
Internet Engineering Task Force (IETF) S. Shalunov
Request for Comments: 6817 G. Hazel
Category: Experimental BitTorrent, Inc.
ISSN: 2070-1721 J. Iyengar
 Franklin and Marshall College
 M. Kuehlewind
 University of Stuttgart
 December 2012

 Low Extra Delay Background Transport (LEDBAT)

Abstract

 Low Extra Delay Background Transport (LEDBAT) is an experimental
 delay-based congestion control algorithm that seeks to utilize the
 available bandwidth on an end-to-end path while limiting the
 consequent increase in queueing delay on that path. LEDBAT uses
 changes in one-way delay measurements to limit congestion that the
 flow itself induces in the network. LEDBAT is designed for use by
 background bulk-transfer applications to be no more aggressive than
 standard TCP congestion control (as specified in RFC 5681) and to
 yield in the presence of competing flows, thus limiting interference
 with the network performance of competing flows.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6817.

Shalunov, et al. Experimental [Page 1]

RFC 6817 LEDBAT December 2012

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Shalunov, et al. Experimental [Page 2]

RFC 6817 LEDBAT December 2012

Table of Contents

 1. Introduction ..4
 1.1. Requirements Notation4
 1.2. Design Goals ...4
 1.3. Applicability ..5
 2. LEDBAT Congestion Control6
 2.1. Overview ...6
 2.2. Preliminaries ..6
 2.3. Receiver-Side Operation7
 2.4. Sender-Side Operation7
 2.4.1. An Overview ...7
 2.4.2. The Complete Sender Algorithm8
 2.5. Parameter Values ..11
 3. Understanding LEDBAT Mechanisms13
 3.1. Delay Estimation ..13
 3.1.1. Estimating Base Delay13
 3.1.2. Estimating Queueing Delay13
 3.2. Managing the Congestion Window14
 3.2.1. Window Increase: Probing for More Bandwidth14
 3.2.2. Window Decrease: Responding to Congestion14
 3.3. Choosing the Queuing Delay Target15
 4. Discussion ...15
 4.1. Framing and ACK Frequency Considerations15
 4.2. Competing with TCP Flows15
 4.3. Competing with Non-TCP Flows16
 4.4. Fairness among LEDBAT Flows16
 5. Open Areas for Experimentation17
 5.1. Network Effects and Monitoring17
 5.2. Parameter Values ..18
 5.3. Filters ...19
 5.4. Framing ...19
 6. Security Considerations ..19
 7. Acknowledgements ...20
 8. References ...20
 8.1. Normative References20
 8.2. Informative References20
 Appendix A. Measurement Errors22
 A.1. Clock Offset ...22
 A.2. Clock Skew ...22

Shalunov, et al. Experimental [Page 3]

RFC 6817 LEDBAT December 2012

1. Introduction

 TCP congestion control [RFC5681] seeks to share bandwidth at a
 bottleneck link equitably among flows competing at the bottleneck,
 and it is the predominant congestion control mechanism used on the
 Internet. However, not all applications seek an equitable share of
 network throughput. "Background" applications, such as software
 updates or file-sharing applications, seek to operate without
 interfering with the performance of more interactive and delay-
 and/or bandwidth-sensitive "foreground" applications. Standard TCP
 congestion control, as specified in [RFC5681], may be too aggressive
 for use with such background applications.

 Low Extra Delay Background Transport (LEDBAT) is an experimental
 delay-based congestion control mechanism that reacts early to
 congestion in the network, thus enabling "background" applications to
 use the network while avoiding interference with the network
 performance of competing flows. A LEDBAT sender uses one-way delay
 measurements to estimate the amount of queueing on the data path,
 controls the LEDBAT flow’s congestion window based on this estimate,
 and minimizes interference with competing flows by adding low extra
 queueing delay on the end-to-end path.

 Delay-based congestion control protocols, such as TCP-Vegas
 [Bra94][Low02], are generally designed to achieve more, not less
 throughput than standard TCP, and often outperform TCP under
 particular network settings. For further discussion on Lower-than-
 Best-Effort transport protocols see [RFC6297]. In contrast, LEDBAT
 is designed to be no more aggressive than TCP [RFC5681]; LEDBAT is a
 "scavenger" congestion control mechanism that seeks to utilize all
 available bandwidth and yields quickly when competing with standard
 TCP at a bottleneck link.

 In the rest of this document, we refer to congestion control
 specified in [RFC5681] as "standard TCP".

1.1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.2. Design Goals

 LEDBAT congestion control seeks to achieve the following goals:

 1. to utilize end-to-end available bandwidth and to maintain low
 queueing delay when no other traffic is present,

Shalunov, et al. Experimental [Page 4]

RFC 6817 LEDBAT December 2012

 2. to add limited queuing delay to that induced by concurrent flows,
 and

 3. to yield quickly to standard TCP flows that share the same
 bottleneck link.

1.3. Applicability

 LEDBAT is a "scavenger" congestion control mechanism that is
 motivated primarily by background bulk-transfer applications, such as
 large file transfers (as with file-sharing applications) and software
 updates. It can be used with any application that seeks to minimize
 its impact on the network and on other interactive delay- and/or
 bandwidth-sensitive network applications. LEDBAT is expected to work
 well when the sender and/or receiver is connected via a residential
 access network.

 LEDBAT can be used as part of a transport protocol or as part of an
 application, as long as the data transmission mechanisms are capable
 of carrying timestamps and acknowledging data frequently. LEDBAT can
 be used with TCP, Stream Control Transmission Protocol (SCTP), and
 Datagram Congestion Control Protocol (DCCP), with appropriate
 extensions where necessary; and it can be used with proprietary
 application protocols, such as those built on top of UDP for peer-to-
 peer (P2P) applications.

