
Internet Engineering Task Force (IETF) M. Scharf
Request for Comments: 6897 Alcatel-Lucent Bell Labs
Category: Informational A. Ford
ISSN: 2070-1721 Cisco
 March 2013

 Multipath TCP (MPTCP) Application Interface Considerations

Abstract

 Multipath TCP (MPTCP) adds the capability of using multiple paths to
 a regular TCP session. Even though it is designed to be totally
 backward compatible to applications, the data transport differs
 compared to regular TCP, and there are several additional degrees of
 freedom that applications may wish to exploit. This document
 summarizes the impact that MPTCP may have on applications, such as
 changes in performance. Furthermore, it discusses compatibility
 issues of MPTCP in combination with non-MPTCP-aware applications.
 Finally, the document describes a basic application interface that is
 a simple extension of TCP’s interface for MPTCP-aware applications.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6897.

Scharf & Ford Informational [Page 1]

RFC 6897 MPTCP API March 2013

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..3
 2. Terminology ...4
 3. Comparison of MPTCP and Regular TCP5
 3.1. Effect on Performance5
 3.1.1. Throughput ..5
 3.1.2. Delay ...6
 3.1.3. Resilience ..7
 3.2. Potential Problems ...8
 3.2.1. Impact of Middleboxes8
 3.2.2. Dealing with Multiple Addresses inside
 Applications ..9
 3.2.3. Security Implications10
 4. Operation of MPTCP with Legacy Applications10
 4.1. Overview of the MPTCP Network Stack10
 4.2. Address Issues ..11
 4.2.1. Specification of Addresses by Applications11
 4.2.2. Querying of Addresses by Applications12
 4.3. MPTCP Connection Management13
 4.3.1. Reaction to Close Call by Application13
 4.3.2. Other Connection Management Functions13
 4.4. Socket Option Issues13
 4.4.1. General Guideline13
 4.4.2. Disabling of the Nagle Algorithm13
 4.4.3. Buffer Sizing14
 4.4.4. Other Socket Options14
 4.5. Default Enabling of MPTCP14
 4.6. Summary of Advice to Application Developers15

Scharf & Ford Informational [Page 2]

RFC 6897 MPTCP API March 2013

 5. Basic API for MPTCP-Aware Applications15
 5.1. Design Considerations15
 5.2. Requirements on the Basic MPTCP API16
 5.3. Sockets Interface Extensions by the Basic MPTCP API17
 5.3.1. Overview ...17
 5.3.2. Enabling and Disabling of MPTCP19
 5.3.3. Binding MPTCP to Specified Addresses19
 5.3.4. Querying the MPTCP Subflow Addresses20
 5.3.5. Getting a Unique Connection Identifier20
 6. Other Compatibility Issues21
 6.1. Usage of TLS over MPTCP21
 6.2. Usage of the SCTP Sockets API21
 6.3. Incompatibilities with Other Multihoming Solutions21
 6.4. Interactions with DNS22
 7. Security Considerations ..22
 8. Conclusion ...23
 9. Acknowledgments ..23
 10. References ..24
 10.1. Normative References24
 10.2. Informative References24
 Appendix A. Requirements on a Future Advanced MPTCP API26
 A.1. Design Considerations26
 A.2. MPTCP Usage Scenarios and Application Requirements27
 A.3. Potential Requirements on an Advanced MPTCP API29
 A.4. Integration with the SCTP Sockets API30

1. Introduction

 Multipath TCP adds the capability of using multiple paths to a
 regular TCP session [1]. The motivations for this extension include
 increasing throughput, overall resource utilization, and resilience
 to network failure, and these motivations are discussed, along with
 high-level design decisions, as part of the multipath TCP
 architecture [4]. MPTCP [5] offers the same reliable, in-order,
 byte-stream transport as TCP and is designed to be backward
 compatible with both applications and the network layer. It requires
 support inside the network stack of both endpoints.

 This document first presents the effects that MPTCP may have on
 applications, such as performance changes compared to regular TCP.
 Second, it defines the interoperation of MPTCP and applications that
 are unaware of the multipath transport. MPTCP is designed to be
 usable without any application changes, but some compatibility issues
 have to be taken into account. Third, this memo specifies a basic
 Application Programming Interface (API) for MPTCP-aware applications.
 The API presented here is an extension to the regular TCP API to

Scharf & Ford Informational [Page 3]

RFC 6897 MPTCP API March 2013

 allow an MPTCP-aware application the equivalent level of control and
 access to information of an MPTCP connection that would be possible
 with the standard TCP API on a regular TCP connection.

 The de facto standard API for TCP/IP applications is the "sockets"
 interface [8]. This document provides an abstract definition of
 MPTCP-specific extensions to this interface. These are operations
 that can be used by an application to get or set additional MPTCP-
 specific information on a socket, in order to provide an equivalent
 level of information and control over MPTCP as exists for an
 application using regular TCP. It is up to the applications, high-
 level programming languages, or libraries to decide whether to use
 these optional extensions. For instance, an application may want to
 turn on or off the MPTCP mechanism for certain data transfers or
 limit its use to certain interfaces. The abstract specification is
 in line with the Portable Operating System Interface (POSIX) standard
 [8] as much as possible.

 An advanced API for MPTCP is outside the scope of this document.
 Such an advanced API could offer a more fine-grained control over
 multipath transport functions and policies. The appendix includes
 a brief, non-compulsory list of potential features of such an
 advanced API.

 There can be interactions or incompatibilities of MPTCP with other
 APIs or sockets interface extensions, which are discussed later in
 this document. Some network stack implementations, especially on
 mobile devices, have centralized connection managers or other
 higher-level APIs to solve multi-interface issues, as surveyed in
 [15]. Their interaction with MPTCP is outside the scope of this
 document.

 The target readers of this document are application developers whose
 software may benefit significantly from MPTCP. This document also
 provides the necessary information for developers of MPTCP to
 implement the API in a TCP/IP network stack.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [3].

 This document uses the MPTCP terminology introduced in [5].

Scharf & Ford Informational [Page 4]

RFC 6897 MPTCP API March 2013

 Concerning the API towards applications, the following terms are
 distinguished:

 o Legacy API: The interface towards TCP that is currently used by
 applications. This document explains the effect of MPTCP for such
 applications, as well as resulting issues.

 o Basic API: A simple extension of TCP’s interface for applications
 that are aware of MPTCP. This document abstractly describes this
 interface, which provides access to multipath address information
 and a level of control equivalent to regular TCP.

 o Advanced API: An API that offers more fine-grained control over
 the behavior of MPTCP. Its specification is outside the scope of
 this document.

3. Comparison of MPTCP and Regular TCP

 This section discusses the effect of MPTCP on performance as seen by
 an application, in comparison to what may be expected from the use of
 regular TCP.

3.1. Effect on Performance

 One of the key goals of adding multipath capability to TCP is to
 improve the performance of a transport connection by load
 distribution over separate subflows across potentially disjoint
 paths. Furthermore, it is an explicit goal of MPTCP that it provides
 a connection that performs at least as well as one using single-path
 TCP. A corresponding congestion control algorithm is described in
 [7]. The following sections summarize the performance effect of
 MPTCP as seen by an application.

