
Internet Engineering Task Force (IETF) A. Amirante
Request for Comments: 7058 University of Napoli
Category: Informational T. Castaldi
ISSN: 2070-1721 L. Miniero
 Meetecho
 S P. Romano
 University of Napoli
 November 2013

 Media Control Channel Framework (CFW) Call Flow Examples

Abstract

 This document provides a list of typical Media Control Channel
 Framework call flows. It aims at being a simple guide to the use of
 the interface between Application Servers and MEDIACTRL-based Media
 Servers, as well as a base reference document for both implementors
 and protocol researchers.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7058.

Amirante, et al. Informational [Page 1]

RFC 7058 CFW Call Flow Examples November 2013

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Amirante, et al. Informational [Page 2]

RFC 7058 CFW Call Flow Examples November 2013

Table of Contents

 1. Introduction ..4
 2. Conventions ...5
 3. Terminology ...5
 4. A Practical Approach ..6
 4.1. State Diagrams ...6
 5. Control Channel Establishment10
 5.1. COMEDIA Negotiation11
 5.2. SYNC ..14
 5.3. K-ALIVE ...15
 5.4. Wrong Behavior ..17
 6. Use-Case Scenarios and Examples20
 6.1. Echo Test ...27
 6.1.1. Direct Echo Test28
 6.1.2. Echo Test Based on Recording30
 6.2. Phone Call ..39
 6.2.1. Direct Connection42
 6.2.2. Conference-Based Approach44
 6.2.3. Recording a Conversation51
 6.3. Conferencing ..57
 6.3.1. Simple Bridging62
 6.3.2. Rich Conference Scenario66
 6.3.3. Coaching Scenario75
 6.3.4. Sidebars ...83
 6.3.5. Floor Control93
 6.4. Additional Scenarios99
 6.4.1. Voice Mail ..100
 6.4.2. Current Time107
 6.4.3. DTMF-Driven Conference Manipulation112
 7. Media Resource Brokering126
 7.1. Publishing Interface127
 7.2. Consumer Interface136
 7.2.1. Query Mode ..137
 7.2.2. Inline-Aware Mode140
 7.2.3. Inline-Unaware Mode155
 7.3. Handling Media Dialogs157
 7.3.1. Query and Inline-Aware Mode157
 7.3.2. Inline-Unaware Mode160
 7.3.3. CFW Protocol Behavior167
 8. Security Considerations170
 9. Acknowledgments ...180
 10. References ...180
 10.1. Normative References180
 10.2. Informative References181

Amirante, et al. Informational [Page 3]

RFC 7058 CFW Call Flow Examples November 2013

1. Introduction

 This document provides a list of typical MEDIACTRL Media Control
 Channel Framework [RFC6230] call flows. The motivation for this
 comes from our implementation experience with the framework and its
 protocol. This drove us to write a simple guide to the use of the
 several interfaces between Application Servers and MEDIACTRL-based
 Media Servers, and a base reference document for other implementors
 and protocol researchers.

 Following this spirit, this document covers several aspects of the
 interaction between Application Servers and Media Servers. However,
 in the context of this document, the call flows almost always depict
 the interaction between a single Application Server (which, for the
 sake of conciseness, is called the AS from now on) and a single Media
 Server (MS). In Section 7, some flows involving more entities by
 means of a Media Resource Broker compliant with [RFC6917] are
 presented. To help readers understand all the flows (as related to
 both SIP dialogs and Media Control Channel Framework (CFW)
 transactions), the domains hosting the AS and the MS in all the
 scenarios are called ’as.example.com’ and ’ms.example.net’,
 respectively, per [RFC2606]. The flows will often focus more on the
 CFW [RFC6230] interaction, rather than on the other involved
 protocols, e.g., SIP [RFC3261], the Session Description Protocol
 (SDP) [RFC3264], or RTP [RFC3550].

 In the next paragraphs, a brief overview of our implementation
 approach is described, with particular focus on protocol-related
 aspects. This involves state diagrams that depict both the client
 side (the AS) and the server side (the MS). Of course, this section
 is not at all to be considered a mandatory approach to the
 implementation of the framework. It is only meant to help readers
 understand how the framework works from a practical point of view.

 Once done with these preliminary considerations, in the subsequent
 sections real-life scenarios are addressed. In this context, first
 of all, the establishment of the Control Channel is dealt with.
 After that, some use-case scenarios involving the most typical
 multimedia applications are depicted and described.

 It is worth pointing out that this document is not meant in any way
 to be a self-contained guide to implementing a MEDIACTRL-compliant
 framework. The specifications are a mandatory read for all
 implementors, especially because this document follows their
 guidelines but does not delve into the details of every aspect of the
 protocol.

Amirante, et al. Informational [Page 4]

RFC 7058 CFW Call Flow Examples November 2013

2. Conventions

 Note that due to RFC formatting conventions, SIP/SDP and CFW lines
 whose content exceeds 72 characters are split across lines. This
 line folding is marked by a backslash at the end of the first line.
 This backslash, the preceding whitespace, the following CRLF, and the
 whitespace beginning the next line would not appear in the actual
 protocol contents. Note also that the indentation of the XML content
 is only provided for readability. Actual messages will follow strict
 XML syntax, which allows, but does not require, indentation. Due to
 the same limit of 72 characters per line, this document also
 sometimes splits the content of XML elements across lines. Please be
 aware that when this happens, no whitespace is actually meant to be
 at either the beginning or the end of the element content.

 Note also that a few diagrams show arrows that go from a network
 entity to itself. It’s worth pointing out that such arrows do not
 represent any transaction message but are rather meant as an
 indication to the reader that the involved network entity made a
 decision, within its application logic, according to the input it
 previously received.

3. Terminology

 This document uses the same terminology as [RFC6230], [RFC6231],
 [RFC6505], and [RFC6917]. The following terms are only a
 summarization of the terms most commonly used in this context and are
 mostly derived from the terminology used in the related documents:

 COMEDIA: connection-oriented media (i.e., TCP and Transport Layer
 Security (TLS)). Also used to signify the support in SDP for
 connection-oriented media and the RFCs that define that support
 ([RFC4145] and [RFC4572]).

 Application Server: an entity that requests media processing and
 manipulation from a Media Server; typical examples are Back-to-
 Back User Agents (B2BUAs) and endpoints requesting manipulation of
 a third party’s media stream.

 Media Server: an entity that performs a service, such as media
 processing, on behalf of an Application Server; typical provided
 functions are mixing, announcement, tone detection and generation,
 and play and record services.

 Control Channel: a reliable connection between an Application Server
 and a Media Server that is used to exchange framework messages.

Amirante, et al. Informational [Page 5]

RFC 7058 CFW Call Flow Examples November 2013

 VCR controls: runtime control of aspects of an audio playback like
 speed and volume, via dual-tone multi-frequency (DTMF) signals
 sent by the user, in a manner that resembles the functions of a
 VCR (video cassette recorder) controller.

4. A Practical Approach

 In this document, we embrace an engineering approach to the
 description of a number of interesting scenarios that can be realized
 through the careful orchestration of the Media Control Channel
 Framework entities, namely the Application Server and the Media
 Server. We will demonstrate, through detailed call flows, how a
 variegated bouquet of services (ranging from very simple scenarios to
 much more complicated examples) can be implemented with the
 functionality currently offered, within the main MEDIACTRL framework,
 by the Control Packages that have been made available to date. The
 document aims at being a useful guide for those interested in
 investigating the inter-operation among MEDIACTRL components, as well
 as being a base reference document for application developers willing
 to build advanced services on top of the base infrastructure made
 available by the framework.

4.1. State Diagrams

 In this section, we present an "informal" view of the main MEDIACTRL
 protocol interactions, in the form of state diagrams. Each diagram
 is indeed a classical representation of a Mealy automaton, comprising
 a number of possible protocol states, indicated with rectangular
 boxes. Transitions between states are indicated through edges, with
 each edge labeled with a slash-separated pair representing a specific
 input together with the associated output (a dash in the output
 position means that, for that particular input, no output is
 generated from the automaton). Some of the inputs are associated
 with MEDIACTRL protocol messages arriving at a MEDIACTRL component
 while it is in a certain state. This is the case for ’CONTROL’,
 ’REPORT’ (in its various "flavors" -- pending, terminate, etc.),
 ’200’, ’202’, and ’Error’ (error messages correspond to specific
 numeric codes). Further inputs represent triggers arriving at the
 MEDIACTRL automaton from the upper layer, namely the Application
 Programming Interface used by programmers while implementing
 MEDIACTRL-enabled services. Such inputs have been indicated with the
 term ’API’ followed by the message that the API itself is triggering
 (as an example, ’API terminate’ is a request to send a ’REPORT’
 message with a status of ’terminate’ to the peering component).

Amirante, et al. Informational [Page 6]

RFC 7058 CFW Call Flow Examples November 2013

 Four diagrams are provided. Two of them (Figures 1 and 2) describe
 normal operation of the framework. Figure 3 contains two diagrams
 describing asynchronous event notifications. Figure 1 embraces the
 MS perspective, whereas Figure 2 shows the AS side. The upper part
 of Figure 3 shows how events are generated, on the MS side, by
 issuing a CONTROL message addressed to the AS; events are
 acknowledged by the AS through standard 200 responses. Hence, the
 behavior of the AS, which mirrors that of the MS, is depicted in the
 lower part of the figure.

 Coming back to Figure 1, the diagram shows that the MS activates upon
 reception of CONTROL messages coming from the AS. The CONTROL
 messages instruct the MS regarding the execution of a specific
 command that belongs to one of the available Control Packages. The
 execution of the received command can either be quick or require some
 time. In the former case, right after completing its operation, the
 MS sends back to the AS a 200 message, which basically acknowledges
 correct termination of the invoked task. In the latter case, the MS
 first sends back an interlocutory 202 message containing a ’Timeout’
 value, which lets it enter a different state (’202’ sent). While in
 the new state, the MS keeps on performing the invoked task. If the
 task does not complete in the provided timeout, the server will
 update the AS on the other side of the Control Channel by
 periodically issuing ’REPORT update’ messages; each such message has
 to be acknowledged by the AS (through a ’200’ response). Eventually,
 when the MS is done with the required service, it sends to the AS a
 ’REPORT terminate’ message. The transaction is concluded when the AS
 acknowledges receipt of the message. It is worth pointing out that
 the MS may send a 202 response after it determines that the request
 does not contain any errors that cannot be reported in a later REPORT
 terminate request instead. After the MS sends a 202 response, any
 error that it (or the API) finds in the request is reported in the
 final REPORT terminate request. Again, the behavior of the AS, as
 depicted in Figure 2, mirrors the above-described actions undertaken
 at the MS side. The figures also show the cases in which
 transactions cannot be successfully completed due to abnormal
 conditions; such conditions always trigger the creation and
 transmission of a specific ’Error’ message that, as mentioned
 previously, is reported as a numeric error code.

Amirante, et al. Informational [Page 7]

RFC 7058 CFW Call Flow Examples November 2013

 +------------------+ CONTROL/- +------------------+ API 202/202
 | Idle/’terminate’ |------------>| CONTROL received |---------+
 +------------------+ +------------------+ |
 ^ ^ ^ API 200/200 | | |
 | | | | | |
 | | +------------------+ | |
 | 200/- | API Error/Error | |
 | +----------------------------+ |
 | |
 +-------------+ |
 | Waiting for | v
 | last 200 |<------------------------+ +------------+
 +-------------+ | | ’202’ sent |
 ^ | +------------+
 | | | |
 | +---------------+ |
 | API terminate/ API terminate/ |
 | REPORT terminate REPORT terminate |
 | |
 +--------------------+ |
 | ’update’ confirmed |------+ API update/ |
 +--------------------+ | REPORT update |
 ^ | API update/ |
 | | REPORT update |
 | v |
 | 200/- +---------------+ |
 +--------------| ’update’ sent |<----------------+
 +---------------+

 Figure 1: Media Server CFW State Diagram

Amirante, et al. Informational [Page 8]

RFC 7058 CFW Call Flow Examples November 2013

 +--------------+ 202/- +--------------+
 +-->| CONTROL sent |---------->| 202 received |
 | +--------------+ +--------------+
 | | | | |
 | | | | |
API CONTROL/ | | 200/- | | |
send CONTROL | | | | |
 | | | Error/ | |
+------------------+ | | Error | |
| Idle/’terminate’ |<-+ | | |
+------------------+<---------+ | |
 ^ ^ | |
 | | REPORT ’terminate’/ | |
 | | send 200 | |
 | +--------------------------------+ | REPORT ’update’/
 | | send 200
 | REPORT ’terminate’/ |
 | send 200 |
 | +-----------+ |
 +---------------------| ’update ’ |<--------------+
 +-----------+
 ^ |
 | | REPORT ’update’/
 +------+ send 200

 Figure 2: Application Server CFW State Diagram

Amirante, et al. Informational [Page 9]

RFC 7058 CFW Call Flow Examples November 2013

 +--------------+
 +-->| CONTROL sent |
 | +--------------+
 | |
 | |
 API CONTROL/ | | 200/-
 send CONTROL | |
 | |
 +------------------+ |
 | Idle/’terminate’ |<----+
 +------------------+

 (Media Server perspective)

 +------------------+ CONTROL/- +------------------+
 | Idle/’terminate’ |------------>| CONTROL received |
 +------------------+ +------------------+
 ^ API 200/200 |
 | |
 +----------------------------+

 (Application Server perspective)

 Figure 3: Event Notifications

5. Control Channel Establishment

 As specified in [RFC6230], the preliminary step to any interaction
 between an AS and an MS is the establishment of a Control Channel
 between the two. As explained in the next subsection, this is
 accomplished by means of a connection-oriented media (COMEDIA)
 [RFC4145] [RFC4572] negotiation. This negotiation allows a reliable
 connection to be created between the AS and the MS. It is here that
 the AS and the MS agree on the transport-level protocol to use (TCP /
 Stream Control Transmission Protocol (SCTP)) and whether any
 application-level security is needed or not (e.g., TLS). For the
 sake of simplicity, we assume that an unencrypted TCP connection is
 negotiated between the two involved entities. Once they have
 connected, a SYNC message sent by the AS to the MS consolidates the
 Control Channel. An example of how a keep-alive message is triggered
 is also presented in the following paragraphs. For the sake of
 completeness, this section also includes a couple of common mistakes
 that can occur when dealing with the Control Channel establishment.

Amirante, et al. Informational [Page 10]

RFC 7058 CFW Call Flow Examples November 2013

 AS MS
 | |
 | INVITE (COMEDIA) |
 |------------------------------>|
 | 100 (Trying) |
 |<------------------------------|
 | 200 OK (COMEDIA) |
 |<------------------------------|
 | ACK |
 |------------------------------>|
 | |
 |==============================>|
 | TCP CONNECT (CTRL CHANNEL) |
 |==============================>|
 | |
 | SYNC (Dialog-ID, etc.) |
 |+++++++++++++++++++++++++++++>>|
 | |--+
 | | | Check SYNC
 | |<-+
 | 200 OK |
 |<<+++++++++++++++++++++++++++++|
 | |
 . .
 . .

 Figure 4: Control Channel Establishment

5.1. COMEDIA Negotiation

 As a first step, the AS and the MS establish a Control SIP dialog.
 This is usually originated by the AS itself. The AS generates a SIP
 INVITE message containing in its SDP body information about the TCP
 connection it wants to establish with the MS. In the provided
 example (see Figure 5 and the attached call flow), the AS wants to
 actively open a new TCP connection, which on its side will be bound
 to port 5757. If the request is fine, the MS answers by
 communicating to the AS the transport address to connect to in order
 to establish the TCP connection. In the provided example, the MS
 will listen on port 7575. Once this negotiation is over, the AS can
 effectively connect to the MS.

 The negotiation includes additional attributes. The ’cfw-id’
 attribute is the most important, since it specifies the Dialog-ID,
 which in turn will be subsequently referred to by both the AS and the
 MS as specified in [RFC6230].

Amirante, et al. Informational [Page 11]

RFC 7058 CFW Call Flow Examples November 2013

 AS MS
 | |
 | 1. INVITE (COMEDIA) |
 |------------------------------>|
 | 2. 100 (Trying) |
 |<------------------------------|
 | 3. 200 OK (COMEDIA) |
 |<------------------------------|
 | 4. ACK |
 |------------------------------>|
 | |
 |==============================>|
 | TCP CONNECT (CTRL CHANNEL) |
 |==============================>|
 | |
 . .
 . .

 Figure 5: COMEDIA Negotiation: Sequence Diagram

1. AS -> MS (SIP INVITE)

 INVITE sip:MediaServer@ms.example.net:5060 SIP/2.0
 Via: SIP/2.0/UDP 203.0.113.1:5060;\
 branch=z9hG4bK-d8754z-9b07c8201c3aa510-1---d8754z-;rport=5060
 Max-Forwards: 70
 Contact: <sip:ApplicationServer@203.0.113.1:5060>
 To: <sip:MediaServer@ms.example.net:5060>
 From: <sip:ApplicationServer@as.example.com:5060>;tag=4354ec63
 Call-ID: MDk2YTk1MDU3YmVkZjgzYTQwYmJlNjE5NTA4ZDQ1OGY.
 CSeq: 1 INVITE
 Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, UPDATE, REGISTER
 Content-Type: application/sdp
 Content-Length: 203

 v=0
 o=lminiero 2890844526 2890842807 IN IP4 as.example.com
 s=MediaCtrl
 c=IN IP4 as.example.com
 t=0 0
 m=application 5757 TCP cfw
 a=connection:new
 a=setup:active
 a=cfw-id:5feb6486792a

Amirante, et al. Informational [Page 12]

RFC 7058 CFW Call Flow Examples November 2013

2. AS <- MS (SIP 100 Trying)

 SIP/2.0 100 Trying
 Via: SIP/2.0/UDP 203.0.113.1:5060; \
 branch=z9hG4bK-d8754z-9b07c8201c3aa510-1---d8754z-;rport=5060
 To: <sip:MediaServer@ms.example.net:5060>;tag=499a5b74
 From: <sip:ApplicationServer@as.example.com:5060>;tag=4354ec63
 Call-ID: MDk2YTk1MDU3YmVkZjgzYTQwYmJlNjE5NTA4ZDQ1OGY.
 CSeq: 1 INVITE
 Content-Length: 0

3. AS <- MS (SIP 200 OK)

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP 203.0.113.1:5060; \
 branch=z9hG4bK-d8754z-9b07c8201c3aa510-1---d8754z-;rport=5060
 Contact: <sip:MediaServer@ms.example.net:5060>
 To: <sip:MediaServer@ms.example.net:5060>;tag=499a5b74
 From: <sip:ApplicationServer@as.example.com:5060>;tag=4354ec63
 Call-ID: MDk2YTk1MDU3YmVkZjgzYTQwYmJlNjE5NTA4ZDQ1OGY.
 CSeq: 1 INVITE
 Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, UPDATE, REGISTER
 Content-Type: application/sdp
 Content-Length: 199

 v=0
 o=lminiero 2890844526 2890842808 IN IP4 ms.example.net
 s=MediaCtrl
 c=IN IP4 ms.example.net
 t=0 0
 m=application 7575 TCP cfw
 a=connection:new
 a=setup:passive
 a=cfw-id:5feb6486792a

Amirante, et al. Informational [Page 13]

RFC 7058 CFW Call Flow Examples November 2013

4. AS -> MS (SIP ACK)

 ACK sip:MediaServer@ms.example.net:5060 SIP/2.0
 Via: SIP/2.0/UDP 203.0.113.1:5060; \
 branch=z9hG4bK-d8754z-22940f5f4589701b-1---d8754z-;rport
 Max-Forwards: 70
 Contact: <sip:ApplicationServer@203.0.113.1:5060>
 To: <sip:MediaServer@ms.example.net:5060>;tag=499a5b74
 From: <sip:ApplicationServer@as.example.com:5060>;tag=4354ec63
 Call-ID: MDk2YTk1MDU3YmVkZjgzYTQwYmJlNjE5NTA4ZDQ1OGY.
 CSeq: 1 ACK
 Content-Length: 0

5.2. SYNC

 Once the AS and the MS have successfully established a TCP
 connection, an additional step is needed before the Control Channel
 can be used. In fact, as seen in the previous subsection, the first
 interaction between the AS and the MS happens by means of a SIP
 dialog, which in turn allows the creation of the TCP connection.
 This introduces the need for a proper correlation between the above-
 mentioned entities (SIP dialog and TCP connection), so that the MS
 can be sure that the connection came from the AS that requested it.
 This is accomplished by means of a dedicated framework message called
 a SYNC message. This SYNC message uses a unique identifier called
 the Dialog-ID to validate the Control Channel. This identifier, as
 introduced previously, is meant to be globally unique and as such is
 properly generated by the caller (the AS in the call flow) and added
 as an SDP media attribute (cfw-id) to the COMEDIA negotiation in
 order to make both entities aware of its value:

 a=cfw-id:5feb6486792a
 ^^^^^^^^^^^^
 It also offers an additional negotiation mechanism. In fact, the AS
 uses the SYNC to not only properly correlate, as explained before,
 but also negotiate with the MS the Control Packages in which it is
 interested, as well as agree on a ’Keep-Alive’ timer needed by both
 the AS and the MS so that they will know if problems on the
 connection occur. In the provided example (see Figure 6 and the
 related call flow), the AS sends a SYNC with a Dialog-ID constructed
 as needed (using the ’cfw-id’ attribute from the SIP dialog) and
 requests access to two Control Packages: specifically, the
 Interactive Voice Response (IVR) package and the Mixer package. The
 AS also instructs the MS that a 100-second timeout is to be used for
 keep-alive messages. The MS validates the request by matching the
 received Dialog-ID with the SIP dialog values, and, assuming that it
 supports the Control Packages the AS requested access to (and for the
 sake of this document we assume that it does), it answers with a

Amirante, et al. Informational [Page 14]

RFC 7058 CFW Call Flow Examples November 2013

 200 message. Additionally, the MS provides the AS with a list of
 other unrequested packages it supports (in this case just a dummy
 package providing testing functionality).

 AS MS
 . .
 . .
 | |
 | 1. SYNC (Dialog-ID, etc.) |
 |+++++++++++++++++++++++++++++>>|
 | |--+
 | | | Check SYNC
 | |<-+
 | 2. 200 OK |
 |<<+++++++++++++++++++++++++++++|
 | |
 . .
 . .

 Figure 6: SYNC: Sequence Diagram

 1. AS -> MS (CFW SYNC)

 CFW 6e5e86f95609 SYNC
 Dialog-ID: 5feb6486792a
 Keep-Alive: 100
 Packages: msc-ivr/1.0,msc-mixer/1.0

 2. AS <- MS (CFW 200)

 CFW 6e5e86f95609 200
 Keep-Alive: 100
 Packages: msc-ivr/1.0,msc-mixer/1.0
 Supported: msc-example-pkg/1.0

 The framework-level transaction identifier is obviously the same in
 both the request and the response (6e5e86f95609), since the AS needs
 to be able to match the response to the original request. At this
 point, the Control Channel is finally established, and it can be used
 by the AS to request services from the MS.

5.3. K-ALIVE

 [RFC6230] provides a mechanism for implementing a keep-alive
 functionality. Such a mechanism is especially useful whenever any
 NAT or firewall sits in the path between an AS and an MS. In fact,
 NATs and firewalls may have timeout values for the TCP connections

Amirante, et al. Informational [Page 15]

RFC 7058 CFW Call Flow Examples November 2013

 they handle, which means that if no traffic is detected on these
 connections within a specific time they could be shut down. This
 could be the case for a Control Channel established between an AS and
 an MS but not used for some time. For this reason, [RFC6230]
 specifies a dedicated framework message (K-ALIVE) that the AS and MS
 can use in order to generate traffic on the TCP connection and keep
 it alive.

 As discussed in Section 5.2, the timeout value for the keep-alive
 mechanism is set by the SYNC request. Specifically, in the example,
 the AS specified a value of 100 seconds. In fact, the timeout value
 is not actually negotiated between the AS and MS, as it is simply
 specified by whichever endpoint takes the active role. The
 100-second value is compliant with how NATs and firewalls are usually
 implemented, since in most cases the timeout value they use before
 shutting TCP connections down is around 2 minutes. Such a value has
 a strong meaning within the context of this mechanism. In fact, it
 means that the active role (the AS, in this case) has to send a
 K-ALIVE message before those 100 seconds pass; otherwise, the passive
 role (the MS) will tear down the connection, treating it like a
 timeout. [RFC6230] suggests a more conservative approach towards
 handling this timeout value, suggesting that the K-ALIVE message be
 triggered before 80% of the negotiated time passes (80 seconds, in
 this case). This is exactly the case presented in Figure 7.

 AS MS
 . .
 . .
 | |
 ˜80 s have +--| |
 passed since | | |
 last K-ALIVE +->| |
 | 1. K-ALIVE |
 |+++++++++++++++++++++++++++++>>|
 | |--+ Reset the local
 | | | ’Keep-Alive’
 | |<-+ timer
 | 2. 200 OK |
 |<<+++++++++++++++++++++++++++++|
 Reset the +--| |
 local | | |
 ’Keep-Alive’ +->| |
 timer | |
 . .
 . .

 Figure 7: K-ALIVE: Sequence Diagram

Amirante, et al. Informational [Page 16]

RFC 7058 CFW Call Flow Examples November 2013

 After the Control Channel has been established (COMEDIA+SYNC), both
 the AS and the MS start local ’Keep-Alive’ timers mapped to the
 negotiated keep-alive timeout value (100 seconds). When about
 80 seconds have passed since the start of the timer (80% of
 100 seconds), the AS sends a framework-level K-ALIVE message to the
 MS. The message as seen in the protocol message dump is very
 lightweight, since it only includes a single line with no additional
 header. When the MS receives the K-ALIVE message, it resets its
 local ’Keep-Alive’ timer and sends a 200 message back as
 confirmation. As soon as the AS receives the 200 message, it resets
 its local ’Keep-Alive’ timer as well, and the mechanism starts over
 again.

 The actual transaction steps are presented below.

 1. AS -> MS (K-ALIVE)

 CFW 518ba6047880 K-ALIVE

 2. AS <- MS (CFW 200)

 CFW 518ba6047880 200

 If the timer expired in either the AS or the MS (i.e., the K-ALIVE or
 the 200 arrived after the 100 seconds), the connection and the
 associated SIP control dialog would be torn down by the entity
 detecting the timeout, thus ending the interaction between the AS and
 the MS.

5.4. Wrong Behavior

 This section will briefly address some types of behavior that could
 represent the most common mistakes when dealing with the
 establishment of a Control Channel between an AS and an MS. These
 scenarios are obviously of interest, since they result in the AS and
 the MS being unable to interact with each other. Specifically, these
 simple scenarios will be described:

 1. an AS providing the MS with a wrong Dialog-ID in the initial
 SYNC.

 2. an AS sending a generic CONTROL message instead of SYNC as a
 first transaction.

Amirante, et al. Informational [Page 17]

RFC 7058 CFW Call Flow Examples November 2013

 The first scenario is depicted in Figure 8.

 AS MS
 . .
 . .
 | |
 | 1. SYNC (Dialog-ID, etc.) |
 |+++++++++++++++++++++++++++++>>|
 | |--+
 | | | Check SYNC (wrong!)
 | |<-+
 | 2. 481 |
 |<<+++++++++++++++++++++++++++++|
 | |
 |<-XX- CLOSE TCP CONNECTION -XX-|
 | |
 | SIP BYE |
 |------------------------------>|
 | |
 . .
 . .

 Figure 8: SYNC with Wrong Dialog-ID: Sequence Diagram

 This scenario is similar to the scenario presented in Section 5.2,
 but with a difference: instead of using the correct, expected
 Dialog-ID in the SYNC message (5feb6486792a, the one negotiated via
 COMEDIA), the AS uses a wrong value (4hrn7490012c). This causes the
 SYNC transaction to fail. First of all, the MS sends a framework-
 level 481 message. This response, when given in reply to a SYNC
 message, means that the SIP dialog associated with the provided
 Dialog-ID (the wrong identifier) does not exist. The Control Channel
 must be torn down as a consequence, and so the MS also closes the TCP
 connection it received the SYNC message from. The AS at this point
 is supposed to tear down its SIP control dialog as well, and so it
 sends a SIP BYE to the MS.

Amirante, et al. Informational [Page 18]

RFC 7058 CFW Call Flow Examples November 2013

 The actual transaction is presented below.

 1. AS -> MS (CFW SYNC with wrong Dialog-ID)

 CFW 2b4dd8724f27 SYNC
 Dialog-ID: 4hrn7490012c
 Keep-Alive: 100
 Packages: msc-ivr/1.0,msc-mixer/1.0

 2. AS <- MS (CFW 481)

 CFW 2b4dd8724f27 481

 The second scenario is depicted in Figure 9.

 AS MS
 . .
 . .
 | |
 | 1. CONTROL |
 |+++++++++++++++++++++++++++++>>|
 | |--+ First transaction
 | | | is not a SYNC
 | |<-+
 | 2. 403 |
 |<<+++++++++++++++++++++++++++++|
 | |
 |<-XX- CLOSE TCP CONNECTION -XX-|
 | |
 | SIP BYE |
 |------------------------------>|
 | |
 . .
 . .

 Figure 9: Incorrect First Transaction: Sequence Diagram

 This scenario demonstrates another common mistake that could occur
 when trying to set up a Control Channel. In fact, [RFC6230] mandates
 that the first transaction after the COMEDIA negotiation be a SYNC to
 conclude the setup. If the AS, instead of triggering a SYNC message
 as expected, sends a different message to the MS (in the example
 below, it tries to send an <audit> message addressed to the IVR
 Control Package), the MS treats it like an error. As a consequence,
 the MS replies with a framework-level 403 message (Forbidden) and,
 just as before, closes the TCP connection and waits for the related
 SIP control dialog to be torn down.

Amirante, et al. Informational [Page 19]

RFC 7058 CFW Call Flow Examples November 2013

 The actual transaction is presented below.

 1. AS -> MS (CFW CONTROL instead of SYNC)

 CFW 101fbbd62c35 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 78

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <audit/>
 </mscivr>

 2. AS <- MS (CFW 403 Forbidden)

 CFW 101fbbd62c35 403

6. Use-Case Scenarios and Examples

 The following scenarios have been chosen for their common presence in
 many rich real-time multimedia applications. Each scenario is
 depicted as a set of call flows involving both the SIP/SDP signaling
 (UACs<->AS<->MS) and the Control Channel communication (AS<->MS).

Amirante, et al. Informational [Page 20]

RFC 7058 CFW Call Flow Examples November 2013

 All the examples assume that a Control Channel has already been
 correctly established and SYNCed between the reference AS and MS.
 Also, unless stated otherwise, the same User Agent Client (UAC)
 session is referenced in all the examples that will be presented in
 this document. The UAC session is assumed to have been created as
 described in Figure 10:

 UAC AS MS
 | | | |
 | INVITE (X) | |
 |------------------>| |
 | 180 (Ringing) | |
 |<------------------| |
 | |--+ |
 | | | Handle app(X) |
 | |<-+ |
 | | INVITE (Y) as 3PCC |
 | |-------------------------->|
 | | 100 (Trying) |
 | |<--------------------------|
 | | |--+ Negotiate media
 | | | | with UAC; map
 | | |<-+ tags and labels
 | | 200 OK |
 | |<--------------------------|
 | 200 OK | |
 |<------------------| |
 | ACK | |
 |------------------>| |
 | | ACK |
 | |-------------------------->|
 | | |
 |<<###>>|
 | RTP Media Stream(s) flowing |
 |<<###>>|
 | | |
 . . .
 . . .

 Figure 10: 3PCC Sequence Diagram

 Note well: This is only an example of a possible approach involving a
 Third-Party Call Control (3PCC) negotiation among the UAC, the AS,
 and the MS, and as such is not at all to be considered the mandatory
 way, nor best common practice, in the presented scenario. [RFC3725]
 provides several different solutions and many details about how 3PCC

Amirante, et al. Informational [Page 21]

RFC 7058 CFW Call Flow Examples November 2013

 can be realized, with pros and cons. It is also worth pointing out
 that the two INVITEs displayed in the figure are different SIP
 dialogs.

 The UAC first places a call to a SIP URI for which the AS is
 responsible. The specific URI is not relevant to the examples, since
 the application logic behind the mapping between a URI and the
 service it provides is a matter that is important only to the AS.
 So, a generic ’sip:mediactrlDemo@as.example.com’ is used in all the
 examples, whereas the service this URI is associated with in the AS
 logic is mapped scenario by scenario to the case under examination.
 The UAC INVITE is treated as envisaged in [RFC5567]. The INVITE is
 forwarded by the AS to the MS via a third party (e.g., the 3PCC
 approach), without the SDP provided by the UAC being touched, in
 order to have the session fully negotiated by the MS according to its
 description. The MS matches the UAC’s offer with its own
 capabilities and provides its answer in a 200 OK. This answer is
 then forwarded, again without the SDP contents being touched, by the
 AS to the target UAC. This way, while the SIP signaling from the UAC
 is terminated in the AS, all the media would start flowing directly
 between the UAC and the MS.