 When used with an ECN-capable framing protocol, LEDBAT should react
 to an Explicit Congestion Notification (ECN) mark as it would to a
 loss, as specified in [RFC3168].

 LEDBAT is designed to reduce buildup of a standing queue by long-
 lived LEDBAT flows at a link with a tail-drop FIFO queue, so as to
 avoid persistently delaying other flows sharing the queue. If Active
 Queue Management (AQM) is configured to drop or ECN-mark packets
 before the LEDBAT flow starts reacting to persistent queue buildup,
 LEDBAT reverts to standard TCP behavior rather than yielding to other
 TCP flows. However, such an AQM is still desirable since it keeps
 queuing delay low, achieving an outcome that is in line with LEDBAT’s
 goals. Additionally, a LEDBAT transport that supports ECN enjoys the
 advantages that an ECN-capable TCP enjoys over an ECN-agnostic TCP;
 avoiding losses and possible retransmissions. Weighted Fair Queuing
 (WFQ), as employed by some home gateways, seeks to isolate and
 protect delay-sensitive flows from delays due to standing queues
 built up by concurrent long-lived flows. Consequently, while it
 prevents LEDBAT from yielding to other TCP flows, it again achieves
 an outcome that is in line with LEDBAT’s goals [Sch10].

Shalunov, et al. Experimental [Page 5]

RFC 6817 LEDBAT December 2012

2. LEDBAT Congestion Control

2.1. Overview

 A standard TCP sender increases its congestion window until a loss
 occurs [RFC5681] or an ECN mark is received [RFC3168], which, in the
 absence of link errors in the network, occurs only when the queue at
 the bottleneck link on the end-to-end path overflows or an AQM is
 applied. Since packet loss or marking at the bottleneck link is
 expected to be preceded by an increase in the queueing delay at the
 bottleneck link, LEDBAT congestion control uses this increase in
 queueing delay as an early signal of congestion, enabling it to
 respond to congestion earlier than standard TCP and enabling it to
 yield bandwidth to a competing TCP flow.

 LEDBAT employs one-way delay measurements to estimate queueing delay.
 When the estimated queueing delay is less than a predetermined
 target, LEDBAT infers that the network is not yet congested and
 increases its sending rate to utilize any spare capacity in the
 network. When the estimated queueing delay becomes greater than the
 predetermined target, LEDBAT decreases its sending rate as a response
 to potential congestion in the network.

2.2. Preliminaries

 A LEDBAT sender uses a congestion window (cwnd) to gate the amount of
 data that the sender can send into the network in one round-trip time
 (RTT). A sender MAY maintain its cwnd in bytes or in packets; this
 document uses cwnd in bytes. LEDBAT requires that each data segment
 carries a "timestamp" from the sender, based on which the receiver
 computes the one-way delay from the sender and sends this computed
 value back to the sender.

 In addition to the LEDBAT mechanism described below, we note that a
 slow start mechanism can be used as specified in [RFC5681]. Since
 slow start leads to faster increase in the window than that specified
 in LEDBAT, conservative congestion control implementations employing
 LEDBAT may skip slow start altogether and start with an initial
 window of INIT_CWND * MSS. (INIT_CWND is described later in
 Section 2.5.)

 The term "MSS", or the sender’s Maximum Segment Size, used in this
 document refers to the size of the largest segment that the sender
 can transmit. The value of MSS can be based on the path MTU
 discovery [RFC4821] algorithm and/or on other factors.

Shalunov, et al. Experimental [Page 6]

RFC 6817 LEDBAT December 2012

2.3. Receiver-Side Operation

 A LEDBAT receiver calculates the one-way delay from the sender to the
 receiver based on its own system time and timestamps in the received
 data packets. The receiver then feeds the computed one-way delay
 back to the sender in the next acknowledgement. A LEDBAT receiver
 operates as follows:

 on data_packet:
 remote_timestamp = data_packet.timestamp
 acknowledgement.delay = local_timestamp() - remote_timestamp
 # fill in other fields of acknowledgement
 acknowledgement.send()

 A receiver may choose to delay sending an ACK and may combine
 acknowledgements for more than one data packet into a single ACK
 packet, as with delayed ACKs in standard TCP, for example. In such
 cases, the receiver MAY bundle all the delay samples into one ACK
 packet and MUST transmit the samples in the order generated. When
 multiple delay samples are bundled within a single ACK, the sender
 applies these bundled delay samples at once during its cwnd
 adjustment (discussed in the next section). Since the sender’s
 adjustment may be sensitive to the order in which the delay samples
 are applied, the computed delay samples should be available to the
 sender in the order they were generated at the receiver.

2.4. Sender-Side Operation

2.4.1. An Overview

 As a first approximation, a LEDBAT sender operates as shown below;
 the complete algorithm is specified later in Section 2.4.2. TARGET
 is the maximum queueing delay that LEDBAT itself may introduce in the
 network, and GAIN determines the rate at which the cwnd responds to
 changes in queueing delay; both constants are specified later.
 off_target is a normalized value representing the difference between
 the measured current queueing delay and the predetermined TARGET
 delay. off_target can be positive or negative; consequently, cwnd
 increases or decreases in proportion to off_target.

 on initialization:
 base_delay = +INFINITY

Shalunov, et al. Experimental [Page 7]

RFC 6817 LEDBAT December 2012

 on acknowledgement:
 current_delay = acknowledgement.delay
 base_delay = min(base_delay, current_delay)
 queuing_delay = current_delay - base_delay
 off_target = (TARGET - queuing_delay) / TARGET
 cwnd += GAIN * off_target * bytes_newly_acked * MSS / cwnd

 The simplified mechanism above ignores multiple delay samples in an
 acknowledgement, noise filtering, base delay expiration, and sender
 idle times, which we now take into account in our complete sender
 algorithm below.

