| ndependent Subni ssi on S. Barbato

Request for Comments: 6896 S. Dorigotti

Cat egory: I nfornmational T. Fossati, Ed

I SSN: 2070-1721 KoanlLogi c
March 2013

SCS: KoanLogi ¢’ s Secure Cookie Sessions for HITP
Abst r act

This meno defines a generic URI and HTTP-header-friendly envel ope for
carrying symetrically encrypted, authenticated, and origin-

ti mestanped tokens. It also describes one possible usage of such
tokens via a sinple protocol based on HTTP cooki es.

Secure Cooki e Session (SCS) use cases cover a w de spectrum of
applications, ranging fromdistribution of authorized content via
HTTP (e.g., with out-of-band signed URIS) to securing browser
sessions wi th di skl ess enbedded devices (e.g., Small Ofice, Hone
Ofice (SOHO routers) or web servers with high availability or | oad-
bal anci ng requirenments that my want to del egate the handling of the
application state to clients instead of using shared storage or
forced peering.

Status of This Meno

Thi s docunent is not an Internet Standards Track specification; it is
publ i shed for informational purposes.

This is a contribution to the RFC Series, independently of any other
RFC stream The RFC Editor has chosen to publish this docunment at
its discretion and makes no statenent about its val ue for

i npl enentati on or deploynment. Docunents approved for publication by
the RFC Editor are not a candidate for any | evel of Internet

St andard; see Section 2 of RFC 5741.

I nformati on about the current status of this document, any errata,

and how to provide feedback on it may be obtained at
http://ww. rfc-editor.org/info/rfc6896.

Bar bato, et al. | nf or mati onal [ Page 1]



RFC 6896 SCS March 2013

Copyri ght Notice

Copyright (c) 2013 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent.

Bar bato, et al. I nf or mati onal [ Page 2]



RFC 6896 SCS March 2013

Tabl e of Contents

1. IntroduCti On ... e 4
2. Requirenments LanQuUAage . . . ... ...ttt e 4
3. SCS ProtoCol . ... 5
3.1. SCS Cookie DesCription ......... ..y 5

3. L. L. ATIME 6

3. L. 2. DATA e 6

3. L. 3. Tl D o 7

R 7

3. 1.5, AUTHTAG . .. e e e e e 7

3.2. Crypto Transform ....... ... 8
3.2.1. Choice and Role of the Franming Synbol ............... 8

3.2.2. Gpher Set ... ... 9

3.2.3. CoNMPresSi ON ...t e 9

3.2.4. Cookie Encoding ......... ... 9

3.2.5. Qutbound Transform ........ ... . .. .. . .. .. i, 9

3.2.6. Inbound Transform ....... ... . . .. . . i 10

3.3. PDU EXChange .. ...... .. e e e 12
3.3.1. Cookie Attributes ........ ... .. . . .. e 12
3.3, L. 1. EXPIreS ot 12

3.3. 1.2, MAX-AQE .t 12

3.3.1.3. DOMBIN .. 13

3.3.1.4. SeCUre ... .. 13

3.3.1.5. HtpOnly ... .. 13

4. Key Managenent and Session State ............ ... . ... . . 13
5. Cookie Size Considerations .......... .. ... ... 15
6. Acknow edgement S ... .. ... 15
7. Security Considerati ONS . ... ... ... . 15
7.1. Security of the Cryptographic Protocol .................... 15
7.2. lInmpact of the SCS Cookie Mudel ............. ... .. ... ........ 16
7.2.1. Ad Cookie Replay ........c. i 16

7.2.2. Cookie Deletion ...... ... . .. . . . 17

7.2.3. Cookie Sharing or Theft ......... ... .. ... ... ... ..... 18

7.2.4. Session Fixation ........ ... .. . 18

7.3. Advantages of SCS over Server-Side Sessions ............... 19

8. References . ... ... 20
8.1. Normative References ........ ... .. .. . . . .. 20
8.2. Informative References ....... ... ... . . . . . . .. i 20
Appendi X A EXanpl @S ... 22
A L. No CompressSi ON ..ot e e e 22

A 2. Use CoNPressSi ON ...ttt e e e e e e e e e 22

Bar bato, et al. I nf or mati onal [ Page 3]



RFC 6896 SCS March 2013

1

| ntroducti on

This menmo defines a generic URI and HTTP-header-friendly envel ope for
carrying symetrically encrypted, authenticated, and origin-
ti mest anped tokens.

It is generic in that it does not force any specific format upon the
aut henticated information, which makes SCS tokens flexible, easy, and
secure to use in many different scenari os.

It is URI and HITP header friendly, as it has been explicitly
designed to be conpatible with both the ABNF "token" syntax [RFC2616]
(the one used for, e.g., Set-Cookie and Cooki e headers) and the path
or query syntax of HTTP URIs.