 As a consequence of this negotiation, one or more media connections
 are created between the MS and the UAC. They are then addressed,
 when needed, by the AS and the MS by means of the concatenation of
 tags, as specified in [RFC6230]. How the identifiers are created and
 addressed is explained by using the sample signaling provided in the
 following lines.

1. UAC -> AS (SIP INVITE)

 INVITE sip:mediactrlDemo@as.example.com SIP/2.0
 Via: SIP/2.0/UDP 203.0.113.2:5063;rport;branch=z9hG4bK1396873708
 From: <sip:lminiero@users.example.com>;tag=1153573888
 To: <sip:mediactrlDemo@as.example.com>
 Call-ID: 1355333098
 CSeq: 20 INVITE
 Contact: <sip:lminiero@203.0.113.2:5063>
 Content-Type: application/sdp
 Max-Forwards: 70
 User-Agent: Linphone/2.1.1 (eXosip2/3.0.3)
 Subject: Phone call
 Expires: 120
 Content-Length: 330

Amirante, et al. Informational [Page 22]

RFC 7058 CFW Call Flow Examples November 2013

 v=0
 o=lminiero 123456 654321 IN IP4 203.0.113.2
 s=A conversation
 c=IN IP4 203.0.113.2
 t=0 0
 m=audio 7078 RTP/AVP 0 3 8 101
 a=rtpmap:0 PCMU/8000/1
 a=rtpmap:3 GSM/8000/1
 a=rtpmap:8 PCMA/8000/1
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-11
 m=video 9078 RTP/AVP 98
 a=rtpmap:98 H263-1998/90000
 a=fmtp:98 CIF=1;QCIF=1

2. UAC <- AS (SIP 180 Ringing)

 SIP/2.0 180 Ringing
 Via: SIP/2.0/UDP 203.0.113.2:5063;rport=5063; \
 branch=z9hG4bK1396873708
 Contact: <sip:mediactrlDemo@as.example.com>
 To: <sip:mediactrlDemo@as.example.com>;tag=bcd47c32
 From: <sip:lminiero@users.example.com>;tag=1153573888
 Call-ID: 1355333098
 CSeq: 20 INVITE
 Content-Length: 0

3. AS -> MS (SIP INVITE)

 INVITE sip:MediaServer@ms.example.net:5060;transport=UDP SIP/2.0
 Via: SIP/2.0/UDP 203.0.113.1:5060; \
 branch=z9hG4bK-d8754z-8723e421ebc45f6b-1---d8754z-;rport
 Max-Forwards: 70
 Contact: <sip:ApplicationServer@203.0.113.1:5060>
 To: <sip:MediaServer@ms.example.net:5060>
 From: <sip:ApplicationServer@as.example.com:5060>;tag=10514b7f
 Call-ID: NzI0ZjQ0ZTBlMTEzMGU1ZjVhMjk5NTliMmJmZjE0NDQ.
 CSeq: 1 INVITE
 Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, UPDATE, REGISTER
 Content-Type: application/sdp
 Content-Length: 330

Amirante, et al. Informational [Page 23]

RFC 7058 CFW Call Flow Examples November 2013

 v=0
 o=lminiero 123456 654321 IN IP4 203.0.113.2
 s=A conversation
 c=IN IP4 203.0.113.2
 t=0 0
 m=audio 7078 RTP/AVP 0 3 8 101
 a=rtpmap:0 PCMU/8000/1
 a=rtpmap:3 GSM/8000/1
 a=rtpmap:8 PCMA/8000/1
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-11
 m=video 9078 RTP/AVP 98
 a=rtpmap:98 H263-1998/90000
 a=fmtp:98 CIF=1;QCIF=1

4. AS <- MS (SIP 100 Trying)

 SIP/2.0 100 Trying
 Via: SIP/2.0/UDP 203.0.113.1:5060; \
 branch=z9hG4bK-d8754z-8723e421ebc45f6b-1---d8754z-;rport=5060
 To: <sip:MediaServer@ms.example.net:5060>;tag=6a900179
 From: <sip:ApplicationServer@as.example.com:5060>;tag=10514b7f
 Call-ID: NzI0ZjQ0ZTBlMTEzMGU1ZjVhMjk5NTliMmJmZjE0NDQ.
 CSeq: 1 INVITE
 Content-Length: 0

5. AS <- MS (SIP 200 OK)

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP 203.0.113.1:5060; \
 branch=z9hG4bK-d8754z-8723e421ebc45f6b-1---d8754z-;rport=5060
 Contact: <sip:MediaServer@ms.example.net:5060>
 To: <sip:MediaServer@ms.example.net:5060>;tag=6a900179
 From: <sip:ApplicationServer@as.example.com:5060>;tag=10514b7f
 Call-ID: NzI0ZjQ0ZTBlMTEzMGU1ZjVhMjk5NTliMmJmZjE0NDQ.
 CSeq: 1 INVITE
 Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, UPDATE, REGISTER
 Content-Type: application/sdp
 Content-Length: 374

 v=0
 o=lminiero 123456 654322 IN IP4 ms.example.net
 s=MediaCtrl
 c=IN IP4 ms.example.net
 t=0 0
 m=audio 63442 RTP/AVP 0 3 8 101

Amirante, et al. Informational [Page 24]

RFC 7058 CFW Call Flow Examples November 2013

 a=rtpmap:0 PCMU/8000
 a=rtpmap:3 GSM/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-15
 a=ptime:20
 a=label:7eda834
 m=video 33468 RTP/AVP 98
 a=rtpmap:98 H263-1998/90000
 a=fmtp:98 CIF=2
 a=label:0132ca2

6. UAC <- AS (SIP 200 OK)

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP 203.0.113.2:5063;rport=5063; \
 branch=z9hG4bK1396873708
 Contact: <sip:mediactrlDemo@as.example.com>
 To: <sip:mediactrlDemo@as.example.com>;tag=bcd47c32
 From: <sip:lminiero@users.example.com>;tag=1153573888
 Call-ID: 1355333098
 CSeq: 20 INVITE
 Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, UPDATE, REGISTER
 Content-Type: application/sdp
 Content-Length: 374

 v=0
 o=lminiero 123456 654322 IN IP4 ms.example.net
 s=MediaCtrl
 c=IN IP4 ms.example.net
 t=0 0
 m=audio 63442 RTP/AVP 0 3 8 101
 a=rtpmap:0 PCMU/8000
 a=rtpmap:3 GSM/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-15
 a=ptime:20
 a=label:7eda834
 m=video 33468 RTP/AVP 98
 a=rtpmap:98 H263-1998/90000
 a=fmtp:98 CIF=2
 a=label:0132ca2

Amirante, et al. Informational [Page 25]

RFC 7058 CFW Call Flow Examples November 2013

7. UAC -> AS (SIP ACK)

 ACK sip:mediactrlDemo@as.example.com SIP/2.0
 Via: SIP/2.0/UDP 203.0.113.2:5063;rport;branch=z9hG4bK1113338059
 From: <sip:lminiero@users.example.com>;tag=1153573888
 To: <sip:mediactrlDemo@as.example.com>;tag=bcd47c32
 Call-ID: 1355333098
 CSeq: 20 ACK
 Contact: <sip:lminiero@203.0.113.2:5063>
 Max-Forwards: 70
 User-Agent: Linphone/2.1.1 (eXosip2/3.0.3)
 Content-Length: 0

8. AS -> MS (SIP ACK)

 ACK sip:MediaServer@ms.example.net:5060;transport=UDP SIP/2.0
 Via: SIP/2.0/UDP 203.0.113.1:5060; \
 branch=z9hG4bK-d8754z-5246003419ccd662-1---d8754z-;rport
 Max-Forwards: 70
 Contact: <sip:ApplicationServer@203.0.113.1:5060>
 To: <sip:MediaServer@ms.example.net:5060;tag=6a900179
 From: <sip:ApplicationServer@as.example.com:5060>;tag=10514b7f
 Call-ID: NzI0ZjQ0ZTBlMTEzMGU1ZjVhMjk5NTliMmJmZjE0NDQ.
 CSeq: 1 ACK
 Content-Length: 0

 As a result of the 3PCC negotiation just presented, the following
 relevant information is retrieved:

 1. The ’From’ and ’To’ tags (10514b7f and 6a900179, respectively) of
 the AS<->MS session:

 From: <sip:ApplicationServer@as.example.com:5060>;tag=10514b7f
 ^^^^^^^^
 To: <sip:MediaServer@ms.example.net:5060>;tag=6a900179
 ^^^^^^^^

 2. The labels [RFC4574] associated with the negotiated media
 connections, in this case an audio stream (7eda834) and a video
 stream (0132ca2):

 m=audio 63442 RTP/AVP 0 3 8 101
 [..]
 a=label:7eda834
 ^^^^^^^

Amirante, et al. Informational [Page 26]

RFC 7058 CFW Call Flow Examples November 2013

 m=video 33468 RTP/AVP 98
 [..]
 a=label:0132ca2
 ^^^^^^^
 These four identifiers allow the AS and MS to univocally and
 unambiguously address to each other the connections associated with
 the related UAC. Specifically:

 1. 10514b7f:6a900179, the concatenation of the ’From’ and ’To’ tags
 through a colon (’:’) token, addresses all the media connections
 between the MS and the UAC.

 2. 10514b7f:6a900179 <-> 7eda834, the association of the previous
 value with the label attribute, addresses only one of the media
 connections of the UAC session (in this case, the audio stream).
 Since, as will be made clearer in the example scenarios, the
 explicit identifiers in requests can only address ’from:tag’
 connections, an additional mechanism will be required to have a
 finer control of individual media streams (i.e., by means of the
 <stream> element in package-level requests).

 The mapping that the AS makes between the UACs<->AS and the AS<->MS
 SIP dialogs is out of scope for this document. We just assume that
 the AS knows how to address the right connection according to the
 related session it has with a UAC (e.g., to play an announcement to a
 specific UAC). This is obviously very important, since the AS is
 responsible for all the business logic of the multimedia application
 it provides.

6.1. Echo Test

 The echo test is the simplest example scenario that can be achieved
 by means of an MS. It basically consists of a UAC directly or
 indirectly "talking" to itself. A media perspective of such a
 scenario is depicted in Figure 11.

 +-------+ A (RTP) +--------+
 | UAC |=========================>| Media |
 | A |<=========================| Server |
 +-------+ A (RTP) +--------+

 Figure 11: Echo Test: Media Perspective

 From the framework point of view, when the UAC’s leg is not attached
 to anything yet, what appears is shown in Figure 12: since there’s no
 connection involving the UAC yet, the frames it might be sending are
 discarded, and nothing is sent to it (except for silence, if its
 transmission is requested).

Amirante, et al. Informational [Page 27]

RFC 7058 CFW Call Flow Examples November 2013

 MS
 +------+
 UAC | |
 o----->>-------x |
 o.....<<.......x |
 | |
 +------+

 Figure 12: Echo Test: UAC Media Leg Not Attached

 Starting from these considerations, two different approaches to the
 Echo Test scenario are explored in this document:

 1. a Direct Echo Test approach, where the UAC directly talks to
 itself.

 2. a Recording-based Echo Test approach, where the UAC indirectly
 talks to itself.

6.1.1. Direct Echo Test

 In the Direct Echo Test approach, the UAC is directly connected to
 itself. This means that, as depicted in Figure 13, each frame the MS
 receives from the UAC is sent back to it in real time.

 MS
 +------+
 UAC | |
 o----->>-------@ |
 o-----<<-------@ |
 | |
 +------+

 Figure 13: Echo Test: Direct Echo (Self-Connection)

 In the framework, this can be achieved by means of the Mixer Control
 Package [RFC6505], which is in charge of joining connections and
 conferences.

Amirante, et al. Informational [Page 28]

RFC 7058 CFW Call Flow Examples November 2013

 A sequence diagram of a potential transaction is depicted in
 Figure 14:

 UAC AS MS
	1. CONTROL (join UAC to itself)
	++++++++++++++++++++++++++++++++>>
	2. 200 OK
	<<++++++++++++++++++++++++++++++++
<<##>>	
Everything is now echoed back to the UAC	
<<##>>	
 . . .
 . . .

 Figure 14: Self-Connection: Framework Transaction

 The transaction steps have been numbered and are explained below:

 o The AS requests the joining of the connection to itself by sending
 to the MS a CONTROL request (1) that is specifically meant for the
 conferencing Control Package (msc-mixer/1.0). A <join> request is
 used for this purpose, and since the connection must be attached
 to itself, both id1 and id2 attributes are set to the same value,
 i.e., the connectionid.

 o The MS, having checked the validity of the request, enforces the
 joining of the connection to itself. This means that all the
 frames sent by the UAC are sent back to it. To report the result
 of the operation, the MS sends a 200 OK (2) in reply to the AS,
 thus ending the transaction. The transaction ended successfully,
 as indicated by the body of the message (the 200 status code in
 the <response> tag).

Amirante, et al. Informational [Page 29]

RFC 7058 CFW Call Flow Examples November 2013

 The complete transaction -- that is, the full bodies of the exchanged
 messages -- is provided in the following lines:

 1. AS -> MS (CFW CONTROL)

 CFW 4fed9bf147e2 CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 130

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <join id1="10514b7f:6a900179" id2="10514b7f:6a900179"/>
 </mscmixer>

 2. AS <- MS (CFW 200 OK)

 CFW 4fed9bf147e2 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 125

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join successful"/>
 </mscmixer>

6.1.2. Echo Test Based on Recording

 In the Recording-based Echo Test approach, the UAC is NOT directly
 connected to itself, but rather indirectly. This means that, as
 depicted in Figure 15, each frame the MS receives from the UAC is
 first recorded; then, when the recording process is ended, the whole
 recorded frames are played back to the UAC as an announcement.

 MS
 +------+
 UAC | |
 o----->>-------+˜˜˜˜˜> (recording.wav) ˜˜+
 o-----<<-------+ | |
 | ^ | v
 +--|---+ |
 +˜˜˜˜˜˜˜˜˜˜˜<<˜˜˜˜˜˜˜˜˜˜˜˜+

 Figure 15: Echo Test: Recording Involved

Amirante, et al. Informational [Page 30]

RFC 7058 CFW Call Flow Examples November 2013

 In the framework, this can be achieved by means of the IVR Control
 Package [RFC6231], which is in charge of both the recording and the
 playout phases. However, the whole scenario cannot be accomplished
 in a single transaction; at least two steps, in fact, need to be
 performed:

 1. First, a recording (preceded by an announcement, if requested)
 must take place.

 2. Then, a playout of the previously recorded media must occur.

 This means that two separate transactions need to be invoked. A
 sequence diagram of a potential multiple transaction is depicted in
 Figure 16:

Amirante, et al. Informational [Page 31]

RFC 7058 CFW Call Flow Examples November 2013

 UAC AS MS
	A1. CONTROL (record for 10s)
	++++++++++++++++++++++++++++++++>>
	A2. 202
	<<++++++++++++++++++++++++++++++++
	A3. REPORT (terminate)
	<<++++++++++++++++++++++++++++++++
	A4. 200 OK
	++++++++++++++++++++++++++++++++>>
<<##	
"This is an echo test: say something"	
<<##	
##>>	
10 s of audio from the UAC are recorded	--+ save
##>>	
	B1. CONTROL (<recordinfo>)
	<<++++++++++++++++++++++++++++++++
Use recorded +--	B2. 200 OK
file to play	
announcement +->	
	C1. CONTROL (play recorded)
	++++++++++++++++++++++++++++++++>>
	C2. 202
	<<++++++++++++++++++++++++++++++++
	C3. REPORT (terminate)
	<<++++++++++++++++++++++++++++++++
	C4. 200 OK
	++++++++++++++++++++++++++++++++>>
<<##	
"Can you hear me? It’s me, UAC, talking"	
<<##	
	D1. CONTROL (<promptinfo>)
	<<++++++++++++++++++++++++++++++++
	D2. 200 OK
	++++++++++++++++++++++++++++++++>>
 . . .
 . . .

Amirante, et al. Informational [Page 32]

RFC 7058 CFW Call Flow Examples November 2013

 Figure 16: Recording-Based Echo: Two Framework Transactions

 The first obvious difference that stands out when looking at the
 diagram is that, unlike the Direct Echo scenario, the MS does not
 reply with a 200 message to the CONTROL request originated by the AS.
 Instead, a 202 provisional message is sent first, followed by a
 REPORT message. The 202+REPORT(s) mechanism is used whenever the MS
 wants to tell the AS that the requested operation might take more
 time than the limit specified in the definition of the Control
 Package. So, while the <join> operation in the Direct Echo scenario
 was expected to be fulfilled in a very short time, the IVR request
 was assumed to last longer. A 202 message provides a timeout value
 and tells the AS to wait a bit, since the preparation of the dialog
 might not happen immediately. In this example, the preparation ends
 before the timeout, and so the transaction is concluded with a
 ’REPORT terminate’, which reports the end of the transaction (as did
 the 200 message in the previous example). If the preparation took
 longer than the timeout, an additional ’REPORT update’ would have
 been sent with a new timeout value, and so on, until completion by
 means of a ’REPORT terminate’.

 Note that the REPORT mechanism depicted is only shown to clarify its
 behavior. In fact, the 202+REPORT mechanism is assumed to be
 involved only when the requested transaction is expected to take a
 long time (e.g., retrieving a large media file for a prompt from an
 external server). In this scenario, the transaction would be
 prepared in much less time and as a consequence would very likely be
 completed within the context of a simple CONTROL+200 request/
 response. The following scenarios will only involve 202+REPORTs when
 they are strictly necessary.

 Regarding the dialog itself, note how the AS-originated CONTROL
 transactions are terminated as soon as the requested dialogs start.
 As specified in [RFC6231], the MS uses a framework CONTROL message to
 report the result of the dialog and how it has proceeded. The two
 transactions (the AS-generated CONTROL request and the MS-generated
 CONTROL event) are correlated by means of the associated dialog
 identifier, as explained below. As before, the transaction steps
 have been numbered. The two transactions are distinguished by the
 preceding letter (A,B=recording, C,D=playout).

 o The AS, as a first transaction, invokes a recording on the UAC
 connection by means of a CONTROL request (A1). The body is for
 the IVR package (msc-ivr/1.0) and requests the start
 (<dialogstart>) of a new recording context (<record>). The
 recording must be preceded by an announcement (<prompt>), must not
 last longer than 10 s (maxtime), and cannot be interrupted by a
 DTMF tone (dtmfterm=false). This is only done once (the missing

Amirante, et al. Informational [Page 33]

RFC 7058 CFW Call Flow Examples November 2013

 repeatCount attribute is 1 by default for a <dialog>), which means
 that if the recording does not succeed the first time, the
 transaction must fail. A video recording is requested
 (considering that the associated connection includes both audio
 and video and no restriction is enforced on streams to record),
 which is to be fed by both of the negotiated media streams. A
 beep has to be played (beep=true) right before the recording
 starts, to notify the UAC.

 o As seen before, the MS sends a provisional 202 response to let the
 AS know that the operation might need some time.

 o In the meantime, the MS prepares the dialog (e.g., by retrieving
 the announcement file, for which an HTTP URL is provided, and by
 checking that the request is well formed) and if all is fine it
 starts it, notifying the AS with a new REPORT (A3) with a
 terminated status. As explained previously, interlocutory REPORT
 messages with an update status would have been sent if the
 preparation took longer than the timeout provided in the 202
 message (e.g., if retrieving the resource via HTTP took longer
 than expected). Once the dialog has been prepared and started,
 the UAC connection is then passed to the IVR package, which first
 plays the announcement on the connection, followed by a beep, and
 then records all the incoming frames to a buffer. The MS also
 provides the AS with a unique dialog identifier (dialogid) that
 will be used in all subsequent event notifications concerning the
 dialog it refers to.

 o The AS acks the latest REPORT (A4), thus terminating this
 transaction, and waits for the results.

 o Once the recording is over, the MS prepares a notification CONTROL
 (B1). The <event> body is prepared with an explicit reference to
 the previously provided dialog identifier, in order to make the AS
 aware of the fact that the notification is related to that
 specific dialog. The event body is then completed with the
 recording-related information (<recordinfo>), in this case the
 path to the recorded file (here, an HTTP URL) that can be used by
 the AS for anything it needs. The payload also contains
 information about the prompt (<promptinfo>), which is, however,
 not relevant to the scenario.

 o The AS concludes this first recording transaction by acking the
 CONTROL event (B2).

Amirante, et al. Informational [Page 34]

RFC 7058 CFW Call Flow Examples November 2013

 Now that the first transaction has ended, the AS has the 10-s
 recording of the UAC talking and can let the UAC hear it by having
 the MS play it for the UAC as an announcement:

 o In the second transaction, the AS invokes a playout on the UAC
 connection by means of a new CONTROL request (C1). The body is
 once again for the IVR package (msc-ivr/1.0), but this time it
 requests the start (<dialogstart>) of a new announcement context
 (<prompt>). The file to be played is the file that was recorded
 before (<media>).

 o Again, the usual provisional 202 (C2) takes place.

 o In the meantime, the MS prepares and starts the new dialog, and
 notifies the AS with a new REPORT (C3) with a terminated status.
 The connection is then passed to the IVR package, which plays the
 file on it.

 o The AS acks the terminating REPORT (C4), now waiting for the
 announcement to end.

 o Once the playout is over, the MS sends a CONTROL event (D1) that
 contains in its body (<promptinfo>) information about the just-
 concluded announcement. As before, the proper dialogid is used as
 a reference to the correct dialog.

 o The AS concludes this second and last transaction by acking the
 CONTROL event (D2).

Amirante, et al. Informational [Page 35]

RFC 7058 CFW Call Flow Examples November 2013

 As in the previous paragraph, the whole CFW interaction is provided
 for a more in-depth evaluation of the protocol interaction.

 A1. AS -> MS (CFW CONTROL, record)

 CFW 796d83aa1ce4 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 265

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="10514b7f:6a900179">
 <dialog>
 <prompt>
 <media
 loc="http://www.example.com/demo/echorecord.mpg"/>
 </prompt>
 <record beep="true" maxtime="10s"/>
 </dialog>
 </dialogstart>
 </mscivr>

 A2. AS <- MS (CFW 202)

 CFW 796d83aa1ce4 202
 Timeout: 5

 A3. AS <- MS (CFW REPORT terminate)

 CFW 796d83aa1ce4 REPORT
 Seq: 1
 Status: terminate
 Timeout: 25
 Content-Type: application/msc-ivr+xml
 Content-Length: 137

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="200" reason="Dialog started"
 dialogid="68d6569"/>
 </mscivr>

 A4. AS -> MS (CFW 200, ACK to ’REPORT terminate’)

 CFW 796d83aa1ce4 200
 Seq: 1

Amirante, et al. Informational [Page 36]

RFC 7058 CFW Call Flow Examples November 2013

 B1. AS <- MS (CFW CONTROL event)

 CFW 0eb1678c0bfc CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 403

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="68d6569">
 <dialogexit status="1" reason="Dialog successfully completed">
 <promptinfo duration="9987" termmode="completed"/>
 <recordinfo duration="10017" termmode="maxtime">
 <mediainfo
 loc="http://www.example.net/recordings/recording-68d6569.mpg"
 type="video/mpeg" size="591872"/>
 </recordinfo>
 </dialogexit>
 </event>
 </mscivr>

 B2. AS -> MS (CFW 200, ACK to ’CONTROL event’)
 --
 CFW 0eb1678c0bfc 200

 C1. AS -> MS (CFW CONTROL, play)

 CFW 1632eead7e3b CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 241

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="10514b7f:6a900179">
 <dialog>
 <prompt>
 <media
 loc="http://www.example.net/recordings/recording-68d6569.mpg"/>
 </prompt>
 </dialog>
 </dialogstart>
 </mscivr>

Amirante, et al. Informational [Page 37]

RFC 7058 CFW Call Flow Examples November 2013

 C2. AS <- MS (CFW 202)

 CFW 1632eead7e3b 202
 Timeout: 5

 C3. AS <- MS (CFW REPORT terminate)

 CFW 1632eead7e3b REPORT
 Seq: 1
 Status: terminate
 Timeout: 25
 Content-Type: application/msc-ivr+xml
 Content-Length: 137

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="200" reason="Dialog started"
 dialogid="5f5cb45"/>
 </mscivr>

 C4. AS -> MS (CFW 200, ACK to ’REPORT terminate’)

 CFW 1632eead7e3b 200
 Seq: 1

 D1. AS <- MS (CFW CONTROL event)

 CFW 502a5fd83db8 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 230

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="5f5cb45">
 <dialogexit status="1" reason="Dialog successfully completed">
 <promptinfo duration="10366" termmode="completed"/>
 </dialogexit>
 </event>
 </mscivr>

 D2. AS -> MS (CFW 200, ACK to ’CONTROL event’)
 --
 CFW 502a5fd83db8 200

Amirante, et al. Informational [Page 38]

RFC 7058 CFW Call Flow Examples November 2013

6.2. Phone Call

 Another scenario that might involve the interaction between an AS and
 an MS is the classic phone call between two UACs. In fact, even
 though the most straightforward way to achieve this would be to let
 the UACs negotiate the session and the media to be used between them,
 there are cases when the services provided by an MS might also prove
 useful for such phone calls.

 One of these cases is when the two UACs have no common supported
 codecs: having the two UACs directly negotiate the session would
 result in a session with no available media. Involving the MS as a
 transcoder would in this case still allow the two UACs to
 communicate. Another interesting case is when the AS (or any other
 entity on whose behalf the AS is working) is interested in
 manipulating or monitoring the media session between the UACs, e.g.,
 to record the conversation. A similar scenario will be dealt with in
 Section 6.2.2.

 Before looking at how such a scenario might be accomplished by means
 of the Media Control Channel Framework, it is worth mentioning what
 the SIP signaling involving all the interested parties might look
 like. In fact, in such a scenario, a 3PCC approach is absolutely
 needed. An example is provided in Figure 17. Again, the presented
 example is not at all to be considered best common practice when 3PCC
 is needed in a MEDIACTRL-based framework. It is only described in
 order to help the reader more easily understand what the requirements
 are on the MS side, and as a consequence what information might be
 required. [RFC3725] provides a much more detailed overview on 3PCC
 patterns in several use cases. Only an explanatory sequence diagram
 is provided, without delving into the details of the exchanged SIP
 messages.

Amirante, et al. Informational [Page 39]

RFC 7058 CFW Call Flow Examples November 2013

 UAC(1) UAC(2) AS MS
 | | | |
 | INVITE (offer A) | |
 | Call-Id: A | | |
 |---------------------------------->| |
 | | 100 Trying | |
 | | Call-Id: A | |
 |<----------------------------------| |
 | | INVITE (no offer) | |
 | | Call-Id: B | |
 | |<--------------------| |
 | | 180 Ringing | |
 | | Call-Id: B | |
 | |-------------------->| |
 | | 180 Ringing | |
 | | Call-Id: A | |
 |<----------------------------------| |
 | | | INVITE (offer A) |
 | | | Call-Id: C |
 | | |-------------------------->|
 | | | 200 OK (offer A’) |
 | | | Call-Id: C |
 | | |<--------------------------|
 | | | ACK |
 | | | Call-Id: C |
 | | |-------------------------->|
 | | 200 OK (offer B) | |
 | | Call-Id: B | |
 | |-------------------->| |
 | | | INVITE (offer B) |
 | | | Call-Id: D |
 | | |-------------------------->|
 | | | 200 OK (offer B’) |
 | | | Call-Id: D |
 | | |<--------------------------|
 | | | ACK |
 | | | Call-Id: D |
 | | |-------------------------->|
 | | ACK (offer B’) | |
 | | Call-Id: B | |

Amirante, et al. Informational [Page 40]

RFC 7058 CFW Call Flow Examples November 2013

 | |<--------------------| |
 | | 200 OK (offer A’) | |
 | | Call-Id: A | |
 |<----------------------------------| |
 | ACK | | |
 | Call-Id: A | | |
 |---------------------------------->| |
 | | | |

 Figure 17: Phone Call: Example of 3PCC

 In this example, UAC1 wants to place a phone call to UAC2. To do so,
 it sends an INVITE to the AS with its offer A. The AS sends an
 offerless INVITE to UAC2. When UAC2 responds with a 180, the same
 message is forwarded by the AS to UAC1 to notify it that the callee
 is ringing. In the meantime, the AS also adds a leg to the MS for
 UAC1, as explained at the beginning of Section 6. To do so, it of
 course uses the offer A that UAC1 made. Once UAC2 accepts the call
 by providing its own offer B in the 200, the AS also adds a leg for
 offer B to the MS. At this point, the negotiation can be completed
 by providing the two UACs with the SDP answer negotiated by the MS
 with them (A’ and B’, respectively).

 Of course, this is only one way to deal with the signaling and shall
 not be considered an absolutely mandatory approach.

 Once the negotiation is over, the two UACs are not in communication
 yet. In fact, it’s up to the AS now to actively trigger the MS to
 somehow attach their media streams to each other, by referring to the
 connection identifiers associated with the UACs as explained
 previously. This document presents two different approaches that
 might be followed, according to what needs to be accomplished. A
 generic media perspective of the phone call scenario is depicted in
 Figure 18. The MS is basically in the media path between the
 two UACs.

 +-------+ UAC1 (RTP) +--------+ UAC1 (RTP) +-------+
 | UAC |===================>| Media |===================>| UAC |
 | 1 |<===================| Server |<===================| 2 |
 +-------+ UAC2 (RTP) +--------+ UAC2 (RTP) +-------+

 Figure 18: Phone Call: Media Perspective

Amirante, et al. Informational [Page 41]

RFC 7058 CFW Call Flow Examples November 2013

 From the framework point of view, when the UACs’ legs are not
 attached to anything yet, what appears is shown in Figure 19: since
 there are no connections involving the UACs yet, the frames they
 might be sending are discarded, and nothing is sent to them (except
 for silence, if its transmission is requested).

 MS
 +--------------+
 UAC 1 | | UAC 2
 o----->>-------x x.......>>.....o
 o.....<<.......x x-------<<-----o
 | |
 +--------------+

 Figure 19: Phone Call: UAC Media Leg Not Attached

6.2.1. Direct Connection

 The Direct Connection approach is the easiest, and a more
 straightforward, approach to get the phone call between the two UACs
 to work. The idea is basically the same as that of the Direct Echo
 approach. A <join> directive is used to directly attach one UAC to
 the other, by exploiting the MS to only deal with the transcoding/
 adaption of the flowing frames, if needed.

 This approach is depicted in Figure 20.

 MS
 +--------------+
 UAC 1 | | UAC 2
 o----->>-------+˜˜˜>>˜˜˜+------->>-----o
 o-----<<-------+˜˜˜<<˜˜˜+-------<<-----o
 | |
 +--------------+

 Figure 20: Phone Call: Direct Connection

Amirante, et al. Informational [Page 42]

RFC 7058 CFW Call Flow Examples November 2013

 UAC1 UAC2 AS MS
		1. CONTROL (join UAC1 to UAC2)
		++++++++++++++++++++++++++++++++++>>
		2. 200 OK
		<<++++++++++++++++++++++++++++++++++
<<###>>		
UAC1 can hear UAC2 talking		
<<###>>		
	<<###>>	
	UAC2 can hear UAC1 talking	
	<<###>>	
<*talking*>		

 Figure 21: Direct Connection: Framework Transactions

 The framework transactions needed to accomplish this scenario are
 very trivial and easy to understand. They are basically the same as
 those presented in the Direct Echo Test scenario; the only difference
 is in the provided identifiers. In fact, this time the MS is not
 supposed to attach the UACs’ media connections to themselves but has
 to join the media connections of two different UACs, i.e., UAC1 and
 UAC2. This means that in this transaction, id1 and i2 will have to
 address the media connections of UAC1 and UAC2. In the case of a
 successful transaction, the MS takes care of forwarding all media
 coming from UAC1 to UAC2 and vice versa, transparently taking care of
 any required transcoding steps, if necessary.

 1. AS -> MS (CFW CONTROL)

 CFW 0600855d24c8 CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 130

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <join id1="10514b7f:6a900179" id2="e1e1427c:1c998d22"/>
 </mscmixer>

Amirante, et al. Informational [Page 43]

RFC 7058 CFW Call Flow Examples November 2013

 2. AS <- MS (CFW 200 OK)

 CFW 0600855d24c8 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 125

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join successful"/>
 </mscmixer>

 Such a simple approach has its drawbacks. For instance, with such an
 approach, recording a conversation between two users might be tricky
 to accomplish. In fact, since no mixing would be involved, only the
 single connections (UAC1<->MS and UAC2<->MS) could be recorded. If
 the AS wants a conversation-recording service to be provided anyway,
 it needs additional business logic on its side. An example of such a
 use case is provided in Section 6.2.3.