2.4.2. The Complete Sender Algorithm

 update_current_delay() maintains a list of one-way delay
 measurements, of which a filtered value is used as an estimate of the
 current end-to-end delay. update_base_delay() maintains a list of
 one-way delay minima over a number of one-minute intervals, to
 measure and to track changes in the base delay of the end-to-end
 path. Both of these lists are maintained per LEDBAT flow.

 We note this algorithm assumes that slight random fluctuations exist
 in inter-packet arrival times at the bottleneck queue, to allow a
 LEDBAT sender to correctly measure the base delay. See Section 4.4
 for a more complete discussion.

 The full sender-side algorithm is given below:

 on initialization:
 # cwnd is the amount of data that is allowed to be
 # outstanding in an RTT and is defined in bytes.
 # CTO is the congestion timeout value.

 create current_delays list with CURRENT_FILTER elements
 create base_delays list with BASE_HISTORY number of elements
 initialize elements in base_delays to +INFINITY
 initialize elements in current_delays according to FILTER()
 last_rollover = -INFINITY # More than a minute in the past
 flightsize = 0
 cwnd = INIT_CWND * MSS
 CTO = 1 second

Shalunov, et al. Experimental [Page 8]

RFC 6817 LEDBAT December 2012

 on acknowledgement:
 # flightsize is the amount of data outstanding before this ACK
 # was received and is updated later;
 # bytes_newly_acked is the number of bytes that this ACK
 # newly acknowledges, and it MAY be set to MSS.

 for each delay sample in the acknowledgement:
 delay = acknowledgement.delay
 update_base_delay(delay)
 update_current_delay(delay)

 queuing_delay = FILTER(current_delays) - MIN(base_delays)
 off_target = (TARGET - queuing_delay) / TARGET
 cwnd += GAIN * off_target * bytes_newly_acked * MSS / cwnd
 max_allowed_cwnd = flightsize + ALLOWED_INCREASE * MSS
 cwnd = min(cwnd, max_allowed_cwnd)
 cwnd = max(cwnd, MIN_CWND * MSS)
 flightsize = flightsize - bytes_newly_acked
 update_CTO()

 on data loss:
 # at most once per RTT
 cwnd = min (cwnd, max (cwnd/2, MIN_CWND * MSS))
 if data lost is not to be retransmitted:
 flightsize = flightsize - bytes_not_to_be_retransmitted

 if no ACKs are received within a CTO:
 # extreme congestion, or significant RTT change.
 # set cwnd to 1MSS and backoff the congestion timer.
 cwnd = 1 * MSS
 CTO = 2 * CTO

update_CTO()
 # implements an RTT estimation mechanism using data
 # transmission times and ACK reception times,
 # which is used to implement a congestion timeout (CTO).
 # If implementing LEDBAT in TCP, sender SHOULD use
 # mechanisms described in RFC 6298 [RFC6298],
 # and the CTO would be the same as the retransmission timeout (RTO).

 update_current_delay(delay)
 # Maintain a list of CURRENT_FILTER last delays observed.
 delete first item in current_delays list
 append delay to current_delays list

Shalunov, et al. Experimental [Page 9]

RFC 6817 LEDBAT December 2012

 update_base_delay(delay)
 # Maintain BASE_HISTORY delay-minima.
 # Each minimum is measured over a period of a minute.
 # ’now’ is the current system time
 if round_to_minute(now) != round_to_minute(last_rollover)
 last_rollover = now
 delete first item in base_delays list
 append delay to base_delays list
 else
 base_delays.tail = MIN(base_delays.tail, delay)

 The LEDBAT sender seeks to extract the actual delay estimate from the
 current_delay samples by implementing FILTER() to eliminate any
 outliers. Different types of filters MAY be used for FILTER() -- a
 NULL filter, that does not filter at all, is a reasonable candidate
 as well, since LEDBAT’s use of a linear controller for cwnd increase
 and decrease may allow it to recover quickly from errors induced by
 bad samples. Another example of a filter is the exponentially
 weighted moving average (EWMA) function, with weights that enable
 agile tracking of changing network delay. A simple MIN filter
 applied over a small window (much smaller than BASE_HISTORY) may also
 provide robustness to large delay peaks, as may occur with delayed
 ACKs in TCP. Care should be taken that the filter used, while
 providing robustness to noise, remains sensitive to persistent
 congestion signals.

 We note that when multiple delay samples are bundled within a single
 ACK, the sender’s resulting cwnd may be slightly different than when
 the samples are sent individually in separate ACKs. The cwnd is
 adjusted based on the total number of bytes ACKed and the final
 filtered value of queueing_delay, irrespective of the number of delay
 samples in an ACK.

 To implement an approximate minimum over the past few minutes, a
 LEDBAT sender stores BASE_HISTORY separate minima -- one each for the
 last BASE_HISTORY-1 minutes, and one for the running current minute.
 At the end of the current minute, the window moves -- the earliest
 minimum is dropped and the latest minimum is added. If the
 connection is idle for a given minute, no data is available for the
 one-way delay and, therefore, a value of +INFINITY has to be stored
 in the list. If the connection has been idle for BASE_HISTORY
 minutes, all minima in the list are thus set to +INFINITY and
 measurement begins anew. LEDBAT thus requires that during idle
 periods, an implementation must maintain the base delay list.

Shalunov, et al. Experimental [Page 10]

RFC 6817 LEDBAT December 2012

 LEDBAT restricts cwnd growth after a period of inactivity. When the
 sender is application-limited, the sender’s cwnd is clamped down
 using max_allowed_cwnd to a little more than flightsize. To be TCP-
 friendly, LEDBAT halves its cwnd on data loss.

