
Internet Engineering Task Force (IETF) D. Harkins
Request for Comments: 6617 Aruba Networks
Category: Experimental June 2012
ISSN: 2070-1721

 Secure Pre-Shared Key (PSK) Authentication
 for the Internet Key Exchange Protocol (IKE)

Abstract

 This memo describes a secure pre-shared key (PSK) authentication
 method for the Internet Key Exchange Protocol (IKE). It is resistant
 to dictionary attack and retains security even when used with weak
 pre-shared keys.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6617.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Harkins Experimental [Page 1]

RFC 6617 Secure PSK Authentication for IKE June 2012

Table of Contents

 1. Introduction ..3
 1.1. Keyword Definitions ..3
 2. Usage Scenarios ...3
 3. Terms and Notation ..4
 4. Discrete Logarithm Cryptography5
 4.1. Elliptic Curve Cryptography (ECP) Groups5
 4.2. Finite Field Cryptography (MODP) Groups7
 5. Random Numbers ..8
 6. Using Passwords and Raw Keys For Authentication8
 7. Assumptions ...9
 8. Secure PSK Authentication Message Exchange9
 8.1. Negotiation of Secure PSK Authentication10
 8.2. Fixing the Secret Element, SKE11
 8.2.1. ECP Operation to Select SKE12
 8.2.2. MODP Operation to Select SKE13
 8.3. Encoding and Decoding of Group Elements and Scalars14
 8.3.1. Encoding and Decoding of Scalars14
 8.3.2. Encoding and Decoding of ECP Elements15
 8.3.3. Encoding and Decoding of MODP Elements15
 8.4. Message Generation and Processing16
 8.4.1. Generation of a Commit16
 8.4.2. Processing of a Commit16
 8.4.2.1. Validation of an ECP Element16
 8.4.2.2. Validation of a MODP Element16
 8.4.2.3. Commit Processing Steps17
 8.4.3. Authentication of the Exchange17
 8.5. Payload Format ..18
 8.5.1. Commit Payload18
 8.6. IKEv2 Messaging ...19
 9. IANA Considerations ..20
 10. Security Considerations20
 11. Acknowledgements ..22
 12. References ..22
 12.1. Normative References22
 12.2. Informative References23

Harkins Experimental [Page 2]

RFC 6617 Secure PSK Authentication for IKE June 2012

1. Introduction

 [RFC5996] allows for authentication of the IKE peers using a pre-
 shared key. This exchange, though, is susceptible to dictionary
 attack and is therefore insecure when used with weak pre-shared keys,
 such as human-memorizable passwords. To address the security issue,
 [RFC5996] recommends that the pre-shared key used for authentication
 "contain as much unpredictability as the strongest key being
 negotiated". That means any non-hexadecimal key would require over
 100 characters to provide enough strength to generate a 128-bit key
 suitable for AES. This is an unrealistic requirement because humans
 have a hard time entering a string over 20 characters without error.
 Consequently, pre-shared key authentication in [RFC5996] is used
 insecurely today.

 A pre-shared key authentication method built on top of a zero-
 knowledge proof will provide resistance to dictionary attack and
 still allow for security when used with weak pre-shared keys, such as
 user-chosen passwords. Such an authentication method is described in
 this memo.

 Resistance to dictionary attack is achieved when an adversary gets
 one, and only one, guess at the secret per active attack (see, for
 example, [BM92], [BMP00], and [BPR00]). Another way of putting this
 is that any advantage the adversary can realize is through
 interaction and not through computation. This is demonstrably
 different than the technique from [RFC5996] of using a large, random
 number as the pre-shared key. That can only make a dictionary attack
 less likely to succeed; it does not prevent a dictionary attack.
 Furthermore, as [RFC5996] notes, it is completely insecure when used
 with weak keys like user-generated passwords.

1.1. Keyword Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Usage Scenarios

 [RFC5996] describes usage scenarios for IKEv2. These are:

 1. "Security Gateway to Security Gateway Tunnel": The endpoints of
 the IKE (and IPsec) communication are network nodes that protect
 traffic on behalf of connected networks. Protected traffic is
 between devices on the respective protected networks.

Harkins Experimental [Page 3]

RFC 6617 Secure PSK Authentication for IKE June 2012

 2. "Endpoint-to-Endpoint Transport": The endpoints of the IKE (and
 IPsec) communication are hosts according to [RFC4301]. Protected
 traffic is between the two endpoints.

