 sender’s right edge and receiver’s left edge. Since the right and
 left edges of either the sender’s or receiver’s window differ by the
 window size, and since the sender and receiver windows can be out of
 phase by at most the window size, the above constraints imply that
 two times the maximum window size must be less than 2^31, or

 max window < 2^30

 Since the max window is 2^S (where S is the scaling shift count)
 times at most 2^16 - 1 (the maximum unscaled window), the maximum
 window is guaranteed to be < 2^30 if S <= 14. Thus, the shift count
 MUST be limited to 14 (which allows windows of 2^30 = 1 GiB). If a
 Window Scale option is received with a shift.cnt value larger than
 14, the TCP SHOULD log the error but MUST use 14 instead of the
 specified value. This is safe as a sender can always choose to only
 partially use any signaled receive window. If the receiver is
 scaling by a factor larger than 14 and the sender is only scaling by
 14, then the receive window used by the sender will appear smaller
 than it is in reality.

 The scale factor applies only to the window field as transmitted in
 the TCP header; each TCP using extended windows will maintain the
 window values locally as 32-bit numbers. For example, the
 "congestion window" computed by slow start and congestion avoidance
 (see [RFC5681]) is not affected by the scale factor, so window
 scaling will not introduce quantization into the congestion window.

2.4. Addressing Window Retraction

 When a non-zero scale factor is in use, there are instances when a
 retracted window can be offered -- see Appendix F for a detailed
 example. The end of the window will be on a boundary based on the
 granularity of the scale factor being used. If the sequence number
 is then updated by a number of bytes smaller than that granularity,
 the TCP will have to either advertise a new window that is beyond
 what it previously advertised (and perhaps beyond the buffer) or will
 have to advertise a smaller window, which will cause the TCP window
 to shrink. Implementations MUST ensure that they handle a shrinking
 window, as specified in Section 4.2.2.16 of [RFC1122].

Borman, et al. Standards Track [Page 10]

RFC 7323 TCP Extensions for High Performance September 2014

 For the receiver, this implies that:

 1) The receiver MUST honor, as in window, any segment that would
 have been in window for any <ACK> sent by the receiver.

 2) When window scaling is in effect, the receiver SHOULD track the
 actual maximum window sequence number (which is likely to be
 greater than the window announced by the most recent <ACK>, if
 more than one segment has arrived since the application consumed
 any data in the receive buffer).

 On the sender side:

 3) The initial transmission MUST be within the window announced by
 the most recent <ACK>.

 4) On first retransmission, or if the sequence number is out of
 window by less than 2^Rcv.Wind.Shift, then do normal
 retransmission(s) without regard to the receiver window as long
 as the original segment was in window when it was sent.

 5) Subsequent retransmissions MAY only be sent if they are within
 the window announced by the most recent <ACK>.

3. TCP Timestamps Option

3.1. Introduction

 The Timestamps option is introduced to address some of the issues
 mentioned in Sections 1.1 and 1.2. The Timestamps option is
 specified in a symmetrical manner, so that Timestamp Value (TSval)
 timestamps are carried in both data and <ACK> segments and are echoed
 in Timestamp Echo Reply (TSecr) fields carried in returning <ACK> or
 data segments. Originally used primarily for timestamping individual
 segments, the properties of the Timestamps option allow for taking
 time measurements (Section 4) as well as additional uses (Section 5).

 It is necessary to remember that there is a distinction between the
 Timestamps option conveying timestamp information and the use of that
 information. In particular, the RTTM mechanism must be viewed
 independently from updating the Retransmission Timeout (RTO) (see
 Section 4.2). In this case, the sample granularity also needs to be
 taken into account. Other mechanisms, such as PAWS or Eifel, are not
 built upon the timestamp information itself but are based on the
 intrinsic property of monotonically non-decreasing values.

 The Timestamps option is important when large receive windows are
 used to allow the use of the PAWS mechanism (see Section 5).

Borman, et al. Standards Track [Page 11]

RFC 7323 TCP Extensions for High Performance September 2014

 Furthermore, the option may be useful for all TCPs, since it
 simplifies the sender and allows the use of additional optimizations
 such as Eifel ([RFC3522], [RFC4015]) and others ([RFC6817],
 [Kuzmanovic03], [Kuehlewind10]).

3.2. Timestamps Option

 TCP is a symmetric protocol, allowing data to be sent at any time in
 either direction, and therefore timestamp echoing may occur in either
 direction. For simplicity and symmetry, we specify that timestamps
 always be sent and echoed in both directions. For efficiency, we
 combine the timestamp and timestamp reply fields into a single TCP
 Timestamps option.

 TCP Timestamps option (TSopt):

 Kind: 8

 Length: 10 bytes

 +-------+-------+---------------------+---------------------+
 |Kind=8 | 10 | TS Value (TSval) |TS Echo Reply (TSecr)|
 +-------+-------+---------------------+---------------------+
 1 1 4 4

 The Timestamps option carries two four-byte timestamp fields. The
 TSval field contains the current value of the timestamp clock of the
 TCP sending the option.

 The TSecr field is valid if the ACK bit is set in the TCP header. If
 the ACK bit is not set in the outgoing TCP header, the sender of that
 segment SHOULD set the TSecr field to zero. When the ACK bit is set
 in an outgoing segment, the sender MUST echo a recently received
 TSval sent by the remote TCP in the TSval field of a Timestamps
 option. The exact rules on which TSval MUST be echoed are given in
 Section 4.3. When the ACK bit is not set, the receiver MUST ignore
 the value of the TSecr field.

 A TCP MAY send the TSopt in an initial <SYN> segment (i.e., segment
 containing a SYN bit and no ACK bit), and MAY send a TSopt in
 <SYN,ACK> only if it received a TSopt in the initial <SYN> segment
 for the connection.

 Once TSopt has been successfully negotiated, that is both <SYN> and
 <SYN,ACK> contain TSopt, the TSopt MUST be sent in every non-<RST>
 segment for the duration of the connection, and SHOULD be sent in an
 <RST> segment (see Section 5.2 for details). The TCP SHOULD remember
 this state by setting a flag, referred to as Snd.TS.OK, to one. If a

Borman, et al. Standards Track [Page 12]

RFC 7323 TCP Extensions for High Performance September 2014

 non-<RST> segment is received without a TSopt, a TCP SHOULD silently
 drop the segment. A TCP MUST NOT abort a TCP connection because any
 segment lacks an expected TSopt.

 Implementations are strongly encouraged to follow the above rules for
 handling a missing Timestamps option and the order of precedence
 mentioned in Section 5.3 when deciding on the acceptance of a
 segment.

 If a receiver chooses to accept a segment without an expected
 Timestamps option, it must be clear that undetectable data corruption
 may occur.

 Such a TCP receiver may experience undetectable wrapped-sequence
 effects, such as data (payload) corruption or session stalls. In
 order to maintain the integrity of the payload data, in particular on
 high-speed networks, it is paramount to follow the described
 processing rules.

 However, it has been mentioned that under some circumstances, the
 above guidelines are too strict, and some paths sporadically suppress
 the Timestamps option, while maintaining payload integrity. A path
 behaving in this manner should be deemed unacceptable, but it has
 been noted that some implementations relax the acceptance rules as a
 workaround and allow TCP to run across such paths [RE-1323BIS].

 If a TSopt is received on a connection where TSopt was not negotiated
 in the initial three-way handshake, the TSopt MUST be ignored and the
 packet processed normally.

 In the case of crossing <SYN> segments where one <SYN> contains a
 TSopt and the other doesn’t, both sides MAY send a TSopt in the
 <SYN,ACK> segment.

 TSopt is required for the two mechanisms described in Sections 4 and
 5. There are also other mechanisms that rely on the presence of the
 TSopt, e.g., [RFC3522]. If a TCP stopped sending TSopt at any time
 during an established session, it interferes with these mechanisms.
 This update to [RFC1323] describes explicitly the previous assumption
 (see Section 5.2) that each TCP segment must have a TSopt, once
 negotiated.

Borman, et al. Standards Track [Page 13]

RFC 7323 TCP Extensions for High Performance September 2014

4. The RTTM Mechanism

4.1. Introduction

 One use of the Timestamps option is to measure the round-trip time
 (RTT) of virtually every packet acknowledged. The RTTM mechanism
 requires a Timestamps option in every measured segment, with a TSval
 that is obtained from a (virtual) "timestamp clock". Values of this
 clock MUST be at least approximately proportional to real time, in
 order to measure actual RTT.

 TCP measures the RTT, primarily for the purpose of arriving at a
 reasonable value for the RTO timer interval. Accurate and current
 RTT estimates are necessary to adapt to changing traffic conditions,
 while a conservative estimate of the RTO interval is necessary to
 minimize spurious RTOs.

 These TSval values are echoed in TSecr values in the reverse
 direction. The difference between a received TSecr value and the
 current timestamp clock value provides an RTT measurement.

