
Internet Engineering Task Force (IETF) R. Housley
Request for Comments: 7210 Vigil Security
Category: Standards Track T. Polk
ISSN: 2070-1721 NIST
 S. Hartman
 Painless Security
 D. Zhang
 Huawei Technologies Co. Ltd.
 April 2014

 Database of Long-Lived Symmetric Cryptographic Keys

Abstract

 This document specifies the information contained in a conceptual
 database of long-lived cryptographic keys used by many different
 routing protocols for message security. The database is designed to
 support both manual and automated key management. In addition to
 describing the schema for the database, this document describes the
 operations that can be performed on the database as well as the
 requirements for the routing protocols that wish to use the database.
 In many typical scenarios, the protocols do not directly use the
 long-lived key, but rather a key derivation function is used to
 derive a short-lived key from a long-lived key.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7210.

Housley, et al. Standards Track [Page 1]

RFC 7210 Table of Cryptographic Keys April 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 This document specifies the information that needs to be included in
 a database of long-lived cryptographic keys in order to key the
 cryptographic authentication of routing protocols. This conceptual
 database is designed to separate protocol-specific aspects from both
 manual and automated key management. The intent is to allow many
 different implementation approaches to the specified cryptographic
 key database, while simplifying specification and heterogeneous
 deployments. This conceptual database avoids the need to build
 knowledge of any security protocol into key management protocols. It
 minimizes protocol-specific knowledge in operational/management
 interfaces, and it constrains where that knowledge can appear.
 Textual conventions are provided for the representation of keys and
 other identifiers. These conventions should be used when presenting
 keys and identifiers to operational/management interfaces or reading
 keys/identifiers from these interfaces. This satisfies the
 operational requirement that all implementations represent the keys
 and key identifiers in the same way so that cross-vendor
 configuration instructions can be provided.

 Routing protocols can employ the services of more-generic security
 protocols such as TCP-AO [RFC5925]. Implementations of routing
 protocols may need to supply keys to databases specific to these
 security protocols as the associated entries in this document’s
 conceptual database are manipulated.

 In many instances, the long-lived keys are not used directly in
 security protocols, but rather a key derivation function is used to
 derive short-lived keys from the long-lived key in the database. In
 other instances, security protocols will directly use the long-lived
 key from the database. The database design supports both use cases.

Housley, et al. Standards Track [Page 2]

RFC 7210 Table of Cryptographic Keys April 2014

1.1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Conceptual Database Structure

 The database is characterized as a table, where each row represents a
 single long-lived symmetric cryptographic key. Normally, each key
 should only have one row. Only in the (hopefully) very rare cases
 where a key is used for more than one purpose, or where the same key
 is used with multiple key derivation functions (KDFs) will multiple
 rows contain the same key value. The columns in the table represent
 the key value and attributes of the key.

 To accommodate manual key management, the format of the fields has
 been purposefully chosen to allow updates with a plain-text editor
 and to provide equivalent display on multiple systems.

 The columns that the table consists of are listed as follows:

 AdminKeyName
 The AdminKeyName field contains a human-readable string meant
 to identify the key for the user. Implementations can use this
 field to uniquely identify rows in the key table. The same
 string can be used on the local system and peer systems, but
 this is not required. Routing protocols do not make use of
 this string; they use the LocalKeyName and the PeerKeyName.
 However, if these strings are to be used as protocol elements
 in other protocols or otherwise transferred between systems,
 they will need to follow the requirements of Section 5.1.

 LocalKeyName
 The LocalKeyName field contains a string identifying the key.
 It can be used to retrieve the key in the local database when
 received in a message. As discussed in Section 4, the protocol
 defines the form of this field. For example, many routing
 protocols restrict the format of their key names to integers
 that can be represented in 16 or 32 bits. Typically, this
 field does not contain data in human character sets requiring
 internationalization. If there ever are any routing Protocols
 with key names requiring internationalization, those
 specifications need to address issues of canonicalization and
 normalization so that key names can be compared using binary
 comparison.

