
Internet Engineering Task Force (IETF) U. Herberg, Ed.
Request for Comments: 6971 Fujitsu
Category: Experimental A. Cardenas
ISSN: 2070-1721 University of Texas at Dallas
 T. Iwao
 Fujitsu
 M. Dow
 Freescale
 S. Cespedes
 Icesi University
 June 2013

 Depth-First Forwarding (DFF) in Unreliable Networks

Abstract

 This document specifies the Depth-First Forwarding (DFF) protocol for
 IPv6 networks, a data-forwarding mechanism that can increase
 reliability of data delivery in networks with dynamic topology and/or
 lossy links. The protocol operates entirely on the forwarding plane
 but may interact with the routing plane. DFF forwards data packets
 using a mechanism similar to a "depth-first search" for the
 destination of a packet. The routing plane may be informed of
 failures to deliver a packet or loops. This document specifies the
 DFF mechanism both for IPv6 networks (as specified in RFC 2460) and
 for "mesh-under" Low-Power Wireless Personal Area Networks (LoWPANs),
 as specified in RFC 4944. The design of DFF assumes that the
 underlying link layer provides means to detect if a packet has been
 successfully delivered to the Next Hop or not. It is applicable for
 networks with little traffic and is used for unicast transmissions
 only.

Herberg, et al. Experimental [Page 1]

RFC 6971 DFF June 2013

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6971.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Motivation . 4
 1.2. Experiments to Be Conducted 5
 2. Notation and Terminology 6
 2.1. Notation . 6
 2.2. Terminology . 7
 3. Applicability Statement 9
 4. Protocol Overview and Functioning 10
 4.1. Overview of Information Sets 11
 4.2. Signaling Overview . 11
 5. Protocol Dependencies . 13

Herberg, et al. Experimental [Page 2]

RFC 6971 DFF June 2013

 6. Information Sets . 13
 6.1. Symmetric Neighbor List 13
 6.2. Processed Set . 13
 7. Packet Header Fields . 14
 8. Protocol Parameters . 15
 9. Data Packet Generation and Processing 15
 9.1. Data Packets Entering the DFF Routing Domain 16
 9.2. Data Packet Processing 17
 10. Unsuccessful Packet Transmission 19
 11. Determining the Next Hop for a Packet 20
 12. Sequence Numbers . 21
 13. Modes of Operation . 21
 13.1. Route-Over . 22
 13.1.1. Mapping of DFF Terminology to IPv6 Terminology . . . 22
 13.1.2. Packet Format . 22
 13.2. Mesh-Under . 24
 13.2.1. Mapping of DFF Terminology to LoWPAN Terminology . . 24
 13.2.2. Packet Format . 25
 14. Scope Limitation of DFF 26
 14.1. Route-Over MoP . 28
 14.2. Mesh-Under MoP . 29
 15. MTU Exceedance . 30
 16. Security Considerations 31
 16.1. Attacks That Are Out of Scope 31
 16.2. Protection Mechanisms of DFF 31
 16.3. Attacks That Are in Scope 32
 16.3.1. Denial of Service 32
 16.3.2. Packet Header Modification 32
 16.3.2.1. Return Flag Tampering 32
 16.3.2.2. Duplicate Flag Tampering 33
 16.3.2.3. Sequence Number Tampering 33
 17. IANA Considerations . 33
 18. Acknowledgments . 34
 19. References . 34
 19.1. Normative References 34
 19.2. Informative References 35
 Appendix A. Examples . 36
 A.1. Example 1: Normal Delivery 36
 A.2. Example 2: Forwarding with Link Failure 37
 A.3. Example 3: Forwarding with Missed Link-Layer
 Acknowledgment . 38
 A.4. Example 4: Forwarding with a Loop 39
 Appendix B. Deployment Experience 40
 B.1. Deployments in Japan 40
 B.2. Kit Carson Electric Cooperative 40
 B.3. Simulations . 40
 B.4. Open-Source Implementation 40

Herberg, et al. Experimental [Page 3]

RFC 6971 DFF June 2013

1. Introduction

 This document specifies the Depth-First Forwarding (DFF) protocol for
 IPv6 networks, both for IPv6 forwarding [RFC2460] (henceforth denoted
 "route-over"), and also for "mesh-under" forwarding using the LoWPAN
 adaptation layer [RFC4944]. The protocol operates entirely on the
 forwarding plane but may interact with the routing plane. The
 purpose of DFF is to increase reliability of data delivery in
 networks with dynamic topologies and/or lossy links.

 DFF forwards data packets using a "depth-first search" for the
 destination of the packets. DFF relies on an external neighborhood
 discovery mechanism that lists a router’s neighbors that may be
 attempted as Next Hops for a data packet. In addition, DFF may use
 information from the Routing Information Base (RIB) for deciding in
 which order to try to send the packet to the neighboring routers.

 If the packet makes no forward progress using the first selected Next
 Hop, DFF will successively try all neighbors of the router. If none
 of the Next Hops successfully receives or forwards the packet, DFF
 returns the packet to the Previous Hop, which in turn tries to send
 it to alternate neighbors.

 As network topologies do not necessarily form trees, loops can occur.
 Therefore, DFF contains a loop detection and avoidance mechanism.

 DFF may provide information that may -- by a mechanism outside of
 this specification -- be used for updating the cost of routes in the
 RIB based on failed or successful delivery of packets through
 alternative Next Hops. Such information may also be used by a
 routing protocol.

 DFF assumes that the underlying link layer provides means to detect
 if a packet has been successfully delivered to the Next Hop or not,
 is designed for networks with little traffic, and is used for unicast
 transmissions only.

1.1. Motivation

 In networks with dynamic topologies and/or lossy links, even frequent
 exchanges of control messages between routers for updating the
 routing tables cannot guarantee that the routes correspond to the
 effective topology of the network at all times. Packets may not be
 delivered to their destination because the topology has changed since
 the last routing protocol update.

Herberg, et al. Experimental [Page 4]

RFC 6971 DFF June 2013

 More frequent routing protocol updates can mitigate that problem to a
 certain extent; however, this requires additional signaling,
 consuming channel and router resources (e.g., when flooding control
 messages through the network). This is problematic in networks with
 lossy links, where further control traffic exchange can worsen the
 network stability because of collisions. Moreover, additional
 control traffic exchange may drain energy from battery-driven
 routers.

 The data-forwarding mechanism specified in this document allows for
 forwarding data packets along alternate paths for increasing
 reliability of data delivery, using a depth-first search. The
 objective is to decrease the necessary control traffic overhead in
 the network and, at the same time, to increase delivery success
 rates.

 As this specification is intended for experimentation, the mechanism
 is also specified for forwarding on the LoWPAN adaption layer
 (according to Section 11 of [RFC4944]), in addition to IPv6
 forwarding as specified in [RFC2460]. Other than different header
 formats, the DFF mechanism for route-over and mesh-under is similar,
 and is therefore first defined in general and then more specifically
 for both IPv6 route-over forwarding (as specified in Section 13.1)
 and LoWPAN adaptation layer mesh-under (as specified in
 Section 13.2).

1.2. Experiments to Be Conducted

 This document is presented as an Experimental specification that can
 increase reliability of data delivery in networks with dynamic
 topology and/or lossy links. It is anticipated that, once sufficient
 operational experience has been gained, this specification will be
 revised to progress it on to the Standards Track. This experiment is
 intended to be tried in networks that meet the applicability
 described in Section 3, and with the scope limitations set out in
 Section 14. While experimentation is encouraged in such networks,
 operators should exercise caution before attempting this experiment
 in other types of networks as the stability of interaction between
 DFF and routing in those networks has not been established.

 Experience reports regarding DFF implementation and deployment are
 encouraged, particularly with respect to:

 o Optimal values for the parameter P_HOLD_TIME, depending on the
 size of the network, the topology, and the amount of traffic
 originated per router. The longer a Processed Tuple is held, the
 more memory is consumed on a router. Moreover, if a tuple is held
 too long, a sequence number wrap-around may occur, and a new

Herberg, et al. Experimental [Page 5]

RFC 6971 DFF June 2013

 packet may have the same sequence number as one indicated in an
 old Processed Tuple. However, if the tuple is expired too soon
 (before the packet has completed its path to the destination), it
 may be mistakenly detected as a new packet instead of one already
 seen.

 o Optimal values for the parameter MAX_HOP_LIMIT, depending on the
 size of the network, the topology, and how lossy the link layer
 is. MAX_HOP_LIMIT makes sure that packets do not unnecessarily
 traverse in the network; it may be used to limit the "detour" of
 packets that is acceptable. The value may also be issued on a
 per-packet basis if hop-count information is available from the
 RIB or routing protocol. In such a case, the Hop Limit for the
 packet may be a percentage (e.g., 200%) of the hop-count value
 indicated in the routing table.

 o Optimal methods to increase the cost of a route when a loop or
 lost Layer 2 (L2) ACK is detected by DFF. While this is not
 specified as a normative part of this document, it may be of
 interest in an experiment to find good values of how much to
 increase link cost in the RIB or routing protocol.

 o Performance of using DFF in combination with different routing
 protocols, such as reactive and proactive protocols. This also
 implies how routes are updated by the RIB or routing protocol when
 informed by DFF about loops or broken links.