6.2.2. Conference-Based Approach

 The approach described in Section 6.2.1 surely works for a basic
 phone call but, as explained previously, might have some drawbacks
 whenever more advanced features are needed. For instance, one can’t
 record the whole conversation -- only the single connections -- since
 no mixing is involved. Additionally, even the single task of playing
 an announcement over the conversation could be complex, especially if
 the MS does not support implicit mixing over media connections. For
 this reason, in more advanced cases a different approach might be
 taken, like the conference-based approach described in this section.

 The idea is to use a mixing entity in the MS that acts as a bridge
 between the two UACs. The presence of this entity allows more
 customization of what needs to be done with the conversation, like
 the recording of the conversation that has been provided as an
 example. The approach is depicted in Figure 22. The mixing
 functionality in the MS will be described in more detail in the
 following section (which deals with many conference-related
 scenarios), so only some hints will be provided here for basic
 comprehension of the approach.

Amirante, et al. Informational [Page 44]

RFC 7058 CFW Call Flow Examples November 2013

 MS
 +---------------+
 UAC A | | UAC B
 o----->>-------+˜˜>{#}::>+:::::::>>:::::o
 o:::::<<:::::::+<::{#}<˜˜+-------<<-----o
 | : |
 | : |
 +-------:-------+
 :
 +::::> (conversation.wav)

 Figure 22: Phone Call: Conference-Based Approach

 To identify a single sample scenario, let’s consider a phone call
 that the AS wants to record.

 Figure 23 shows how this could be accomplished in the Media Control
 Channel Framework. This example, as usual, hides the previous
 interaction between the UACs and the AS and instead focuses on the
 Control Channel operations and what follows.

Amirante, et al. Informational [Page 45]

RFC 7058 CFW Call Flow Examples November 2013

 UAC1 UAC2 AS MS
		A1. CONTROL (create conference)
		++++++++++++++++++++++++++++++++>>
		A2. 200 OK (conferenceid=Y)
		<<++++++++++++++++++++++++++++++++
		B1. CONTROL (record for 10800 s)
		++++++++++++++++++++++++++++++++>>
		B2. 200 OK
		<<++++++++++++++++++++++++++++++++
Recording +--		
of the mix		
has started +->		
		C1. CONTROL (join UAC1<->confY)
		++++++++++++++++++++++++++++++++>>
		C2. 200 OK
		<<++++++++++++++++++++++++++++++++
<<##>>		
Now UAC1 is mixed in the conference		
<<##>>		
		D1. CONTROL (join UAC2<->confY)
		++++++++++++++++++++++++++++++++>>
		D2. 200 OK
		<<++++++++++++++++++++++++++++++++
	<<##>>	
	Now UAC2 is mixed too	
	<###>>	
<*talking*>		

 Figure 23: Conference-Based Approach: Framework Transactions

Amirante, et al. Informational [Page 46]

RFC 7058 CFW Call Flow Examples November 2013

 The AS uses two different packages to accomplish this scenario: the
 Mixer package (to create the mixing entity and join the UACs) and the
 IVR package (to record what happens in the conference). The
 framework transaction steps can be described as follows:

 o First of all, the AS creates a new hidden conference by means of a
 <createconference> request (A1). This conference is properly
 configured according to the use it is assigned to. In fact, since
 only two participants will be joined to it, both
 ’reserved-talkers’ and ’reserved-listeners’ are set to 2, just as
 the ’n’ value for the N-best audio mixing algorithm. The video
 layout is also set accordingly (<single-view>/<dual-view>).

 o The MS sends notification of the successful creation of the new
 conference in a 200 framework message (A2). The identifier
 assigned to the conference, which will be used in subsequent
 requests addressed to it, is 6013f1e.

 o The AS requests a new recording for the newly created conference.
 To do so, it places a proper request to the IVR package (B1). The
 AS is interested in a video recording (type=video/mpeg), which
 must not last longer than 3 hours (maxtime=10800s), after which
 the recording must end. Additionally, no beep must be played on
 the conference (beep=false), and the recording must start
 immediately whether or not any audio activity has been reported
 (vadinitial=false is the default value for <record>).

 o The transaction is handled by the MS, and when the dialog has been
 successfully started, a 200 OK is issued to the AS (B2). The
 message contains the dialogid associated with the dialog
 (00b29fb), which the AS must refer to for later notifications.

 o At this point, the AS attaches both UACs to the conference with
 two separate <join> directives (C1/D1). When the MS confirms the
 success of both operations (C2/D2), the two UACs are actually in
 contact with each other (even though indirectly, since a hidden
 conference they’re unaware of is on their path), and their media
 contribution is recorded.

Amirante, et al. Informational [Page 47]

RFC 7058 CFW Call Flow Examples November 2013

A1. AS -> MS (CFW CONTROL, createconference)
--
 CFW 238e1f2946e8 CONTROL
 Control-Package: msc-mixer
 Content-Type: application/msc-mixer+xml
 Content-Length: 395

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <createconference reserved-talkers="2" reserved-listeners="2">
 <audio-mixing type="nbest" n="2"/>
 <video-layouts>
 <video-layout min-participants=’1’>
 <single-view/>
 </video-layout>
 <video-layout min-participants=’2’>
 <dual-view/>
 </video-layout>
 </video-layouts>
 <video-switch>
 <controller/>
 </video-switch>
 </createconference>
 </mscmixer>

A2. AS <- MS (CFW 200 OK)

 CFW 238e1f2946e8 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 151

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Conference created"
 conferenceid="6013f1e"/>
 </mscmixer>

Amirante, et al. Informational [Page 48]

RFC 7058 CFW Call Flow Examples November 2013

B1. AS -> MS (CFW CONTROL, record)

 CFW 515f007c5bd0 CONTROL
 Control-Package: msc-ivr
 Content-Type: application/msc-ivr+xml
 Content-Length: 226

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart conferenceid="6013f1e">
 <dialog>
 <record beep="false" type="video/mpeg" maxtime="10800s"/>
 </dialog>
 </dialogstart>
 </mscivr>

B2. AS <- MS (CFW 200 OK)

 CFW 515f007c5bd0 200
 Timeout: 10
 Content-Type: application/msc-ivr+xml
 Content-Length: 137

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="200" reason="Dialog started" dialogid="00b29fb"/>
 </mscivr>

C1. AS -> MS (CFW CONTROL, join)

 CFW 0216231b1f16 CONTROL
 Control-Package: msc-mixer
 Content-Type: application/msc-mixer+xml
 Content-Length: 123

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <join id1="10514b7f:6a900179" id2="6013f1e"/>
 </mscmixer>

Amirante, et al. Informational [Page 49]

RFC 7058 CFW Call Flow Examples November 2013

C2. AS <- MS (CFW 200 OK)

 CFW 0216231b1f16 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 125

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join successful"/>
 </mscmixer>

D1. AS -> MS (CFW CONTROL, join)

 CFW 140e0f763352 CONTROL
 Control-Package: msc-mixer
 Content-Type: application/msc-mixer+xml
 Content-Length: 124

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <join id1="219782951:0b9d3347" id2="6013f1e"/>
 </mscmixer>

D2. AS <- MS (CFW 200 OK)

 CFW 140e0f763352 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 125

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join successful"/>
 </mscmixer>

 The recording of the conversation can subsequently be accessed by the
 AS by waiting for an event notification from the MS. This event,
 which will be associated with the previously started recording
 dialog, will contain the URI of the recorded file. Such an event may
 be triggered by either a natural completion of the dialog (e.g., the
 dialog has reached its programmed 3 hours) or any interruption of the
 dialog itself (e.g., the AS actively requests that the recording be
 interrupted, since the call between the UACs ended).

Amirante, et al. Informational [Page 50]

RFC 7058 CFW Call Flow Examples November 2013

6.2.3. Recording a Conversation

 The previous section described how to take advantage of the
 conferencing functionality of the Mixer package in order to allow the
 recording of phone calls in a simple way. However, using a dedicated
 mixer just for a phone call might be considered overkill. This
 section shows how recording a conversation and subsequently playing
 it out can be accomplished without a mixing entity involved in the
 call, i.e., by using the Direct Connection approach as described in
 Section 6.2.1.

 As explained previously, if the AS wants to record a phone call
 between two UACs, the use of just the <join> directive without a
 mixer forces the AS to just rely on separate recording commands.
 That is, the AS can only instruct the MS to separately record the
 media flowing on each media leg: a recording for all the data coming
 from UAC1, and a different recording for all the data coming from
 UAC2. If someone subsequently wants to access the whole
 conversation, the AS may take at least two different approaches:

 1. It may mix the two recordings itself (e.g., by delegating it to
 an offline mixing entity) in order to obtain a single file
 containing the combination of the two recordings. This way, a
 simple playout as described in Section 6.1.2 would suffice.

 2. Alternatively, it may take advantage of the mixing functionality
 provided by the MS itself. One way to do this is to create a
 hidden conference on the MS, attach the UAC as a passive
 participant to it, and play the separate recordings on the
 conference as announcements. This way, the UAC accessing
 the recording would experience both of the recordings at the
 same time.

 The second approach is considered in this section. The framework
 transaction as described in Figure 24 assumes that a recording has
 already been requested for both UAC1 and UAC2, that the phone call
 has ended, and that the AS has successfully received the URIs to both
 of the recordings from the MS. Such steps are not described again,
 since they would be quite similar to the steps described in
 Section 6.1.2. As mentioned previously, the idea is to use a
 properly constructed hidden conference to mix the two separate
 recordings on the fly and present them to the UAC. It is, of course,
 up to the AS to subsequently unjoin the user from the conference and
 destroy the conference itself once the playout of the recordings ends
 for any reason.

Amirante, et al. Informational [Page 51]

RFC 7058 CFW Call Flow Examples November 2013

 UAC3 AS MS
 | | |
 | (UAC1 and UAC2 have previously been recorded; the AS has |
 | the two different recordings available for playout.) |
	A1. CONTROL (create conference)
	++++++++++++++++++++++++++++++++>>
	A2. 200 OK (conferenceid=Y)
	<<++++++++++++++++++++++++++++++++
	B1. CONTROL (join UAC3 & confY)
	++++++++++++++++++++++++++++++++>>
	B2. 200 OK
	<+++++++++++++++++++++++++++++++++
<<##>>	
UAC3 is now a passive participant in the conference	
<<##>>	
	C1. CONTROL (play REC1 on confY)
	++++++++++++++++++++++++++++++++>>
	D1. CONTROL (play REC2 on confY)
	++++++++++++++++++++++++++++++++>>
	C2. 200 OK
	<<++++++++++++++++++++++++++++++++
	D2. 200 OK
	<<++++++++++++++++++++++++++++++++
<<##	
The two recordings are mixed and played together to UAC	
<<##	
	E1. CONTROL (<promptinfo>)
	<<++++++++++++++++++++++++++++++++
	E2. 200 OK
	++++++++++++++++++++++++++++++++>>
	F1. CONTROL (<promptinfo>)
	<<++++++++++++++++++++++++++++++++

Amirante, et al. Informational [Page 52]

RFC 7058 CFW Call Flow Examples November 2013

	F2. 200 OK
	++++++++++++++++++++++++++++++++>>
 . . .
 . . .

 Figure 24: Phone Call: Playout of a Recorded Conversation

 The diagram above assumes that a recording of both of the channels
 (UAC1 and UAC2) has already taken place. Later, when we desire to
 play the whole conversation to a new user, UAC3, the AS may take care
 of the presented transactions. The framework transaction steps are
 only apparently more complicated than those presented so far. The
 only difference, in fact, is that transactions C and D are
 concurrent, since the recordings must be played together.

 o First of all, the AS creates a new conference to act as a mixing
 entity (A1). The settings for the conference are chosen according
 to the use case, e.g., the video layout, which is fixed to
 <dual-view>, and the switching type to <controller>. When the
 conference has been successfully created (A2), the AS takes note
 of the conference identifier.

 o At this point, UAC3 is attached to the conference as a passive
 user (B1). There would be no point in letting the user contribute
 to the conference mix, since he will only need to watch a
 recording. In order to specify his passive status, both the audio
 and video streams for the user are set to ’recvonly’. If the
 transaction succeeds, the MS notifies the AS (B2).

 o Once the conference has been created and UAC3 has been attached to
 it, the AS can request the playout of the recordings; in order to
 do so, it requests two concurrent <prompt> directives (C1 and D1),
 addressing the recording of UAC1 (REC1) and UAC2 (REC2),
 respectively. Both of the prompts must be played on the
 previously created conference and not to UAC3 directly, as can be
 deduced from the ’conferenceid’ attribute of the <dialog> element.

 o The transactions "live their lives" exactly as explained for
 previous <prompt> examples. The originating transactions are
 first prepared and started (C2, D2), and then, as soon as the
 playout ends, a related CONTROL message is triggered by the MS
 (E1, F1). This notification may contain a <promptinfo> element
 with information about how the playout proceeded (e.g., whether
 the playout completed normally or was interrupted by a DTMF
 tone, etc.).

Amirante, et al. Informational [Page 53]

RFC 7058 CFW Call Flow Examples November 2013

 A1. AS -> MS (CFW CONTROL, createconference)
 --
 CFW 506e039f65bd CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 312

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <createconference reserved-talkers="0" reserved-listeners="1">
 <audio-mixing type="controller"/>
 <video-layouts>
 <video-layout min-participants=’1’>
 <dual-view/>
 </video-layout>
 </video-layouts>
 <video-switch>
 <controller/>
 </video-switch>
 </createconference>
 </mscmixer>

 A2. AS <- MS (CFW 200 OK)

 CFW 506e039f65bd 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 151

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Conference created"
 conferenceid="2625069"/>
 </mscmixer>

 B1. AS -> MS (CFW CONTROL, join)

 CFW 09202baf0c81 CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 214

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <join id1="aafaf62d:0eac5236" id2="2625069">
 <stream media="audio" direction="recvonly"/>
 <stream media="video" direction="recvonly"/>
 </join>
 </mscmixer>

Amirante, et al. Informational [Page 54]

RFC 7058 CFW Call Flow Examples November 2013

 B2. AS <- MS (CFW 200 OK)

 CFW 09202baf0c81 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 125

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join successful"/>
 </mscmixer>

 C1. AS -> MS (CFW CONTROL, play recording from UAC1)
 --
 CFW 3c2a08be4562 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 229

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart conferenceid="2625069">
 <dialog>
 <prompt>
 <media
 loc="http://www.example.net/recordings/recording-4ca9fc2.mpg"/>
 </prompt>
 </dialog>
 </dialogstart>
 </mscivr>

 D1. AS -> MS (CFW CONTROL, play recording from UAC2)
 --
 CFW 1c268d810baa CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 229

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart conferenceid="2625069">
 <dialog>
 <prompt>
 <media
 loc="http://www.example.net/recordings/recording-39dfef4.mpg"/>
 </prompt>
 </dialog>
 </dialogstart>
 </mscivr>

Amirante, et al. Informational [Page 55]

RFC 7058 CFW Call Flow Examples November 2013

 C2. AS <- MS (CFW 200 OK)

 CFW 1c268d810baa 200
 Timeout: 10
 Content-Type: application/msc-ivr+xml
 Content-Length: 137

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="200" reason="Dialog started"
 dialogid="7a457cc"/>
 </mscivr>

 D2. AS <- MS (CFW 200 OK)

 CFW 3c2a08be4562 200
 Timeout: 10
 Content-Type: application/msc-ivr+xml
 Content-Length: 137

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="200" reason="Dialog started"
 dialogid="1a0c7cf"/>
 </mscivr>

 E1. AS <- MS (CFW CONTROL event, playout of recorded UAC1 ended)
 --
 CFW 77aec0735922 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 230

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="7a457cc">
 <dialogexit status="1" reason="Dialog successfully completed">
 <promptinfo duration="10339" termmode="completed"/>
 </dialogexit>
 </event>
 </mscivr>

 E2. AS -> MS (CFW 200, ACK to ’CONTROL event’)
 --
 CFW 77aec0735922 200

Amirante, et al. Informational [Page 56]

RFC 7058 CFW Call Flow Examples November 2013

 F1. AS <- MS (CFW CONTROL event, playout of recorded UAC2 ended)
 --
 CFW 62726ace1660 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 230

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="1a0c7cf">
 <dialogexit status="1" reason="Dialog successfully completed">
 <promptinfo duration="10342" termmode="completed"/>
 </dialogexit>
 </event>
 </mscivr>

 F2. AS -> MS (CFW 200, ACK to ’CONTROL event’)
 --
 CFW 62726ace1660 200

6.3. Conferencing

 One of the most important services the MS must be able to provide is
 mixing. This involves mixing media streams from different sources
 and delivering the resulting mix(es) to each interested party, often
 according to per-user policies, settings, and encoding. A typical
 scenario involving mixing is, of course, media conferencing. In such
 a scenario, the media sent by each participant is mixed, and each
 participant typically receives the overall mix, excluding its own
 contribution and encoded in the format it negotiated. This example
 points out in a quite clear way how mixing must take care of the
 profile of each involved entity.

Amirante, et al. Informational [Page 57]

RFC 7058 CFW Call Flow Examples November 2013

 A media perspective of such a scenario is depicted in Figure 25.

 +-------+
 | UAC |
 | C |
 +-------+
 " ^
 C (RTP) " "
 " "
 " " A+B (RTP)
 v "
 +-------+ A (RTP) +--------+ A+C (RTP) +-------+
 | UAC |===================>| Media |===================>| UAC |
 | A |<===================| Server |<===================| B |
 +-------+ B+C (RTP) +--------+ B (RTP) +-------+

 Figure 25: Conference: Media Perspective

 From the framework point of view, when the UACs’ legs are not
 attached to anything yet, what appears is shown in Figure 26: since
 there are no connections involving the UACs yet, the frames they
 might be sending are discarded, and nothing is sent back to them
 (except for silence, if its transmission is requested).

 MS
 +----------------+
 UAC A | | UAC B
 o----->>-------x x.......>>.....o
 o.....<<.......x x-------<<-----o
 | |
 | |
 | xx |
 | |. |
 +-------|.-------+
 |.
 ^v
 ^v
 |.
 oo
 UAC C

 Figure 26: Conference: UAC Legs Not Attached

Amirante, et al. Informational [Page 58]

RFC 7058 CFW Call Flow Examples November 2013

 The next subsections will cover several typical scenarios involving
 mixing and conferencing as a whole, specifically:

 1. Simple Bridging scenario, which is a very basic (i.e., no
 "special effects"; just mixing involved) conference involving one
 or more participants.

 2. Rich Conference scenario, which enriches the Simple Bridging
 scenario by adding additional features typically found in
 conferencing systems (e.g., DTMF collection for PIN-based
 conference access, private and global announcements, recordings,
 and so on).

 3. Coaching scenario, which is a more complex scenario that involves
 per-user mixing (customers, agents, and coaches don’t all get the
 same mixes).

 4. Sidebars scenario, which adds more complexity to the previous
 conferencing scenarios by involving sidebars (i.e., separate
 conference instances that only exist within the context of a
 parent conference instance) and the custom media delivery that
 follows.

 5. Floor Control scenario, which provides some guidance on how floor
 control could be involved in a MEDIACTRL-based media conference.

 All of the above-mentioned scenarios depend on the availability of a
 mixing entity. Such an entity is provided in the Media Control
 Channel Framework by the conferencing package. Besides allowing for
 the interconnection of media sources as seen in the Direct Echo Test
 section, this package enables the creation of abstract connections
 that can be joined to multiple connections. These abstract
 connections, called conferences, mix the contribution of each
 attached connection and feed them accordingly (e.g., a connection
 with a ’sendrecv’ property would be able to contribute to the mix and
 listen to it, while a connection with a ’recvonly’ property would
 only be able to listen to the overall mix but not actively contribute
 to it).

Amirante, et al. Informational [Page 59]

RFC 7058 CFW Call Flow Examples November 2013

 That said, each of the above-mentioned scenarios will start more or
 less in the same way: by the creation of a conference connection (or
 more than one, as needed in some cases) to be subsequently referred
 to when it comes to mixing. A typical framework transaction to
 create a new conference instance in the Media Control Channel
 Framework is depicted in Figure 27:

 AS MS
 | |
 | 1. CONTROL (create conference) |
 |++++++++++++++++++++++++++++++++>>|
 | |--+ create
 | | | conf and
 | 2. 200 OK (conferenceid=Y) |<-+ its ID
 |<<++++++++++++++++++++++++++++++++|
 map URI +--| |
 X with | | |
 confY +->| |
 | |
 . .
 . .

 Figure 27: Conference: Framework Transactions

 The call flow is quite straightforward and can typically be
 summarized in the following steps:

 o The AS invokes the creation of a new conference instance by means
 of a CONTROL request (1); this request is addressed to the
 conferencing package (msc-mixer/1.0) and contains in the body the
 directive (<createconference>) with all the desired settings for
 the new conference instance. In the example below, the mixing
 policy is to mix the five (’reserved-talkers’) loudest speakers
 (nbest), while ten listeners at maximum are allowed. Video
 settings are configured, including the mechanism used to select
 active video sources (<controller>, meaning the AS will explicitly
 instruct the MS about it) and details about the video layouts to
 make available. In this example, the AS is instructing the MS to
 use a <single-view> layout when only one video source is active,
 to pass to a <quad-view> layout when at least two video sources
 are active, and to use a <multiple-5x1> layout whenever the number
 of sources is at least five. Finally, the AS also subscribes to
 the "active-talkers" event, which means it wants to be informed
 (at a rate of 4 seconds) whenever an active participant is
 speaking.

Amirante, et al. Informational [Page 60]

RFC 7058 CFW Call Flow Examples November 2013

 o The MS creates the conference instance, assigns a unique
 identifier to it (6146dd5), and completes the transaction with a
 200 response (2).

 o At this point, the requested conference instance is active and
 ready to be used by the AS. It is then up to the AS to integrate
 the use of this identifier in its application logic.

 1. AS -> MS (CFW CONTROL)

 CFW 3032e5fb79a1 CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 489

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <createconference reserved-talkers="5" reserved-listeners="10">
 <audio-mixing type="nbest"/>
 <video-layouts>
 <video-layout min-participants=’1’>
 <single-view/>
 </video-layout>
 <video-layout min-participants=’2’>
 <quad-view/>
 </video-layout>
 <video-layout min-participants=’5’>
 <multiple-5x1/>
 </video-layout>
 </video-layouts>
 <video-switch>
 <controller/>
 </video-switch>
 <subscribe>
 <active-talkers-sub interval="4"/>
 </subscribe>
 </createconference>
 </mscmixer>

Amirante, et al. Informational [Page 61]

RFC 7058 CFW Call Flow Examples November 2013

 2. AS <- MS (CFW 200)

 CFW 3032e5fb79a1 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 151

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Conference created"
 conferenceid="6146dd5"/>
 </mscmixer>

6.3.1. Simple Bridging

 As mentioned previously, the simplest way that an AS can use a
 conference instance is simple bridging. In this scenario, the
 conference instance just acts as a bridge for all the participants
 that are attached to it. The bridge takes care of transcoding, if
 needed (in general, different participants may use different codecs
 for their streams), echo cancellation (each participant will receive
 the overall mix, excluding its own contribution) and per-participant
 mixing (each participant may receive different mixed streams,
 according to what it needs/is allowed to send/receive). This
 assumes, of course, that each interested participant must be somehow
 joined to the bridge in order to indirectly communicate with the
 other participants. From the media perspective, the scenario can be
 seen as depicted in Figure 28.

 MS
 +-----------------+
 UAC A | | UAC B
 o----->>-------+˜˜˜>{##}:::>+:::::::>>:::::o
 o:::::<<:::::::+<:::{##}<˜˜˜+-------<<-----o
 | ^: |
 | |v |
 | ++ |
 | |: |
 +--------|:-------+
 |:
 ^v
 ^v
 |:
 oo
 UAC C

 Figure 28: Conference: Simple Bridging

Amirante, et al. Informational [Page 62]

RFC 7058 CFW Call Flow Examples November 2013

 In the framework, the first step is obviously to create a new
 conference instance as seen in the introductory section (Figure 27).
 Assuming that a conference instance has already been created,
 bridging participants to it is quite straightforward and can be
 accomplished as seen in the Direct Echo Test scenario. The only
 difference here is that each participant is not directly connected to
 itself (Direct Echo) or another UAC (Direct Connection) but to the
 bridge instead. Figure 29 shows the example of two different UACs
 joining the same conference. The example, as usual, hides the
 previous interaction between each of the two UACs and the AS, and
 instead focuses on what the AS does in order to actually join the
 participants to the bridge so that they can interact in a conference.
 Please note also that to make the diagram more readable, two
 different identifiers (UAC1 and UAC2) are used in place of the
 identifiers previously employed to introduce the scenario (UAC A,
 B, C).

 UAC1 UAC2 AS MS
		A1. CONTROL (join UAC1 and confY)
		++++++++++++++++++++++++++++++++++>>
		A2. 200 OK
		<<++++++++++++++++++++++++++++++++++
<<##>>		
Now UAC1 is mixed in the conference		
<<##>>		
		B1. CONTROL (join UAC2 and confY)
		++++++++++++++++++++++++++++++++++>>
		B2. 200 OK
		<<++++++++++++++++++++++++++++++++++
	<<###>>	
	Now UAC2 too is mixed in the conference	
	<<###>>	

 Figure 29: Simple Bridging: Framework Transactions (1)

Amirante, et al. Informational [Page 63]

RFC 7058 CFW Call Flow Examples November 2013

 The framework transaction steps are actually quite trivial and easy
 to understand, since they’re very similar to some previously
 described scenarios. The AS joins both UAC1 (id1 in A1) and UAC2
 (id1 in B1) to the conference (id2 in both transactions). As a
 result of these two operations, both UACs are mixed in the
 conference. Since no <stream> is explicitly provided in any of the
 transactions, all the media from the UACs (audio/video) are attached
 to the conference (as long as the conference has been properly
 configured to support both, of course).

 A1. AS -> MS (CFW CONTROL)

 CFW 434a95786df8 CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 120

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <join id1="e1e1427c:1c998d22" id2="6146dd5"/>
 </mscmixer>

 A2. AS <- MS (CFW 200 OK)

 CFW 434a95786df8 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 125

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join successful"/>
 </mscmixer>

 B1. AS -> MS (CFW CONTROL)

 CFW 5c0cbd372046 CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 120

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <join id1="10514b7f:6a900179" id2="6146dd5"/>
 </mscmixer>

Amirante, et al. Informational [Page 64]

RFC 7058 CFW Call Flow Examples November 2013

 B2. AS <- MS (CFW 200 OK)

 CFW 5c0cbd372046 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 125

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join successful"/>
 </mscmixer>

 Once one or more participants have been attached to the bridge, their
 connections and how their media are handled by the bridge can be
 dynamically manipulated by means of another directive, called
 <modifyjoin>. A typical use case for this directive is the change of
 direction of an existing media (e.g., a previously speaking
 participant is muted, which means its media direction changes from
 ’sendrecv’ to ’recvonly’). Figure 30 shows how a framework
 transaction requesting such a directive might appear.

 UAC1 UAC2 AS MS
		1. CONTROL (modifyjoin UAC1)
		++++++++++++++++++++++++++++++++>>
		2. 200 OK
		<<++++++++++++++++++++++++++++++++
<<##		
Now UAC1 can receive but not send (recvonly)		
<<##		

 Figure 30: Simple Bridging: Framework Transactions (2)

 The directive used to modify an existing join configuration is
 <modifyjoin>, and its syntax is exactly the same as the syntax
 required in <join> instructions. In fact, the same syntax is used
 for identifiers (id1/id2). Whenever a <modifyjoin> is requested and
 id1 and id2 address one or more joined connections, the AS is
 requesting a change of the join configuration. In this case, the AS
 instructs the MS to mute (<stream> media=audio, direction=recvonly)
 UAC1 (id1=UAC1) in the conference (id2) it has been attached to
 previously. Any other connection existing between them is left
 untouched.

Amirante, et al. Informational [Page 65]

RFC 7058 CFW Call Flow Examples November 2013

 It is worth noting that the <stream> settings are enforced according
 to both the provided direction AND the id1 and id2 identifiers. For
 instance, in this example id1 refers to UAC1, while id2 refers to the
 conference in the MS. This means that the required modifications
 have to be applied to the stream specified in the <stream> element of
 the message, along the direction that goes from ’id1’ to ’id2’ (as
 specified in the <modifyjoin> element of the message). In the
 provided example, the AS wants to mute UAC1 with respect to the
 conference. To do so, the direction is set to ’recvonly’, meaning
 that, for what affects id1, the media stream is only to be received.
 If id1 referred to the conference and id2 to UAC1, to achieve the
 same result the direction would have to be set to ’sendonly’, meaning
 "id1 (the conference) can only send to id2 (UAC1), and no media
 stream must be received". Additional settings for a <stream> (e.g.,
 audio volume, region assignments, and so on) follow the same
 approach, as discussed in subsequent sections.

 1. AS -> MS (CFW CONTROL)

 CFW 57f2195875c9 CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 182

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <modifyjoin id1="e1e1427c:1c998d22" id2="6146dd5">
 <stream media="audio" direction="recvonly"/>
 </modifyjoin>
 </mscmixer>

 2. AS <- MS (CFW 200 OK)

 CFW 57f2195875c9 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 123

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join modified"/>
 </mscmixer>

6.3.2. Rich Conference Scenario

 The previous scenario can be enriched with additional features often
 found in existing conferencing systems. Typical examples include
 IVR-based menus (e.g., the DTMF collection for PIN-based conference
 access), partial and complete recordings in the conference (e.g., for

Amirante, et al. Informational [Page 66]

RFC 7058 CFW Call Flow Examples November 2013

 the "state your name" functionality and recording of the whole
 conference), private and global announcements, and so on. All of
 this can be achieved by means of the functionality provided by the
 MS. In fact, even if the conferencing and IVR features come from
 different packages, the AS can interact with both of them and achieve
 complex results by correlating the effects of different transactions
 in its application logic.

 From the media and framework perspective, a typical Rich Conference
 scenario can be seen as depicted in Figure 31.

 MS
 +-------- (announcement.wav)
 (conference_recording.wav) <:::::+|
 :|
 +--------:|--------+
 UAC A | :v | UAC B
 o----->>-------+˜˜˜>{##}:::>+:::::::>>:::::o
 o:::::<<:::::::+<:::{##}<˜˜˜+-------<<-----o
 | ^: | |
 | |v v |
 | ++ * (collect DTMF, get name)
 | |: |
 +--------|:--------+
 |:
 ^v
 ^v
 |:
 oo
 UAC C

 Figure 31: Conference: Rich Conference Scenario

 To identify a single sample scenario, let’s consider this sequence
 for a participant joining a conference (which again we assume has
 already been created):

 1. The UAC as usual INVITEs a URI associated with a conference, and
 the AS follows the previously explained procedure to have the UAC
 negotiate a new media session with the MS.

 2. The UAC is presented with an IVR menu, in which it is requested
 to input a PIN code to access the conference.

 3. If the PIN is correct, the UAC is asked to state its name so that
 it can be recorded.

Amirante, et al. Informational [Page 67]

RFC 7058 CFW Call Flow Examples November 2013

 4. The UAC is attached to the conference, and the previously
 recorded name is announced globally to the conference to
 advertise its arrival.

 Figure 32 shows a single UAC joining a conference. The example, as
 usual, hides the previous interaction between the UAC and the AS, and
 instead focuses on what the AS does to actually interact with the
 participant and join it to the conference bridge.

 UAC AS MS
	A1. CONTROL (request DTMF PIN)
	++++++++++++++++++++++++++++++++>>
	A2. 200 OK
	<<++++++++++++++++++++++++++++++++
<<##	
"Please input the PIN number to join the conference"	
<<##	
##>>	
DTMF digits are collected	--+ get
##>>	
	B1. CONTROL (<collectinfo>)
	<<++++++++++++++++++++++++++++++++
Compare DTMF +--	B2. 200 OK
digits with	
the PIN number +->	
	C1. CONTROL (record name)
	++++++++++++++++++++++++++++++++>>
	C2. 200 OK
	<<++++++++++++++++++++++++++++++++
<<##	
"Please state your name after the beep"	
<<##	
##>>	
Audio from the UAC is recorded (until timeout or DTMF)	--+ save
##>>	
	D1. CONTROL (<recordinfo>)
	<<++++++++++++++++++++++++++++++++

Amirante, et al. Informational [Page 68]

RFC 7058 CFW Call Flow Examples November 2013

Store recorded +--	D2. 200 OK	
file to play		++++++++++++++++++++++++++++++++>>
announcement in +->		
conference later		
	E1. CONTROL (join UAC & confY)	
	++++++++++++++++++++++++++++++++>>	
		--+ join
	E2. 200 OK	<-+ confY
	<+++++++++++++++++++++++++++++++++	
<<##>>		
UAC is now included in the mix of the conference		
<<##>>		
	F1. CONTROL (play name on confY)	
	++++++++++++++++++++++++++++++++>>	
		--+ start
	F2. 200 OK	<-+ dialog
	<<++++++++++++++++++++++++++++++++	
<<##		
Global announcement: "Simon has joined the conference"		
<<##		
	G1. CONTROL (<promptinfo>)	
	<<++++++++++++++++++++++++++++++++	
	G2. 200 OK	
	++++++++++++++++++++++++++++++++>>	
 . . .
 . . .