Housley, et al. Standards Track [Page 3]

RFC 7210 Table of Cryptographic Keys April 2014

 PeerKeyName
 PeerKeyName is the name of the key used by the local system in
 an outgoing message. For unicast communication, the
 PeerKeyName of a key on a system matches the LocalKeyName of
 the identical key that is maintained on one or multiple peer
 systems. Similar to LocalKeyName, a protocol defines the form
 of this identifier and will often restrict it to be an integer.
 For group keys, the protocol will typically require this field
 be an empty string as the sending and the receiving key names
 need to be the same.

 Peers
 Typically for unicast keys, this field lists the peer systems
 that have this key in their database. For group keys, this
 field names the groups for which the key is appropriate. For
 example, this might name a routing area for a multicast routing
 protocol. Formally, this field provides a protocol-specific
 set of restrictions on the scope in which the key is
 appropriate. The format of the identifiers in the Peers field
 is specified by the protocol.

 Interfaces
 The Interfaces field identifies the set of physical and/or
 virtual interfaces for which it is appropriate to use this key.
 When the long-lived value in the Key field is intended for use
 on any interface, this field is set to "all". The interfaces
 field consists of a set of strings; the form of these strings
 is specified by the implementation and is independent of the
 protocol in question. Protocols may require support for the
 Interfaces field or may indicate that support for constraining
 keys based on interface is not required. As an example, TCP-AO
 implementations are unlikely to make the decision of what
 interface to use prior to key selection. In that case, the
 implementations are expected to use the same keying material
 across all of the interfaces and then require the "all"
 setting.

 Protocol
 The Protocol field identifies a single routing protocol where
 this key may be used to provide cryptographic protection. This
 specification establishes a registry for this field; the
 registry also specifies the format of the following field,
 ProtocolSpecificInfo, for each registered protocol.

Housley, et al. Standards Track [Page 4]

RFC 7210 Table of Cryptographic Keys April 2014

 ProtocolSpecificInfo
 This field contains the protocol-specified information that may
 be useful for a protocol to apply the key correctly. Note that
 such information MUST NOT be required for a protocol to locate
 an appropriate key. When a protocol does not need the
 information in ProtocolSpecificInfo, it will require this field
 be empty. Key table rows MAY specify a Direction of "both".
 As a result, the encoding of this field needs to support
 encoding protocol-specific information for sending and
 receiving in the same row.

 KDF
 The KDF field indicates the key derivation function that is
 used to generate short-lived keys from the long-lived value in
 the Key field. When the long-lived value in the Key field is
 intended for direct use, the KDF field is set to "none". A key
 derivation function is a one-way function that provides
 cryptographic separation of key material. The KDF MAY use
 inputs from the row in the key table and the message being sent
 or received but MUST NOT depend on other configuration state.
 This document establishes an IANA registry for the values in
 the KDF field to simplify references in future specifications.
 The protocol indicates what (if any) KDFs are valid.

 AlgID
 The AlgID field indicates which cryptographic algorithm is to
 be used with the security protocol for the specified peer or
 peers. Such an algorithm can be an encryption algorithm and
 mode (e.g., AES-128-CBC), an authentication algorithm (e.g.,
 HMAC-SHA1-96 or AES-128-CMAC), or any other symmetric
 cryptographic algorithm needed by a security protocol. If the
 KDF field contains "none", then the long-lived key is used
 directly with this algorithm; otherwise, the derived short-
 lived key is used with this algorithm. When the long-lived key
 is used to generate a set of short-lived keys for use with the
 security protocol, the AlgID field identifies a ciphersuite
 rather than a single cryptographic algorithm. This document
 establishes an IANA registry for the values in the AlgID field
 to simplify references in future specifications. Protocols
 indicate which algorithms are appropriate.