2. Notation and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 Additionally, this document uses the notation in Section 2.1 and the
 terminology in Section 2.2.

2.1. Notation

 The following notations are used in this document:

 List: A list of elements is defined as [] for an empty list,
 [element] for a list with one element, and [element1, element2,
 ...] for a list with multiple elements.

 Concatenation of Lists: If List1 and List2 are lists, then List1@
 List2 is a new list with all elements of List1 first, followed by
 all elements of List2.

Herberg, et al. Experimental [Page 6]

RFC 6971 DFF June 2013

 Byte Order: All packet formats in this specification use network
 byte order (most significant octet first) for all fields. The
 most significant bit in an octet is numbered bit 0, and the least
 significant bit of an octet is numbered bit 7.

 Assignment: a := b
 An assignment operator, whereby the left side (a) is assigned the
 value of the right side (b).

 Comparison: c = d
 A comparison operator, returning true if the value of the left
 side (c) is equal to the value of the right side (d).

 Flags: This specification uses multiple 1-bit flags. A value of ’0’
 of a flag means ’false’; a value of ’1’ means ’true’.

2.2. Terminology

 The terms "route-over" and "mesh-under", introduced in [RFC6775], are
 used in this document, where "route-over" is not only limited to IPv6
 over Low-Power Wireless Personal Area Networks (6LoWPANs) but also
 applies to general IPv6 networks.

 Mesh-under: A topology where nodes are connected to a 6LoWPAN Border
 Router (6LBR) through a mesh using link-layer forwarding. Thus,
 in a mesh-under configuration, all IPv6 hosts in a LoWPAN are only
 one IP hop away from the 6LBR. This topology simulates the
 typical IP-subnet topology with one router with multiple nodes in
 the same subnet.

 Route-over: A topology where hosts are connected to the 6LBR through
 the use of intermediate layer-3 (IP) routing. Here, hosts are
 typically multiple IP hops away from a 6LBR. The route-over
 topology typically consists of a 6LBR, a set of 6LoWPAN Routers
 (6LRs), and hosts.

 The following terms are used in this document. As the DFF mechanism
 is specified both for route-over IPv6 and for the mesh-under LoWPAN
 adaptation layer, the terms are generally defined in this section,
 and then specifically mapped for each of the different modes of
 operation in Section 13.

 Depth-First Search: "Depth-first search (DFS) is an algorithm for
 traversing or searching tree or graph data structures. One starts
 at the root (selecting some node as the root in the graph case)
 and explores as far as possible along each branch before
 backtracking" [DFS_wikipedia]. In this document, the algorithm

Herberg, et al. Experimental [Page 7]

RFC 6971 DFF June 2013

 for traversing a graph is applied to forwarding packets in a
 computer network, with nodes being routers.

 Routing Information Base (RIB): A table stored in the user space of
 an operating system of a router or host. The table lists routes
 to network destinations, as well as associated metrics with these
 routes.

 Mode of Operation (MoP): The DFF mechanism specified in this
 document can either be used as the "route-over" IPv6-forwarding
 mechanism (Mode of Operation: "route-over") or as the "mesh-under"
 LoWPAN adaptation layer (Mode of Operation: "mesh-under").

 Packet: An IPv6 packet (for "route-over" MoP) or a "LoWPAN-
 encapsulated packet" (for "mesh-under" MoP), containing an IPv6
 packet as payload.

 Packet Header: An IPv6 extension header (for "route-over" MoP) or a
 LoWPAN header (for "mesh-under" MoP).

 Address: An IPv6 address (for "route-over" MoP), or a 16-bit short
 or 64-bit Extended Unique Identifier (EUI-64) link-layer address
 (for "mesh-under" MoP).

 Originator: The router that added the DFF header (specified in
 Section 7) to a packet.

 Originator Address: An address of the Originator. According to
 [RFC6724], this address SHOULD be selected from the addresses that
 are configured on the interface that transmits the packet.

 Destination: The router or host to which a packet is finally
 destined. In case this router or host is outside of the routing
 domain in which DFF is used, the destination is the router that
 removes the DFF header (specified in Section 7) from the packet.
 This case is described in Section 14.1.

 Destination Address: An address to which the packet is sent.

 Next Hop: An address of the Next Hop to which the packet is sent
 along the path to the destination.

 Previous Hop: The address of the previous-hop router from which a
 packet has been received. In case the packet has been received by
 a router from outside of the routing domain where DFF is used
 (i.e., no DFF header is contained in the packet), the Originator
 Address of the router adding the DFF header to the packet is used
 as the Previous Hop.

Herberg, et al. Experimental [Page 8]

RFC 6971 DFF June 2013

 Hop Limit: An upper bound denoting how many times the packet may be
 forwarded.

3. Applicability Statement

 This document specifies DFF, a packet-forwarding mechanism intended
 for use in networks with dynamic topology and/or lossy links with the
 purpose of increasing reliability of data delivery. The protocol’s
 applicability is determined by its characteristics, which are that
 this protocol:

 o Is applicable for use in IPv6 networks, either as a "route-over"
 forwarding mechanism using IPv6 [RFC2460], or as a "mesh-under"
 forwarding mechanism using the frame format for transmission of
 IPv6 packets, as defined in [RFC4944].

 o Assumes addresses used in the network are either IPv6 addresses
 (if the protocol is used as "route-over"), or 16-bit short or
 EUI-64 link-layer addresses, as specified in [RFC4944], if the
 protocol is used as "mesh-under". In "mesh-under" mode, mixed
 16-bit and EUI-64 addresses within one DFF routing domain are
 allowed (if they conform with [RFC4944]), as long as DFF is
 limited to use within one PAN (Personal Area Network). It is
 assumed that the "route-over" mode and "mesh-under" mode are
 mutually exclusive in the same routing domain.

 o Assumes that the underlying link layer provides means to detect if
 a packet has been successfully delivered to the Next Hop or not
 (e.g., by L2 ACK messages). Examples for such underlying link
 layers are specified in IEEE 802.15.4 and IEEE 802.11.

 o Is applicable in networks with lossy links and/or with a dynamic
 topology. In networks with very stable links and fixed topology,
 DFF will not bring any benefit (but also will not be harmful,
 other than the additional overhead for the packet header).

 o Works in a completely distributed manner and does not depend on
 any central entity.

 o Is applicable for networks with little traffic in terms of numbers
 of packets per second, since each recently forwarded packet
 increases the state on a router. The amount of traffic per time
 that is supported by DFF depends on the memory resources of the
 router running DFF, the density of the network, the loss rate of
 the channel, and the maximum Hop Limit for each packet: for each
 recently seen packet, a list of Next Hops that the packet has been
 sent to is stored in memory. The stored entries can be deleted
 after an expiration time, so that only recently received packets

Herberg, et al. Experimental [Page 9]

RFC 6971 DFF June 2013

 require storage on the router. Implementations are advised to
 measure and report rates of packets in the network, and also to
 report memory usage. Thus, operators can determine memory
 exhaustion because of growing information sets or problems because
 of too rapid sequence-number wrap-around.

 o Is applicable for dense topologies with multiple paths between
 each source and each destination. Certain topologies are less
 suitable for DFF: topologies that can be partitioned by the
 removal of a single router or link, topologies with multiple stub
 routers that each have a single link to the network, topologies
 with only a single path to a destination, or topologies where the
 "detour" that a packet makes during the depth-first search in
 order to reach the destination would be too long. Note that the
 number of retransmissions of a packet that stipulate a "too long"
 path depends on the underlying link layer (capacity and
 probability of packet loss), as well as how much bandwidth is
 required for data traffic by applications running in the network.
 In such topologies, the packet may never reach the destination;
 therefore, unnecessary transmissions of data packets may occur
 until the Hop Limit of the packet reaches zero, and the packet is
 dropped. This may consume channel and router resources.

 o Is used for unicast transmissions only (not for anycast or
 multicast).

 o Is for use within stub networks and for traffic between a router
 inside the routing domain in which DFF is used and a known border
 router. Examples of such networks are LoWPANs. Scope limitations
 are described in Section 14.

4. Protocol Overview and Functioning

 When a packet is to be forwarded by a router using DFF, the router
 creates a list of candidate Next Hops for that packet. This list
 (created per packet) is ordered, and Section 11 provides
 recommendations on how to order the list, e.g., first listing Next
 Hops listed in the RIB, if available, ordered in increasing cost,
 followed by other neighbors provided by an external neighborhood
 discovery. DFF proceeds to forward the packet to the first Next Hop
 in the list. If the transmission was not successful (as determined
 by the underlying link layer) or if the packet was "returned" by a
 Next Hop to which it had been sent before, the router will try to
 forward the packet to the subsequent Next Hop on the list. A router
 "returns" a packet to the router from which it was originally
 received once it has unsuccessfully tried to forward the packet to
 all elements in the candidate Next Hop list. If the packet is
 eventually returned to the Originator of the packet, and after the

Herberg, et al. Experimental [Page 10]

RFC 6971 DFF June 2013

 Originator has exhausted all of its Next Hops for the packet, the
 packet is dropped.