 LEDBAT uses a congestion timeout (CTO) to avoid transmitting data
 during periods of heavy congestion and to avoid congestion collapse.
 A CTO is used to detect heavy congestion indicated by loss of all
 outstanding data or acknowledgements, resulting in reduction of the
 cwnd to 1 MSS and an exponential backoff of the CTO interval. This
 backoff of the CTO value avoids sending more data into an overloaded
 queue, and it also allows the sender to cope with sudden changes in
 the RTT of the path. The function of a CTO is similar to that of an
 retransmission timeout (RTO) in TCP [RFC6298], but since LEDBAT
 separates reliability from congestion control, a retransmission need
 not be triggered by a CTO. LEDBAT, however, does not preclude a CTO
 from triggering retransmissions, as could be the case if LEDBAT
 congestion control were to be used with TCP framing and reliability.

 The CTO is a gating mechanism that ensures exponential backoff of
 sending rate under heavy congestion, and it may be implemented with
 or without a timer. An implementation choosing to avoid timers may
 consider using a "next-time-to-send" variable, set based on the CTO,
 to control the earliest time a sender may transmit without receiving
 any ACKs. A maximum value MAY be placed on the CTO, and if placed,
 it MUST be at least 60 seconds.

2.5. Parameter Values

 TARGET MUST be 100 milliseconds or less, and this choice of value is
 explained further in Section 3.3. Note that using the same TARGET
 value across LEDBAT flows enables equitable sharing of the bottleneck
 bandwidth. A flow with a higher TARGET value than other competing
 LEDBAT flows may get a larger share of the bottleneck bandwidth. It
 is possible to consider the use of different TARGET values for
 implementing a relative priority between two competing LEDBAT flows
 by setting a higher TARGET value for the higher-priority flow.

 ALLOWED_INCREASE SHOULD be 1, and it MUST be greater than 0. An
 ALLOWED_INCREASE of 0 results in no cwnd growth at all, and an
 ALLOWED_INCREASE of 1 allows and limits the cwnd increase based on
 flightsize in the previous RTT. An ALLOWED_INCREASE greater than 1
 MAY be used when interactions between LEDBAT and the framing protocol
 provide a clear reason for doing so.

 GAIN MUST be set to 1 or less. A GAIN of 1 limits the maximum cwnd
 ramp-up to the same rate as TCP Reno in Congestion Avoidance. While
 this document specifies the use of the same GAIN for both cwnd

Shalunov, et al. Experimental [Page 11]

RFC 6817 LEDBAT December 2012

 increase (when off_target is greater than zero) and decrease (when
 off_target is less than zero), implementations MAY use a higher GAIN
 for cwnd decrease than for the increase; our justification follows.
 When a competing non-LEDBAT flow increases its sending rate, the
 LEDBAT sender may only measure a small amount of additional delay and
 decrease the sending rate slowly. To ensure no impact on a competing
 non-LEDBAT flow, the LEDBAT flow should decrease its sending rate at
 least as quickly as the competing flow increases its sending rate. A
 higher decrease-GAIN MAY be used to allow the LEDBAT flow to decrease
 its sending rate faster than the competing flow’s increase rate.

 The size of the base_delays list, BASE_HISTORY, SHOULD be 10. If the
 actual base delay decreases, due to a route change, for instance, a
 LEDBAT sender adapts immediately, irrespective of the value of
 BASE_HISTORY. If the actual base delay increases, however, a LEDBAT
 sender will take BASE_HISTORY minutes to adapt and may wrongly infer
 a little more extra delay than intended (TARGET) in the meanwhile. A
 value for BASE_HISTORY is thus a trade-off: a higher value may yield
 a more accurate measurement when the base delay is unchanging, and a
 lower value results in a quicker response to actual increase in base
 delay.

 A LEDBAT sender uses the current_delays list to maintain only delay
 measurements made within an RTT amount of time in the past, seeking
 to eliminate noise spikes in its measurement of the current one-way
 delay through the network. The size of this list, CURRENT_FILTER,
 may be variable, and it depends on the FILTER() function as well as
 the number of successful measurements made within an RTT amount of
 time in the past. The sender should seek to gather enough delay
 samples in each RTT so as to have statistical confidence in the
 measurements. While the number of delay samples required for such
 confidence will vary depending on network conditions, the sender
 SHOULD use at least 4 delay samples in each RTT, unless the number of
 samples is lower due to a small congestion window. The value of
 CURRENT_FILTER will depend on the filter being employed, but
 CURRENT_FILTER MUST be limited such that samples in the list are not
 older than an RTT in the past.

 INIT_CWND and MIN_CWND SHOULD both be 2. An INIT_CWND of 2 should
 help seed FILTER() at the sender when there are no samples at the
 beginning of a flow, and a MIN_CWND of 2 allows FILTER() to use more
 than a single instantaneous delay estimate while not being too
 aggressive. Slight deviations may be warranted, for example, when
 these values of INIT_CWND and MIN_CWND interact poorly with the
 framing protocol. However, INIT_CWND and MIN_CWND MUST be no larger
 than the corresponding values specified for TCP [RFC5681].

Shalunov, et al. Experimental [Page 12]

RFC 6817 LEDBAT December 2012

3. Understanding LEDBAT Mechanisms

 This section describes the delay estimation and window management
 mechanisms used in LEDBAT.

3.1. Delay Estimation

 LEDBAT estimates congestion in the direction of the data flow, and to
 avoid measuring additional delay from, e.g., queue buildup on the
 reverse path (or ACK path) or reordering, LEDBAT uses one-way delay
 estimates. LEDBAT assumes that measurements are done with data
 packets, thus avoiding the need for separate measurement packets and
 avoiding the pitfall of measurement packets being treated differently
 from the data packets in the network.

 End-to-end delay can be decomposed into transmission (or
 serialization) delay, propagation (or speed-of-light) delay, queueing
 delay, and processing delay. On any given path, barring some noise,
 all delay components except for queueing delay are constant. To
 observe an increase in the queueing delay in the network, a LEDBAT
 sender separates the queueing delay component from the rest of the
 end-to-end delay, as described below.

