Internet Engineering Task Force (IETF) Request for Comments: 6890 BCP: 153 Obsoletes: 4773, 5156, 5735, 5736 Category: Best Current Practice ISSN: 2070-1721 M. Cotton L. Vegoda ICANN R. Bonica, Ed. Juniper Networks B. Haberman JHU April 2013

Special-Purpose IP Address Registries

Abstract

This memo reiterates the assignment of an IPv4 address block (192.0.0.0/24) to IANA. It also instructs IANA to restructure its IPv4 and IPv6 Special-Purpose Address Registries. Upon restructuring, the aforementioned registries will record all special-purpose address blocks, maintaining a common set of information regarding each address block.

This memo obsoletes RFCs 4773, 5156, 5735, and 5736.

Status of This Memo

This memo documents an Internet Best Current Practice.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on BCPs is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6890.

Cotton, et al.

Best Current Practice

[Page 1]

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1.	Introduction
2.	IANA Considerations
	2.1. Assignment of an IPv4 Address Block to IANA
	2.2. Restructuring of the IPv4 and IPv6 Special-Purpose
	Address
	2.2.1. Information Requirements4
	2.2.2. IPv4 Special-Purpose Address Registry Entries6
	2.2.3. IPv6 Special-Purpose Address Registry Entries14
	Security Considerations20
	Acknowledgements
5.	Informative References20

1. Introduction

In order to support new protocols and practices, the IETF occasionally reserves an address block for a special purpose. For example, [RFC1122] reserves an IPv4 address block (0.0.0.0/8) to represent the local (i.e., "this") network. Likewise, [RFC4291] reserves an IPv6 address block (fe80::/10) to represent link-scoped unicast addresses.

Periodically, the IETF publishes an RFC that catalogs special-purpose address blocks. Currently, [RFC5735] catalogs all IPv4 special-purpose address blocks and [RFC5156] catalogs all IPv6 special-purpose address blocks.

[RFC5736] assigns an IPv4 address block (192.0.0.0/24) to IANA and instructs IANA to allocate special-purpose address blocks from this space. [RFC5736] also instructs IANA to create an IPv4 Special-Purpose Address Registry that records allocations from this address

Cotton, et al.

Best Current Practice

[Page 2]

space. However, [RFC5736] does not instruct IANA to record specialpurpose address block reservations from outside of the aforementioned space in the IPv4 Special-Purpose Address Registry.

Likewise, [RFC2928] assigns an IPv6 address block (2001:0000::/23) to IANA and instructs IANA to allocate special-purpose address blocks from this space. [RFC4773] instructs IANA to create an IPv6 Special-Purpose Address Registry that records allocations from this address space. However, [RFC4773] does not instruct IANA to record specialpurpose address block reservations from outside of the aforementioned space in the IPv6 Special-Purpose Address Registry.

This memo reiterates the assignment of an IPv4 address block (192.0.0.0/24) to IANA. It also instructs IANA to restructure its IPv4 and IPv6 Special-Purpose Address Registries. Specifically, this memo instructs IANA to record all special-purpose address blocks in the aforementioned registries. These include, but are not limited to, IPv4 allocations from 192.0.0.0/24 and IPv6 allocations from 2001:0000::/23. Furthermore, this memo defines:

- o a common set of information that the registries will maintain regarding each special-purpose address block
- o a common set of requirements for future entries

When the aforementioned registries include all special-purpose address blocks, [RFC5735] and [RFC5156] will become redundant with the registries. Therefore, this memo obsoletes [RFC5735] and [RFC5156]. Because this memo reiterates the assignment of 192.0.0.0/24 to IANA, and because it restructures the IPv4 Special-Purpose Address Registry, it obsoletes [RFC5736]. Finally, because this memo restructures the IPv6 Special-Purpose Address Registry, it obsoletes [RFC4773].

2. IANA Considerations

2.1. Assignment of an IPv4 Address Block to IANA

Table 7 of this document records the assignment of an IPv4 address block (192.0.0.0/24) to IANA for IETF protocol assignments. This address allocation to IANA is intended to support IETF protocol assignments. A more general view of the roles of IANA with respect to address allocation functions is documented in Sections 4.1 and 4.3 [RFC2860].

IANA has designated special-purpose address blocks in compliance with [RFC2860].

Cotton, et al.