3.1.1. Throughput

 The most obvious performance improvement that can be expected from
 the use of MPTCP is an increase in throughput, since MPTCP will pool
 more than one path (where available) between two endpoints. This
 will usually provide as great or greater bandwidth for an
 application, even though exceptions may exist, e.g., due to
 differences in the congestion control dynamics. For instance, if a
 new subflow is started, the short-term throughput can be smaller than
 the theoretical optimum. If there are shared bottlenecks between the
 flows, then the congestion control algorithms will in most cases
 ensure that load is evenly spread amongst regular and multipath TCP
 sessions, so that no end user receives worse performance than if all
 were using single-path TCP. There are some known corner cases in
 which an upgrade to MPTCP can affect other users [21].

Scharf & Ford Informational [Page 5]

RFC 6897 MPTCP API March 2013

 This performance increase additionally means that an MPTCP session
 could achieve throughput that is greater than the capacity of a
 single interface on the device. If any applications make assumptions
 about interfaces due to throughput, they must take this into account
 (although an MPTCP implementation must always respect an
 application’s request for a particular interface).

 Furthermore, the flexibility of MPTCP to add and remove subflows as
 paths change availability could lead to a greater variation, and more
 frequent change, in connection bandwidth. Applications that adapt to
 available bandwidth (such as video and audio streaming) may need to
 adjust some of their assumptions to most effectively take this into
 account.

 The transport of MPTCP signaling information results in a small
 overhead. The use of MPTCP instead of a single TCP connection
 therefore results in a smaller goodput. Also, if multiple subflows
 share a same bottleneck, this overhead slightly reduces the capacity
 that is available for data transport. Yet, this potential reduction
 of throughput will be negligible in many usage scenarios, and the
 protocol contains optimizations in its design so that this overhead
 is minimal.

3.1.2. Delay

 The benefits of MPTCP regarding throughput and resilience may come at
 some cost regarding data delivery delay and delay jitter.

 If the delays on the constituent subflows of an MPTCP connection
 differ, the jitter perceivable to an application may appear higher as
 the data are spread across the subflows. Although MPTCP will ensure
 in-order delivery to the application, the data delivery could be more
 bursty than may be usual with single-path TCP, in particular on
 highly asymmetric paths.

 Applications with high real-time requirements might be affected by
 such a scenario. One possible remedy is to disable MPTCP for such
 jitter-sensitive applications, either by using the basic API defined
 in this document, or by other means, such as system policies.

 However, the actual delay and jitter of data transport over MPTCP
 depend on the scheduling and congestion control algorithms used for
 sending data, as well as the heuristics to establish and shut down
 subflows. A sender can implement strategies to minimize the delay
 jitter seen by applications, but this requires an accurate estimation
 of the path characteristics. If the scheduling decisions are
 suboptimal or if assumptions about the path characteristics turn out
 to be wrong, delay jitter may be increased and affect delay-sensitive

Scharf & Ford Informational [Page 6]

RFC 6897 MPTCP API March 2013

 applications. In general, for a delay-sensitive application, it
 would be desirable to select an appropriate congestion control
 algorithm for its traffic needs.

 Alternatively, MPTCP could be used in high-reliability, rather than
 high-throughput, modes of operation, such as by mirroring traffic on
 subflows, or by only using additional subflows for hot standby.
 These methods of traffic scheduling would not cause delay variation
 in the same way. These additional modes, and the selection of
 alternative scheduling algorithms, would need to be indicated by an
 advanced API, the specification of which requires further analysis
 and is outside the scope of this document.

 If data transport on one subflow fails, the retransmissions inside
 MPTCP could affect the delivery delay to the application. Yet,
 without MPTCP that data or the whole connection might have been lost,
 and other reliability mechanisms (e.g., application-level recovery)
 would likely have an even larger delay impact.

 In addition, applications that make round-trip time (RTT) estimates
 at the application level may have some issues. Whilst the average
 delay calculated will be accurate, whether this is useful for an
 application will depend on what it requires this information for. If
 a new application wishes to derive such information, it should
 consider how multiple subflows may affect its measurements and thus
 how it may wish to respond. In such a case, an application may wish
 to express its scheduling preferences, as described later in this
 document.

3.1.3. Resilience

 Another performance improvement through the use of MPTCP is better
 resilience. The use of multiple subflows simultaneously means that
 if one should fail, all traffic will move to the remaining
 subflow(s), and additionally any lost packets can be retransmitted on
 these subflows.

 As one special case, MPTCP can be used with only one active subflow
 at a given point in time. In that case, resilience compared to
 single-path TCP is improved. MPTCP also supports make-before-break
 and break-before-make handovers between subflows. In both cases, the
 MPTCP connection can survive an unavailability or change of an IP
 address (e.g., due to shutdown of an interface or handover). MPTCP
 closes or resets the MPTCP connection separately from the individual
 subflows, as described in [5].

 Subflow failure may be caused by issues within the network, which an
 application would be unaware of, or interface failure on the node.

Scharf & Ford Informational [Page 7]

RFC 6897 MPTCP API March 2013

 An application may, under certain circumstances, be in a position to
 be aware of such failure (e.g., by radio signal strength, or simply
 an interface enabled flag), and so must not make assumptions of an
 MPTCP flow’s stability based on this. An MPTCP implementation must
 never override an application’s request for a given interface,
 however, so the cases where this issue may be applicable are limited.

3.2. Potential Problems

3.2.1. Impact of Middleboxes

 MPTCP has been designed to pass through the majority of middleboxes.
 Empirical evidence suggests that new TCP options can successfully be
 used on most paths in the Internet [22]. Nevertheless, some
 middleboxes may still refuse to pass MPTCP messages due to the
 presence of TCP options, or they may strip TCP options. If this is
 the case, MPTCP falls back to regular TCP. Although this will not
 create a problem for the application (its communication will be set
 up either way), there may be additional (and indeed, user-
 perceivable) delay while the first handshake fails. Therefore, an
 alternative approach could be to try both MPTCP and regular TCP
 connection attempts at the same time and respond to whichever replies
 first, in a fashion similar to the "Happy Eyeballs" mechanism for
 IPv6 [16]. One could also apply a shorter timeout on the MPTCP
 attempt and thus reduce the setup delay if fallback to regular TCP is
 needed.

 An MPTCP implementation can learn the rate of MPTCP connection
 attempt successes or failures to particular hosts or networks, and on
 particular interfaces, and could therefore learn heuristics of when
 and when not to use MPTCP. A detailed discussion of the various
 fallback mechanisms, for failures occurring at different points in
 the connection, is presented in [5]. It must be emphasized that all
 such heuristics could also fail, and learning can be difficult in
 certain environments, e.g., if the host is mobile.

 There may also be middleboxes that transparently change the length of
 content. If such middleboxes are present, MPTCP’s reassembly of the
 byte stream in the receiver is difficult. Still, MPTCP can detect
 such middleboxes and then fall back to regular TCP. An overview of
 the impact of middleboxes is presented in [4], and MPTCP’s mechanisms
 to work around these issues are presented and discussed in [5].

 MPTCP can also have other unexpected implications. For instance,
 intrusion detection systems could be triggered. A full analysis of
 MPTCP’s impact on such middleboxes is for further study after
 deployment experiments.

