
Internet Engineering Task Force (IETF) E. Blanton
Request for Comments: 6675 Purdue University
Obsoletes: 3517 M. Allman
Category: Standards Track ICSI
ISSN: 2070-1721 L. Wang
 Juniper Networks
 I. Jarvinen
 M. Kojo
 University of Helsinki
 Y. Nishida
 WIDE Project
 August 2012

 A Conservative Loss Recovery Algorithm Based on
 Selective Acknowledgment (SACK) for TCP

Abstract

 This document presents a conservative loss recovery algorithm for TCP
 that is based on the use of the selective acknowledgment (SACK) TCP
 option. The algorithm presented in this document conforms to the
 spirit of the current congestion control specification (RFC 5681),
 but allows TCP senders to recover more effectively when multiple
 segments are lost from a single flight of data. This document
 obsoletes RFC 3517 and describes changes from it.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 5741.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6675.

Blanton, et al. Standards Track [Page 1]

RFC 6675 SACK Loss Recovery Algorithm for TCP August 2012

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 This document presents a conservative loss recovery algorithm for TCP
 that is based on the use of the selective acknowledgment (SACK) TCP
 option. While the TCP SACK option [RFC2018] is being steadily
 deployed in the Internet [All00], there is evidence that hosts are
 not using the SACK information when making retransmission and
 congestion control decisions [PF01]. The goal of this document is to
 outline one straightforward method for TCP implementations to use
 SACK information to increase performance.

 [RFC5681] allows advanced loss recovery algorithms to be used by TCP
 [RFC793] provided that they follow the spirit of TCP’s congestion
 control algorithms [RFC5681] [RFC2914]. [RFC6582] outlines one such
 advanced recovery algorithm called NewReno. This document outlines a
 loss recovery algorithm that uses the SACK TCP option [RFC2018] to
 enhance TCP’s loss recovery. The algorithm outlined in this
 document, heavily based on the algorithm detailed in [FF96], is a
 conservative replacement of the fast recovery algorithm [Jac90]
 [RFC5681]. The algorithm specified in this document is a
 straightforward SACK-based loss recovery strategy that follows the
 guidelines set in [RFC5681] and can safely be used in TCP
 implementations. Alternate SACK-based loss recovery methods can be
 used in TCP as implementers see fit (as long as the alternate
 algorithms follow the guidelines provided in [RFC5681]). Please
 note, however, that the SACK-based decisions in this document (such
 as what segments are to be sent at what time) are largely decoupled
 from the congestion control algorithms, and as such can be treated as
 separate issues if so desired.

 This document represents a revision of [RFC3517] to address several
 situations that are not handled explicitly in that document. A

Blanton, et al. Standards Track [Page 2]

RFC 6675 SACK Loss Recovery Algorithm for TCP August 2012

 summary of the changes between this document and [RFC3517] can be
 found in Section 9.

2. Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119].

 The reader is expected to be familiar with the definitions given in
 [RFC5681].

 The reader is assumed to be familiar with selective acknowledgments
 as specified in [RFC2018].

 For the purposes of explaining the SACK-based loss recovery
 algorithm, we define six variables that a TCP sender stores:

 "HighACK" is the sequence number of the highest byte of data that
 has been cumulatively ACKed at a given point.

 "HighData" is the highest sequence number transmitted at a given
 point.

 "HighRxt" is the highest sequence number which has been
 retransmitted during the current loss recovery phase.

 "RescueRxt" is the highest sequence number which has been
 optimistically retransmitted to prevent stalling of the ACK clock
 when there is loss at the end of the window and no new data is
 available for transmission.

 "Pipe" is a sender’s estimate of the number of bytes outstanding
 in the network. This is used during recovery for limiting the
 sender’s sending rate. The pipe variable allows TCP to use
 fundamentally different congestion control than the algorithm
 specified in [RFC5681]. The congestion control algorithm using
 the pipe estimate is often referred to as the "pipe algorithm".