Best Current Practice

[Page 3]

2.2. Restructuring of the IPv4 and IPv6 Special-Purpose Address Registries

IANA has restructured the following registries:

- o IPv4 Special-Purpose Address Registry
- o IPv6 Special-Purpose Address Registry

The IPv4 Special-Purpose Address Registry records all IPv4 specialpurpose address blocks. These reservations include, but are not limited to, allocations from the 192.0.0.0/24 address block. Likewise, the IPv6 Special-Purpose Address Registry records all IPv6 special-purpose address blocks. These reservations include, but are not limited to, allocations from the 2001:0000::/23 address block.

Section 2.2.1 of this document describes information that both registries will maintain for each entry. Initially, IANA has populated the IPv4 Special-Purpose Address Registry with information taken from Section 2.2.2 of this document. Likewise, IANA has populated the IPv6 Special-Purpose Address Registry with information taken from Section 2.2.3 of this document.

IANA will update the aforementioned registries as requested in the "IANA Considerations" section of a document that has passed IETF Review [RFC5226]. The "IANA Considerations" section must include all of the information specified in Section 2.2.1 of this document.

2.2.1. Information Requirements

The IPv4 and IPv6 Special-Purpose Address Registries maintain the following information regarding each entry:

- o Address Block A block of IPv4 or IPv6 addresses that has been registered for a special purpose.
- o Name A descriptive name for the special-purpose address block.
- o RFC The RFC through which the special-purpose address block was requested.
- Allocation Date The date upon which the special-purpose address block was allocated.
- Termination Date The date upon which the allocation is to be terminated. This field is applicable for limited-use allocations only.

Cotton, et al.

Best Current Practice

[Page 4]

- o Source A boolean value indicating whether an address from the allocated special-purpose address block is valid when used as the source address of an IP datagram that transits two devices.
- Destination A boolean value indicating whether an address from the allocated special-purpose address block is valid when used as the destination address of an IP datagram that transits two devices.
- Forwardable A boolean value indicating whether a router may forward an IP datagram whose destination address is drawn from the allocated special-purpose address block between external interfaces.
- Global A boolean value indicating whether an IP datagram whose destination address is drawn from the allocated special-purpose address block is forwardable beyond a specified administrative domain.
- Reserved-by-Protocol A boolean value indicating whether the special-purpose address block is reserved by IP, itself. This value is "TRUE" if the RFC that created the special-purpose address block requires all compliant IP implementations to behave in a special way when processing packets either to or from addresses contained by the address block.

If the value of "Destination" is FALSE, the values of "Forwardable" and "Global" must also be false.

Cotton, et al.

Best Current Practice

[Page 5]

2.2.2. IPv4 Special-Purpose Address Registry Entries

Tables 1 though 16, below, represent entries with which IANA has initially populated the IPv4 Special-Purpose Address Registry.

Attribute	Value
Address Block	0.0.0.0/8
Name	"This host on this network"
RFC	[RFC1122], Section 3.2.1.3
Allocation Date	September 1981
Termination Date	N/A
Source	True
Destination	False
Forwardable	False
Global	False
Reserved-by-Protocol	True

Table 1: "This host on this network"

	+
NameHRFCHAllocation DateHTermination DateHSourceHDestinationHForwardableHGlobalH	10.0.0.0/8 Private-Use [RFC1918] February 1996 N/A True True True False False

Table 2: Private-Use Networks

Cotton, et al. Best Current Practice

[Page 6]

Attribute	Value
Address Block Name RFC Allocation Date Termination Date Source Destination Forwardable Global Reserved-by-Protocol	100.64.0.0/10 Shared Address Space [RFC6598] April 2012 N/A True True True False False False

Table 3: Shared Address Space

Attribute	Value
Address Block	127.0.0.0/8
Name	Loopback
RFC	[RFC1122], Section 3.2.1.3
Allocation Date	September 1981
Termination Date	N/A
Source	False [1]
Destination	False [1]
Forwardable	False [1]
Global	False [1]
Reserved-by-Protocol	True

[1] Several protocols have been granted exceptions to this rule. For examples, see [RFC4379] and [RFC5884].

Table 4: Loopback

Cotton, et al. Best Current Practice

[Page 7]

Attribute	Value
Address Block	169.254.0.0/16
Name	Link Local
RFC	[RFC3927]
Allocation Date	May 2005
Termination Date	N/A
Source	True
Destination	True
Forwardable	False
Global	False
Reserved-by-Protocol	True

Table 5: Link Local

Attribute	Value
Address Block Name RFC Allocation Date Termination Date Source Destination Forwardable Global Reserved-by-Protocol	172.16.0.0/12 Private-Use [RFC1918] February 1996 N/A True True True False False False

Table 6: Private-Use Networks

Cotton, et al. Best Current Practice [Page 8]

Attribute	Value
ddress Block	192.0.0.0/24 [2]
Name	IETF Protocol Assignments
RFC	Section 2.1 of this document
Allocation Date	January 2010
Termination Date	N/A
Source	False
Destination	False
Forwardable	False
Global	False
Reserved-by-Protocol	False

[2] Not usable unless by virtue of a more specific reservation.