 Figure 32: Rich Conference Scenario: Framework Transactions

 As can be deduced from the sequence diagram above, the AS, in its
 business logic, correlates the results of different transactions,
 addressed to different packages, to implement a conferencing scenario
 more complex than the Simple Bridging scenario previously described.
 The framework transaction steps are as follows:

 o Since this is a private conference, the UAC is to be presented
 with a request for a password, in this case a PIN number. To do
 so, the AS instructs the MS (A1) to collect a series of DTMF
 digits from the specified UAC (connectionid=UAC). The request
 includes both a voice message (<prompt>) and the described digit
 collection context (<collect>). The PIN is assumed to be a

Amirante, et al. Informational [Page 69]

RFC 7058 CFW Call Flow Examples November 2013

 4-digit number, and so the MS has to collect 4 digits maximum
 (maxdigits=4). The DTMF digit buffer must be cleared before
 collecting (cleardigitbuffer=true), and the UAC can use the star
 key to restart the collection (escapekey=*), e.g., if the UAC is
 aware that he mistyped any of the digits and wants to start again.

 o The transaction goes on as usual (A2), with the transaction being
 handled and notification of the dialog start being sent in a 200
 OK. After that, the UAC is actually presented with the voice
 message and is subsequently requested to input the required PIN
 number.

 o We assume that the UAC typed the correct PIN number (1234), which
 is reported by the MS to the AS by means of the usual MS-generated
 CONTROL event (B1). The AS correlates this event to the
 previously started dialog by checking the referenced dialogid
 (06d1bac) and acks the event (B2). It then extracts the
 information it needs from the event (in this case, the digits
 provided by the MS) from the <controlinfo> container (dtmf=1234)
 and verifies that it is correct.

 o Since the PIN is correct, the AS can proceed to the next step,
 i.e., asking the UAC to state his name, in order to subsequently
 play the recording on the conference to report the new
 participant. Again, this is done with a request to the IVR
 package (C1). The AS instructs the MS to play a voice message
 ("state your name after the beep"), to be followed by a recording
 of only the audio from the UAC (in stream, media=audio/sendonly,
 while media=video/inactive). A beep must be played right before
 the recording starts (beep=true), and the recording must only last
 3 seconds (maxtime=3s), since it is only needed as a brief
 announcement.

 o Without delving again into the details of a recording-related
 transaction (C2), the AS finally gets the URI of the requested
 recording (D1, acked in D2).

 o At this point, the AS attaches the UAC (id1) to the conference
 (id2), just as explained for the Simple Bridging scenario (E1/E2).

 o Finally, to notify the other participants that a new participant
 has arrived, the AS requests a global announcement on the
 conference. This is a simple <prompt> request to the IVR package
 (F1), as explained in previous sections (e.g., Section 6.1.2,
 among others), but with a slight difference: the target of the
 prompt is not a connectionid (a media connection) but the
 conference itself (conferenceid=6146dd5). As a result of this
 transaction, the announcement would be played on all the media

Amirante, et al. Informational [Page 70]

RFC 7058 CFW Call Flow Examples November 2013

 connections attached to the conference that are allowed to receive
 media from it. The AS specifically requests that two media files
 be played:

 1. the media file containing the recorded name of the new user as
 retrieved in D1 ("Simon...").

 2. a pre-recorded media file explaining what happened ("... has
 joined the conference").

 The transaction then follows its usual flow (F2), and the event
 that sends notification regarding the end of the announcement (G1,
 acked in G2) concludes the scenario.

A1. AS -> MS (CFW CONTROL, collect)

 CFW 50e56b8d65f9 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 311

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="10514b7f:6a900179">
 <dialog>
 <prompt>
 <media
 loc="http://www.example.net/prompts/conf-getpin.wav"
 type="audio/x-wav"/>
 </prompt>
 <collect maxdigits="4" escapekey="*" cleardigitbuffer="true"/>
 </dialog>
 </dialogstart>
 </mscivr>

A2. AS <- MS (CFW 200 OK)

 CFW 50e56b8d65f9 200
 Timeout: 10
 Content-Type: application/msc-ivr+xml
 Content-Length: 137

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="200" reason="Dialog started" dialogid="06d1bac"/>
 </mscivr>

Amirante, et al. Informational [Page 71]

RFC 7058 CFW Call Flow Examples November 2013

B1. AS <- MS (CFW CONTROL event)

 CFW 166d68a76659 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 272

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="06d1bac">
 <dialogexit status="1" reason="Dialog successfully completed">
 <promptinfo duration="2312" termmode="completed"/>
 <collectinfo dtmf="1234" termmode="match"/>
 </dialogexit>
 </event>
 </mscivr>

B2. AS -> MS (CFW 200, ACK to ’CONTROL event’)
--
 CFW 166d68a76659 200

C1. AS -> MS (CFW CONTROL, record)

 CFW 61fd484f196e CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 373

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="10514b7f:6a900179">
 <dialog>
 <prompt>
 <media
 loc="http://www.example.net/prompts/conf-rec-name.wav"
 type="audio/x-wav"/>
 </prompt>
 <record beep="true" maxtime="3s"/>
 </dialog>
 <stream media="audio" direction="sendonly"/>
 <stream media="video" direction="inactive"/>
 </dialogstart>
 </mscivr>

Amirante, et al. Informational [Page 72]

RFC 7058 CFW Call Flow Examples November 2013

C2. AS <- MS (CFW 200 OK)

 CFW 61fd484f196e 200
 Timeout: 10
 Content-Type: application/msc-ivr+xml
 Content-Length: 137

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="200" reason="Dialog started" dialogid="1cf0549"/>
 </mscivr>

D1. AS <- MS (CFW CONTROL event)

 CFW 3ec13ab96224 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 402

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="1cf0549">
 <dialogexit status="1" reason="Dialog successfully completed">
 <promptinfo duration="4988" termmode="completed"/>
 <recordinfo duration="3000" termmode="maxtime">
 <mediainfo
 loc="http://www.example.net/recordings/recording-1cf0549.wav"
 type="audio/x-wav" size="48044"/>
 </recordinfo>
 </dialogexit>
 </event>
 </mscivr>

D2. AS -> MS (CFW 200, ACK to ’CONTROL event’)
--
 CFW 3ec13ab96224 200

E1. AS -> MS (CFW CONTROL, join)

 CFW 261d188b63b7 CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 120

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <join id1="10514b7f:6a900179" id2="6146dd5"/>
 </mscmixer>

Amirante, et al. Informational [Page 73]

RFC 7058 CFW Call Flow Examples November 2013

E2. AS <- MS (CFW 200 OK)

 CFW 261d188b63b7 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 125

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join successful"/>
 </mscmixer>

F1. AS -> MS (CFW CONTROL, play)

 CFW 718c30836f38 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 334

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart conferenceid="6146dd5">
 <dialog>
 <prompt>
 <media
 loc="http://www.example.net/recordings/recording-1cf0549.wav"
 type="audio/x-wav"/>
 <media
 loc="http://www.example.net/prompts/conf-hasjoin.wav"
 type="audio/x-wav"/>
 </prompt>
 </dialog>
 </dialogstart>
 </mscivr>

F2. AS <- MS (CFW 200 OK)

 CFW 718c30836f38 200
 Timeout: 10
 Content-Type: application/msc-ivr+xml
 Content-Length: 137

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="200" reason="Dialog started" dialogid="5f4bc7e"/>
 </mscivr>

Amirante, et al. Informational [Page 74]

RFC 7058 CFW Call Flow Examples November 2013

G1. AS <- MS (CFW CONTROL event)

 CFW 6485194f622f CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 229

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="5f4bc7e">
 <dialogexit status="1" reason="Dialog successfully completed">
 <promptinfo duration="1838" termmode="completed"/>
 </dialogexit>
 </event>
 </mscivr>

G2. AS -> MS (CFW 200, ACK to ’CONTROL event’)
--
 CFW 6485194f622f 200

6.3.3. Coaching Scenario

 Another typical conference-based use case is the so-called Coaching
 scenario. In such a scenario, a customer (called "A" in the
 following example) places a call to a business call center. An agent
 (B) is assigned to the customer. A coach (C), who cannot be heard by
 the customer, provides the agent with whispered suggestions about
 what to say. This scenario is also described in [RFC4597].

 As can be deduced from the scenario description, per-user policies
 for media mixing and delivery, i.e., who can hear what, are very
 important. The MS must make sure that only the agent can hear the
 coach’s suggestions. Since this is basically a multiparty call
 (despite what the customer might be thinking), a mixing entity is
 needed in order to accomplish the scenario requirements. To
 summarize:

 o The customer (A) must only hear what the agent (B) says.

 o The agent (B) must be able to hear both A and the coach (C).

 o C must be able to hear both A and B in order to give B the right
 suggestions and also be aware of the whole conversation.

Amirante, et al. Informational [Page 75]

RFC 7058 CFW Call Flow Examples November 2013

 From the media and framework perspective, such a scenario can be seen
 as depicted in Figure 33.

 ************** +-------+
 * A=Customer * | UAC |
 * B=Agent * | C |
 * C=Coach * +-------+
 ************** " ^
 C (RTP) " "
 " "
 " " A+B (RTP)
 v "
 +-------+ A (RTP) +--------+ A+C (RTP) +-------+
 | UAC |===================>| Media |===================>| UAC |
 | A |<===================| Server |<===================| B |
 +-------+ B (RTP) +--------+ B (RTP) +-------+

 Figure 33: Coaching Scenario: Media Perspective

 From the framework point of view, when the previously mentioned legs
 are not attached to anything yet, what appears is shown in Figure 34.

 MS
 +---------------------------+
 | |
 UAC A | | UAC B
 o.....<<.......x x-------<<-----o
 o----->>-------x x.......>>.....o
 | |
 | |
 | |
 | |
 | xx |
 | .| +
 +------------v^-------------+
 v^
 .|
 .|
 oo
 UAC C

 Figure 34: Coaching Scenario: UAC Legs Not Attached

 By contrast, what the scenario should look like is depicted in
 Figure 35. The customer receives media directly from the agent
 (’recvonly’), while all of the three involved participants contribute
 to a hidden conference. Of course, the customer is not allowed to

Amirante, et al. Informational [Page 76]

RFC 7058 CFW Call Flow Examples November 2013

 receive the mixed flows from the conference (’sendonly’), unlike the
 agent and the coach, who must both be aware of the whole conversation
 (’sendrecv’).

 MS
 +---------------------------+
 | |
 UAC A | | UAC B
 o-----<<-------+----<<----+----<<----+-------<<-----o
 o----->>-------+ | +------->>-----o
 | | v ^ |
 | +˜˜˜˜˜˜˜>[##]::::>::::+ |
 | v^ |
 | || |
 | ++ |
 | :| +
 +------------v^-------------+
 v^
 :|
 :|
 oo
 UAC C

 Figure 35: Coaching Scenario: UAC Legs Mixed and Attached

 In the framework, this can be achieved by means of the Mixer Control
 Package, which, as demonstrated in the previous conferencing
 examples, can be exploited whenever mixing and joining entities are
 needed. The needed steps can be summarized in the following list:

 1. First of all, a hidden conference is created.

 2. Then, the three participants are all attached to it, each with a
 custom mixing policy, specifically:

 * the customer (A) as ’sendonly’.

 * the agent (B) as ’sendrecv’.

 * the coach (C) as ’sendrecv’ and with a gain of -3 dB to halve
 the volume of its own contribution (so that the agent actually
 hears the customer at a louder volume and hears the coach
 whispering).

 3. Finally, the customer is joined to the agent as a passive
 receiver (’recvonly’).

Amirante, et al. Informational [Page 77]

RFC 7058 CFW Call Flow Examples November 2013

 A diagram of such a sequence of transactions is depicted in
 Figure 36:

 A B C AS MS
			A1. CONTROL (create conference)
			++++++++++++++++++++++++++++++++>>
			A2. 200 OK (conferenceid=Y)
			<<++++++++++++++++++++++++++++++++
			B1. CONTROL (join A-->confY)
			++++++++++++++++++++++++++++++++>>
			B2. 200 OK
			<<++++++++++++++++++++++++++++++++
##>>			
Customer (A) is mixed (sendonly) in the conference			
##>>			
			C1. CONTROL (join B<->confY)
			++++++++++++++++++++++++++++++++>>
			C2. 200 OK
			<<++++++++++++++++++++++++++++++++
	<<###>>		
	Agent (B) is mixed (sendrecv) in the conference		
	<##>>		
			D1. CONTROL (join C<->confY)
			++++++++++++++++++++++++++++++++>>
			D2. 200 OK
			<<++++++++++++++++++++++++++++++++
		<<######################################>>	
		Coach (C) is mixed (sendrecv) as well	
		<<######################################>>	

Amirante, et al. Informational [Page 78]

RFC 7058 CFW Call Flow Examples November 2013

 | | | | E1. CONTROL (join A<--B) |
 | | | |++++++++++++++++++++++++++++++++>>|
 | | | | |--+ join
 | | | | | | A & B
 | | | | E2. 200 OK |<-+ recvonly
 | | | |<<++++++++++++++++++++++++++++++++|
 | | | | |
 |<<##|
 | Finally, Customer (A) is joined (recvonly) to Agent (B)|
 |<<##|
 | | | | |

 Figure 36: Coaching Scenario: Framework Transactions

 o First of all, the AS creates a new hidden conference by means of a
 <createconference> request (A1). This conference is properly
 configured according to the use it is assigned to, i.e., to mix
 all the involved parties accordingly. Since only three
 participants will be joined to it, ’reserved-talkers’ is set to 3.
 ’reserved-listeners’, on the other hand, is set to 2, since only
 the agent and the coach must receive a mix, while the customer
 must be unaware of the coach. Finally, the video layout is set to
 <dual-view> for the same reason, since only the customer and the
 agent must appear in the mix.

 o The MS sends notification of the successful creation of the new
 conference in a 200 framework message (A2). The identifier
 assigned to the conference, which will be used in subsequent
 requests addressed to it, is 1df080e.

 o Now that the conference has been created, the AS joins the three
 actors to it with different policies, namely (i) the customer (A)
 is joined as ’sendonly’ to the conference (B1), (ii) the agent (B)
 is joined as ’sendrecv’ to the conference (C1), and (iii) the
 coach (C) is joined as ’sendrecv’ (but audio only) to the
 conference and with a lower volume (D1). The custom policies are
 enforced by means of properly constructed <stream> elements.

 o The MS takes care of the requests and acks them (B2, C2, D2). At
 this point, the conference will receive media from all the actors
 but only provide the agent and the coach with the resulting mix.

Amirante, et al. Informational [Page 79]

RFC 7058 CFW Call Flow Examples November 2013

 o To complete the scenario, the AS joins A with B directly as
 ’recvonly’ (E1). The aim of this request is to provide A with
 media too, namely the media contributed by B. This way, A is
 unaware of the fact that its media are accessed by C by means of
 the hidden mixer.

 o The MS takes care of this request too and acks it (E2), concluding
 the scenario.

 A1. AS -> MS (CFW CONTROL, createconference)
 --
 CFW 238e1f2946e8 CONTROL
 Control-Package: msc-mixer
 Content-Type: application/msc-mixer+xml
 Content-Length: 329

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <createconference reserved-talkers="3" reserved-listeners="2">
 <audio-mixing type="nbest"/>
 <video-layouts>
 <video-layout min-participants=’1’>
 <dual-view/>
 </video-layout>
 </video-layouts>
 <video-switch>
 <controller/>
 </video-switch>
 </createconference>
 </mscmixer>

 A2. AS <- MS (CFW 200 OK)

 CFW 238e1f2946e8 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 151

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Conference created"
 conferenceid="1df080e"/>
 </mscmixer>

Amirante, et al. Informational [Page 80]

RFC 7058 CFW Call Flow Examples November 2013

 B1. AS -> MS (CFW CONTROL, join)

 CFW 2eb141f241b7 CONTROL
 Control-Package: msc-mixer
 Content-Type: application/msc-mixer+xml
 Content-Length: 226

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <join id1="10514b7f:6a900179" id2="1df080e">
 <stream media="audio" direction="sendonly"/>
 <stream media="video" direction="sendonly"/>
 </join>
 </mscmixer>

 B2. AS <- MS (CFW 200 OK)

 CFW 2eb141f241b7 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 125

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join successful"/>
 </mscmixer>

 C1. AS -> MS (CFW CONTROL, join)

 CFW 515f007c5bd0 CONTROL
 Control-Package: msc-mixer
 Content-Type: application/msc-mixer+xml
 Content-Length: 122

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <join id1="756471213:c52ebf1b" id2="1df080e"/>
 </mscmixer>

Amirante, et al. Informational [Page 81]

RFC 7058 CFW Call Flow Examples November 2013

 C2. AS <- MS (CFW 200 OK)

 CFW 515f007c5bd0 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 125

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join successful"/>
 </mscmixer>

 D1. AS -> MS (CFW CONTROL, join)

 CFW 0216231b1f16 CONTROL
 Control-Package: msc-mixer
 Content-Type: application/msc-mixer+xml
 Content-Length: 221

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <join id1="z9hG4bK19461552:1353807a" id2="1df080e">
 <stream media="audio">
 <volume controltype="setgain" value="-3"/>
 </stream>
 </join>
 </mscmixer>

 D2. AS <- MS (CFW 200 OK)

 CFW 0216231b1f16 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 125

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join successful"/>
 </mscmixer>

Amirante, et al. Informational [Page 82]

RFC 7058 CFW Call Flow Examples November 2013

 E1. AS -> MS (CFW CONTROL, join)

 CFW 140e0f763352 CONTROL
 Control-Package: msc-mixer
 Content-Type: application/msc-mixer+xml
 Content-Length: 236

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <join id1="10514b7f:6a900179" id2="756471213:c52ebf1b">
 <stream media="audio" direction="recvonly"/>
 <stream media="video" direction="recvonly"/>
 </join>
 </mscmixer>

 E2. AS <- MS (CFW 200 OK)

 CFW 140e0f763352 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 125

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join successful"/>
 </mscmixer>

6.3.4. Sidebars

 Within the context of conferencing, there could be a need for
 so-called sidebars, or side conferences. This would be the case, for
 instance, if two or more participants of a conference were willing to
 create a side conference among each other while still receiving part
 of the original conference mix in the background. Motivations for
 such a use case can be found in both [RFC4597] and [RFC5239]. It is
 clear that in such a case the side conference is actually a separate
 conference but must also somehow be related to the original
 conference. Although the application-level relationship is out of
 scope for this document (this "belongs" to Centralized Conferencing
 (XCON)), the media stream relationship is more relevant here, because
 there is a stronger relationship at the media level from the
 MEDIACTRL point of view. Consequently, it is interesting to analyze
 how sidebars could be used to construct the conference mixes
 according to the MEDIACTRL specification.

 The scenario presented in this section is a conference hosting four
 different participants: A, B, C, and D. All these participants are
 attached to the conference as active senders and receivers of the
 existing media streams. At a certain point in time, two participants

Amirante, et al. Informational [Page 83]

RFC 7058 CFW Call Flow Examples November 2013

 (B and D) decide to create a sidebar just for them. The sidebar they
 want to create is constructed so that only audio is involved. The
 audio mix of the sidebar must not be made available to the main
 conference. The mix of the conference must be attached to the
 sidebar, but with a lower volume (30%), because it is just background
 to the actual conversation. This would allow both B and D to talk to
 each other without A and C listening to them, while B and D could
 still have an overview of what’s happening in the main conference.

 From the media and framework perspective, such a scenario can be seen
 as depicted in Figure 37.

 +-------+
 | UAC |
 | C |
 +-------+
 " ^
 C (RTP) " "
 " "
 " " A (RTP)
 v "
 +-------+ A (RTP) +--------+ D+[a+c] (RTP) +-------+
 | UAC |===================>| Media |===================>| UAC |
 | A |<===================| Server |<===================| B |
 +-------+ C (RTP) +--------+ B (RTP) +-------+
 ^ "
 " " B+[a+c] (RTP)
 " "
 D (RTP) " "
 " v
 +-------+
 | UAC |
 | D |
 +-------+

 Figure 37: Sidebars: Media Perspective

Amirante, et al. Informational [Page 84]

RFC 7058 CFW Call Flow Examples November 2013

 From the framework point of view, when all the participants are
 attached to the main conference, what appears is shown in Figure 38.

 UAC C
 oo
 :|
 ^v
 ^v
 :|
 +--------:|-------+
 | :| |
 | ++ |
 UAC A | ^| | UAC B
 o----->>-------+˜˜˜>{##}:::>+:::::::>>:::::o
 o:::::<<:::::::+<:::{##}<˜˜˜+-------<<-----o
 | ^: |
 | |v |
 | ++ |
 | |: |
 +--------|:-------+
 |:
 ^v
 ^v
 |:
 oo
 UAC D

 Figure 38: Sidebars: UAC Legs in Main Conference

 By contrast, what the scenario should look like is depicted in
 Figure 39. A new mixer is created to host the sidebar. The main mix
 is then attached as ’sendonly’ to the sidebar mix at a lower volume
 (in order to provide the sidebar users with a background of the main
 conference). The two interested participants (B and D) have their
 audio leg detached from the main conference and attached to the
 sidebar. This detachment can be achieved by either actually
 detaching the leg or just modifying the status of the leg to
 ’inactive’. Note that this only affects the audio stream: the video
 of the two users is still attached to the main conference, and what
 happens at the application level may or may not have been changed
 accordingly (e.g., XCON protocol interactions).

 Please note that the main conference is assumed to be in place and
 the involved participants (A, B, C, and D) attached (’sendrecv’)
 to it.

Amirante, et al. Informational [Page 85]

RFC 7058 CFW Call Flow Examples November 2013

 UAC C
 oo
 :|
 ^v
 ^v
 :|
 +--------:|----------------+
 | :| |
 | ++ |
 UAC A | ^| | UAC B
 o----->>-------+˜˜˜>{##}:::>{##}:::>+:::::::>>:::::o
 o:::::<<:::::::+<:::{##} {##}<˜˜˜+-------<<-----o
 | ^: |
 | ++ |
 | |v |
 +----------------|:--------+
 |:
 ^v
 ^v
 |:
 oo
 UAC D

 Figure 39: Sidebars: UAC Legs Mixed and Attached

 The situation may subsequently be reverted (e.g., destroying the
 sidebar conference and reattaching B and D to the main conference
 mix) in the same way. The AS would just need to unjoin B and D from
 the hidden conference and change their connection with the main
 conference back to ’sendrecv’. After unjoining the main mix and the
 sidebar mix, the sidebar conference could then be destroyed. For
 brevity, and because similar transactions have already been
 presented, these steps are not described here.

 In the framework, just as in the previous section, the presented
 scenario can again be achieved by means of the Mixer Control Package.
 The needed steps can be summarized in the following list:

 1. First of all, a hidden conference is created (the sidebar mix).

 2. Then, the main conference mix is attached to it as ’sendonly’ and
 with a gain of -5 dB to limit the volume of its own contribution
 to 30% (so that B and D can hear each other at a louder volume
 while still listening to what’s happening in the main conference
 in the background).

Amirante, et al. Informational [Page 86]

RFC 7058 CFW Call Flow Examples November 2013

 3. B and D are detached from the main mix for audio (<modifyjoin>
 with ’inactive’ status).

 4. B and D are attached to the hidden sidebar mix for audio.

 Note that for detaching B and D from the main mix, a <modifyjoin>
 with an ’inactive’ status is used, instead of an <unjoin>. The
 motivation for this is related to how a subsequent rejoining of B and
 D to the main mix could take place. In fact, by using <modifyjoin>
 the resources created when first joining B and D to the main mix
 remain in place, even if marked as unused at the moment. An
 <unjoin>, on the other hand, would actually free those resources,
 which in turn could be granted to other participants joining the
 conference in the meantime. This means that when needing to reattach
 B and D to the main mix, the MS may not have the resources to do so,
 resulting in an undesired failure.

 A diagram of such a sequence of transactions (where confX is the
 identifier of the pre-existing main conference mix) is depicted in
 Figure 40:

 B D AS MS
		A1. CONTROL (create conference)
		++++++++++++++++++++++++++++++++>>
		A2. 200 OK (conferenceid=Y)
		<<++++++++++++++++++++++++++++++++
		B1. CONTROL (join confX-->confY)
		++++++++++++++++++++++++++++++++>>
		B2. 200 OK
		<<++++++++++++++++++++++++++++++++
		C1. CONTROL (modjoin B---confX)
		++++++++++++++++++++++++++++++++>>
		C2. 200 OK
		<<++++++++++++++++++++++++++++++++

Amirante, et al. Informational [Page 87]

RFC 7058 CFW Call Flow Examples November 2013

 | | | D1. CONTROL (join B<-->confY) |
 | | |++++++++++++++++++++++++++++++++>>|
 | | | |--+ join B
 | | | | | & confY
 | | | D2. 200 OK |<-+ sendrecv
 | | |<<++++++++++++++++++++++++++++++++| (audio)
 | | | |
 |<<##>>|
 | Participant B is mixed (sendrecv) in the sidebar |
 | (A, C, and D can’t listen to her/him anymore) |
 |<<##>>|
		E1. CONTROL (modjoin D---confX)
		++++++++++++++++++++++++++++++++>>
		E2. 200 OK
		<<++++++++++++++++++++++++++++++++
		F1. CONTROL (join D<-->confY)
		++++++++++++++++++++++++++++++++>>
		F2. 200 OK
		<<++++++++++++++++++++++++++++++++
	<<##>>	
	D is mixed (sendrecv) in the sidebar too	
	(A and C can’t listen to her/him anymore)	
	<<##>>	
 . . .
 . . .

 Figure 40: Sidebars: Framework Transactions

 o First of all, the hidden conference mix is created (A1). The
 request is basically the same as that presented in previous
 sections, i.e., a <createconference> request addressed to the
 Mixer package. The request is very lightweight and asks the MS to
 only reserve two listener seats (’reserved-listeners’, since only
 B and D have to hear something) and three talker seats
 (’reserved-listeners’, because in addition to B and D the main mix
 is also an active contributor to the sidebar). The mixing will be
 driven by directives from the AS (mix-type=controller). When the
 mix is successfully created, the MS provides the AS with its
 identifier (519c1b9).

Amirante, et al. Informational [Page 88]

RFC 7058 CFW Call Flow Examples November 2013

 o As a first transaction after that, the AS joins the audio from the
 main conference and the newly created sidebar conference mix (B1).
 Only audio needs to be joined (media=audio), with a ’sendonly’
 direction (i.e., only flowing from the main conference to the
 sidebar and not vice versa) and at 30% volume with respect to the
 original stream (setgain=-5 dB). A successful completion of the
 transaction is reported to the AS (B2).

 o At this point, the AS makes the connection of B (2133178233:
 18294826) and the main conference (2f5ad43) inactive by means of a
 <modifyjoin> directive (C1). The request is taken care of by the
 MS (C2), and B is actually excluded from the mix for sending as
 well as receiving.

 o After that, the AS (D1) joins B (2133178233:18294826) to the
 sidebar mix created previously (519c1b9). The MS attaches the
 requested connections and sends confirmation to the AS (D2).

 o The same transactions already done for B are done for D as well
 (id1=1264755310:2beeae5b), i.e., the <modifyjoin> to make the
 connection in the main conference inactive (E1-2) and the <join>
 to attach D to the sidebar mix (F1-2). At the end of these
 transactions, A and C will only listen to each other, while B and
 D will listen to each other and to the conference mix as a
 comfortable background.

 A1. AS -> MS (CFW CONTROL, createconference)
 --
 CFW 7fdcc2331bef CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 198

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <createconference reserved-talkers="3" reserved-listeners="2">
 <audio-mixing type="controller"/>
 </createconference>
 </mscmixer>

Amirante, et al. Informational [Page 89]

RFC 7058 CFW Call Flow Examples November 2013

 A2. AS <- MS (CFW 200 OK)

 CFW 7fdcc2331bef 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 151

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Conference created"
 conferenceid="519c1b9"/>
 </mscmixer>

 B1. AS -> MS (CFW CONTROL, join with setgain)

 CFW 4e6afb6625e4 CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 226

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <join id1="2f5ad43" id2="519c1b9">
 <stream media="audio" direction="sendonly">
 <volume controltype="setgain" value="-5"/>
 </stream>
 </join>
 </mscmixer>

 B2. AS <- MS (CFW 200 OK)

 CFW 4e6afb6625e4 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 125

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join successful"/>
 </mscmixer>

Amirante, et al. Informational [Page 90]

RFC 7058 CFW Call Flow Examples November 2013

 C1. AS -> MS (CFW CONTROL, modifyjoin with ’inactive’ status)

 CFW 3f2dba317c83 CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 193

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <modifyjoin id1="2133178233:18294826" id2="2f5ad43">
 <stream media="audio" direction="inactive"/>
 </modifyjoin>
 </mscmixer>

 C2. AS <- MS (CFW 200 OK)

 CFW 3f2dba317c83 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 123

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join modified"/>
 </mscmixer>

 D1. AS -> MS (CFW CONTROL, join to sidebar)

 CFW 2443a8582d1d CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 181

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <join id1="2133178233:18294826" id2="519c1b9">
 <stream media="audio" direction="sendrecv"/>
 </join>
 </mscmixer>

Amirante, et al. Informational [Page 91]

RFC 7058 CFW Call Flow Examples November 2013

 D2. AS <- MS (CFW 200 OK)

 CFW 2443a8582d1d 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 125

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join successful"/>
 </mscmixer>

 E1. AS -> MS (CFW CONTROL, modifyjoin with ’inactive’ status)

 CFW 436c6125628c CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 193

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <modifyjoin id1="1264755310:2beeae5b" id2="2f5ad43">
 <stream media="audio" direction="inactive"/>
 </modifyjoin>
 </mscmixer>

 E2. AS <- MS (CFW 200 OK)

 CFW 436c6125628c 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 123

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join modified"/>
 </mscmixer>

Amirante, et al. Informational [Page 92]

RFC 7058 CFW Call Flow Examples November 2013

 F1. AS -> MS (CFW CONTROL, join to sidebar)

 CFW 7b7ed00665dd CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 181

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <join id1="1264755310:2beeae5b" id2="519c1b9">
 <stream media="audio" direction="sendrecv"/>
 </join>
 </mscmixer>

 F2. AS <- MS (CFW 200 OK)

 CFW 7b7ed00665dd 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 125

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join successful"/>
 </mscmixer>

6.3.5. Floor Control

 As described in [RFC4597], floor control is a feature typically
 needed and employed in most conference scenarios. In fact, while not
 a mandatory feature to implement when realizing a conferencing
 application, it provides additional control of the media streams
 contributed by participants, thus allowing for moderation of the
 available resources. The Centralized Conferencing (XCON) framework
 [RFC5239] suggests the use of the Binary Floor Control Protocol
 (BFCP) [RFC4582] to achieve the aforementioned functionality. That
 said, a combined use of floor control functionality and the tools
 made available by the MEDIACTRL specification for conferencing would
 definitely be interesting to investigate. [RFC5567] introduces two
 different approaches to integrating floor control with the MEDIACTRL
 architecture: (i) a topology where the floor control server is
 co-located with the AS and (ii) a topology where the floor control
 server is co-located with the MS. The two approaches are obviously
 different with respect to the amount of information the AS and the MS
 have to deal with, especially when thinking about the logic behind
 the floor queues and automated decisions. Nevertheless, considering
 how the Media Control Channel Framework is conceived, approach (ii)
 would need a dedicated package (be it an extension or a totally new
 package) in order to make the MS aware of floor control and allow the

Amirante, et al. Informational [Page 93]

RFC 7058 CFW Call Flow Examples November 2013

 MS to interact with the interested UAC accordingly. At the time of
 writing, such a package doesn’t exist yet, and as a consequence only
 approach (i) will be dealt with in the presented scenario.