This menmo al so descri bes one possi bl e usage of such tokens via a

si mpl e protocol based on HITP cookies that allows the establishnent
of "client node" sessions. This is not their sole possible use.
Wil e no other operational patterns are outlined here, it is expected
that SCS tokens nay be easily enployed as a building block for other
types of HITP-based applications that need to carry in-band secured

i nf or mati on.

When SCS tokens are used to inplenent client-node cookie sessions,
the SCS i npl enenter must fully understand the security inplications
entailed by the act of delegating the whole application state to the
client (browser). |In this regard, some hopefully useful security
consi derati ons have been collected in Section 7.2. However, please
note that they may not cover all possible scenarios; therefore, they
nust be wei ghed carefully against the specific application threat
nodel .

An SCS server may be inplenented within a web application by neans of
a user library that exposes the core SCS functionality and | eaves
explicit control over SCS tokens to the progranmer, or transparently,
by hiding a "diskless session" facility behind a generic session API
abstraction, for exanple. SCS inplenenters are free to choose the
nodel that best suits their needs.

Requi renent s Language
The key words "MJST", "MJST NOT*, "REQU RED', "SHALL", "SHALL NOT",

"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [ RFC2119].

Bar bato, et al. I nf or mati onal [ Page 4]



RFC 6896 SCS March 2013

3.

3.

SCS Protoco
The SCS protocol defines:
o the SCS cookie structure and encoding (Section 3.1);

o the cryptographic transformations involved in SCS cookie creation
and verification (Section 3.2);

o the HITP-based PDU exchange that uses the Set-Cookie and Cookie
HTTP headers (Section 3.3);

o the underlying key managenent nodel (Section 4).

Note that the PDUis transnitted to the client as an opaque data

bl ock; hence, no interpretation nor validation is necessary. The
single requirenent for client-side support of SCS is cookie
activation on the user agent. The origin server is the sole actor

i nvol ved in the PDU mani pul ati on process, which greatly sinplifies
the crypto operations -- especially key nanagenent, which is usually
a pesky task.

In the follow ng sections, we assune S to be one or nore

i nt erchangeabl e HTTP server entities (e.g., a server pool in a |oad-
bal anced or high-availability environment) and C to be the client

wi th a cooki e-enabl ed browser or any user agent wth equival ent
capabilities.

1. SCS Cookie Description

S and C exchange a cookie (Section 3.3) whose cookie value consists
of a sequence of adjacent non-enpty val ues, each of which is the 'URL
and Filenane safe’ Base64 encodi ng [ RFC4648] of a specific SCS field.

(Hereafter, the encoded and raw versions of each SCS field are
di stingui shed based on the presence, or |ack thereof, of the
prefix in their nane, e.g., eATIME and ATI ME.)

e

Each SCS field is separated by its left and/or right sibling by neans
of the %7c ASCI| character (i.e., '|’), as follows:

Bar bato, et al. I nf or mati onal [ Page 5]



RFC 6896 SCS March 2013

scs-cooki e scs- cooki e- nane scs- cooki e-val ue

scs- cooki e- nane = t oken

scs-cooki e-value = eDATA "|" eATIME "|" eTID "|" elV "|" eAUTHTAG
eDATA = l1*base64url - character

eATI VE = l1*baseb64url - character

eTI D = 1*base64url - char act er

el Vv = 1*base64url - char act er

e AUTHTAG = 1*base64url - char act er

Figure 1

Confidentiality is limted to the application-state information
(i.e., the DATA field), while integrity and authentication apply to
the entire cookie val ue.

The foll owi ng subsections describe the syntax and semantics of each
SCS cookie field.

3.1.1. ATIME

Absolute tinestanp relating to the last read or wite operation
performed on session DATA, encoded as a HEX string hol di ng the nunber
of seconds since the UNI X epoch (i.e., since 00:00:00, Jan 1 1970).

This value is updated with each client contact and is used to
identify expired sessions. |If the delta between the received ATI ME
value and the current tine on Sis larger than a predefined

"sessi on_max_age" (which is chosen by S as an application-I|eve
paranmeter), a session is considered to be no longer valid, and is
therefore rejected.

Such an expiration error may be used to force user |ogout from an
SCS- cooki e- based session, or hooked in the web application logic to
di splay an HTM. formrequiring revalidation of user credentials.

3.1.2. DATA
Bl ock of encrypted and optionally conpressed data, possibly
containing the current session state. Note that no restriction is
i nposed on the cleartext structure: the protocol is conpletely
agnostic as to inner data | ayout.

CGeneral |y speaking, the plaintext is the "normal" cookie that woul d
have been exchanged by S and Cif SCS had not been used.

