
Internet Research Task Force (IRTF) M. Waehlisch
Request for Comments: 7046 link-lab & FU Berlin
Category: Experimental T. Schmidt
ISSN: 2070-1721 HAW Hamburg
 S. Venaas
 Cisco Systems
 December 2013

 A Common API for Transparent Hybrid Multicast

Abstract

 Group communication services exist in a large variety of flavors and
 technical implementations at different protocol layers. Multicast
 data distribution is most efficiently performed on the lowest
 available layer, but a heterogeneous deployment status of multicast
 technologies throughout the Internet requires an adaptive service
 binding at runtime. Today, it is difficult to write an application
 that runs everywhere and at the same time makes use of the most
 efficient multicast service available in the network. Facing
 robustness requirements, developers are frequently forced to use a
 stable upper-layer protocol provided by the application itself. This
 document describes a common multicast API that is suitable for
 transparent communication in underlay and overlay and that grants
 access to the different flavors of multicast. It proposes an
 abstract naming scheme that uses multicast URIs, and it discusses
 mapping mechanisms between different namespaces and distribution
 technologies. Additionally, this document describes the application
 of this API for building gateways that interconnect current Multicast
 Domains throughout the Internet. It reports on an implementation of
 the programming Interface, including service middleware. This
 document is a product of the Scalable Adaptive Multicast (SAM)
 Research Group.

Waehlisch, et al. Experimental [Page 1]

RFC 7046 Common Mcast API December 2013

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Research Task
 Force (IRTF). The IRTF publishes the results of Internet-related
 research and development activities. These results might not be
 suitable for deployment. This RFC represents the consensus of the
 Scalable Adaptive Multicast Research Group of the Internet Research
 Task Force (IRTF). Documents approved for publication by the IRSG
 are not a candidate for any level of Internet Standard; see Section 2
 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7046.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

 1. Introduction ..4
 1.1. Use Cases for the Common API6
 1.2. Illustrative Examples7
 1.2.1. Support of Multiple Underlying Technologies7
 1.2.2. Support of Multi-Resolution Multicast9
 2. Terminology ..10
 3. Overview ...10
 3.1. Objectives and Reference Scenarios10
 3.2. Group Communication API and Protocol Stack12
 3.3. Naming and Addressing14
 3.4. Namespaces ..15

Waehlisch, et al. Experimental [Page 2]

RFC 7046 Common Mcast API December 2013

 3.5. Name-to-Address Mapping15
 3.5.1. Canonical Mapping16
 3.5.2. Mapping at End Points16
 3.5.3. Mapping at Inter-Domain Multicast Gateways16
 3.6. A Note on Explicit Multicast (Xcast)16
 3.7. MTU Handling ..17
 4. Common Multicast API ...18
 4.1. Notation ..18
 4.2. URI Scheme Definition18
 4.2.1. Syntax ...18
 4.2.2. Semantic ...19
 4.2.3. Generic Namespaces20
 4.2.4. Application-Centric Namespaces20
 4.2.5. Future Namespaces20
 4.3. Additional Abstract Data Types21
 4.3.1. Interface ..21
 4.3.2. Membership Events21
 4.4. Group Management Calls22
 4.4.1. Create ...22
 4.4.2. Delete ...22
 4.4.3. Join ...22
 4.4.4. Leave ..23
 4.4.5. Source Register23
 4.4.6. Source Deregister23
 4.5. Send and Receive Calls24
 4.5.1. Send ...24
 4.5.2. Receive ..24
 4.6. Socket Options ..25
 4.6.1. Get Interfaces25
 4.6.2. Add Interface25
 4.6.3. Delete Interface26
 4.6.4. Set TTL ..26
 4.6.5. Get TTL ..26
 4.6.6. Atomic Message Size27
 4.7. Service Calls ...27
 4.7.1. Group Set ..27
 4.7.2. Neighbor Set28
 4.7.3. Children Set28
 4.7.4. Parent Set ...28
 4.7.5. Designated Host29
 4.7.6. Enable Membership Events29
 4.7.7. Disable Membership Events30
 4.7.8. Maximum Message Size30
 5. Implementation ...30
 6. IANA Considerations ..30
 7. Security Considerations ..31
 8. Acknowledgements ...31

Waehlisch, et al. Experimental [Page 3]

RFC 7046 Common Mcast API December 2013

 9. References ...32
 9.1. Normative References32
 9.2. Informative References33
 Appendix A. C Signatures ..35
 Appendix B. Use Case for the API37
 Appendix C. Deployment Use Cases for Hybrid Multicast38
 C.1. DVMRP ..38
 C.2. PIM-SM ...38
 C.3. PIM-SSM ..39
 C.4. BIDIR-PIM ..40

1. Introduction

 Currently, group application programmers need to choose the
 distribution technology that the application will require at runtime.
 There is no common communication Interface that abstracts multicast
 transmission and subscriptions from the deployment state at runtime,
 nor has the use of DNS for Group Addresses been established. The
 standard multicast socket options [RFC3493] [RFC3678] are bound to an
 IP version by not distinguishing between the naming and addressing of
 multicast identifiers. Group communication, however,

 o is commonly implemented in different flavors, such as any-source
 multicast (ASM) vs. source-specific multicast (SSM),

 o is commonly implemented on different layers (e.g., IP vs.
 application-layer multicast), and

 o may be based on different technologies on the same tier, as seen
 with IPv4 vs. IPv6.

 The objective of this document is to provide for programmers a
 universal access to group services.

 Multicast application development should be decoupled from
 technological deployment throughout the infrastructure. It requires
 a common multicast API that offers calls to transmit and receive
 multicast data independent of the supporting layer and the underlying
 technological details. For inter-technology transmissions, a
 consistent view of multicast states is needed as well. This document
 describes an abstract group communication API and core functions
 necessary for transparent operations. Specific implementation
 guidelines with respect to operating systems or programming languages
 are out of scope for this document.

Waehlisch, et al. Experimental [Page 4]

RFC 7046 Common Mcast API December 2013

 In contrast to the standard multicast socket Interface, the API
 introduced in this document abstracts naming from addressing. Using
 a multicast address in the current socket API predefines the
 corresponding routing layer. In this specification, the multicast
 name used for joining a group denotes an application-layer data
 stream that is identified by a multicast URI, independent of its
 binding to a specific distribution technology. Such a Group Name can
 be mapped to variable routing identifiers.

 The aim of this common API is twofold:

 o Enable any application programmer to implement group-oriented data
 communication independent of the underlying delivery mechanisms.
 In particular, allow for a late binding of group applications to
 multicast technologies that makes applications efficient but
 robust with respect to deployment aspects.

 o Allow for flexible namespace support in group addressing and
 thereby separate naming and addressing (or routing) schemes from
 the application design. This abstraction not only decouples
 programs from specific aspects of underlying protocols but may
 open application design to extend to specifically flavored group
 services.

 Multicast technologies may be of various peer-to-peer kinds, IPv4 or
 IPv6 network-layer multicast, or implemented by some other
 application service. Corresponding namespaces may be IP addresses or
 DNS naming, overlay hashes, or other application-layer group
 identifiers like <sip:*@peanuts.org>, but they can also be names
 independently defined by the applications. Common namespaces are
 introduced later in this document but follow an open concept suitable
 for further extensions.

 This document also discusses mapping mechanisms between different
 namespaces and forwarding technologies and proposes expressions of
 defaults for an intended binding. Additionally, the multicast API
 provides internal Interfaces to access current multicast states at
 the host. Multiple multicast protocols may run in parallel on a
 single host. These protocols may interact to provide a gateway
 function that bridges data between different domains. The usage of
 this API at gateways operating between current multicast instances
 throughout the Internet is described as well. Finally, a report on
 an implementation of the programming Interface, including service
 middleware, is presented.

Waehlisch, et al. Experimental [Page 5]

RFC 7046 Common Mcast API December 2013

 This document represents the consensus of the SAM Research Group. It
 has been reviewed by the Research Group members active in the
 specific area of work. In addition, this document has been
 comprehensively reviewed by people who are not "in" the Research
 Group but are experts in the area.