 The scenario will then assume that the Floor Control Server (FCS) is
 co-located with the AS. This means that all the BFCP requests will
 be sent by Floor Control Participants (FCPs) to the FCS, which will
 make the AS directly aware of the floor statuses. For the sake of
 simplicity, the scenario assumes that the involved participants are
 already aware of all the identifiers needed in order to make BFCP
 requests for a specific conference. Such information may have been
 carried according to the COMEDIA negotiation as specified in
 [RFC4583]. It is important to note that such information must not
 reach the MS. This means that within the context of the 3PCC
 mechanism that may have been used in order to attach a UAC to the MS,
 all the BFCP-related information negotiated by the AS and the UAC
 must be removed before making the negotiation available to the MS,
 which may be unable to understand the specification. A simplified
 example of how this could be achieved is presented in Figure 41.
 Please note that within the context of this example scenario,
 different identifiers may be used to address the same entity.
 Specifically, in this case the UAC (the endpoint sending and
 receiving media) is also a FCP, as it negotiates a BFCP channel too.

Amirante, et al. Informational [Page 94]

RFC 7058 CFW Call Flow Examples November 2013

 UAC AS
 (FCP) (FCS) MS
INVITE (SDP: RTP+BFCP)		
-------------------------------->		
	INVITE (SDP: RTP)	
	-------------------------------->	
	200 (SDP: RTP’+labels)	
	<--------------------------------	
match +--		
floors		
& labels +->		
200 (SDP: RTP’+BFCP’+labels)		
<--------------------------------		
ACK		
-------------------------------->		
	ACK	
	-------------------------------->	
<<###################### RTP MEDIA STREAMS ######################>>		
<<******** BFCP CHANNEL *******>>		
 . . .
 . . .

 Figure 41: Floor Control: Example of Negotiation

Amirante, et al. Informational [Page 95]

RFC 7058 CFW Call Flow Examples November 2013

 From the media and framework perspective, such a scenario doesn’t
 differ much from the conferencing scenarios presented earlier. It is
 more interesting to focus on the chosen topology for the scenario, as
 depicted in Figure 42.

 +-------+ +--------+
 | UAC | | AS | +-------+
 | (FCP) |<****** BFCP ******>| (FCS) |<****** BFCP *******>| (FCC) |
 +-------+ +--------+ +-------+
 ^ ^
 | |
 | CFW |
 | |
 | v
 | +--------+
 +----------RTP---------->| MS |
 +--------+

 Figure 42: Floor Control: Overall Perspective

 The AS, besides maintaining the already-known SIP signaling among the
 involved parties, also acts as the FCS for the participants in the
 conferences for which it is responsible. In the scenario, two Floor
 Control Participants are involved: a basic Participant (FCP) and a
 Chair (FCC).

 As in all of the previously described conferencing examples, in the
 framework this can be achieved by means of the Mixer Control Package.
 Assuming that the conference has been created, the participant has
 been attached (’recvonly’) to it, and the participant is aware of the
 involved BFCP identifiers, the needed steps can be summarized in the
 following list:

 1. The assigned chair, FCC, sends a subscription for events related
 to the floor for which it is responsible (FloorQuery).

 2. The FCP sends a BFCP request (FloorRequest) to access the audio
 resource ("I want to speak").

 3. The FCS (AS) sends a provisional response to the FCP
 (FloorRequestStatus PENDING) and handles the request in its
 queue. Since a chair is assigned to this floor, the request is
 forwarded to the FCC for a decision (FloorStatus).

 4. The FCC makes a decision and sends it to the FCS (ChairAction
 ACCEPTED).

Amirante, et al. Informational [Page 96]

RFC 7058 CFW Call Flow Examples November 2013

 5. The FCS takes note of the decision and updates the queue
 accordingly. The decision is sent to the FCP (FloorRequestStatus
 ACCEPTED). The floor has not been granted yet.

 6. As soon as the queue allows it, the floor is actually granted to
 the FCP. The AS, which is co-located with the FCS, understands
 in its business logic that such an event is associated with the
 audio resource being granted to the FCP. As a consequence, a
 <modifyjoin> (’sendrecv’) is sent through the Control Channel to
 the MS in order to unmute the FCP UAC in the conference.

 7. The FCP is notified of this event (FloorRequestStatus GRANTED),
 thus ending the scenario.

 A diagram of such a sequence of transactions (also involving the BFCP
 message flow at a higher level) is depicted in Figure 43:

 UAC1 UAC2 AS
 (FCP) (FCC) (FCS) MS
 | | | |
 |<<##|
 | UAC1 is muted (recvonly stream) in the conference |
 |<<##|
	FloorQuery		
	*******>>		
		--+ handle	
			subscription
		<-+	
	FloorStatus		
	<<*******		
FloorRequest			
*****************>>			
		--+ handle	
			request
Pending	<-+ (queue)		
<<*****************			
	FloorStatus		
	<<*******		
	ChairAction (ACCEPT)		

Amirante, et al. Informational [Page 97]

RFC 7058 CFW Call Flow Examples November 2013

	*******>>		
	ChairActionAck		
	<<*******		
		--+ handle	
			decision
		<-+ (queue)	
Accepted			
<<*****************			
	FloorStatus		
	<<*******		
		--+ queue	
			grants
		<-+ floor	
		1. CONTROL (modjoin UAC<->conf)	
		++++++++++++++++++++++++++++++++>>	
			--+ modjoin
		2. 200 OK	<-+ (sendrecv)
		<<++++++++++++++++++++++++++++++++	
<<##>>			
UAC1 is now unmuted (sendrecv) in the conference			
and can speak, contributing to the mix			
<<##>>			
Granted			
<<*****************			
	FloorStatus		
	<<*******		
 . . .
 . . .

 Figure 43: Floor Control: Framework Transactions

 As can easily be deduced from the above diagram, the complex
 interaction at the BFCP level only results in a single transaction at
 the MEDIACTRL level. In fact, the purpose of the BFCP transactions
 is to moderate access to the audio resource, which means providing
 the event trigger to MEDIACTRL-based conference manipulation

Amirante, et al. Informational [Page 98]

RFC 7058 CFW Call Flow Examples November 2013

 transactions. Before being granted the floor, the FCP UAC is
 excluded from the conference mix at the MEDIACTRL level (’recvonly’).
 As soon as the floor has been granted, the FCP UAC is included in the
 mix. In MEDIACTRL words:

 o Since the FCP UAC must be included in the audio mix, a
 <modifyjoin> is sent to the MS in a CONTROL directive. The
 <modifyjoin> has as identifiers the connectionid associated with
 the FCP UAC (e1e1427c:1c998d22) and the conferenceid of the mix
 (cf45ee2). The <stream> element tells the MS that the audio media
 stream between the two must become bidirectional (’sendrecv’),
 changing the previous status (’recvonly’). Please note that in
 this case only audio was involved in the conference; if video were
 involved as well, and video had to be unchanged, a <stream>
 directive for video had to be placed in the request as well in
 order to maintain its current status.

 1. AS -> MS (CFW CONTROL)

 CFW gh67ffg56w21 CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 182

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <modifyjoin id1="e1e1427c:1c998d22" id2="cf45ee2">
 <stream media="audio" direction="sendrecv"/>
 </modifyjoin>
 </mscmixer>

 2. AS <- MS (CFW 200 OK)

 CFW gh67ffg56w21 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 123

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join modified"/>
 </mscmixer>

6.4. Additional Scenarios

 This section includes additional scenarios that can be of interest
 when dealing with AS<->MS flows. The aim of the following
 subsections is to present the use of features peculiar to the IVR
 package: specifically, variable announcements, VCR (video cassette

Amirante, et al. Informational [Page 99]

RFC 7058 CFW Call Flow Examples November 2013

 recorder) prompts, parallel playback, recurring dialogs, and custom
 grammars. To describe how call flows involving such features might
 happen, three sample scenarios have been chosen:

 1. Voice Mail (variable announcements for digits, VCR controls).

 2. Current Time (variable announcements for date and time, parallel
 playback).

 3. DTMF-driven Conference Manipulation (recurring dialogs, custom
 grammars).

6.4.1. Voice Mail

 An application that typically uses the services an MS can provide is
 Voice Mail. In fact, while it is clear that many of its features are
 part of the application logic (e.g., the mapping of a URI with a
 specific user’s voice mailbox, the list of messages and their
 properties, and so on), the actual media work is accomplished through
 the MS. Features needed by a Voice Mail application include the
 ability to record a stream and play it back at a later time, give
 verbose announcements regarding the status of the application,
 control the playout of recorded messages by means of VCR controls,
 and so on. These features are all supported by the MS through the
 IVR package.

 Without delving into the details of a full Voice Mail application and
 all its possible use cases, this section will cover a specific
 scenario and try to deal with as many interactions as possible that
 may happen between the AS and the MS in such a context. This
 scenario, depicted as a sequence diagram in Figure 44, will be as
 follows:

 1. The UAC INVITEs a URI associated with his mailbox, and the AS
 follows the previously explained procedure to have the UAC
 negotiate a new media session with the MS.

 2. The UAC is first prompted with an announcement giving him the
 amount of available new messages in the mailbox. After that, the
 UAC can choose which message to access by sending a DTMF tone.

 3. The UAC is then presented with a VCR-controlled announcement, in
 which the chosen received mail is played back to him. VCR
 controls allow him to navigate through the prompt.

 This is a quite oversimplified scenario, considering that it doesn’t
 even allow the UAC to delete old messages or organize them but just
 to choose which received message to play. Nevertheless, it gives us

Amirante, et al. Informational [Page 100]

RFC 7058 CFW Call Flow Examples November 2013

 the chance to deal with variable announcements and VCR controls --
 two typical features that a Voice Mail application would almost
 always take advantage of. Other features that a Voice Mail
 application would rely upon (e.g., recording streams, event-driven
 IVR menus, and so on) have been introduced in previous sections, and
 so representing them would be redundant. This means that the
 presented call flows assume that some messages have already been
 recorded and are available at reachable locations. The example also
 assumes that the AS has placed the recordings in its own storage
 facilities, since it is not safe to rely upon the internal MS
 storage, which is likely to be temporary.

 UAC AS MS
	A1. CONTROL (play variables and
	collect the user’s choice)
	++++++++++++++++++++++++++++++++>>
	A2. 200 OK
	<<++++++++++++++++++++++++++++++++
<<##	
"You have five messages ..."	
<<##	
	B1. CONTROL (<collectinfo>)
	<<++++++++++++++++++++++++++++++++
	B2. 200 OK
	++++++++++++++++++++++++++++++++>>
	C1. CONTROL (VCR for chosen msg)
	++++++++++++++++++++++++++++++++>>
	C2. 200 OK
	<<++++++++++++++++++++++++++++++++
<<##	
"Hi there, I tried to call you but..."	--+
<<##	
##>>	
The UAC controls the playout using DTMF	
##>>	

Amirante, et al. Informational [Page 101]

RFC 7058 CFW Call Flow Examples November 2013

	D1. CONTROL (<dtmfnotify>)
	<<++++++++++++++++++++++++++++++++
	D2. 200 OK
	++++++++++++++++++++++++++++++++>>
. . .	
. (other events are received in the meantime)	
. . .	
	E1. CONTROL (<controlinfo>)
	<<++++++++++++++++++++++++++++++++
	E2. 200 OK
	++++++++++++++++++++++++++++++++>>
 . . .
 . . .

 Figure 44: Voice Mail: Framework Transactions

 The framework transaction steps are as follows:

 o The first transaction (A1) is addressed to the IVR package (msc-
 ivr). It is basically an [RFC6231] ’promptandcollect’ dialog, but
 with a slight difference: some of the prompts to play are actual
 audio files, for which a URI is provided (media loc="xxx"), while
 others are so-called <variable> prompts; these <variable> prompts
 are actually constructed by the MS itself according to the
 directives provided by the AS. In this example, the sequence of
 prompts requested by the AS is as follows:

 1. play a wav file ("you have...").

 2. play a digit ("five...") by building it (variable: digit=5).

 3. play a wav file ("messages...").

 A DTMF collection is requested as well (<collect>) to be taken
 after the prompts have been played. The AS is only interested in
 a single digit (maxdigits=1).

 o The transaction is handled by the MS, and if everything works fine
 (i.e., the MS retrieved all the audio files and successfully built
 the variable announcements), the dialog is started; its start is
 reported, together with the associated identifier (5db01f4) to the
 AS in a terminating 200 OK message (A2).

Amirante, et al. Informational [Page 102]

RFC 7058 CFW Call Flow Examples November 2013

 o The AS then waits for the dialog to end in order to retrieve the
 results in which it is interested (in this case, the DTMF tone the
 UAC chooses, since it will affect which message will have to be
 played subsequently).

 o The UAC hears the prompts and chooses a message to play. In this
 example, he wants to listen to the first message and so inputs
 "1". The MS intercepts this tone and notifies the AS of it in a
 newly created CONTROL event message (B1); this CONTROL includes
 information about how each single requested operation ended
 (<promptinfo> and <collectinfo>). Specifically, the event states
 that the prompt ended normally (termmode=completed) and that the
 subsequently collected tone is 1 (dtmf=1). The AS acks the event
 (B2), since the dialogid provided in the message is the same as
 that of the previously started dialog.

 o At this point, the AS uses the value retrieved from the event to
 proceed with its business logic. It decides to present the UAC
 with a VCR-controllable playout of the requested message. This is
 done with a new request to the IVR package (C1), which contains
 two operations: <prompt> to address the media file to play (an old
 recording) and <control> to instruct the MS about how the playout
 of this media file shall be controlled via DTMF tones provided by
 the UAC (in this example, different DTMF digits are associated
 with different actions, e.g., pause/resume, fast forward, rewind,
 and so on). The AS also subscribes to DTMF events related to this
 control operation (matchmode=control), which means that the MS is
 to trigger an event any time that a DTMF associated with a control
 operation (e.g., 7=pause) is intercepted.

 o The MS prepares the dialog and, when the playout starts, sends
 notification in a terminating 200 OK message (C2). At this point,
 the UAC is presented with the prompt and can use DTMF digits to
 control the playback.

 o As explained previously, any DTMF associated with a VCR operation
 is then reported to the AS, together with a timestamp stating when
 the event happened. An example is provided (D1) in which the UAC
 pressed the fast-forward key (6) at a specific time. Of course,
 as for any other MS-generated event, the AS acks it (D2).

 o When the playback ends (whether because the media reached its
 termination or because any other interruption occurred), the MS
 triggers a concluding event with information about the whole
 dialog (E1). This event, besides including information about the
 prompt itself (<promptinfo>), also includes information related to
 the VCR operations (<controlinfo>), that is, all the VCR controls

Amirante, et al. Informational [Page 103]

RFC 7058 CFW Call Flow Examples November 2013

 the UAC used (fast forward/rewind/pause/resume in this example)
 and when it happened. The final ack by the AS (E2) concludes the
 scenario.

A1. AS -> MS (CFW CONTROL, play and collect)
--
 CFW 2f931de22820 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 429

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="10514b7f:6a900179">
 <dialog>
 <prompt>
 <media
 loc="http://www.example.net/prompts/vm-youhave.wav"
 type="audio/x-wav"/>
 <variable value="5" type="digits"/>
 <media
 loc="http://www.example.net/prompts/vm-messages.wav"
 type="audio/x-wav"/>
 </prompt>
 <collect maxdigits="1" escapekey="*"
 cleardigitbuffer="true"/>
 </dialog>
 </dialogstart>
 </mscivr>

A2. AS <- MS (CFW 200 OK)

 CFW 2f931de22820 200
 Timeout: 10
 Content-Type: application/msc-ivr+xml
 Content-Length: 137

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="200" reason="Dialog started" dialogid="5db01f4"/>
 </mscivr>

Amirante, et al. Informational [Page 104]

RFC 7058 CFW Call Flow Examples November 2013

B1. AS <- MS (CFW CONTROL event)

 CFW 7c97adc41b3e CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 270

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="5db01f4">
 <dialogexit status="1" reason="Dialog successfully completed">
 <promptinfo duration="11713" termmode="completed"/>
 <collectinfo dtmf="1" termmode="match"/>
 </dialogexit>
 </event>
 </mscivr>

B2. AS -> MS (CFW 200, ACK to ’CONTROL event’)
--
 CFW 7c97adc41b3e 200

C1. AS -> MS (CFW CONTROL, VCR)

 CFW 3140c24614bb CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 423

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="10514b7f:6a900179">
 <dialog>
 <prompt bargein="false">
 <media
 loc="http://www.example.com/messages/recording-4ca9fc2.mpg"/>
 </prompt>
 <control gotostartkey="1" gotoendkey="3"
 ffkey="6" rwkey="4" pausekey="7" resumekey="9"
 volupkey="#" voldnkey="*"/>
 </dialog>
 <subscribe>
 <dtmfsub matchmode="control"/>
 </subscribe>
 </dialogstart>
 </mscivr>

Amirante, et al. Informational [Page 105]

RFC 7058 CFW Call Flow Examples November 2013

C2. AS <- MS (CFW 200 OK)

 CFW 3140c24614bb 200
 Timeout: 10
 Content-Type: application/msc-ivr+xml
 Content-Length: 137

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="200" reason="Dialog started" dialogid="3e936e0"/>
 </mscivr>

D1. AS <- MS (CFW CONTROL event, dtmfnotify)
--
 CFW 361840da0581 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 179

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="3e936e0">
 <dtmfnotify matchmode="control" dtmf="6"
 timestamp="2008-12-16T12:58:36Z"/>
 </event>
 </mscivr>

D2. AS -> MS (CFW 200, ACK to ’CONTROL event’)
--
 CFW 361840da0581 200

 [..] The other VCR DTMF notifications are skipped for brevity [..]

Amirante, et al. Informational [Page 106]

RFC 7058 CFW Call Flow Examples November 2013

E1. AS <- MS (CFW CONTROL event, dialogexit)
--
 CFW 3ffab81c21e9 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 485

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="3e936e0">
 <dialogexit status="1" reason="Dialog successfully completed">
 <promptinfo duration="10270" termmode="completed"/>
 <controlinfo>
 <controlmatch dtmf="6" timestamp="2008-12-16T12:58:36Z"/>
 <controlmatch dtmf="4" timestamp="2008-12-16T12:58:37Z"/>
 <controlmatch dtmf="7" timestamp="2008-12-16T12:58:38Z"/>
 <controlmatch dtmf="9" timestamp="2008-12-16T12:58:40Z"/>
 </controlinfo>
 </dialogexit>
 </event>
 </mscivr>

E2. AS -> MS (CFW 200, ACK to ’CONTROL event’)
--
 CFW 3ffab81c21e9 200

6.4.2. Current Time

 An interesting scenario to create with the help of features provided
 by the MS is what is typically called ’Current Time’. A UAC calls a
 URI, which presents the caller with the current date and time. As
 can easily be deduced by the very nature of the application, variable
 announcements play an important role in this scenario. In fact,
 rather than having the AS build an announcement according to the
 current time using different framework messages, it is much easier to
 rely upon the "variable announcements" mechanism provided by the IVR
 package, as variable announcements provide several ways to deal with
 dates and times.

Amirante, et al. Informational [Page 107]

RFC 7058 CFW Call Flow Examples November 2013

 To make the scenario more interesting and have it cover more
 functionality, the application is also assumed to have background
 music played during the announcement. Because most of the
 announcements will be variable, a means is needed to have more
 streams played in parallel on the same connection. This can be
 achieved in two different ways:

 1. two separate and different dialogs, playing the variable
 announcements and the background track, respectively.

 2. a single dialog implementing a parallel playback.

 The first approach assumes that the available MS implements implicit
 mixing, which may or may not be supported since it’s a recommended
 feature but not mandatory. The second approach assumes that the MS
 implements support for more streams of the same media type (in this
 case audio) in the same dialog, which, exactly as for the case of
 implicit mixing, is not to be taken for granted. Because the first
 approach is quite straightforward and easy to understand, the
 following scenario uses the second approach and assumes that the
 available MS supports parallel playback of more audio tracks within
 the context of the same dialog.

 That said, the covered scenario, depicted as a sequence diagram in
 Figure 45, will be as follows:

 1. The UAC INVITEs a URI associated with the Current Time
 application, and the AS follows the previously explained
 procedure to have the UAC negotiate a new media session with the
 MS.

 2. The UAC is presented with an announcement including (i) a voice
 stating the current date and time; (ii) a background music track;
 and (iii) a mute background video track.

Amirante, et al. Informational [Page 108]

RFC 7058 CFW Call Flow Examples November 2013

 UAC AS MS
 | | |
 | | A1. CONTROL (play variables) |
 | |++++++++++++++++++++++++++++++++>>| prepare
 | | |--+ and
 | | A2. 202 | | start
 | |<<++++++++++++++++++++++++++++++++| | the
 | | | | dialog
 | | | | (takes
 | | A3. REPORT (terminate) |<-+ time)
	<<++++++++++++++++++++++++++++++++
	A4. 200 OK
	++++++++++++++++++++++++++++++++>>
<<##	
"16th of december 2008, 5:31 PM..."	
<<##	
	B1. CONTROL (<promptinfo>)
	<<++++++++++++++++++++++++++++++++
	B2. 200 OK
	++++++++++++++++++++++++++++++++>>
 . . .
 . . .
 . . .

 Figure 45: Current Time: Framework Transactions

 The framework transaction steps are as follows:

 o The first transaction (A1) is addressed to the IVR package (msc-
 ivr); it is basically an [RFC6231] ’playannouncements’ dialog,
 but, unlike all the scenarios presented so far, it includes
 directives for a parallel playback, as indicated by the <par>
 element. There are three flows to play in parallel:

 * a sequence (<seq>) of variable and static announcements (the
 actual time and date).

 * a music track (’media=music.wav’) to be played in the
 background at a lower volume (soundLevel=50%).

 * a mute background video track (media=clock.mpg).

Amirante, et al. Informational [Page 109]

RFC 7058 CFW Call Flow Examples November 2013

 The global announcement ends when the longest of the three
 parallel steps ends (endsync=last). This means that if one of the
 steps ends before the others, the step is muted for the rest of
 the playback. In this example, the series of static and
 <variable> announcements is requested by the AS:

 * play a wav file ("Tuesday...").

 * play a date ("16th of december 2008...") by building it
 (variable: date with a ymd=year/month/day format).

 * play a time ("5:31 PM...") by building it (variable: time with
 a t12=12 hour day format, am/pm).

 o The transaction is extended by the MS (A2) with a new timeout, as
 in this case the MS needs some more time to retrieve all the
 needed media files. Should the new timeout expire as well, the MS
 would send a further message to extend it again (a REPORT update),
 but for the sake of simplicity we assume that in this scenario it
 is not needed. If everything went fine (i.e., the MS retrieved
 all the audio files and successfully built the variable
 announcements, and it supports parallel playback as requested),
 the dialog is started. Its start is reported, together with the
 associated identifier (415719e), to the AS in a terminating REPORT
 message (A3).

 o The AS acks the REPORT (A4) and waits for the dialog to end in
 order to either conclude the application or proceed to further
 steps if required by the application itself.

 o When the last of the three parallel announcements ends, the dialog
 terminates, and an event (B1) is triggered to the AS with the
 relevant information (promptinfo). The AS acks (B2) and
 terminates the scenario.

Amirante, et al. Informational [Page 110]

RFC 7058 CFW Call Flow Examples November 2013

A1. AS -> MS (CFW CONTROL, play)

 CFW 0c7680191bd2 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 506

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="21c8e07b:055a893f">
 <dialog>
 <prompt bargein="true">
 <par endsync="last">
 <seq>
 <media loc="http://www.example.com/day-2.wav"/>
 <variable value="2008-12-16" type="date" format="ymd"/>
 <variable value="17:31" type="time" format="t12"/>
 </seq>
 <media loc="http://www.example.com/music.wav"
 soundLevel="50%"/>
 <media loc="http://www.example.com/clock.mpg"/>
 </par>
 </prompt>
 </dialog>
 </dialogstart>
 </mscivr>

A2. AS <- MS (CFW 202)

 CFW 0c7680191bd2 202
 Timeout: 5

A3. AS <- MS (CFW REPORT terminate)

 CFW 0c7680191bd2 REPORT
 Seq: 1
 Status: terminate
 Timeout: 10
 Content-Type: application/msc-ivr+xml
 Content-Length: 137

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="200" reason="Dialog started" dialogid="415719e"/>
 </mscivr>

Amirante, et al. Informational [Page 111]

RFC 7058 CFW Call Flow Examples November 2013

A4. AS -> MS (CFW 200, ACK to ’REPORT terminate’)

 CFW 0c7680191bd2 200
 Seq: 1

B1. AS <- MS (CFW CONTROL event)

 CFW 4481ca0c4fca CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 229

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="415719e">
 <dialogexit status="1" reason="Dialog successfully completed">
 <promptinfo duration="8046" termmode="completed"/>
 </dialogexit>
 </event>
 </mscivr>

B2. AS -> MS (CFW 200, ACK to ’CONTROL event’)
--
 CFW 4481ca0c4fca 200

6.4.3. DTMF-Driven Conference Manipulation

 To complete the scenarios presented in Section 6.3, this section
 deals with how the AS can use the MS to detect DTMF tones from
 conference participants and take actions on the conference
 accordingly. A typical example is when participants in a conference
 are provided with specific codes to:

 o mute/unmute themselves in the conference;

 o change their volume in the conference, or the volume of the
 conference itself;

 o change the video layout in the conference, if allowed;

 o kick abusive users out of the conference;

 and so on. To achieve all this, the simplest thing an AS can do is
 to prepare a recurring DTMF collection for each participant with
 specific grammars to match. If the collected tones match the
 grammar, the MS would notify the AS of the tones and start the
 collection again. Upon receipt of <collectinfo> events, the AS would

Amirante, et al. Informational [Page 112]

RFC 7058 CFW Call Flow Examples November 2013

 in turn originate the proper related request, e.g., a <modifyjoin> on
 the participant’s stream with the conference. This is made possible
 by three features provided by the IVR package:

 1. the ’repeatCount’ attribute.

 2. the subscription mechanism.

 3. the Speech Recognition Grammar Specification (SRGS) [SRGS].

 The first feature allows recurring instances of the same dialog
 without the need for additional requests upon completion of the
 dialog itself. In fact, the ’repeatCount’ attribute indicates how
 many times the dialog has to be repeated. When the attribute has the
 value 0, it means that the dialog has to be repeated indefinitely,
 meaning that it’s up to the AS to destroy it by means of a
 <dialogterminate> request when the dialog is no longer needed. The
 second feature allows the AS to subscribe to events related to the
 IVR package without waiting for the dialog to end, e.g., matching
 DTMF collections in this case. Finally, the last feature allows
 custom matching grammars to be specified. This way, only a subset of
 the possible DTMF strings can be specified, so that only those
 matches in which the AS is interested are reported. Grammars other
 than SRGS may be supported by the MS and will achieve the same
 result. This document will only describe the use of an SRGS grammar,
 since support for SRGS is mandated in [RFC6231].

 To identify a single sample scenario, we assume that a participant
 has successfully joined a conference, e.g., as detailed in Figure 32.
 We also assume that the following codes are to be provided within the
 conference to participants in order to let them take advantage of
 advanced features:

 1. *6 to mute/unmute themselves (on/off trigger).

 2. *1 to lower their own volume in the conference and *3 to raise
 it.

 3. *7 to lower the volume of the conference stream they are
 receiving and *9 to raise it.

 4. *0 to leave the conference.

Amirante, et al. Informational [Page 113]

RFC 7058 CFW Call Flow Examples November 2013

 This means that six different codes are supported and are to be
 matched in the requested DTMF collection. All other codes are
 collected by the MS but discarded, and no event is triggered to the
 AS. Because all the codes have the ’*’ (star) DTMF code in common,
 the following is an example of an SRGS grammar that may be used in
 the request by the AS:

 <grammar mode="dtmf" version="1.0"
 xmlns="http://www.w3.org/2001/06/grammar">
 <rule id="digit">
 <one-of>
 <item>0</item>
 <item>1</item>
 <item>3</item>
 <item>6</item>
 <item>7</item>
 <item>9</item>
 </one-of>
 </rule>
 <rule id="action" scope="public">
 <item>
 *
 <item><ruleref uri="#digit"/></item>
 </item>
 </rule>
 </grammar>

 As can be deduced by looking at the grammar, the presented SRGS XML
 code specifies exactly the requirements for the collections to match.
 The rule is to match any string that has a star (’*’) followed by a
 single supported digit (0, 1, 3, 6, 7, or 9). Such grammar, as
 stated in [RFC6231], may be either provided inline in the request
 itself or referenced externally by means of the ’src’ attribute. In
 the example scenario, we’ll put it inline, but an external reference
 to the same document would achieve exactly the same result.

Amirante, et al. Informational [Page 114]

RFC 7058 CFW Call Flow Examples November 2013

 Figure 46 shows how the AS might request the recurring collection for
 a UAC. As before, the example assumes that the UAC is already a
 participant in the conference.

 UAC AS MS
	A1. CONTROL (recurring collection)
	++++++++++++++++++++++++++++++++++++>>
	A2. 200 OK
	<<++++++++++++++++++++++++++++++++++++
##>>	
Recurring DTMF digit collection starts	--+ get
##>>	
	B1. CONTROL (dtmfinfo=*1)
	<<++++++++++++++++++++++++++++++++++++
	B2. 200 OK
	++++++++++++++++++++++++++++++++++++>>
	C1. CONTROL (modifyjoin UAC1-->conf)
	++++++++++++++++++++++++++++++++++++>>
	C2. 200 OK
	<<++++++++++++++++++++++++++++++++++++
##>>	
Volume of UAC in conference is lowered	
##>>	
	D1. CONTROL (dtmfinfo=*9)
	<<++++++++++++++++++++++++++++++++++++
	D2. 200 OK
	++++++++++++++++++++++++++++++++++++>>
	E1. CONTROL (modifyjoin UAC1<--conf)
	++++++++++++++++++++++++++++++++++++>>
	E2. 200 OK
	<<++++++++++++++++++++++++++++++++++++
<<##	
Now UAC can hear the conference mix at a higher volume	
<<##	

Amirante, et al. Informational [Page 115]

RFC 7058 CFW Call Flow Examples November 2013

	F1. CONTROL (dtmfinfo=*6)
	<<++++++++++++++++++++++++++++++++++++
	F2. 200 OK
	++++++++++++++++++++++++++++++++++++>>
	G1. CONTROL (modifyjoin UAC1-->conf)
	++++++++++++++++++++++++++++++++++++>>
	G2. 200 OK
	<<++++++++++++++++++++++++++++++++++++
##>>	
UAC is now muted in the conference	
##>>	
	H1. CONTROL (dtmfinfo=*0)
	<<++++++++++++++++++++++++++++++++++++
	H2. 200 OK
	++++++++++++++++++++++++++++++++++++>>
	I1. CONTROL (destroy DTMF dialog)
	++++++++++++++++++++++++++++++++++++>>
	I2. 200 OK
	<<++++++++++++++++++++++++++++++++++++
	J1. CONTROL (dialogexit)
	<<++++++++++++++++++++++++++++++++++++
	J2. 200 OK
	++++++++++++++++++++++++++++++++++++>>
##>>	
No more tones from UAC are collected	
##>>	
	K1. CONTROL (unjoin UAC1<-X->conf)
	++++++++++++++++++++++++++++++++++++>>
	K2. 200 OK
	<<++++++++++++++++++++++++++++++++++++
	L1. CONTROL (unjoin-notify)
	<<++++++++++++++++++++++++++++++++++++

Amirante, et al. Informational [Page 116]

RFC 7058 CFW Call Flow Examples November 2013

	L2. 200 OK
	++++++++++++++++++++++++++++++++++++>>
 . . .
 . . .