 Key
 The Key field contains a long-lived symmetric cryptographic key
 in the format of a lowercase hexadecimal string. The size of
 the Key depends on the KDF and the AlgID. For instance,
 KDF=none and AlgID=AES128 require a 128-bit key, which is
 represented by 32 hexadecimal digits.

Housley, et al. Standards Track [Page 5]

RFC 7210 Table of Cryptographic Keys April 2014

 Direction
 The Direction field indicates whether this key may be used for
 inbound traffic, outbound traffic, both, or whether the key has
 been disabled and may not currently be used at all. The
 supported values are "in", "out", "both", and "disabled",
 respectively. The Protocol field will determine which of these
 values are valid.

 SendLifetimeStart
 The SendLifetimeStart field specifies the earliest date and
 time in Coordinated Universal Time (UTC) at which this key
 should be considered for use when sending traffic. The format
 is YYYYMMDDHHSSZ, where four digits specify the year, two
 digits specify the month, two digits specify the day, two
 digits specify the hour, two digits specify the minute, and two
 digits specify the second. The "Z" is included as a clear
 indication that the time is in UTC.

 SendLifeTimeEnd
 The SendLifeTimeEnd field specifies the latest date and time at
 which this key should be considered for use when sending
 traffic. The format is the same as the SendLifetimeStart
 field.

 AcceptLifeTimeStart
 The AcceptLifeTimeStart field specifies the earliest date and
 time in Coordinated Universal Time (UTC) at which this key
 should be considered for use when processing received traffic.
 The format is YYYYMMDDHHSSZ, where four digits specify the
 year, two digits specify the month, two digits specify the day,
 two digits specify the hour, two digits specify the minute, and
 two digits specify the second. The "Z" is included as a clear
 indication that the time is in UTC.

 AcceptLifeTimeEnd
 The AcceptLifeTimeEnd field specifies the latest date and time
 at which this key should be considered for use when processing
 the received traffic. The format of this field is identical to
 the format of AcceptLifeTimeStart.

Housley, et al. Standards Track [Page 6]

RFC 7210 Table of Cryptographic Keys April 2014

3. Key Selection and Rollover

 A protocol may directly consult the key table to find the key to use
 on an outgoing message. The protocol provides a protocol (P) and a
 peer identifier (H) into the key selection function. Optionally, an
 interface identifier (I) may also need to be provided. Any key that
 satisfies the following conditions may be selected:

 (1) the Peers field includes H;

 (2) the Protocol field matches P;

 (3) If an interface is specified by the protocol, the Interfaces
 field in the key table row includes I or "all";

 (4) the Direction field is either "out" or "both"; and

 (5) SendLifetimeStart <= current time <= SendLifeTimeEnd.

 During key selection, there may be multiple entries that
 simultaneously exist and are associated with different cryptographic
 algorithms or ciphersuites. Systems should support selection of keys
 based on algorithm preference to facilitate algorithm transition.

 In addition, multiple entries with overlapping valid periods are
 expected to be available for orderly key rollover. In these cases,
 the expectation is that systems will transition to the newest key
 available. To meet this requirement, this specification recommends
 supplementing the key selection algorithm with the following
 differentiation: select the long-lived key specifying the most recent
 time in the SendLifetimeStart field.

 In order to look up a key for validating an incoming message, the
 protocol provides its protocol (P), the peer identifier (H), the key
 identifier (L), and optionally the interface (I). If one key matches
 the following conditions, it is selected:

 (1) the Peer field includes H;

 (2) the Protocol field matches P;

 (3) if the Interface field is provided, it includes I or is
 "all";

 (4) the Direction field is either "in" or "both";

Housley, et al. Standards Track [Page 7]

RFC 7210 Table of Cryptographic Keys April 2014

 (5) the LocalKeyName is L; and

 (6) AcceptLifeTimeStart <= current time <= AcceptLifeTimeEnd.