3.1.1. Estimating Base Delay

 Since queuing delay is always additive to the end-to-end delay,
 LEDBAT estimates the sum of the constant delay components, which we
 call "base delay", to be the minimum delay observed on the end-to-end
 path.

 To respond to true changes in the base delay, as can be caused by a
 route change, LEDBAT uses only recent measurements in estimating the
 base delay. The duration of the observation window itself is a
 trade-off between robustness of measurement and responsiveness to
 change -- a larger observation window increases the chances that the
 true base delay will be detected (as long as the true base delay is
 unchanged), whereas a smaller observation window results in faster
 response to true changes in the base delay.

3.1.2. Estimating Queueing Delay

 Assuming that the base delay is constant (in the absence of any route
 changes), the queueing delay is represented by the variable component
 of the measured end-to-end delay. LEDBAT measures queueing delay as
 simply the difference between an end-to-end delay measurement and the
 current estimate of base delay. The queueing delay should be

Shalunov, et al. Experimental [Page 13]

RFC 6817 LEDBAT December 2012

 filtered (depending on the usage scenario) to eliminate noise in the
 delay estimation, such as due to spikes in processing delay at a node
 on the path.

3.2. Managing the Congestion Window

 LEDBAT uses a simple linear controller to determine the sending rate
 as a function of the delay estimate, where the response of the sender
 is proportional to the difference between the current queueing delay
 estimate and the target.

3.2.1. Window Increase: Probing for More Bandwidth

 When the queuing delay is smaller than a delay target value, as
 specified by the TARGET parameter in this document, a LEDBAT sender
 will increase its congestion window proportionally to the relative
 difference between the current queueing delay and the delay target.
 As the current queuing delay gets closer to TARGET, LEDBAT’s window
 growth gets slower. To compete fairly with concurrent TCP flows, we
 set the highest rate of LEDBAT’s window growth (when the current
 queueing delay estimate is zero) to be the same as TCP’s (increase of
 one packet per RTT). In other words, a LEDBAT flow never ramps up
 faster than a competing TCP flow over the same path. The TARGET
 value specifies the maximum extra queuing delay that LEDBAT will
 induce. If the current queuing delay equals the TARGET value, LEDBAT
 tries to maintain this extra delay.

3.2.2. Window Decrease: Responding to Congestion

 When a sender’s queueing delay estimate is higher than the target,
 the LEDBAT flow’s rate should be reduced. LEDBAT’s linear controller
 allows the sender to decrease the window proportional to the
 difference between the target and the current queueing delay.

 Unlike TCP-like loss-based congestion control, LEDBAT seeks to avoid
 losses and so a LEDBAT sender is not expected to normally rely on
 losses to determine the sending rate. However, when data loss does
 occur, LEDBAT must respond as standard TCP does; even if the queueing
 delay estimates indicate otherwise, a loss is assumed to be a strong
 indication of congestion. Thus, to deal with severe congestion when
 packets are dropped in the network, and to provide a fallback against
 incorrect queuing delay estimates, a LEDBAT sender halves its
 congestion window when a loss event is detected. As with TCP New-
 Reno, LEDBAT reduces its cwnd by half at most once per RTT.

Shalunov, et al. Experimental [Page 14]

RFC 6817 LEDBAT December 2012

3.3. Choosing the Queuing Delay Target

 The International Telecommunication Union’s (ITU’s) Recommendation
 G.114 defines a one-way delay of 150 ms to be acceptable for most
 user voice applications [g114]. Thus, the delay induced by LEDBAT
 must be well below 150 ms to limit its impact on concurrent delay-
 sensitive traffic sharing the same bottleneck queue. A target that
 is too low, on the other hand, increases the sensitivity of the
 sender’s algorithm to noise in the one-way delays and in the delay
 measurement process, and may lead to reduced throughput for the
 LEDBAT flow and to under-utilization of the bottleneck link.

 Our recommendation of 100 ms or less as the target is a trade-off
 between these considerations. Anecdotal evidence indicates that this
 value works well -- LEDBAT has been implemented and successfully
 deployed with a target value of 100 ms in two BitTorrent
 implementations: as the exclusive congestion control mechanism in
 BitTorrent Delivery Network Accelerator (DNA), and as an experimental
 mechanism in uTorrent [uTorrent].

4. Discussion

4.1. Framing and ACK Frequency Considerations

 While the actual framing and wire format of the protocols using
 LEDBAT are outside the scope of this document, we briefly consider
 the data framing and ACK frequency needs of LEDBAT mechanisms.

 To compute the data path’s one-way delay, our discussion of LEDBAT
 assumes a framing that allows the sender to timestamp packets and for
 the receiver to convey the measured one-way delay back to the sender
 in ACK packets. LEDBAT does not require this particular method, but
 it does require unambiguous delay estimates using data and ACK
 packets.

 A LEDBAT receiver may send an ACK as frequently as one for every data
 packet received or less frequently; LEDBAT does require that the
 receiver MUST transmit at least one ACK in every RTT.

4.2. Competing with TCP Flows

 LEDBAT is designed to respond to congestion indications earlier than
 loss-based standard TCP [RFC5681]. A LEDBAT flow gets more
 aggressive as the queueing delay estimate gets lower; since the
 queueing delay estimate is non-negative, LEDBAT is most aggressive
 when the queueing delay estimate is zero. In this case, LEDBAT ramps
 up its congestion window at the same rate as standard TCP [RFC5681].
 LEDBAT may reduce its rate earlier than standard TCP and always

Shalunov, et al. Experimental [Page 15]

RFC 6817 LEDBAT December 2012

 halves its congestion window on loss. Thus, in the worst case, where
 the delay estimates are completely and consistently off, a LEDBAT
 flow falls back to standard TCP behavior, and is no more aggressive
 than standard TCP [RFC5681].