Scharf & Ford Informational [Page 8]

RFC 6897 MPTCP API March 2013

3.2.2. Dealing with Multiple Addresses inside Applications

 In regular TCP, there is a one-to-one mapping of the sockets
 interface to a flow through a network. Since MPTCP can make use of
 multiple subflows, applications cannot implicitly rely on this
 one-to-one mapping any more.

 Whilst this doesn’t matter for most applications, some applications
 may need to adapt to the presence of multiple addresses, because
 implicit assumptions are outdated. In this section, selected
 examples for resulting issues are discussed. The question of whether
 such implicit assumptions matter is an application-level decision,
 and this document only provides general guidance and a basic API to
 retrieve relevant information.

 A few applications require the transport to be along a single path;
 they can disable the use of MPTCP as described later in this
 document. Examples include monitoring tools that want to measure the
 available bandwidth on a path, or routing protocols such as BGP that
 require the use of a specific link.

 Certain applications store the IP addresses of TCP connections, e.g.,
 by logging mechanisms. Such logging mechanisms will continue to work
 with MPTCP, but two important aspects have to be mentioned: First, if
 the application is not aware of MPTCP, it will use the existing
 interface to the network stack. This implies that an MPTCP-unaware
 application will track the IP addresses of the first subflow only.
 IP addresses used by follow-up subflows will be ignored. Second, an
 MPTCP-aware application can use the basic API described in this
 document to monitor the IP addresses of all subflows, e.g., for
 logging mechanisms. If an MPTCP connection uses several subflows,
 this will possibly imply that data structures have to be adapted and
 that the amount of data that has to be logged and stored per
 connection will increase.

 An MPTCP implementation may choose to maintain an MPTCP connection
 even if the IP address of the original subflow is no longer allocated
 to a host, depending on the policy concerning the first subflow
 (fate-sharing; see Section 4.2.2). In this case, the IP address
 exposed to an MPTCP-unaware application can differ from the addresses
 actually being used by MPTCP. It is even possible that the IP
 address gets assigned to another host during the lifetime of an MPTCP
 connection. As further discussed below, this could be an issue if
 the IP addresses are exchanged by applications, e.g., inside the
 application protocol. This issue can be addressed by enabling fate-
 sharing, at the cost of resilience, because the MPTCP connection then
 cannot close the initial subflow.

Scharf & Ford Informational [Page 9]

RFC 6897 MPTCP API March 2013

3.2.3. Security Implications

 The support for multiple IP addresses within one MPTCP connection can
 result in additional security vulnerabilities, such as possibilities
 for attackers to hijack connections. The protocol design of MPTCP
 minimizes this risk. An attacker on one of the paths can cause harm,
 but this is hardly an additional security risk compared to single-
 path TCP, which is vulnerable to man-in-the-middle attacks as well.
 A detailed threat analysis of MPTCP is published in [6].

 Impact on Transport Layer Security (TLS) is discussed in Section 6.1.

4. Operation of MPTCP with Legacy Applications

4.1. Overview of the MPTCP Network Stack

 MPTCP is an extension of TCP, but it is designed to be backward
 compatible for legacy (MPTCP-unaware) applications. TCP interacts
 with other parts of the network stack via different interfaces. The
 de facto standard API between TCP and applications is the sockets
 interface. The position of MPTCP in the protocol stack is
 illustrated in Figure 1.

 +-------------------------------+
 | Application |
 +-------------------------------+
 ^ |
 ˜˜˜˜˜˜˜˜˜˜|˜Sockets Interface|˜˜˜˜˜˜˜˜˜
 | v
 +-------------------------------+
 | MPTCP |
 + - - - - - - - + - - - - - - - +
 | Subflow (TCP) | Subflow (TCP) |
 +-------------------------------+
 | IP | IP |
 +-------------------------------+

 Figure 1: MPTCP Protocol Stack

 In general, MPTCP can affect all interfaces that make assumptions
 about the coupling of a TCP connection to a single IP address and TCP
 port pair, to one socket endpoint, to one network interface, or to a
 given path through the network.

Scharf & Ford Informational [Page 10]

RFC 6897 MPTCP API March 2013

 This means that there are two classes of applications:

 o Legacy applications: These applications are unaware of MPTCP and
 use the existing API towards TCP without any changes. This is the
 default case.

 o MPTCP-aware applications: These applications indicate support for
 an enhanced MPTCP interface. This document specifies a minimum
 set of API extensions for such applications.

 In the following sections, it is discussed to what extent MPTCP
 affects legacy applications using the existing sockets API. The
 existing sockets API implies that applications deal with data
 structures that store, amongst others, the IP addresses and TCP port
 numbers of a TCP connection. A design objective of MPTCP is that
 legacy applications can continue to use the established sockets API
 without any changes. However, in MPTCP there is a one-to-many
 mapping between the socket endpoint and the subflows. This has
 several subtle implications for legacy applications using sockets API
 functions.

4.2. Address Issues

4.2.1. Specification of Addresses by Applications

 During binding, an application can either select a specific address
 or bind to INADDR_ANY. Furthermore, on some systems other socket
 options (e.g., SO_BINDTODEVICE) can be used to bind to a specific
 interface. If an application uses a specific address or binds to a
 specific interface, then MPTCP MUST respect this and not interfere in
 the application’s choices. The binding to a specific address or
 interface implies that the application is not aware of MPTCP and will
 disable the use of MPTCP on this connection. An application that
 wishes to bind to a specific set of addresses with MPTCP must use
 multipath-aware calls to achieve this (as described in
 Section 5.3.3).

 If an application binds to INADDR_ANY, it is assumed that the
 application does not care which addresses are used locally. In this
 case, a local policy MAY allow MPTCP to automatically set up multiple
 subflows on such a connection.

 The basic sockets API of MPTCP-aware applications allows the
 expression of further preferences in an MPTCP-compatible way (e.g.,
 binding to a subset of interfaces only).

Scharf & Ford Informational [Page 11]

RFC 6897 MPTCP API March 2013

4.2.2. Querying of Addresses by Applications

 Applications can use the getpeername() or getsockname() functions in
 order to retrieve the IP address of the peer or of the local socket.
 These functions can be used for various purposes, including security
 mechanisms, geo-location, or interface checks. The sockets API was
 designed with an assumption that a socket is using just one address,
 and since this address is visible to the application, the application
 may assume that the information provided by the functions is the same
 during the lifetime of a connection. However, in MPTCP, unlike in
 TCP, there is a one-to-many mapping of a connection to subflows, and
 subflows can be added and removed while the connection continues to
 exist. Since the subflow addresses can change, MPTCP cannot expose
 addresses by getpeername() or getsockname() that are both valid and
 constant during the connection’s lifetime.

 This problem is addressed as follows: If used by a legacy
 application, the MPTCP stack MUST always return the addresses and
 port numbers of the first subflow of an MPTCP connection, in all
 circumstances, even if that particular subflow is no longer in use.

 As the addresses may not be valid any more if the first subflow is
 closed, the MPTCP stack MAY close the whole MPTCP connection if the
 first subflow is closed (i.e., fate-sharing between the initial
 subflow and the MPTCP connection as a whole). This fate-sharing
 avoids the reuse of the pair of IP addresses and ports while an MPTCP
 connection is still in progress, but at the cost of reducing the
 utility of MPTCP if IP addresses of the first subflow are not
 available any more (e.g., mobility events). Whether to close the
 whole MPTCP connection by default SHOULD be controlled by a local
 policy. Further experiments are needed to investigate its
 implications.