Bar bato, et al. I nf or mati onal [ Page 6]



RFC 6896 SCS March 2013

3.1.3. TID

This identifier is equivalent to a Security Paraneter Index (SPl) in
a Data Security SA [RFC3740]) and consists of an ASCI| string that
uniquely identifies the transformset (keys and algorithnms) used to
generate this SCS cooki e.

SCS assunes that a key-agreenent/distribution nechani smexists for
environnents in which S consists of nultiple servers that provide a
uni que external identifier for each transform set shared ampbngst poo
menbers.

Such a nechani sm nmay safely downgrade to a periodic key refresh, if
there is only one server in the pool and the key is generated in
place -- i.e., it is not handl ed by an external source.

However, when many servers act concurrently upon the sanme pool, a
nore sophisticated protocol, whose specification is out of the scope
of the present docunment, nust be devised (ideally, one that is able
to handl e key agreenent for dynami c peer groups in a secure and
efficient way, e.g., [CLIQUES] or [Steiner]).

3.1.4. 1V

Initialization Vector used for the encryption algorithm (see
Section 3.2).

In order to avoid providing correlation information to a possible
attacker with access to a sanple of SCS cookies created using the
sanme TID, the IV MIUST be created randomy for each SCS cooki e.

3.1.5. AUTHTAG

Aut hentication tag that is based on the plain string concatenation of
the base64url -encoded DATA, ATIME, TID, and IV fields and is framed
by the "|" separator (see also the definition of the Box() function
in Section 3.2):

AUTHTAG = HVAC(base64url (DATA) "|"
base64url| (ATIME) "|"
base64url ( TI D) "
base64url (1V))

Note that, froma cryptographic point of view, the "|" character
provides explicit authentication of the I ength of each supplied
field, which results in a robust counterneasure agai nst splicing
attacks.

Bar bato, et al. I nf or mati onal [ Page 7]



RFC 6896 SCS March 2013

3.2. Crypto Transform

SCS coul d potentially use any conbination of primtives capable of
perform ng aut henticated encryption. |In practice, an
encrypt -t hen- MAC approach [Kohno] with encryption utilizing the

Ci pher Bl ock Chaining (CBC) node and Hashed Message Aut hentication
Code (HMAC) [ RFC2104] authentication was chosen.

The two al gorithnms MJST be associated with two i ndependent keys.

The foll owi ng conventions will be used in the algorithmdescription
(Sections 3.2.5 and 3.2.6):

o Enc/Dec(): block encryption/decryption functions (Section 3.2.2);
o HMAC(): authentication function (Section 3.2.2);

o Conp/ Unconp(): conpression/ deconpression functions
(Section 3.2.3);

o e/d(): cookie-value encoding/decodi ng functions (Section 3.2.4);
o RAND(): random nunber generator [RFC4086];

o Box(): string boxing function. It takes an arbitrary nunber of
base64url -encoded strings and returns the string obtai ned by
concatenating each input in the exact order in which they are
listed, separated by the "|" char. For exanple:

Box("akxl", "MIM', "Hadvo") = "akxl|MIM Hadvo"
3.2.1. Choice and Role of the Fram ng Synbo

Note that the adoption of "|" as the fram ng synmbol in the Box()
function is arbitrary: any char allowed by the cookie-value ABNF in
[ RFC6265] is safe to be used as long it has enpty intersection with
the base64url al phabet.

It is also worth noting that the role of the fram ng synbol, which
provides an inplicit length indicator for each of the atons, is key
to the accuracy and security of SCS

This is especially relevant when the authentication tag is conputed
(see Section 3.1.5). Mre specifically, the explicit inclusion of
the fram ng synbol within the HVAC i nput seals the integrity of the
bl ob as a whole together with each of its conposing atons in their
exact position.

Bar bato, et al. I nf or mati onal [ Page 8]



RFC 6896 SCS March 2013

This feature makes the protocol robust against attacks ained at
di srupting the security of SCS PDUs by freely nmoving boundari es
bet ween adj acent at omns.

3.2.2. Cipher Set
| mpl ementers MUST support at |east the follow ng al gorithms:
0 AES-CBC-128 for encryption [N ST-AES];
o HVAC-SHA1 with a 128-bit key for authenticity and integrity,

whi ch appear to be sufficiently secure in a broad range of use cases
([Bellare] [RFC6194]), are widely available, and can be inpl enented
in a few kil obytes of nmenory, providing an extrenely valuable feature
for constrained devices.

One shoul d consider using |arger cryptographic key |engths (192- or
256-bit) according to the actual security and overall system
performance requirenents.

3.2.3. Conpression

Conpressi on, which may be useful or even necessary when handling

| arge quantities of data, is not conpulsory (in such a case, Conp/
Unconp is replaced by an identity matrix). |If this function is
enabl ed, the DEFLATE [ RFC1951] format MJST be supported.