Table 7: IETF Protocol Assignments

Attribute	Value
Address Block	192.0.0.0/29
Name	DS-Lite
RFC	[RFC6333]
Allocation Date	June 2011
Termination Date	N/A
Source	True
Destination	True
Forwardable	True
Global	False
Reserved-by-Protocol	False

Table 8: DS-Lite

Cotton, et al. Best Current Practice

[Page 9]

Attribute	Value	
Address Block	192.0.2.0/24	
Name	Documentation (TEST-NET-1)	
RFC	[RFC5737]	
Allocation Date	January 2010	
Termination Date	N/A	
Source	False	
Destination	False	
Forwardable	False	
Global	False	
Reserved-by-Protocol	False	

Table 9: TEST-NET-1

Attribute	1
Address BlockNameRFCAllocation DateTermination DateSourceDestinationForwardableGlobalReserved-by-Protocol	192.88.99.0/24 6to4 Relay Anycast [RFC3068] June 2001 N/A True True True True True False

Table 10: 6to4 Relay Anycast

Cotton, et al. Best Current Practice [Page 10]

Attribute	Value
Address Block Name	192.168.0.0/16 Private-Use
RFC	[RFC1918]
Allocation Date	February 1996
Termination Date	N/A
Source	True
Destination	True
Forwardable	True
Global	False
Reserved-by-Protocol	False

Table 11: Private-Use Networks

Attribute	Value
Address Block Name RFC Allocation Date Termination Date Source Destination Forwardable Global Reserved-by-Protocol	198.18.0.0/15 Benchmarking [RFC2544] March 1999 N/A True True True False False False

Table 12: Network Interconnect Device Benchmark Testing

Cotton, et al. Best Current Practice

[Page 11]

Attribute	Value
Address Block Name RFC Allocation Date Termination Date Source Destination Forwardable Global Reserved-by-Protocol	198.51.100.0/24 Documentation (TEST-NET-2) [RFC5737] January 2010 N/A False False False False False False

Table 13: TEST-NET-2

Attribute	Value
Address Block Name RFC Allocation Date Termination Date Source Destination Forwardable Global Reserved-by-Protocol	203.0.113.0/24 Documentation (TEST-NET-3) [RFC5737] January 2010 N/A False False False False False False

Table 14: TEST-NET-3

Cotton, et al. Best Current Practice [Page 12]

Address Block240.0.0.0/4NameReservedRFC[RFC1112], Section 4Allocation DateAugust 1989Termination DateN/ASourceFalseDestinationFalseForwardableFalseGlobalFalseBescrued by ProtocolTrue	Attribute	Value
+	Name RFC Allocation Date Termination Date Source Destination Forwardable	Reserved [RFC1112], Section 4 August 1989 N/A False False False

Table 15: Reserved for Future Use

Attribute	Value
Address Block Name RFC Allocation Date Termination Date Source Destination Forwardable Global Reserved-by-Protocol	255.255.255.255/32 Limited Broadcast [RFC0919], Section 7 October 1984 N/A False True False False False False

Table 16: Limited Broadcast

Cotton, et al. Best Current Practice

[Page 13]

2.2.3. IPv6 Special-Purpose Address Registry Entries

Tables 17 through 28, below, represent entries with which the IANA has initially populated the IPv6 Special-Purpose Address Registry.

Attribute	Value
Address Block	::1/128
Name	Loopback Address
RFC	[RFC4291]
Allocation Date	February 2006
Termination Date	N/A
Source	False
Destination	False
Forwardable	False
Global	False
Reserved-by-Protocol	True

Table 17: Loopback Address

Attribute	Value
Address Block Name RFC Allocation Date Termination Date Source Destination Forwardable Global Reserved-by-Protocol	::/128 Unspecified Address [RFC4291] February 2006 N/A True False False False False True

Table 18: Unspecified Address

Cotton, et al. Best Current Practice

[Page 14]

Attribute	Value
Address Block	64:ff9b::/96
Name	IPv4-IPv6 Translat.
RFC	[RFC6052]
Allocation Date	October 2010
Termination Date	N/A
Source	True
Destination	True
Forwardable	True
Global	True
Reserved-by-Protocol	False

