
Internet Engineering Task Force (IETF) J. Lennox
Request for Comments: 6904 Vidyo
Updates: 3711 April 2013
Category: Standards Track
ISSN: 2070-1721

 Encryption of Header Extensions
 in the Secure Real-time Transport Protocol (SRTP)

Abstract

 The Secure Real-time Transport Protocol (SRTP) provides
 authentication, but not encryption, of the headers of Real-time
 Transport Protocol (RTP) packets. However, RTP header extensions may
 carry sensitive information for which participants in multimedia
 sessions want confidentiality. This document provides a mechanism,
 extending the mechanisms of SRTP, to selectively encrypt RTP header
 extensions in SRTP.

 This document updates RFC 3711, the Secure Real-time Transport
 Protocol specification, to require that all future SRTP encryption
 transforms specify how RTP header extensions are to be encrypted.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6904.

Lennox Standards Track [Page 1]

RFC 6904 Encrypted SRTP Header Extensions April 2013

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Encryption Mechanism . 4
 3.1. Example Encryption Mask 6
 3.2. Header Extension Keystream Generation for Existing
 Encryption Transforms 7
 3.3. Header Extension Keystream Generation for Future
 Encryption Transforms 8
 4. Signaling (Setup) Information 8
 4.1. Backward Compatibility 9
 5. Security Considerations 10
 6. IANA Considerations . 11
 7. Acknowledgments . 11
 8. References . 11
 8.1. Normative References 11
 8.2. Informative References 12
 Appendix A. Test Vectors . 13
 A.1. Key Derivation Test Vectors 13
 A.2. Header Encryption Test Vectors Using AES-CM 14

Lennox Standards Track [Page 2]

RFC 6904 Encrypted SRTP Header Extensions April 2013

1. Introduction

 The Secure Real-time Transport Protocol [RFC3711] specification
 provides confidentiality, message authentication, and replay
 protection for multimedia payloads sent using the Real-time Protocol
 (RTP) [RFC3550]. However, in order to preserve RTP header
 compression efficiency, SRTP provides only authentication and replay
 protection for the headers of RTP packets, not confidentiality.

 For the standard portions of an RTP header, providing only
 authentication and replay protection does not normally present a
 problem, as the information carried in an RTP header does not provide
 much information beyond that which an attacker could infer by
 observing the size and timing of RTP packets. Thus, there is little
 need for confidentiality of the header information.

 However, the security requirements can be different for information
 carried in RTP header extensions. A number of recent proposals for
 header extensions using the mechanism described in "A General
 Mechanism for RTP Header Extensions" [RFC5285] carry information for
 which confidentiality could be desired or essential. Notably, two
 recent specifications ([RFC6464] and [RFC6465]) contain information
 about per-packet sound levels of the media data carried in the RTP
 payload and specify that exposing this information to an eavesdropper
 is unacceptable in many circumstances (as described in the Security
 Considerations sections of those RFCs).

 This document, therefore, defines a mechanism by which encryption can
 be applied to RTP header extensions when they are transported using
 SRTP. As an RTP sender may wish some extension information to be
 sent in the clear (for example, it may be useful for a network
 monitoring device to be aware of RTP transmission time offsets
 [RFC5450]), this mechanism can be selectively applied to a subset of
 the header extension elements carried in an SRTP packet.

 The mechanism defined by this document encrypts packets’ header
 extensions using the same cryptographic algorithms and parameters as
 are used to encrypt the packets’ RTP payloads. This document defines
 how this is done for the encryption transforms defined in [RFC3711],
 [RFC5669], and [RFC6188], which are the SRTP encryption transforms
 defined by Standards Track RFCs at the time of this writing. It also
 updates [RFC3711] to indicate that specifications of future SRTP
 encryption transforms must define how header extension encryption is
 to be performed.

Lennox Standards Track [Page 3]

RFC 6904 Encrypted SRTP Header Extensions April 2013

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119] and
 indicate requirement levels for compliant implementations.

3. Encryption Mechanism

 Encrypted header extension elements are carried in the same manner as
 non-encrypted header extension elements, as defined by [RFC5285].
 The one- or two-byte header of the extension elements is not
 encrypted, nor is any of the header extension padding. If multiple
 different header extension elements are being encrypted, they have
 separate element identifier values, just as they would if they were
 not encrypted. Similarly, encrypted and non-encrypted header
 extension elements have separate identifier values.