 "DupAcks" is the number of duplicate acknowledgments received
 since the last cumulative acknowledgment.

 For the purposes of this specification, we define a "duplicate
 acknowledgment" as a segment that arrives carrying a SACK block that
 identifies previously unacknowledged and un-SACKed octets between
 HighACK and HighData. Note that an ACK which carries new SACK data
 is counted as a duplicate acknowledgment under this definition even

Blanton, et al. Standards Track [Page 3]

RFC 6675 SACK Loss Recovery Algorithm for TCP August 2012

 if it carries new data, changes the advertised window, or moves the
 cumulative acknowledgment point, which is different from the
 definition of duplicate acknowledgment in [RFC5681].

 We define a variable "DupThresh" that holds the number of duplicate
 acknowledgments required to trigger a retransmission. Per [RFC5681],
 this threshold is defined to be 3 duplicate acknowledgments.
 However, implementers should consult any updates to [RFC5681] to
 determine the current value for DupThresh (or method for determining
 its value).

 Finally, a range of sequence numbers [A,B] is said to "cover"
 sequence number S if A <= S <= B.

3. Keeping Track of SACK Information

 For a TCP sender to implement the algorithm defined in the next
 section, it must keep a data structure to store incoming selective
 acknowledgment information on a per connection basis. Such a data
 structure is commonly called the "scoreboard". The specifics of the
 scoreboard data structure are out of scope for this document (as long
 as the implementation can perform all functions required by this
 specification).

 Note that this document refers to keeping account of (marking)
 individual octets of data transferred across a TCP connection. A
 real-world implementation of the scoreboard would likely prefer to
 manage this data as sequence number ranges. The algorithms presented
 here allow this, but require the ability to mark arbitrary sequence
 number ranges as having been selectively acknowledged.

 Finally, note that the algorithm in this document assumes a sender
 that is not keeping track of segment boundaries after transmitting a
 segment. It is possible that there is a more refined and precise
 algorithm available to a sender that keeps this extra state than the
 algorithm presented herein; however, we leave this as future work.

4. Processing and Acting Upon SACK Information

 This section describes a specific structure and control flow for
 implementing the TCP behavior described by this standard. The
 behavior is what is standardized, and this particular collection of
 functions is the strongly recommended means of implementing that
 behavior, though other approaches to achieving that behavior are
 feasible.

 The definition of Sender Maximum Segment Size (SMSS) used in this
 section is provided in [RFC5681].

Blanton, et al. Standards Track [Page 4]

RFC 6675 SACK Loss Recovery Algorithm for TCP August 2012

 For the purposes of the algorithm defined in this document, the
 scoreboard SHOULD implement the following functions:

 Update ():

 Given the information provided in an ACK, each octet that is
 cumulatively ACKed or SACKed should be marked accordingly in the
 scoreboard data structure, and the total number of octets SACKed
 should be recorded.

 Note: SACK information is advisory and therefore SACKed data MUST
 NOT be removed from the TCP’s retransmission buffer until the data
 is cumulatively acknowledged [RFC2018].

 IsLost (SeqNum):

 This routine returns whether the given sequence number is
 considered to be lost. The routine returns true when either
 DupThresh discontiguous SACKed sequences have arrived above
 ’SeqNum’ or more than (DupThresh - 1) * SMSS bytes with sequence
 numbers greater than ’SeqNum’ have been SACKed. Otherwise, the
 routine returns false.

 SetPipe ():

 This routine traverses the sequence space from HighACK to HighData
 and MUST set the "pipe" variable to an estimate of the number of
 octets that are currently in transit between the TCP sender and
 the TCP receiver. After initializing pipe to zero, the following
 steps are taken for each octet ’S1’ in the sequence space between
 HighACK and HighData that has not been SACKed:

 (a) If IsLost (S1) returns false:

 Pipe is incremented by 1 octet.

 The effect of this condition is that pipe is incremented for
 packets that have not been SACKed and have not been determined
 to have been lost (i.e., those segments that are still assumed
 to be in the network).