Sone advice to SCS users: conpression should not be enabl ed when
handling relatively short and entropic state, such as pseudorandom
session identifiers. Instead, large and quite regul ar state bl obs
could get a significant boost when conpressed.

3.2.4. Cookie Encoding

SCS cooki e val ues MJST be encoded using the al phabet that is URL and
filenanme safe (i.e., base64url) defined in Section 5 of Base64

[ RFC4648]. This encoding is very w despread, falls smoothly into the
encodi ng rules defined in Section 4.1.1 of [RFC6265], and can be
safely used to supply SCS-based authorization tokens within a UR
(e.g., in a query string or straight into a path segnent).

3.2.5. Qutbound Transform
The output data transformation, as seen by the server (the only actor

that explicitly manipul ates SCS cookies), is illustrated by the
pseudocode in Figure 2.

Bar bato, et al. I nf or mati onal [ Page 9]



RFC 6896 SCS March 2013

[V := RAND()

ATI ME : = NOW

DATA : = Enc(Conp(pl ai n-text-cookie-value), V)
AUTHTAG : = HVAC( Box(e(DATA), e(ATIME), e(TID), e(lV)))

PohE

Figure 2

A new Initialization Vector is randomy picked (step 1). As
previously mentioned (Section 3.1.4), this step is necessary to avoid
providing correlation information to an attacker

A new ATIME value is taken as the current timestanp according to the
server clock (step 2).

Since the only user of the ATIME field is the server, it is
unnecessary for it to be synchronized with the client -- though it
needs to use a fairly stable clock. However, if nultiple servers are
active in a | oad-bal anci ng configuration, clocks SHOULD be
synchroni zed to avoid errors in the calcul ati on of session expiry.

The pl ai ntext cookie value is then conpressed (if needed) and
encrypted by using the key-set identified by TID (step 3).

If the length of (conpressed) state is not a nultiple of the block
size, its value MIST be filled with as many paddi ng bytes of equa
value as the pad length -- as defined by the schene given in Section
6.3 of [RFC5652].

Then, the authentication tag, which enconpasses each SCS field (al ong
with lengths and relative positions), is conputed by HVAC i ng t he

"|"-separated concatenation of their base64url representations using
the key-set identified by TID (step 4).

Finally, the SCS-cookie-value is created as foll ows:

scs-cooki e-val ue = Box(e(DATA), e(ATIME), e(TID, e(lV),
e( AUTHTAG) )

3.2.6. Inbound Transform
The i nbound transformation is described in Figure 3. Each of the

"e' -prefixed nanes shown has to be interpreted as the
base64ur| - encoded val ue of the correspondi ng SCS field.

Bar bato, et al. I nf or mati onal [ Page 10]



RFC 6896 SCS March 2013

If (split_fields(scs-cookie-value) == ok)
tid := d(eTlD
If (tid is available)
tag’ := d(eAUTHTAG
tag : = HVAC(Box(eDATA, eATIME, eTID, elV))
If (tag = tag’)
atinme’ := d(eATl ME)
I[f (NOW- atine’ <= session_max_age)
iv: = d(elV)
dat a’ d( eDATA)
9. state : = Unconp(Dec(data’, iv'))
10. El se di scard PDU
11. El se di scard PDU
12. El se discard PDU
13. El se discard PDU

ONOTRWNEO

Figure 3

First, the inbound scs-cookie-value is broken into its conponent
fields, which MJST be exactly 5, and each at |east the m nimum Il ength
specified in Figure 3 (step 0). 1In case any of these prelininary
checks fails, the PDU is discarded (step 13); else, TID is decoded to
al | ow key-set | ookup (step 1).

If the cryptographic credentials (encryption and authentication
algorithnms and keys identified by TID) are unavailable (step 12), the
i nbound SCS cookie is discarded since its value has no chance to be
interpreted correctly. This may happen for several reasons: e.g., if
a device without storage has been reset and | oses the credentials
stored in RAM if a server pool node desynchronizes, or in case of a
key conprom se that forces the invalidation of all current TIDs, etc.

When a valid key-set is found (step 2), the AUTHTAG field is decoded
(step 3) and the (still) encoded DATA, ATIME, TID, and IV fields are
supplied to the primtive that conputes the authentication tag (step

4) .

If the tag conputed using the |ocal key-set natches the one carried
by the supplied SCS cookie, we can be confident that the cookie
carries authentic material; otherwi se, the SCS cookie is discarded
(step 11).

Then the age of the SCS cookie (as deduced by ATIME field val ue and
current time provided by the server clock) is decoded and conpared to
the maximumtinme-to-live (TTL) defined by the session_max_age

par anet er .

Bar bato, et al. I nf or mati onal [ Page 11]



RFC 6896 SCS March 2013

If the "age" check passes, the DATA and IV fields are finally decoded
(step 8), so that the original plaintext data can be extracted from
the encrypted, and optionally conpressed, blob (step 9).