 The functions getpeername() and getsockname() SHOULD also always
 return the addresses of the first subflow if the socket is used by an
 MPTCP-aware application, in order to be consistent with MPTCP-unaware
 applications, and, e.g., also with the Stream Control Transmission
 Protocol (SCTP). Instead of getpeername() or getsockname(),
 MPTCP-aware applications can use new API calls, described in
 Section 5.3, in order to retrieve the full list of address pairs for
 the subflows in use.

Scharf & Ford Informational [Page 12]

RFC 6897 MPTCP API March 2013

4.3. MPTCP Connection Management

4.3.1. Reaction to Close Call by Application

 As described in [5], MPTCP distinguishes between the closing of
 subflows (by TCP FIN) and closing the whole MPTCP connection
 (by Data FIN).

 When an application closes a socket, e.g., by calling the close()
 function, this indicates that the application has no more data to
 send, like for single-path TCP. MPTCP will then close the MPTCP
 connection via Data FIN messages. This is completely transparent for
 an application.

 In summary, the semantics of the close() interface for applications
 are not changed compared to TCP.

4.3.2. Other Connection Management Functions

 In general, an MPTCP connection is maintained separately from
 individual subflows. MPTCP therefore has internal mechanisms to
 establish, close, or reset the MPTCP connection [5]. These
 mechanisms provide equivalent functions like single-path TCP and can
 be mapped accordingly. Therefore, these MPTCP internals do not
 affect the application interface.

4.4. Socket Option Issues

4.4.1. General Guideline

 The existing sockets API includes options that modify the behavior of
 sockets and their underlying communications protocols. Various
 socket options exist on the socket, TCP, and IP level. The value of
 an option can usually be set by the setsockopt() system function.
 The getsockopt() function gets information. In general, the existing
 sockets interface functions cannot configure each MPTCP subflow
 individually. In order to be backward compatible, existing APIs
 therefore SHOULD apply to all subflows within one connection, as far
 as possible.

4.4.2. Disabling of the Nagle Algorithm

 One commonly used TCP socket option (TCP_NODELAY) disables the Nagle
 algorithm as described in [2]. This option is also specified in the
 POSIX standard [8]. Applications can use this option in combination
 with MPTCP in exactly the same way. It then SHOULD disable the Nagle
 algorithm for the MPTCP connection, i.e., all subflows.

Scharf & Ford Informational [Page 13]

RFC 6897 MPTCP API March 2013

 In addition, the MPTCP protocol instance MAY use a different path
 scheduler algorithm if TCP_NODELAY is present. For instance, it
 could use an algorithm that is optimized for latency-sensitive
 traffic (for instance, only transmitting on one path). Specific
 algorithms are outside the scope of this document.

4.4.3. Buffer Sizing

 Applications can explicitly configure send and receive buffer sizes
 via the sockets API (SO_SNDBUF, SO_RCVBUF). These socket options can
 also be used in combination with MPTCP and then affect the buffer
 size of the MPTCP connection. However, when defining buffer sizes,
 application programmers should take into account that the transport
 over several subflows requires a certain amount of buffer for
 resequencing in the receiver. MPTCP may also require more storage
 space in the sender, in particular, if retransmissions are sent over
 more than one path. In addition, very small send buffers may prevent
 MPTCP from efficiently scheduling data over different subflows.
 Therefore, it does not make sense to use MPTCP in combination with
 small send or receive buffers.

 An MPTCP implementation MAY set a lower bound for send and receive
 buffers and treat a small buffer size request as an implicit request
 not to use MPTCP.

4.4.4. Other Socket Options

 TCP features the ability to send "Urgent" data, but its use is not
 recommended in general, and specifically not with MPTCP [4].

 Some network stacks may provide additional implementation-specific
 socket options or interfaces that affect TCP’s behavior. In such
 cases, implementers must ensure that these options do not interfere
 with the MPTCP interface.

4.5. Default Enabling of MPTCP

 It is up to a local policy at the end system whether a network stack
 should automatically enable MPTCP for sockets even if there is no
 explicit sign of MPTCP awareness of the corresponding application.
 Such a choice may be under the control of the user through system
 preferences.

 The enabling of MPTCP, either by application or by system defaults,
 does not necessarily mean that MPTCP will always be used. Both
 endpoints must support MPTCP, and there must be multiple addresses at
 at least one endpoint, for MPTCP to be used. Even if those
 requirements are met, however, MPTCP may not be immediately used on a

Scharf & Ford Informational [Page 14]

RFC 6897 MPTCP API March 2013

 connection. It may make sense for multiple paths to be brought into
 operation only after a given period of time, or if the connection is
 saturated.

4.6. Summary of Advice to Application Developers

 o Using the default MPTCP configuration: Like TCP, MPTCP is designed
 to be efficient and robust in the default configuration.
 Application developers should not explicitly configure TCP (or
 MPTCP) features unless this is really needed.

 o Socket buffer dimensioning: Multipath transport requires larger
 buffers in the receiver for resequencing, as already explained.
 Applications should use reasonable buffer sizes (such as the
 operating system default values) in order to fully benefit from
 MPTCP. A full discussion of buffer sizing issues is given in [5].

 o Facilitating stack-internal heuristics: The path management and
 data scheduling by MPTCP is realized by stack-internal algorithms
 that may implicitly try to self-optimize their behavior according
 to assumed application needs. For instance, an MPTCP
 implementation may use heuristics to determine whether an
 application requires delay-sensitive or bulk data transport,
 using, for instance, port numbers, the TCP_NODELAY socket options,
 or the application’s read/write patterns as input parameters. An
 application developer can facilitate the operation of such
 heuristics by avoiding atypical interface use cases. For
 instance, for long bulk data transfers, it does not make sense to
 enable the TCP_NODELAY socket option, nor is it reasonable to use
 many small socket send() calls each with small amounts of data
 only.

5. Basic API for MPTCP-Aware Applications

5.1. Design Considerations

 While applications can use MPTCP with the unmodified sockets API,
 multipath transport results in many degrees of freedom. MPTCP
 manages the data transport over different subflows automatically. By
 default, this is transparent to the application, but an application
 could use an additional API to interface with the MPTCP layer and to
 control important aspects of the MPTCP implementation’s behavior.

 This document describes a basic MPTCP API. The API contains a
 minimum set of functions that provide an equivalent level of control
 and information as exists for regular TCP. It maintains backward
 compatibility with legacy applications.

Scharf & Ford Informational [Page 15]

RFC 6897 MPTCP API March 2013

 An advanced MPTCP API is outside the scope of this document. The
 basic API does not allow a sender or a receiver to express
 preferences about the management of paths or the scheduling of data,
 even if this can have a significant performance impact and if an
 MPTCP implementation could benefit from additional guidance by
 applications. A list of potential further API extensions is provided
 in the appendix. The specification of such an advanced API is for
 further study and may partly be implementation-specific.

 MPTCP mainly affects the sending of data. But a receiver may also
 have preferences about data transfer choices, and it may have
 performance requirements as well. Yet, the configuration of such
 preferences is outside of the scope of the basic API.