 (b) If S1 <= HighRxt:

 Pipe is incremented by 1 octet.

 The effect of this condition is that pipe is incremented for
 the retransmission of the octet.

Blanton, et al. Standards Track [Page 5]

RFC 6675 SACK Loss Recovery Algorithm for TCP August 2012

 Note that octets retransmitted without being considered lost are
 counted twice by the above mechanism.

 NextSeg ():

 This routine uses the scoreboard data structure maintained by the
 Update() function to determine what to transmit based on the SACK
 information that has arrived from the data receiver (and hence
 been marked in the scoreboard). NextSeg () MUST return the
 sequence number range of the next segment that is to be
 transmitted, per the following rules:

 (1) If there exists a smallest unSACKed sequence number ’S2’ that
 meets the following three criteria for determining loss, the
 sequence range of one segment of up to SMSS octets starting
 with S2 MUST be returned.

 (1.a) S2 is greater than HighRxt.

 (1.b) S2 is less than the highest octet covered by any
 received SACK.

 (1.c) IsLost (S2) returns true.

 (2) If no sequence number ’S2’ per rule (1) exists but there
 exists available unsent data and the receiver’s advertised
 window allows, the sequence range of one segment of up to SMSS
 octets of previously unsent data starting with sequence number
 HighData+1 MUST be returned.

 (3) If the conditions for rules (1) and (2) fail, but there exists
 an unSACKed sequence number ’S3’ that meets the criteria for
 detecting loss given in steps (1.a) and (1.b) above
 (specifically excluding step (1.c)), then one segment of up to
 SMSS octets starting with S3 SHOULD be returned.

 (4) If the conditions for (1), (2), and (3) fail, but there exists
 outstanding unSACKed data, we provide the opportunity for a
 single "rescue" retransmission per entry into loss recovery.
 If HighACK is greater than RescueRxt (or RescueRxt is
 undefined), then one segment of up to SMSS octets that MUST
 include the highest outstanding unSACKed sequence number
 SHOULD be returned, and RescueRxt set to RecoveryPoint.
 HighRxt MUST NOT be updated.

 Note that rules (3) and (4) are a sort of retransmission "last
 resort". They allow for retransmission of sequence numbers
 even when the sender has less certainty a segment has been

Blanton, et al. Standards Track [Page 6]

RFC 6675 SACK Loss Recovery Algorithm for TCP August 2012

 lost than as with rule (1). Retransmitting segments via rule
 (3) and (4) will help sustain the TCP’s ACK clock and
 therefore can potentially help avoid retransmission timeouts.
 However, in sending these segments, the sender has two copies
 of the same data considered to be in the network (and also in
 the pipe estimate, in the case of (3)). When an ACK or SACK
 arrives covering this retransmitted segment, the sender cannot
 be sure exactly how much data left the network (one of the two
 transmissions of the packet or both transmissions of the
 packet). Therefore, the sender may underestimate pipe by
 considering both segments to have left the network when it is
 possible that only one of the two has.

 (5) If the conditions for each of (1), (2), (3), and (4) are not
 met, then NextSeg () MUST indicate failure, and no segment is
 returned.

 Note: The SACK-based loss recovery algorithm outlined in this
 document requires more computational resources than previous TCP loss
 recovery strategies. However, we believe the scoreboard data
 structure can be implemented in a reasonably efficient manner (both
 in terms of computation complexity and memory usage) in most TCP
 implementations.

5. Algorithm Details

 Upon the receipt of any ACK containing SACK information, the
 scoreboard MUST be updated via the Update () routine.

 If the incoming ACK is a cumulative acknowledgment, the TCP MUST
 reset DupAcks to zero.

 If the incoming ACK is a duplicate acknowledgment per the definition
 in Section 2 (regardless of its status as a cumulative
 acknowledgment), and the TCP is not currently in loss recovery, the
 TCP MUST increase DupAcks by one and take the following steps:

 (1) If DupAcks >= DupThresh, go to step (4).