 When timestamps are used, every segment that is received will contain
 a TSecr value. However, these values cannot all be used to update
 the measured RTT. The following example illustrates why. It shows a
 one-way data flow with segments arriving in sequence without loss.
 Here A, B, C... represent data blocks occupying successive blocks of
 sequence numbers, and ACK(A),... represent the corresponding
 cumulative acknowledgments. The two timestamp fields of the
 Timestamps option are shown symbolically as <TSval=x,TSecr=y>. Each
 TSecr field contains the value most recently received in a TSval
 field.

Borman, et al. Standards Track [Page 14]

RFC 7323 TCP Extensions for High Performance September 2014

 TCP A TCP B

 <A,TSval=1,TSecr=120> ----->

 <---- <ACK(A),TSval=127,TSecr=1>

 <B,TSval=5,TSecr=127> ----->

 <---- <ACK(B),TSval=131,TSecr=5>

 .

 <C,TSval=65,TSecr=131> ---->

 <---- <ACK(C),TSval=191,TSecr=65>

 (etc.)

 The dotted line marks a pause (60 time units long) in which A had
 nothing to send. Note that this pause inflates the RTT, which B
 could infer from receiving TSecr=131 in data segment C. Thus, in
 one-way data flows, RTTM in the reverse direction measures a value
 that is inflated by gaps in sending data. However, the following
 rule prevents a resulting inflation of the measured RTT:

 RTTM Rule: A TSecr value received in a segment MAY be used to update
 the averaged RTT measurement only if the segment advances
 the left edge of the send window, i.e., SND.UNA is
 increased.

 Since TCP B is not sending data, the data segment C does not
 acknowledge any new data when it arrives at B. Thus, the inflated
 RTTM measurement is not used to update B’s RTTM measurement.

4.2. Updating the RTO Value

 When [RFC1323] was originally written, it was perceived that taking
 RTT measurements for each segment, and also during retransmissions,
 would contribute to reduce spurious RTOs, while maintaining the
 timeliness of necessary RTOs. At the time, RTO was also the only
 mechanism to make use of the measured RTT. It has been shown that
 taking more RTT samples has only a very limited effect to optimize
 RTOs [Allman99].

 Implementers should note that with timestamps, multiple RTTMs can be
 taken per RTT. The [RFC6298] RTT estimator has weighting factors,
 alpha and beta, based on an implicit assumption that at most one RTTM
 will be sampled per RTT. When multiple RTTMs per RTT are available

Borman, et al. Standards Track [Page 15]

RFC 7323 TCP Extensions for High Performance September 2014

 to update the RTT estimator, an implementation SHOULD try to adhere
 to the spirit of the history specified in [RFC6298]. An
 implementation suggestion is detailed in Appendix G.

 [Ludwig00] and [Floyd05] have highlighted the problem that an
 unmodified RTO calculation, which is updated with per-packet RTT
 samples, will truncate the path history too soon. This can lead to
 an increase in spurious retransmissions, when the path properties
 vary in the order of a few RTTs, but a high number of RTT samples are
 taken on a much shorter timescale.

4.3. Which Timestamp to Echo

 If more than one Timestamps option is received before a reply segment
 is sent, the TCP must choose only one of the TSvals to echo, ignoring
 the others. To minimize the state kept in the receiver (i.e., the
 number of unprocessed TSvals), the receiver should be required to
 retain at most one timestamp in the connection control block.

 There are three situations to consider:

 (A) Delayed ACKs.

 Many TCPs acknowledge only every second segment out of a group
 of segments arriving within a short time interval; this policy
 is known generally as "delayed ACKs". The data-sender TCP must
 measure the effective RTT, including the additional time due to
 delayed ACKs, or else it will retransmit unnecessarily. Thus,
 when delayed ACKs are in use, the receiver SHOULD reply with the
 TSval field from the earliest unacknowledged segment.

 (B) A hole in the sequence space (segment(s) has been lost).

 The sender will continue sending until the window is filled, and
 the receiver may be generating <ACK>s as these out-of-order
 segments arrive (e.g., to aid "Fast Retransmit").

 The lost segment is probably a sign of congestion, and in that
 situation the sender should be conservative about
 retransmission. Furthermore, it is better to overestimate than
 underestimate the RTT. An <ACK> for an out-of-order segment
 SHOULD, therefore, contain the timestamp from the most recent
 segment that advanced RCV.NXT.

 The same situation occurs if segments are reordered by the
 network.

Borman, et al. Standards Track [Page 16]

RFC 7323 TCP Extensions for High Performance September 2014

 (C) A filled hole in the sequence space.

 The segment that fills the hole and advances the window
 represents the most recent measurement of the network
 characteristics. An RTT computed from an earlier segment would
 probably include the sender’s retransmit timeout, badly biasing
 the sender’s average RTT estimate. Thus, the timestamp from the
 latest segment (which filled the hole) MUST be echoed.

 An algorithm that covers all three cases is described in the
 following rules for Timestamps option processing on a synchronized
 connection:

 (1) The connection state is augmented with two 32-bit slots:

 TS.Recent holds a timestamp to be echoed in TSecr whenever a
 segment is sent, and Last.ACK.sent holds the ACK field from the
 last segment sent. Last.ACK.sent will equal RCV.NXT except when
 <ACK>s have been delayed.

 (2) If:

 SEG.TSval >= TS.Recent and SEG.SEQ <= Last.ACK.sent

 then SEG.TSval is copied to TS.Recent; otherwise, it is ignored.

 (3) When a TSopt is sent, its TSecr field is set to the current
 TS.Recent value.

 The following examples illustrate these rules. Here A, B, C...
 represent data segments occupying successive blocks of sequence
 numbers, and ACK(A),... represent the corresponding acknowledgment
 segments. Note that ACK(A) has the same sequence number as B. We
 show only one direction of timestamp echoing, for clarity.

Borman, et al. Standards Track [Page 17]

RFC 7323 TCP Extensions for High Performance September 2014

 o Segments arrive in sequence, and some of the <ACK>s are delayed.

 By case (A), the timestamp from the oldest unacknowledged segment
 is echoed.

 TS.Recent
 <A, TSval=1> ------------------->
 1
 <B, TSval=2> ------------------->
 1
 <C, TSval=3> ------------------->
 1
 <---- <ACK(C), TSecr=1>
 (etc.)

 o Segments arrive out of order, and every segment is acknowledged.

 By case (B), the timestamp from the last segment that advanced the
 left window edge is echoed until the missing segment arrives; it
 is echoed according to case (C). The same sequence would occur if
 segments B and D were lost and retransmitted.

 TS.Recent
 <A, TSval=1> ------------------->
 1
 <---- <ACK(A), TSecr=1>
 1
 <C, TSval=3> ------------------->
 1
 <---- <ACK(A), TSecr=1>
 1
 <B, TSval=2> ------------------->
 2
 <---- <ACK(C), TSecr=2>
 2
 <E, TSval=5> ------------------->
 2
 <---- <ACK(C), TSecr=2>
 2
 <D, TSval=4> ------------------->
 4
 <---- <ACK(E), TSecr=4>
 (etc.)

Borman, et al. Standards Track [Page 18]

RFC 7323 TCP Extensions for High Performance September 2014

5. PAWS - Protection Against Wrapped Sequences

5.1. Introduction

 Another use for the Timestamps option is the PAWS mechanism.
 Section 5.2 describes a simple mechanism to reject old duplicate
 segments that might corrupt an open TCP connection. PAWS operates
 within a single TCP connection, using state that is saved in the
 connection control block. Section 5.8 and Appendix H discuss the
 implications of the PAWS mechanism for avoiding old duplicates from
 previous incarnations of the same connection.

5.2. The PAWS Mechanism

 PAWS uses the TCP Timestamps option described earlier and assumes
 that every received TCP segment (including data and <ACK> segments)
 contains a timestamp SEG.TSval whose values are monotonically non-
 decreasing in time. The basic idea is that a segment can be
 discarded as an old duplicate if it is received with a timestamp
 SEG.TSval less than some timestamps recently received on this
 connection.

 In the PAWS mechanism, the "timestamps" are 32-bit unsigned integers
 in a modular 32-bit space. Thus, "less than" is defined the same way
 it is for TCP sequence numbers, and the same implementation
 techniques apply. If s and t are timestamp values,

 s < t if 0 < (t - s) < 2^31,

 computed in unsigned 32-bit arithmetic.

 The choice of incoming timestamps to be saved for this comparison
 MUST guarantee a value that is monotonically non-decreasing. For
 example, an implementation might save the timestamp from the segment
 that last advanced the left edge of the receive window, i.e., the
 most recent in-sequence segment. For simplicity, the value TS.Recent
 introduced in Section 4.3 is used instead, as using a common value
 for both PAWS and RTTM simplifies the implementation. As Section 4.3
 explained, TS.Recent differs from the timestamp from the last in-
 sequence segment only in the case of delayed <ACK>s, and therefore by
 less than one window. Either choice will, therefore, protect against
 sequence number wrap-around.