5.2. Requirements on the Basic MPTCP API

 Because of the importance of the sockets interface there are several
 fundamental design objectives for the basic interface between MPTCP
 and applications:

 o Consistency with existing sockets APIs must be maintained as far
 as possible. In order to support the large base of applications
 using the original API, a legacy application must be able to
 continue to use standard sockets interface functions when run on a
 system supporting MPTCP. Also, MPTCP-aware applications should be
 able to access the socket without any major changes.

 o Sockets API extensions must be minimized and independent of an
 implementation.

 o The interface should handle both IPv4 and IPv6.

 The following is a list of the core requirements for the basic API:

 REQ1: Turn on/off MPTCP: An application should be able to request to
 turn on or turn off the usage of MPTCP. This means that an
 application should be able to explicitly request the use of
 MPTCP if this is possible. Applications should also be able
 to request not to enable MPTCP and to use regular TCP
 transport instead. This can be implicit in many cases, since
 MPTCP must be disabled by the use of binding to a specific
 address. MPTCP may also be enabled if an application uses a
 dedicated multipath address family (such as AF_MULTIPATH
 [20]).

 REQ2: An application should be able to restrict MPTCP to binding to
 a given set of addresses.

Scharf & Ford Informational [Page 16]

RFC 6897 MPTCP API March 2013

 REQ3: An application should be able to obtain information on the
 pairs of addresses used by the MPTCP subflows.

 REQ4: An application should be able to extract a unique identifier
 for the connection (per endpoint).

 The first requirement is the most important one, since some
 applications could benefit a lot from MPTCP, but there are also cases
 in which it hardly makes sense. The existing sockets API provides
 similar mechanisms to enable or disable advanced TCP features. The
 second requirement corresponds to the binding of addresses with the
 bind() socket call, or, e.g., explicit device bindings with a
 SO_BINDTODEVICE option. The third requirement ensures that there is
 an equivalent to getpeername() or getsockname() that is able to deal
 with more than one subflow. Finally, it should be possible for the
 application to retrieve a unique connection identifier (local to the
 endpoint on which it is running) for the MPTCP connection. This
 replaces the (address, port) pair for a connection identifier in
 single-path TCP, which is no longer static in MPTCP.

 An application can continue to use getpeername() or getsockname() in
 addition to the basic MPTCP API. Both functions return the
 corresponding addresses of the first subflow, as already explained.

5.3. Sockets Interface Extensions by the Basic MPTCP API

5.3.1. Overview

 The abstract, basic MPTCP API consists of a set of new values that
 are associated with an MPTCP socket. Such values may be used for
 changing properties of an MPTCP connection or retrieving information.
 These values could be accessed by new symbols on existing calls such
 as setsockopt() and getsockopt() or could be implemented as entirely
 new function calls. This implementation decision is out of scope for
 this document. The following list presents symbolic names for these
 MPTCP socket settings.

 o TCP_MULTIPATH_ENABLE: Enable/disable MPTCP

 o TCP_MULTIPATH_ADD: Bind MPTCP to a set of given local addresses,
 or add a set of new local addresses to an existing MPTCP
 connection

 o TCP_MULTIPATH_REMOVE: Remove a local address from an MPTCP
 connection

Scharf & Ford Informational [Page 17]

RFC 6897 MPTCP API March 2013

 o TCP_MULTIPATH_SUBFLOWS: Get the pairs of addresses currently used
 by the MPTCP subflows

 o TCP_MULTIPATH_CONNID: Get the local connection identifier for this
 MPTCP connection

 Table 1 shows a list of the abstract socket operations for the basic
 configuration of MPTCP. The first column gives the symbolic name of
 the operation. The second and third columns indicate whether the
 operation provides values to be read ("Get") or takes values to
 configure ("Set"). The fourth column lists the type of data
 associated with this operation. The data types are listed for
 information only. In addition to IP addresses, an application MAY
 also indicate TCP port numbers, as further detailed below.

 +------------------------+-----+-----+------------------------------+
 | Name | Get | Set | Data type |
 +------------------------+-----+-----+------------------------------+
TCP_MULTIPATH_ENABLE	o	o	boolean
TCP_MULTIPATH_ADD		o	list of addresses
			(and ports)
TCP_MULTIPATH_REMOVE		o	list of addresses
			(and ports)
TCP_MULTIPATH_SUBFLOWS	o		list of pairs of addresses
			(and ports)
TCP_MULTIPATH_CONNID	o		integer
 +------------------------+-----+-----+------------------------------+

 Table 1: MPTCP Socket Operations

 There are restrictions on when these new socket operations can be
 used:

 o TCP_MULTIPATH_ENABLE: This value should only be set before the
 establishment of a TCP connection. Its value should only be read
 after the establishment of a connection.

 o TCP_MULTIPATH_ADD: This operation can be applied both before
 connection setup and during a connection. If used before, it
 controls the local addresses that an MPTCP connection can use. In
 the latter case, it allows MPTCP to use an additional local
 address, if there has been a restriction before connection setup.

 o TCP_MULTIPATH_REMOVE: This operation can be applied both before
 connection setup and during a connection. In both cases, it
 removes an address from the list of local addresses that may be
 used by subflows.

Scharf & Ford Informational [Page 18]

RFC 6897 MPTCP API March 2013

 o TCP_MULTIPATH_SUBFLOWS: This value is read-only and can only be
 used after connection setup.

 o TCP_MULTIPATH_CONNID: This value is read-only and should only be
 used after connection setup.

5.3.2. Enabling and Disabling of MPTCP

 An application can explicitly indicate multipath capability by
 setting TCP_MULTIPATH_ENABLE to the value "true". In this case, the
 MPTCP implementation SHOULD try to negotiate MPTCP for that
 connection. Note that multipath transport will not necessarily be
 enabled, as it requires support at both end systems, no middleboxes
 on the path that would prevent any additional signaling, and at least
 one endpoint with multiple addresses.

 Building on the backward compatibility specified in Section 4.2.1, if
 an application enables MPTCP but binds to a specific address or
 interface, MPTCP MUST be enabled, but MPTCP MUST respect the
 application’s choice and only use addresses that are explicitly
 provided by the application. Note that it would be possible for an
 application to use the legacy bindings and then expand on them by
 using TCP_MULTIPATH_ADD. Note also that it is possible for more than
 one local address to be initially available to MPTCP in this case, if
 an application has bound to a specific interface with multiple
 addresses.

 An application can disable MPTCP by setting TCP_MULTIPATH_ENABLE to a
 value of "false". In that case, MPTCP MUST NOT be used on that
 connection.

 After connection establishment, an application can get the value of
 TCP_MULTIPATH_ENABLE. A value of "false" then means lack of MPTCP
 support. A value of "true" means that MPTCP is supported.

5.3.3. Binding MPTCP to Specified Addresses

 Before connection establishment, an application can use the
 TCP_MULTIPATH_ADD function to indicate a set of local IP addresses
 that MPTCP may bind to. The parameter of the function is a list of
 addresses in a corresponding data structure. By extension, this
 operation will also control the list of addresses that can be
 advertised to the peer via MPTCP signaling.

 If an application binds to a specific address or interface, it is not
 required to use the TCP_MULTIPATH_ADD operation for that address. As
 explained in Section 5.3.2, MPTCP MUST only use the explicitly
 specified addresses in that case.