 3. "Endpoint to Security Gateway Tunnel": One endpoint connects to a
 protected network through a network node. The endpoints of the
 IKE (and IPsec) communication are the endpoint and network node,
 but the protected traffic is between the endpoint and another
 device on the protected network behind the node.

 The authentication and key exchange process described in this memo is
 suitable for all the usage scenarios described in [RFC5996]. In the
 "Security Gateway to Security Gateway Tunnel" scenario and the
 "Endpoint-to-Endpoint Transport" scenario, it provides a secure
 method of authentication without requiring a certificate. For the
 "Endpoint to Security Gateway Tunnel" scenario, it provides for
 secure username+password authentication that is popular in remote-
 access VPN situations.

3. Terms and Notation

 The following terms and notations are used in this memo:

 PSK
 A shared, secret, and potentially low-entropy word, phrase, code,
 or key used as a credential to mutually authenticate the peers.

 a = prf(b, c)
 The string "b" and "c" are given to a pseudo-random function
 (prf) to produce a fixed-length output "a".

 a | b
 denotes concatenation of string "a" with string "b".

 [a]b
 indicates a string consisting of the single bit "a" repeated "b"
 times.

 len(a)
 indicates the length in bits of the string "a".

 LSB(a)
 returns the least-significant bit of the bitstring "a".

 element
 one member of a finite cyclic group.

Harkins Experimental [Page 4]

RFC 6617 Secure PSK Authentication for IKE June 2012

 scalar
 a quantity that can multiply an element.

 The convention for this memo to represent an element in a finite
 cyclic group is to use an upper-case letter or acronym, while a
 scalar is indicated with a lowercase letter or acronym.

4. Discrete Logarithm Cryptography

 This protocol uses Discrete Logarithm Cryptography to achieve
 authentication. Each party to the exchange derives ephemeral public
 and private keys with respect to a particular set of domain
 parameters (referred to here as a "group"). Groups can be either
 based on finite field cryptography (modular exponentiation (MODP)
 groups) or elliptic curve cryptography (ECP groups).

 This protocol uses the same group as the IKE exchange in which it is
 being used for authentication, with the exception of characteristic-
 two elliptic curve groups (EC2N). Use of such groups is undefined
 for this authentication method, and an IKE exchange that negotiates
 one of these groups MUST NOT use this method of authentication.

 For each group, the following operations are defined:

 o "scalar operation" -- takes a scalar and an element in the group
 to produce another element -- Z = scalar-op(x, Y).

 o "element operation" -- takes two elements in the group to produce
 a third -- Z = element-op(X, Y).

 o "inverse operation" -- takes an element and returns another
 element such that the element operation on the two produces the
 identity element of the group -- Y = inverse(X).

4.1. Elliptic Curve Cryptography (ECP) Groups

 The key exchange defined in this memo uses fundamental algorithms of
 ECP groups as described in [RFC6090].

 Domain parameters for ECP elliptic curves used for Secure PSK
 Authentication include:

 o A prime, p, determining a prime field GF(p). The cryptographic
 group will be a subgroup of the full elliptic curve group that
 consists of points on an elliptic curve -- elements from GF(p)
 that satisfy the curve’s equation -- together with the "point at
 infinity" (denoted here as "0") that serves as the identity
 element.

Harkins Experimental [Page 5]

RFC 6617 Secure PSK Authentication for IKE June 2012

 o Elements a and b from GF(p) that define the curve’s equation. The
 point (x,y) is on the elliptic curve if and only if y^2 = x^3 +
 a*x + b.

 o A prime, r, which is the order of, or number of elements in, a
 subgroup generated by an element G.

 The scalar operation is multiplication of a point on the curve by
 itself a number of times. The point Y is multiplied x-times to
 produce another point Z:

 Z = scalar-op(x, Y) = x*Y

 The element operation is addition of two points on the curve. Points
 X and Y are summed to produce another point Z:

 Z = element-op(X, Y) = X + Y

 The inverse function is defined such that the sum of an element and
 its inverse is "0", the point-at-infinity of an elliptic curve group:

 Q + inverse(Q) = "0"

 Elliptic curve groups require a mapping function, q = F(Q), to
 convert a group element to an integer. The mapping function used in
 this memo returns the x-coordinate of the point it is passed.

 scalar-op(x, Y) can be viewed as x iterations of element-op() by
 defining:

 Y = scalar-op(1, Y)

 Y = scalar-op(x, Y) = element-op(Y, scalar-op(x-1, Y)), for x > 1

 A definition of how to add two points on an elliptic curve (i.e.,
 element-op(X, Y)) can be found in [RFC6090].