1.1. Use Cases for the Common API

 The following generic use cases can be identified; these use cases
 require an abstract common API for multicast services:

 Application Programming Independent of Technologies: Application
 programmers are provided with group primitives that remain
 independent of multicast technologies and their deployment in
 target domains. Thus, for a given application, they can develop a
 program that will run in every deployment scenario. The use of
 Group Names in the form of abstract metadata types allows
 applications to remain namespace-agnostic in the sense that the
 resolution of namespaces and name-to-address mappings may be
 delegated to a system service at runtime. Complexity is thereby
 minimized, as developers need not care about how data is
 distributed in groups, while the system service can take advantage
 of extended information of the network environment as acquired at
 startup.

 Global Identification of Groups: Groups can be identified
 independent of technological instantiations and beyond deployment
 domains. Taking advantage of the abstract naming, an application
 can thus match data received from different Interface technologies
 (e.g., IPv4, IPv6, and overlays) to belong to the same group.
 This not only increases flexibility -- an application may, for
 instance, combine heterogeneous multipath streams -- but also
 simplifies the design and implementation of gateways.

 Uniform Access to Multicast Flavors: The URI naming scheme uniformly
 supports different flavors of group communication, such as
 any-source multicast and source-specific multicast, and selective
 broadcast, independent of their service instantiation. The
 traditional SSM model, for instance, can experience manifold
 support by directly mapping the multicast URI (i.e.,
 "group@instantiation") to an (S,G) state on the IP layer, by first
 resolving S for a subsequent Group Address query, by transferring
 this process to any of the various source-specific overlay
 schemes, or by delegating to a plain replication server. The
 application programmer can invoke any of these underlying
 mechanisms with the same line of code.

Waehlisch, et al. Experimental [Page 6]

RFC 7046 Common Mcast API December 2013

 Simplified Service Deployment through Generic Gateways: The common
 multicast API allows for an implementation of abstract gateway
 functions with mappings to specific technologies residing at the
 system level. Generic gateways may provide a simple bridging
 service and facilitate an inter-domain deployment of multicast.

 Mobility-Agnostic Group Communication: Group naming and management
 as foreseen in the common multicast API remain independent of
 locators. Naturally, applications stay unaware of any mobility-
 related address changes. Handover-initiated re-addressing is
 delegated to the mapping services at the system level and may be
 designed to smoothly interact with mobility management solutions
 provided at the network or transport layer (see [RFC5757] for
 mobility-related aspects).

1.2. Illustrative Examples

1.2.1. Support of Multiple Underlying Technologies

 On a very high level, the common multicast API provides the
 application programmer with one single Interface to manage multicast
 content independent of the technology underneath. Considering the
 following simple example in Figure 1, a multicast source S is
 connected via IPv4 and IPv6. It distributes one flow of multicast
 content (e.g., a movie). Receivers are connected via IPv4/v6 and
 Overlay Multicast (OM), respectively.

 +-------+ +-------+ +-------+
 | S | | R1 | | R3 |
 +-------+ +-------+ +-------+
 v6| v4| |v4 |OM
 | | / |
 | ***| *** ***/ ** *** /*** *** ***
 * |* ** /** * * /* ** ** *
 *\ _______/_______*__v4__+-------+ * / *
 *\ IPv4/v6 * | R2 |__OM__ *_/ Overlay Mcast *
 * _________________*__v6__+-------+ * *
 * ** ** ** * * ** ** ** *
 *** *** *** *** *** *** *** ***

 Figure 1: Common Scenario: Source S Sends the Same Multicast Content
 via Different Technologies

 Using the current BSD socket API, the application programmer needs to
 decide on the IP technologies at coding time. Additional
 distribution techniques, such as overlay multicast, must be
 individually integrated into the application. For each technology,
 the application programmer needs to create a separate socket and

Waehlisch, et al. Experimental [Page 7]

RFC 7046 Common Mcast API December 2013

 initiate a dedicated join or send. As the current socket API does
 not distinguish between Group Name and Group Address, the content
 will be delivered multiple times to the same receiver (cf. R2).
 Whenever the source distributes content via a technology that is not
 supported by the receivers or its Internet Service Provider (cf. R3),
 a gateway is required. Gateway functions rely on a coherent view of
 the Multicast Group states.

 The common multicast API simplifies programming of multicast
 applications, as it abstracts content distribution from specific
 technologies. In addition to calls that implement the receiving and
 sending of multicast data, the API provides service calls to grant
 access to internal multicast states at the host. The API description
 provided in this document defines a minimal set of programming
 Interfaces to the system components at the host to operate group
 communication. It is left to specific implementations to provide
 additional convenience functions for programmers.

 The implementation of content distribution for the example shown in
 Figure 1 may then look like:

 //Initialize multicast socket
 MulticastSocket m = new MulticastSocket();
 //Associate all available Interfaces
 m.addInterface(getInterfaces());
 //Subscribe to Multicast Group
 m.join(URI("ham:opaque:news@cnn.com"));
 //Send to Multicast Group
 m.send(URI("ham:opaque:news@cnn.com"),message);

 Send/receive example using the common multicast API

Waehlisch, et al. Experimental [Page 8]

RFC 7046 Common Mcast API December 2013

 The gateway function for R2 can be implemented by service calls that
 look like:

 //Initialize multicast socket
 MulticastSocket m = new MulticastSocket();
 //Check (a) host is designated multicast node for this Interface
 // (b) receivers exist
 for all this.getInterfaces() {
 if(designatedHost(this.interface) &&
 childrenSet(this.interface,
 URI("ham:opaque:news@cnn.com")) != NULL) {
 m.addInterface(this.interface);
 }
 }
 while(true) {
 m.send(URI("ham:opaque:news@cnn.com"),message);
 }

 Gateway example using the common multicast API

1.2.2. Support of Multi-Resolution Multicast

 Multi-resolution multicast adjusts the multicast stream to consider
 heterogeneous end devices. The multicast data (e.g., available by
 different compression levels) is typically announced using multiple
 multicast addresses that are unrelated to each other. Using the
 common API, multi-resolution multicast can be implemented
 transparently by an operator with the help of name-to-address
 mapping, or by systematic naming from a subscriber-centric
 perspective.

 Operator-Centric: An operator deploys a domain-specific mapping. In
 this case, any multicast receiver (e.g., mobile or DSL user)
 subscribes to the same multicast name, which will be resolved
 locally to different multicast addresses. In this case, each
 Group Address represents a different level of data quality.

 Subscriber-Centric: In a subscriber-centric example, the multicast
 receiver chooses the quality in advance, based on a predefined
 naming syntax. Consider a layered video stream "blockbuster"
 available at different qualities Q_i, each of which consists of
 the base layer plus the sum of EL_j, j <= i enhancement layers.
 Each individual layer may then be accessible by a name
 "EL_j.Q_i.blockbuster", j <= i, while a specific quality
 aggregates the corresponding layers to "Q_i.blockbuster", and the
 full-size movie may be just called "blockbuster".

Waehlisch, et al. Experimental [Page 9]

RFC 7046 Common Mcast API December 2013

2. Terminology

 This document uses the terminology as defined for the multicast
 protocols discussed in [RFC2710], [RFC3376], [RFC3810], [RFC4601],
 and [RFC4604]. In addition, the following terms will be used:

 Group Address: A Group Address is a routing identifier. It
 represents a technological specifier and thus reflects the
 distribution technology in use. Multicast packet forwarding is
 based on this address.

 Group Name: A Group Name is an application identifier used by
 applications to manage communication in a Multicast Group (e.g.,
 join/leave and send/receive). The Group Name does not predefine
 any distribution technologies. Even if it syntactically
 corresponds to an address, it solely represents a logical
 identifier.

 Multicast Namespace: A Multicast Namespace is a collection of
 designators (i.e., names or addresses) for groups that share a
 common syntax. Typical instances of namespaces are IPv4 or IPv6
 multicast addresses, overlay group IDs, Group Names defined on the
 application layer (e.g., SIP or email), or some human-readable
 string.

 Interface: An Interface is a forwarding instance of a distribution
 technology on a given node, for example, the IP Interface
 192.168.1.1 at an IPv4 host, or an overlay routing Interface.

 Multicast Domain: A Multicast Domain hosts nodes and routers of a
 common, single multicast forwarding technology and is bound to a
 single namespace.