 Note: This check covers the case when a TCP receives SACK
 information for multiple segments smaller than SMSS, which can
 potentially prevent IsLost() (next step) from declaring a segment
 as lost.

 (2) If DupAcks < DupThresh but IsLost (HighACK + 1) returns true --
 indicating at least three segments have arrived above the current
 cumulative acknowledgment point, which is taken to indicate loss
 -- go to step (4).

Blanton, et al. Standards Track [Page 7]

RFC 6675 SACK Loss Recovery Algorithm for TCP August 2012

 (3) The TCP MAY transmit previously unsent data segments as per
 Limited Transmit [RFC5681], except that the number of octets
 which may be sent is governed by pipe and cwnd as follows:

 (3.1) Set HighRxt to HighACK.

 (3.2) Run SetPipe ().

 (3.3) If (cwnd - pipe) >= 1 SMSS, there exists previously unsent
 data, and the receiver’s advertised window allows, transmit
 up to 1 SMSS of data starting with the octet HighData+1 and
 update HighData to reflect this transmission, then return
 to (3.2).

 (3.4) Terminate processing of this ACK.

 (4) Invoke fast retransmit and enter loss recovery as follows:

 (4.1) RecoveryPoint = HighData

 When the TCP sender receives a cumulative ACK for this data
 octet, the loss recovery phase is terminated.

 (4.2) ssthresh = cwnd = (FlightSize / 2)

 The congestion window (cwnd) and slow start threshold
 (ssthresh) are reduced to half of FlightSize per [RFC5681].
 Additionally, note that [RFC5681] requires that any
 segments sent as part of the Limited Transmit mechanism not
 be counted in FlightSize for the purpose of the above
 equation.

 (4.3) Retransmit the first data segment presumed dropped -- the
 segment starting with sequence number HighACK + 1. To
 prevent repeated retransmission of the same data or a
 premature rescue retransmission, set both HighRxt and
 RescueRxt to the highest sequence number in the
 retransmitted segment.

 (4.4) Run SetPipe ()

 Set a "pipe" variable to the number of outstanding octets
 currently "in the pipe"; this is the data which has been
 sent by the TCP sender but for which no cumulative or
 selective acknowledgment has been received and the data has
 not been determined to have been dropped in the network.
 It is assumed that the data is still traversing the network
 path.

Blanton, et al. Standards Track [Page 8]

RFC 6675 SACK Loss Recovery Algorithm for TCP August 2012

 (4.5) In order to take advantage of potential additional
 available cwnd, proceed to step (C) below.

 Once a TCP is in the loss recovery phase, the following procedure
 MUST be used for each arriving ACK:

 (A) An incoming cumulative ACK for a sequence number greater than
 RecoveryPoint signals the end of loss recovery, and the loss
 recovery phase MUST be terminated. Any information contained in
 the scoreboard for sequence numbers greater than the new value of
 HighACK SHOULD NOT be cleared when leaving the loss recovery
 phase.

 (B) Upon receipt of an ACK that does not cover RecoveryPoint, the
 following actions MUST be taken:

 (B.1) Use Update () to record the new SACK information conveyed
 by the incoming ACK.

 (B.2) Use SetPipe () to re-calculate the number of octets still
 in the network.

 (C) If cwnd - pipe >= 1 SMSS, the sender SHOULD transmit one or more
 segments as follows:

 (C.1) The scoreboard MUST be queried via NextSeg () for the
 sequence number range of the next segment to transmit (if
 any), and the given segment sent. If NextSeg () returns
 failure (no data to send), return without sending anything
 (i.e., terminate steps C.1 -- C.5).

 (C.2) If any of the data octets sent in (C.1) are below HighData,
 HighRxt MUST be set to the highest sequence number of the
 retransmitted segment unless NextSeg () rule (4) was
 invoked for this retransmission.

 (C.3) If any of the data octets sent in (C.1) are above HighData,
 HighData must be updated to reflect the transmission of
 previously unsent data.