 Encrypted header extension elements are carried only in packets
 encrypted using the Secure Real-time Transport Protocol [RFC3711].
 To encrypt (or decrypt) encrypted header extension elements, an SRTP
 participant first uses the SRTP key derivation algorithm, specified
 in Section 4.3.1 of [RFC3711], to generate header encryption and
 header salting keys, using the same pseudorandom function family as
 is used for the key derivation for the SRTP session. These keys are
 derived as follows:

 o k_he (SRTP header encryption): <label> = 0x06, n=n_e.

 o k_hs (SRTP header salting key): <label> = 0x07, n=n_s.

 where n_e and n_s are from the cryptographic context: the same size
 encryption key and salting key are used as are used for the SRTP
 payload. Additionally, the same master key, master salt, index, and
 key_derivation_rate are used as for the SRTP payload. (Note that
 since RTP headers, including header extensions, are authenticated in
 SRTP, no new authentication key is needed for header extensions.)

 A header extension keystream is generated for each packet containing
 encrypted header extension elements. The details of how this header
 extension keystream is generated depend on the encryption transform
 that is used for the SRTP packet. For encryption transforms that
 have been standardized as of the date of publication of this
 document, see Section 3.2; for requirements for new transforms, see
 Section 3.3.

Lennox Standards Track [Page 4]

RFC 6904 Encrypted SRTP Header Extensions April 2013

 After the header extension keystream is generated, the SRTP
 participant then computes an encryption mask for the header
 extension, identifying the portions of the header extension that are,
 or are to be, encrypted. (For an example of this procedure, see
 Section 3.1.) This encryption mask corresponds to the entire
 payload of each header extension element that is encrypted. It does
 not include any non-encrypted header extension elements, any
 extension element headers, or any padding octets. The encryption
 mask has all-bits-1 octets (i.e., hexadecimal 0xff) for header
 extension octets that are to be encrypted and all-bits-0 octets for
 header extension octets that are not to be encrypted. The set of
 extension elements to be encrypted is communicated between the sender
 and the receiver using the signaling mechanisms described in
 Section 4.

 This encryption mask is computed separately for every packet that
 carries a header extension. Based on the non-encrypted portions of
 the headers and the signaled list of encrypted extension elements, a
 receiver can always determine the correct encryption mask for any
 encrypted header extension.

 The SRTP participant bitwise-ANDs the encryption mask with the
 keystream to produce a masked keystream. It then bitwise
 exclusive-ORs the header extension with this masked keystream to
 produce the ciphertext version of the header extension. (Thus,
 octets indicated as all-bits-1 in the encrypted mask are encrypted,
 whereas those indicated as all-bits-0 are not.)

 The header extension encryption process does not include the "defined
 by profile" or "length" fields of the header extension, only the
 field that Section 5.3.1 of [RFC3550] calls "header extension"
 proper, starting with the first [RFC5285] ID and length. Thus, both
 the encryption mask and the keystream begin at this point.

 This header extension encryption process could, equivalently, be
 computed by considering the encryption mask as a mixture of the
 encrypted and unencrypted headers, i.e., as

 EncryptedHeader = (Encrypt(Key, Plaintext) AND MASK) OR
 (Plaintext AND (NOT MASK))

 where Encrypt is the encryption function, MASK is the encryption
 mask, and AND, OR, and NOT are bitwise operations. This formulation
 of the encryption process might be preferred by implementations for
 which encryption is performed by a separate module and cannot be
 modified easily.

Lennox Standards Track [Page 5]

RFC 6904 Encrypted SRTP Header Extensions April 2013

 The SRTP authentication tag is computed across the encrypted header
 extension, i.e., the data that is actually transmitted on the wire.
 Thus, header extension encryption MUST be done before the
 authentication tag is computed, and authentication tag validation
 MUST be done on the encrypted header extensions. For receivers,
 header extension decryption SHOULD be done only after the receiver
 has validated the packet’s message authentication tag, and the
 receiver MUST NOT take any actions based on decrypted headers, prior
 to validating the authentication tag, that could affect the security
 or proper functioning of the system.