Scharf & Ford Informational [Page 19]

RFC 6897 MPTCP API March 2013

 An application MAY also indicate a TCP port number that, if
 specified, MPTCP MUST attempt to bind to. The port number MAY be
 different than the one used by existing subflows. If no port number
 is provided by the application, the port number is automatically
 selected by the MPTCP implementation, and it is RECOMMENDED that it
 is the same across all subflows.

 This operation can also be used to modify the address list in use
 during the lifetime of an MPTCP connection. In this case, it is used
 to indicate a set of additional local addresses that the MPTCP
 connection can make use of and that can be signaled to the peer. It
 should be noted that this signal is only a hint, and an MPTCP
 implementation MAY select only a subset of the addresses.

 The TCP_MULTIPATH_REMOVE operation can be used to remove a local
 address, or a set of local addresses, from an MPTCP connection.
 MPTCP MUST close any corresponding subflows (i.e., those using the
 local address that is no longer present) and signal the removal of
 the address to the peer. If alternative paths are available using
 the supplied address list but MPTCP is not currently using them, an
 MPTCP implementation SHOULD establish alternative subflows before
 undertaking the address removal.

 It should be remembered that these operations SHOULD support both
 IPv4 and IPv6 addresses, potentially in the same call.

5.3.4. Querying the MPTCP Subflow Addresses

 An application can get a list of the addresses used by the currently
 established subflows in an MPTCP connection by means of the read-only
 TCP_MULTIPATH_SUBFLOWS operation.

 The return value is a list of pairs of tuples of IP address and TCP
 port number. In one pair, the first tuple refers to the local IP
 address and the local TCP port, and the second one to the remote IP
 address and remote TCP port used by the subflow. The list MUST only
 include established subflows. Both addresses in each pair MUST be
 either IPv4 or IPv6.

5.3.5. Getting a Unique Connection Identifier

 An application that wants a unique identifier for the connection,
 analogous to an (address, port) pair in regular TCP, can query the
 TCP_MULTIPATH_CONNID value to get a local connection identifier for
 the MPTCP connection.

 This SHOULD be an integer number and SHOULD be locally unique (e.g.,
 the MPTCP token).

Scharf & Ford Informational [Page 20]

RFC 6897 MPTCP API March 2013

6. Other Compatibility Issues

6.1. Usage of TLS over MPTCP

 Transport Layer Security (TLS) [17] may be used over MPTCP’s basic
 API. When TLS compares any addresses used by MPTCP against names or
 addresses present in X.509 certificates [18] [19], it MUST only
 compare them with the address that MPTCP used to start the initial
 subflow as presented to TLS. The addresses used for subsequent
 subflows need not to be compared against any TLS certificate
 information. Finer-grained control would require an advanced API or
 proactive subflow management via the basic API.

6.2. Usage of the SCTP Sockets API

 For dealing with multihoming, several sockets API extensions have
 been defined for SCTP [13]. As MPTCP realizes multipath transport
 from and to multihomed end systems, some of these interface function
 calls are actually applicable to MPTCP in a similar way.

 API developers may wish to integrate SCTP and MPTCP calls to provide
 a consistent interface to the application. Yet, it must be
 emphasized that the transport service provided by MPTCP is different
 than that of SCTP, and this is why not all SCTP API functions can be
 mapped directly to MPTCP. Furthermore, a network stack implementing
 MPTCP does not necessarily support SCTP and its specific sockets
 interface extensions. This is why the basic API of MPTCP defines
 additional socket options only, which are a backward-compatible
 extension of TCP’s application interface. Integration with the SCTP
 API is outside the scope of the basic API.

6.3. Incompatibilities with Other Multihoming Solutions

 The use of MPTCP can interact with various related sockets API
 extensions. The use of a multihoming shim layer conflicts with
 multipath transport such as MPTCP or SCTP [11]. Care should be taken
 that the use of MPTCP not conflict with the overlapping features of
 other APIs:

 o SHIM API [11]: This API specifies sockets API extensions for the
 multihoming shim layer.

 o HIP API [12]: The Host Identity Protocol (HIP) also results in a
 new API.

 o API for Mobile IPv6 [10]: For Mobile IPv6, a significantly
 extended sockets API exists as well (in addition to API extensions
 for IPv6 [9]).

Scharf & Ford Informational [Page 21]

RFC 6897 MPTCP API March 2013

 In order to avoid any conflict, multiaddressed MPTCP SHOULD NOT be
 enabled if a network stack uses SHIM6, HIP, or Mobile IPv6.
 Furthermore, applications should not try to use both the MPTCP API
 and another multihoming or mobility layer API.

 It is possible, however, that some of the MPTCP functionality, such
 as congestion control, could be used in a SHIM6 or HIP environment.
 Such operation is for further study.

6.4. Interactions with DNS

 In multihomed or multiaddressed environments, there are various
 issues that are not specific to MPTCP but have to be considered as
 well. These problems are summarized in [14].

 Specifically, there can be interactions with DNS. Whilst it is
 expected that an application will iterate over the list of addresses
 returned from a call such as getaddrinfo(), MPTCP itself MUST NOT
 make any assumptions about multiple A or AAAA records from the same
 DNS query referring to the same host, as it is possible that multiple
 addresses refer to multiple servers for load-balancing purposes.

7. Security Considerations

 This document first defines the behavior of the standard TCP/IP API
 for MPTCP-unaware applications. In general, enabling MPTCP has some
 security implications for applications, which are introduced in
 Section 5.3.3, and these threats are further detailed in [6]. The
 protocol specification of MPTCP [5] defines several mechanisms to
 protect MPTCP against those attacks.

 The syntax and semantics of the API for MPTCP-unaware applications
 does not change. However, assumptions that non-MPTCP-aware
 applications may make on the data retrieved by the backward-
 compatible API are discussed in Section 4.2.2. System administrators
 may wish to disable MPTCP for certain applications that signal
 addresses, or make security decisions (e.g., opening firewall holes),
 based on responses to such queries.

 In addition, the basic MPTCP API for MPTCP-aware applications defines
 functions that provide an equivalent level of control and information
 as exists for regular TCP. This document does not mandate a specific
 implementation of the basic MPTCP API. The implementation should be
 designed not to affect memory management assumptions in existing
 code. Implementors should take into account that data structures
 will be more complex than for standard TCP, e.g., when multiple

Scharf & Ford Informational [Page 22]

RFC 6897 MPTCP API March 2013

 subflow addresses have to be stored. When dealing with such data
 structures, care is needed not to add security vulnerabilities to
 applications.

 New functions enable adding and removing local addresses from an
 MPTCP connection (TCP_MULTIPATH_ADD and TCP_MULTIPATH_REMOVE). These
 functions don’t add security threats if the MPTCP stack verifies that
 the addresses provided by the application are indeed available as
 source addresses for subflows.

 However, applications should use the TCP_MULTIPATH_ADD function with
 care, as new subflows might get established to those addresses.
 Furthermore, it could result in some form of information leakage
 since MPTCP might advertise those addresses to the other connection
 endpoint, which could learn IP addresses of interfaces that are not
 visible otherwise.

 Use of different addresses should not be assumed to lead to use of
 different paths, especially for security purposes.