 (C.4) The estimate of the amount of data outstanding in the
 network must be updated by incrementing pipe by the number
 of octets transmitted in (C.1).

 (C.5) If cwnd - pipe >= 1 SMSS, return to (C.1)

Blanton, et al. Standards Track [Page 9]

RFC 6675 SACK Loss Recovery Algorithm for TCP August 2012

 Note that steps (A) and (C) can potentially send a burst of
 back-to-back segments into the network if the incoming cumulative
 acknowledgment is for more than SMSS octets of data, or if incoming
 SACK blocks indicate that more than SMSS octets of data have been
 lost in the second half of the window.

5.1. Retransmission Timeouts

 In order to avoid memory deadlocks, the TCP receiver is allowed to
 discard data that has already been selectively acknowledged. As a
 result, [RFC2018] suggests that a TCP sender SHOULD expunge the SACK
 information gathered from a receiver upon a retransmission timeout
 (RTO) "since the timeout might indicate that the data receiver has
 reneged." Additionally, a TCP sender MUST "ignore prior SACK
 information in determining which data to retransmit." However, since
 the publication of [RFC2018], this has come to be viewed by some as
 too strong. It has been suggested that, as long as robust tests for
 reneging are present, an implementation can retain and use SACK
 information across a timeout event [Errata1610]. While this document
 does not change the specification in [RFC2018], we note that
 implementers should consult any updates to [RFC2018] on this subject.
 Further, a SACK TCP sender SHOULD utilize all SACK information made
 available during the loss recovery following an RTO.

 If an RTO occurs during loss recovery as specified in this document,
 RecoveryPoint MUST be set to HighData. Further, the new value of
 RecoveryPoint MUST be preserved and the loss recovery algorithm
 outlined in this document MUST be terminated. In addition, a new
 recovery phase (as described in Section 5) MUST NOT be initiated
 until HighACK is greater than or equal to the new value of
 RecoveryPoint.

 As described in Sections 4 and 5, Update () SHOULD continue to be
 used appropriately upon receipt of ACKs. This will allow the
 recovery period after an RTO to benefit from all available
 information provided by the receiver, even if SACK information was
 expunged due to the RTO.

 If there are segments missing from the receiver’s buffer following
 processing of the retransmitted segment, the corresponding ACK will
 contain SACK information. In this case, a TCP sender SHOULD use this
 SACK information when determining what data should be sent in each
 segment following an RTO. The exact algorithm for this selection is
 not specified in this document (specifically NextSeg () is
 inappropriate during loss recovery after an RTO). A relatively
 straightforward approach to "filling in" the sequence space reported
 as missing should be a reasonable approach.

Blanton, et al. Standards Track [Page 10]

RFC 6675 SACK Loss Recovery Algorithm for TCP August 2012

6. Managing the RTO Timer

 The standard TCP RTO estimator is defined in [RFC6298]. Due to the
 fact that the SACK algorithm in this document can have an impact on
 the behavior of the estimator, implementers may wish to consider how
 the timer is managed. [RFC6298] calls for the RTO timer to be
 re-armed each time an ACK arrives that advances the cumulative ACK
 point. Because the algorithm presented in this document can keep the
 ACK clock going through a fairly significant loss event
 (comparatively longer than the algorithm described in [RFC5681]), on
 some networks the loss event could last longer than the RTO. In this
 case the RTO timer would expire prematurely and a segment that need
 not be retransmitted would be resent.

 Therefore, we give implementers the latitude to use the standard
 [RFC6298]-style RTO management or, optionally, a more careful variant
 that re-arms the RTO timer on each retransmission that is sent during
 recovery MAY be used. This provides a more conservative timer than
 specified in [RFC6298], and so may not always be an attractive
 alternative. However, in some cases it may prevent needless
 retransmissions, go-back-N transmission, and further reduction of the
 congestion window.