Note that steps 5 and 7 allow any altered packets or expired sessions
to be discarded, hence avoi di ng unnecessary state decryption and
deconpr essi on.

3.3. PDU Exchange

SCS can be nodeled in the sane manner as a typical store-and-forward

protocol in which the endpoints are S, consisting of one or nore HITP
servers and the client C, an internedi ate node used to "tenporarily"

store the data to be successively forwarded to S.

In brief, S and C exchange an i mrutabl e cooki e data bl ock
(Section 3.1): the state is stored on the client at the first hop and
then restored on the server at the second, as in Figure 4.

1. dunp-state:
S-->C
Set - Cooki e: ANY_COOKI E_NAME=Kr dPagFes_5ma- ZU uMsww MTMD. . .
Expires=...; Path=...; Domain=...;
2. restore-state:
C-->5S
Cooki e: ANY_COCKI E_NAME=Kr dPagFes_5na- ZU uMsww| MTMD. . .
Figure 4
3.3.1. Cookie Attributes

In the foll owi ng subsections, a series of recommendations is provided
in order to maximze SCS PDU fitness in the generic cookie ecosystem

3.3.1.1. Expires

I f an SCS cookie includes an Expires attribute, then the attribute
MUST be set to a val ue consistent with session_max_age.

For maxi mum conpatibility with existing user agents, the tinestanp
val ue MUST be encoded in rfcll23-date format, which requires a
4-digit year.

3.3.1.2. Max-Age

Since not all User Agents (UAs) support this attribute, it MJST NOT
be present in any SCS cookie.

Bar bato, et al. I nf or mati onal [ Page 12]



RFC 6896 SCS March 2013

3.3.1.3. Domain

SCS cooki es MUST include a Domain attribute conpatible with
applicati on usage.

Atrailing '.” MJST NOT be present in order to mnimze the
possibility of a user agent ignoring the attribute val ue.

3.3.1.4. Secure

This attribute MIST al ways be asserted when SCS sessions are carried
over a Transport Layer Security (TLS) channel

3.3.1.5. HtpOly
This attribute SHOULD al ways be asserted.
4. Key Managenent and Session State

Thi s specification provi des sone comon recomendati ons and practices
rel evant to cryptographic key managenent.

In the following, the term’key references both encryption and HVAC
keys.

0 The key SHOULD be generated securely follow ng the randommess
recomendati ons i n [ RFC4086] ;

o the key SHOULD only be used to generate and verify SCS PDUs;

o the key SHOULD be replaced regularly as well as any tinme the
format of SCS PDUs or cryptographic algorithms changes.

Furthernore, to preserve the validity of active HITP sessions upon
renewal of cryptographic credentials (whenever the value of TID
changes), an SCS server MJST be capabl e of managing at |east two
transforns contenporarily: the currently instantiated one and its
pr edecessor.

Each transform set SHOULD be associated with an attribute pair
"refresh” and "expiry", which is used to identify the exposure linmts
(interns of tine or quantity of encrypted and/or authenticated
bytes, etc.) of related cryptographic material

Bar bato, et al. I nf or mati onal [ Page 13]



RFC 6896 SCS March 2013

In particular, the "refresh" attribute specifies the tine Iimt for

substitution of transformset T with new naterial T . Fromthat
nonment onwards, and for an anobunt of tine determined by "expiry", al
new sessions will be created using T', while the active T-protected

ones go through a translati on phase in which

o the inbound transfornmati on authenticates and decrypts/deconpresses
using T (identified by TID);

o the outbound transformation encrypts/conpresses and aut henticates
using T .

T {not valid yet} [------------"--------- R T

L I | {no I onger valid}
refresh refresh + expiry

Figure 5

As shown in Figure 5, the duration of the HITP session MJST fit
within the lifetine of a given transformset (i.e., fromcreation
time until "refresh" + "expiry").

In practice, this should not be an obstacle because the | ongevity of
the two entities (HTTP session and SCS transformset) should differ
by one or two orders of mmgnitude.

An SCS server may take this into account by determining the duration
of a session adaptively according to the expected deletion tinme of
the active T, or by setting the "expiry" value to at |east the

maxi mum lifetinme all owed by an HTTP session

Since there is also only one refresh attribute in situations with
nore than one key (e.g., one for encryption and one for
aut hentication) within the same T, the smallest value is chosen

It is critical for the correctness of the protocol that in case
mul ti pl e equival ent SCS servers are used in a pool, all of themshare
the same view of tinme (see also Section 3.2.5) and keying materi al

As far as the latter is concerned, SCS does not mandate the use of

any specific key-sharing nechanism and will keep working correctly
as long as the said nechanismis able to provide a single, coherent
vi ew of the keys shared by pool nenbers -- while conformng to the

recomendati ons given in this section

Bar bato, et al. I nf or mati onal [ Page 14]



RFC 6896 SCS March 2013

5. Cookie Size Considerations

In general, SCS cookies are bigger than their plaintext counterparts.
This is due to the foll owi ng reasons:

o inflation of the Base64 encoding of state data (approxinmately 1.4
times the original size, including the encryption padding);

o the fixed size increnment (approximately 80/90 bytes) caused by SCS
fields and fram ng overhead.