3.1. Example Encryption Mask

 If a sender wished to send a header extension containing an encrypted
 SMPTE timecode [RFC5484] with ID 1, a plaintext transmission time
 offset [RFC5450] with ID 2, an encrypted audio level indication
 [RFC6464] with ID 3, and an encrypted NTP timestamp [RFC6051] with ID
 4, the plaintext RTP header extension might look like this:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ID=1 | len=7 | SMTPE timecode (long form) |
 +-+
 | SMTPE timecode (continued) |
 +-+
 | SMTPE (cont’d)| ID=2 | len=2 | toffset |
 +-+
 | toffset (ct’d)| ID=3 | len=0 | audio level | ID=4 | len=6 |
 +-+
 | NTP timestamp (Variant B) |
 +-+
 | NTP timestamp (Variant B, cont’d) | padding = 0 |
 +-+

 Figure 1: Structure of Plaintext Example Header Extension

Lennox Standards Track [Page 6]

RFC 6904 Encrypted SRTP Header Extensions April 2013

 The corresponding encryption mask would then be:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 0 0 0|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|
 +-+
 |1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|
 +-+
 |1 1 1 1 1 1 1 1|0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0|
 +-+
 |0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0|1 1 1 1 1 1 1 1|0 0 0 0 0 0 0 0|
 +-+
 |1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|
 +-+
 |1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|0 0 0 0 0 0 0 0|
 +-+

 Figure 2: Encryption Mask for Example Header Extension

 In the mask, the octets corresponding to the payloads of the
 encrypted header extension elements are set to all-1 values, and the
 octets corresponding to non-encrypted header extension elements,
 element headers, and header extension padding are set to all-zero
 values.

3.2. Header Extension Keystream Generation for Existing Encryption
 Transforms

 For the AES-CM and AES-f8 transforms [RFC3711], the SEED-CTR
 transform [RFC5669], and the AES_192_CM and AES_256_CM transforms
 [RFC6188], the header extension keystream SHALL be generated for each
 packet containing encrypted header extension elements using the same
 encryption transform and Initialization Vector (IV) as are used for
 that packet’s SRTP payload, except that the SRTP encryption and
 salting keys k_e and k_s are replaced by the SRTP header encryption
 and header salting keys k_he and k_hs, respectively, as defined
 above.

 For the SEED-CCM and SEED-GCM transforms [RFC5669], the header
 extension keystream SHALL be generated using the algorithm specified
 above for the SEED-CTR algorithm. (Because the Authenticated
 Encryption with Associated Data (AEAD) transform used on the payload
 in these algorithms includes the RTP header, including the RTP header
 extension, in its Associated Authenticated Data (AAD), counter-mode
 encryption for the header extension is believed to be of equivalent
 cryptographic strength to the CCM and GCM transforms.)

Lennox Standards Track [Page 7]

RFC 6904 Encrypted SRTP Header Extensions April 2013

 For the NULL encryption transform [RFC3711], the header extension
 keystream SHALL be all-zero.

3.3. Header Extension Keystream Generation for Future Encryption
 Transforms

 When new SRTP encryption transforms are defined, this document
 updates [RFC3711] as follows: in addition to the rules specified in
 Section 6 of RFC 3711, the Standards Track RFC defining the new
 transform MUST specify how the encryption transform is to be used
 with header extension encryption.

 It is RECOMMENDED that new transformations follow the same mechanisms
 as are defined in Section 3.2 of this document if they are applicable
 and are believed to be cryptographically adequate for the transform
 in question.

4. Signaling (Setup) Information

 Encrypted header extension elements are signaled in the Session
 Description Protocol (SDP) extmap attribute using the URI
 "urn:ietf:params:rtp-hdrext:encrypt" followed by the URI of the
 header extension element being encrypted, as well as any
 extensionattributes that extension normally takes. Figure 3 gives a
 formal Augmented Backus-Naur Form (ABNF) [RFC5234] showing this
 grammar extension, extending the grammar defined in [RFC5285].

 enc-extensionname = %x75.72.6e.3a.69.65.74.66.3a.70.61.72.61.6d.73.3a
 %x72.74.70.2d.68.64.72.65.78.74.3a.65.6e.63.72.79.70.74
 ; "urn:ietf:params:rtp-hdrext:encrypt" in lower case

 extmap =/ mapentry SP enc-extensionname SP extensionname
 [SP extensionattributes]

 ; extmap, mapentry, extensionname, and extensionattributes
 ; are defined in [RFC5285]

 Figure 3: Syntax of the "encrypt" extmap

 Thus, for example, to signal an SRTP session using encrypted SMPTE
 timecodes [RFC5484], while simultaneously signaling plaintext
 transmission time offsets [RFC5450], an SDP document could contain
 the text shown in Figure 4 (line breaks have been added for
 formatting).