 PAWS submits all incoming segments to the same test, and therefore
 protects against duplicate <ACK> segments as well as data segments.
 (An alternative non-symmetric algorithm would protect against old
 duplicate <ACK>s: the sender of data would reject incoming <ACK>
 segments whose TSecr values were less than the TSecr saved from the

Borman, et al. Standards Track [Page 19]

RFC 7323 TCP Extensions for High Performance September 2014

 last segment whose ACK field advanced the left edge of the send
 window. This algorithm was deemed to lack economy of mechanism and
 symmetry.)

 TSval timestamps sent on <SYN> and <SYN,ACK> segments are used to
 initialize PAWS. PAWS protects against old duplicate non-<SYN>
 segments and duplicate <SYN> segments received while there is a
 synchronized connection. Duplicate <SYN> and <SYN,ACK> segments
 received when there is no connection will be discarded by the normal
 3-way handshake and sequence number checks of TCP.

 [RFC1323] recommended that <RST> segments NOT carry timestamps and
 that they be acceptable regardless of their timestamp. At that time,
 the thinking was that old duplicate <RST> segments should be
 exceedingly unlikely, and their cleanup function should take
 precedence over timestamps. More recently, discussions about various
 blind attacks on TCP connections have raised the suggestion that if
 the Timestamps option is present, SEG.TSecr could be used to provide
 stricter acceptance tests for <RST> segments.

 While still under discussion, to enable research into this area it is
 now RECOMMENDED that when generating an <RST>, if the segment causing
 the <RST> to be generated contains a Timestamps option, the <RST>
 should also contain a Timestamps option. In the <RST> segment,
 SEG.TSecr SHOULD be set to SEG.TSval from the incoming segment and
 SEG.TSval SHOULD be set to zero. If an <RST> is being generated
 because of a user abort, and Snd.TS.OK is set, then a Timestamps
 option SHOULD be included in the <RST>. When an <RST> segment is
 received, it MUST NOT be subjected to the PAWS check by verifying an
 acceptable value in SEG.TSval, and information from the Timestamps
 option MUST NOT be used to update connection state information.
 SEG.TSecr MAY be used to provide stricter <RST> acceptance checks.

5.3. Basic PAWS Algorithm

 If the PAWS algorithm is used, the following processing MUST be
 performed on all incoming segments for a synchronized connection.
 Also, PAWS processing MUST take precedence over the regular TCP
 acceptability check (Section 3.3 in [RFC0793]), which is performed
 after verification of the received Timestamps option:

 R1) If there is a Timestamps option in the arriving segment,
 SEG.TSval < TS.Recent, TS.Recent is valid (see later
 discussion), and if the RST bit is not set, then treat the
 arriving segment as not acceptable:

 Send an acknowledgment in reply as specified in Section 3.9
 of [RFC0793], page 69, and drop the segment.

Borman, et al. Standards Track [Page 20]

RFC 7323 TCP Extensions for High Performance September 2014

 Note: it is necessary to send an <ACK> segment in order to
 retain TCP’s mechanisms for detecting and recovering from
 half-open connections. For an example, see Figure 10 of
 [RFC0793].

 R2) If the segment is outside the window, reject it (normal TCP
 processing).

 R3) If an arriving segment satisfies SEG.TSval >= TS.Recent and
 SEG.SEQ <= Last.ACK.sent (see Section 4.3), then record its
 timestamp in TS.Recent.

 R4) If an arriving segment is in sequence (i.e., at the left window
 edge), then accept it normally.

 R5) Otherwise, treat the segment as a normal in-window,
 out-of-sequence TCP segment (e.g., queue it for later delivery
 to the user).

 Steps R2, R4, and R5 are the normal TCP processing steps specified by
 [RFC0793].

 It is important to note that the timestamp MUST be checked only when
 a segment first arrives at the receiver, regardless of whether it is
 in sequence or it must be queued for later delivery.

 Consider the following example.

 Suppose the segment sequence: A.1, B.1, C.1, ..., Z.1 has been
 sent, where the letter indicates the sequence number and the digit
 represents the timestamp. Suppose also that segment B.1 has been
 lost. The timestamp in TS.Recent is 1 (from A.1), so C.1, ...,
 Z.1 are considered acceptable and are queued. When B is
 retransmitted as segment B.2 (using the latest timestamp), it
 fills the hole and causes all the segments through Z to be
 acknowledged and passed to the user. The timestamps of the queued
 segments are *not* inspected again at this time, since they have
 already been accepted. When B.2 is accepted, TS.Recent is set to
 2.

 This rule allows reasonable performance under loss. A full window of
 data is in transit at all times, and after a loss a full window less
 one segment will show up out of sequence to be queued at the receiver
 (e.g., up to ˜2^30 bytes of data); the Timestamps option must not
 result in discarding this data.

Borman, et al. Standards Track [Page 21]

RFC 7323 TCP Extensions for High Performance September 2014

 In certain unlikely circumstances, the algorithm of rules R1-R5 could
 lead to discarding some segments unnecessarily, as shown in the
 following example:

 Suppose again that segments: A.1, B.1, C.1, ..., Z.1 have been
 sent in sequence and that segment B.1 has been lost. Furthermore,
 suppose delivery of some of C.1, ... Z.1 is delayed until *after*
 the retransmission B.2 arrives at the receiver. These delayed
 segments will be discarded unnecessarily when they do arrive,
 since their timestamps are now out of date.

 This case is very unlikely to occur. If the retransmission was
 triggered by a timeout, some of the segments C.1, ... Z.1 must have
 been delayed longer than the RTO time. This is presumably an
 unlikely event, or there would be many spurious timeouts and
 retransmissions. If B’s retransmission was triggered by the "Fast
 Retransmit" algorithm, i.e., by duplicate <ACK>s, then the queued
 segments that caused these <ACK>s must have been received already.

 Even if a segment were delayed past the RTO, the Fast Retransmit
 mechanism [Jacobson90c] will cause the delayed segments to be
 retransmitted at the same time as B.2, avoiding an extra RTT and,
 therefore, causing a very small performance penalty.

 We know of no case with a significant probability of occurrence in
 which timestamps will cause performance degradation by unnecessarily
 discarding segments.

5.4. Timestamp Clock

 It is important to understand that the PAWS algorithm does not
 require clock synchronization between the sender and receiver. The
 sender’s timestamp clock is used as a source of monotonic non-
 decreasing values to stamp the segments. The receiver treats the
 timestamp value as simply a monotonically non-decreasing serial
 number, without any connection to time. From the receiver’s
 viewpoint, the timestamp is acting as a logical extension of the
 high-order bits of the sequence number.

 The receiver algorithm does place some requirements on the frequency
 of the timestamp clock.

Borman, et al. Standards Track [Page 22]

RFC 7323 TCP Extensions for High Performance September 2014

 (a) The timestamp clock must not be "too slow".

 It MUST tick at least once for each 2^31 bytes sent. In fact,
 in order to be useful to the sender for round-trip timing, the
 clock SHOULD tick at least once per window’s worth of data, and
 even with the window extension defined in Section 2.2, 2^31
 bytes must be at least two windows.

 To make this more quantitative, any clock faster than 1 tick/sec
 will reject old duplicate segments for link speeds of ˜8 Gbps.
 A 1 ms timestamp clock will work at link speeds up to 8 Tbps
 (8*10^12) bps!

 (b) The timestamp clock must not be "too fast".

 The recycling time of the timestamp clock MUST be greater than
 MSL seconds. Since the clock (timestamp) is 32 bits and the
 worst-case MSL is 255 seconds, the maximum acceptable clock
 frequency is one tick every 59 ns.

 However, it is desirable to establish a much longer recycle
 period, in order to handle outdated timestamps on idle
 connections (see Section 5.5), and to relax the MSL requirement
 for preventing sequence number wrap-around. With a 1 ms
 timestamp clock, the 32-bit timestamp will wrap its sign bit in
 24.8 days. Thus, it will reject old duplicates on the same
 connection if MSL is 24.8 days or less. This appears to be a
 very safe figure; an MSL of 24.8 days or longer can probably be
 assumed in the Internet without requiring precise MSL
 enforcement.

 Based upon these considerations, we choose a timestamp clock
 frequency in the range 1 ms to 1 sec per tick. This range also
 matches the requirements of the RTTM mechanism, which does not need
 much more resolution than the granularity of the retransmit timer,
 e.g., tens or hundreds of milliseconds.

 The PAWS mechanism also puts a strong monotonicity requirement on the
 sender’s timestamp clock. The method of implementation of the
 timestamp clock to meet this requirement depends upon the system
 hardware and software.

 o Some hosts have a hardware clock that is guaranteed to be
 monotonic between hardware resets.

 o A clock interrupt may be used to simply increment a binary integer
 by 1 periodically.