 Inter-domain Multicast Gateway (IMG): An IMG is an entity that
 interconnects different Multicast Domains. Its objective is to
 forward data between these domains, e.g., between an IP layer and
 overlay multicast.

3. Overview

3.1. Objectives and Reference Scenarios

 The default use case addressed in this document targets applications
 that participate in a group by using some common identifier taken
 from some common namespace. This Group Name is typically learned at
 runtime from user interaction, such as the selection of an IPTV
 channel, or from dynamic session negotiations as used with the
 Session Initiation Protocol (SIP) [RFC3261] or Peer-to-Peer SIP

Waehlisch, et al. Experimental [Page 10]

RFC 7046 Common Mcast API December 2013

 (P2PSIP) [SIP-RELOAD], but may as well have been predefined for an
 application as a common Group Name. Technology-specific system
 functions then transparently map the Group Name to Group Addresses
 such that

 o programmers can process Group Names in their programs without the
 need to consider technological mappings that relate to designated
 deployments in target domains;

 o applications can identify packets that belong to a logically named
 group, independent of the Interface technology used for sending
 and receiving packets; this shall also hold true for multicast
 gateways.

 This document considers two reference scenarios that cover the
 following hybrid deployment cases displayed in Figure 2:

 1. Multicast Domains running the same multicast technology but
 remaining isolated, possibly only connected by network-layer
 unicast.

 2. Multicast Domains running different multicast technologies but
 hosting nodes that are members of the same Multicast Group.

Waehlisch, et al. Experimental [Page 11]

RFC 7046 Common Mcast API December 2013

 +-------+ +-------+
 | Member| | Member|
 | Foo | | G |
 +-------+ +-------+
 \ /
 *** *** *** ***
 * ** ** ** *
 * *
 * Mcast Tech. A *
 * *
 * ** ** ** *
 *** *** *** ***
 +-------+ +-------+ |
 | Member| | Member| +-------+
 | G | | Foo | | IMG |
 +-------+ +-------+ +-------+
 | | |
 *** *** *** *** *** *** *** ***
 * ** ** ** * * ** ** ** *
 * * +-------+ * *
 * Mcast Tech. A * --| IMG |-- * Mcast Tech. B * +------+
 * * +-------+ * * -|Member|
 * ** ** ** * * ** ** ** * | G |
 *** *** *** *** *** *** *** *** +------+

 Figure 2: Reference Scenarios for Hybrid Multicast, Interconnecting
 Group Members from Isolated Homogeneous and Heterogeneous Domains

3.2. Group Communication API and Protocol Stack

 The group communication API abstracts the socket concept and consists
 of four parts. Two parts combine the essential communication
 functions, while the remaining two offer optional extensions for
 enhanced monitoring and management:

 Group Management Calls: provide the minimal API to instantiate an
 abstract multicast socket and manage group membership;

 Send/Receive Calls: provide the minimal API to send and receive
 multicast data in a technology-transparent fashion;

 Socket Options: provide extension calls for an explicit
 configuration of the multicast socket, such as setting hop limits
 or associated Interfaces;

 Service Calls: provide extension calls that grant access to internal
 multicast states of an Interface, such as the Multicast Groups
 under subscription or the multicast forwarding information base.

Waehlisch, et al. Experimental [Page 12]

RFC 7046 Common Mcast API December 2013

 Multicast applications that use the common API require assistance
 from a group communication stack. This protocol stack serves two
 needs:

 o It provides system-level support to transfer the abstract
 functions of the common API, including namespace support, into
 protocol operations at Interfaces.

 o It provides group communication services across different
 multicast technologies at the local host.

 A general initiation of a multicast communication in this setting
 proceeds as follows:

 1. An application opens an abstract multicast socket.

 2. The application subscribes to / leaves / (de)registers a group
 using a Group Name.

 3. An intrinsic function of the stack maps the logical group ID
 (Group Name) to a technical group ID (Group Address). This
 function may make use of deployment-specific knowledge, such as
 available technologies and Group Address management in its
 domain.

 4. Packet distribution proceeds to and from one or several
 multicast-enabled Interfaces.

 The abstract multicast socket represents a group communication
 channel composed of one or multiple Interfaces. A socket may be
 created without explicit Interface association by the application,
 which leaves the choice of the underlying forwarding technology to
 the group communication stack. However, an application may also bind
 the socket to one or multiple dedicated Interfaces and therefore
 predefine the forwarding technology and the Multicast Namespace(s) of
 the Group Address(es).

 Applications are not required to maintain mapping states for Group
 Addresses. The group communication stack accounts for the mapping of
 the Group Name to the Group Address(es) and vice versa. Multicast
 data passed to the application will be augmented by the corresponding
 Group Name. Multiple multicast subscriptions thus can be conducted
 on a single multicast socket without the need for Group Name encoding
 on the application side.

Waehlisch, et al. Experimental [Page 13]

RFC 7046 Common Mcast API December 2013

 Hosts may support several multicast protocols. The group
 communication stack discovers available multicast-enabled Interfaces.
 It provides a minimal hybrid function that bridges data between
 different Interfaces and Multicast Domains. The details of service
 discovery are out of scope for this document.

 The extended multicast functions can be implemented by middleware, as
 conceptually presented in Figure 3.

 ------- *-------*
 | App 1 | | App 2 |
 ------- *-------*
 | |
 --------------------- ---|
 | Middleware | |
 --------------------- |
 | | |
 --------- | |
 | Overlay | | \ Group Communication
 --------- | / Stack
 | | |
 | | |
 --------------------- |
 | Underlay | |
 --------------------- ---|

 Figure 3: Architecture of a Group Communication Stack with Middleware
 Offering Uniform Access to Multicast in Underlay and Overlay

3.3. Naming and Addressing

 Applications use Group Names to identify groups. Names can uniquely
 determine a group in a global communication context and hide
 technological deployment for data distribution from the application.
 In contrast, multicast forwarding operates on Group Addresses. Even
 though both identifiers may be symbolically identical, they carry
 different meanings. They may also belong to different Multicast
 Namespaces. The namespace of a Group Address reflects a routing
 technology, while the namespace of a Group Name represents the
 context in which the application operates.

 URIs [RFC3986] are a common way to represent namespace-specific
 identifiers in applications in the form of an abstract metadata type.
 Throughout this document, all Group Names follow a URI notation using
 the syntax defined in Section 4.2. Examples are
 ham:ip:224.1.2.3:5000 for a canonical IPv4 ASM group at UDP port 5000
 and ham:sip:news@cnn.com for application-specific naming with service
 instantiator and default port selection.

Waehlisch, et al. Experimental [Page 14]

RFC 7046 Common Mcast API December 2013

 An implementation of the group communication stack can provide
 convenience functions that detect the namespace of a Group Name or
 further optimize service instantiation. In practice, such a library
 would provide support for high-level data types to the application,
 similar to some versions of the current socket API (e.g., InetAddress
 in Java). Using this data type could implicitly determine the
 namespace. The details of automatic namespace identification or
 service handling are out of scope for this document.

3.4. Namespaces

 Namespace identifiers in URIs are placed in the scheme element and
 characterize syntax and semantics of the group identifier. They
 enable the use of convenience functions and high-level data types
 while processing URIs. When used in names, they may indicate an
 application context or may facilitate a default mapping and a
 recovery of names from addresses. When used in addresses, they
 characterize the group identifier’s type.

 In compliance with the URI concept, namespace schemes can be added.
 Examples of schemes are generic (see Section 4.2.3) or inherited from
 applications (see Section 4.2.4).

3.5. Name-to-Address Mapping

 The multicast communication paradigm requires all group members to
 subscribe to the same Group Name, taken from a common Multicast
 Namespace, and to thereby identify the group in a technology-agnostic
 way. Following this common API, a sender correspondingly registers a
 Group Name prior to transmission.

 At communication end points, Group Names require a mapping to Group
 Addresses prior to service instantiation at the Interfaces of the end
 points. Similarly, a mapping is needed at gateways to consistently
 translate between Group Addresses from different namespaces. Two
 requirements need to be met by a mapping function that translates
 between Multicast Names and Addresses:

 a. For a given Group Name, identify an Address that is appropriate
 for a local distribution instance.

 b. For a given Group Address, invert the mapping to recover the
 Group Name.