 Note that the key usage is loosely bound by the times specified in
 the AcceptLifeTimeStart and AcceptLifeTimeEnd fields. New security
 associations should not be established except within the period of
 use specified by these fields, while allowing some grace time for
 clock skew. However, if a security association has already been
 established based on a particular long-lived key, exceeding the
 lifetime does not have any direct impact. The implementations of
 security protocols that involve long-lived security associations
 should be designed to periodically interrogate the database and
 rollover to new keys without tearing down the security associations.

 Rather than consulting the conceptual database, a security protocol
 such as TCP-AO may update its own tables as keys are added and
 removed. In this case, the protocol needs to maintain its own key
 information. Some routing protocols use IP Security (IPsec) to
 provide integrity. If a specification describes how to use the
 conceptual database described in this document to configure keys for
 these routing protocols, similar concerns apply. The specification
 mapping those routing protocols onto this conceptual database needs
 to describe how the Security Policy Database is manipulated as rows
 are added and removed from the conceptual database.

4. Application of the Database in a Security Protocol

 In order to use the key table database in a protocol specification, a
 protocol needs to specify certain information. This section
 enumerates items that a protocol must specify.

 (1) The ways of mapping the information in a key table row to the
 information needed to produce an outgoing message; specified
 as an explanation of either how to fill in authentication-
 related fields in a message based on key table information,
 or (for protocols such as TCP-AO) how to construct Master Key
 Tuples (MKTs) or other protocol-specific structures from a
 key table row

 (2) The ways of locating the peer identifier (a member of the
 Peers set) and the LocalKeyName inside an incoming message

 (3) The methods of verifying a message given a key table row;
 this may be stated directly or in terms of protocol-specific
 structures such as MKTs

Housley, et al. Standards Track [Page 8]

RFC 7210 Table of Cryptographic Keys April 2014

 (4) The form and validation rules for LocalKeyName and
 PeerKeyName; if either of these is an integer, the
 conventions in Section 5.1 are used as a vendor-independent
 format

 (5) The form and validation rules for members of the Peers set

 (6) The algorithms and KDFs supported

 (7) The form of the ProtocolSpecificInfo field

 (8) The rules for canonicalizing LocalKeyName, PeerKeyName,
 entries in the Peers set, or ProtocolSpecificInfo; this may
 include normalizations such as lowercasing hexadecimal
 strings

 (9) The Indication whether the support for Interfaces is required
 by this protocol

 The form of the interfaces field is not protocol specific but instead
 is shared among all protocols on an implementation. If a protocol
 needs to distinguish instances running over the same interface, this
 is included in the specification of peers. Generally, it is
 desirable to define the specification of peers so that an operator
 can use the Interfaces field to refer to all instances of a protocol
 on a link without having to specify both generic interfaces
 information and protocol-specific peer information.

5. Textual Conventions

5.1. Key Names

 When a key for a given protocol is identified by an integer key
 identifier, the associated key name will be represented as lowercase
 hexadecimal digits with the most significant octet first. This
 integer is padded with leading zero digits until the width of the key
 identifier field in the protocol is reached. If a key name contains
 non-integer human-readable text, its format and encoding may be an
 issue, particularly if it is used in protocol between two different
 types of systems. If characters from the ASCII range [RFC20] are
 sufficient for a key name, then they SHOULD be used. If characters
 outside of that range are desirable or required, then they MUST be in
 an encoding of Unicode [UNICODE].

 In the case of an AdminKeyName that uses characters outside of the
 ASCII range, the AdminKeyName MUST be encoded using UTF-8 [RFC3629]
 and SHOULD be normalized using Unicode Normalization Form KC [UAX15]
 to maximize the chance that the strings will compare correctly.

Housley, et al. Standards Track [Page 9]

RFC 7210 Table of Cryptographic Keys April 2014

 However, simply using Unicode Normalization Form KC is not sufficient
 to account for all issues of string comparison; refer to
 [PRECIS-FRAMEWORK] for additional information.

5.2. Keys

 A key is represented as a lowercase hexadecimal string with the most
 significant octet of the key first. As discussed in Section 2, the
 length of this string depends on the associated algorithm and KDF.