Table 19: IPv4-IPv6 Translation Address

Attribute	Value
Address Block Name RFC Allocation Date Termination Date Source Destination Forwardable Global Reserved-by-Protocol	<pre>::ffff:0:0/96 IPv4-mapped Address [RFC4291] February 2006 N/A False False False False False True</pre>

Table 20: IPv4-Mapped Address

Cotton, et al. Best Current Practice [Page 15]

Attribute	Value
Address Block	100::/64
Name	Discard-Only Address Block
RFC	[RFC6666]
Allocation Date	June 2012
Termination Date	N/A
Source	True
Destination	True
Forwardable	True
Global	False
Reserved-by-Protocol	False

Table 21: Discard-Only Prefix

Attribute	Value
Address Block Name RFC Allocation Date Termination Date Source Destination Forwardable Global Reserved-by-Protocol	2001::/23 IETF Protocol Assignments [RFC2928] September 2000 N/A False[1] False[1] False[1] False[1] False[1] False

[1] Unless allowed by a more specific allocation.

Table 22: IETF Protocol Assignments

Cotton, et al. Best Current Practice

[Page 16]

Attribute	Value
Address Block	2001::/32
Name	TEREDO
RFC	[RFC4380]
Allocation Date	January 2006
Termination Date	N/A
Source	True
Destination	True
Forwardable	True
Global	False
Reserved-by-Protocol	False

Table 23: TEREDO

Address Block2001:2::NameBenchmarRFC[RFC5180]Allocation DateApril 20Termination DateN/ASourceTrueDestinationTrueForwardableTrueGlobalFalse	++	-+-	+ Attribute
Reserved-by-Protocol False	arking 80]		Name RFC Allocation Date Termination Date Source Destination Forwardable Global

Table 24: Benchmarking

Cotton, et al. Best Current Practice

[Page 17]

Attribute	Value
Address Block	2001:db8::/32
Name	Documentation
RFC	[RFC3849]
Allocation Date	July 2004
Termination Date	N/A
Source	False
Destination	False
Forwardable	False
Global	False
Reserved-by-Protocol	False

Table 25: Documentation

Attribute	Value
Address Block	2001:10::/28
Name	ORCHID
RFC	[RFC4843]
Allocation Date	March 2007
Termination Date	March 2014
Source	False
Destination	False
Forwardable	False
Global	False
Reserved-by-Protocol	False

Table 26: ORCHID

Cotton, et al. Best Current Practice

[Page 18]

Attribute	Value
Address Block	2002::/16 [2]
Name	6to4
RFC	[RFC3056]
Allocation Date	February 2001
Termination Date	N/A
Source	True
Destination	True
Forwardable	True
Global	N/A [2]
Reserved-by-Protocol	False

[2] See [RFC3056] for details.

Table 27: 6to4

Attribute	Value
Address Block Name RFC Allocation Date Termination Date Source Destination Forwardable Global Reserved-by-Protocol	fc00::/7 Unique-Local [RFC4193] October 2005 N/A True True True False False False

Table 28: Unique-Local

Cotton, et al. Best Current Practice [Page 19]

Attribute	Value
Address Block	fe80::/10
Name	Linked-Scoped Unicast
RFC	[RFC4291]
Allocation Date	February 2006
Termination Date	N/A
Source	True
Destination	True
Forwardable	False
Global	False
Reserved-by-Protocol	True

Table 29: Linked-Scoped Unicast

3. Security Considerations

Security of the Internet's routing system relies on the ability to authenticate an assertion of unique control of an address block. Measures to authenticate such assertions rely on validation that the address block forms part of an existing allocated address block and that there is a trustable and unique reference in the IANA address registries.

The proposed registry is intended to provide an authoritative source of information regarding the currency and intended purpose of special purpose address blocks that are designated from the IANA-administered Special-Purpose registry. This is a small step towards the creation of a comprehensive registry framework that can be used as a trust point for commencing a chain of address validation. Consideration should be given to IANA registry publication formats that are machine parsable. Additionally, consideration should be given to the use of file signatures and associated certificate mechanisms to allow applications to confirm that the registry contents are current and that they have been published by the IANA.

4. Acknowledgements

The authors thank Geoff Huston and Randy Bush for their helpful comments. The authors also express their gratitude to an anonymous donor, without whom this document would not have been written.

- 5. Informative References
 - [RFC0919] Mogul, J., "Broadcasting Internet Datagrams", STD 5, RFC 919, October 1984.

Cotton, et al.