 In general, mappings can be complex and do not need to be invertible.
 A mapping can be realized by embedding smaller namespaces into larger
 namespaces or selecting an arbitrary, unused ID in a smaller target
 namespace. For example, it is not obvious how to map a large

Waehlisch, et al. Experimental [Page 15]

RFC 7046 Common Mcast API December 2013

 identifier space (e.g., IPv6) to a smaller, collision-prone set like
 IPv4 (see [MCAST-v4v6-FRAMEWORK], [MCAST-v4v6], and [RFC6219]).
 Mapping functions can be stateless in some contexts but may require
 states in others. The application of such functions depends on the
 cardinality of the namespaces, the structure of address spaces, and
 possible address collisions. However, some namespaces facilitate a
 canonical, invertible transformation to default address spaces.

3.5.1. Canonical Mapping

 Some Multicast Namespaces defined in Section 3.4 can express a
 canonical default mapping. For example, ham:ip:224.1.2.3:5000
 indicates the correspondence to 224.1.2.3 in the default IPv4
 multicast address space at port 5000. This default mapping is bound
 to a technology and may not always be applicable, e.g., in the case
 of address collisions. Note that under canonical mapping, the
 multicast URI can be completely recovered from any data message
 received within this group.

3.5.2. Mapping at End Points

 Multicast listeners or senders require a name-to-address conversion
 for all technologies they actively run in a group. Even though a
 mapping applies to the local Multicast Domain only, end points may
 need to learn a valid Group Address from neighboring nodes, e.g.,
 from a gateway in the collision-prone IPv4 domain. Once set, an end
 point will always be aware of the name-to-address correspondence and
 thus can autonomously invert the mapping.

3.5.3. Mapping at Inter-Domain Multicast Gateways

 Multicast data may arrive at an IMG via one technology and request
 that the gateway re-address packets for another distribution system.
 At initial arrival, the IMG may not have explicit knowledge of the
 corresponding Multicast Group Name. To perform a consistent mapping,
 the Group Name needs to be acquired. It may have been distributed at
 source registration or may have been learned from a neighboring node,
 the details of which are beyond the scope of this document.

3.6. A Note on Explicit Multicast (Xcast)

 In Explicit Multicast (Xcast) [RFC5058], the multicast source
 explicitly predefines the receivers. From a conceptual perspective,
 Xcast is an additional distribution technology (i.e., a new
 technology-specific Interface) for this API. Xcast requires
 aggregated knowledge of receivers that is available at the origin of

Waehlisch, et al. Experimental [Page 16]

RFC 7046 Common Mcast API December 2013

 the distribution tree. The instantiation part of the Group Name may
 refer to such a management instance and tree root, which can be the
 source or some co-located processor.

 An implementation of Xcast then requires a topology-dependent mapping
 of the Group Name to the set of subscribers. The defining details of
 this multi-destination mapping are out of scope for this document.

3.7. MTU Handling

 This API considers a multi-technology scenario in which different
 technologies may have different Maximum Transmission Unit (MTU)
 sizes. Even if the MTU size between two hosts has been determined,
 it may change over time, as initiated by either the network (e.g.,
 path changes) or end hosts (e.g., Interface changes due to mobility).

 The design of this API is based on the objective of robust
 communication and easy application development. MTU handling and the
 implementation of fragmentation are thus guided by the following
 observations:

 Application: Application programmers need a simple way to transmit
 packets in a technology-agnostic fashion. For this, it is
 convenient at the time of coding to rely on a transparent maximum
 amount of data that can be sent in one message from a socket. A
 regular program flow should not be distracted by querying and
 changing MTU sizes. Technically, the configuration of the maximum
 message size used by the application programmer may change and
 disrupt communication when (a) Interfaces are added or excluded or
 (b) the path MTU changes during transmission and thus disables the
 corresponding Interfaces.

 Middleware: Middleware situated between application and technology
 Interfaces ensures a general packet-handling capability, which in
 turn prevents the application programmer from implementing
 fragmentation. A uniform maximum message size that cannot be
 changed during runtime shall be guaranteed by the group
 communication stack (e.g., middleware). Otherwise, this would
 conflict with a technology-agnostic application.

 Technology Interfaces: Fragmentation requirements depend on the
 technology in use. Hence, the (technology-bound) Interfaces need
 to cope with MTU sizes that may vary among Interfaces and along
 different paths.

Waehlisch, et al. Experimental [Page 17]

RFC 7046 Common Mcast API December 2013

 The concept of this API also aims at guaranteeing a maximum message
 size for the application programmer, to thereby handle fragmentation
 at the Interface level, if needed. Nevertheless, the application
 programmer should be able to determine the technology-specific atomic
 message size to optimize data distribution, or for other reasons.

 The uniform maximum message size should take realistic values (e.g.,
 following IP clients) to enable smooth and efficient services. A
 detailed selection scheme of MTU values is out of scope for this
 document.

4. Common Multicast API

4.1. Notation

 The following description of the common multicast API is expressed in
 pseudo-syntax. Variables that are passed to function calls are
 declared by "in", and return values are declared by "out". A list of
 elements is denoted by "<>". The pseudo-syntax assumes that lists
 include an attribute that represents the number of elements.

 The corresponding C signatures are defined in Appendix A.

4.2. URI Scheme Definition

 Multicast Names and Multicast Addresses used in this API are
 represented by a URI scheme that is specified in the following
 subsections. A corresponding ham-URI denotes a multicast channel and
 may be dereferenced to retrieve data published to that channel.

4.2.1. Syntax

 The syntax of the multicast URI is specified using the Augmented
 Backus-Naur Form (ABNF) [RFC5234] and is defined as follows:

 ham-URI = ham-scheme ":" namespace ":" group ["@" instantiation]
 [":" port] ["/" sec-credentials]

 ham-scheme = "ham" ; hybrid adaptive multicast
 namespace = ALPHA *(ALPHA / DIGIT / "+" / "-" / ".")
 group = "*" / 1*unreserved ; unreserved per [RFC3986]
 instantiation = 1*unreserved ; unreserved per [RFC3986]
 port = 1*DIGIT
 sec-credentials = alg ";" val
 alg = 1*unreserved ; unreserved per [RFC3986]
 val = 1*unreserved ; unreserved per [RFC3986]

Waehlisch, et al. Experimental [Page 18]

RFC 7046 Common Mcast API December 2013

 Percent-encoding is applied to distinguish between reserved and
 unreserved assignments of the same character in the same ham-URI
 component (cf. [RFC3986]).

4.2.2. Semantic

 The semantic of the different parts of the URI is defined as follows:

 ham-scheme: refers to the specification of the assigned identifier
 "ham".

 namespace: takes the role of the Multicast Namespace. It defines
 the syntax of the group and instantiation part of the ham-URI. A
 basic syntax for these elements is specified in Section 4.2.1.
 The namespace may further restrict the syntax of designators.
 Example namespaces are described in Sections 4.2.3 and 4.2.4.

 group: uniquely identifies the group within the Multicast Namespace
 given in the namespace. The literal "*" represents all members of
 the Multicast Group.

 instantiation: identifies the entity that generates the instance of
 the group (e.g., a SIP domain or a source in SSM, a dedicated
 routing entity, or a named processor that accounts for the group
 communication), using syntax and semantics as defined by the
 namespace. This parameter is optional. Note that ambiguities
 (e.g., identical node addresses in multiple overlay instances) can
 be distinguished by ports.

 port: identifies a specific application at an instance of a group.
 This parameter is optional.

 sec-credentials: used to implement security mechanisms (e.g., to
 authorize Multicast Group access or authenticate multicast
 operations). This parameter is optional. "alg" represents the
 security algorithm in use. "val" represents the actual value for
 Authentication, Authorization, and Accounting (AAA). Note that
 security credentials may carry a distinct technical meaning w.r.t.
 AAA schemes and may differ between group members. Hence, the
 sec-credentials are not considered part of the Group Name.