 MPTCP-aware applications should also take care when querying and
 using information about the addresses used by subflows
 (TCP_MULTIPATH_SUBFLOWS). As MPTCP can dynamically open and close
 subflows, a list of addresses queried once can get outdated during
 the lifetime of an MPTCP connection. Then, the list may contain
 invalid entries, i.e., addresses that are not used any more or that
 might not even be assigned to that host any more. Applications that
 want to ensure that MPTCP only uses a certain set of addresses should
 explicitly bind to those addresses.

 One specific example is the use TLS on top of MPTCP. Corresponding
 guidance can be found in Section 6.1.

8. Conclusion

 This document discusses MPTCP’s implications and its performance
 impact on applications. In addition, it specifies a basic MPTCP API.
 For legacy applications, it is ensured that the existing sockets API
 continues to work. MPTCP-aware applications can use the basic MPTCP
 API that provides some control over the transport layer equivalent to
 regular TCP.

9. Acknowledgments

 The authors sincerely thank the following people for their helpful
 comments and reviews of the document: Philip Eardley, Lavkesh
 Lahngir, John Leslie, Costin Raiciu, Michael Tuexen, and Javier
 Ubillos.

Scharf & Ford Informational [Page 23]

RFC 6897 MPTCP API March 2013

 Michael Scharf is supported by the German-Lab project
 (http://www.german-lab.de/) funded by the German Federal Ministry of
 Education and Research (BMBF). Alan Ford was previously supported by
 Roke Manor Research and by Trilogy (http://www.trilogy-project.org/),
 a research project (ICT-216372) partially funded by the European
 Community under its Seventh Framework Program.

10. References

10.1. Normative References

 [1] Postel, J., "Transmission Control Protocol", STD 7, RFC 793,
 September 1981.

 [2] Braden, R., "Requirements for Internet Hosts - Communication
 Layers", STD 3, RFC 1122, October 1989.

 [3] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [4] Ford, A., Raiciu, C., Handley, M., Barre, S., and J. Iyengar,
 "Architectural Guidelines for Multipath TCP Development",
 RFC 6182, March 2011.

 [5] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure, "TCP
 Extensions for Multipath Operation with Multiple Addresses",
 RFC 6824, January 2013.

 [6] Bagnulo, M., "Threat Analysis for TCP Extensions for Multipath
 Operation with Multiple Addresses", RFC 6181, March 2011.

 [7] Raiciu, C., Handley, M., and D. Wischik, "Coupled Congestion
 Control for Multipath Transport Protocols", RFC 6356,
 October 2011.

 [8] "IEEE Standard for Information Technology -- Portable Operating
 System Interface (POSIX) Base Specifications, Issue 7", IEEE
 Std. 1003.1-2008, 2008.

10.2. Informative References

 [9] Stevens, W., Thomas, M., Nordmark, E., and T. Jinmei, "Advanced
 Sockets Application Program Interface (API) for IPv6",
 RFC 3542, May 2003.

 [10] Chakrabarti, S. and E. Nordmark, "Extension to Sockets API for
 Mobile IPv6", RFC 4584, July 2006.

Scharf & Ford Informational [Page 24]

RFC 6897 MPTCP API March 2013

 [11] Komu, M., Bagnulo, M., Slavov, K., and S. Sugimoto, "Sockets
 Application Program Interface (API) for Multihoming Shim",
 RFC 6316, July 2011.

 [12] Komu, M. and T. Henderson, "Basic Socket Interface Extensions
 for the Host Identity Protocol (HIP)", RFC 6317, July 2011.

 [13] Stewart, R., Tuexen, M., Poon, K., Lei, P., and V. Yasevich,
 "Sockets API Extensions for the Stream Control Transmission
 Protocol (SCTP)", RFC 6458, December 2011.

 [14] Blanchet, M. and P. Seite, "Multiple Interfaces and
 Provisioning Domains Problem Statement", RFC 6418,
 November 2011.

 [15] Wasserman, M. and P. Seite, "Current Practices for Multiple-
 Interface Hosts", RFC 6419, November 2011.

 [16] Wing, D. and A. Yourtchenko, "Happy Eyeballs: Success with
 Dual-Stack Hosts", RFC 6555, April 2012.

 [17] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS)
 Protocol Version 1.2", RFC 5246, August 2008.

 [18] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley,
 R., and W. Polk, "Internet X.509 Public Key Infrastructure
 Certificate and Certificate Revocation List (CRL) Profile",
 RFC 5280, May 2008.

 [19] Saint-Andre, P. and J. Hodges, "Representation and Verification
 of Domain-Based Application Service Identity within Internet
 Public Key Infrastructure Using X.509 (PKIX) Certificates in
 the Context of Transport Layer Security (TLS)", RFC 6125,
 March 2011.

 [20] Sarolahti, P., "Multi-address Interface in the Socket API",
 Work in Progress, March 2010.

 [21] Khalili, R., Gast, N., Popovic, M., and J. Le Boudec,
 "Performance Issues with MPTCP", Work in Progress,
 February 2013.

 [22] Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A., Handley,
 M., and H. Tokuda, "Is it Still Possible to Extend TCP?", Proc.
 ACM Internet Measurement Conference (IMC), November 2011.

Scharf & Ford Informational [Page 25]

RFC 6897 MPTCP API March 2013

Appendix A. Requirements on a Future Advanced MPTCP API

A.1. Design Considerations

 Multipath transport results in many degrees of freedom. The basic
 MPTCP API only defines a minimum set of the API extensions for the
 interface between the MPTCP layer and applications, which does not
 offer much control of the MPTCP implementation’s behavior. A future,
 advanced API could address further features of MPTCP and provide more
 control.

 Applications that use TCP may have different requirements on the
 transport layer. While developers have become used to the
 characteristics of regular TCP, new opportunities created by MPTCP
 could allow the service provided to be optimized further. An
 advanced API could enable MPTCP-aware applications to specify
 preferences and control certain aspects of the behavior, in addition
 to the simple control provided by the basic interface. An advanced
 API could also address aspects that are completely out of scope of
 the basic API, for example, the question of whether a receiving
 application could influence the sending policy. A better integration
 with TLS could be another relevant objective (cf. Section 6.1) that
 requires further work.

 Furthermore, an advanced MPTCP API could be part of a new overall
 interface between the network stack and applications that addresses
 other issues as well, such as the split between identifiers and
 locators. An API that does not use IP addresses (but instead uses,
 e.g., the connectbyname() function) would be useful for numerous
 purposes, independent of MPTCP.

 It has also been suggested that a separate address family called
 AF_MULTIPATH [20] be used. This separate address family could be
 used to exchange multiple addresses between an application and the
 standard sockets API, but it would be a more fundamental change
 compared to the basic API described in this document.

 This appendix documents a list of potential usage scenarios and
 requirements for the advanced API. The specification and
 implementation of a corresponding API are outside the scope of this
 document.

Scharf & Ford Informational [Page 26]

RFC 6897 MPTCP API March 2013

A.2. MPTCP Usage Scenarios and Application Requirements

 There are different MPTCP usage scenarios. An application that
 wishes to transmit bulk data will want MPTCP to provide a high-
 throughput service immediately, through creating and maximizing
 utilization of all available subflows. This is the default MPTCP use
 case.