While the forner is a price the user nust always pay proportionally
to the original data size, the latter is a fixed quantum which can
be huge on small anpbunts of data but is quickly absorbed as soon as
dat a becones bi g enough

The foll owi ng table conpares byte | engths of SCS cookies (with a
four-byte TID) and correspondi ng pl ai ntext cookies in a worst-case

scenario, i.e., when no conpression is in use (or applicable).
plain | SCS
....... .
11 | 128
102 | 256
285 | 512
651 | 1024
1382 | 2048
2842 | 4096

The | argest unconpressed cooki e value that can be safely supplied to
SCS is about 2.8 KB

6. Acknow edgenents
We would like to thank Ji m Schaad, David Wagner, Lorenzo Cavall aro,
WIlly Tarreau, Tobias Gondrom John M chener, Sean Turner, Barry
Lei ba, Robert Sparks, Stephen Farrell, Stewart Bryant, and Nevi
Brownl ee for their val uable feedback on this docunent.

7. Security Considerations

7.1. Security of the Cryptographic Protoco
From a cryptographic architecture perspective, the described

mechani sm can be easily traced to an "encode then encrypt-then- MAC'
schene (Encode-then-EtM as described in [Kohno].

Bar bato, et al. I nf or mati onal [ Page 15]



RFC 6896 SCS March 2013

G ven a "provably-secure" encryption schene and MAC (as for the

al gorithms nandated in Section 3.2.2), the authors of [Kohno]
denonstrate that their conposition results in a secure authenticated
encryption schene.

7.2. Inpact of the SCS Cookie Mde

The fact that the server does not own the cookie it produces, gives
rise to a series of consequences that rmust be clearly understood when
one envi sages the use of SCS as a cookie provider and validator for

hi s/ her application.

In the follow ng subsections, a set of different attack scenarios
(together with correspondi ng counterneasures where applicable) are
identified and anal yzed.

7.2.1. Ad Cookie Replay
SCS doesn’t address replay of old cookie val ues.

In fact, there is nothing that assures an SCS application about the
client having returned the nost recent version of the cookie.

As with "server-side" sessions, if an attacker gains possession of a
gi ven user’'s cookies -- via sinple passive interception or another
technique -- he/she will always be able to restore the state of an
i ntercepted session by representing the captured data to the server.

The ATIME value, along with the session_nax_age configuration
paranmeter, allows SCS to mitigate the chances of an attack (by
forcing a tinme w ndow outside of which a given cookie is no | onger
valid) but cannot exclude it conpletely.

A count er measur e agai nst the "passive interception and repl ay"
scenario can be applied at transport/network |evel using the anti-
repl ay services provided by e.g., Secure Socket Layer/Transport Layer
Security (SSL/TLS) [RFC5246] or |Psec [ RFC4301].

A native solution is not in scope with the security properties

i nherent to an SCS cookie. Hence, an application wishing to be

repl ay-resi stant nmust put in place some ad hoc nechanismto prevent
clients (both rogue and legitimte) from(a) being able to replay old
cookies as valid credentials and/or (b) getting any advantage by

repl ayi ng them

Bar bato, et al. I nf or mati onal [ Page 16]



RFC 6896 SCS March 2013

The following illustrate sone typical use cases:

o

It

Session inactivity timeout scenario (inplicit invalidation): use
the session_max_age paraneter if a global setting is viable, else
pl ace an explicit TTL in the cookie (e.qg.

validity period="start tinme, duration") that can be verified by
the application each tinme the client presents the SCS cooki e.

Sessi on voi dance scenario (explicit invalidation): put a randomy
chosen string into each SCS cookie (cid="$(randon())") and keep a
list of valid session cids against which the SCS cooki e presented
by the client can be checked. Wen a cookie needs to be

i nval i dated, delete the corresponding cid fromthe list. The
described method has the drawback that, in case a non-permanent
storage is used to archive valid cids, a reboot/restart woul d
invalidate all sessions (it can't be used when |S| > 1).