 For each recently forwarded packet, a router running DFF stores
 information about the packet as an entry in an information set,
 denoted "Processed Set". Each entry in the Processed Set contains a
 sequence number, included in the packet header, identifying the
 packet. (Refer to Section 12 for further details on the sequence
 number.) Furthermore, the entry contains a list of Next Hops to
 which the packet has been sent. This list of recently forwarded
 packets also allows for avoiding loops when forwarding a packet.
 Entries in the Processed Set expire after a given expiration timeout
 and are removed.

4.1. Overview of Information Sets

 This specification requires a single set on each router, the
 Processed Set. The Processed Set stores the sequence number, the
 Originator Address, the Previous Hop, and a list of Next Hops to
 which the packet has been sent, for each recently seen packet.
 Entries in the set are removed after a predefined timeout. Each time
 a packet is forwarded to a Next Hop, that Next Hop is added to the
 list of Next Hops of the entry for the packet.

 Note that an implementation of this protocol may maintain the
 information of the Processed Set in the indicated form, or in any
 other organization that offers access to this information. In
 particular, it is not necessary to remove tuples from a set at the
 exact time indicated, only to behave as if the tuples were removed at
 that time.

 In addition to the Processed Set, a list of symmetric neighbors must
 be provided by an external neighborhood discovery mechanism, or may
 be determined from the RIB (e.g., if the RIB provides routes to
 adjacent routers, and if these one-hop routes are verified to be
 symmetric).

4.2. Signaling Overview

 Information is needed on a per-packet basis by a router that is
 running DFF and receives a packet. This information is encoded in
 the packet header that is specified in this document as the IPv6 Hop-
 by-Hop Options header and LoWPAN header, respectively, for the
 intended "route-over" and "mesh-under" Modes of Operation. This DFF
 header contains a sequence number used for uniquely identifying a
 packet and two flags, RET (for "return") and DUP (for "duplicate").

Herberg, et al. Experimental [Page 11]

RFC 6971 DFF June 2013

 While a router successively tries sending a data packet to one or
 more of its neighbors, RET = 0. If none of the transmissions of the
 packet to the neighbors of a router have succeeded, the packet is
 returned to the router from which the packet was first received,
 indicated by setting the return flag (RET := 1). The RET flag is
 required to discern between a deliberately returned packet and a
 looping packet: if a router receives a packet with RET = 1 (and DUP =
 0 or DUP = 1) that it has already forwarded, the packet was
 deliberately returned, and the router will continue to successively
 send the packet to routers from the candidate Next Hop list. If that
 packet has RET = 0, the router assumes that the packet is looping and
 returns it to the router from which it was last received. An
 external mechanism may use this information for increasing the route
 cost of the route to the destination using the Next Hop that resulted
 in the loop in the RIB or the routing protocol. It is out of scope
 of this document to specify such a mechanism. Note that once DUP is
 set to 1, loop detection is not possible any more as the flag is not
 reset any more. Therefore, a packet may loop if the RIBs of routers
 in the domain are inconsistent, until the Hop Limit has reached 0.

 Whenever a packet transmission to a neighbor has failed (as
 determined by the underlying link layer, e.g., using L2 ACKs), the
 DUP flag is set in the packet header for the following transmissions.
 The rationale is that the packet may have been successfully received
 by the neighbor and only the L2 ACK has been lost, resulting in
 possible duplicates of the packet in the network. The DUP flag tags
 such a possible duplicate. The DUP flag is required to discern
 between a duplicated packet and a looping packet: if a router
 receives a packet with DUP = 1 (and RET = 0) that it has already
 forwarded, the packet is not considered looping and is successively
 forwarded to the next router from the candidate Next Hop list. If
 the received packet has DUP = 0 (and RET = 0), the router assumes
 that the packet is looping, sets RET := 1, and returns it to the
 Previous Hop. Again, an external mechanism may use this information
 for increasing route costs and/or informing the routing protocol.

 The reason for not dropping received duplicated packets (with DUP =
 1) is that a duplicated packet may be duplicated again during its
 path if another L2 ACK is lost. However, when DUP is already set to
 1, it is not possible to discern the duplicate from the duplicate of
 the duplicate. As a consequence, loop detection is not possible
 after the second lost L2 ACK on the path of a packet. However, if
 duplicates are simply dropped, it is possible that the packet was
 actually a looping packet (and not a duplicate), and so the depth-
 first search would be interrupted.

Herberg, et al. Experimental [Page 12]

RFC 6971 DFF June 2013

5. Protocol Dependencies

 DFF MAY use information from the Routing Information Base (RIB),
 specifically for determining an order of preference for which Next
 Hops a packet should be forwarded to (e.g., the packet may be
 forwarded first to neighbors that are listed in the RIB as Next Hops
 to the destination, preferring those with the lowest route cost).
 Section 11 provides recommendations about the order of preference for
 the Next Hops of a packet.

 DFF MUST have access to a list of symmetric neighbors for each
 router; this list is provided by a neighborhood discovery protocol,
 such as the one defined in [RFC6130]. A neighborhood discovery
 protocol is not specified in this document.

6. Information Sets

 This section specifies the information sets used by DFF.

6.1. Symmetric Neighbor List

 DFF MUST have access to a list of addresses of symmetric neighbors of
 the router. This list can be provided by an external neighborhood
 discovery mechanism or, alternatively, may be determined from the RIB
 (e.g., if the RIB provides routes to adjacent routers, and if these
 one-hop routes are verified to be symmetric). The list of addresses
 of symmetric neighbors is not specified within this document. The
 addresses in the list are used to construct a list of candidate Next
 Hops for a packet, as specified in Section 11.

6.2. Processed Set

 Each router maintains a Processed Set in order to support the loop
 detection functionality. The Processed Set lists sequence numbers of
 previously received packets, as well as a list of Next Hops to which
 the packet has been sent successively as part of the depth-first
 forwarding mechanism. To protect against this situation, it is
 recommended that an implementation retains the Processed Set in
 non-volatile storage if such is provided by the router.

 The set consists of Processed Tuples

 (P_orig_address, P_seq_number, P_prev_hop,
 P_next_hop_neighbor_list, P_time)

 where

Herberg, et al. Experimental [Page 13]

RFC 6971 DFF June 2013

 P_orig_address is the Originator Address of the received packet;

 P_seq_number is the sequence number of the received packet;

 P_prev_hop is the address of the Previous Hop of the packet;

 P_next_hop_neighbor_list is a list of addresses of Next Hops to
 which the packet has been sent previously, as part of the depth-
 first forwarding mechanism, as specified in Section 9.2;

 P_time specifies when this tuple expires and MUST be removed.

 The consequences when no, or not enough, non-volatile storage is
 available on a router (e.g., because of limited resources) or when an
 implementation chooses not to make the Processed Set persistent are
 that packets that are already in a loop caused by the routing
 protocol may continue to loop until the Hop Limit is exhausted.
 Non-looping packets may be sent to Next Hops that have already
 received the packet previously and will return the packet, leading to
 some unnecessary retransmissions. This effect is only temporary and
 applies only for packets already traversing the network.

7. Packet Header Fields

 This section specifies the information required by DFF in the packet
 header. Note that, depending on whether DFF is used in the
 "route-over" MoP or in the "mesh-under" MoP, the DFF header is either
 an IPv6 Hop-by-Hop Options header (as specified in Section 13.1.2) or
 a LoWPAN header (as specified in Section 13.2.2). Sections 13.1.2
 and 13.2.2 specify the precise order, format, and encoding of the
 fields that are listed in this section.

 Version (VER) - This 2-bit value indicates the version of DFF that
 is used. This specification defines value ’00’. Packets with
 other values of the version MUST be forwarded using the route-over
 MoP and mesh-under MoP as defined in [RFC2460] and [RFC4944],
 respectively.

 Duplicate (DUP) Packet Flag - This 1-bit flag is set in the DFF
 header of a packet when that packet is being retransmitted due to
 a signal from the link layer that the original transmission
 failed, as specified in Section 9.2. Once the flag is set to 1,
 it MUST NOT be modified by routers forwarding the packet.

 Return (RET) Packet Flag - This 1-bit flag MUST be set to 1 prior to
 sending the packet back to the Previous Hop. Upon receiving a
 packet with RET = 1, and before sending it to a new candidate Next
 Hop, that flag MUST be set to 0, as specified in Section 9.2.

Herberg, et al. Experimental [Page 14]

RFC 6971 DFF June 2013

 Sequence Number - A 16-bit field, containing an unsigned integer
 sequence number generated by the Originator, unique to each router
 for each packet to which the DFF has been added, as specified in
 Section 12. The Originator Address concatenated with the sequence
 number represents an identifier of previously seen data packets.
 Refer to Section 12 for further information about sequence
 numbers.

8. Protocol Parameters

 The parameters used in this specification are listed in this section.
 These parameters are configurable, do not need to be stored in
 non-volatile storage, and can be varied by implementations at run-
 time. Default values for the parameters depend on the network size,
 topology, link layer, and traffic patterns. Part of the
 experimentation described in Section 1.2 is to determine suitable
 default values.