4.3. Competing with Non-TCP Flows

 While LEDBAT yields to all high-load flows, both TCP and non-TCP,
 LEDBAT may not yield to low-load and latency-sensitive traffic that
 do not induce a measurable delay at the bottleneck queue, such as
 Voice over IP (VoIP) traffic. While such flows will experience
 additional delay due to any concurrent LEDBAT flows, the TARGET delay
 sets a limit to the total amount of additional delay that all the
 concurrent LEDBAT flows will jointly induce. If the TARGET delay is
 higher than what the bottleneck queue can sustain, the LEDBAT flows
 should experience loss and will fall back to standard loss-based TCP
 behavior. Thus, in the worst case, LEDBAT will add no more latency
 than standard TCP when competing with non-TCP flows. In the common
 case however, we expect LEDBAT flows to add TARGET amount of delay,
 which ought to be within the delay tolerance for most latency-
 sensitive applications, including VoIP applications.

4.4. Fairness among LEDBAT Flows

 The primary design goals of LEDBAT are focused on the aggregate
 behavior of LEDBAT flows when they compete with standard TCP. Since
 LEDBAT is designed for background traffic, we consider link
 utilization to be more important than fairness amongst LEDBAT flows.
 Nevertheless, we now consider fairness issues that might arise
 amongst competing LEDBAT flows.

 LEDBAT as described so far lacks a mechanism specifically designed to
 equalize utilization amongst LEDBAT flows. Anecdotally observed
 behavior of existing implementations indicates that a rough
 equalization does occur since in most environments some amount of
 randomness in the inter-packet transmission times exists, as
 explained further below.

 Delay-based congestion control systems suffer from the possibility of
 latecomers incorrectly measuring and using a higher base-delay than
 an active flow that started earlier. Consider that a bottleneck is
 saturated by a single LEDBAT flow, and the flow therefore maintains
 the bottleneck queue at TARGET delay. When a new LEDBAT flow arrives
 at the bottleneck, it might incorrectly include the steady queueing
 delay in its measurement of the base delay on the path. The new flow
 has an inflated estimate of the base delay, and may now effectively
 build on top of the existing, already maximal, queueing delay. As
 the latecomer flow builds up, the old flow sees the true queueing

Shalunov, et al. Experimental [Page 16]

RFC 6817 LEDBAT December 2012

 delay and backs off, while the latecomer keeps building up, using up
 the entire link’s capacity, and effectively shutting the old flow
 out. This advantage is called the "latecomer’s advantage".

 In the worst case, if the first flow yields at the same rate as the
 new flow increases its sending rate, the new flow will see constant
 end-to-end delay, which it assumes is the base delay, until the first
 flow backs off completely. As a result, by the time the second flow
 stops increasing its cwnd, it would have added twice the target
 queueing delay to the network.

 This advantage can be reduced if the first flow yields and empties
 the bottleneck queue faster than the incoming flow increases its
 occupancy in the queue. In such a case, the latecomer might measure
 correctly a delay that is closer to the base delay. While such a
 reduction might be achieved through a multiplicative decrease of the
 congestion window, this may cause strong fluctuations in flow
 throughput during the flow’s steady state. Thus, we do not recommend
 a multiplicative decrease scheme.

 We note that in certain use-case scenarios, it is possible for a
 later LEDBAT flow to gain an unfair advantage over an existing one
 [Car10]. In practice, this concern ought to be alleviated by the
 burstiness of network traffic: all that’s needed to measure the base
 delay is one small gap in transmission schedules between the LEDBAT
 flows. These gaps can occur for a number of reasons such as latency
 introduced due to application sending patterns, OS scheduling at the
 sender, processing delay at the sender or any network node, and link
 contention. When such a gap occurs in the first sender’s
 transmission while the latecomer is starting, base delay is
 immediately correctly measured. With a small number of LEDBAT flows,
 system noise may sufficiently regulate the latecomer’s advantage.

5. Open Areas for Experimentation

 We now outline some areas that need experimentation in the Internet
 and under different network scenarios. These experiments should help
 the community understand LEDBAT’s dynamics and should help towards
 further standardization of LEDBAT and LEDBAT-related documents.

5.1. Network Effects and Monitoring

 Further study is required to fully understand the behavior and
 convergence properties of LEDBAT in networks with non-tail-drop, non-
 FIFO queues, in networks with frequent route changes, and in networks
 with network-level load balancing. These studies should have two

Shalunov, et al. Experimental [Page 17]

RFC 6817 LEDBAT December 2012

 broad goals: (i) to understand the effects of different network
 mechanisms on LEDBAT, and (ii) to understand the impact of LEDBAT on
 the network.

 Network mechanisms and dynamics can influence LEDBAT flows in
 unintended ways. For instance, frequent route changes that result in
 increasing base delays may, in the worst case, throttle a LEDBAT
 flow’s throughput significantly. The influence of different network
 traffic management mechanisms on LEDBAT throughput should be studied.

 An increasing number of LEDBAT flows in the network will likely
 result in operator-visible network effects as well, and these should
 thus be studied. For instance, as long as the bottleneck queue in a
 network is larger than TARGET (in terms of delay), we expect that
 both the average queueing delay and loss rate in the network should
 reduce as LEDBAT traffic increasingly dominates the traffic mix in
 the network. Note that for bottleneck queues that are smaller than
 TARGET, LEDBAT will appear to behave very similar to standard TCP and
 its flow-level behavior may not be distinguishable from that of
 standard TCP.

 We note that a network operator may be able to verify the operation
 of a LEDBAT flow by monitoring per-flow behavior and queues in the
 network -- when the queueing delay at a bottleneck queue is above
 TARGET as specified in this document, LEDBAT flows should be expected
 to back off and reduce their sending rate.