Waehlisch, et al. Experimental [Page 19]

RFC 7046 Common Mcast API December 2013

4.2.3. Generic Namespaces

 IP: This namespace is comprised of regular IP node naming, i.e., DNS
 names and addresses taken from any version of the Internet
 Protocol. The syntax of the group and instantiation follows the
 "host" definition in [RFC3986], Section 3.2.2. A processor
 dealing with the IP namespace is required to determine the syntax
 (DNS name, IP address, version) of the group and instantiation
 expression.

 SHA-2: This namespace carries address strings compliant with SHA-2
 hash digests. The syntax of the group and instantiation follows
 the "val" definition in [RFC6920], Section 3. A processor
 handling those strings is required to determine the length of the
 expressions and passes appropriate values directly to a
 corresponding overlay.

 Opaque: This namespace transparently carries strings without further
 syntactical information, meanings, or associated resolution
 mechanisms. The corresponding syntax for the group and
 instantiation part of the ham-URI is defined in Section 4.2.1.

4.2.4. Application-Centric Namespaces

 SIP: The SIP namespace is an example of an application-layer scheme
 that bears inherent group functions (conferencing). SIP
 conference URIs may be directly exchanged and interpreted at the
 application, and mapped to Group Addresses at the system level to
 generate a corresponding Multicast Group. The syntax of the group
 and instantiation is represented by the "userinfo" component
 [RFC3261], Section 25.1.

 RELOAD: This namespace covers address strings that are valid in a
 REsource LOcation And Discovery [RELOAD] overlay network. A
 processor handling those strings may pass these values directly to
 a corresponding overlay that may manage multicast distribution
 according to [RFC7019].

4.2.5. Future Namespaces

 The concept of the common multicast API allows for any namespace that
 complies with the superset syntax defined in Section 4.2.1. This
 document specifies a basic set of Multicast Namespaces in
 Sections 4.2.3 and 4.2.4. If additional namespaces are needed in the
 future, a registry for those namespaces should be created and should
 be defined in a future document. All namespaces defined in such a
 document should then also be assigned to the registry.

Waehlisch, et al. Experimental [Page 20]

RFC 7046 Common Mcast API December 2013

4.3. Additional Abstract Data Types

4.3.1. Interface

 The Interface denotes the layer and instance on which the
 corresponding call takes effect. In agreement with [RFC3493], we
 identify an Interface by an identifier, which is a positive integer
 starting at 1.

 Properties of an Interface are stored in the following data
 structure:

 struct ifProp {
 UnsignedInt if_index; /* 1, 2, ... */
 String *ifName; /* "eth0", "eth1:1", "lo", ... */
 String *ifAddr; /* "1.2.3.4", "abc123", ... */
 String *ifTech; /* "ip", "overlay", ... */
 };

 The following function retrieves all available Interfaces from the
 system:

 getInterfaces(out Interface <ifs>);

 It extends the functions for Interface identification as defined in
 [RFC3493], Section 4 and can be implemented by:

 struct ifProp(out IfProp <ifsProps>);

4.3.2. Membership Events

 A membership event is triggered by a multicast state change that is
 observed by the current node. It is related to a specific Group Name
 and may be receiver or source oriented.

 eventType {
 joinEvent;
 leaveEvent;
 newSourceEvent;
 };

 event {
 EventType event;
 Uri groupName;
 Interface if;
 };

Waehlisch, et al. Experimental [Page 21]

RFC 7046 Common Mcast API December 2013

 An event will be created by the group communication stack and passed
 to applications that have registered for events.

4.4. Group Management Calls

4.4.1. Create

 The create call initiates a multicast socket and provides the
 application programmer with a corresponding handle. If no Interfaces
 will be assigned based on the call, the default Interface will be
 selected and associated with the socket. The call returns an error
 code in the case of failures, e.g., due to non-operational
 communication middleware.

 createMSocket(in Interface <ifs>,
 out Socket s);

 The ifs argument denotes a list of Interfaces (if_indexes) that will
 be associated with the multicast socket. This parameter is optional.

 On success, a multicast socket identifier is returned; otherwise, it
 is NULL.

4.4.2. Delete

 The delete call removes the multicast socket.

 deleteMSocket(in Socket s, out Int error);

 The s argument identifies the multicast socket for destruction.

 On success, the out parameter error is 0; otherwise, -1 is returned.

4.4.3. Join

 The join call initiates a subscription for the given Group Name.
 Depending on the Interfaces that are associated with the socket, this
 may result in an IGMP / Multicast Listener Discovery (MLD) report or
 overlay subscription, for example.

 join(in Socket s, in Uri groupName, out Int error);

 The s argument identifies the multicast socket.

 The groupName argument identifies the group.

 On success, the out parameter error is 0; otherwise, -1 is returned.

Waehlisch, et al. Experimental [Page 22]

RFC 7046 Common Mcast API December 2013

4.4.4. Leave

 The leave call results in an unsubscription for the given Group Name.

 leave(in Socket s, in Uri groupName, out Int error);

 The s argument identifies the multicast socket.

 The groupName argument identifies the group.

 On success, the out parameter error is 0; otherwise, -1 is returned.

4.4.5. Source Register

 The srcRegister call registers a source for a group on all active
 Interfaces of the socket s. This call may assist group distribution
 in some technologies -- for example, the creation of sub-overlays --
 or may facilitate a name-to-address mapping. Likewise, it may remain
 without effect in some multicast technologies.

 srcRegister(in Socket s, in Uri groupName,
 out Interface <ifs>, out Int error);

 The s argument identifies the multicast socket.

 The groupName argument identifies the Multicast Group to which a
 source intends to send data.

 The ifs argument points to the list of Interface indexes for which
 the source registration failed. A NULL pointer is returned if the
 list is empty. This parameter is optional.

 If source registration succeeded for all Interfaces associated with
 the socket, the out parameter error is 0; otherwise, -1 is returned.

4.4.6. Source Deregister

 The srcDeregister call indicates that a source no longer intends to
 send data to the Multicast Group. This call may remain without
 effect in some multicast technologies.

 srcDeregister(in Socket s, in Uri groupName,
 out Interface <ifs>, out Int error);

 The s argument identifies the multicast socket.

 The groupName argument identifies the Multicast Group to which a
 source has stopped sending multicast data.

Waehlisch, et al. Experimental [Page 23]

RFC 7046 Common Mcast API December 2013

 The ifs argument points to the list of Interfaces for which the
 source deregistration failed. A NULL pointer is returned if the list
 is empty.

 If source deregistration succeeded for all Interfaces associated with
 the socket, the out parameter error is 0; otherwise, -1 is returned.

4.5. Send and Receive Calls

4.5.1. Send

 The send call passes multicast data destined for a Multicast Name
 from the application to the multicast socket.

 It is worth noting that it is the choice of the programmer to send
 data via one socket per group or to use a single socket for multiple
 groups.

 send(in Socket s, in Uri groupName,
 in Size msgLen, in Msg msgBuf,
 out Int error);

 The s argument identifies the multicast socket.

 The groupName argument identifies the group to which data will be
 sent.

 The msgLen argument holds the length of the message to be sent.

 The msgBuf argument passes the multicast data to the multicast
 socket.

 On success, the out parameter error is 0; otherwise, -1 is returned.
 A message that is too long is indicated by an implementation-specific
 error code (e.g., EMSGSIZE in C).

4.5.2. Receive

 The receive call passes multicast data and the corresponding Group
 Name to the application. This may come in a blocking or non-blocking
 variant.

 It is worth noting that it is the choice of the programmer to receive
 data via one socket per group or to use a single socket for multiple
 groups.

Waehlisch, et al. Experimental [Page 24]

RFC 7046 Common Mcast API December 2013

 receive(in Socket s, out Uri groupName,
 out Size msgLen, out Msg msgBuf,
 out Int error);

 The s argument identifies the multicast socket.

 The groupName argument identifies the Multicast Group for which data
 was received.

 The msgLen argument holds the length of the received message.

 The msgBuf argument points to the payload of the received multicast
 data.

 On success, the out parameter error is 0; otherwise, -1 is returned.
 A message that is too long is indicated by an implementation-specific
 error code (e.g., EMSGSIZE).

4.6. Socket Options

 The following calls configure an existing multicast socket.