Borman, et al. Standards Track [Page 23]

RFC 7323 TCP Extensions for High Performance September 2014

 o The timestamp clock may be derived from a system clock that is
 subject to being abruptly changed by adding a variable offset
 value. This offset is initialized to zero. When a new timestamp
 clock value is needed, the offset can be adjusted as necessary to
 make the new value equal to or larger than the previous value
 (which was saved for this purpose).

 o A random offset may be added to the timestamp clock on a per-
 connection basis. See [RFC6528], Section 3, on randomizing the
 initial sequence number (ISN). The same function with a different
 secret key can be used to generate the per-connection timestamp
 offset.

5.5. Outdated Timestamps

 If a connection remains idle long enough for the timestamp clock of
 the other TCP to wrap its sign bit, then the value saved in TS.Recent
 will become too old; as a result, the PAWS mechanism will cause all
 subsequent segments to be rejected, freezing the connection (until
 the timestamp clock wraps its sign bit again).

 With the chosen range of timestamp clock frequencies (1 sec to 1 ms),
 the time to wrap the sign bit will be between 24.8 days and 24800
 days. A TCP connection that is idle for more than 24 days and then
 comes to life is exceedingly unusual. However, it is undesirable in
 principle to place any limitation on TCP connection lifetimes.

 We therefore require that an implementation of PAWS include a
 mechanism to "invalidate" the TS.Recent value when a connection is
 idle for more than 24 days. (An alternative solution to the problem
 of outdated timestamps would be to send keep-alive segments at a very
 low rate, but still more often than the wrap-around time for
 timestamps, e.g., once a day. This would impose negligible overhead.
 However, the TCP specification has never included keep-alives, so the
 solution based upon invalidation was chosen.)

 Note that a TCP does not know the frequency, and therefore the wrap-
 around time, of the other TCP, so it must assume the worst. The
 validity of TS.Recent needs to be checked only if the basic PAWS
 timestamp check fails, i.e., only if SEG.TSval < TS.Recent. If
 TS.Recent is found to be invalid, then the segment is accepted,
 regardless of the failure of the timestamp check, and rule R3 updates
 TS.Recent with the TSval from the new segment.

 To detect how long the connection has been idle, the TCP MAY update a
 clock or timestamp value associated with the connection whenever
 TS.Recent is updated, for example. The details will be
 implementation dependent.

Borman, et al. Standards Track [Page 24]

RFC 7323 TCP Extensions for High Performance September 2014

5.6. Header Prediction

 "Header prediction" [Jacobson90a] is a high-performance transport
 protocol implementation technique that is most important for high-
 speed links. This technique optimizes the code for the most common
 case, receiving a segment correctly and in order. Using header
 prediction, the receiver asks the question, "Is this segment the next
 in sequence?" This question can be answered in fewer machine
 instructions than the question, "Is this segment within the window?"

 Adding header prediction to our timestamp procedure leads to the
 following recommended sequence for processing an arriving TCP
 segment:

 H1) Check timestamp (same as step R1 above).

 H2) Do header prediction: if the segment is next in sequence and if
 there are no special conditions requiring additional processing,
 accept the segment, record its timestamp, and skip H3.

 H3) Process the segment normally, as specified in RFC 793. This
 includes dropping segments that are outside the window and
 possibly sending acknowledgments, and queuing in-window,
 out-of-sequence segments.

 Another possibility would be to interchange steps H1 and H2, i.e., to
 perform the header prediction step H2 *first*, and perform H1 and H3
 only when header prediction fails. This could be a performance
 improvement, since the timestamp check in step H1 is very unlikely to
 fail, and it requires unsigned modulo arithmetic. To perform this
 check on every single segment is contrary to the philosophy of header
 prediction. We believe that this change might produce a measurable
 reduction in CPU time for TCP protocol processing on high-speed
 networks.

 However, putting H2 first would create a hazard: a segment from 2^32
 bytes in the past might arrive at exactly the wrong time and be
 accepted mistakenly by the header-prediction step. The following
 reasoning has been introduced in [RFC1185] to show that the
 probability of this failure is negligible.

 If all segments are equally likely to show up as old duplicates,
 then the probability of an old duplicate exactly matching the left
 window edge is the maximum segment size (MSS) divided by the size
 of the sequence space. This ratio must be less than 2^-16, since
 MSS must be < 2^16; for example, it will be (2^12)/(2^32) = 2^-20
 for [a 100 Mbit/s] link. However, the older a segment is, the
 less likely it is to be retained in the Internet, and under any

Borman, et al. Standards Track [Page 25]

RFC 7323 TCP Extensions for High Performance September 2014

 reasonable model of segment lifetime the probability of an old
 duplicate exactly at the left window edge must be much smaller
 than 2^-16.

 The 16 bit TCP checksum also allows a basic unreliability of one
 part in 2^16. A protocol mechanism whose reliability exceeds the
 reliability of the TCP checksum should be considered "good
 enough", i.e., it won’t contribute significantly to the overall
 error rate. We therefore believe we can ignore the problem of an
 old duplicate being accepted by doing header prediction before
 checking the timestamp. [Note: the notation for exponentiation
 has been changed from how it appeared in RFC 1185.]

 However, this probabilistic argument is not universally accepted, and
 the consensus at present is that the performance gain does not
 justify the hazard in the general case. It is therefore recommended
 that H2 follow H1.

5.7. IP Fragmentation

 At high data rates, the protection against old segments provided by
 PAWS can be circumvented by errors in IP fragment reassembly (see
 [RFC4963]). The only way to protect against incorrect IP fragment
 reassembly is to not allow the segments to be fragmented. This is
 done by setting the Don’t Fragment (DF) bit in the IP header.

 Setting the DF bit implies the use of Path MTU Discovery as described
 in [RFC1191], [RFC1981], and [RFC4821]; thus, any TCP implementation
 that implements PAWS MUST also implement Path MTU Discovery.

5.8. Duplicates from Earlier Incarnations of Connection

 The PAWS mechanism protects against errors due to sequence number
 wrap-around on high-speed connections. Segments from an earlier
 incarnation of the same connection are also a potential cause of old
 duplicate errors. In both cases, the TCP mechanisms to prevent such
 errors depend upon the enforcement of an MSL by the Internet (IP)
 layer (see the Appendix of RFC 1185 for a detailed discussion).
 Unlike the case of sequence space wrap-around, the MSL required to
 prevent old duplicate errors from earlier incarnations does not
 depend upon the transfer rate. If the IP layer enforces the
 recommended 2-minute MSL of TCP, and if the TCP rules are followed,
 TCP connections will be safe from earlier incarnations, no matter how
 high the network speed. Thus, the PAWS mechanism is not required for
 this case.

Borman, et al. Standards Track [Page 26]

RFC 7323 TCP Extensions for High Performance September 2014

 We may still ask whether the PAWS mechanism can provide additional
 security against old duplicates from earlier connections, allowing us
 to relax the enforcement of MSL by the IP layer. Appendix B explores
 this question, showing that further assumptions and/or mechanisms are
 required, beyond those of PAWS. This is not part of the current
 extension.

6. Conclusions and Acknowledgments

 This memo presented a set of extensions to TCP to provide efficient
 operation over large bandwidth * delay product paths and reliable
 operation over very high-speed paths. These extensions are designed
 to provide compatible interworking with TCP stacks that do not
 implement the extensions.

 These mechanisms are implemented using TCP options for scaled windows
 and timestamps. The timestamps are used for two distinct mechanisms:
 RTTM and PAWS.

 The Window Scale option was originally suggested by Mike St. Johns of
 USAF/DCA. The present form of the option was suggested by Mike
 Karels of UC Berkeley in response to a more cumbersome scheme defined
 by Van Jacobson. Lixia Zhang helped formulate the PAWS mechanism
 description in [RFC1185].

 Finally, much of this work originated as the result of discussions
 within the End-to-End Task Force on the theoretical limitations of
 transport protocols in general and TCP in particular. Task force
 members and others on the end2end-interest list have made valuable
 contributions by pointing out flaws in the algorithms and the
 documentation. Continued discussion and development since the
 publication of [RFC1323] originally occurred in the IETF TCP Large
 Windows Working Group, later on in the End-to-End Task Force, and
 most recently in the IETF TCP Maintenance Working Group. The authors
 are grateful for all these contributions.

7. Security Considerations

 The TCP sequence space is a fixed size, and as the window becomes
 larger, it becomes easier for an attacker to generate forged packets
 that can fall within the TCP window and be accepted as valid
 segments. While use of timestamps and PAWS can help to mitigate
 this, when using PAWS, if an attacker is able to forge a packet that
 is acceptable to the TCP connection, a timestamp that is in the
 future would cause valid segments to be dropped due to PAWS checks.
 Hence, implementers should take care to not open the TCP window
 drastically beyond the requirements of the connection.

Borman, et al. Standards Track [Page 27]

RFC 7323 TCP Extensions for High Performance September 2014

 See [RFC5961] for mitigation strategies to blind in-window attacks.