Lennox Standards Track [Page 8]

RFC 6904 Encrypted SRTP Header Extensions April 2013

 m=audio 49170 RTP/SAVP 0
 a=crypto:1 AES_CM_128_HMAC_SHA1_32 \
 inline:NzB4d1BINUAvLEw6UzF3WSJ+PSdFcGdUJShpX1Zj|2^20|1:32
 a=extmap:1 urn:ietf:params:rtp-hdrext:encrypt \
 urn:ietf:params:rtp-hdrext:smpte-tc 25@600/24
 a=extmap:2 urn:ietf:params:rtp-hdrext:toffset

 Figure 4: Sample SDP Document Offering Encrypted Headers

 This example uses SDP security descriptions [RFC4568] for SRTP
 keying, but this is merely for illustration. Any SRTP keying
 mechanism to establish session keys will work.

 The extmap SDP attribute is defined in [RFC5285] as being either a
 session or media attribute. If the extmap for an encrypted header
 extension is specified as a media attribute, it MUST be specified
 only for media that use SRTP-based RTP profiles. If such an extmap
 is specified as a session attribute, there MUST be at least one media
 in the SDP session that uses an SRTP-based RTP profile. The session-
 level extmap applies to all the SRTP-based media in the session and
 MUST be ignored for all other (non-SRTP or non-RTP) media.

 The "urn:ietf:params:rtp-hdrext:encrypt" extension MUST NOT be
 recursively applied to itself.

4.1. Backward Compatibility

 Following the procedures in [RFC5285], an SDP endpoint that does not
 understand the "urn:ietf:params:rtp-hdrext:encrypt" extension URI
 will ignore the extension and, for SDP offer/answer, will negotiate
 not to use it.

 For backward compatibility with endpoints that do not implement this
 specification, in a negotiated session (whether using offer/answer or
 some other means), best-effort encryption of a header extension
 element is possible: an endpoint MAY offer the same header extension
 element both encrypted and unencrypted. An offerer MUST offer only
 best-effort negotiation when lack of confidentiality would be
 acceptable in the backward-compatible case. Answerers (or equivalent
 peers in a negotiation) that understand header extension encryption
 SHOULD choose the encrypted form of the offered header extension
 element and mark the unencrypted form "inactive", unless they have an
 explicit reason to prefer the unencrypted form. In all cases,
 answerers MUST NOT negotiate the use of, and senders MUST NOT send,
 both encrypted and unencrypted forms of the same header extension.

Lennox Standards Track [Page 9]

RFC 6904 Encrypted SRTP Header Extensions April 2013

 Note that, as always, users of best-effort encryption MUST be
 cautious of bid-down attacks, where a man-in-the-middle attacker
 removes a higher-security option, forcing endpoints to negotiate a
 lower-security one. Appropriate countermeasures depend on the
 signaling protocol in use, but users can ensure, for example, that
 signaling is integrity-protected.

5. Security Considerations

 The security properties of header extension elements protected by the
 mechanism in this document are equivalent to those for SRTP payloads.

 The mechanism defined in this document does not provide
 confidentiality about which header extension elements are used for a
 given SRTP packet, only for the content of those header extension
 elements. This appears to be in the spirit of SRTP itself, which
 does not encrypt RTP headers. If this is a concern, an alternate
 mechanism would be needed to provide confidentiality.

 For the two-byte-header form of header extension elements (0x100N,
 where "N" is the appbits field), this mechanism does not provide any
 protection to zero-length header extension elements (for which their
 presence or absence is the only information they carry). It also
 does not provide any protection for the appbits (field 256, the
 lowest four bits of the "defined by profile" field) of the two-byte
 headers. Neither of these features is present in the one-byte-header
 form of header extension elements (0xBEDE), so these limitations do
 not apply in that case.

 This mechanism cannot protect RTP header extensions that do not use
 the mechanism defined in [RFC5285].

 This document does not specify the circumstances in which extension
 header encryption should be used. Documents defining specific header
 extension elements should provide guidance on when encryption is
 appropriate for these elements.