4.6.1. Get Interfaces

 The getInterfaces call returns an array of all available multicast
 communication Interfaces associated with the multicast socket.

 getInterfaces(in Socket s,
 out Interface <ifs>, out Int error);

 The s argument identifies the multicast socket.

 The ifs argument points to an array of Interface index identifiers.

 On success, the out parameter error is 0; otherwise, -1 is returned.

4.6.2. Add Interface

 The addInterface call adds a distribution channel to the socket.
 This may be an overlay or underlay Interface, e.g., IPv6 or
 Distributed Hash Table (DHT). Multiple Interfaces of the same
 technology may be associated with the socket.

 addInterface(in Socket s, in Interface if,
 out Int error);

Waehlisch, et al. Experimental [Page 25]

RFC 7046 Common Mcast API December 2013

 The s and if arguments identify a multicast socket and Interface,
 respectively.

 On success, the value 0 is returned; otherwise, -1 is returned.

4.6.3. Delete Interface

 The delInterface call removes the Interface from the multicast
 socket.

 delInterface(in Socket s, Interface if,
 out Int error);

 The s and if arguments identify a multicast socket and Interface,
 respectively.

 On success, the out parameter error is 0; otherwise, -1 is returned.

4.6.4. Set TTL

 The setTTL call configures the maximum hop count for the socket that
 a multicast message is allowed to traverse.

 setTTL(in Socket s, in Int h,
 in Interface <ifs>,
 out Int error);

 The s and h arguments identify a multicast socket and the maximum hop
 count, respectively.

 The ifs argument points to an array of Interface index identifiers.
 This parameter is optional.

 On success, the out parameter error is 0; otherwise, -1 is returned.

4.6.5. Get TTL

 The getTTL call returns the maximum hop count that a multicast
 message is allowed to traverse for the interface bound to the socket.

 getTTL(in Socket s, in Interface if,
 out Int h, out Int error);

 The s argument identifies a multicast socket.

 The if argument identifies an interface that is bound to socket s.

Waehlisch, et al. Experimental [Page 26]

RFC 7046 Common Mcast API December 2013

 The h argument holds the maximum number of hops associated with the
 interface.

 On success, the out parameter error is 0; otherwise, -1 is returned.

4.6.6. Atomic Message Size

 The getAtomicMsgSize function returns the maximum message size that
 an application is allowed to transmit per socket at once without
 fragmentation. This value depends on the Interfaces associated with
 the socket in use and thus may change during runtime.

 getAtomicMsgSize(in Socket s,
 out Int return);

 On success, the function returns a positive value of appropriate
 message size; otherwise, -1 is returned.

4.7. Service Calls

4.7.1. Group Set

 The groupSet call returns all Multicast Groups registered at a given
 Interface. This information can be provided by group management
 states or routing protocols. The return values distinguish between
 sender and listener states.

 struct GroupSet {
 Uri groupName; /* registered Multicast Group */
 Int type; /* 0 = listener state, 1 = sender state,
 2 = sender and listener state */
 }

 groupSet(in Interface if,
 out GroupSet <groupSet>, out Int error);

 The if argument identifies the Interface for which states are
 maintained.

 The groupSet argument points to a list of group states.

 On success, the out parameter error is 0; otherwise, -1 is returned.

Waehlisch, et al. Experimental [Page 27]

RFC 7046 Common Mcast API December 2013

4.7.2. Neighbor Set

 The neighborSet function returns the set of neighboring nodes for a
 given Interface as seen by the multicast routing protocol.

 neighborSet(in Interface if,
 out Uri <neighborsAddresses>, out Int error);

 The if argument identifies the Interface for which information
 regarding neighbors is requested.

 The neighborsAddresses argument points to a list of neighboring nodes
 on a successful return.

 On success, the out parameter error is 0; otherwise, -1 is returned.

4.7.3. Children Set

 The childrenSet function returns the set of child nodes that receive
 multicast data from a specified Interface for a given group. For a
 common multicast router, this call retrieves the multicast forwarding
 information base per Interface.

 childrenSet(in Interface if, in Uri groupName,
 out Uri <childrenAddresses>, out Int error);

 The if argument identifies the Interface for which information
 regarding children is requested.

 The groupName argument defines the Multicast Group for which
 distribution is considered.

 The childrenAddresses argument points to a list of neighboring nodes
 on a successful return.

 On success, the out parameter error is 0; otherwise, -1 is returned.

4.7.4. Parent Set

 The parentSet function returns the set of neighbors from which the
 current node receives multicast data at a given Interface for the
 specified group.

 parentSet(in Interface if, in Uri groupName,
 out Uri <parentsAddresses>, out Int error);

 The if argument identifies the Interface for which information
 regarding parents is requested.

Waehlisch, et al. Experimental [Page 28]

RFC 7046 Common Mcast API December 2013

 The groupName argument defines the Multicast Group for which
 distribution is considered.

 The parentsAddresses argument points to a list of neighboring nodes
 on a successful return.

 On success, the out parameter error is 0; otherwise, -1 is returned.

4.7.5. Designated Host

 The designatedHost function inquires about whether this host has the
 role of a designated forwarder (or querier), or not. Such
 information is provided by almost all multicast protocols to prevent
 packet duplication, if multiple multicast instances provide service
 on the same subnet.

 designatedHost(in Interface if, in Uri groupName
 out Int return);

 The if argument identifies the Interface for which information
 regarding designated forwarding is requested.

 The groupName argument specifies the group for which the host may
 attain the role of designated forwarder.

 The function returns 1 if the host is a designated forwarder or
 querier. The return value -1 indicates an error. Otherwise, 0 is
 returned.

4.7.6. Enable Membership Events

 The enableEvents function registers an application at the group
 communication stack to receive information about group changes.
 State changes are the result of new receiver subscriptions or leaves,
 as well as source changes. Upon receiving an event, the group
 service may obtain additional information from further service calls.

 enableEvents();

 Calling this function, the stack starts to pass membership events to
 the application. Each event includes an event type identifier and a
 Group Name (cf. Section 4.3.2).

 The multicast protocol does not have to support membership tracking
 in order to enable this feature. This function can also be
 implemented at the middleware layer.

Waehlisch, et al. Experimental [Page 29]

RFC 7046 Common Mcast API December 2013

4.7.7. Disable Membership Events

 The disableEvents function deactivates the information about group
 state changes.

 disableEvents();

 On success, the stack will not pass membership events to the
 application.

4.7.8. Maximum Message Size

 The getMaxMsgSize function returns the maximum message size that an
 application is allowed to transmit per socket at once. This value is
 statically guaranteed by the group communication stack.

 getMaxMsgSize(out Int return);

 On success, the function returns a positive value of allowed message
 size; otherwise, -1 is returned.

5. Implementation

 A reference implementation of the Common API for Transparent Hybrid
 Multicast is available with the HAMcast stack [HAMcast-DEV] [GC2010]
 [LCN2012]. This open-source software supports the multicast API (C++
 and Java library) for group application development, the middleware
 as a user space system service, and several multicast-technology
 modules. The middleware is implemented in C++.

 This API is verified and adjusted based on the real-world experiences
 gathered in the HAMcast project, and by additional users of the
 stack.

6. IANA Considerations

 This document specifies the "ham" URI scheme that has been registered
 by IANA as one of the "Provisional URI Schemes" according to
 [RFC4395].

 URI scheme name ham

 Status provisional

 URI scheme syntax See Section 4.2.1.

 URI scheme semantics See Section 4.2.2.

Waehlisch, et al. Experimental [Page 30]

RFC 7046 Common Mcast API December 2013

 Encoding See Section 4.2.1
 considerations

 Applications/protocols The scheme is used by multicast applications
 that use this URI to access multicast content.
 scheme name

 Interoperability None
 considerations

 Security See Section 7.
 considerations

 Contact Matthias Waehlisch, mw@link-lab.net

 Author/Change IRTF
 controller

 References As specified in this document.

7. Security Considerations

 This document does not introduce additional messages or novel
 protocol operations.