 P_HOLD_TIME - Is the time period after which a newly created or
 modified Processed Tuple expires and MUST be deleted. An
 implementation SHOULD use a value for P_HOLD_TIME that is high
 enough that the Processed Tuple for a packet is still in memory on
 all forwarding routers while the packet is transiting the routing
 domain. The value SHOULD at least be MAX_HOP_LIMIT times the
 expected time to send a packet to a router on the same link. The
 value MUST be lower than the time it takes until the same sequence
 number is reached again after a wrap-around on the router
 identified by P_orig_address of the Processed Tuple.

 MAX_HOP_LIMIT - Is the initial value of Hop Limit, and therefore the
 maximum number of times that a packet is forwarded in the routing
 domain. When choosing the value of MAX_HOP_LIMIT, the size of the
 network, the distance between source and destination in number of
 hops, and the maximum possible "detour" of a packet SHOULD be
 considered (compared to the shortest path). Such information MAY
 be used from the RIB, if provided.

9. Data Packet Generation and Processing

 The following sections specify the process of handling a packet
 entering the DFF routing domain, i.e., without a DFF header
 (Section 9.1), as well as forwarding a data packet from another
 router running DFF (Section 9.2).

Herberg, et al. Experimental [Page 15]

RFC 6971 DFF June 2013

9.1. Data Packets Entering the DFF Routing Domain

 This section applies for any data packets upon their first entry into
 a routing domain in which DFF is used. This occurs when a new data
 packet is generated on this router, or when a data packet is
 forwarded from outside the routing domain (i.e., from a host attached
 to this router or from a router outside the routing domain in which
 DFF is used). Before such a data packet (henceforth denoted "current
 packet") is transmitted, the following steps MUST be executed:

 1. If required, encapsulate the packet, as specified in Section 14.

 2. Add the DFF header to the current packet (to the outer header if
 the packet has been encapsulated) with:

 * DUP := 0;

 * RET := 0;

 * Sequence Number := a new sequence number of the packet (as
 specified in Section 12).

 3. Check that the packet does not exceed the MTU, as specified in
 Section 15. In case it does, execute the procedures listed in
 Section 15 and do not further process the packet.

 4. Select the Next Hop (henceforth denoted "next_hop") for the
 current packet, as specified in Section 11.

 5. Add a Processed Tuple to the Processed Set with:

 * P_orig_address := the Originator Address of the current
 packet;

 * P_seq_number := the sequence number of the current packet;

 * P_prev_hop := the Originator Address of the current packet;

 * P_next_hop_neighbor_list := [next_hop];

 * P_time := current time + P_HOLD_TIME.

 6. Pass the current packet to the underlying link layer for
 transmission to next_hop. If the transmission fails (as
 determined by the link layer), the procedures in Section 10 MUST
 be executed.

Herberg, et al. Experimental [Page 16]

RFC 6971 DFF June 2013

9.2. Data Packet Processing

 When a packet (henceforth denoted the "current packet") is received
 by a router, the following tasks MUST be performed:

 1. If the packet header is malformed (i.e., the header format is not
 as expected by this specification), drop the packet.

 2. Otherwise, if the Destination Address of the packet matches an
 address of an interface of this router, deliver the packet to
 upper layers and do not further process the packet, as specified
 below.

 3. Decrement the value of the Hop Limit field by one (1).

 4. Drop the packet if Hop Limit is decremented to zero and do not
 further process the packet, as specified below.

 5. If no Processed Tuple (henceforth denoted the "current tuple")
 exists in the Processed Set, where both of the following
 conditions are true:

 + P_orig_address = the Originator Address of the current packet,
 AND;

 + P_seq_number = the sequence number of the current packet.

 Then:

 1. Add a Processed Tuple (henceforth denoted the "current
 tuple") with:

 + P_orig_address := the Originator Address of the current
 packet;

 + P_seq_number := the sequence number of the current packet;

 + P_prev_hop := the Previous Hop Address of the current
 packet;

 + P_next_hop_neighbor_list := [];

 + P_time := current time + P_HOLD_TIME.

 2. Set RET to 0 in the DFF header.

 3. Select the Next Hop (henceforth denoted "next_hop") for the
 current packet, as specified in Section 11.

Herberg, et al. Experimental [Page 17]

RFC 6971 DFF June 2013

 4. P_next_hop_neighbor_list := P_next_hop_neighbor_list@
 [next_hop].

 5. Pass the current packet to the underlying link layer for
 transmission to next_hop. If the transmission fails (as
 determined by the link layer), the procedures in Section 10
 MUST be executed.

 6. Otherwise, if a tuple exists:

 1. If the return flag of the current packet is not set (RET = 0)
 (i.e., a loop has been detected):

 1. Set RET := 1.

 2. Pass the current packet to the underlying link layer for
 transmission to the Previous Hop.

 2. Otherwise, if the return flag of the current packet is set
 (RET = 1):

 1. If the Previous Hop of the packet is not contained in
 P_next_hop_neighbor_list of the current tuple, drop the
 packet.

 2. If the Previous Hop of the packet (i.e., the address of
 the router from which the current packet has just been
 received) is equal to P_prev_hop of the current tuple
 (i.e., the address of the router from which the current
 packet has been first received), drop the packet.

 3. Set RET := 0.

 4. Select the Next Hop (henceforth denoted "next_hop") for
 the current packet, as specified in Section 11.

 5. Modify the current tuple:

 - P_next_hop_neighbor_list := P_next_hop_neighbor_list@
 [next_hop];

 - P_time := current time + P_HOLD_TIME.

Herberg, et al. Experimental [Page 18]

RFC 6971 DFF June 2013

 6. If the selected Next Hop is equal to P_prev_hop of the
 current tuple, as specified in Section 11 (i.e., all
 candidate Next Hops have been unsuccessfully tried), set
 RET := 1. If this router (i.e., the router receiving the
 current packet) has the same address as the Originator
 Address of the current packet, drop the packet.

 7. Pass the current packet to the underlying link layer for
 transmission to next_hop. If transmission fails (as
 determined by the link layer), the procedures in
 Section 10 MUST be executed.

10. Unsuccessful Packet Transmission

 DFF requires that the underlying link layer provides information as
 to whether a packet is successfully received by the Next Hop.
 Absence of such a signal is interpreted as a delivery failure of the
 packet (henceforth denoted the "current packet"). Note that the
 underlying link layer MAY retry sending the packet multiple times
 (e.g., using exponential back-off) before determining that the packet
 has not been successfully received by the Next Hop. The following
 steps are executed when a delivery failure occurs and Section 9
 requests that they be executed.

 1. Set the DUP flag of the DFF header of the current packet to 1.

 2. Select the Next Hop (henceforth denoted "next_hop") for the
 current packet, as specified in Section 11.

 3. Find the Processed Tuple (the "current tuple") in the Processed
 Set with:

 + P_orig_address = the Originator Address of the current packet,
 AND;

 + P_seq_number = the sequence number of the current packet.

 4. If no current tuple is found, drop the packet.

 5. Otherwise, modify the current tuple:

 * P_next_hop_neighbor_list := P_next_hop_neighbor_list@
 [next_hop];

 * P_time := current time + P_HOLD_TIME.

Herberg, et al. Experimental [Page 19]

RFC 6971 DFF June 2013

 6. If the selected next_hop is equal to P_prev_hop of the current
 tuple, as specified in Section 11 (i.e., all neighbors have been
 unsuccessfully tried), then:

 * RET := 1

 * Decrement the value of the Hop Limit field by one (1). Drop
 the packet if the Hop Limit is decremented to zero.

 7. Otherwise

 * RET := 0

 8. Transmit the current packet to next_hop. If transmission fails
 (as determined by the link layer), and if the next_hop does not
 equal P_prev_hop from the current tuple, the procedures in
 Section 10 MUST be executed.

11. Determining the Next Hop for a Packet

 When forwarding a packet, a router determines a valid Next Hop for
 that packet, as specified in this section. As a Processed Tuple
 either existed when receiving the packet (henceforth denoted the
 "current packet") or was created, it can be assumed that the
 Processed Tuple for that packet (henceforth denoted the "current
 tuple") is available.

 The Next Hop is chosen from a list of candidate Next Hops in order of
 decreasing priority. This list is created per packet. The maximum
 candidate Next Hop list for a packet contains all the neighbors of
 the router (as determined from an external neighborhood discovery
 process), except for the Previous Hop of the current packet. A
 smaller list MAY be used, if desired, and the exact selection of the
 size of the candidate Next Hop list is a local decision that is made
 in each router and does not affect interoperability. Selecting a
 smaller list may reduce the path length of a packet traversing the
 network and reduce the required state in the Processed Set, but it
 may result in valid paths that are not explored. If information from
 the RIB is used, then the candidate Next Hop list MUST contain at
 least the Next Hop indicated in the RIB as the Next Hop on the
 shortest path to the destination, and it SHOULD contain all Next Hops
 indicated to the RIB as Next Hops on paths to the destination. If a
 Next Hop from the RIB equals the Previous Hop of the current packet,
 it MUST NOT be added to the candidate Next Hop list.

 The list MUST NOT contain addresses that are listed in
 P_next_hop_neighbor_list of the current tuple, in order to avoid
 sending the packet to the same neighbor multiple times. Moreover, an

Herberg, et al. Experimental [Page 20]

RFC 6971 DFF June 2013

 address MUST NOT appear more than once in the list, for the same
 reason. Also, addresses of an interface of this router MUST NOT be
 added to the list.