6. Operational Considerations

 If the valid periods for long-lived keys do not overlap or the system
 clocks are inconsistent, it is possible to construct scenarios where
 systems cannot agree upon a long-lived key. When installing a series
 of keys to be used one after another, operators should configure the
 SendLifetimeStart field of the key to be several hours after the
 AcceptLifeTimeStart field of the key to guarantee there is some
 overlap. This overlap is intended to address the clock-skew issue
 and allow for basic operational considerations. Operators may choose
 to specify a longer overlap (e.g., several days) to allow for
 exceptional circumstances.

7. Security Considerations

 Management of encryption and authentication keys has been a
 significant operational problem, both in terms of key synchronization
 and key selection. For instance, the current guidance [RFC3562]
 warns against sharing TCP MD5 keying material between systems and
 recommends changing keys according to a schedule. The same general
 operational issues are relevant for the management of other
 cryptographic keys.

 It has been recognized in [RFC4107] that automated key management is
 not viable in multiple scenarios. The conceptual database specified
 in this document is designed to accommodate both manual key
 management and automated key management. A future specification to
 automatically populate rows in the database is envisioned.

 Designers should recognize the warning provided in [RFC4107]:

 Automated key management and manual key management provide very
 different features. In particular, the protocol associated with
 an automated key management technique will confirm the liveness of
 the peer, protect against replay, authenticate the source of the
 short-term session key, associate protocol state information with
 the short-term session key, and ensure that a fresh short-term
 session key is generated. Further, an automated key management

Housley, et al. Standards Track [Page 10]

RFC 7210 Table of Cryptographic Keys April 2014

 protocol can improve interoperability by including negotiation
 mechanisms for cryptographic algorithms. These valuable features
 are impossible or extremely cumbersome to accomplish with manual
 key management.

8. IANA Considerations

 This specification defines three registries.

8.1. KeyTable Protocols

 Per this document, IANA has established a registry called "KeyTable
 Protocols".

 All assignments to the KeyTable Protocols registry are made on a
 Specification Required basis per Section 4.1 of [RFC5226].

 Each registration entry must contain the three fields:

 - Protocol Name (unique within the registry);
 - Protocol-Specific Info; and
 - Reference.

 The specification needs to describe parameters required for using the
 conceptual database as outlined in Section 4. This typically means
 that the specification focuses more on the application of security
 protocols with the key tables rather than being a new security
 protocol specification for general purposes. Of course, new
 protocols may combine information on how to use the key table
 database with the protocol specification.

 The registry has three columns. The first column is a string of
 Unicode characters encoded in UTF-8 representing the name protocol.
 The second column is a string of Unicode characters encoded in UTF-8
 providing a brief description of Protocol-Specific Info. The third
 column is a reference to a specification defining how the protocol is
 used with the key table.

 There are no initial registrations.

8.2. KeyTable KDFs

 Per this document, IANA has established a registry called "KeyTable
 KDFs". The remainder of this section describes the registry.

 All assignments to the KeyTable KDFs registry are made on a First
 Come First Served basis per Section 4.1 of RFC 5226.

Housley, et al. Standards Track [Page 11]

RFC 7210 Table of Cryptographic Keys April 2014

 The registry has three columns. The first column is a string of
 Unicode characters encoded in UTF-8 representing the name of a KDF.
 The second column is a string of Unicode characters encoded in UTF-8
 providing a brief description of the KDF. The third column is a
 reference to a specification defining the KDF, if available.

 The initial contents of this registry and that in Section 8.3 are
 chosen based on the algorithms defined for TCP-AO [RFC5926].

 KDF Description Reference
 ------------ ---------------------------- ---------
 none No KDF is used with this key N/A
 AES-128-CMAC AES-CMAC using 128-bit keys [RFC4493]
 HMAC-SHA-1 HMAC using the SHA-1 hash [RFC2104]

8.3. KeyTable AlgIDs

 Per this document, IANA has established a registry called "KeyTable
 AlgIDs". The remainder of this section describes the registry.