 Figure 46: DTMF-Driven Conference Manipulation:
 Framework Transactions

 As can be deduced from the sequence diagram above, the AS, in its
 business logic, correlates the results of different transactions,
 addressed to different packages, to implement a more complex
 conferencing scenario. In fact, <dtmfnotify> events are used to take
 actions according to the functions of the DTMF codes. The framework
 transaction steps are as follows:

 o The UAC is already in the conference, and so the AS starts a
 recurring collect with a grammar to match. This is done by
 placing a CONTROL request addressed to the IVR package (A1). The
 operation to implement is a <collect>, and we are only interested
 in two-digit DTMF strings (maxdigits). The AS is not interested
 in a DTMF terminator (termchar is set to a non-conventional DTMF
 character), and the DTMF escape key is set to ’#’ (the default is
 ’*’, which would conflict with the code syntax for the conference
 and so needs to be changed). A custom SRGS grammar is provided
 inline (<grammar> with mode=dtmf). The whole dialog is to be
 repeated indefinitely (dialog has repeatCount=0), and the AS wants
 to be notified when matching collections occur (dtmfsub with
 matchmode=collect).

 o The request is handled by the MS (A2) and then successfully
 started (dialogid=01d1b38). This means that the MS has started
 collecting DTMF tones from the UAC.

 o The MS collects a matching DTMF string from the UAC (*1). Since
 the AS subscribed to this kind of event, a CONTROL event
 notification (dtmfnotify) is triggered by the MS (B1), including
 the collected tones. Since the dialog is recurring, the MS
 immediately restarts the collection.

 o The AS acks the event (B2) and in its business logic understands
 that the code ’*1’ means that the UAC wants its own volume to be
 lowered in the conference mix. The AS is able to associate the
 event with the right UAC by referring to the attached dialogid
 (01d1b38). It then acts accordingly by sending a <modifyjoin>
 (C1) that does exactly this: the provided <stream> child element
 instructs the MS to modify the volume of the UAC-->conference
 audio flow (setgain=-5 dB ’sendonly’). Note that the "setgain"

Amirante, et al. Informational [Page 117]

RFC 7058 CFW Call Flow Examples November 2013

 value is the absolute volume level. If the user’s request is to
 lower the volume level, the AS must remember the previously set
 volume level and from it calculate the new volume level. Note how
 the request also includes directives for the inverse direction.
 This verbose approach is needed; otherwise, the MS would not only
 change the volume in the requested direction but would also
 disable the media flow in the other direction. Having a proper
 <stream> addressing the UAC<--conf media flow as well ensures that
 this doesn’t happen.

 o The MS successfully enforces the requested operation (C2),
 changing the volume.

 o A new matching DTMF string from the UAC is collected (*9). As
 before, an event is triggered to the AS (D1).

 o The AS acks the event (D2) and matches the new code (’*9’) with
 its related operation (raise the volume of the conference mix for
 the UAC), taking the proper action. A different <modifyjoin> is
 sent (E1) with the new instructions (setgain=+3 dB ’recvonly’).
 The same considerations regarding how the incremental operation
 should be mapped to the command apply here as well. Note also how
 a <stream> for the inverse direction (’sendonly’) is again
 provided just as a placeholder, which basically instructs the MS
 that the settings for that direction are not to be changed,
 maintaining the previous directives of (C1).

 o The MS successfully enforces this requested operation as well
 (E2), changing the volume in the specified direction.

 o At this point, a further matching DTMF string from the UAC is
 collected (*6) and sent to the AS (F1).

 o After the required ack (F2), the AS reacts by implementing the
 action associated with the new code (’*6’), by which the UAC
 requested that it be muted within the conference. A new
 <modifyjoin> is sent (G1) with a properly constructed payload
 (setstate=mute ’sendonly’), and the MS enforces it (G2).

 o A last (in this scenario) matching DTMF string is collected by the
 MS (*0). As with all the previous codes, notification of this
 string is sent to the AS (H1).

Amirante, et al. Informational [Page 118]

RFC 7058 CFW Call Flow Examples November 2013

 o The AS acks the event (H2) and understands that the UAC wants to
 leave the conference now (since the code is *0). This means that
 a series of actions must be taken:

 * The recurring collection is stopped, since it’s no longer
 needed.

 * The UAC is unjoined from the conference it is in.

 * Additional operations might be considered, e.g., a global
 announcement stating that the UAC is leaving, but for the sake
 of conciseness such operations are not listed here.

 The former is accomplished by means of a <dialogterminate> request
 (I1) to the IVR package (dialogid=01d1b38) and the latter by means
 of an <unjoin> request (K1) to the Mixer package.

 o The <dialogterminate> request is handled by the MS (I2), and the
 dialog is terminated successfully. As soon as the dialog has
 actually been terminated, a <dialogexit> event is triggered as
 well to the AS (J1). This event has no report of the result of
 the last iteration (since the dialog was terminated abruptly with
 an immediate=true) and is acked by the AS (J2) to finally complete
 the dialog lifetime.

 o The <unjoin> request is immediately enforced (K2). As a
 consequence of the unjoin operation, an <unjoin-notify> event
 notification is triggered by the MS (L1) to confirm to the AS that
 the requested entities are no longer attached to each other. The
 status in the event is set to 0, which, as stated in the
 specification, means that the join has been terminated by an
 <unjoin> request. The ack from the AS (L2) concludes this
 scenario.

Amirante, et al. Informational [Page 119]

RFC 7058 CFW Call Flow Examples November 2013

A1. AS -> MS (CFW CONTROL, recurring collect with grammar)
--
 CFW 238e1f2946e8 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 809

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="14849028:37fc2523">
 <dialog repeatCount="0">
 <collect maxdigits="2" termchar="A" escapekey="#">
 <grammar>
 <grammar version="1.0" mode="dtmf"
 xmlns="http://www.w3.org/2001/06/grammar">
 <rule id="digit">
 <one-of>
 <item>0</item>
 <item>1</item>
 <item>3</item>
 <item>6</item>
 <item>7</item>
 <item>9</item>
 </one-of>
 </rule>
 <rule id="action" scope="public">
 <example>*3</example>
 <one-of>
 <item>
 *
 <ruleref uri="#digit"/>
 </item>
 </one-of>
 </rule>
 </grammar>
 </grammar>
 </collect>
 </dialog>
 <subscribe>
 <dtmfsub matchmode="collect"/>
 </subscribe>
 </dialogstart>
 </mscivr>

Amirante, et al. Informational [Page 120]

RFC 7058 CFW Call Flow Examples November 2013

A2. AS <- MS (CFW 200 OK)

 CFW 238e1f2946e8 200
 Timeout: 10
 Content-Type: application/msc-ivr+xml
 Content-Length: 137

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="200" reason="Dialog started" dialogid="01d1b38"/>
 </mscivr>

B1. AS <- MS (CFW CONTROL dtmfnotify event)

 CFW 1dd62e043c00 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 180

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="01d1b38">
 <dtmfnotify matchmode="collect" dtmf="*1"
 timestamp="2008-12-17T17:20:53Z"/>
 </event>
 </mscivr>

B2. AS -> MS (CFW 200, ACK to ’CONTROL event’)
--
 CFW 1dd62e043c00 200

C1. AS -> MS (CFW CONTROL, modifyjoin with setgain)

 CFW 0216231b1f16 CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 290

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <modifyjoin id1="873975758:a5105056" id2="54b4ab3">
 <stream media="audio" direction="sendonly">
 <volume controltype="setgain" value="-5"/>
 </stream>
 <stream media="audio" direction="recvonly"/>
 </modifyjoin>
 </mscmixer>

Amirante, et al. Informational [Page 121]

RFC 7058 CFW Call Flow Examples November 2013

C2. AS <- MS (CFW 200 OK)

 CFW 0216231b1f16 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 123

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join modified"/>
 </mscmixer>

D1. AS <- MS (CFW CONTROL dtmfnotify event)

 CFW 4d674b3e0862 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 180

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="01d1b38">
 <dtmfnotify matchmode="collect" dtmf="*9"
 timestamp="2008-12-17T17:20:57Z"/>
 </event>
 </mscivr>

D2. AS -> MS (CFW 200, ACK to ’CONTROL event’)
--
 CFW 4d674b3e0862 200

E1. AS -> MS (CFW CONTROL, modifyjoin with setgain)

 CFW 140e0f763352 CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 292

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <modifyjoin id1="873975758:a5105056" id2="54b4ab3">
 <stream media="audio" direction="recvonly">
 <volume controltype="setgain" value="+3"/>
 </stream>
 <stream media="audio" direction="sendonly"/>
 </modifyjoin>
 </mscmixer>

Amirante, et al. Informational [Page 122]

RFC 7058 CFW Call Flow Examples November 2013

E2. AS <- MS (CFW 200 OK)

 CFW 140e0f763352 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 123

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join modified"/>
 </mscmixer>

F1. AS <- MS (CFW CONTROL dtmfnotify event)

 CFW 478ed6f1775b CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 180

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="01d1b38">
 <dtmfnotify matchmode="collect" dtmf="*6"
 timestamp="2008-12-17T17:21:02Z"/>
 </event>
 </mscivr>

F2. AS -> MS (CFW 200, ACK to ’CONTROL event’)
--
 CFW 478ed6f1775b 200

G1. AS -> MS (CFW CONTROL, modifyjoin with setstate)
--
 CFW 7fdcc2331bef CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 295

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <modifyjoin id1="873975758:a5105056" id2="54b4ab3">
 <stream media="audio" direction="sendonly">
 <volume controltype="setstate" value="mute"/>
 </stream>
 <stream media="audio" direction="recvonly"/>
 </modifyjoin>
 </mscmixer>

Amirante, et al. Informational [Page 123]

RFC 7058 CFW Call Flow Examples November 2013

G2. AS <- MS (CFW 200 OK)

 CFW 7fdcc2331bef 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 123

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join modified"/>
 </mscmixer>

H1. AS <- MS (CFW CONTROL dtmfnotify event)

 CFW 750b917a5d4a CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 180

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="01d1b38">
 <dtmfnotify matchmode="collect" dtmf="*0"
 timestamp="2008-12-17T17:21:05Z"/>
 </event>
 </mscivr>

H2. AS -> MS (CFW 200, ACK to ’CONTROL event’)
--
 CFW 750b917a5d4a 200

I1. AS -> MS (CFW CONTROL, dialogterminate)

 CFW 515f007c5bd0 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 128

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogterminate dialogid="01d1b38" immediate="true"/>
 </mscivr>

Amirante, et al. Informational [Page 124]

RFC 7058 CFW Call Flow Examples November 2013

I2. AS <- MS (CFW 200 OK)

 CFW 515f007c5bd0 200
 Timeout: 10
 Content-Type: application/msc-ivr+xml
 Content-Length: 140

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="200" reason="Dialog terminated"
 dialogid="01d1b38"/>
 </mscivr>

J1. AS <- MS (CFW CONTROL dialogexit event)

 CFW 76adc41122c1 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 155

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="01d1b38">
 <dialogexit status="0" reason="Dialog terminated"/>
 </event>
 </mscivr>

J2. AS -> MS (CFW 200, ACK to ’CONTROL event’)
--
 CFW 76adc41122c1 200

K1. AS -> MS (CFW CONTROL, unjoin)

 CFW 4e6afb6625e4 CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 127

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <unjoin id1="873975758:a5105056" id2="54b4ab3"/>
 </mscmixer>

Amirante, et al. Informational [Page 125]

RFC 7058 CFW Call Flow Examples November 2013

K2. AS <- MS (CFW 200 OK)

 CFW 4e6afb6625e4 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 122

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <response status="200" reason="Join removed"/>
 </mscmixer>

L1. AS <- MS (CFW CONTROL unjoin-notify event)
--
 CFW 577696293504 CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 157

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <event>
 <unjoin-notify status="0"
 id1="873975758:a5105056" id2="54b4ab3"/>
 </event>
 </mscmixer>

L2. AS -> MS (CFW 200, ACK to ’CONTROL event’)
--
 CFW 577696293504 200

7. Media Resource Brokering

 All the flows presented so far describe the interaction between a
 single AS and a single MS. This is the simplest topology that can be
 envisaged in a MEDIACTRL-compliant architecture, but it’s not the
 only topology that is allowed. [RFC5567] presents several possible
 topologies that potentially involve several AS and several MS as
 well. To properly allow for such topologies, an additional element
 called the Media Resource Broker (MRB) has been introduced in the
 MEDIACTRL architecture. Such an entity, and the protocols needed to
 interact with it, has been standardized in [RFC6917].

Amirante, et al. Informational [Page 126]

RFC 7058 CFW Call Flow Examples November 2013

 An MRB is basically a locator that is aware of a pool of MS and makes
 them available to interested AS according to their requirements. For
 this reason, two different interfaces have been introduced:

 o the Publishing interface (Section 7.1), which allows an MRB to
 subscribe for notifications at the MS it is handling (e.g.,
 available and occupied resources, current state, etc.).

 o the Consumer interface (Section 7.2), which allows an interested
 AS to query an MRB for an MS capable of fulfilling its
 requirements.

 The flows in the following sections will present some typical
 use-case scenarios involving an MRB and the different topologies in
 which it has been conceived to work.

 Additionally, a few considerations on the handling of media dialogs
 whenever an MRB is involved are presented in Section 7.3.

7.1. Publishing Interface

 An MRB uses the MS’s Publishing interface to acquire relevant
 information. This Publishing interface, as specified in [RFC6917],
 is made available as a Control Package for the Media Control Channel
 Framework. This means that in order to receive information from an
 MS, an MRB must negotiate a Control Channel as explained in
 Section 5. This package allows an MRB to either request information
 in the form of a direct request/answer from an MS or subscribe for
 events.

 Of course, since the MRB is interested in the Publishing interface,
 the previously mentioned negotiation must be changed in order to take
 into account the need for the MRB Control Package. The name of this
 package is ’mrb-publish/1.0’, which means that the SYNC might look
 like the following:

 1. MRB -> MS (CFW SYNC)

 CFW 6b8b4567327b SYNC
 Dialog-ID: z9hG4bK-4542-1-0
 Keep-Alive: 100
 Packages: msc-ivr/1.0,msc-mixer/1.0,mrb-publish/1.0

Amirante, et al. Informational [Page 127]

RFC 7058 CFW Call Flow Examples November 2013

 2. MRB <- MS (CFW 200)

 CFW 6b8b4567327b 200
 Keep-Alive: 100
 Packages: msc-ivr/1.0,msc-mixer/1.0,mrb-publish/1.0
 Supported: msc-example-pkg/1.0

 The meaning of this negotiation was presented previously. It is
 enough to point out that the MRB in this case adds a new item to the
 ’Packages’ it needs support for (mrb-publish/1.0). In this case, the
 MS supports it, and in fact it is added to the negotiated packages in
 the reply:

 Packages: msc-ivr/1.0,msc-mixer/1.0,mrb-publish/1.0
 ^^^^^^^^^^^^^^^

 The MS as described in Section 5, on the other hand, did not have
 support for that package, since only ’msc-example-pkg/1.0’ was part
 of the ’Supported’ list.

Amirante, et al. Informational [Page 128]

RFC 7058 CFW Call Flow Examples November 2013

 Figure 47 presents a ladder diagram of a typical interaction based on
 the MRB Control Package.

 MRB MS
 | |
 | A1. CONTROL (MRB subscription) |
 |--->|
 | A2. 200 OK |
 |<---|
 | |--+ collect
 | | | requested
 | |<-+ info
 | B1. CONTROL (MRB notification) |
 |<---|
 | B2. 200 OK |
 |--->|
 | |
 . .
 . .
 | |
 | |--+ collect
 | | | up-to-date
 | |<-+ info
 | C1. CONTROL (MRB notification) |
 |<---|
 | C2. 200 OK |
 |--->|
 | |
 . .
 . .
 | |
 | D1. CONTROL (Update MRB subscription) |
 |--->|
 | D2. 200 OK |
 |<---|
 | |
 . .
 . .

 Figure 47: Media Resource Brokering: Subscription and Notification

Amirante, et al. Informational [Page 129]

RFC 7058 CFW Call Flow Examples November 2013

 In this example, the MRB subscribes for information at the specified
 MS, and events are triggered on a regular, negotiated basis. All of
 these messages flow through the Control Channel, as do all of the
 messages discussed in this document. The framework transaction steps
 are as follows:

 o The MRB sends a new CONTROL message (A1) addressed to the MRB
 package (mrb-publish/1.0); it is a subscription for information
 (<subscription>), and the MRB is asking to be notified at least
 every 10 minutes (<minfrequency>) or, if required, every 30
 seconds at maximum. The subscription must last 30 minutes
 (<expires>), after which no additional notifications must be sent.

 o The MS acknowledges the request (A2) and sends notification of the
 success of the request in a 200 OK message (<mrbresponse>).

 o The MS prepares and sends the first notification to the MRB (B1).
 As has been done with other packages, the notification has been
 sent as an MS-generated CONTROL message; it is a notification
 related to the request in the first message, because the ’id’
 (p0T65U) matches that request. All of the information that the
 MRB subscribed for is provided in the payload.

 o The MRB acknowledges the notification (B2) and uses the retrieved
 information to update its own information as part of its business
 logic.

 o The previous step (the MRB acknowledges notifications and uses the
 retrieved information) repeats at the required frequency, with
 up-to-date information.

 o After a while, the MRB updates its subscription (D1) to get more
 frequent updates (minfrequency=1, an update every second at
 least). The MS accepts the update (D2), although it may adjust
 the frequency in the reply according to its policies (e.g., a
 lower rate, such as minfrequency=30). The notifications continue,
 but at the newer rate; the expiration is also updated accordingly
 (600 seconds again, since the update refreshes it).

Amirante, et al. Informational [Page 130]

RFC 7058 CFW Call Flow Examples November 2013

A1. MRB -> MS (CONTROL, publish request)
--
 CFW lidc30BZObiC CONTROL
 Control-Package: mrb-publish/1.0
 Content-Type: application/mrb-publish+xml
 Content-Length: 337

 <mrbpublish version="1.0" xmlns="urn:ietf:params:xml:ns:mrb-publish">
 <mrbrequest>
 <subscription action="create" seqnumber="1" id="p0T65U">
 <expires>60</expires>
 <minfrequency>600</minfrequency>
 <maxfrequency>30</maxfrequency>
 </subscription>
 </mrbrequest>
 </mrbpublish>

A2. MRB <- MS (200 to CONTROL, request accepted)
--
 CFW lidc30BZObiC 200
 Timeout: 10
 Content-Type: application/mrb-publish+xml
 Content-Length: 139

 <mrbpublish version="1.0" xmlns="urn:ietf:params:xml:ns:mrb-publish">
 <mrbresponse status="200" reason="OK: Request accepted"/>
 </mrbpublish>

B1. MRB <- MS (CONTROL, event notification from MS)

 CFW 03fff52e7b7a CONTROL
 Control-Package: mrb-publish/1.0
 Content-Type: application/mrb-publish+xml
 Content-Length: 4157

 <mrbpublish version="1.0"
 xmlns="urn:ietf:params:xml:ns:mrb-publish">
 <mrbnotification seqnumber="1" id="p0T65U">
 <media-server-id>a1b2c3d4</media-server-id>
 <supported-packages>
 <package name="msc-ivr/1.0"/>
 <package name="msc-mixer/1.0"/>
 <package name="mrb-publish/1.0"/>
 <package name="msc-example-pkg/1.0"/>
 </supported-packages>

Amirante, et al. Informational [Page 131]

RFC 7058 CFW Call Flow Examples November 2013

 <active-rtp-sessions>
 <rtp-codec name="audio/basic">
 <decoding>10</decoding>
 <encoding>20</encoding>
 </rtp-codec>
 </active-rtp-sessions>
 <active-mixer-sessions>
 <active-mix conferenceid="7cfgs43">
 <rtp-codec name="audio/basic">
 <decoding>3</decoding>
 <encoding>3</encoding>
 </rtp-codec>
 </active-mix>
 </active-mixer-sessions>
 <non-active-rtp-sessions>
 <rtp-codec name="audio/basic">
 <decoding>50</decoding>
 <encoding>40</encoding>
 </rtp-codec>
 </non-active-rtp-sessions>
 <non-active-mixer-sessions>
 <non-active-mix available="15">
 <rtp-codec name="audio/basic">
 <decoding>15</decoding>
 <encoding>15</encoding>
 </rtp-codec>
 </non-active-mix>
 </non-active-mixer-sessions>
 <media-server-status>active</media-server-status>
 <supported-codecs>
 <supported-codec name="audio/basic">
 <supported-codec-package name="msc-ivr/1.0">
 <supported-action>encoding</supported-action>
 <supported-action>decoding</supported-action>
 </supported-codec-package>
 <supported-codec-package name="msc-mixer/1.0">
 <supported-action>encoding</supported-action>
 <supported-action>decoding</supported-action>
 </supported-codec-package>
 </supported-codec>
 </supported-codecs>

Amirante, et al. Informational [Page 132]

RFC 7058 CFW Call Flow Examples November 2013

 <application-data>TestbedPrototype</application-data>
 <file-formats>
 <supported-format name="audio/x-wav">
 <supported-file-package>
 msc-ivr/1.0
 </supported-file-package>
 </supported-format>
 </file-formats>
 <max-prepared-duration>
 <max-time max-time-seconds="3600">
 <max-time-package>msc-ivr/1.0</max-time-package>
 </max-time>
 </max-prepared-duration>
 <dtmf-support>
 <detect>
 <dtmf-type package="msc-ivr/1.0" name="RFC4733"/>
 <dtmf-type package="msc-mixer/1.0" name="RFC4733"/>
 </detect>
 <generate>
 <dtmf-type package="msc-ivr/1.0" name="RFC4733"/>
 <dtmf-type package="msc-mixer/1.0" name="RFC4733"/>
 </generate>
 <passthrough>
 <dtmf-type package="msc-ivr/1.0" name="RFC4733"/>
 <dtmf-type package="msc-mixer/1.0" name="RFC4733"/>
 </passthrough>
 </dtmf-support>
 <mixing-modes>
 <audio-mixing-modes>
 <audio-mixing-mode package="msc-ivr/1.0"> \
 nbest \
 </audio-mixing-mode>
 </audio-mixing-modes>
 <video-mixing-modes activespeakermix="true" vas="true">
 <video-mixing-mode package="msc-mixer/1.0"> \
 single-view \
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0"> \
 dual-view \
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0"> \
 dual-view-crop \
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0"> \
 dual-view-2x1 \
 </video-mixing-mode>

Amirante, et al. Informational [Page 133]

RFC 7058 CFW Call Flow Examples November 2013

 <video-mixing-mode package="msc-mixer/1.0"> \
 dual-view-2x1-crop \
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0"> \
 quad-view \
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0"> \
 multiple-5x1 \
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0"> \
 multiple-3x3 \
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0"> \
 multiple-4x4 \
 </video-mixing-mode>
 </video-mixing-modes>
 </mixing-modes>
 <supported-tones>
 <supported-country-codes>
 <country-code package="msc-ivr/1.0">GB</country-code>
 <country-code package="msc-ivr/1.0">IT</country-code>
 <country-code package="msc-ivr/1.0">US</country-code>
 </supported-country-codes>
 <supported-h248-codes>
 <h248-code package="msc-ivr/1.0">cg/*</h248-code>
 <h248-code package="msc-ivr/1.0">biztn/ofque</h248-code>
 <h248-code package="msc-ivr/1.0">biztn/erwt</h248-code>
 <h248-code package="msc-mixer/1.0">conftn/*</h248-code>
 </supported-h248-codes>
 </supported-tones>
 <file-transfer-modes>
 <file-transfer-mode package="msc-ivr/1.0" name="HTTP"/>
 </file-transfer-modes>
 <asr-tts-support>
 <asr-support>
 <language xml:lang="en"/>
 </asr-support>
 <tts-support>
 <language xml:lang="en"/>
 </tts-support>
 </asr-tts-support>
 <vxml-support>
 <vxml-mode package="msc-ivr/1.0" support="rfc6231"/>
 </vxml-support>

Amirante, et al. Informational [Page 134]

RFC 7058 CFW Call Flow Examples November 2013

 <media-server-location>
 <civicAddress xml:lang="it">
 <country>IT</country>
 <A1>Campania</A1>
 <A3>Napoli</A3>
 <A6>Via Claudio</A6>
 <HNO>21</HNO>
 <LMK>University of Napoli Federico II</LMK>
 <NAM>Dipartimento di Informatica e Sistemistica</NAM>
 <PC>80210</PC>
 </civicAddress>
 </media-server-location>
 <label>TestbedPrototype-01</label>
 <media-server-address>
 sip:MediaServer@ms.example.net
 </media-server-address>
 <encryption/>
 </mrbnotification>
 </mrbpublish>

B2. MRB -> MS (200 to CONTROL)

 CFW 03fff52e7b7a 200

(C1 and C2 omitted for brevity)

D1. MRB -> MS (CONTROL, publish request)
--
CFW pyu788fc32wa CONTROL
Control-Package: mrb-publish/1.0
Content-Type: application/mrb-publish+xml
Content-Length: 342

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<mrbpublish version="1.0" xmlns="urn:ietf:params:xml:ns:mrb-publish">
 <mrbrequest>
 <subscription action="update" seqnumber="2" id="p0T65U">
 <expires>600</expires>
 <minfrequency>1</minfrequency>
 </subscription>
 </mrbrequest>
</mrbpublish>

Amirante, et al. Informational [Page 135]

RFC 7058 CFW Call Flow Examples November 2013

D2. MRB <- MS (200 to CONTROL, request accepted)
--
CFW pyu788fc32wa 200
Timeout: 10
Content-Type: application/mrb-publish+xml
Content-Length: 332

<mrbpublish version="1.0" xmlns="urn:ietf:params:xml:ns:mrb-publish">
 <mrbresponse status="200" reason="OK: Request accepted">
 <subscription action="create" seqnumber="2" id="p0T65U">
 <expires>600</expires>
 <minfrequency>30</minfrequency>
 </subscription>
 </mrbresponse>
</mrbpublish>

7.2. Consumer Interface

 Whereas the Publishing interface is used by an MS to publish its
 functionality and up-to-date information to an MRB, the Consumer
 interface is used by an interested AS to access a resource. An AS
 can use the Consumer interface to contact an MRB and describe the
 resources it needs. The MRB then replies with the needed
 information: specifically, the address of an MS that is capable of
 meeting the requirements.

 However, unlike the Publishing interface, the Consumer interface is
 not specified as a Control Package. Rather, it is conceived as an
 XML-based protocol that can be transported by means of either HTTP or
 SIP, as will be shown in the following sections.

 As specified in [RFC6917], the Consumer interface can be involved in
 two topologies: Query mode and Inline mode. In the Query mode
 (Section 7.2.1), the Consumer requests and responses are conveyed by
 means of HTTP. Once the AS gets the answer, the usual MEDIACTRL
 interactions occur between the AS and the MS chosen by the MRB. By
 contrast, in the Inline mode, the MRB is in the path between the AS
 and the pool of MS it is handling. In this case, an AS can place
 Consumer requests using SIP as a transport, by means of a multipart
 payload (Section 7.2.2) containing the Consumer request itself and an
 SDP related either to the creation of a Control Channel or to a UAC
 media dialog. This is called Inline-aware mode, since it assumes
 that the interested AS knows that an MRB is in place and knows how to
 talk to it. The MRB is also conceived to work with AS that are
 unaware of its functionality, i.e., unaware of the Consumer
 interface. In this kind of scenario, the Inline mode is still used,
 but with the AS thinking the MRB it is talking to is actually an MS.
 This approach is called Inline-unaware mode (Section 7.2.3).

Amirante, et al. Informational [Page 136]

RFC 7058 CFW Call Flow Examples November 2013

7.2.1. Query Mode

 As discussed in the previous section, in the Query mode the AS sends
 Consumer requests by means of HTTP. Specifically, an HTTP POST is
 used to convey the request. The MRB is assumed to send its response
 by means of an HTTP 200 OK reply. Since a successful Consumer
 response contains information to contact a specific MS (the MS the
 MRB has deemed most capable of fulfilling the AS’s requirements), an
 AS can subsequently directly contact the MS, as described in
 Section 5. This means that in the Query mode the MRB acts purely as
 a locator, and then the AS and the MS can talk 1:1.

 Figure 48 presents a ladder diagram of a typical Consumer request in
 the Query topology:

 AS MRB
 | |
 | 1. HTTP POST (Consumer request) |
 |--->|
 | |
 | |
 | |--+ Parse request
 | | | and see if any
 | |<-+ MS applies
 | |
 | 2. 200 OK (Consumer response) |
 |<---|
 | |
 |--+ Parse response and |
 | | start session (SIP/COMEDIA/CFW) |
 |<-+ with MS reported by MRB |
 | |
 . .
 . .

 Figure 48: Media Resource Brokering: Query Mode

 In this example, the AS is interested in an MS meeting a defined set
 of requirements. The MS must:

 1. support both the IVR and Mixer packages.

 2. provide at least 10 G.711 encoding/decoding RTP sessions for IVR
 purposes.

 3. support HTTP-based streaming and support for the audio/x-wav file
 format in the IVR package.

Amirante, et al. Informational [Page 137]

RFC 7058 CFW Call Flow Examples November 2013

 These requirements are properly formatted according to the MRB
 Consumer syntax. The framework transaction steps are as follows:

 o The AS sends an HTTP POST message to the MRB (1). The payload is,
 of course, the Consumer request, which is reflected by the
 Content-Type header (application/mrb-consumer+xml). The Consumer
 request (<mediaResourceRequest>, uniquely identified by its ’id’
 attribute set to the random value ’n3un93wd’), includes some
 general requirements (<generalInfo>) and some IVR-specific
 requirements (<ivrInfo>). The general part of the requests
 contains the set of required packages (<packages>). The
 IVR-specific section contains requirements concerning the number
 of required IVR sessions (<ivr-sessions>), the file formats that
 are to be supported (<file-formats>), and the required file
 transfer capabilities (<file-transfer-modes>).

 o The MRB gets the request and parses it. Then, according to its
 business logic, it realizes it can’t find a single MS capable of
 targeting the request and as a consequence picks two MS instances
 that can handle 60 and 40 of the requested sessions, respectively.
 It prepares a Consumer response (2) to provide the AS with the
 requested information. The response (<mediaResourceResponse>,
 which includes the same ’id’ attribute as the request) indicates
 success (status=200) and includes the relevant information
 (<response-session-info>). Specifically, the response includes
 transaction-related information (the same session-id and seq
 provided by the AS in its request, to allow proper request/
 response matching) together with information on the duration of
 the reservation (expires=3600, i.e., after an hour the request
 will expire) and the SIP addresses of the chosen MS.

 Note how the sequence number the MRB returned is not 1. According to
 the MRB specification, this is the starting value to increment for
 the sequence number to be used in subsequent requests. This means
 that should the AS want to update or remove the session it should use
 10 as a value for the sequence number in the related request.
 According to Section 12 of [RFC6917], this random value for the first
 sequence number is also a way to help prevent a malicious entity from
 messing with or disrupting another AS session with the MRB. In fact,
 sequence numbers in requests and responses have to match, and failure
 to provide the correct sequence number would result in session
 failure and a 405 error message.

Amirante, et al. Informational [Page 138]

RFC 7058 CFW Call Flow Examples November 2013

1. AS -> MRB (HTTP POST, Consumer request)
--
 POST /Mrb/Consumer HTTP/1.1
 Content-Length: 893
 Content-Type: application/mrb-consumer+xml
 Host: mrb.example.com:8080
 Connection: Keep-Alive
 User-Agent: Apache-HttpClient/4.0.1 (java 1.5)

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <mrbconsumer version="1.0" xmlns="urn:ietf:params:xml:ns:mrb-consumer">
 <mediaResourceRequest id="n3un93wd">
 <generalInfo>
 <packages>
 <package>msc-ivr/1.0</package>
 <package>msc-mixer/1.0</package>
 </packages>
 </generalInfo>
 <ivrInfo>
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>100</decoding>
 <encoding>100</encoding>
 </rtp-codec>
 </ivr-sessions>
 <file-formats>
 <required-format name="audio/x-wav"/>
 </file-formats>
 <file-transfer-modes>
 <file-transfer-mode package="msc-ivr/1.0" name="HTTP"/>
 </file-transfer-modes>
 </ivrInfo>
 </mediaResourceRequest>
 </mrbconsumer>

2. AS <- MRB (200 to POST, Consumer response)

 HTTP/1.1 200 OK
 X-Powered-By: Servlet/2.5
 Server: Sun GlassFish Communications Server 1.5
 Content-Type: application/mrb-consumer+xml;charset=ISO-8859-1
 Content-Length: 1146
 Date: Thu, 28 Jul 2011 10:34:45 GMT

Amirante, et al. Informational [Page 139]

RFC 7058 CFW Call Flow Examples November 2013

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <mrbconsumer version="1.0" xmlns="urn:ietf:params:xml:ns:mrb-consumer">
 <mediaResourceResponse reason="Resource found" status="200"
 id="n3un93wd">
 <response-session-info>
 <session-id>z603G3yaUzM8</session-id>
 <seq>9</seq>
 <expires>3600</expires>
 <media-server-address
 uri="sip:MediaServer@ms.example.com:5080">
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>60</decoding>
 <encoding>60</encoding>
 </rtp-codec>
 </ivr-sessions>
 </media-server-address>
 <media-server-address
 uri="sip:OtherMediaServer@pool.example.net:5080">
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>40</decoding>
 <encoding>40</encoding>
 </rtp-codec>
 </ivr-sessions>
 </media-server-address>
 </response-session-info>
 </mediaResourceResponse>
 </mrbconsumer>

 For the sake of conciseness, the subsequent steps are not presented.
 They are very trivial, since they basically consist of the AS issuing
 a COMEDIA negotiation with either of the obtained MS, as already
 presented in Section 5. The same can be said with respect to
 attaching UAC media dialogs. In fact, since after the Query the
 AS<->MS interaction becomes 1:1, UAC media dialogs can be redirected
 directly to the proper MS using the 3PCC approach, e.g., as shown in
 Figure 10.