 The list has an order of preference, where packets are first sent to
 the Next Hops at the top of the list during depth-first processing as
 specified in Sections 9.1 and 9.2. The following order is
 RECOMMENDED, with the elements listed on top having the highest
 preference:

 1. The neighbor that is indicated in the RIB as the Next Hop on the
 shortest path to the destination of the current packet;

 2. Other neighbors indicated in the RIB as Next Hops on the path to
 the destination of the current packet;

 3. All other symmetric neighbors (except the Previous Hop of the
 current packet).

 Additional information from the RIB or the list of symmetric
 neighbors (such as route cost or link quality) MAY be used for
 determining the order.

 If the candidate Next Hop list created as specified in this section
 is empty, the selected Next Hop MUST be P_prev_hop of the current
 tuple; this case applies when returning the packet to the Previous
 Hop.

12. Sequence Numbers

 Whenever a router generates a packet or forwards a packet on behalf
 of a host or a router outside the routing domain where DFF is used, a
 sequence number MUST be created and included in the DFF header. This
 sequence number MUST be unique locally on each router where it is
 created. A sequence number MUST start at 0 for the first packet to
 which the DFF header is added, and then increment by 1 for each new
 packet. The sequence number MUST NOT be greater than 65535 and MUST
 wrap around to 0.

13. Modes of Operation

 DFF can be used either as the "route-over" IPv6-forwarding protocol,
 or alternatively as the "mesh-under" data-forwarding protocol for the
 LoWPAN adaptation layer [RFC4944]. Previous sections have specified
 the DFF mechanism in general; specific differences for each MoP are
 specified in this section.

Herberg, et al. Experimental [Page 21]

RFC 6971 DFF June 2013

13.1. Route-Over

 This section maps the general terminology from Section 2.2 to the
 specific terminology when using the "route-over" MoP.

13.1.1. Mapping of DFF Terminology to IPv6 Terminology

 The following terms are those listed in Section 2.2, and their
 meaning is explicitly defined when DFF is used in the "route-over"
 MoP:

 Packet - An IPv6 packet, as specified in [RFC2460].

 Packet Header - An IPv6 extension header, as specified in [RFC2460].

 Address - An IPv6 address, as specified in [RFC4291].

 Originator Address - The Originator Address corresponds to the
 Source Address field of the IPv6 header, as specified in
 [RFC2460].

 Destination Address - The Destination Address corresponds to the
 destination field of the IPv6 header, as specified in [RFC2460].

 Next Hop - The Next Hop is the IPv6 address of the node to which the
 packet is sent; the link-layer address from that IP address is
 resolved by a mechanism such as Neighbor Discovery (ND) [RFC4861].
 The link-layer address is then used by L2 as the destination.

 Previous Hop - The Previous Hop is the IPv6 address from the
 interface of the node from which the packet has been received.

 Hop Limit - The Hop Limit corresponds to the Hop Limit field in the
 IPv6 header, as specified in [RFC2460].

13.1.2. Packet Format

 In the "route-over" MoP, all IPv6 packets MUST conform with the
 format specified in [RFC2460].

 The DFF header, as specified below, is an IPv6 Hop-by-Hop Options
 header, and is depicted in Figure 1 (where DUP is abbreviated to D,
 and RET is abbreviated to R because of the limited space in the
 figure). This document specifies a new option to be used inside the
 Hop-by-Hop Options header, which contains the DFF fields (DUP and RET
 flags and sequence number, as specified in Section 7).

Herberg, et al. Experimental [Page 22]

RFC 6971 DFF June 2013

 [RFC6564] specifies:

 New options for the existing Hop-by-Hop Header SHOULD NOT be
 created or specified unless no alternative solution is feasible.
 Any proposal to create a new option for the existing Hop-by-Hop
 Header MUST include a detailed explanation of why the hop-by-hop
 behavior is absolutely essential in the document proposing the new
 option with hop-by-hop behavior.

 [RFC6564] recommends to use destination headers instead of Hop-by-Hop
 Options headers. Destination headers are only read by the
 destination of an IPv6 packet, not by intermediate routers. However,
 the mechanism specified in this document relies on intermediate
 routers reading and editing the header. Specifically, the sequence
 number and the DUP and RET flags are read by each router running the
 DFF protocol. Modifying the DUP and RET flags is essential for this
 protocol to tag duplicate or returned packets. Without the DUP flag,
 a duplicate packet cannot be discerned from a looping packet, and
 without the RET flag, a returned packet cannot be discerned from a
 looping packet.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Header | Hdr Ext Len | OptTypeDFF | OptDataLenDFF |
 +-+
 |VER|D|R|0|0|0|0| Sequence Number | Pad1 |
 +-+

 Figure 1: IPv6 DFF Header

 Field definitions of the DFF header are as follows:

 Next Header - 8-bit selector. Identifies the type of header
 immediately following the Hop-by-Hop Options header, as specified
 in [RFC2460].

 Hdr Ext Len - 8-bit unsigned integer. Length of the Hop-by-Hop
 Options header in 8-octet units, not including the first 8 octets,
 as specified in [RFC2460]. This value is set to 0 (zero).

 OptTypeDFF - 8-bit identifier of the type of option, as specified in
 [RFC2460]. This value is set to IP_DFF. The two high-order bits
 of the option type MUST be set to ’11’, and the third bit is equal
 to ’1’. With these bits, according to [RFC2460], routers that do
 not understand this option on a received packet discard the packet
 and, only if the packet’s Destination Address was not a multicast
 address, send an ICMP Parameter Problem (Code 2) message to the

Herberg, et al. Experimental [Page 23]

RFC 6971 DFF June 2013

 packet’s Source Address, pointing to the unrecognized option type.
 Also, according to [RFC2460], the values within the option are
 expected to change en route.

 OptDataLenDFF - 8-bit unsigned integer. Length of the option data
 field of this option, in octets, as specified in [RFC2460]. This
 value is set to 2 (two).

 DFF fields - A 2-bit version field (abbreviated as VER); the DUP
 (abbreviated as D) and RET (abbreviated as R) flags follow after
 Mesh Forw, as specified in Section 13.2.2. The version specified
 in this document is ’00’. All other bits (besides VER, DUP, and
 RET) of this octet are reserved and MUST be set to 0.

 Sequence Number - A 16-bit field, containing an unsigned integer
 sequence number, as specified in Section 7.

 Pad1 - Since the Hop-by-Hop Options header must have a length that
 is a multiple of 8 octets, a Pad1 option is used, as specified in
 [RFC2460]. All bits of this octet are 0.

13.2. Mesh-Under

 This section maps the general terminology from Section 2.2 to the
 specific terminology when using the "mesh-under" MoP.

13.2.1. Mapping of DFF Terminology to LoWPAN Terminology

 The following terms are those listed in Section 2.2 (besides "Mode of
 Operation"), and their meaning is explicitly defined when DFF is used
 in the "mesh-under" MoP.

 Packet - A "LoWPAN-encapsulated packet" (as specified in [RFC4944]),
 which contains an IPv6 packet as payload.

 Packet Header - A LoWPAN header, as specified in [RFC4944].

 Address - A 16-bit short or EUI-64 link-layer address, as specified
 in [RFC4944].

 Originator Address - The Originator Address corresponds to the
 Originator Address field of the Mesh Addressing header, as
 specified in [RFC4944].

 Destination Address - The Destination Address corresponds to the
 Final Destination field of the Mesh Addressing header, as
 specified in [RFC4944].

Herberg, et al. Experimental [Page 24]

RFC 6971 DFF June 2013

 Next Hop - The Next Hop is the Destination Address of a frame
 containing a LoWPAN-encapsulated packet, as specified in
 [RFC4944].

 Previous Hop - The Previous Hop is the Source Address of the frame
 containing a LoWPAN-encapsulated packet, as specified in
 [RFC4944].

 Hop Limit - The Hop Limit corresponds to the Deep Hops Left field in
 the Mesh Addressing header, as specified in [RFC4944].

13.2.2. Packet Format

 In the "mesh-under" MoP, all IPv6 packets MUST conform with the
 format specified in [RFC4944]. All data packets exchanged by routers
 using this specification MUST contain the Mesh Addressing header as
 part of the LoWPAN encapsulation, as specified in [RFC4944].

 The DFF header, as specified below, MUST follow the Mesh Addressing
 header. After these two headers, any other LoWPAN header, e.g.,
 header compression or fragmentation headers, MAY also be added before
 the actual payload. Figure 2 depicts the Mesh Addressing header
 defined in [RFC4944], and Figure 3 depicts the DFF header.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |1 0|V|F|HopsLft| DeepHopsLeft |orig. address, final address...
 +-+

 Figure 2: Mesh Addressing Header

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 1| Mesh Forw |VER|D|R|0|0|0|0| sequence number |
 +-+

 Figure 3: Header for DFF Data Packets

 Field definitions of the Mesh Addressing header are as specified in
 [RFC4944]. When adding that header to the LoWPAN encapsulation on
 the Originator, the fields of the Mesh Addressing header MUST be set
 to the following values:

Herberg, et al. Experimental [Page 25]

RFC 6971 DFF June 2013

 o V := 0 if the Originator Address is an IEEE extended 64-bit
 address (EUI-64); otherwise, V := 1 if it is a short 16-bit
 address.

 o F := 0 if the Final Destination Address is an IEEE extended 64-bit
 address (EUI-64); otherwise, F := 1 if it is a short 16-bit
 address.

 o Hops Left := 0xF (i.e., reserved value indicating that the Deep
 Hops Left field follows);

 o Deep Hops Left := MAX_HOP_LIMIT.