 A naive implementation that derives the timestamp clock value
 directly from a system uptime clock may unintentionally leak this
 information to an attacker. This does not directly compromise any of
 the mechanisms described in this document. However, this may be
 valuable information to a potential attacker. It is therefore
 RECOMMENDED to generate a random, per-connection offset to be used
 with the clock source when generating the Timestamps option value
 (see Section 5.4). By carefully choosing this random offset, further
 improvements as described in [RFC6191] are possible.

 Expanding the TCP window beyond 64 KiB for IPv6 allows Jumbograms
 [RFC2675] to be used when the local network supports packets larger
 than 64 KiB. When larger TCP segments are used, the TCP checksum
 becomes weaker.

 Mechanisms to protect the TCP header from modification should also
 protect the TCP options.

 Middleboxes and TCP options:

 Some middleboxes have been known to remove the TCP options
 described in this document from TCP segments [Honda11].
 Middleboxes that remove TCP options described in this document
 from the <SYN> segment interfere with the selection of parameters
 appropriate for the session. Removing any of these options in a
 <SYN,ACK> segment will leave the end hosts in a state that
 destroys the proper operation of the protocol.

 * If a Window Scale option is removed from a <SYN,ACK> segment,
 the end hosts will not negotiate the window scaling factor
 correctly. Middleboxes must not remove or modify the Window
 Scale option from <SYN,ACK> segments.

 * If a stateful firewall uses the window field to detect whether
 a received segment is inside the current window, and does not
 support the Window Scale option, it will not be able to
 correctly determine whether or not a packet is in the window.
 These middle boxes must also support the Window Scale option
 and apply the scale factor when processing segments. If the
 window scale factor cannot be determined, it must not do
 window-based processing.

Borman, et al. Standards Track [Page 28]

RFC 7323 TCP Extensions for High Performance September 2014

 * If the Timestamps option is removed from the <SYN> or <SYN,ACK>
 segments, high speed connections that need PAWS would not have
 that protection. Successful negotiation of the Timestamps
 option enforces a stricter verification of incoming segments at
 the receiver. If the Timestamps option was removed from a
 subsequent data segment after a successful negotiation (e.g.,
 as part of resegmentation), the segment is discarded by the
 receiver without further processing. Middleboxes should not
 remove the Timestamps option.

 * It must be noted that [RFC1323] doesn’t address the case of the
 Timestamps option being dropped or selectively omitted after
 being negotiated, and that the update in this document may
 cause some broken middlebox behavior to be detected
 (potentially unresponsive TCP sessions).

 Implementations that depend on PAWS could provide a mechanism for the
 application to determine whether or not PAWS is in use on the
 connection and choose to terminate the connection if that protection
 doesn’t exist. This is not just to protect the connection against
 middleboxes that might remove the Timestamps option, but also against
 remote hosts that do not have Timestamp support.

7.1. Privacy Considerations

 The TCP options described in this document do not expose individual
 user’s data. However, a naive implementation simply using the system
 clock as a source for the Timestamps option will reveal
 characteristics of the TCP, potentially allowing more targeted
 attacks. It is therefore RECOMMENDED to generate a random, per-
 connection offset to be used with the clock source when generating
 the Timestamps option value (see Section 5.4).

 Furthermore, the combination, relative ordering, and padding of the
 TCP options described in Sections 2.2 and 3.2 will reveal additional
 clues to allow the fingerprinting of the system.

8. IANA Considerations

 The described TCP options are well known from the superceded
 [RFC1323]. IANA has updated the "TCP Option Kind Numbers" table
 under "TCP Parameters" to list this document (RFC 7323) as the
 reference for "Window Scale" and "Timestamps".

Borman, et al. Standards Track [Page 29]

RFC 7323 TCP Extensions for High Performance September 2014

9. References

9.1. Normative References

 [RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

9.2. Informative References

 [Allman99] Allman, M. and V. Paxson, "On Estimating End-to-End
 Network Path Properties", Proceedings of the ACM SIGCOMM
 Technical Symposium, Cambridge, MA, September 1999,
 <http://aciri.org/mallman/papers/estimation-la.pdf>.

 [Floyd05] Floyd, S., "Subject: Re: [tcpm] RFC 1323: Timestamps
 option", message to the TCPM mailing list, 26 January
 2007, <http://www.ietf.org/mail-archive/web/tcpm/current/
 msg02508.html>.

 [Garlick77]
 Garlick, L., Rom, R., and J. Postel, "Issues in Reliable
 Host-to-Host Protocols", Proceedings of the Second
 Berkeley Workshop on Distributed Data Management and
 Computer Networks, March 1977,
 <http://www.rfc-editor.org/ien/ien12.txt>.

 [Honda11] Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A.,
 Handley, M., and H. Tokuda, "Is it Still Possible to
 Extend TCP?", Proceedings of the ACM Internet Measurement
 Conference (IMC) ’11, November 2011.

 [Jacobson88a]
 Jacobson, V., "Congestion Avoidance and Control", SIGCOMM
 ’88, Stanford, CA, August 1988,
 <http://ee.lbl.gov/papers/congavoid.pdf>.

 [Jacobson90a]
 Jacobson, V., "4BSD Header Prediction", ACM Computer
 Communication Review, April 1990.

Borman, et al. Standards Track [Page 30]

RFC 7323 TCP Extensions for High Performance September 2014

 [Jacobson90c]
 Jacobson, V., "Subject: modified TCP congestion avoidance
 algorithm", message to the End2End-Interest mailing list,
 30 April 1990, <ftp://ftp.isi.edu/end2end/
 end2end-interest-1990.mail>.

 [Karn87] Karn, P. and C. Partridge, "Estimating Round-Trip Times in
 Reliable Transport Protocols", Proceedings of SIGCOMM ’87,
 August 1987.

 [Kuehlewind10]
 Kuehlewind, M. and B. Briscoe, "Chirping for Congestion
 Control - Implementation Feasibility", November 2010,
 <http://bobbriscoe.net/projects/netsvc_i-f/
 chirp_pfldnet10.pdf>.

 [Kuzmanovic03]
 Kuzmanovic, A. and E. Knightly, "TCP-LP: Low-Priority
 Service via End-Point Congestion Control", 2003,
 <www.cs.northwestern.edu/˜akuzma/doc/TCP-LP-ToN.pdf>.

 [Ludwig00] Ludwig, R. and K. Sklower, "The Eifel Retransmission
 Timer", ACM SIGCOMM Computer Communication Review Volume
 30 Issue 3, July 2000,
 <http://ccr.sigcomm.org/archive/2000/july00/
 LudwigFinal.pdf>.

 [Martin03] Martin, D., "Subject: [Tsvwg] RFC 1323.bis", message to
 the TSVWG mailing list, 30 September 2003,
 <http://www.ietf.org/mail-archive/web/tsvwg/current/
 msg04435.html>.

 [Medina04] Medina, A., Allman, M., and S. Floyd, "Measuring
 Interactions Between Transport Protocols and Middleboxes",
 Proceedings of the ACM SIGCOMM/USENIX Internet Measurement
 Conference, October 2004,
 <http://www.icir.net/tbit/tbit-Aug2004.pdf>.

 [Medina05] Medina, A., Allman, M., and S. Floyd, "Measuring the
 Evolution of Transport Protocols in the Internet", ACM
 Computer Communication Review Volume 35, No. 2, April
 2005,
 <http://icir.net/floyd/papers/TCPevolution-Mar2005.pdf>.

Borman, et al. Standards Track [Page 31]

RFC 7323 TCP Extensions for High Performance September 2014

 [RE-1323BIS]
 Oppermann, A., "Subject: Re: [tcpm] I-D Action: draft-
 ietf.tcpm-1323bis-13.txt", message to the TCPM mailing
 list, 01 June 2013, <http://www.ietf.org/
 mail-archive/web/tcpm/current/msg08001.html>.

 [RFC1072] Jacobson, V. and R. Braden, "TCP extensions for long-delay
 paths", RFC 1072, October 1988.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC1185] Jacobson, V., Braden, B., and L. Zhang, "TCP Extension for
 High-Speed Paths", RFC 1185, October 1990.

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, August 1996.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2675] Borman, D., Deering, S., and R. Hinden, "IPv6 Jumbograms",
 RFC 2675, August 1999.

 [RFC2883] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
 Extension to the Selective Acknowledgement (SACK) Option
 for TCP", RFC 2883, July 2000.

 [RFC3522] Ludwig, R. and M. Meyer, "The Eifel Detection Algorithm
 for TCP", RFC 3522, April 2003.

 [RFC4015] Ludwig, R. and A. Gurtov, "The Eifel Response Algorithm
 for TCP", RFC 4015, February 2005.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, March 2007.

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates", RFC 4963, July 2007.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

Borman, et al. Standards Track [Page 32]

RFC 7323 TCP Extensions for High Performance September 2014

 [RFC5961] Ramaiah, A., Stewart, R., and M. Dalal, "Improving TCP’s
 Robustness to Blind In-Window Attacks", RFC 5961, August
 2010.