 If a middlebox does not have access to the SRTP authentication keys,
 it has no way to verify the authenticity of unencrypted RTP header
 extension elements (or the unencrypted RTP header), even though it
 can monitor them. Therefore, such middleboxes MUST treat such
 headers as untrusted and potentially generated by an attacker, in the
 same way as they treat unauthenticated traffic. (This does not mean
 that middleboxes cannot view and interpret such traffic, of course,
 only that appropriate skepticism needs to be maintained about the
 results of such interpretation.)

Lennox Standards Track [Page 10]

RFC 6904 Encrypted SRTP Header Extensions April 2013

 There is no mechanism defined to protect header extensions with
 different algorithms or encryption keys than are used to protect the
 RTP payloads. In particular, it is not possible to provide
 confidentiality for a header extension while leaving the payload in
 cleartext.

 The dangers of using weak or NULL authentication with SRTP, described
 in Section 9.5 of [RFC3711], apply to encrypted header extensions as
 well. In particular, since some header extension elements will have
 some easily guessed plaintext bits, strong authentication is REQUIRED
 if an attacker setting such bits could have a meaningful effect on
 the behavior of the system.

 The technique defined in this document can be applied only to
 encryption transforms that work by generating a pseudorandom
 keystream and bitwise exclusive-ORing it with the plaintext, such as
 CTR or f8. It will not work with ECB, CBC, or any other encryption
 method that does not use a keystream.

6. IANA Considerations

 This document defines a new extension URI to the RTP Compact Header
 Extensions subregistry of the Real-Time Transport Protocol (RTP)
 Parameters registry, according to the following data:

 Extension URI: urn:ietf:params:rtp-hdrext:encrypt
 Description: Encrypted header extension element
 Contact: jonathan@vidyo.com
 Reference: RFC 6904

7. Acknowledgments

 Thanks to Benoit Claise, Roni Even, Stephen Farrell, Kevin Igoe, Joel
 Jaeggli, David McGrew, David Singer, Robert Sparks, Magnus
 Westerlund, Qin Wu, and Felix Wyss for their comments and suggestions
 in the development of this specification.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

Lennox Standards Track [Page 11]

RFC 6904 Encrypted SRTP Header Extensions April 2013

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",
 RFC 3711, March 2004.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5285] Singer, D. and H. Desineni, "A General Mechanism for RTP
 Header Extensions", RFC 5285, July 2008.

 [RFC5669] Yoon, S., Kim, J., Park, H., Jeong, H., and Y. Won, "The
 SEED Cipher Algorithm and Its Use with the Secure Real-
 Time Transport Protocol (SRTP)", RFC 5669, August 2010.

 [RFC6188] McGrew, D., "The Use of AES-192 and AES-256 in Secure
 RTP", RFC 6188, March 2011.

8.2. Informative References

 [RFC4568] Andreasen, F., Baugher, M., and D. Wing, "Session
 Description Protocol (SDP) Security Descriptions for Media
 Streams", RFC 4568, July 2006.

 [RFC5450] Singer, D. and H. Desineni, "Transmission Time Offsets in
 RTP Streams", RFC 5450, March 2009.

 [RFC5484] Singer, D., "Associating Time-Codes with RTP Streams", RFC
 5484, March 2009.

 [RFC6051] Perkins, C. and T. Schierl, "Rapid Synchronisation of RTP
 Flows", RFC 6051, November 2010.

 [RFC6464] Lennox, J., Ivov, E., and E. Marocco, "A Real-time
 Transport Protocol (RTP) Header Extension for Client-to-
 Mixer Audio Level Indication", RFC 6464, December 2011.

 [RFC6465] Ivov, E., Marocco, E., and J. Lennox, "A Real-time
 Transport Protocol (RTP) Header Extension for Mixer-to-
 Client Audio Level Indication", RFC 6465, December 2011.

Lennox Standards Track [Page 12]

RFC 6904 Encrypted SRTP Header Extensions April 2013

Appendix A. Test Vectors

A.1. Key Derivation Test Vectors

 This section provides test data for the header extension key
 derivation function, using AES-128 in Counter Mode. (The algorithms
 and keys used are the same as those for the test vectors in Appendix
 B.3 of [RFC3711].)