 Field definitions of the DFF header are as follows:

 Mesh Forw - A 6-bit identifier that allows for the use of different
 mesh-forwarding mechanisms. As specified in [RFC4944], additional
 mesh-forwarding mechanisms should use the reserved dispatch byte
 values following LOWPAN_BC0; therefore, ’0 1’ MUST precede Mesh
 Forw. The value of Mesh Forw is LOWPAN_DFF.

 DFF fields - A 2-bit version (abbreviated as VER) field; the DUP
 (abbreviated as D) and RET (abbreviated as R) flags follow after
 Mesh Forw, as specified in Section 13.2.2. The version specified
 in this document is ’00’. All other bits (besides VER, DUP, and
 RET) of this octet are reserved and MUST be set to 0.

 Sequence Number - A 16-bit field, containing an unsigned integer
 sequence number, as specified in Section 7.

14. Scope Limitation of DFF

 The forwarding mechanism specified in this document MUST be limited
 in scope to the routing domain in which DFF is used. That also
 implies that any headers specific to DFF do not traverse the
 boundaries of the routing domain. This section specifies, both for
 the "route-over" MoP and the "mesh-under" MoP, how to limit the scope
 of DFF to the routing domain in which it is used.

 Figures 4 to 7 depict four different cases for source and destination
 of traffic with regards to the scope of the routing domain in which
 DFF is used. Sections 14.1 and 14.2 specify how routers limit the
 scope of DFF for the "route-over" MoP and the "mesh-under" MoP,
 respectively, for these cases. In these sections, all nodes "inside
 the routing domain" are routers and use DFF, and may also be sources
 or destinations. Sources or destinations "outside the routing

Herberg, et al. Experimental [Page 26]

RFC 6971 DFF June 2013

 domain" do not run DFF; either they are hosts attached to a router in
 the routing domain that is running DFF, or they are themselves
 routers but outside the routing domain and not running DFF.

 +-----------------+
 | |
 | (S) ----> (D) |
 | |
 +-----------------+
 Routing Domain

 Figure 4: Traffic within the Routing Domain (from S to D)

 +-----------------+
 | |
 | (S) --------> (R) --------> (D)
 | |
 +-----------------+
 Routing Domain

 Figure 5: Traffic from Within the Routing Domain to
 Outside of the Domain (from S to D)

 +-----------------+
 | |
 (S) --------> (R) --------> (D) |
 | |
 +-----------------+
 Routing Domain

 Figure 6: Traffic from Outside the Routing Domain to
 Inside the Domain (from S to D)

 +-----------------+
 | |
 (S) --------> (R1) -----------> (R2) --------> (D)
 | |
 +-----------------+
 Routing Domain

 Figure 7: Traffic from Outside the Routing Domain, Traversing the
 Domain and Then to the Outside of the Domain (from S to D)

 Key:
 (S) = source router
 (D) = destination router
 (R), (R1), (R2) = other routers

Herberg, et al. Experimental [Page 27]

RFC 6971 DFF June 2013

14.1. Route-Over MoP

 In Figure 4, both the source and destination of the traffic are
 routers within the routing domain. If traffic is originated at S,
 the DFF header is added to the IPv6 header (as specified in
 Section 13.1.2). The Originator Address is set to S and the
 Destination Address is set to D. The packet is forwarded to D using
 this specification. When router D receives the packet, it processes
 the payload of the IPv6 packet in upper layers. This case assumes
 that S has knowledge that D is in the routing domain, e.g., because
 of the administrative setting based on the IP address of the
 destination. If S has no knowledge about whether D is in the routing
 domain, IPv6-in-IPv6 tunnels as specified in [RFC2473] MUST be used.
 These cases are described in the following paragraphs.

 In Figure 5, the source of the traffic (S) is within the routing
 domain, and the destination (D) is outside of the routing domain.
 The IPv6 packet, originated at S, MUST be encapsulated according to
 [RFC2473] (IPv6-in-IPv6 tunnels) and the DFF header MUST be added to
 the outer IPv6 header. S chooses the next router that should process
 the packet as the tunnel exit-point (R). Administrative settings, as
 well as information from a routing protocol, may be used to determine
 the tunnel exit-point. If no information is available for which
 router to choose as the tunnel exit-point, the Next Hop MUST be used
 as the tunnel exit-point. In some cases, the tunnel exit-point will
 be the final router along a path towards the packet’s destination,
 and the packet will only traverse a single tunnel (e.g., if R is a
 known border router then S can choose R as the tunnel exit-point).
 In other cases, the tunnel exit-point will not be the final router
 along the path to D, and the packet may traverse multiple tunnels to
 reach the destination; note that in this case, the DFF mechanism is
 only used inside each IPv6-in-IPv6 tunnel. The Originator Address of
 the packet is set to S and the Destination Address is set to the
 tunnel exit-point (in the outer IPv6 header). The packet is
 forwarded to the tunnel exit-point using this specification
 (potentially using multiple consecutive IPv6-in-IPv6 tunnels). When
 router R receives the packet, it decapsulates the IPv6 packet and
 forwards the inner IPv6 packet to D, using normal IPv6 forwarding as
 specified in [RFC2460].

 In Figure 6, the source of the traffic (S) is outside of the routing
 domain, and the destination (D) is inside of the routing domain. The
 IPv6 packet, originated at S, is forwarded to R using normal IPv6
 forwarding as specified in [RFC2460]. Router R MUST encapsulate the
 IPv6 packet according to [RFC2473] and add the DFF header (as
 specified in Section 13.1.2) to the outer IPv6 header. Like in the
 previous case, R has to select a tunnel exit-point; if it knows that
 D is in the routing domain (e.g., based on administrative settings),

Herberg, et al. Experimental [Page 28]

RFC 6971 DFF June 2013

 it SHOULD select D as the tunnel exit-point. In case it does not
 have any information as to which exit-point to select, it MUST use
 the Next Hop as the tunnel exit-point, limiting the effectiveness of
 DFF to inside each IPv6-in-IPv6 tunnel. The Originator Address of
 the packet is set to R, the Destination Address to the tunnel exit-
 point (both in the outer IPv6 header), and the sequence number in the
 DFF header is generated locally on R. The packet is forwarded to D
 using this specification. When router D receives the packet, it
 decapsulates the inner IPv6 packet and processes the payload of the
 inner IPv6 packet in upper layers.

 This mechanism is typically not used in transit networks; therefore,
 this case is discouraged, but described nevertheless for
 completeness. In Figure 7, both the source of the traffic (S) and
 the destination (D) are outside of the routing domain. The IPv6
 packet, originated at S, is forwarded to R1 using normal IPv6
 forwarding, as specified in [RFC2460]. Router R1 MUST encapsulate
 the IPv6 packet according to [RFC2473] and add the DFF header (as
 specified in Section 13.1.2). R1 selects a tunnel exit-point like in
 the previous cases; if R2 is, e.g., a known border router, then R1
 can select R2 as the tunnel exit-point. The Originator Address is
 set to R1, the Destination Address is set to the tunnel exit-point
 (both in the outer IPv6 header), and the sequence number in the DFF
 header is generated locally on R1. The packet is forwarded to the
 tunnel exit-point using this specification (potentially traversing
 multiple consecutive IPv6-in-IPv6 tunnels). When router R2 receives
 the packet, it decapsulates the inner IPv6 packet and forwards the
 inner IPv6 packet to D, using normal IPv6 forwarding as specified in
 [RFC2460].

14.2. Mesh-Under MoP

 In Figure 4, both the source and destination of the traffic are
 routers within the routing domain. If traffic is originated at
 router S, the LoWPAN-encapsulated packet is created from the IPv6
 packet, as specified in [RFC4944]. Then, the Mesh Addressing header
 and the DFF header (as specified in Section 13.2.2) are added to the
 LoWPAN encapsulation on router S. The Originator Address is set to S
 and the Destination Address is set to D. The packet is then
 forwarded using this specification. When router D receives the
 packet, it processes the payload of the packet in upper layers.

 In Figure 5, the source of the traffic (S) is within the routing
 domain, and the destination (D) is outside of the routing domain
 (which is known by S to be outside the routing domain because D uses
 a different IP prefix from the PAN). The LoWPAN-encapsulated packet,
 originated at router S, is created from the IPv6 packet as specified
 in [RFC4944]. Then, the Mesh Addressing header and the DFF header

Herberg, et al. Experimental [Page 29]

RFC 6971 DFF June 2013

 (as specified in Section 13.2.2) are added to the LoWPAN
 encapsulation on router S. The Originator Address is set to S and
 the Destination Address is set to R, which is a known border router
 of the PAN. The packet is then forwarded using this specification.
 When router R receives the packet, it restores the IPv6 packet from
 the LoWPAN-encapsulated packet and forwards it to D, using normal
 IPv6 forwarding, as specified in [RFC2460].