7. Research

 The algorithm specified in this document is analyzed in [FF96], which
 shows that the above algorithm is effective in reducing transfer time
 over standard TCP Reno [RFC5681] when multiple segments are dropped
 from a window of data (especially as the number of drops increases).
 [AHKO97] shows that the algorithm defined in this document can
 greatly improve throughput in connections traversing satellite
 channels.

8. Security Considerations

 The algorithm presented in this paper shares security considerations
 with [RFC5681]. A key difference is that an algorithm based on SACKs
 is more robust against attackers forging duplicate ACKs to force the
 TCP sender to reduce cwnd. With SACKs, TCP senders have an
 additional check on whether or not a particular ACK is legitimate.
 While not fool-proof, SACK does provide some amount of protection in
 this area.

 Similarly, [CPNI309] sketches a variant of a blind attack [RFC5961]
 whereby an attacker can spoof out-of-window data to a TCP endpoint,
 causing it to respond to the legitimate peer with a duplicate
 cumulative ACK, per [RFC793]. Adding a SACK-based requirement to
 trigger loss recovery effectively mitigates this attack, as the

Blanton, et al. Standards Track [Page 11]

RFC 6675 SACK Loss Recovery Algorithm for TCP August 2012

 duplicate ACKs caused by out-of-window segments will not contain SACK
 information indicating reception of previously un-SACKED in-window
 data.

9. Changes Relative to RFC 3517

 The state variable "DupAcks" has been added to the list of variables
 maintained by this algorithm, and its usage specified.

 The function IsLost () has been modified to require that more than
 (DupThresh - 1) * SMSS octets have been SACKed above a given sequence
 number as indication that it is lost, which is changed from the
 minimum requirement of (DupThresh * SMSS) described in [RFC3517].
 This retains the requirement that at least three segments following
 the sequence number in question have been SACKed, while improving
 detection in the event that the sender has outstanding segments which
 are smaller than SMSS.

 The definition of a "duplicate acknowledgment" has been modified to
 utilize the SACK information in detecting loss. Duplicate cumulative
 acknowledgments can be caused by either loss or reordering in the
 network. To disambiguate loss and reordering, TCP’s fast retransmit
 algorithm [RFC5681] waits until three duplicate ACKs arrive to
 trigger loss recovery. This notion was then the basis for the
 algorithm specified in [RFC3517]. However, with SACK information
 there is no need to rely blindly on the cumulative acknowledgment
 field. We can leverage the additional information present in the
 SACK blocks to understand that three segments lying above a gap in
 the sequence space have arrived at the receiver, and can use this
 understanding to trigger loss recovery. This notion was used in
 [RFC3517] during loss recovery, and the change in this document is
 that the notion is also used to enter a loss recovery phase.

 The state variable "RescueRxt" has been added to the list of
 variables maintained by the algorithm, and its usage specified. This
 variable is used to allow for one extra retransmission per entry into
 loss recovery, in order to keep the ACK clock going under certain
 circumstances involving loss at the end of the window. This
 mechanism allows for no more than one segment of no larger than 1
 SMSS to be optimistically retransmitted per loss recovery.

 Rule (3) of NextSeg() has been changed from MAY to SHOULD, to
 appropriately reflect the opinion of the authors and working group
 that it should be left in, rather than out, if an implementor does
 not have a compelling reason to do otherwise.

Blanton, et al. Standards Track [Page 12]

RFC 6675 SACK Loss Recovery Algorithm for TCP August 2012

10. Acknowledgments

 The authors wish to thank Sally Floyd for encouraging [RFC3517] and
 commenting on early drafts. The algorithm described in this document
 is loosely based on an algorithm outlined by Kevin Fall and Sally
 Floyd in [FF96], although the authors of this document assume
 responsibility for any mistakes in the above text.

 [RFC3517] was co-authored by Kevin Fall, who provided crucial input
 to that document and hence this follow-on work.

 Murali Bashyam, Ken Calvert, Tom Henderson, Reiner Ludwig, Jamshid
 Mahdavi, Matt Mathis, Shawn Ostermann, Vern Paxson, and Venkat
 Venkatsubra provided valuable feedback on earlier versions of this
 document.