5.2. Parameter Values

 The throughput and response of LEDBAT to the proposed parameter
 values of TARGET, decrease-GAIN, BASE_HISTORY, INIT_CWND, and
 MIN_CWND should be evaluated with different types of competing
 traffic in different network settings, including with different AQM
 schemes at the bottleneck queue. TARGET controls LEDBAT’s added
 latency, while decrease-GAIN controls LEDBAT’s response to competing
 traffic. Since LEDBAT is intended to be minimally intrusive to
 competing traffic, the impact of TARGET and decrease-GAIN on delay-
 sensitive traffic should be studied. TARGET also impacts the growth
 rate of the congestion window when off_target is smaller than 1.
 This impact of TARGET on the rate of cwnd growth should be studied.
 The amount of history maintained by the base delay estimator,
 BASE_HISTORY, influences the responsiveness of LEDBAT to changing
 network conditions. LEDBAT’s responsiveness and throughput should be
 evaluated in the wide area and under conditions where abrupt changes
 in base delay might occur, such as with route changes and with
 cellular handovers. The impact and efficacy of these parameters
 should be carefully studied with tests over the Internet.

Shalunov, et al. Experimental [Page 18]

RFC 6817 LEDBAT December 2012

5.3. Filters

 LEDBAT’s effectiveness depends on a sender’s ability to accurately
 estimate end-to-end queueing delay from delay samples. Consequently,
 the filtering algorithm used for this estimation, FILTER(), is an
 important candidate for experiments. This document suggests the use
 of NULL, EWMA, and MIN filters for estimating the current delay; the
 efficacy of these and other possible filters for this estimate should
 be investigated. FILTER() may also impact cwnd dynamics when delay
 samples are bundled in ACKs, since cwnd adaption is done once per ACK
 irrespective of the number of delay samples in the ACK. This impact
 should be studied when the different filters are considered.

5.4. Framing

 This document defines only a congestion control algorithm and assumes
 that framing mechanisms for exchanging delay information exist within
 the protocol in which LEDBAT is being implemented. If implemented in
 a new protocol, both the sender and receiver may be LEDBAT-aware, but
 if implemented in an existing protocol that is capable of providing
 one-way delay information, LEDBAT may be implemented as a sender-
 side-only modification. In either case, the parent protocol may
 interact with LEDBAT’s algorithms; for instance, the rate of ACK
 feedback to the data sender may be dictated by other protocol
 parameters, but will interact with the LEDBAT flow’s dynamics.
 Careful experimentation is necessary to understand and integrate
 LEDBAT into both new and existing protocols.

6. Security Considerations

 LEDBAT’s aggressiveness is contingent on the delay estimates and on
 the TARGET delay value. If these parameter values at the sender are
 compromised such that delay estimates are artificially set to zero
 and the TARGET delay value is set to +INFINITY, the LEDBAT algorithm
 deteriorates to TCP-like behavior. Thus, while LEDBAT is sensitive
 to these parameters, the algorithm is fundamentally limited in the
 worst case to be as aggressive as standard TCP.

 A man in the middle may be able to change queueing delay on a network
 path, and/or modify the timestamps transmitted by a LEDBAT sender
 and/or modify the delays reported by a LEDBAT receiver, thus causing
 a LEDBAT flow to back off even when there’s no congestion. A
 protocol using LEDBAT ought to minimize the risk of such man-in-the-
 middle attacks by at least authenticating the timestamp field in the
 data packets and the delay field in the ACK packets.

Shalunov, et al. Experimental [Page 19]

RFC 6817 LEDBAT December 2012

 LEDBAT is not known to introduce any new concerns with privacy,
 integrity, or other security issues for flows that use it. LEDBAT is
 compatible with use of IPsec and Transport Layer Security (TLS) /
 Datagram Transport Layer Security (DTLS).

7. Acknowledgements

 We thank folks in the LEDBAT working group for their comments and
 feedback. Special thanks to Murari Sridharan and Rolf Winter for
 their patient and untiring shepherding.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",
 RFC 3168, September 2001.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, March 2007.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP’s Retransmission Timer", RFC 6298,
 June 2011.

8.2. Informative References

 [Bra94] Brakmo, L., O’Malley, S., and L. Peterson, "TCP Vegas:
 New techniques for congestion detection and avoidance",
 Proceedings of SIGCOMM ’94, pages 24-35, August 1994.

 [Car10] Carofiglio, G., Muscariello, L., Rossi, D., Testa, C.,
 and S. Valenti, "Rethinking Low Extra Delay Background
 Transport Protocols", October 2010,
 <http://arxiv.org/abs/1010.5623v1>.

 [Low02] Low, S., Peterson, L., and L. Wang, "Understanding TCP
 Vegas: A Duality Model", JACM 49 (2), March 2002.

Shalunov, et al. Experimental [Page 20]

RFC 6817 LEDBAT December 2012

 [RFC5905] Mills, D., Martin, J., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, June 2010.

 [RFC6297] Welzl, M. and D. Ros, "A Survey of Lower-than-Best-Effort
 Transport Protocols", RFC 6297, June 2011.

 [Sch10] Schneider, J., Wagner, J., Winter, R., and H. Kolbe, "Out
 of my Way -- Evaluating Low Extra Delay Background
 Transport in an ADSL Access Network", Proceedings of 22nd
 International Teletraffic Congress (ITC22), September
 2010.

 [g114] "SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL
 SYSTEMS AND NETWORKS; International telephone connections
 and circuits - General; Recommendations on the
 transmission quality for an entire international
 telephone connection; One-way transmission time", ITU-T
 Recommendation G.114, 05/2003.

 [uTorrent] Hazel, G., "uTorrent Transport Protocol library",
 July 2012, <http://github.com/bittorrent/libutp>.