 In Figure 6, the source of the traffic (S) is outside of the routing
 domain, and the destination (D) is inside of the routing domain. The
 IPv6 packet, originated at S, is forwarded to R using normal IPv6
 forwarding, as specified in [RFC2460]. Router R (which is a known
 border router to the PAN) creates the LoWPAN-encapsulated packet from
 the IPv6 packet, as specified in [RFC4944]. Then, R adds the Mesh
 Addressing header and the DFF header (as specified in
 Section 13.2.2). The Originator Address is set to R, the Destination
 Address to D, and the sequence number in the DFF header is generated
 locally on R. The packet is forwarded to D using this specification.
 When router D receives the packet, it restores the IPv6 packet from
 the LoWPAN-encapsulated packet and processes the payload in upper
 layers.

 As LoWPANs are typically not transit networks, the following case is
 discouraged, but described nevertheless for completeness: In
 Figure 7, both the source of the traffic (S) and the destination (D)
 are outside of the routing domain. The IPv6 packet, originated at S,
 is forwarded to R1 using normal IPv6 forwarding, as specified in
 [RFC2460]. Router R1 (which is a known border router of the PAN)
 creates the LoWPAN-encapsulated packet from the IPv6 packet, as
 specified in [RFC4944]. Then, it adds the Mesh Addressing header and
 the DFF header (as specified in Section 13.2.2). The Originator
 Address is set to R1, the Destination Address is set to R2 (which is
 another border router towards the destination), and the sequence
 number in the DFF header is generated locally on R1. The packet is
 forwarded to R2 using this specification. When router R2 receives
 the packet, it restores the IPv6 packet from the LoWPAN-encapsulated
 packet and forwards the IPv6 packet to D, using normal IPv6
 forwarding, as specified in [RFC2460].

15. MTU Exceedance

 When adding the DFF header, as specified in Section 9.1, or when
 encapsulating the packet, as specified in Section 14, the packet size
 may exceed the MTU. This is described in Section 5 of [RFC2460].
 When the packet size of a packet to be forwarded by DFF exceeds the
 MTU, the following steps apply.

 1. The router MUST discard the packet.

Herberg, et al. Experimental [Page 30]

RFC 6971 DFF June 2013

 2. The router MAY log the event locally (depending on the storage
 capabilities of the router).

 3. The router MUST send back an ICMP "Packet Too Big" message to the
 source of the packet and report back the Next Hop MTU, which
 includes the overhead of adding the headers.

16. Security Considerations

 Based on the recommendations in [RFC3552], this section describes
 security threats to DFF and lists which attacks are out of scope,
 which attacks DFF is susceptible to, and which attacks DFF protects
 against.

16.1. Attacks That Are Out of Scope

 As DFF is a data-forwarding protocol, any security issues concerning
 the payload of the packets are not considered in this section.

 It is the responsibility of upper layers to use appropriate security
 mechanisms (IPsec, Transport Layer Security (TLS), etc.) according to
 application requirements. As DFF does not modify the contents of IP
 datagrams, other than the DFF header (which is a Hop-by-Hop Options
 extension header in the "route-over" MoP, and therefore not protected
 by IPsec), no special considerations for IPsec have to be addressed.

 Any attack that is not specific to DFF but that applies in general to
 the link layer (e.g., wireless, Power Line Communication (PLC)) is
 out of scope. In particular, these attacks are: eavesdropping,
 packet insertion, packet replay, packet deletion, and man-in-the-
 middle attacks. Appropriate link-layer encryption can mitigate part
 of these attacks and is therefore RECOMMENDED.

16.2. Protection Mechanisms of DFF

 DFF itself does not provide any additional integrity,
 confidentiality, or authentication. Therefore, the level of
 protection of DFF depends on the underlying link-layer security, as
 well as protection of the payload by upper-layer security (e.g.,
 IPsec).

 In the following sections, whenever encrypting or digitally signing
 packets is suggested for protecting DFF, it is assumed that routers
 are not compromised.

Herberg, et al. Experimental [Page 31]

RFC 6971 DFF June 2013

16.3. Attacks That Are in Scope

 This section discusses security threats to DFF, and for each,
 describes whether (and how) DFF is affected by the threat. DFF is
 designed to be used in lossy and unreliable networks. Predominant
 examples of lossy networks are wireless networks, where routers send
 packets via broadcast. The attacks listed below are easier to
 exploit in wireless media but can also be observed in wired networks.

16.3.1. Denial of Service

 Denial-of-service (DoS) attacks are possible when using DFF by either
 exceeding the storage on a router or exceeding the available
 bandwidth of the channel. As DFF does not contain any algorithms
 with high complexity, it is unlikely that the processing power of the
 router could be exhausted by an attack on DFF.

 The storage of a router can be exhausted by increasing the size of
 the Processed Set, i.e., by adding new tuples, or by increasing the
 size of each tuple. New tuples can be added by injecting new packets
 in the network or by forwarding overheard packets.

 Another possible DoS attack is to send packets to a non-existing
 address in the network. DFF would perform a depth-first search until
 the Hop Limit has reached zero. It is therefore RECOMMENDED to set
 the Hop Limit to a value that limits the path length.

 If security provided by the link layer is used, this attack can be
 mitigated if the malicious router does not possess valid credentials,
 since other routers would not forward data through the malicious
 router.

16.3.2. Packet Header Modification

 The following attacks can be exploited by modifying the packet header
 information, unless additional security (such as link-layer security)
 is used.

16.3.2.1. Return Flag Tampering

 A malicious router may tamper with the "return" flag of a DFF packet
 and send it back to the Previous Hop, but only if the malicious
 router has been selected as the Next Hop by the receiving router (as
 specified in Section 9.2). If the malicious router had not been
 selected as the Next Hop, then a returned packet is dropped by the
 receiving router. Otherwise (i.e., the malicious router had been
 selected as the Next Hop by the receiving router, and the malicious
 router has set the return flag), the receiving router then tries

Herberg, et al. Experimental [Page 32]

RFC 6971 DFF June 2013

 alternative neighbors. This may lead to packets never reaching their
 destination, as well as an unnecessary depth-first search in the
 network (bandwidth exhaustion / energy drain).

 This attack can be mitigated by using appropriate security of the
 underlying link layer.

16.3.2.2. Duplicate Flag Tampering

 A malicious router may modify the Duplicate Flag of a packet that it
 forwards.

 If it changes the flag from 0 to 1, the packet would be detected as a
 duplicate by other routers in the network and not as a looping
 packet.

 If the Duplicate Flag is changed from 1 to 0, and a router receives
 that packet for the second time (i.e., it has already received a
 packet with the same Originator Address and sequence number before),
 it will wrongly detect a loop.

 This attack can be mitigated by using appropriate security of the
 underlying link layer.

16.3.2.3. Sequence Number Tampering

 A malicious router may modify the sequence number of a packet that it
 forwards.

 In particular, if the sequence number is modified to a number of
 another, previously sent packet of the same Originator, this packet
 may be wrongly perceived as a looping packet.

 This attack can be mitigated by using appropriate security of the
 underlying link layer.

17. IANA Considerations

 IANA has allocated the value 01 000011 for LOWPAN_DFF from the
 Dispatch Type Field registry.

 IANA has allocated the value 0xEE for IP_DFF from the Destination
 Options and Hop-by-Hop Options registry. The first 3 bits of that
 value are 111.

Herberg, et al. Experimental [Page 33]

RFC 6971 DFF June 2013

18. Acknowledgments

 Jari Arkko (Ericsson), Abdussalam Baryun (University of Glamorgan),
 Antonin Bas (Ecole Polytechnique), Thomas Clausen (Ecole
 Polytechnifque), Yuichi Igarashi (Hitachi), Kazuya Monden (Hitachi),
 Geoff Mulligan (Proto6), Hiroki Satoh (Hitachi), Ganesh Venkatesh
 (Mobelitix), and Jiazi Yi (Ecole Polytechnique) provided useful
 reviews of the draft and discussions, which helped to improve this
 document.

 The authors also would like to thank Ralph Droms, Adrian Farrel,
 Stephen Farrell, Ted Lemon, Alvaro Retana, Dan Romascanu, and Martin
 Stiemerling for their reviews during IETF LC and IESG evaluation.

19. References

19.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, December 1998.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, September 2007.

 [RFC6130] Clausen, T., Dearlove, C., and J. Dean, "Mobile Ad Hoc
 Network (MANET) Neighborhood Discovery Protocol (NHDP)",
 RFC 6130, April 2011.

 [RFC6564] Krishnan, S., Woodyatt, J., Kline, E., Hoagland, J., and
 M. Bhatia, "A Uniform Format for IPv6 Extension Headers",
 RFC 6564, April 2012.

 [RFC6724] Thaler, D., Draves, R., Matsumoto, A., and T. Chown,
 "Default Address Selection for Internet Protocol Version 6
 (IPv6)", RFC 6724, September 2012.