8. Acknowledgements

 We would like to thank the HAMcast team at the HAW Hamburg -- Nora
 Berg, Gabriel Hege, Fabian Holler, Alexander Knauf, Sebastian
 Meiling, Sebastian Woelke, and Sebastian Zagaria -- for many fruitful
 discussions and for their continuous critical feedback while
 implementing the common multicast API and hybrid multicast
 middleware. Special thanks to Dominik Charousset of the HAMcast team
 for in-depth perspectives on the matter of code. We gratefully
 acknowledge WeeSan, Mario Kolberg, and John Buford for reviewing and
 their suggestions to improve the document. We would like to thank
 the Name-Based Socket BoF (in particular Dave Thaler) for clarifying
 insights into the question of meta-function calls. We thank Lisandro
 Zambenedetti Granville and Tony Li for very careful reviews of the
 pre-final versions of this document. Barry Leiba and Graham Klyne
 provided very constructive input to find a suitable URI scheme. They
 are gratefully acknowledged.

 This work is partially supported by the German Federal Ministry of
 Education and Research within the HAMcast project (see
 <http://hamcast.realmv6.org>), which is part of G-Lab.

Waehlisch, et al. Experimental [Page 31]

RFC 7046 Common Mcast API December 2013

9. References

9.1. Normative References

 [RFC1075] Waitzman, D., Partridge, C., and S. Deering, "Distance
 Vector Multicast Routing Protocol", RFC 1075,
 November 1988.

 [RFC2710] Deering, S., Fenner, W., and B. Haberman, "Multicast
 Listener Discovery (MLD) for IPv6", RFC 2710,
 October 1999.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3376] Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.
 Thyagarajan, "Internet Group Management Protocol,
 Version 3", RFC 3376, October 2002.

 [RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6",
 RFC 3493, February 2003.

 [RFC3678] Thaler, D., Fenner, B., and B. Quinn, "Socket Interface
 Extensions for Multicast Source Filters", RFC 3678,
 January 2004.

 [RFC3810] Vida, R. and L. Costa, "Multicast Listener Discovery
 Version 2 (MLDv2) for IPv6", RFC 3810, June 2004.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

 [RFC4395] Hansen, T., Hardie, T., and L. Masinter, "Guidelines and
 Registration Procedures for New URI Schemes", BCP 35,
 RFC 4395, February 2006.

 [RFC4601] Fenner, B., Handley, M., Holbrook, H., and I. Kouvelas,
 "Protocol Independent Multicast - Sparse Mode (PIM-SM):
 Protocol Specification (Revised)", RFC 4601, August 2006.

 [RFC4604] Holbrook, H., Cain, B., and B. Haberman, "Using Internet
 Group Management Protocol Version 3 (IGMPv3) and Multicast
 Listener Discovery Protocol Version 2 (MLDv2) for Source-
 Specific Multicast", RFC 4604, August 2006.

Waehlisch, et al. Experimental [Page 32]

RFC 7046 Common Mcast API December 2013

 [RFC5015] Handley, M., Kouvelas, I., Speakman, T., and L. Vicisano,
 "Bidirectional Protocol Independent Multicast
 (BIDIR-PIM)", RFC 5015, October 2007.

 [RFC5058] Boivie, R., Feldman, N., Imai, Y., Livens, W., and D.
 Ooms, "Explicit Multicast (Xcast) Concepts and Options",
 RFC 5058, November 2007.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC6920] Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B.,
 Keranen, A., and P. Hallam-Baker, "Naming Things with
 Hashes", RFC 6920, April 2013.

9.2. Informative References

 [AMT] Bumgardner, G., "Automatic Multicast Tunneling", Work
 in Progress, October 2013.

 [GC2010] Meiling, S., Charousset, D., Schmidt, T., and M.
 Waehlisch, "System-assisted Service Evolution for a Future
 Internet - The HAMcast Approach to Pervasive Multicast",
 Proc. IEEE GLOBECOM 2010 Workshops, MCS 2010, pp. 913-917,
 Piscataway, NJ, USA, IEEE Press, December 2010.

 [HAMcast-DEV]
 "HAMcast developers",
 <http://hamcast.realmv6.org/developers>.

 [LCN2012] Meiling, S., Schmidt, T., and M. Waehlisch, "Large-Scale
 Measurement and Analysis of One-Way Delay in Hybrid
 Multicast Networks", Proc. 37th Annual IEEE Conference on
 Local Computer Networks (LCN 2012), Piscataway, NJ, USA,
 IEEE Press, October 2012.

 [MCAST-v4v6]
 Venaas, S., Asaeda, H., SUZUKI, S., and T. Fujisaki, "An
 IPv4 - IPv6 multicast translator", Work in Progress,
 December 2010.

 [MCAST-v4v6-FRAMEWORK]
 Venaas, S., Li, X., and C. Bao, "Framework for IPv4/IPv6
 Multicast Translation", Work in Progress, June 2011.

 [RELOAD] Jennings, C., Lowekamp, B., Ed., Rescorla, E., Baset, S.,
 and H. Schulzrinne, "REsource LOcation And Discovery
 (RELOAD) Base Protocol", Work in Progress, February 2013.

Waehlisch, et al. Experimental [Page 33]

RFC 7046 Common Mcast API December 2013

 [RFC5757] Schmidt, T., Waehlisch, M., and G. Fairhurst, "Multicast
 Mobility in Mobile IP Version 6 (MIPv6): Problem Statement
 and Brief Survey", RFC 5757, February 2010.

 [RFC6219] Li, X., Bao, C., Chen, M., Zhang, H., and J. Wu, "The
 China Education and Research Network (CERNET) IVI
 Translation Design and Deployment for the IPv4/IPv6
 Coexistence and Transition", RFC 6219, May 2011.

 [RFC7019] Buford, J. and M. Kolberg, "Application-Layer Multicast
 Extensions to REsource LOcation And Discovery (RELOAD)",
 RFC 7019, September 2013.

 [SIP-RELOAD]
 Jennings, C., Lowekamp, B., Rescorla, E., Baset, S.,
 Schulzrinne, H., and T. Schmidt, Ed., "A SIP Usage for
 RELOAD", Work in Progress, July 2013.

Waehlisch, et al. Experimental [Page 34]

RFC 7046 Common Mcast API December 2013

Appendix A. C Signatures

 This section describes the C signatures of the common multicast API
 (Section 4).

 int createMSocket(int* result, size_t num_ifs,
 const uint32_t* ifs);

 int deleteMSocket(int s);

 int join(int msock, const char* group_uri);

 int leave(int msock, const char* group_uri);

 int srcRegister(int msock,
 const char* group_uri,
 size_t num_ifs,
 uint32_t* ifs);

 int srcDeregister(int msock,
 const char* group_uri,
 size_t num_ifs,
 uint32_t* ifs);

 int send(int msock,
 const char* group_uri,
 size_t buf_len,
 const void* buf);

 int receive(int msock,
 const char* group_uri,
 size_t buf_len,
 void* buf);

 int getInterfaces(int msock,
 size_t* num_ifs,
 uint32_t** ifs);

 int addInterface(int msock, uint32_t iface);

 int delInterface(int msock, uint32_t iface);

 int setTTL(int msock, uint8_t value,
 size_t num_ifs, uint32_t* ifs);

 int getTTL(int msock, uint8_t* result);

 int getAtomicMsgSize(int msock);

Waehlisch, et al. Experimental [Page 35]

RFC 7046 Common Mcast API December 2013

 typedef struct {
 char* group_uri; /* registered mcast group */
 int type; /* 0: listener state
 1: sender state
 2: sender and listener state */
 }
 GroupSet;

 int groupSet(uint32_t iface,
 size_t* num_groups,
 GroupSet** groups);

 int neighborSet(uint32_t iface,
 const char* group_name,
 size_t* num_neighbors,
 char** neighbor_uris);

 int childrenSet(uint32_t iface,
 const char* group_name,
 size_t* num_children,
 char** children_uris);

 int parentSet(uint32_t iface,
 const char* group_name,
 size_t* num_parents,
 char** parents_uris);

 int designatedHost(uint32_t iface,
 const char* group_name);

 typedef void (*MembershipEventCallback)
 (int, /* event type */
 uint32_t, /* Interface id */
 const char*); /* group uri */

 int registerEventCallback(MembershipEventCallback callback);

 int enableEvents();

 int disableEvents();

 int getMaxMsgSize();

Waehlisch, et al. Experimental [Page 36]

RFC 7046 Common Mcast API December 2013

Appendix B. Use Case for the API

 For the sake of readability, we demonstrate development of
 applications using the API based on a high-level Java-like syntax; we
 do not consider error handling.