 We thank Matt Mathis and Jamshid Mahdavi for implementing the
 scoreboard in ns and hence guiding our thinking in keeping track of
 SACK state.

 The first author would like to thank Ohio University and the Ohio
 University Internetworking Research Group for supporting the bulk of
 his work on RFC 3517, from which this document is derived.

11. References

11.1. Normative References

 [RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

11.2. Informative References

 [AHKO97] Mark Allman, Chris Hayes, Hans Kruse, Shawn Ostermann,
 "TCP Performance Over Satellite Links", Proceedings of the
 Fifth International Conference on Telecommunications
 Systems, Nashville, TN, March, 1997.

Blanton, et al. Standards Track [Page 13]

RFC 6675 SACK Loss Recovery Algorithm for TCP August 2012

 [All00] Mark Allman, "A Web Server’s View of the Transport Layer",
 ACM Computer Communication Review, 30(5), October 2000.

 [CPNI309] Fernando Gont, "Security Assessment of the Transmission
 Control Protocol (TCP)", CPNI Technical Note 3/2009,
 <http://www.gont.com.ar/papers/
 tn-03-09-security-assessment-TCP.pdf>, February 2009.

 [Errata1610]
 RFC Errata, Errata ID 1610, RFC 2018,
 <http://www.rfc-editor.org>.

 [FF96] Kevin Fall and Sally Floyd, "Simulation-based Comparisons
 of Tahoe, Reno and SACK TCP", Computer Communication
 Review, July 1996.

 [Jac90] Van Jacobson, "Modified TCP Congestion Avoidance
 Algorithm", Technical Report, LBL, April 1990.

 [PF01] Jitendra Padhye, Sally Floyd "Identifying the TCP Behavior
 of Web Servers", ACM SIGCOMM, August 2001.

 [RFC6582] Henderson, T., Floyd, S., Gurtov, A., and Y. Nishida, "The
 NewReno Modification to TCP’s Fast Recovery Algorithm",
 RFC 6582, April 2012.

 [RFC2914] Floyd, S., "Congestion Control Principles", BCP 41, RFC
 2914, September 2000.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP’s Retransmission Timer", RFC 6298, June
 2011.

 [RFC3517] Blanton, E., Allman, M., Fall, K., and L. Wang, "A
 Conservative Selective Acknowledgment (SACK)-based Loss
 Recovery Algorithm for TCP", RFC 3517, April 2003.

 [RFC5961] Ramaiah, A., Stewart, R., and M. Dalal, "Improving TCP’s
 Robustness to Blind In-Window Attacks", RFC 5961, August
 2010.

Blanton, et al. Standards Track [Page 14]

RFC 6675 SACK Loss Recovery Algorithm for TCP August 2012

Authors’ Addresses

 Ethan Blanton
 Purdue University Computer Sciences
 305 N. University St.
 West Lafayette, IN 47907
 United States
 EMail: elb@psg.com

 Mark Allman
 International Computer Science Institute
 1947 Center St. Suite 600
 Berkeley, CA 94704
 United States
 EMail: mallman@icir.org
 http://www.icir.org/mallman

 Lili Wang
 Juniper Networks
 10 Technology Park Drive
 Westford, MA 01886
 United States
 EMail: liliw@juniper.net

 Ilpo Jarvinen
 University of Helsinki
 P.O. Box 68
 FI-00014 UNIVERSITY OF HELSINKI
 Finland
 EMail: ilpo.jarvinen@helsinki.fi

 Markku Kojo
 University of Helsinki
 P.O. Box 68
 FI-00014 UNIVERSITY OF HELSINKI
 Finland
 EMail: kojo@cs.helsinki.fi

 Yoshifumi Nishida
 WIDE Project
 Endo 5322
 Fujisawa, Kanagawa 252-8520
 Japan
 EMail: nishida@wide.ad.jp

Blanton, et al. Standards Track [Page 15]