Herberg, et al. Experimental [Page 34]

RFC 6971 DFF June 2013

19.2. Informative References

 [DFF_paper1]
 Cespedes, S., Cardenas, A., and T. Iwao, "Comparison of
 Data Forwarding Mechanisms for AMI Networks", 2012 IEEE
 Innovative Smart Grid Technologies Conference (ISGT),
 January 2012.

 [DFF_paper2]
 Iwao, T., Iwao, T., Yura, M., Nakaya, Y., Cardenas, A.,
 Lee, S., and R. Masuoka, "Dynamic Data Forwarding in
 Wireless Mesh Networks", First IEEE International
 Conference on Smart Grid Communications (SmartGridComm),
 October 2010.

 [DFS_wikipedia]
 Wikipedia, "Depth-first search", May 2013,
 <http://en.wikipedia.org/w/
 index.php?title=Depth-first_search&oldid=555203731>.

 [KCEC_press_release]
 Kit Carson Electric Cooperative (KCEC), "DFF deployed by
 KCEC", Press Release, 2011, <http://www.kitcarson.com/
 index.php?option=com_content&view=article&id=45&Itemid=1>.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 July 2003.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 September 2007.

 [RFC6775] Shelby, Z., Chakrabarti, S., Nordmark, E., and C. Bormann,
 "Neighbor Discovery Optimization for IPv6 over Low-Power
 Wireless Personal Area Networks (6LoWPANs)", RFC 6775,
 November 2012.

Herberg, et al. Experimental [Page 35]

RFC 6971 DFF June 2013

Appendix A. Examples

 In this section, some example network topologies are depicted, using
 the DFF mechanism for data forwarding. In these examples, it is
 assumed there is a routing protocol running that adds or inserts
 entries into the RIB.

A.1. Example 1: Normal Delivery

 Example 1 depicts a network topology with seven routers, A to G, with
 links between them as indicated by lines. It is assumed that router
 A sends a packet to G, through B and D, according to the routing
 protocol.

 +---+
 +---+ D +-----+
 | +---+ |
 +---+ | |
 +---+ B +---+ |
 | +---+ | |
 +-+-+ | +---+ +-+-+
 | A | +---+ E +---+ G +
 +-+-+ +---+ +-+-+
 | +---+ |
 +---+ C +---+ |
 +---+ | |
 | +---+ |
 +---+ F +-----+
 +---+

 Example 1: Normal Delivery

 If no link fails in this topology, and no loop occurs, then DFF
 forwards the packet along the Next Hops listed in the RIB of each of
 the routers along the path towards the destination. Each router adds
 a Processed Tuple for the incoming packet and selects the Next Hop,
 as specified in Section 11, i.e., it will first select the Next Hop
 for router G, as determined by the routing protocol.

Herberg, et al. Experimental [Page 36]

RFC 6971 DFF June 2013

A.2. Example 2: Forwarding with Link Failure

 Example 2 depicts the same topology as Example 1, but both links
 between B and D and between B and E are unavailable (e.g., because of
 wireless link characteristics).

 +---+
 XXXX+ D +-----+
 X +---+ |
 +---+ X |
 +---+ B +---+ |
 | +---+ X |
 +-+-+ X +---+ +-+-+
 | A | XXXX+ E +---+ G +
 +-+-+ +---+ +-+-+
 | +---+ |
 +---+ C +---+ |
 +---+ | |
 | +---+ |
 +---+ F +-----+
 +---+

 Example 2: Link Failure

 When B receives the packet from router A, it adds a Processed Tuple
 and then tries to forward the packet to D. Once B detects that the
 packet cannot be successfully delivered to D because it does not
 receive link-layer ACKs, it will follow the procedures listed in
 Section 10 by setting the DUP flag to 1, selecting E as the new Next
 Hop, adding E to the list of Next Hops in the Processed Tuple, and
 then forwarding the packet to E.

 As the link to E also fails, B will again follow the procedure in
 Section 10. As all possible Next Hops (D and E) are listed in the
 Processed Tuple, B will set the RET flag in the packet and return it
 to A.

 A determines that it already has a Processed Tuple for the returned
 packet, resets the RET flag of the packet, and selects a new Next Hop
 for the packet. As B is already in the list of Next Hops in the
 Processed Tuple, it will select C as the Next Hop and forward the
 packet to it. C will then forward the packet to F, and F delivers
 the packet to its destination G.

Herberg, et al. Experimental [Page 37]

RFC 6971 DFF June 2013

A.3. Example 3: Forwarding with Missed Link-Layer Acknowledgment

 Example 3 depicts the same topology as Example 1, but the link-layer
 acknowledgments from C to A are lost (e.g., because the link is
 unidirectional). It is assumed that A prefers a path to G through C
 and F.

 +---+
 +---+ D +-----+
 | +---+ |
 +---+ | |
 +---+ B +---+ |
 | +---+ | |
 +-+-+ | +---+ +-+-+
 | A | +---+ E +---+ G +
 +-+-+ +---+ +-+-+
 . +---+ |
 +...+ C +---+ |
 +---+ | |
 | +---+ |
 +---+ F +-----+
 +---+

 Example 3: Missed Link-Layer Acknowledgment

 While C successfully receives the packet from A, A does not receive
 the L2 ACK and assumes the packet has not been delivered to C.
 Therefore, it sets the DUP flag of the packet to 1, in order to
 indicate that this packet may be a duplicate. Then, it forwards the
 packet to B.

Herberg, et al. Experimental [Page 38]

RFC 6971 DFF June 2013

A.4. Example 4: Forwarding with a Loop

 Example 4 depicts the same topology as Example 1, but there is a loop
 from D to A, and A sends the packet to G through B and D.

 +-----------------+
 | |
 | +-+-+
 | +---+ D +
 | | +---+
 \|/ +---+ |
 +---+ B +---+
 | +---+ |
 +-+-+ | +---+ +-+-+
 | A | +---+ E +---+ G +
 +-+-+ +---+ +-+-+
 | +---+ |
 +---+ C +---+ |
 +---+ | |
 | +---+ |
 +---+ F +-----+
 +---+

 Example 4: Loop

 When A receives the packet through the loop from D, it will find a
 Processed Tuple for the packet. Router A will set the RET flag and
 return the packet to D, which in turn will return it to B. B will
 then select E as the Next Hop, which will then forward it to G.

Herberg, et al. Experimental [Page 39]

RFC 6971 DFF June 2013

Appendix B. Deployment Experience

 DFF has been deployed and experimented with both in real deployments
 and in network simulations, as described below.

B.1. Deployments in Japan

 The majority of the large Advanced Metering Infrastructure (AMI)
 deployments using DFF are located in Japan, but the data of these
 networks is the property of Japanese utilities and cannot be
 disclosed.

B.2. Kit Carson Electric Cooperative

 DFF has been deployed at Kit Carson Electric Cooperative (KCEC), a
 non-profit organization distributing electricity to about 30,000
 customers in New Mexico. As described in a press release
 [KCEC_press_release], DFF is running on currently about 2000 electric
 meters. All meters are connected through a mesh network using an
 unreliable, wireless medium. DFF is used together with a distance-
 vector routing protocol. Metering data from each meter is sent
 towards a gateway periodically (every 15 minutes). The data delivery
 reliability is over 99%.

B.3. Simulations

 DFF has been evaluated in Ns2 (http://nsnam.isi.edu/nsnam) and OMNEST
 (http://www.omnest.com) simulations, in conjuction with a distance-
 vector routing protocol. The performance of DFF has been compared to
 using only the routing protocol without DFF. The results published
 in peer-reviewed academic papers [DFF_paper1] [DFF_paper2] show
 significant improvements of the packet delivery ratio compared to
 using only the distance-vector protocol.

B.4. Open-Source Implementation

 Fujitsu Laboratories of America is currently working on an open-
 source implementation of DFF, which will be released in 2013 and will
 allow for interoperability testings of different DFF implementations.
 The implementation is written in Java and can be used both on real
 machines and in the Ns2 simulator.

Herberg, et al. Experimental [Page 40]

RFC 6971 DFF June 2013

Authors’ Addresses

 Ulrich Herberg (editor)
 Fujitsu
 1240 E. Arques Avenue, M/S 345
 Sunnyvale, CA 94085
 USA
 Phone: +1 408 530 4528
 EMail: ulrich.herberg@us.fujitsu.com

 Alvaro A. Cardenas
 University of Texas at Dallas
 School of Computer Science, 800 West Campbell Rd, EC 31
 Richardson, TX 75080-3021
 USA
 EMail: alvaro.cardenas@me.com

 Tadashige Iwao
 Fujitsu
 Shiodome City Center, 5-2, Higashi-shimbashi 1-chome, Minato-ku
 Tokyo,
 JP
 Phone: +81-44-754-3343
 EMail: smartnetpro-iwao_std@ml.css.fujitsu.com

 Michael L. Dow
 Freescale
 6501 William Cannon Drive West
 Austin, TX 78735
 USA
 Phone: +1 512 895 4944
 EMail: m.dow@freescale.com

 Sandra L. Cespedes
 Icesi University
 Calle 18 #122-135, Pance
 Cali,
 Colombia
 Phone: +57 (2) 5552334
 EMail: scespedes@icesi.edu.co

Herberg, et al. Experimental [Page 41]