7.2.2. Inline-Aware Mode

 Unlike the Query mode, in the Inline-Aware MRB Mode (IAMM) the AS
 sends Consumer requests by means of SIP. Of course, saying that the
 transport changes from HTTP to SIP is not as trivial as it seems. In
 fact, HTTP and SIP behave in very different ways, and this is
 reflected in the way the Inline-aware mode is conceived.

Amirante, et al. Informational [Page 140]

RFC 7058 CFW Call Flow Examples November 2013

 An AS willing to issue a Consumer request by means of SIP has to do
 so by means of an INVITE. As specified in [RFC6917], the payload of
 the INVITE can’t contain only the Consumer request itself. In fact,
 the Consumer request is assumed to be carried within a SIP
 transaction. A Consumer session is not strictly associated with the
 lifetime of any SIP transaction, meaning that Consumer requests
 belonging to the same session may be transported over different SIP
 messages; therefore, a hangup on any of these SIP dialogs would not
 affect a Consumer session.

 That said, as documented in [RFC6230], [RFC6917] envisages two kinds
 of SIP dialogs over which a Consumer request may be sent: a SIP
 control dialog (a SIP dialog sent by the AS in order to set up a
 Control Channel) and a UAC media dialog (a SIP dialog sent by the AS
 in order to attach a UAC to an MS). In both cases, the AS would
 prepare a multipart/mixed payload to achieve both ends, i.e.,
 receiving a reply to its Consumer request and effectively carrying on
 the negotiation described in the SDP payload.

 The behaviors in the two cases, which are called the CFW-based
 approach and the media dialog-based approach, respectively, are only
 slightly different, but both will be presented to clarify how they
 could be exploited. To make things clearer for the reader, the same
 Consumer request as the Consumer request presented in the Query mode
 will be sent, in order to clarify how the behavior of the involved
 parties may differ.

7.2.2.1. Inline-Aware Mode: CFW-Based Approach

 Figure 49 presents a ladder diagram of a typical Consumer request in
 the CFW-based Inline-aware topology:

 AS MRB MS
 | | |
 | 1. INVITE | |
 | (multipart/mixed: | |
 | application/cfw, | |
 | application/mrb-consumer+xml) |
 |---------------------->| | |
 | 2. 100 (Trying) | |
 |<----------------------| |
 | |--+ Extract SDP and |
 | | | MRB payloads; handle |
 | |<-+ Consumer request to |
 | | pick MS |
 | | |

Amirante, et al. Informational [Page 141]

RFC 7058 CFW Call Flow Examples November 2013

 | | 3. INVITE |
 | | (application/cfw from 1.) |
 | |-------------------------->|
 | | 4. 100 (Trying) |
 | |<--------------------------|
 | | |--+ Negotiate
 | | | | CFW Control
 | | |<-+ Channel
 | | 5. 200 OK | |
 | | (application/cfw from MS) |
 | |<--------------------------|
 | | 6. ACK |
 | |-------------------------->|
 | Prepare new +--| |
 | payload with | | |
 | SDP from MS and +->| |
 | Consumer reply | |
 | | |
 | 7. 200 OK | |
 | (multipart/mixed: | |
 | application/cfw from MS, |
 | application/mrb-consumer+xml) |
 |<----------------------| | |
 | 8. ACK | |
 |---------------------->| |
 | | |
 |--+ Read Consumer | |
 | | reply and use SDP | |
 |<-+ to create CFW Chn. | |
 | | |
 | |
 |<<############## TCP CONNECTION #################>>|
 | |
 | CFW SYNC |
 |++>|
 | |
 . . .
 . . .

 Figure 49: Media Resource Brokering: CFW-Based Inline-Aware Mode

 To make the scenario easier to understand, we assume that the AS is
 interested in exactly the same set of requirements as those presented
 in Section 7.2.1. This means that the Consumer request originated by
 the AS will be the same as before, with only the transport/topology
 changing.

Amirante, et al. Informational [Page 142]

RFC 7058 CFW Call Flow Examples November 2013

 Please note that to make the protocol contents easier to read, a
 simple ’Part’ is used whenever a boundary for a multipart/mixed
 payload is provided, instead of the actual boundary that would be
 inserted in the SIP messages.

 The framework transaction steps (for simplicity’s sake, only the
 payloads, and not the complete SIP transactions, are reported) are as
 follows:

1. AS -> MRB (INVITE multipart/mixed)

 [..]
 Content-Type: multipart/mixed;boundary="Part"

 --Part
 Content-Type: application/sdp

 v=0
 o=- 2890844526 2890842807 IN IP4 as.example.com
 s=MediaCtrl
 c=IN IP4 as.example.com
 t=0 0
 m=application 48035 TCP cfw
 a=connection:new
 a=setup:active
 a=cfw-id:vF0zD4xzUAW9

 --Part
 Content-Type: application/mrb-consumer+xml

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <mrbconsumer version="1.0"
 xmlns="urn:ietf:params:xml:ns:mrb-consumer">
 <mediaResourceRequest id="fr34asx1">
 <generalInfo>
 <packages>
 <package>msc-ivr/1.0</package>
 <package>msc-mixer/1.0</package>
 </packages>
 </generalInfo>
 <ivrInfo>
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>100</decoding>
 <encoding>100</encoding>
 </rtp-codec>
 </ivr-sessions>

Amirante, et al. Informational [Page 143]

RFC 7058 CFW Call Flow Examples November 2013

 <file-formats>
 <required-format name="audio/x-wav"/>
 </file-formats>
 <file-transfer-modes>
 <file-transfer-mode package="msc-ivr/1.0" name="HTTP"/>
 </file-transfer-modes>
 </ivrInfo>
 </mediaResourceRequest>
 </mrbconsumer>

 --Part

3. MRB -> MS (INVITE SDP only)

 [..]
 Content-Type: application/sdp

 v=0
 o=- 2890844526 2890842807 IN IP4 as.example.com
 s=MediaCtrl
 c=IN IP4 as.example.com
 t=0 0
 m=application 48035 TCP cfw
 a=connection:new
 a=setup:active
 a=cfw-id:vF0zD4xzUAW9

5. MRB <- MS (200 OK SDP)

 [..]
 Content-Type: application/sdp

 v=0
 o=lminiero 2890844526 2890842808 IN IP4 ms.example.net
 s=MediaCtrl
 c=IN IP4 ms.example.net
 t=0 0
 m=application 7575 TCP cfw
 a=connection:new
 a=setup:passive
 a=cfw-id:vF0zD4xzUAW9

Amirante, et al. Informational [Page 144]

RFC 7058 CFW Call Flow Examples November 2013

7. AS <- MRB (200 OK multipart/mixed)

 [..]
 Content-Type: multipart/mixed;boundary="Part"

 --Part
 Content-Type: application/sdp

 v=0
 o=lminiero 2890844526 2890842808 IN IP4 ms.example.net
 s=MediaCtrl
 c=IN IP4 ms.example.net
 t=0 0
 m=application 7575 TCP cfw
 a=connection:new
 a=setup:passive
 a=cfw-id:vF0zD4xzUAW9

 --Part
 Content-Type: application/mrb-consumer+xml

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <mrbconsumer version="1.0"
 xmlns="urn:ietf:params:xml:ns:mrb-consumer">
 <mediaResourceResponse reason="Resource found" status="200"
 id="fr34asx1">
 <response-session-info>
 <session-id>z603G3yaUzM8</session-id>
 <seq>9</seq>
 <expires>3600</expires>
 <media-server-address
 uri="sip:MediaServer@ms.example.com:5080">
 <connection-id>32pbdxZ8:KQw677BF</connection-id>
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>60</decoding>
 <encoding>60</encoding>
 </rtp-codec>
 </ivr-sessions>
 </media-server-address>

Amirante, et al. Informational [Page 145]

RFC 7058 CFW Call Flow Examples November 2013

 <media-server-address
 uri="sip:OtherMediaServer@pool.example.net:5080">
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>40</decoding>
 <encoding>40</encoding>
 </rtp-codec>
 </ivr-sessions>
 </media-server-address>
 </response-session-info>
 </mediaResourceResponse>
 </mrbconsumer>

 --Part

 The sequence diagram and the dumps effectively show the different
 approach with respect to the Query mode. The SIP INVITE sent by the
 AS (1.) includes both a Consumer request (the same as before) and an
 SDP to negotiate a CFW channel with an MS. The MRB takes care of the
 request exactly as before (provisioning two MS instances) but with a
 remarkable difference: first of all, it picks one of the two MS
 instances on behalf of the AS (negotiating the Control Channel in
 steps 3 to 6) and only then replies to the AS with both the MS side
 of the SDP negotiation (with information on how to set up the Control
 Channel) and the Consumer response itself.

 The Consumer response is also slightly different in the first place.
 In fact, as can be seen in 7., there’s an additional element
 (<connection-id>) that the MRB has added to the message. This
 element contains the ’connection-id’ that the AS and MS would have
 built out of the ’From’ and ’To’ tags as explained in Section 6, had
 the AS contacted the MS directly. Since the MRB has actually done
 the negotiation on behalf of the AS, without this information the AS
 and MS would refer to different connectionid attributes to target the
 same dialog, thus causing the CFW protocol not to behave as expected.
 This aspect will be more carefully described in the next section (for
 the media dialog-based approach), since the ’connection-id’ attribute
 is strictly related to media sessions.

 As before, for the sake of conciseness the subsequent steps of the
 previous transaction are quite trivial and therefore are not
 presented. In fact, as shown in the flow, the SIP negotiation has
 resulted in both the AS and the chosen MS negotiating a Control
 Channel. This means that the AS is only left to instantiate the
 Control Channel and send CFW requests according to its application
 logic.

Amirante, et al. Informational [Page 146]

RFC 7058 CFW Call Flow Examples November 2013

 It is worthwhile to highlight the fact that, as in the Query example,
 the AS gets the addresses of both of the chosen MS in this example as
 well, since a Consumer transaction has taken place. This means that,
 just as in the Query case, any UAC media dialog can be redirected
 directly to the proper MS using the 3PCC approach, e.g., as shown in
 Figure 10, rather than again using the MRB as a Proxy/B2BUA. Of
 course, a separate SIP control dialog would be needed before
 attempting to use the second MS instance.

7.2.2.2. Inline-Aware Mode: Media Dialog-Based Approach

 There’s a second way to take advantage of the IAMM mode, i.e.,
 exploiting SIP dialogs related to UAC media dialogs as ’vessels’ for
 Consumer messages. As will be made clearer in the following sequence
 diagram and protocol dumps, this scenario does not differ much from
 the scenario presented in Section 7.2.2.1 with respect to the
 Consumer request/response, but it may be useful to compare these two
 scenarios and show how they may differ with respect to the management
 of the media dialog itself and any CFW Control Channel that may be
 involved.

 Figure 50 presents a ladder diagram of a typical Consumer request in
 the media dialog-based Inline-aware topology:

 UAC AS MRB MS
 | | | | |
 | 1. INVITE | | |
 | (audio/video) | | |
 |-------------->| | |
 | 2. 100 Trying | | |
 |<--------------| | |
 | | 3. INVITE | |
 | | (multipart/mixed: | |
 | | audio/video from 1., | |
 | | application/mrb-consumer+xml) |
 | |---------------------->| |
 | | 4. 100 (Trying) | |
 | |<----------------------| |
 | | |--+ Extract SDP and |
 | | | | MRB payloads; handle |
 | | |<-+ Consumer request to |
 | | | pick Media Servers |
 | | | |
 | | | 5. INVITE |
 | | | (audio/video from 3.) |
 | | |------------------------->|

Amirante, et al. Informational [Page 147]

RFC 7058 CFW Call Flow Examples November 2013

 | | | 6. 100 (Trying) | |
 | | |<-------------------------|
 | | | +--|
 | | | Handle media dialog | |
 | | | (connection-id) +->|
 | | | |
 | | | 7. 200 OK |
 | | | (audio/video from MS) |
 | | |<-------------------------|
 | | | 8. ACK |
 | | |------------------------->|
 | | Prepare new +--| |
 | | payload with | | |
 | | SDP from MS and +->| |
 | | Consumer reply | |
 | | | |
 | | 9. 200 OK | |
 | | (multipart/mixed: | |
 | | audio/video from MS, |
 | | application/mrb-consumer+xml) |
 | |<----------------------| |
 | | 10. ACK | |
 | |---------------------->| |
 | | | |
 | |--+ Read Consumer | |
 | | | reply and send | |
 | |<-+ SDP back to UAC | |
 | 11. 200 OK | | |
 |(audio/video from MS) | |
 |<--------------| | |
 | 12. ACK | | |
 |-------------->| | |
 | | | |
 |<<*************************** RTP ******************************>>|
 | | | | |
 | |--+ Negotiate | |
 | | | CFW channel | |
 | |<-+ towards MS | |
 | | (if needed) | |

 | | | |
 | |<<############## TCP CONNECTION ################>>|
 | | |

Amirante, et al. Informational [Page 148]

RFC 7058 CFW Call Flow Examples November 2013

 | | CFW SYNC |
 | |+++>|
 | | |

 Figure 50: Media Resource Brokering: Media Dialog-Based
 Inline-Aware Mode

 To make the scenario easier to understand, we assume that the AS is
 interested in exactly the same set of requirements as those presented
 in Section 7.2.1. This means that the Consumer request originated by
 the AS will be the same as before, with only the transport/topology
 changing.

 Again, please note that to make the protocol contents easier to read,
 a simple ’Part’ is used whenever a boundary for a multipart/mixed
 payload is provided, instead of the actual boundary that would be
 inserted in the SIP messages.

 The framework transaction steps (for simplicity’s sake, only the
 relevant headers and payloads, and not the complete SIP transactions,
 are reported) are as follows:

1. UAC -> AS (INVITE with media SDP)

 [..]
 From: <sip:lminiero@users.example.com>;tag=1153573888
 To: <sip:mediactrlDemo@as.example.com>
 [..]
 Content-Type: application/sdp

 v=0
 o=lminiero 123456 654321 IN IP4 203.0.113.2
 s=A conversation
 c=IN IP4 203.0.113.2
 t=0 0
 m=audio 7078 RTP/AVP 0 3 8 101
 a=rtpmap:0 PCMU/8000/1
 a=rtpmap:3 GSM/8000/1
 a=rtpmap:8 PCMA/8000/1
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-11
 m=video 9078 RTP/AVP 98

Amirante, et al. Informational [Page 149]

RFC 7058 CFW Call Flow Examples November 2013

3. AS -> MRB (INVITE multipart/mixed)

 [..]
 From: <sip:ApplicationServer@as.example.com>;tag=fd4fush5
 To: <sip:Mrb@mrb.example.org>
 [..]
 Content-Type: multipart/mixed;boundary="Part"

 --Part
 Content-Type: application/sdp

 v=0
 o=lminiero 123456 654321 IN IP4 203.0.113.2
 s=A conversation
 c=IN IP4 203.0.113.2
 t=0 0
 m=audio 7078 RTP/AVP 0 3 8 101
 a=rtpmap:0 PCMU/8000/1
 a=rtpmap:3 GSM/8000/1
 a=rtpmap:8 PCMA/8000/1
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-11
 m=video 9078 RTP/AVP 98

 --Part
 Content-Type: application/mrb-consumer+xml

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <mrbconsumer version="1.0"
 xmlns="urn:ietf:params:xml:ns:mrb-consumer">
 <mediaResourceRequest id="bnv3xc45">
 <generalInfo>
 <packages>
 <package>msc-ivr/1.0</package>
 <package>msc-mixer/1.0</package>
 </packages>
 </generalInfo>
 <ivrInfo>
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>100</decoding>
 <encoding>100</encoding>
 </rtp-codec>
 </ivr-sessions>
 <file-formats>
 <required-format name="audio/x-wav"/>
 </file-formats>

Amirante, et al. Informational [Page 150]

RFC 7058 CFW Call Flow Examples November 2013

 <file-transfer-modes>
 <file-transfer-mode package="msc-ivr/1.0" name="HTTP"/>
 </file-transfer-modes>
 </ivrInfo>
 </mediaResourceRequest>
 </mrbconsumer>

 --Part

5. MRB -> MS (INVITE SDP only)

 [..]
 From: <sip:Mrb@mrb.example.org:5060>;tag=32pbdxZ8
 To: <sip:MediaServer@ms.example.com:5080>
 [..]
 Content-Type: application/sdp

 v=0
 o=lminiero 123456 654321 IN IP4 203.0.113.2
 s=A conversation
 c=IN IP4 203.0.113.2
 t=0 0
 m=audio 7078 RTP/AVP 0 3 8 101
 a=rtpmap:0 PCMU/8000/1
 a=rtpmap:3 GSM/8000/1
 a=rtpmap:8 PCMA/8000/1
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-11
 m=video 9078 RTP/AVP 98

7. MRB <- MS (200 OK SDP)

 [..]
 From: <sip:Mrb@mrb.example.org:5060>;tag=32pbdxZ8
 To: <sip:MediaServer@ms.example.com:5080>;tag=KQw677BF
 [..]
 Content-Type: application/sdp

 v=0
 o=lminiero 123456 654322 IN IP4 203.0.113.1
 s=MediaCtrl
 c=IN IP4 203.0.113.1
 t=0 0
 m=audio 63442 RTP/AVP 0 3 8 101
 a=rtpmap:0 PCMU/8000
 a=rtpmap:3 GSM/8000

Amirante, et al. Informational [Page 151]

RFC 7058 CFW Call Flow Examples November 2013

 a=rtpmap:8 PCMA/8000
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-15
 a=ptime:20
 a=label:7eda834
 m=video 33468 RTP/AVP 98
 a=rtpmap:98 H263-1998/90000
 a=fmtp:98 CIF=2
 a=label:0132ca2

9. AS <- MRB (200 OK multipart/mixed)

 [..]
 From: <sip:ApplicationServer@as.example.com>;tag=fd4fush5
 To: <sip:Mrb@mrb.example.org>;tag=117652221
 [..]
 Content-Type: multipart/mixed;boundary="Part"

 --Part
 Content-Type: application/sdp

 v=0
 o=lminiero 123456 654322 IN IP4 203.0.113.1
 s=MediaCtrl
 c=IN IP4 203.0.113.1
 t=0 0
 m=audio 63442 RTP/AVP 0 3 8 101
 a=rtpmap:0 PCMU/8000
 a=rtpmap:3 GSM/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-15
 a=ptime:20
 a=label:7eda834
 m=video 33468 RTP/AVP 98
 a=rtpmap:98 H263-1998/90000
 a=fmtp:98 CIF=2
 a=label:0132ca2

 --Part
 Content-Type: application/mrb-consumer+xml

Amirante, et al. Informational [Page 152]

RFC 7058 CFW Call Flow Examples November 2013

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <mrbconsumer version="1.0"
 xmlns="urn:ietf:params:xml:ns:mrb-consumer" >
 <mediaResourceResponse reason="Resource found" status="200"
 id="bnv3xc45">
 <response-session-info>
 <session-id>z1skKYZQ3eFu</session-id>
 <seq>9</seq>
 <expires>3600</expires>
 <media-server-address
 uri="sip:MediaServer@ms.example.com:5080">
 <connection-id>32pbdxZ8:KQw677BF</connection-id>
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>60</decoding>
 <encoding>60</encoding>
 </rtp-codec>
 </ivr-sessions>
 </media-server-address>
 <media-server-address
 uri="sip:OtherMediaServer@pool.example.net:5080">
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>40</decoding>
 <encoding>40</encoding>
 </rtp-codec>
 </ivr-sessions>
 </media-server-address>
 </response-session-info>
 </mediaResourceResponse>
 </mrbconsumer>

 --Part

11. UAC <- AS (200 OK SDP)

 [..]
 From: <sip:lminiero@users.example.com>;tag=1153573888
 To: <sip:mediactrlDemo@as.example.com>;tag=bcd47c32
 [..]
 Content-Type: application/sdp

 v=0
 o=lminiero 123456 654322 IN IP4 203.0.113.1
 s=MediaCtrl
 c=IN IP4 203.0.113.1
 t=0 0

Amirante, et al. Informational [Page 153]

RFC 7058 CFW Call Flow Examples November 2013

 m=audio 63442 RTP/AVP 0 3 8 101
 a=rtpmap:0 PCMU/8000
 a=rtpmap:3 GSM/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-15
 a=ptime:20
 a=label:7eda834
 m=video 33468 RTP/AVP 98
 a=rtpmap:98 H263-1998/90000
 a=fmtp:98 CIF=2
 a=label:0132ca2

 The first obvious difference is that the first INVITE (1.) is not
 originated by the AS itself (the AS was willing to set up a Control
 Channel in the previous example) but by an authorized UAC (e.g., to
 take advantage of a media service provided by the AS). As such, the
 first INVITE only contains an SDP to negotiate an audio and video
 channel. The AS in its business logic needs to attach this UAC to an
 MS according to some specific requirements (e.g., the called URI is
 associated to a specific service) and as such prepares a Consumer
 request to be sent to the MRB in order to obtain a valid MS for that
 purpose. As before, the Consumer request is sent together with the
 SDP to the MRB (3.). The MRB extracts the Consumer payload and takes
 care of it as usual; it picks two MS instances and attaches the UAC
 to the first MS instance (5.). Once the MS has successfully
 negotiated the audio and video streams (7.), the MRB takes note of
 the ’connection-id’ associated with this call (which will be needed
 afterwards in order to manipulate the audio and video streams for
 this user) and sends back to the AS both the SDP returned by the MS
 and the Consumer response (9.). The AS extracts the Consumer
 response and takes note of both the MS instances it has been given
 and the connection-id information. It then completes the scenario by
 sending back to the UAC the SDP returned by the MS (11.).

 At this point, the UAC has successfully been attached to an MS. The
 AS only needs to set up a Control Channel to that MS, if needed.
 This step may not be required, especially if the Consumer request is
 an update to an existing session rather than the preparation of a new
 session. Assuming that a Control Channel towards that MS doesn’t
 exist yet, the AS creates it as usual by sending an INVITE directly
 to the MS for which it has an address. Once done with that, it can
 start manipulating the audio and video streams of the UAC. To do so,
 it refers to the <connection-id> element as reported by the MRB,
 rather than relying on the <connection-id> element that it is aware
 of. In fact, the AS is aware of a connection-id value (fd4fush5:
 117652221, built out of the messages exchanged with the MRB), while
 the MS is aware of another (32pbdxZ8:KQw677BF, built out of the

Amirante, et al. Informational [Page 154]

RFC 7058 CFW Call Flow Examples November 2013

 MRB-MS interaction). The right connection-id is of course the one
 the MS is aware of, and as such the AS refers to that connection-id,
 which the MRB added to the Consumer response just for that purpose.

7.2.3. Inline-Unaware Mode

 Whereas in the Inline-aware mode the AS knows it is sending an INVITE
 to an MRB and not to an MS, and acts accordingly (using the
 multipart/mixed payload to query for an MS able to fulfill its
 requirements), in the Inline-Unaware MRB Mode (IUMM) the AS does not
 distinguish an MRB from an MS. This means that an MRB-unaware AS
 having access to an MRB talks to it as if it were a generic MEDIACTRL
 MS: i.e., the AS negotiates a Control Channel directly with the MRB
 and attaches its media dialogs there as well. Of course, since the
 MRB doesn’t provide any MS functionality by itself, it must act as a
 Proxy/B2BUA between the AS and an MS for both the Control Channel
 dialog and the media dialogs. According to implementation or
 deployment choices, simple redirects could also be exploited for that
 purpose.

 The problem is that without any Consumer request being placed by the
 MRB-unaware AS the MRB can’t rely on AS-originated directives to pick
 one MS rather than another. In fact, the MRB can’t know what the AS
 is looking for. The MRB is then assumed to pick one according to its
 logic, which is implementation specific.

Amirante, et al. Informational [Page 155]

RFC 7058 CFW Call Flow Examples November 2013

 Figure 51 presents a ladder diagram of a typical Consumer request in
 the Inline-unaware topology:

 AS MRB MS
 | | | |
 | 1. INVITE | |
 | (application/cfw) | |
 |---------------------->| |
 | 2. 100 (Trying) | |
 |<----------------------| |
 | |--+ Pick an MS |
 | | | and redirect |
 | |<-+ INVITE there |
 | | |
 | | 3. INVITE |
 | | (application/cfw from 1.) |
 | |-------------------------->|
 | | 4. 100 (Trying) |
 | |<--------------------------|
 | | |--+ Negotiate
 | | | | CFW Control
 | | |<-+ Channel
 | | 5. 200 OK |
 | | (application/cfw from MS) |
 | |<--------------------------|
 | | 6. ACK |
 | |-------------------------->|
 | | |
 | 7. 200 OK | |
 |(application/cfw from MS) |
 |<----------------------| |
 | 8. ACK | |
 |---------------------->| |
 | | |
 | |
 |<<############## TCP CONNECTION #################>>|
 | |
 | CFW SYNC |
 |++>|
 | |
 . . .
 . . .

 Figure 51: Media Resource Brokering: Inline-Unaware Mode

 As can be seen in the diagram, in this topology the MRB basically
 acts as a 3PCC between the AS and the chosen MS.

Amirante, et al. Informational [Page 156]

RFC 7058 CFW Call Flow Examples November 2013

 The same can be said with respect to attaching UAC media dialogs.
 The MRB remembers the MS it has chosen for the AS, and for every UAC
 media dialog the AS tries to attach to the MRB, it makes sure that it
 is somehow actually redirected to the MS.

 No content for the presented messages is provided in this section, as
 in the IUMM mode no Consumer transaction is involved. In this
 example, a simple [RFC6230] Control Channel negotiation occurs where
 the MRB acts as an intermediary, that is, picking an MS for the AS
 according to some logic. In this case, in fact, the AS does not
 support the MRB specification and so just tries to set up a Control
 Channel according to its own logic.

 It is worth pointing out that the MRB may actually enforce its
 decision about the MS to grant to the AS in different ways.
 Specifically, the sentence "redirect the INVITE" that is used in
 Figure 51 does not necessarily mean that a SIP 302 message should be
 used for that purpose. A simple way to achieve this may be
 provisioning the unaware AS with different URIs, all actually
 transparently handled by the MRB itself; this would allow the MRB to
 simply map those URIs to different MS instances. The SIP ’Contact’
 header may also be used by the MRB in a reply to an INVITE coming
 from an AS to provide the actual URI on which the chosen MS might be
 reached. A motivation for such a discussion, and more details on
 this topic, are provided in Section 7.3.2.

7.3. Handling Media Dialogs

 It is worthwhile to briefly address how media dialogs would be
 managed whenever an MRB is involved in the following scenarios. In
 fact, the presence of an MRB may introduce an additional complexity
 compared to the quite straightforward 1:1 AS-MS topology.

7.3.1. Query and Inline-Aware Mode

 Normally, especially in the Query and IAMM case, the MRB would only
 handle Consumer requests by an AS, and after that the AS and the MS
 picked by the MRB for a specific request would talk directly to each
 other by means of SIP. This is made possible by the fact that the AS
 gets the MS SIP URI in reply to its request. In this case, an AS can
 simply relay media dialogs associated with that session to the right
 MS to have them handled accordingly. Of course, in order for this to
 work it is assumed that the AS creates a Control Channel to a chosen
 MS before it has any requests to service.

 An example of such a scenario is presented in Figure 52. Please note
 that this diagram and subsequent diagrams in this section are
 simplified with respect to the actual protocol interactions. For

Amirante, et al. Informational [Page 157]

RFC 7058 CFW Call Flow Examples November 2013

 instance, the whole SIP transactions are not presented, and only the
 originating messages are presented in order to clarify the scenario
 in a simple way.

UAC AS MRB MS
	1. Consumer request	
	--------------------------->	
	2. Consumer response	
	<---------------------------	
	3. COMEDIA negotiation to create CFW channel	
	-->	
	<<############## CFW CONNECTION #################>>	
4. INVITE xyz		
--------------->		
	5. Attach UAC to MS (3PCC)	
	-->	
<<++++++++++++++++++++++ RTP channels ++++++++++++++++++++++++++++>>		

 Figure 52: Handling Media Dialogs in Query/IAMM

 As can be deduced from the diagram, the interactions among the
 components are quite straightforward. The AS knows which MS it has
 been assigned to (as a consequence of the MRB Consumer request,
 whether it has been achieved by means of HTTP or SIP), and so it can
 easily attach any UAC accessing its functionality to the MS itself
 and manipulate its media connections by using the CFW Control Channel
 as usual.

 In such a scenario, the MRB is only involved as a locator. Once the
 MRB provides the AS with the URI of the required resource, it doesn’t
 interfere with subsequent interactions unless it wants to perform
 monitoring (e.g., by exploiting the Publishing information reported
 by the MS). As a consequence, the scenario basically becomes 1:1
 between the AS and the MS again.

 Nevertheless, there are cases when having an MRB in the SIP signaling
 path as well might be a desired feature, e.g., for more control over
 the use of the resources. Considering how the Consumer interface has
 been envisaged, this feature is easily achievable, with no change to
 the protocol required at all. Specifically, in order to achieve such

Amirante, et al. Informational [Page 158]

RFC 7058 CFW Call Flow Examples November 2013

 functionality, the MRB may reply to a Consumer request with a URI for
 which the MRB is responsible (rather than the MS SIP URI as discussed
 previously) and map this URI to the actual MS URI in its business
 logic; this would be transparent to the AS. This way, the AS would
 interact with the MRB as if it were the MS itself.

 Figure 53 shows how the scenario would change in this case.

 UAC AS MRB MS
	1. Consumer request	
	--------------------------->	
	2. Consumer response	
	<---------------------------	
	3. COMEDIA negotiation	
	--------------------------->	
		4. COMEDIA neg.
		--------------------->
	<<############## CFW CONNECTION #################>>	
5. INVITE xyz		
--------------->		
	6. Attach UAC to MS (3PCC)	
	--------------------------->	
		7. Attach UAC (3PCC)
		--------------------->
<<++++++++++++++++++++++ RTP channels ++++++++++++++++++++++++++++>>		

 Figure 53: Handling Media Dialogs in Query/IAMM:
 MRB in the Signaling Path

 This time, even though the MRB has picked a specific MS after a
 request from an AS, it replies with another SIP URI, a URI it would
 reply to itself. The AS would contact that URI in order to negotiate
 the Control Channel, and the MRB would proxy/forward the request to
 the actual MS transparently. Eventually, the Control Channel would
 be instantiated between the AS and the MS. The same happens for UACs
 handled by the AS; the AS would forward the calls to the URI provided
 to it, the one handled by the MRB, which would in turn relay the call
 to the MS in order to have the proper RTP channels created between
 the UAC and the MS.

Amirante, et al. Informational [Page 159]

RFC 7058 CFW Call Flow Examples November 2013

 This scenario is not very different from the previous scenario,
 except that the MRB is now on the signaling path for both the SIP
 control dialog and the SIP media dialogs, allowing it to have more
 control of the resources (e.g., triggering a BYE if a resource has
 expired). There are several possible approaches an MRB might take to
 allocate URIs to map to a requested MS. For example, an MRB might
 use SIP URI parameters to generate multiple SIP URIs that are unique
 but that all route to the same host and port, e.g.,
 sip:MrbToMs@mrb.example.com:5080;p=1234567890. Alternatively, the
 MRB might simply allocate a pool of URIs for which it would be
 responsible and manage the associations with the requested MS
 services accordingly.

7.3.2. Inline-Unaware Mode

 As mentioned previously, in the IUMM case the AS would interact with
 the MRB as if it were the MS itself. One might argue that this would
 make the AS act as it would in the IAMM case. This is not the case,
 however, since the AS actually provided the MRB with information
 about the resources it required, leading to the selection of a proper
 MS, while in the IUMM case the MRB would have to pick an MS with no
 help from the AS at all.

 That said, the IUMM case is also very interesting with respect to
 media dialog management. In fact, in the MRB-unaware mode, there
 would be no Consumer request, and an AS would actually see the MRB as
 an MS. Unlike the previous scenarios, because there is no AS<->MRB
 interaction and as such no MS selection process, the MRB would likely
 be in the signaling path anyway, at least when the AS first shows up.
 The MRB could either redirect the AS to an MS directly or
 transparently act as a Proxy/B2BUA and contact an MS (according to
 implementation-specific policies) on behalf of the unaware AS.

 While apparently not a problem, this raises an issue when the same
 unaware AS has several sessions with different MS. The AS would only
 see one "virtual" MS (the MRB), and so it would relay all calls
 there, making it hard for the MRB to understand where these media
 dialogs should belong: specifically, whether the UAC calling belongs
 to the AS application logic leading to MS1 or MS2, or somewhere else.

Amirante, et al. Informational [Page 160]

RFC 7058 CFW Call Flow Examples November 2013

 One possible, and very simple, approach to take care of this issue is
 to always relay the SIP dialogs from the same unaware AS to the same
 MS, as depicted in Figure 54.