 [RFC6191] Gont, F., "Reducing the TIME-WAIT State Using TCP
 Timestamps", BCP 159, RFC 6191, April 2011.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP’s Retransmission Timer", RFC 6298, June
 2011.

 [RFC6528] Gont, F. and S. Bellovin, "Defending against Sequence
 Number Attacks", RFC 6528, February 2012.

 [RFC6675] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M.,
 and Y. Nishida, "A Conservative Loss Recovery Algorithm
 Based on Selective Acknowledgment (SACK) for TCP", RFC
 6675, August 2012.

 [RFC6691] Borman, D., "TCP Options and Maximum Segment Size (MSS)",
 RFC 6691, July 2012.

 [RFC6817] Shalunov, S., Hazel, G., Iyengar, J., and M. Kuehlewind,
 "Low Extra Delay Background Transport (LEDBAT)", RFC 6817,
 December 2012.

Borman, et al. Standards Track [Page 33]

RFC 7323 TCP Extensions for High Performance September 2014

Appendix A. Implementation Suggestions

 TCP Option Layout

 The following layout is recommended for sending options on
 non-<SYN> segments to achieve maximum feasible alignment of 32-bit
 and 64-bit machines.

 +--------+--------+--------+--------+
 | NOP | NOP | TSopt | 10 |
 +--------+--------+--------+--------+
 | TSval timestamp |
 +--------+--------+--------+--------+
 | TSecr timestamp |
 +--------+--------+--------+--------+

 Interaction with the TCP Urgent Pointer

 The TCP Urgent Pointer, like the TCP window, is a 16-bit value.
 Some of the original discussion for the TCP Window Scale option
 included proposals to increase the Urgent Pointer to 32 bits. As
 it turns out, this is unnecessary. There are two observations
 that should be made:

 (1) With IP version 4, the largest amount of TCP data that can be
 sent in a single packet is 65495 bytes (64 KiB - 1 - size of
 fixed IP and TCP headers).

 (2) Updates to the Urgent Pointer while the user is in "urgent
 mode" are invisible to the user.

 This means that if the Urgent Pointer points beyond the end of the
 TCP data in the current segment, then the user will remain in
 urgent mode until the next TCP segment arrives. That segment will
 update the Urgent Pointer to a new offset, and the user will never
 have left urgent mode.

 Thus, to properly implement the Urgent Pointer, the sending TCP
 only has to check for overflow of the 16-bit Urgent Pointer field
 before filling it in. If it does overflow, than a value of 65535
 should be inserted into the Urgent Pointer.

 The same technique applies to IP version 6, except in the case of
 IPv6 Jumbograms. When IPv6 Jumbograms are supported, [RFC2675]
 requires additional steps for dealing with the Urgent Pointer;
 these steps are described in Section 5.2 of [RFC2675].

Borman, et al. Standards Track [Page 34]

RFC 7323 TCP Extensions for High Performance September 2014

Appendix B. Duplicates from Earlier Connection Incarnations

 There are two cases to be considered: (1) a system crashing (and
 losing connection state) and restarting, and (2) the same connection
 being closed and reopened without a loss of host state. These will
 be described in the following two sections.

B.1. System Crash with Loss of State

 TCP’s quiet time of one MSL upon system startup handles the loss of
 connection state in a system crash/restart. For an explanation, see,
 for example, "Knowing When to Keep Quiet" in the TCP protocol
 specification [RFC0793]. The MSL that is required here does not
 depend upon the transfer speed. The current TCP MSL of 2 minutes
 seemed acceptable as an operational compromise, when many host
 systems used to take this long to boot after a crash. Current host
 systems can boot considerably faster.

 The Timestamps option may be used to ease the MSL requirements (or to
 provide additional security against data corruption). If timestamps
 are being used and if the timestamp clock can be guaranteed to be
 monotonic over a system crash/restart, i.e., if the first value of
 the sender’s timestamp clock after a crash/restart can be guaranteed
 to be greater than the last value before the restart, then a quiet
 time is unnecessary.

 To dispense totally with the quiet time would require that the host
 clock be synchronized to a time source that is stable over the crash/
 restart period, with an accuracy of one timestamp clock tick or
 better. We can back off from this strict requirement to take
 advantage of approximate clock synchronization. Suppose that the
 clock is always resynchronized to within N timestamp clock ticks and
 that booting (extended with a quiet time, if necessary) takes more
 than N ticks. This will guarantee monotonicity of the timestamps,
 which can then be used to reject old duplicates even without an
 enforced MSL.

B.2. Closing and Reopening a Connection

 When a TCP connection is closed, a delay of 2*MSL in TIME-WAIT state
 ties up the socket pair for 4 minutes (see Section 3.5 of [RFC0793]).
 Applications built upon TCP that close one connection and open a new
 one (e.g., an FTP data transfer connection using Stream mode) must
 choose a new socket pair each time. The TIME-WAIT delay serves two
 different purposes:

Borman, et al. Standards Track [Page 35]

RFC 7323 TCP Extensions for High Performance September 2014

 (a) Implement the full-duplex reliable close handshake of TCP.

 The proper time to delay the final close step is not really
 related to the MSL; it depends instead upon the RTO for the FIN
 segments and, therefore, upon the RTT of the path. (It could be
 argued that the side that is sending a FIN knows what degree of
 reliability it needs, and therefore it should be able to
 determine the length of the TIME-WAIT delay for the FIN’s
 recipient. This could be accomplished with an appropriate TCP
 option in FIN segments.)

 Although there is no formal upper bound on RTT, common network
 engineering practice makes an RTT greater than 1 minute very
 unlikely. Thus, the 4-minute delay in TIME-WAIT state works
 satisfactorily to provide a reliable full-duplex TCP close.
 Note again that this is independent of MSL enforcement and
 network speed.

 The TIME-WAIT state could cause an indirect performance problem
 if an application needed to repeatedly close one connection and
 open another at a very high frequency, since the number of
 available TCP ports on a host is less than 2^16. However, high
 network speeds are not the major contributor to this problem;
 the RTT is the limiting factor in how quickly connections can be
 opened and closed. Therefore, this problem will be no worse at
 high transfer speeds.

 (b) Allow old duplicate segments to expire.

 To replace this function of TIME-WAIT state, a mechanism would
 have to operate across connections. PAWS is defined strictly
 within a single connection; the last timestamp (TS.Recent) is
 kept in the connection control block and discarded when a
 connection is closed.

 An additional mechanism could be added to the TCP, a per-host
 cache of the last timestamp received from any connection. This
 value could then be used in the PAWS mechanism to reject old
 duplicate segments from earlier incarnations of the connection,
 if the timestamp clock can be guaranteed to have ticked at least
 once since the old connection was open. This would require that
 the TIME-WAIT delay plus the RTT together must be at least one
 tick of the sender’s timestamp clock. Such an extension is not
 part of the proposal of this RFC.

 Note that this is a variant on the mechanism proposed by
 Garlick, Rom, and Postel [Garlick77], which required each host
 to maintain connection records containing the highest sequence

Borman, et al. Standards Track [Page 36]

RFC 7323 TCP Extensions for High Performance September 2014

 numbers on every connection. Using timestamps instead, it is
 only necessary to keep one quantity per remote host, regardless
 of the number of simultaneous connections to that host.

Appendix C. Summary of Notation

 The following notation has been used in this document.

 Options

 WSopt: TCP Window Scale option
 TSopt: TCP Timestamps option

 Option Fields

 shift.cnt: Window scale byte in WSopt
 TSval: 32-bit Timestamp Value field in TSopt
 TSecr: 32-bit Timestamp Reply field in TSopt

 Option Fields in Current Segment

 SEG.TSval: TSval field from TSopt in current segment
 SEG.TSecr: TSecr field from TSopt in current segment
 SEG.WSopt: 8-bit value in WSopt

 Clock Values

 my.TSclock: System-wide source of 32-bit timestamp values
 my.TSclock.rate: Period of my.TSclock (1 ms to 1 sec)
 Snd.TSoffset: An offset for randomizing Snd.TSclock
 Snd.TSclock: my.TSclock + Snd.TSoffset

 Per-Connection State Variables

 TS.Recent: Latest received Timestamp
 Last.ACK.sent: Last ACK field sent
 Snd.TS.OK: 1-bit flag
 Snd.WS.OK: 1-bit flag
 Rcv.Wind.Shift: Receive window scale exponent
 Snd.Wind.Shift: Send window scale exponent
 Start.Time: Snd.TSclock value when the segment being timed
 was sent (used by code from before RFC 1323).