One-shot transaction scenario (epheneral): this is a variation on
the previous thene when sessions are consuned within a single
request/response. Put a nonce="$(randon())" within the state

i nformati on and keep a |list of not-yet-consuned nonces in RAM
Once the client presents its cookie credential, the enbodi ed nonce
is deleted fromthe list and will be therefore di scarded whenever
repl ayed

TLS binding scenario: the server application nust run on TLS, be
able to extract information related to the current TLS session
and store it in the DATA field of the SCS cookie itself [RFC5056].
The establishment of this secure channel binding prevents any
third party fromreusing the SCS cookie, and drops its val ue
altogether after the TLS session is term nated -- regardl ess of
the lifetime of the cookie. This approach suffers a scalability
problemin that it requires each SCS session to be handl ed by the
same client-server pair. However, it provides a robust nodel and
an af fordabl e conprom se when security of the session is
exceptionally valuable (e.g., a user interacting w th his/her
online banking site).

is worth noting that in all but the latter scenario, if an

attacker is able to use the cookie before the legitimate client gets
a chance to, then the inpersonation attack will always succeed.

7.2.

Cooki e Del etion

A direct and inportant consequence of the m ssing owner role in SCS
is that a client could intentionally delete its cookie and return
not hi ng.

Bar bato, et al. I nf or mati onal [ Page 17]



RFC 6896 SCS March 2013

The application protocol has to be designed so there is no incentive
to do so, for instance:

o it is safe for the cookie to represent some kind of positive
capability -- the possession of which increases the client’s
powers;

o it is not safe to use the cookie to represent negative
capabilities -- where possession reduces the client’s powers -- or
for revocation.

Note that this behavior is not equivalent to cookie renoval in the
"server-side" cookie nodel, because in case of missing cookie backup
by other parties (e.g., the application using SCS), the client could
sinmply make it di sappear once and for all

7.2.3. Cookie Sharing or Theft

Just like with plain cookies, SCS doesn’'t prevent sharing (both
voluntary and illegitimte) of cookies between nultiple clients.

In the context of voluntary cookie sharing, using HTTPS only as a
separate secure transport provider is useless: in fact, client
certificates are just as shareable as cookies. Instead, using sone
form of secure channel binding (as illustrated in Section 7.2.1) may
cancel this risk.

The risk of theft could be mtigated by securing the wire (e.g., via
HTTPS, |Psec, VPN, etc.), thus reducing the opportunity of cookie
stealing to a successful attack on the protocol endpoints.

In order to reduce the attack wi ndow on stol en cookies, an
application may choose to generate cookies whose lifetime is upper
bounded by the browsing session lifetime (i.e., by not attaching an
Expires attribute to them)

7.2.4. Session Fixation
Session fixation vulnerabilities [Kolsec] are not addressed by SCS
A nore sophisticated protocol involving active participation of the
UA in the SCS cookie mani pul ati on process woul d be needed: e.g., sone
form of chal |l enge/ response exchange initiated by the server in the

HTTP response and replied to by the UA in the next chai ned HTTP
request.

Bar bato, et al. I nf or mati onal [ Page 18]



RFC 6896 SCS March 2013

Unfortunately, the present specification, which is based on
[ RFC6265], sees the UA as a conpletely passive actor whose role is to
blindly paste the cookie value set by the server.

Nevert hel ess, the SCS cookies w appi ng nechani smnmay be used in the
future as a building block for a nore robust HITP state nmanagenent
pr ot ocol

7.3. Advantages of SCS over Server-Side Sessions

Note that all the above-mentioned vulnerabilities also apply to plain
cooki es, making SCS at |east as secure, but there are a few good
reasons to consider its security |level enhanced.

First of all, the confidentiality and authentication features
provi ded by SCS protect the cookie value, which is normally plaintext
and tanperabl e.

Furt hernore, neither of the comon vul nerabilities of server-side
sessions (session identifier (SID) prediction and SID brute-forcing)
can be exploited when using SCS, unless the attacker possesses
encryption and HVAC keys (both current ones and those relating to the
previous set of credentials).

More in general, no slicing nor altering operations can be done over
an SCS PDU wi t hout controlling the cryptographic key-set.

Bar bato, et al. I nf or mati onal [ Page 19]



RFC 6896

8. References

SCS March 2013

8.1. Nornmtive References

[ NI ST- AES]

[ RFC1951]

[ RFC2104]

[ RFC2119]

[ RFC2616]

[ RFCA086]

[ RFCA648]

[ RFC5652]

[ RFC6194]

[ RFC6265]

8. 2. | nformati

[Bel I are]

[ CLI QUES]

Bar bato, et al.

National Institute of Standards and Technol ogy, "Advanced
Encryption Standard (AES)", FIPS PUB 197, Novenber 2001,
<http://csrc.nist.gov/publications/fips/fipsl97/
fips-197. pdf >.

Deut sch, P., "DEFLATE Conpressed Data For nat
Speci fication version 1.3", RFC 1951, May 1996.

Krawczyk, H., Bellare, M, and R Canetti, "HMAC. Keyed-
Hashi ng for Message Authentication", RFC 2104,
February 1997.

Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997.