Shalunov, et al. Experimental [Page 21]

RFC 6817 LEDBAT December 2012

Appendix A. Measurement Errors

 LEDBAT measures and uses one-way delays, and we now consider
 measurement errors in timestamp generation and use. In this section,
 we use the same locally linear clock model and the same terminology
 as Network Time Protocol (NTP) [RFC5905]. In particular, NTP uses
 the terms "offset" to refer to the difference between measured time
 and true time, and "skew" to refer to difference of clock rate from
 the true rate. A clock thus has two time measurement errors: a fixed
 offset from the true time, and a skew. We now consider these errors
 in the context of LEDBAT.

A.1. Clock Offset

 The offset of the clocks, both the sender’s and the receiver’s, shows
 up as a fixed error in LEDBAT’s one-way delay measurement. The
 offset in the measured one-way delay is simply the difference in
 offsets between the receiver’s and the sender’s clocks. LEDBAT,
 however, does not use this estimate directly, but uses the difference
 between the measured one-way delay and a measured base delay. Since
 the offset error (difference of clock offsets) is the same for the
 measured one-way delay and the base delay, the offsets cancel each
 other out in the queuing delay estimate, which LEDBAT uses for its
 window computations. Clock offset error thus has no impact on
 LEDBAT.

A.2. Clock Skew

 Clock skew generally shows up as a linearly changing error in a time
 estimate. Similar to the offset, the skew of LEDBAT’s one-way delay
 estimate is thus the difference between the two clocks’ skews.
 Unlike the offset, however, skew does not cancel out when the queuing
 delay estimate is computed, since it causes the two clocks’ offsets
 to change over time.

 While the offset could be large, with some clocks off by minutes or
 even hours or more, skew is typically small. Typical skews of
 untrained clocks seem to be around 100-200 parts per million (ppm)
 [RFC5905], where a skew of 100 ppm translates to an error
 accumulation of 6 milliseconds per minute. This accumulation is
 limited in LEDBAT, since any error accumulation is limited to the
 amount of history maintained by the base delay estimator, as dictated
 by the BASE_HISTORY parameter. The effects of clock skew error on
 LEDBAT should generally be insignificant unless the skew is unusually
 high, or unless extreme values have been chosen for TARGET (extremely
 low) and BASE_HISTORY (extremely large). Nevertheless, we now
 consider the possible impact of skew on LEDBAT behavior.

Shalunov, et al. Experimental [Page 22]

RFC 6817 LEDBAT December 2012

 Clock skew can manifest in two ways: the sender’s clock can be faster
 than the receiver’s clock, or the receiver’s clock can be faster than
 the sender’s clock. In the first case, the measured one-way delay
 will decrease as the sender’s clock drifts forward. While this drift
 can lead to an artificially low estimate of the queueing delay, the
 drift should also lead to a lower base delay measurement, which
 consequently absorbs the erroneous reduction in the one-way delay
 estimates.

 In the second case, the one-way delay estimate will artificially
 increase with time. This increase can reduce a LEDBAT flow’s
 throughput unnecessarily. In this case, a skew correction mechanism
 can be beneficial.

 We now discuss an example clock skew correction mechanism. In this
 example, the receiver sends back raw (sending and receiving)
 timestamps. Using this information, the sender can estimate one-way
 delays in both directions, and the sender can also compute and
 maintain an estimate of the base delay as would be observed by the
 receiver. If the sender detects the receiver reducing its estimate
 of the base delay, it may infer that this reduction is due to clock
 drift. The sender then compensates by increasing its base delay
 estimate by the same amount. To apply this mechanism, timestamps
 need to be transmitted in both directions.

 We now outline a few other ideas that can be used for skew
 correction.

 o Skew correction with faster virtual clock:

 Since having a faster clock on the sender will result in
 continuous updates of the base delay, a faster virtual clock can
 be used for sender timestamping. This virtual clock can be
 computed from the default machine clock through a linear
 transformation. For instance, with a 500 ppm speed-up the
 sender’s clock is very likely to be faster than a receiver’s
 clock. Consequently, LEDBAT will benefit from the implicit
 correction when updating the base delay.

 o Skew correction with estimating drift:

 A LEDBAT sender maintains a history of base delay minima. This
 history can provide a base to compute the clock skew difference
 between the two hosts. The slope of a linear function fitted to
 the set of minima base delays gives an estimate of the clock skew.
 This estimation can be used to correct the clocks. If the other
 endpoint is doing the same, the clock should be corrected by half
 of the estimated skew amount.

Shalunov, et al. Experimental [Page 23]

RFC 6817 LEDBAT December 2012

 o Byzantine skew correction:

 When it is known that each host maintains long-lived connections
 to a number of different other hosts, a byzantine scheme can be
 used to estimate the skew with respect to the true time. Namely,
 a host calculates the skew difference for each of the peer hosts
 as described with the previous approach, then take the median of
 the skew differences. While this scheme is not universally
 applicable, it combines well with other schemes, since it is
 essentially a clock training mechanism. The scheme also corrects
 fast, since state is preserved between connections.

Shalunov, et al. Experimental [Page 24]

RFC 6817 LEDBAT December 2012

Authors’ Addresses

 Stanislav Shalunov
 BitTorrent, Inc.
 303 Second St., Suite S200
 San Francisco, CA 94107
 USA

 EMail: shalunov@shlang.com
 URI: http://shlang.com

 Greg Hazel
 BitTorrent, Inc.
 303 Second St., Suite S200
 San Francisco, CA 94107
 USA

 EMail: greg@bittorrent.com

 Janardhan Iyengar
 Franklin and Marshall College
 415 Harrisburg Ave.
 Lancaster, PA 17603
 USA

 EMail: jiyengar@fandm.edu

 Mirja Kuehlewind
 University of Stuttgart
 Stuttgart
 DE

 EMail: mirja.kuehlewind@ikr.uni-stuttgart.de

Shalunov, et al. Experimental [Page 25]