 Procedure

 Update_SRTT(m) Procedure to update the smoothed RTT and RTT
 variance estimates, using the rules of
 [Jacobson88a], given m, a new RTT measurement

Borman, et al. Standards Track [Page 37]

RFC 7323 TCP Extensions for High Performance September 2014

 Send Sequence Variables

 SND.UNA: Send unacknowledged
 SND.NXT: Send next
 SND.WND: Send window
 ISS: Initial send sequence number

 Receive Sequence Variables

 RCV.NXT: Receive next
 RCV.WND: Receive window
 IRS: Initial receive sequence number

Appendix D. Event Processing Summary

 This appendix attempts to specify the algorithms unambiguously by
 presenting modifications to the Event Processing rules in Section 3.9
 of RFC 793. The change bars ("|") indicate lines that are different
 from RFC 793.

 OPEN Call

 ...

 An initial send sequence number (ISS) is selected. Send a <SYN>
 | segment of the form:
 |
 | <SEQ=ISS><CTL=SYN><TSval=Snd.TSclock><WSopt=Rcv.Wind.Shift>

 ...

 SEND Call

 CLOSED STATE (i.e., TCB does not exist)

 ...

 LISTEN STATE

 If active and the foreign socket is specified, then change the
 connection from passive to active, select an ISS. Send a SYN
 | segment containing the options: <TSval=Snd.TSclock> and
 | <WSopt=Rcv.Wind.Shift>. Set SND.UNA to ISS, SND.NXT to ISS+1.
 Enter SYN-SENT state. ...

 SYN-SENT STATE
 SYN-RECEIVED STATE

Borman, et al. Standards Track [Page 38]

RFC 7323 TCP Extensions for High Performance September 2014

 ...

 ESTABLISHED STATE
 CLOSE-WAIT STATE

 Segmentize the buffer and send it with a piggybacked
 acknowledgment (acknowledgment value = RCV.NXT). ...

 If the urgent flag is set ...

 | If the Snd.TS.OK flag is set, then include the TCP Timestamps
 | option <TSval=Snd.TSclock,TSecr=TS.Recent> in each data
 | segment.
 |
 | Scale the receive window for transmission in the segment
 | header:
 |
 | SEG.WND = (RCV.WND >> Rcv.Wind.Shift).

 SEGMENT ARRIVES

 ...

 If the state is LISTEN then

 first check for an RST

 ...

 second check for an ACK

 ...

 third check for a SYN

 If the SYN bit is set, check the security. If the ...

 ...

 If the SEG.PRC is less than the TCB.PRC then continue.

 | Check for a Window Scale option (WSopt); if one is found,
 | save SEG.WSopt in Snd.Wind.Shift and set Snd.WS.OK flag on.
 | Otherwise, set both Snd.Wind.Shift and Rcv.Wind.Shift to
 | zero and clear Snd.WS.OK flag.
 |
 | Check for a TSopt option; if one is found, save SEG.TSval in
 | the variable TS.Recent and turn on the Snd.TS.OK bit.

Borman, et al. Standards Track [Page 39]

RFC 7323 TCP Extensions for High Performance September 2014

 Set RCV.NXT to SEG.SEQ+1, IRS is set to SEG.SEQ and any
 other control or text should be queued for processing later.
 ISS should be selected and a SYN segment sent of the form:

 <SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

 | If the Snd.WS.OK bit is on, include a WSopt
 | <WSopt=Rcv.Wind.Shift> in this segment. If the Snd.TS.OK
 | bit is on, include a TSopt <TSval=Snd.TSclock,
 | TSecr=TS.Recent> in this segment. Last.ACK.sent is set to
 | RCV.NXT.

 SND.NXT is set to ISS+1 and SND.UNA to ISS. The connection
 state should be changed to SYN-RECEIVED. Note that any
 other incoming control or data (combined with SYN) will be
 processed in the SYN-RECEIVED state, but processing of SYN
 and ACK should not be repeated. If the listen was not fully
 specified (i.e., the foreign socket was not fully
 specified), then the unspecified fields should be filled in
 now.

 fourth other text or control

 ...

 If the state is SYN-SENT then

 first check the ACK bit

 ...

 ...

 fourth check the SYN bit

 ...

 If the SYN bit is on and the security/compartment and
 precedence are acceptable then, RCV.NXT is set to SEG.SEQ+1,
 IRS is set to SEG.SEQ. SND.UNA should be advanced to equal
 SEG.ACK (if there is an ACK), and any segments on the
 retransmission queue which are thereby acknowledged should
 be removed.

 | Check for a Window Scale option (WSopt); if it is found,
 | save SEG.WSopt in Snd.Wind.Shift; otherwise, set both
 | Snd.Wind.Shift and Rcv.Wind.Shift to zero.
 |

Borman, et al. Standards Track [Page 40]

RFC 7323 TCP Extensions for High Performance September 2014

 | Check for a TSopt option; if one is found, save SEG.TSval in
 | variable TS.Recent and turn on the Snd.TS.OK bit in the
 | connection control block. If the ACK bit is set, use
 | Snd.TSclock - SEG.TSecr as the initial RTT estimate.

 If SND.UNA > ISS (our SYN has been ACKed), change the
 connection state to ESTABLISHED, form an <ACK> segment:

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 | and send it. If the Snd.TS.OK bit is on, include a TSopt
 | option <TSval=Snd.TSclock,TSecr=TS.Recent> in this <ACK>
 | segment. Last.ACK.sent is set to RCV.NXT.

 Data or controls that were queued for transmission may be
 included. If there are other controls or text in the
 segment, then continue processing at the sixth step below
 where the URG bit is checked; otherwise, return.

 Otherwise, enter SYN-RECEIVED, form a <SYN,ACK> segment:

 <SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

 | and send it. If the Snd.TS.OK bit is on, include a TSopt
 | option <TSval=Snd.TSclock,TSecr=TS.Recent> in this segment.
 | If the Snd.WS.OK bit is on, include a WSopt option
 | <WSopt=Rcv.Wind.Shift> in this segment. Last.ACK.sent is
 | set to RCV.NXT.

 If there are other controls or text in the segment, queue
 them for processing after the ESTABLISHED state has been
 reached, return.

 fifth, if neither of the SYN or RST bits is set then drop the
 segment and return.

 Otherwise

 first check the sequence number

 SYN-RECEIVED STATE
 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE
 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

Borman, et al. Standards Track [Page 41]

RFC 7323 TCP Extensions for High Performance September 2014

 Segments are processed in sequence. Initial tests on
 arrival are used to discard old duplicates, but further
 processing is done in SEG.SEQ order. If a segment’s
 contents straddle the boundary between old and new, only the
 new parts should be processed.

 | Rescale the received window field:
 |
 | TrueWindow = SEG.WND << Snd.Wind.Shift,
 |
 | and use "TrueWindow" in place of SEG.WND in the following
 | steps.
 |
 | Check whether the segment contains a Timestamps option and
 | if bit Snd.TS.OK is on. If so:
 |
 | If SEG.TSval < TS.Recent and the RST bit is off:
 |
 | If the connection has been idle more than 24 days,
 | save SEG.TSval in variable TS.Recent, else the segment
 | is not acceptable; follow the steps below for an
 | unacceptable segment.
 |
 | If SEG.TSval >= TS.Recent and SEG.SEQ <= Last.ACK.sent,
 | then save SEG.TSval in variable TS.Recent.

 There are four cases for the acceptability test for an
 incoming segment:

 ...

 If an incoming segment is not acceptable, an acknowledgment
 should be sent in reply (unless the RST bit is set; if so
 drop the segment and return):

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 | Last.ACK.sent is set to SEG.ACK of the acknowledgment. If
 | the Snd.TS.OK bit is on, include the Timestamps option
 | <TSval=Snd.TSclock,TSecr=TS.Recent> in this <ACK> segment.
 Set Last.ACK.sent to SEG.ACK and send the <ACK> segment.
 After sending the acknowledgment, drop the unacceptable
 segment and return.

 ...

Borman, et al. Standards Track [Page 42]

RFC 7323 TCP Extensions for High Performance September 2014

 fifth check the ACK field,

 if the ACK bit is off drop the segment and return

 if the ACK bit is on

 ...

 ESTABLISHED STATE

 If SND.UNA < SEG.ACK <= SND.NXT then, set SND.UNA <-
 | SEG.ACK. Also compute a new estimate of round-trip time.
 | If Snd.TS.OK bit is on, use Snd.TSclock - SEG.TSecr;
 | otherwise, use the elapsed time since the first segment
 | in the retransmission queue was sent. Any segments on
 the retransmission queue that are thereby entirely
 acknowledged...

 ...

 seventh, process the segment text,

 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE

 ...

 Send an acknowledgment of the form:

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 | If the Snd.TS.OK bit is on, include the Timestamps option
 | <TSval=Snd.TSclock,TSecr=TS.Recent> in this <ACK> segment.
 | Set Last.ACK.sent to SEG.ACK of the acknowledgment, and send
 | it. This acknowledgment should be piggybacked on a segment
 being transmitted if possible without incurring undue delay.

 ...