Fielding, R, Gettys, J., Mgul, J., Frystyk, H
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HITP/1.1", RFC 2616, June 1999.

East| ake, D., Schiller, J., and S. Crocker, "Randomess
Requi renents for Security", BCP 106, RFC 4086, June 2005.

Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, Cctober 2006.

Housl ey, R, "Cryptographic Message Syntax (CMS)",
STD 70, RFC 5652, Septenber 2009.

Pol k, T., Chen, L., Turner, S., and P. Hoffman, "Security
Consi derations for the SHA-O and SHA-1 Message- Di gest
Al gorithns", RFC 6194, March 2011.

Barth, A, "HTTP State Managenent Mechani sni', RFC 6265,
April 2011.

ve References

Bellare, M, "New Proofs for NVAC and HVAC. Security
Wt hout Collision-Resistance", 2006.

Steiner, M, Tsudik, G, and M Waidner, "Ciques: A New
Approach to Group Key Agreenment”, 1996.

I nf or mati onal [ Page 20]



RFC 6896

[ Kohno]

[ Kol sec]

[ REC3740]

[ RFC4301]

[ RFC5056]

[ RFC5246]

[ Steiner]

Bar bato, et al.

SCS March 2013

Kohno, T., Palacio, A, and J. Black, "Building Secure
Cryptographic Transforms, or How to Encrypt and MAC',
2003.

Kol sec, M, "Session Fixation Vulnerability in Wb-based
Applications", 2002.

Hardjono, T. and B. Wis, "The Milticast Goup Security
Architecture", RFC 3740, March 2004.

Kent, S. and K Seo, "Security Architecture for the
Internet Protocol", RFC 4301, Decenber 2005.

Wllianms, N., "On the Use of Channel Bindings to Secure
Channel s", RFC 5056, Novenber 2007.

Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

Steiner, M, Tsudik, G, and M Wiidner, "D ffie-Hellman
Key Distribution Extended to G oup Comruni cation", 1996.

I nf or mati onal [ Page 21]



RFC 6896 SCS March 2013

Appendi x A.  Exanpl es

The examples in this section have been created using the

scs’ test

tool bundled with Li bSCS, a free and opensource reference
i mpl enent ati on of the SCS protocol that can be found at
(http://github. com koanl ogi c/li bscs).

A 1.

No Conpressi on

The foll owi ng paraneters:

o

o

Pl ai nt ext cookie: "a state string"
AES- CBC- 128 key: "123456789abcdef"
HVAC- SHA1 key: "12345678901234567890"
TID "tid"

ATI ME: 1347265955

IV:
\ xb4\ xbd\ xe5\ x24\ xf 7\ xf 6\ x9d\ x44\ x85\ x30\ xde\ x9d\ xb5\ x55\ xc9\ x4f

produce the follow ng tokens:

o

o

o

A 2.

DATA: Dgf WASFgcj BXgSTvF2gnRA

ATI ME: MIMONzI| 2NTk1NQ

TID: OHU7MLcqdDQX

['V: t L3l JPf 2nUSFMNGEdt VXJITw

AUTHTAG AznYHKga9nlL8i oi 31 f_1i y2KSA

Use Conpression

The sane paraneters as above, except ATIME and |V:

o

o

Pl ai nt ext cookie: "a state string”
AES- CBC- 128 key: "123456789abcdef"
HMAC- SHAL key: "12345678901234567890"

TID "tid"

Bar bato, et al. I nf or mati onal [ Page 22]



RFC 6896 SCS March 2013

0o ATIME 1347281709

o |V:
\ x1d\ xa7\ x6f \ xa0\ xf f\ x11\ xd7\ x95\ xe3\ x4b\ xf b\ xa9\ xf f \ x65\ xf 9\ xc7

produce the follow ng tokens:

o DATA: PbE-ypnt43MBLzKZ6f MM-g- COr LP2| - Bvgs
o ATIME MIMINzl 4MIcwOQ

o TID akxl KmhbMIES

0 |V: HadvoP8R15Xj S up_2X5xw

0 AUTHTAG A6qgevPr-ugHQChI r _Ei KYWPvpBO

In both cases, the resulting SCS cookie is obtained via ordered
concat enati on of the produced tokens, as described in Section 3.1.

Aut hors’ Addr esses

St ef ano Barbat o

KoanLogi c

Via Marnol ada, 4
Vitorchiano (VT), 01030
Italy

EMai | : tat @oanl ogi c. com

St even Dorigotti

KoanLogi c

Via Maso della Pieve 25/C
Bol zano, 39100

Italy

EMai | : st ewy@oanl ogi c. com
Thomas Fossati (editor)
KoanLogi c

Via di Sabbiuno 11/5

Bol ogna, 40136

Italy

EMai | : t ho@oanl ogi c. com

Bar bato, et al. I nf or mati onal [ Page 23]