UAC1 UAC2 AS MRB MS
		1. COMEDIA negotiation (A)	
		--------------------------->	
			2. COMEDIA neg. (A)
			--------------------->
		<<############## CFW CONNECTION #################>>	
		3. COMEDIA negotiation (B)	
		--------------------------->	
			4. COMEDIA neg. (B)
			--------------------->
		<<############## CFW CONNECTION #################>>	
5. INVITE xyz			
--------------->			
		6. Attach UAC1 to MS (3PCC)	
		--------------------------->	
			7. Attach UAC (3PCC)
			--------------------->
<<++++++++++++++++++++++ RTP channels ++++++++++++++++++++++++++++>>			
	8. INVITE		
	jkl		
	--------->		
		9. Attach UAC2 to MS (3PCC)	
		--------------------------->	
			10. Attach UAC (3PCC)
			--------------------->
	<<++++++++++++++++ RTP channels ++++++++++++++++++++++++++++>>		

 Figure 54: Handling Media Dialogs in IUMM: Always the Same MS

 In this example, the AS creates two different Control Channel
 sessions (A and B) to address two different business logic
 implementations; e.g., the AS SIP URI ’xyz’ (associated with CFW
 session A) may be an IVR pizza-ordering application, while the AS SIP
 URI ’jkl’ (associated with CFW session B) may be associated with a

Amirante, et al. Informational [Page 161]

RFC 7058 CFW Call Flow Examples November 2013

 conference room. It’s quite clear, then, that if the MRB forwarded
 the two CFW sessions to two different MS, the handling of UAC media
 dialogs would prove troublesome, because the MRB would have
 difficulty figuring out whether UAC1 should be attached to the MS
 managing CFW session A or the MS managing CFW session B. In this
 example, forwarding all CFW sessions and UAC media dialogs coming
 from the same MRB-unaware AS to the same MS would work as expected.
 The MRB would in fact leave the mapping of media dialogs and CFW
 sessions up to the AS.

 This approach, while very simple and indeed not very scalable, would
 actually help take care of the issue. In fact, no matter how many
 separate Control Channels the AS might have with the MRB/MS (in this
 example, Control Channel A would be mapped to application xyz and
 Control Channel B to application jkl), the termination point would
 still always be the same MS, which would consequently be the
 destination for all media dialogs as well.

 To overcome the scalability limitations of such an approach, at least
 in regard to the MRB being in the SIP signaling path for all calls, a
 different approach needs to be exploited. In fact, especially in the
 case of different applications handled by the same unaware AS, it
 makes sense to try to exploit different MS for that purpose and to
 correctly track media dialogs being forwarded accordingly. This
 means that the MRB must find a way to somehow redirect the unaware AS
 to different MS when it predicts or realizes that a different
 application logic is involved.

Amirante, et al. Informational [Page 162]

RFC 7058 CFW Call Flow Examples November 2013

 To do so, the MRB might use different approaches. One approach would
 use redirection, e.g., by means of a SIP 302 message in reply to a
 Control Channel negotiation originated by an unaware AS. Such an
 approach is depicted in Figure 55.

UAC1 AS MRB MS
	1. COMEDIA negotiation	
	--------------------------->	
	2. 302 Moved (MS)	
	<---------------------------	
	3. COMEDIA negotiation	
	-->	
	<<############## CFW CONNECTION #################>>	
4. INVITE xyz		
--------------->		
	5. Attach UAC1 to MS (3PCC)	
	-->	
<<++++++++++++++++++++++ RTP channels ++++++++++++++++++++++++++++>>		

 Figure 55: Handling Media Dialogs in IUMM: Redirection

 With this approach, the MRB might redirect the AS to a specific MS
 whenever a new Control Channel is to be created, and as a consequence
 the AS would redirect the related calls there. This is similar to
 the first approach of the Query/IAMM case, with the difference that
 no Consumer request would be involved. The scenario would again fall
 back to a 1:1 topology between the AS and the MS, making the
 interactions quite simple.

 Just as before, the MRB might be interested in being in the signaling
 path for the SIP dialogs, instead of just acting as a locator. A
 third potential approach could be implementing the "virtual" URIs
 handled by the MRB, as described in the previous section. Rather
 than resorting to explicit redirection or always using the same MS,

Amirante, et al. Informational [Page 163]

RFC 7058 CFW Call Flow Examples November 2013

 the MRB may redirect new SIP control dialogs to one of its own URIs,
 using the same approach previously presented in Figure 53. Such an
 approach, as applied to the IUMM case, is depicted in Figure 56.

UAC1 AS MRB MS
	1. COMEDIA negotiation (MRB)	
	------------------------------>	
	2. 302 Moved (MRB’)	
	<------------------------------	
	3. COMEDIA negotiation (MRB’)	
	------------------------------>	
		4. COMEDIA neg.
		------------------>
	<<############## CFW CONNECTION #################>>	
5. INVITE xyz		
--------------->		
	6. Attach UAC1 to MRB’ (3PCC)	
	------------------------------>	
		7 Attach UAC (3PCC)
		------------------>
<<++++++++++++++++++++++ RTP channels ++++++++++++++++++++++++++++>>		

 Figure 56: Handling Media Dialogs in IUMM: MRB in the Signaling Path

 It is worth pointing out, though, that in both cases there are
 scenarios where there could be no assurance that the 302 sent by the
 MRB would be seen by the AS. In fact, should a proxy be between the
 AS and the MRB, such a proxy could itself act on the 302. To
 properly cope with such an issue, the MRB might also use the
 ’Contact’ header in the SIP responses to the INVITE to address the
 right MS. Although the AS is not required to use the information in
 such a header to reach the MS, it could be reasonable to exploit it
 for that purpose, as it would take care of the proxy scenario
 mentioned above.

Amirante, et al. Informational [Page 164]

RFC 7058 CFW Call Flow Examples November 2013

 To conclude, there is a further approach an MRB might try to exploit
 to take care of the IUMM case. Since, as explained before, the
 issues related to the IUMM case mostly relate to the fact that the
 MRB is seen as a single MS instance by the AS, a simple way to
 overcome this might be to make the MRB look like a set of different
 MS right away; this can be done by simply provisioning the unaware AS
 with a series of different URIs, all handled by the MRB itself acting
 as a pool of "virtual" MS. This way, the AS may be designed to use
 different MS for different classes of calls, e.g., for different
 applications it is managing (two in the example presented in this
 section), and as such would contact two different provisioned URIs to
 create two distinct Control Channels towards two different MS. Since
 both of the URIs would be handled by the MRB, the MRB can use them to
 determine to which MS each call should be directed. Expanding on
 Figure 54 by removing the constraint to always use the same MS, this
 new scenario might look like that depicted in Figure 57.

Amirante, et al. Informational [Page 165]

RFC 7058 CFW Call Flow Examples November 2013

 UAC1 UAC2 AS MRB MS1 MS2
		1. COMEDIA negotiation (A)		
		INVITE fake-ms1		
		--------------------------->		
			2. COMEDIA (A)	
			---------------->	
		<<############## CFW CONNECTION 1 ##########>>		
		3. COMEDIA negotiation (B)		
		INVITE fake-ms2		
		--------------------------->		
			4. COMEDIA neg. (B)	
			--------------------->	
		<<############## CFW CONNECTION 2 ###############>>		
5. INVITE xyz				
--------------->				
		6. Attach UAC1 to fake-ms1 (3PCC)		
		--------------------------->		
			7. Attach UAC	
			---------------->	
<<++++++++++++++++++++++ RTP channels +++++++++++++++++++++++>>				
8. INVITE jkl				
--------------->				
		9. Attach UAC2 to fake-ms2 (3PCC)		
		--------------------------->		
			10. Attach UAC	
			--------------------->	
<<+++++++++++++++++++++++++ RTP channels +++++++++++++++++++++++++>>				

 Figure 57: Handling Media Dialogs in IUMM: Provisioned URIs

 In this new example, we still assume that the same unaware AS is
 handling two different applications, still associated with the same
 URIs as before. This time, though, we also assume that the AS has
 been designed to try to use different MS instances to handle the two
 very different applications for which it is responsible. We also
 assume that it has been configured to be able to use two different MS
 instances, reachable at SIP URI ’fake-ms1’ and ’fake-ms2’,

Amirante, et al. Informational [Page 166]

RFC 7058 CFW Call Flow Examples November 2013

 respectively, and both actually handled by the MRB transparently.
 This results, just as before, in two different Control Channels (A
 and B) being created, but this time towards two different MS.
 Specifically, the MRB makes sure that for this AS the Control Channel
 negotiation towards ’fake-ms1’ is actually redirected to MS1. At the
 same time, ’fake-ms2’ is associated with MS2. Once the AS has set up
 the Control Channels with both of the MS, it is ready to handle media
 dialogs. UAC1 calls the SIP URI ’xyz’ on the AS to order a pizza.
 The AS attaches the media dialog to the MS it knows is responsible
 for that branch of application logic, i.e., ’fake-ms1’. The MRB in
 turn makes sure that it reaches the right MS instance, MS1. Later
 on, a different user, UAC2, calls SIP URI ’jkl’ to join a conference
 room. This time, the AS attaches this new media dialog to the MS
 instance handling the conference application, i.e., ’fake-ms2’.
 Again, the MRB makes sure that it is actually MS2 that receives the
 dialog.

 Again, this diagram is only meant to describe how the MRB might
 enforce its decisions. Just as described in the previous examples,
 the MRB may choose to either act as a Proxy/B2BUA between the AS and
 the MS instances or redirect the AS to the right MS instances when
 they’re first contacted (e.g., by means of the Contact header and/or
 a SIP redirect, as explained before) and let the AS attach the media
 dialogs by itself.

7.3.3. CFW Protocol Behavior

 As shown in the previous diagrams, no matter what the topology, the
 AS and MS usually end up with a direct connection with respect to the
 CFW Control Channel. As such, it can be expected that the CFW
 protocol continue to work as it should, and as a consequence all the
 call flows presented in this document can easily be reproduced in
 those circumstances as well.

 Nevertheless, one aspect needs to be considered very carefully. It’s
 worthwhile to remind readers that both the AS and the MS use some
 SIP-related information to address the entities they manipulate.
 This is the case, for instance, for the <connectionid> element to
 which both the AS and the MS refer when addressing a specific UAC.
 As explained in Section 6, this ’connectionid’ identifier is
 constructed by concatenating the ’From’ and ’To’ tags extracted from
 a SIP header: specifically, from the headers of the AS<->MS leg that
 allows a UAC to be attached to the MS. The presence of an additional
 component in the path between the AS and the MS, the MRB, might alter
 these tags, thus causing the AS to use tags (AS<->MRB) different than
 those used by the MS (MRB<->MS). This would result in the AS and MS
 using different ’connectionid’ identifiers to address the same UAC,
 thus preventing the protocol from working as expected. As a

Amirante, et al. Informational [Page 167]

RFC 7058 CFW Call Flow Examples November 2013

 consequence, it’s very important that any MRB implementation take
 very good care to preserve the integrity of the involved SIP headers
 when proxying/forwarding SIP dialogs between the AS and MS, in order
 not to "break" the behavior of the protocol.

 Let’s take, for instance, the scenario depicted in Figure 53,
 especially steps 6 and 7, which specifically address a UAC being
 attached by an AS to an MS via the MRB. Let’s assume that Figure 58
 shows what happens to the ’From’ and ’To’ headers in that scenario,
 when dealing with the 3PCC approach to attach a specific UAC to
 the MS.

UAC AS MRB MS
INVITE xyz		
--------------->		
	SIP [..]	
	From: <..>;tag=a1b2c3	
	To: <..>;tag=d4e5f6	
	<------------------------>	
		SIP [..]
		From: <..>;tag=aaabbb
		To: <..>;tag=cccddd
		<---------------------->
	1. CONTROL (play announcement to UAC)	
	-->	
	2. 200 (IVR Error!)	
	<--	

 Figure 58: CFW Protocol Behavior in the Case of Manipulated Tags

 In this example, once done with the 3PCC, and now that the UAC is
 attached to the MS, the AS and the MS end up with different
 interpretations of what the ’connectionid’ for the UAC should be. In
 fact, the AS builds a ’connectionid’ using the tags it is aware of
 (a1b2c3:d4e5f6), while the MS builds a different identifier after
 receiving different information from the MRB (aaabbb:cccddd).

 As a consequence, when the AS tries to play an announcement to the
 UAC using the connectionid it correctly constructed, the MS just as
 correctly replies with an error, since it doesn’t know that
 identifier. This is correct protocol behavior, because in this case
 it was caused by misuse of the information needed for it to work as
 expected.

Amirante, et al. Informational [Page 168]

RFC 7058 CFW Call Flow Examples November 2013

 1. AS -> MS (CFW CONTROL, play)

 CFW ffhg45dzf123 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 284

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="a1b2c3:d4e5f6">
 <dialog>
 <prompt>
 <media loc="http://www.example.net/hello.wav"/>
 </prompt>
 </dialog>
 </dialogstart>
 </mscivr>

 2. AS <- MS (CFW 200 OK)

 CFW ffhg45dzf123 200
 Timeout: 10
 Content-Type: application/msc-ivr+xml
 Content-Length: 148

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="407" reason="connectionid does not exist"
 dialogid=""/>
 </mscivr>

 In an even worse scenario, the connectionid might actually exist but
 might be mapped to a different UAC. In such a case, the transaction
 would succeed, but a completely different UAC would be involved, thus
 causing a silent failure that neither the AS nor the MS would be
 aware of.

 That said, proper management of these sensitive pieces of information
 by the MRB would prevent such failure scenarios from happening. How
 this issue is taken care of in the IAMM case (both CFW-based and
 media dialog-based) has already been described. Addressing this
 issue for the IUMM case is not documented in [RFC6917] as explicitly
 out of scope and as such may be implementation specific.

 The same applies to SDP fields as well. In fact, the AS and MS use
 ad hoc SDP attributes to instantiate a Control Channel, as they use
 SDP labels to address specific media connections of a UAC media
 dialog when a fine-grained approach is needed. As a consequence, any

Amirante, et al. Informational [Page 169]

RFC 7058 CFW Call Flow Examples November 2013

 MRB implementation should limit any SDP manipulation as much as
 possible or at least take very good care not to cause changes that
 could "break" the expected behavior of the CFW protocol.

8. Security Considerations

 All the MEDIACTRL documents have strong statements regarding security
 considerations within the context of the interactions occurring at
 all levels among the involved parties. Considering the sensitive
 nature of the interaction between AS and MS, particular efforts have
 been devoted to providing guidance on how to secure what flows
 through a Control Channel. In fact, transactions concerning dialogs,
 connections, and mixes are quite strongly related to resources
 actually being deployed and used in the MS. This means that it is in
 the interest of both AS and MS that resources created and handled by
 an entity are not manipulated by a potentially malicious third party
 if permission was not granted.

 Because strong statements are provided in the aforementioned
 documents and these documents provide good guidance to implementors
 with respect to these issues, this section will only provide the
 reader with some MEDIACTRL call flows that show how a single secured
 MS is assumed to reply to different AS when receiving requests that
 may cross the bounds within which each AS is constrained. This would
 be the case, for instance, for generic auditing requests, or explicit
 conference manipulation requests where the involved identifiers are
 not part of the context of the originating AS.

 To address a very specific scenario, let’s assume that two different
 AS, AS1 and AS2, have established a Control Channel with the same MS.
 Considering the SYNC transaction that an AS and an MS use to set up a
 Control Channel, the MS is able to discern the requests coming from
 AS1 from the requests coming from AS2. In fact, as explained in
 Sections 5.1 and 5.2, an AS and an MS negotiate a cfw-id attribute in
 the SDP, and the same value is subsequently used in the SYNC message
 on the Control Channel that is created after the negotiation, thus
 reassuring both the AS and the MS that the Control Channel they share
 is in fact the channel they negotiated in the first place.

Amirante, et al. Informational [Page 170]

RFC 7058 CFW Call Flow Examples November 2013

 Let’s also assume that AS1 has created a conference mix
 (confid=74b6d62) to which it has attached some participants within
 the context of its business logic, while AS2 has created a currently
 active IVR dialog (dialogid=dfg3252) with a user agent it is handling
 (237430727:a338e95f). AS2 has also joined two connections to each
 other (1:75d4dd0d and 1:b9e6a659). Clearly, it is highly desirable
 that AS1 not be aware of what AS2 is doing with the MS and vice
 versa, and that they not be allowed to manipulate each other’s
 resources. The following transactions will occur:

 1. AS1 places a generic audit request to both the Mixer and IVR
 packages.

 2. AS2 places a generic audit request to both the Mixer and IVR
 packages.

 3. AS1 tries to terminate the dialog created by AS2 (6791fee).

 4. AS2 tries to join a user agent it handles (1:272e9c05) to the
 conference mix created by AS1 (74b6d62).

Amirante, et al. Informational [Page 171]

RFC 7058 CFW Call Flow Examples November 2013

 A sequence diagram of the above-mentioned transactions is depicted in
 Figure 59, which shows how the MS is assumed to reply in all cases,
 in order to avoid security issues:

 AS1 AS2 MS
 | | |
 | A1. CONTROL (IVR audit) |
 |++>>|
 | | A2. 200 OK |
 |<<++|
 | | |
 | B1. CONTROL (Mixer audit) |
 |++>>|
 | | B2. 200 OK |
 |<<++|
 | | |
 | | C1. CONTROL (IVR audit) |
 | |++++++++++++++++++++++++++++++++>>|
 | | C2. 200 OK |
 | |<<++++++++++++++++++++++++++++++++|
 | | |
 | | D1. CONTROL (Mixer audit) |
 | |++++++++++++++++++++++++++++++++>>|
 | | D2. 200 OK |
 | |<<++++++++++++++++++++++++++++++++|
 | | |
 | E1. CONTROL (dialogterminate) |
 |++>>|
 | | E2. 403 Forbidden |
 |<<++|
 | | |
 | | F1. CONTROL (join UAC&conf[AS1]) |
 | |++++++++++++++++++++++++++++++++>>|
 | | F2. 403 Forbidden |
 | |<<++++++++++++++++++++++++++++++++|
 | | |
 . . .
 . . .

 Figure 59: Security Considerations: Framework Transaction

Amirante, et al. Informational [Page 172]

RFC 7058 CFW Call Flow Examples November 2013

 The expected outcome of the transaction is that the MS partially
 "lies" to both AS1 and AS2 when replying to the audit requests (not
 all of the identifiers are reported, but only those identifiers with
 which each AS is directly involved), and the MS denies the requests
 for the unauthorized operations (403). Looking at each transaction
 separately:

 o In the first transaction (A1), AS1 places a generic <audit>
 request to the IVR package. The request is generic, since no
 attributes are passed as part of the request, meaning that AS1 is
 interested in the MS capabilities as well as all of the dialogs
 that the MS is currently handling. As can be seen in the reply
 (A2), the MS only reports in the <auditresponse> the package
 capabilities, while the <dialogs> element is empty; this is
 because the only dialog the MS is handling has actually been
 created by AS2, which causes the MS not to report the related
 identifier (6791fee) to AS1. In fact, AS1 could use that
 identifier to manipulate the dialog, e.g., by tearing it down and
 thus causing the service to be interrupted without AS2’s
 intervention.

 o In the second transaction (B1), AS1 places an identical <audit>
 request to the Mixer package. The request is again generic,
 meaning that AS1 is interested in the package capabilities as well
 as all the mixers and connections that the package is handling at
 the moment. This time, the MS reports not only capabilities (B2)
 but information about mixers and connections as well. However,
 this information is not complete; in fact, only information about
 mixers and connections originated by AS1 is reported (mixer
 74b6d62 and its participants), while the information originated by
 AS2 is omitted in the report. The motivation is the same as
 before.

 o In the third and fourth transactions (C1 and D1), it’s AS2 that
 places an <audit> request to both the IVR and Mixer packages. As
 with the previous transactions, the audit requests are generic.
 Looking at the replies (C2 and D2), it’s obvious that the
 capabilities section is identical to the replies given to AS1. In
 fact, the MS has no reason to "lie" about what it can do. The
 <dialogs> and <mixers> sections are totally different. AS2 in
 fact receives information about its own IVR dialog (6791fee),
 which was omitted in the reply to AS1, while it only receives
 information about the only connection it created (1:75d4dd0d and
 1:b9e6a659) without any details related to the mixers and
 connections originated by AS1.

Amirante, et al. Informational [Page 173]

RFC 7058 CFW Call Flow Examples November 2013

 o In the fifth transaction (E1), AS1, instead of just auditing the
 packages, tries to terminate (<dialogterminate>) the dialog
 created by AS2 (6791fee). Since the identifier has not been
 reported by the MS in the reply to the previous audit request, we
 assume that AS1 accessed it via a different out-of-band mechanism.
 This is assumed to be an unauthorized operation, because the
 above-mentioned dialog is outside the bounds of AS1; therefore,
 the MS, instead of handling the syntactically correct request,
 replies (E2) with a framework-level 403 message (Forbidden),
 leaving the dialog untouched.

 o Similarly, in the sixth and last transaction (F1), AS2 tries to
 attach (<join>) one of the UACs it is handling to the conference
 mix created by AS1 (74b6d62). Just as in the previous
 transaction, the identifier is assumed to have been accessed by
 AS2 via some out-of-band mechanism, since the MS didn’t report it
 in the reply to the previous audit request. While one of the
 identifiers (the UAC) is actually handled by AS2, the other (the
 conference mix) is not; therefore, as with the fifth transaction,
 this last transaction is regarded by the MS as outside the bounds
 of AS2. For the same reason as before, the MS replies (F2) with a
 framework-level 403 message (Forbidden), leaving the mix and the
 UAC unjoined.

 A1. AS1 -> MS (CFW CONTROL, audit IVR)

 CFW 140e0f763352 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 81

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <audit/>
 </mscivr>

Amirante, et al. Informational [Page 174]

RFC 7058 CFW Call Flow Examples November 2013

 A2. AS1 <- MS (CFW 200, auditresponse)

 CFW 140e0f763352 200
 Timeout: 10
 Content-Type: application/msc-ivr+xml
 Content-Length: 1419

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <auditresponse status="200">
 <capabilities>
 <dialoglanguages/>
 <grammartypes/>
 <recordtypes>
 <mimetype>audio/x-wav</mimetype>
 <mimetype>video/mpeg</mimetype>
 </recordtypes>
 <prompttypes>
 <mimetype>audio/x-wav</mimetype>
 <mimetype>video/mpeg</mimetype>
 </prompttypes>
 <variables>
 <variabletype type="date"
 desc="value formatted as YYYY-MM-DD">
 <format desc="month day year">mdy</format>
 <format desc="year month day">ymd</format>
 <format desc="day month year">dmy</format>
 <format desc="day month">dm</format>
 </variabletype>
 <variabletype type="time" desc="value formatted as HH:MM">
 <format desc="24 hour format">t24</format>
 <format desc="12 hour format with am/pm">t12</format>
 </variabletype>
 <variabletype type="digits" desc="value formatted as D+">
 <format desc="general digit string">gen</format>
 <format desc="cardinal">crn</format>
 <format desc="ordinal">ord</format>
 </variabletype>
 </variables>
 <maxpreparedduration>60s</maxpreparedduration>
 <maxrecordduration>1800s</maxrecordduration>
 <codecs>
 <codec name="audio"><subtype>basic</subtype></codec>
 <codec name="audio"><subtype>gsm</subtype></codec>
 <codec name="video"><subtype>h261</subtype></codec>
 <codec name="video"><subtype>h263</subtype></codec>
 <codec name="video"><subtype>h263-1998</subtype></codec>
 <codec name="video"><subtype>h264</subtype></codec>
 </codecs>

Amirante, et al. Informational [Page 175]

RFC 7058 CFW Call Flow Examples November 2013

 </capabilities>
 <dialogs>
 </dialogs>
 </auditresponse>
 </mscivr>

 B1. AS1 -> MS (CFW CONTROL, audit mixer)
 --
 CFW 0216231b1f16 CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 87

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <audit/>
 </mscmixer>

 B2. AS1 <- MS (CFW 200, auditresponse)

 CFW 0216231b1f16 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 903

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <auditresponse status="200">
 <capabilities>
 <codecs>
 <codec name="audio"><subtype>basic</subtype></codec>
 <codec name="audio"><subtype>gsm</subtype></codec>
 <codec name="video"><subtype>h261</subtype></codec>
 <codec name="video"><subtype>h263</subtype></codec>
 <codec name="video"><subtype>h263-1998</subtype></codec>
 <codec name="video"><subtype>h264</subtype></codec>
 </codecs>
 </capabilities>
 <mixers>
 <conferenceaudit conferenceid="74b6d62">
 <participants>
 <participant id="1864574426:e2192766"/>
 <participant id="1:5a97fd79"/>
 </participants>
 <video-layout min-participants="1">
 <quad-view/>
 </video-layout>
 </conferenceaudit>

Amirante, et al. Informational [Page 176]

RFC 7058 CFW Call Flow Examples November 2013

 <joinaudit id1="1864574426:e2192766" id2="74b6d62"/>
 <joinaudit id1="1:5a97fd79" id2="74b6d62"/>
 </mixers>
 </auditresponse>
 </mscmixer>

 C1. AS2 -> MS (CFW CONTROL, audit IVR)

 CFW 0216231b1f16 CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 81

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <audit/>
 </mscivr>

 C2. AS2 <- MS (CFW 200, auditresponse)

 CFW 0216231b1f16 200
 Timeout: 10
 Content-Type: application/msc-ivr+xml
 Content-Length: 1502

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <auditresponse status="200">
 <capabilities>
 <dialoglanguages/>
 <grammartypes/>
 <recordtypes>
 <mimetype>audio/wav</mimetype>
 <mimetype>video/mpeg</mimetype>
 </recordtypes>
 <prompttypes>
 <mimetype>audio/wav</mimetype>
 <mimetype>video/mpeg</mimetype>
 </prompttypes>
 <variables>
 <variabletype type="date"
 desc="value formatted as YYYY-MM-DD">
 <format desc="month day year">mdy</format>
 <format desc="year month day">ymd</format>
 <format desc="day month year">dmy</format>
 <format desc="day month">dm</format>
 </variabletype>

Amirante, et al. Informational [Page 177]

RFC 7058 CFW Call Flow Examples November 2013

 <variabletype type="time" desc="value formatted as HH:MM">
 <format desc="24 hour format">t24</format>
 <format desc="12 hour format with am/pm">t12</format>
 </variabletype>
 <variabletype type="digits" desc="value formatted as D+">
 <format desc="general digit string">gen</format>
 <format desc="cardinal">crn</format>
 <format desc="ordinal">ord</format>
 </variabletype>
 </variables>
 <maxpreparedduration>60s</maxpreparedduration>
 <maxrecordduration>1800s</maxrecordduration>
 <codecs>
 <codec name="audio"><subtype>basic</subtype></codec>
 <codec name="audio"><subtype>gsm</subtype></codec>
 <codec name="video"><subtype>h261</subtype></codec>
 <codec name="video"><subtype>h263</subtype></codec>
 <codec name="video"><subtype>h263-1998</subtype></codec>
 <codec name="video"><subtype>h264</subtype></codec>
 </codecs>
 </capabilities>
 <dialogs>
 <dialogaudit dialogid="6791fee" state="started"
 connectionid="237430727:a338e95f"/>
 </dialogs>
 </auditresponse>
 </mscivr>

 D1. AS2 -> MS (CFW CONTROL, audit mixer)
 --
 CFW 515f007c5bd0 CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 87

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <audit/>
 </mscmixer>

Amirante, et al. Informational [Page 178]

RFC 7058 CFW Call Flow Examples November 2013

 D2. AS2 <- MS (CFW 200, auditresponse)

 CFW 515f007c5bd0 200
 Timeout: 10
 Content-Type: application/msc-mixer+xml
 Content-Length: 548

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <auditresponse status="200">
 <capabilities>
 <codecs>
 <codec name="audio"><subtype>basic</subtype></codec>
 <codec name="audio"><subtype>gsm</subtype></codec>
 <codec name="video"><subtype>h261</subtype></codec>
 <codec name="video"><subtype>h263</subtype></codec>
 <codec name="video"><subtype>h263-1998</subtype></codec>
 <codec name="video"><subtype>h264</subtype></codec>
 </codecs>
 </capabilities>
 <mixers>
 <joinaudit id1="1:75d4dd0d" id2="1:b9e6a659"/>
 </mixers>
 </auditresponse>
 </mscmixer>

 E1. AS1 -> MS (CFW CONTROL, dialogterminate)
 --
 CFW 7fdcc2331bef CONTROL
 Control-Package: msc-ivr/1.0
 Content-Type: application/msc-ivr+xml
 Content-Length: 127

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogterminate dialogid="6791fee" immediate="true"/>
 </mscivr>

 E2. AS1 <- MS (CFW 403 Forbidden)

 CFW 7fdcc2331bef 403

Amirante, et al. Informational [Page 179]

RFC 7058 CFW Call Flow Examples November 2013

 F1. AS2 -> MS (CFW CONTROL, join to conference)

 CFW 140e0f763352 CONTROL
 Control-Package: msc-mixer/1.0
 Content-Type: application/msc-mixer+xml
 Content-Length: 117

 <mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
 <join id1="1:272e9c05" id2="74b6d62"/>
 </mscmixer>

 F2. AS2 <- MS (CFW 403 Forbidden)

 CFW 140e0f763352 403

9. Acknowledgments

 The authors would like to thank Dale Worley for the thorough review
 of the whole document and for contributing text to make the document
 easier to read.

10. References

10.1. Normative References

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 June 2002.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

 [RFC4574] Levin, O. and G. Camarillo, "The Session Description
 Protocol (SDP) Label Attribute", RFC 4574, August 2006.

 [RFC4145] Yon, D. and G. Camarillo, "TCP-Based Media Transport in
 the Session Description Protocol (SDP)", RFC 4145,
 September 2005.

Amirante, et al. Informational [Page 180]

RFC 7058 CFW Call Flow Examples November 2013

 [RFC4572] Lennox, J., "Connection-Oriented Media Transport over the
 Transport Layer Security (TLS) Protocol in the Session
 Description Protocol (SDP)", RFC 4572, July 2006.

 [RFC6230] Boulton, C., Melanchuk, T., and S. McGlashan, "Media
 Control Channel Framework", RFC 6230, May 2011.

 [RFC6231] McGlashan, S., Melanchuk, T., and C. Boulton, "An
 Interactive Voice Response (IVR) Control Package for the
 Media Control Channel Framework", RFC 6231, May 2011.

 [RFC6505] McGlashan, S., Melanchuk, T., and C. Boulton, "A Mixer
 Control Package for the Media Control Channel Framework",
 RFC 6505, March 2012.

 [RFC6917] Boulton, C., Miniero, L., and G. Munson, "Media Resource
 Brokering", RFC 6917, April 2013.

 [RFC5239] Barnes, M., Boulton, C., and O. Levin, "A Framework for
 Centralized Conferencing", RFC 5239, June 2008.

 [RFC4582] Camarillo, G., Ott, J., and K. Drage, "The Binary Floor
 Control Protocol (BFCP)", RFC 4582, November 2006.

 [RFC4583] Camarillo, G., "Session Description Protocol (SDP) Format
 for Binary Floor Control Protocol (BFCP) Streams",
 RFC 4583, November 2006.

10.2. Informative References

 [RFC2606] Eastlake, D. and A. Panitz, "Reserved Top Level DNS
 Names", BCP 32, RFC 2606, June 1999.

 [RFC3725] Rosenberg, J., Peterson, J., Schulzrinne, H., and G.
 Camarillo, "Best Current Practices for Third Party Call
 Control (3pcc) in the Session Initiation Protocol (SIP)",
 BCP 85, RFC 3725, April 2004.

 [SRGS] Hunt, A. and S. McGlashan, "Speech Recognition Grammar
 Specification Version 1.0", W3C Recommendation,
 March 2004.

 [RFC4597] Even, R. and N. Ismail, "Conferencing Scenarios",
 RFC 4597, August 2006.

 [RFC5567] Melanchuk, T., "An Architectural Framework for Media
 Server Control", RFC 5567, June 2009.

Amirante, et al. Informational [Page 181]

RFC 7058 CFW Call Flow Examples November 2013

Authors’ Addresses

 Alessandro Amirante
 University of Napoli
 Via Claudio 21
 Napoli 80125
 Italy

 EMail: alessandro.amirante@unina.it

 Tobia Castaldi
 Meetecho
 Via Carlo Poerio 89
 Napoli 80100
 Italy

 EMail: tcastaldi@meetecho.com

 Lorenzo Miniero
 Meetecho
 Via Carlo Poerio 89
 Napoli 80100
 Italy

 EMail: lorenzo@meetecho.com

 Simon Pietro Romano
 University of Napoli
 Via Claudio 21
 Napoli 80125
 Italy

 EMail: spromano@unina.it

Amirante, et al. Informational [Page 182]