 All assignments to the KeyTable AlgIDs registry are made on a First
 Come First Served basis per Section 4.1 of RFC 5226.

 The registry has three columns. The first column is a string of
 Unicode characters encoded in UTF-8 representing the algorithm
 identifier (AlgID). The second column is a string of Unicode
 characters encoded in UTF-8 providing a brief description of the
 identified algorithm. The third column is a reference to a
 specification defining the identified algorithm.

 The initial contents of this registry and that in Section 8.2 are
 chosen based on the algorithms defined for TCP-AO [RFC5926].

 AlgID Description Reference
 ------------ --------------------------------- ---------
 AES-128-CMAC AES-CMAC using 128-bit keys [RFC4493]
 AES-128-CMAC-96 AES-128-CMAC truncated to 96 bits [RFC5926]
 HMAC-SHA-1-96 HMAC SHA-1 truncated to 96 bits [RFC2104]

Housley, et al. Standards Track [Page 12]

RFC 7210 Table of Cryptographic Keys April 2014

9. Acknowledgments

 This document reflects many discussions with many different people
 over many years. In particular, the authors thank Jari Arkko, Ran
 Atkinson, Ron Bonica, Ross Callon, Lars Eggert, Pasi Eronen, Adrian
 Farrel, Gregory Lebovitz, Acee Lindem, Sandy Murphy, Eric Rescorla,
 Mike Shand, Dave Ward, and Brian Weis for their insights. The
 authors additionally thank Brian Weis for supplying text to address
 IANA concerns and for help with formatting.

 Sam Hartman’s work on this document is funded by Huawei.

10. Normative References

 [RFC20] Cerf, V., "ASCII format for network interchange", RFC 20,
 October 1969.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [UAX15] The Unicode Consortium, "Unicode Standard Annex #15:
 Unicode Normalization Forms", Unicode 6.3.0, September
 2013, <http://www.unicode.org/reports/tr15/tr15-39.html>.

 [UNICODE] The Unicode Consortium, "The Unicode Standard, Version
 6.3.0", (Mountain View, CA: The Unicode Consortium, 2013.
 ISBN 978-1-936213-08-5),
 <http://www.unicode.org/versions/Unicode6.3.0/>.

11. Informative References

 [PRECIS-FRAMEWORK]
 Saint-Andre, P. and M. Blanchet, "PRECIS Framework:
 Preparation and Comparison of Internationalized Strings in
 Application Protocols", Work in Progress, March 2014.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104, February
 1997.

 [RFC3562] Leech, M., "Key Management Considerations for the TCP MD5
 Signature Option", RFC 3562, July 2003.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC4107] Bellovin, S. and R. Housley, "Guidelines for Cryptographic
 Key Management", BCP 107, RFC 4107, June 2005.

Housley, et al. Standards Track [Page 13]

RFC 7210 Table of Cryptographic Keys April 2014

 [RFC4493] Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
 AES-CMAC Algorithm", RFC 4493, June 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, June 2010.

 [RFC5926] Lebovitz, G. and E. Rescorla, "Cryptographic Algorithms
 for the TCP Authentication Option (TCP-AO)", RFC 5926,
 June 2010.

Authors’ Addresses

 Russell Housley
 Vigil Security, LLC
 918 Spring Knoll Drive
 Herndon, VA 20170
 USA
 EMail: housley@vigilsec.com

 Tim Polk
 National Institute of Standards and Technology
 100 Bureau Drive, Mail Stop 8930
 Gaithersburg, MD 20899-8930
 USA
 EMail: tim.polk@nist.gov

 Sam Hartman
 Painless Security, LLC
 USA
 EMail: hartmans-ietf@mit.edu

 Dacheng Zhang
 Huawei Technologies Co. Ltd.
 China
 EMail: zhangdacheng@huawei.com

Housley, et al. Standards Track [Page 14]