Borman, et al. Standards Track [Page 43]

RFC 7323 TCP Extensions for High Performance September 2014

Appendix E. Timestamps Edge Cases

 While the rules laid out for when to calculate RTTM produce the
 correct results most of the time, there are some edge cases where an
 incorrect RTTM can be calculated. All of these situations involve
 the loss of segments. It is felt that these scenarios are rare, and
 that if they should happen, they will cause a single RTTM measurement
 to be inflated, which mitigates its effects on RTO calculations.

 [Martin03] cites two similar cases when the returning <ACK> is lost,
 and before the retransmission timer fires, another returning <ACK>
 segment arrives, which acknowledges the data. In this case, the RTTM
 calculated will be inflated:

 clock
 tc=1 <A, TSval=1> ------------------->

 tc=2 (lost) <---- <ACK(A), TSecr=1, win=n>
 (RTTM would have been 1)

 (receive window opens, window update is sent)
 tc=5 <---- <ACK(A), TSecr=1, win=m>
 (RTTM is calculated at 4)

 One thing to note about this situation is that it is somewhat bounded
 by RTO + RTT, limiting how far off the RTTM calculation will be.
 While more complex scenarios can be constructed that produce larger
 inflations (e.g., retransmissions are lost), those scenarios involve
 multiple segment losses, and the connection will have other more
 serious operational problems than using an inflated RTTM in the RTO
 calculation.

Appendix F. Window Retraction Example

 Consider an established TCP connection using a scale factor of 128,
 Snd.Wind.Shift=7 and Rcv.Wind.Shift=7, that is running with a very
 small window because the receiver is bottlenecked and both ends are
 doing small reads and writes.

 Consider the ACKs coming back:

 SEG.ACK SEG.WIN computed SND.WIN receiver’s actual window
 1000 2 1256 1300

 The sender writes 40 bytes and receiver ACKs:

 1040 2 1296 1300

Borman, et al. Standards Track [Page 44]

RFC 7323 TCP Extensions for High Performance September 2014

 The sender writes 5 additional bytes and the receiver has a problem.
 Two choices:

 1045 2 1301 1300 - BEYOND BUFFER

 1045 1 1173 1300 - RETRACTED WINDOW

 This is a general problem and can happen any time the sender does a
 write, which is smaller than the window scale factor.

 In most stacks, it is at least partially obscured when the window
 size is larger than some small number of segments because the stacks
 prefer to announce windows that are an integral number of segments,
 rounded up to the next scale factor. This plus silly window
 suppression tends to cause less frequent, larger window updates. If
 the window was rounded down to a segment size, there is more
 opportunity to advance the window, the BEYOND BUFFER case above,
 rather than retracting it.

Appendix G. RTO Calculation Modification

 Taking multiple RTT samples per window would shorten the history
 calculated by the RTO mechanism in [RFC6298], and the below algorithm
 aims to maintain a similar history as originally intended by
 [RFC6298].

 It is roughly known how many samples a congestion window worth of
 data will yield, not accounting for ACK compression, and ACK losses.
 Such events will result in more history of the path being reflected
 in the final value for RTO, and are uncritical. This modification
 will ensure that a similar amount of time is taken into account for
 the RTO estimation, regardless of how many samples are taken per
 window:

 ExpectedSamples = ceiling(FlightSize / (SMSS * 2))

 alpha’ = alpha / ExpectedSamples

 beta’ = beta / ExpectedSamples

 Note that the factor 2 in ExpectedSamples is due to "Delayed ACKs".

Borman, et al. Standards Track [Page 45]

RFC 7323 TCP Extensions for High Performance September 2014

 Instead of using alpha and beta in the algorithm of [RFC6298], use
 alpha’ and beta’ instead:

 RTTVAR <- (1 - beta’) * RTTVAR + beta’ * |SRTT - R’|

 SRTT <- (1 - alpha’) * SRTT + alpha’ * R’

 (for each sample R’)

Appendix H. Changes from RFC 1323

 Several important updates and clarifications to the specification in
 RFC 1323 are made in this document. The technical changes are
 summarized below:

 (a) A wrong reference to SND.WND was corrected to SEG.WND in
 Section 2.3.

 (b) Section 2.4 was added describing the unavoidable window
 retraction issue and explicitly describing the mitigation steps
 necessary.

 (c) In Section 3.2, the wording how the Timestamps option
 negotiation is to be performed was updated with RFC2119 wording.
 Further, a number of paragraphs were added to clarify the
 expected behavior with a compliant implementation using TSopt,
 as RFC 1323 left room for interpretation -- e.g., potential late
 enablement of TSopt.

 (d) The description of which TSecr values can be used to update the
 measured RTT has been clarified. Specifically, with timestamps,
 the Karn algorithm [Karn87] is disabled. The Karn algorithm
 disables all RTT measurements during retransmission, since it is
 ambiguous whether the <ACK> is for the original segment, or the
 retransmitted segment. With timestamps, that ambiguity is
 removed since the TSecr in the <ACK> will contain the TSval from
 whichever data segment made it to the destination.

 (e) RTTM update processing explicitly excludes segments not updating
 SND.UNA. The original text could be interpreted to allow taking
 RTT samples when SACK acknowledges some new, non-continuous
 data.

Borman, et al. Standards Track [Page 46]

RFC 7323 TCP Extensions for High Performance September 2014

 (f) In RFC 1323, Section 3.4, step (2) of the algorithm to control
 which timestamp is echoed was incorrect in two regards:

 (1) It failed to update TS.Recent for a retransmitted segment
 that resulted from a lost <ACK>.

 (2) It failed if SEG.LEN = 0.

 In the new algorithm, the case of SEG.TSval >= TS.Recent is
 included for consistency with the PAWS test.

 (g) It is now recommended that the Timestamps option is included in
 <RST> segments if the incoming segment contained a Timestamps
 option.

 (h) <RST> segments are explicitly excluded from PAWS processing.

 (i) Added text to clarify the precedence between regular TCP
 [RFC0793] and this document’s Timestamps option / PAWS
 processing. Discussion about combined acceptability checks are
 ongoing.

 (j) Snd.TSoffset and Snd.TSclock variables have been added.
 Snd.TSclock is the sum of my.TSclock and Snd.TSoffset. This
 allows the starting points for timestamp values to be randomized
 on a per-connection basis. Setting Snd.TSoffset to zero yields
 the same results as [RFC1323]. Text was added to guide
 implementers to the proper selection of these offsets, as
 entirely random offsets for each new connection will conflict
 with PAWS.

 (k) Appendix A has been expanded with information about the TCP
 Urgent Pointer. An earlier revision contained text around the
 TCP MSS option, which was split off into [RFC6691].

 (l) One correction was made to the Event Processing Summary in
 Appendix D. In SEND CALL/ESTABLISHED STATE, RCV.WND is used to
 fill in the SEG.WND value, not SND.WND.

 (m) Appendix G was added to exemplify how an RTO calculation might
 be updated to properly take the much higher RTT sampling
 frequency enabled by the Timestamps option into account.

Borman, et al. Standards Track [Page 47]

RFC 7323 TCP Extensions for High Performance September 2014

 Editorial changes to the document, that don’t impact the
 implementation or function of the mechanisms described in this
 document, include:

 (a) Removed much of the discussion in Section 1 to streamline the
 document. However, detailed examples and discussions in
 Sections 2, 3, and 5 are kept as guidelines for implementers.

 (b) Added short text that the use of WS increases the chances of
 sequence number wrap, thus the PAWS mechanism is required in
 certain environments.

 (c) Removed references to "new" options, as the options were
 introduced in [RFC1323] already. Changed the text in
 Section 1.3 to specifically address TS and WS options.

 (d) Section 1.4 was added for [RFC2119] wording. Normative text was
 updated with the appropriate phrases.

 (e) Added < > brackets to mark specific types of segments, and
 replaced most occurrences of "packet" with "segment", where TCP
 segments are referred to.

 (f) Updated the text in Section 3 to take into account what has been
 learned since [RFC1323].

 (g) Removed some unused references.

 (h) Removed the list of changes between [RFC1323] and prior
 versions. These changes are mentioned in Appendix C of
 [RFC1323].

 (i) Moved "Changes from RFC 1323" to the end of the appendices for
 easier lookup. In addition, the entries were split into a
 technical and an editorial part, and sorted to roughly
 correspond with the sections in the text where they apply.

Borman, et al. Standards Track [Page 48]

RFC 7323 TCP Extensions for High Performance September 2014

Authors’ Addresses

 David Borman
 Quantum Corporation
 Mendota Heights, MN 55120
 USA

 EMail: david.borman@quantum.com

 Bob Braden
 University of Southern California
 4676 Admiralty Way
 Marina del Rey, CA 90292
 USA

 EMail: braden@isi.edu

 Van Jacobson
 Google, Inc.
 1600 Amphitheatre Parkway
 Mountain View, CA 94043
 USA

 EMail: vanj@google.com

 Richard Scheffenegger (editor)
 NetApp, Inc.
 Am Euro Platz 2
 Vienna, 1120
 Austria

 EMail: rs@netapp.com

Borman, et al. Standards Track [Page 49]