 -- Application above middleware:

 //Initialize multicast socket;
 //the middleware selects all available Interfaces
 MulticastSocket m = new MulticastSocket();

 m.join(URI("ham:ip:224.1.2.3:5000"));
 m.join(URI("ham:ip:[ff02:0:0:0:0:0:0:3]:6000"));
 m.join(URI("ham:sip:news@cnn.com"));

 -- Middleware:

 join(URI mcAddress) {
 //Select Interfaces in use
 for all this.interfaces {
 switch (interface.type) {
 case "ipv6":
 //... map logical ID to routing address
 Inet6Address rtAddressIPv6 = new Inet6Address();
 mapNametoAddress(mcAddress,rtAddressIPv6);
 interface.join(rtAddressIPv6);
 case "ipv4":
 //... map logical ID to routing address
 Inet4Address rtAddressIPv4 = new Inet4Address();
 mapNametoAddress(mcAddress,rtAddressIPv4);
 interface.join(rtAddressIPv4);
 case "sip-session":
 //... map logical ID to routing address
 SIPAddress rtAddressSIP = new SIPAddress();
 mapNametoAddress(mcAddress,rtAddressSIP);
 interface.join(rtAddressSIP);
 case "dht":
 //... map logical ID to routing address
 DHTAddress rtAddressDHT = new DHTAddress();
 mapNametoAddress(mcAddress,rtAddressDHT);
 interface.join(rtAddressDHT);
 //...
 }
 }
 }

Waehlisch, et al. Experimental [Page 37]

RFC 7046 Common Mcast API December 2013

Appendix C. Deployment Use Cases for Hybrid Multicast

 This section describes the application of the defined API to
 implement an IMG.

C.1. DVMRP

 The following procedure describes a transparent mapping of a
 DVMRP-based any-source multicast service to another many-to-many
 multicast technology, e.g., an overlay.

 An arbitrary Distance Vector Multicast Routing Protocol (DVMRP)
 [RFC1075] router will not be informed of new receivers but will learn
 about new sources immediately. The concept of DVMRP does not provide
 any central multicast instance. Thus, the IMG can be placed anywhere
 inside the multicast region, but the IMG requires a DVMRP neighbor
 connectivity. Thus, the group communication stack used by the IMG is
 enhanced by a DVMRP implementation. New sources in the underlay will
 be advertised based on the DVMRP flooding mechanism and received by
 the IMG. Based on this, the event "new_source_event" is created and
 passed to the application. The relay agent initiates a corresponding
 join in the native network and forwards the received source data
 towards the overlay routing protocol. Depending on the group states,
 the data will be distributed to overlay peers.

 DVMRP establishes source-specific multicast trees. Therefore, a
 graft message is only visible to DVMRP routers on the path from the
 new receiver subnet to the source, but in general not to an IMG. To
 overcome this problem, data of multicast senders in the overlay may
 become noticeable via the Source Register call, as well as by an IMG
 that initiates an all-group join in the overlay using the namespace
 extension of the API. Each IMG is initially required to forward the
 data received in the overlay to the underlay, independent of native
 multicast receivers. Subsequent prunes may limit unwanted data
 distribution thereafter.

C.2. PIM-SM

 The following procedure describes a transparent mapping of a
 PIM-SM-based any-source multicast service to another many-to-many
 multicast technology, e.g., an overlay.

 The Protocol Independent Multicast - Sparse Mode (PIM-SM) [RFC4601]
 establishes rendezvous points (RPs). These entities receive listener
 subscriptions and source registering of a domain. For a continuous
 update, an IMG has to be co-located with an RP. Whenever PIM
 register messages are received, the IMG must signal internally a new
 multicast source using the event "new_source_event". Subsequently,

Waehlisch, et al. Experimental [Page 38]

RFC 7046 Common Mcast API December 2013

 the IMG joins the group and a shared tree between the RP and the
 sources will be established; this shared tree may change to a source-
 specific tree after PIM switches to phase three. Source traffic will
 be forwarded to the RP based on the IMG join, even if there are no
 further receivers in the native Multicast Domain. Designated routers
 of a PIM domain send receiver subscriptions towards the PIM-SM RP.
 The reception of such messages initiates the event "join_event" at
 the IMG, which initiates a join towards the overlay routing protocol.
 Overlay multicast data arriving at the IMG will then be transparently
 forwarded in the underlay network and distributed through the RP
 instance.

C.3. PIM-SSM

 The following procedure describes a transparent mapping of a
 PIM-SSM-based source-specific multicast service to another
 one-to-many multicast technology, e.g., an overlay.

 PIM Source-Specific Multicast (PIM-SSM) is defined as part of PIM-SM
 and admits source-specific joins (S,G) according to the source-
 specific host group model [RFC4604]. A multicast distribution tree
 can be established without the assistance of a rendezvous point.

 Sources are not advertised within a PIM-SSM domain. Consequently, an
 IMG cannot anticipate the local join inside a sender domain and
 deliver a priori the multicast data to the overlay instance. If an
 IMG of a receiver domain initiates a group subscription via the
 overlay routing protocol, relaying multicast data fails, as data is
 not available at the overlay instance. The IMG instance of the
 receiver domain thus has to locate the IMG instance of the source
 domain to trigger the corresponding join. In agreement with the
 objectives of PIM-SSM, the signaling should not be flooded in the
 underlay and overlay.

 A solution can be to intercept the subscription at both source sites
 and receiver sites: To monitor multicast receiver subscriptions
 ("join_event" or "leave_event") in the underlay, the IMG is placed on
 the path towards the source, e.g., at a domain border router. This
 router intercepts join messages and extracts the unicast source
 address S, initializing an IMG-specific join to S via regular
 unicast. Multicast data arriving at the IMG of the sender domain can
 be distributed via the overlay. Discovering the IMG of a multicast
 sender domain may be implemented analogously to Automatic Multicast
 Tunneling [AMT] by anycast. Consequently, the source address S of
 the group (S,G) should be built based on an anycast prefix. The
 corresponding IMG anycast address for a source domain is then derived
 from the prefix of S.

Waehlisch, et al. Experimental [Page 39]

RFC 7046 Common Mcast API December 2013

C.4. BIDIR-PIM

 The following procedure describes a transparent mapping of a
 BIDIR-PIM-based any-source multicast service to another many-to-many
 multicast technology, e.g., an overlay.

 Bidirectional PIM [RFC5015] is a variant of PIM-SM. In contrast to
 PIM-SM, the protocol pre-establishes bidirectional shared trees per
 group, connecting multicast sources and receivers. The rendezvous
 points are virtualized in BIDIR-PIM as an address to identify on-tree
 directions (up and down). Routers with the best link towards the
 (virtualized) rendezvous point address are selected as designated
 forwarders for a link-local domain and represent the actual
 distribution tree. The IMG is to be placed at the RP link, where the
 rendezvous point address is located. As source data in either case
 will be transmitted to the RP link, the BIDIR-PIM instance of the IMG
 receives the data and can internally signal new senders towards the
 stack via the "new_source_event". The first receiver subscription
 for a new group within a BIDIR-PIM domain needs to be transmitted to
 the RP to establish the first branching point. Using the
 "join_event", an IMG will thereby be informed of group requests from
 its domain, which are then delegated to the overlay.

Waehlisch, et al. Experimental [Page 40]

RFC 7046 Common Mcast API December 2013

Authors’ Addresses

 Matthias Waehlisch
 link-lab & FU Berlin
 Hoenower Str. 35
 Berlin 10318
 Germany

 EMail: mw@link-lab.net
 URI: http://www.inf.fu-berlin.de/˜waehl

 Thomas C. Schmidt
 HAW Hamburg
 Berliner Tor 7
 Hamburg 20099
 Germany

 EMail: schmidt@informatik.haw-hamburg.de
 URI: http://inet.cpt.haw-hamburg.de/members/schmidt

 Stig Venaas
 Cisco Systems
 Tasman Drive
 San Jose, CA 95134
 USA

 EMail: stig@cisco.com

Waehlisch, et al. Experimental [Page 41]