 But at the other extreme, there are applications that are highly
 interactive but require only a small amount of throughput, and these
 are optimally served by low latency and jitter stability. In such a
 situation, it would be preferable for the traffic to use only the
 lowest-latency subflow (assuming it has sufficient capacity), maybe
 with one or two additional subflows for resilience and recovery
 purposes. The key challenge for such a strategy is that the delay on
 a path may fluctuate significantly and that just always selecting the
 path with the smallest delay might result in instability.

 The choice between bulk data transport and latency-sensitive
 transport affects the scheduler in terms of whether traffic should
 be, by default, sent on one subflow or across several subflows. Even
 if the total bandwidth required is less than that available on an
 individual path, it is desirable to spread this load to reduce stress
 on potential bottlenecks, and this is why this method should be the
 default for bulk data transport. However, that may not be optimal
 for applications that require latency/jitter stability.

 In the case of the latter option, a further question arises: Should
 additional subflows be used whenever the primary subflow is
 overloaded, or only when the primary path fails (hot standby)? In
 other words, is latency stability or bandwidth more important to the
 application? This results in two different options: Firstly, there
 is the single path that can overflow into an additional subflow; and
 secondly, there is the single path with hot standby, whereby an
 application may want an alternative backup subflow in order to
 improve resilience. In case data delivery on the first subflow
 fails, the data transport could immediately be continued on the
 second subflow, which is idle otherwise.

 Yet another complication is introduced with the potential that MPTCP
 introduces for changes in available bandwidth as the number of
 available subflows changes. Such jitter in bandwidth may prove
 confusing for some applications, such as video or audio streaming,
 that dynamically adapt codecs based on available bandwidth. Such
 applications may prefer MPTCP to attempt to provide a consistent
 bandwidth as far as is possible and avoid maximizing the use of all
 subflows.

Scharf & Ford Informational [Page 27]

RFC 6897 MPTCP API March 2013

 A further, mostly orthogonal question is whether data should be
 duplicated over the different subflows, in particular if there is
 spare capacity. This could improve both the timeliness and
 reliability of data delivery.

 In summary, there are at least three possible performance objectives
 for multipath transport:

 1. High bandwidth

 2. Low latency and jitter stability

 3. High reliability

 These are not necessarily disjoint, since there are also broadband
 interactive applications that require both high-speed bulk data
 traffic and a low latency and jitter.

 In an advanced API, applications could provide high-level guidance to
 the MPTCP implementation concerning these performance requirements,
 for instance, which requirement is considered to be the most
 important. The MPTCP stack would then use internal mechanisms to
 fulfill this abstract indication of a desired service, as far as
 possible. This would affect the assignment of data (including
 retransmissions) to existing subflows (e.g., ’use all in parallel’,
 ’use as overflow’, ’hot standby’, ’duplicate traffic’) as well as the
 decisions regarding when to set up additional subflows to which
 addresses. In both cases, different policies can exist, which can be
 expected to be implementation-specific.

 Therefore, an advanced API could provide a mechanism for how
 applications can specify their high-level requirements in an
 implementation-independent way. One possibility would be to select
 one "application profile" out of a number of choices that
 characterize typical applications. Yet, as applications today do not
 have to inform TCP about their communication requirements, it
 requires further studies as to whether such an approach would be
 realistic.

 Of course, independent of an advanced API, such functionality could
 also partly be achieved by MPTCP-internal heuristics that infer some
 application preferences, e.g., from existing socket options, such as
 TCP_NODELAY. Whether this would be reliable, and indeed appropriate,
 is for further study.

Scharf & Ford Informational [Page 28]

RFC 6897 MPTCP API March 2013

A.3. Potential Requirements on an Advanced MPTCP API

 The following is a list of potential requirements for an advanced
 MPTCP API beyond the features of the basic API. It is included here
 for information only:

 REQ5: An application should be able to establish MPTCP connections
 without using IP addresses as locators.

 REQ6: An application should be able to obtain usage information and
 statistics about all subflows (e.g., ratio of traffic sent
 via this subflow).

 REQ7: An application should be able to request a change in the
 number of subflows in use, thus triggering removal or
 addition of subflows. An even finer control granularity
 would be a request for the establishment of a specific
 subflow to a provided destination or a request for the
 termination of a specified, existing subflow.

 REQ8: An application should be able to inform the MPTCP
 implementation about its high-level performance requirements,
 e.g., in the form of a profile.

 REQ9: An application should be able to indicate communication
 characteristics, e.g., the expected amount of data to be
 sent, the expected duration of the connection, or the
 expected rate at which data is provided. Applications may in
 some cases be able to forecast such properties. If so, such
 information could be an additional input parameter for
 heuristics inside the MPTCP implementation, which could be
 useful, for example, to decide when to set up additional
 subflows.

 REQ10: An application should be able to control the automatic
 establishment/termination of subflows. This would imply a
 selection among different heuristics of the path manager,
 e.g., ’try as soon as possible’, ’wait until there is a bunch
 of data’, etc.

 REQ11: An application should be able to set preferred subflows or
 subflow usage policies. This would result in a selection
 among different configurations of the multipath scheduler.
 For instance, an application might want to use certain
 subflows as backup only.

Scharf & Ford Informational [Page 29]

RFC 6897 MPTCP API March 2013

 REQ12: An application should be able to control the level of
 redundancy by telling whether segments should be sent on more
 than one path in parallel.

 REQ13: An application should be able to control the use of fate-
 sharing of the MPTCP connection and the initial subflow,
 e.g., to overwrite system policies.

 REQ14: An application should be able to register for callbacks to be
 informed of changes to subflows on an MPTCP connection. This
 "push" interface would allow the application to make timely
 logging and configuration changes, if required, and would
 avoid frequent polling of information.

 An advanced API fulfilling these requirements would allow application
 developers to more specifically configure MPTCP. It could avoid
 suboptimal decisions of internal, implicit heuristics. However, it
 is unclear whether all of these requirements would have a significant
 benefit to applications, since they are going above and beyond what
 the existing API to regular TCP provides.

 A subset of these functions might also be implemented system-wide or
 by other configuration mechanisms. These implementation details are
 left for further study.

A.4. Integration with the SCTP Sockets API

 The advanced API may also integrate or use the SCTP sockets API. The
 following functions that are defined for SCTP have functionality
 similar to the basic MPTCP API:

 o sctp_bindx()

 o sctp_connectx()

 o sctp_getladdrs()

 o sctp_getpaddrs()

 o sctp_freeladdrs()

 o sctp_freepaddrs()

 The syntax and semantics of these functions are described in [13].

 A potential objective for the advanced API is to provide a consistent
 MPTCP and SCTP interface to the application. This is left for
 further study.

Scharf & Ford Informational [Page 30]

RFC 6897 MPTCP API March 2013

Authors’ Addresses

 Michael Scharf
 Alcatel-Lucent Bell Labs
 Lorenzstrasse 10
 70435 Stuttgart
 Germany

 EMail: michael.scharf@alcatel-lucent.com

 Alan Ford
 Cisco
 Ruscombe Business Park
 Ruscombe, Berkshire RG10 9NN
 UK

 EMail: alanford@cisco.com

Scharf & Ford Informational [Page 31]