Best Current Practice

[Page 20]

- [RFC1112] Deering, S., "Host extensions for IP multicasting", STD 5, RFC 1112, August 1989.
- [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -Communication Layers", STD 3, RFC 1122, October 1989.
- [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G., and E. Lear, "Address Allocation for Private Internets", BCP 5, RFC 1918, February 1996.
- [RFC2544] Bradner, S. and J. McQuaid, "Benchmarking Methodology for Network Interconnect Devices", RFC 2544, March 1999.
- [RFC2860] Carpenter, B., Baker, F., and M. Roberts, "Memorandum of Understanding Concerning the Technical Work of the Internet Assigned Numbers Authority", RFC 2860, June 2000.
- [RFC2928] Hinden, R., Deering, S., Fink, R., and T. Hain, "Initial IPv6 Sub-TLA ID Assignments", RFC 2928, September 2000.
- [RFC3056] Carpenter, B. and K. Moore, "Connection of IPv6 Domains via IPv4 Clouds", RFC 3056, February 2001.
- [RFC3849] Huston, G., Lord, A., and P. Smith, "IPv6 Address Prefix Reserved for Documentation", RFC 3849, July 2004.
- [RFC3927] Cheshire, S., Aboba, B., and E. Guttman, "Dynamic Configuration of IPv4 Link-Local Addresses", RFC 3927, May 2005.
- [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast Addresses", RFC 4193, October 2005.
- [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture", RFC 4291, February 2006.
- [RFC4379] Kompella, K. and G. Swallow, "Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures", RFC 4379, February 2006.
- [RFC4380] Huitema, C., "Teredo: Tunneling IPv6 over UDP through Network Address Translations (NATs)", RFC 4380, February 2006.

Cotton, et al.

Best Current Practice

[Page 21]

- [RFC4773] Huston, G., "Administration of the IANA Special Purpose IPv6 Address Block", RFC 4773, December 2006.
- [RFC4843] Nikander, P., Laganier, J., and F. Dupont, "An IPv6 Prefix for Overlay Routable Cryptographic Hash Identifiers (ORCHID)", RFC 4843, April 2007.
- [RFC5156] Blanchet, M., "Special-Use IPv6 Addresses", RFC 5156, April 2008.
- [RFC5180] Popoviciu, C., Hamza, A., Van de Velde, G., and D. Dugatkin, "IPv6 Benchmarking Methodology for Network Interconnect Devices", RFC 5180, May 2008.
- [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.
- [RFC5736] Huston, G., Cotton, M., and L. Vegoda, "IANA IPv4 Special Purpose Address Registry", RFC 5736, January 2010.
- [RFC5737] Arkko, J., Cotton, M., and L. Vegoda, "IPv4 Address Blocks Reserved for Documentation", RFC 5737, January 2010.
- [RFC5884] Aggarwal, R., Kompella, K., Nadeau, T., and G. Swallow, "Bidirectional Forwarding Detection (BFD) for MPLS Label Switched Paths (LSPs)", RFC 5884, June 2010.
- [RFC6052] Bao, C., Huitema, C., Bagnulo, M., Boucadair, M., and X. Li, "IPv6 Addressing of IPv4/IPv6 Translators", RFC 6052, October 2010.
- [RFC6333] Durand, A., Droms, R., Woodyatt, J., and Y. Lee, "Dual-Stack Lite Broadband Deployments Following IPv4 Exhaustion", RFC 6333, August 2011.
- [RFC6598] Weil, J., Kuarsingh, V., Donley, C., Liljenstolpe, C., and M. Azinger, "IANA-Reserved IPv4 Prefix for Shared Address Space", BCP 153, RFC 6598, April 2012.
- [RFC6666] Hilliard, N. and D. Freedman, "A Discard Prefix for IPv6", RFC 6666, August 2012.

Cotton, et al.

Best Current Practice

[Page 22]

Authors' Addresses Michelle Cotton Internet Corporation for Assigned Names and Numbers (ICANN) 12025 Waterfront Drive, Suite 300 Los Angeles, CA 90094-2536 USA Phone: +310-823-9358 EMail: michelle.cotton@icann.org URI: http://www.icann.org/ Leo Vegoda Internet Corporation for Assigned Names and Numbers (ICANN) 12025 Waterfront Drive, Suite 300 Los Angeles, CA 90094-2536 USA Phone: +310-823-9358 EMail: leo.vegoda@icann.org URI: http://www.icann.org/ Ronald P Bonica (editor) Juniper Networks 2251 Corporate Park Drive Herndon, VA 20171 USA EMail: rbonica@juniper.net Brian Haberman Johns Hopkins University (JHU) Applied Physics Lab 11100 Johns Hopkins Road Laurel, MD 20723-6099 USA EMail: brian@innovationslab.net

Cotton, et al.

Best Current Practice

[Page 23]