 The inputs to the key derivation function are the 16-octet master key
 and the 14-octet master salt:

 master key: E1F97A0D3E018BE0D64FA32C06DE4139

 master salt: 0EC675AD498AFEEBB6960B3AABE6

 Following [RFC3711], the input block for AES-CM is generated by
 exclusive-ORing the master salt with the concatenation of the
 encryption key label 0x06 with (index DIV kdr), then padding on the
 right with two null octets, which implements the multiply-by-2^16
 operation (see Section 4.3.3 of [RFC3711]). The resulting value is
 then AES-CM-encrypted using the master key to get the cipher key.

 index DIV kdr: 000000000000
 label: 06
 master salt: 0EC675AD498AFEEBB6960B3AABE6
 --
 XOR: 0EC675AD498AFEEDB6960B3AABE6 (x, PRF input)

 x*2^16: 0EC675AD498AFEEDB6960B3AABE60000 (AES-CM input)

 hdr. cipher key: 549752054D6FB708622C4A2E596A1B93 (AES-CM output)

 Next, we show how the cipher salt is generated. The input block for
 AES-CM is generated by exclusive-ORing the master salt with the
 concatenation of the encryption salt label. That value is padded and
 encrypted as above.

Lennox Standards Track [Page 13]

RFC 6904 Encrypted SRTP Header Extensions April 2013

 index DIV kdr: 000000000000
 label: 07
 master salt: 0EC675AD498AFEEBB6960B3AABE6

 --
 XOR: 0EC675AD498AFEECB6960B3AABE6 (x, PRF input)

 x*2^16: 0EC675AD498AFEECB6960B3AABE60000 (AES-CM input)

 AB01818174C40D39A3781F7C2D270733 (AES-CM ouptut)

 hdr. cipher salt: AB01818174C40D39A3781F7C2D27

A.2. Header Encryption Test Vectors Using AES-CM

 This section provides test vectors for the encryption of a header
 extension using the AES_CM cryptographic transform.

 The header extension is encrypted using the header cipher key and
 header cipher salt computed in Appendix A.1. The header extension is
 carried in an SRTP-encrypted RTP packet with SSRC 0xCAFEBABE,
 sequence number 0x1234, and an all-zero rollover counter.

 Session Key: 549752054D6FB708622C4A2E596A1B93
 Session Salt: AB01818174C40D39A3781F7C2D27

 SSRC: CAFEBABE
 Rollover Counter: 00000000
 Sequence Number: 1234
 --
 Init. Counter: AB018181BE3AB787A3781F7C3F130000

 The SRTP session was negotiated to indicate that header extension ID
 values 1, 3, and 4 are encrypted.

 In hexadecimal, the header extension being encrypted is as follows
 (spaces have been added to show the internal structure of the header
 extension):

 17 414273A475262748 22 0000C8 30 8E 46 55996386B395FB 00

 This header extension is 24 bytes long. (Its values are intended to
 represent plausible values of the header extension elements shown in
 Section 3.1, but their specific meaning is not important for the
 example.) The header extension "defined by profile" and "length"
 fields, which in this case are BEDE 0006 in hexadecimal, are not
 included in the encryption process.

Lennox Standards Track [Page 14]

RFC 6904 Encrypted SRTP Header Extensions April 2013

 In hexadecimal, the corresponding encryption mask selecting the
 bodies of header extensions 1, 2, and 4 (corresponding to the mask in
 Figure 2) is:

 00 FFFFFFFFFFFFFFFF 00 000000 00 FF 00 FFFFFFFFFFFFFF 00

 Finally, we compute the keystream from the session key and the
 initial counter, apply the mask to the keystream, and then exclusive-
 OR the keystream with the plaintext:

 Initial keystream: 1E19C8E1D481C779549ED1617AAA1B7A
 FC0D933AE7ED6CC8
 Mask (hex): 00FFFFFFFFFFFFFFFF0000000000FF00
 FFFFFFFFFFFFFF00
 Masked keystream: 0019C8E1D481C7795400000000001B00
 FC0D933AE7ED6C00
 Plaintext: 17414273A475262748220000C8308E46
 55996386B395FB00
 Ciphertext: 17588A9270F4E15E1C220000C8309546
 A994F0BC54789700

Author’s Address

 Jonathan Lennox
 Vidyo, Inc.
 433 Hackensack Avenue
 Seventh Floor
 Hackensack, NJ 07601
 US

 EMail: jonathan@vidyo.com

Lennox Standards Track [Page 15]