 Note: There is another ECP domain parameter, a cofactor, h, that is
 defined by the requirement that the size of the full elliptic curve
 group (including "0") be the product of h and r. ECP groups used for
 Secure PSK Authentication MUST have a cofactor of one (1). At the
 time of publication of this memo, all ECP groups in [IKEV2-IANA] had
 a cofactor of one (1).

Harkins Experimental [Page 6]

RFC 6617 Secure PSK Authentication for IKE June 2012

4.2. Finite Field Cryptography (MODP) Groups

 Domain parameters for MODP groups used for Secure PSK Authentication
 include:

 o A prime, p, determining a prime field GF(p), the integers modulo
 p.

 o A prime, r, which is the multiplicative order, and thus also the
 size, of the cryptographic subgroup of GF(p)* that is generated by
 an element G.

 The scalar operation is exponentiation of a generator modulo a prime.
 An element Y is taken to the x-th power modulo the prime, thereby
 returning another element, Z:

 Z = scalar-op(x, Y) = Y^x mod p

 The element operation is modular multiplication. Two elements, X and
 Y, are multiplied modulo the prime, thereby returning another
 element, Z:

 Z = element-op(X, Y) = (X * Y) mod p

 The inverse function for a MODP group is defined such that the
 product of an element and its inverse modulo the group prime equals
 one (1). In other words,

 (Q * inverse(Q)) mod p = 1

 Unlike ECP groups, MODP groups do not require a mapping function to
 convert an element into an integer. However, for the purposes of
 notation in protocol definition, the function F, when used below,
 shall just return the value that was passed to it, i.e., F(i) = i.

 Some MODP groups in [IKEV2-IANA] are based on safe primes, and the
 order is not included in the group’s domain parameter set. In this
 case only, the order, r, MUST be computed as the prime minus one
 divided by two -- (p-1)/2. If an order is included in the group’s
 domain parameter set, that value MUST be used in this exchange when
 an order is called for. If a MODP group does not include an order in
 its domain parameter set and is not based on a safe prime, it MUST
 NOT be used with this exchange.

Harkins Experimental [Page 7]

RFC 6617 Secure PSK Authentication for IKE June 2012

5. Random Numbers

 As with IKE itself, the security of the Secure PSK Authentication
 method relies upon each participant in the protocol producing quality
 secret random numbers. A poor random number chosen by either side in
 a single exchange can compromise the shared secret from that exchange
 and open up the possibility of a dictionary attack.

 Producing quality random numbers without specialized hardware entails
 using a cryptographic mixing function (like a strong hash function)
 to mix entropy from multiple, uncorrelated sources of information and
 events. A very good discussion of this can be found in [RFC4086].

6. Using Passwords and Raw Keys For Authentication

 The PSK used as an authentication credential with this protocol can
 be either a character-based password or passphrase, or it could be a
 binary or hexadecimal string. Regardless, however, this protocol
 requires both the Initiator and Responder to have identical binary
 representations of the shared credential.

 If the PSK is a character-based password or passphrase, there are two
 types of pre-processing that SHALL be employed to convert the
 password or passphrase into a hexadecimal string suitable for use
 with Secure PSK Authentication. If a PSK is already a hexadecimal or
 binary string, it SHALL be used directly as the shared credential
 without any pre-processing.

 The first step of pre-processing is to remove ambiguities that may
 arise due to internationalization. Each character-based password or
 passphrase MUST be pre-processed to remove that ambiguity by
 processing the character-based password or passphrase according to
 the rules of the SASLprep [RFC4013] profile of [RFC3454]. The
 password or passphrase SHALL be considered a "stored string" per
 [RFC3454], and unassigned code points are therefore prohibited. The
 output SHALL be the binary representation of the processed UTF-8
 character string. Prohibited output and unassigned codepoints
 encountered in SASLprep pre-processing SHALL cause a failure of pre-
 processing, and the output SHALL NOT be used with Secure PSK
 Authentication.

 The next pre-processing step for character-based passwords or
 passphrases is to effectively obfuscate the string. This is done in
 an attempt to reduce exposure of stored passwords in the event of
 server compromise, or compromise of a server’s database of stored
 passwords. The step involves taking the output of the SASLprep
 [RFC4013] profile of [RFC3454] and passing it, as the key, with the

Harkins Experimental [Page 8]

RFC 6617 Secure PSK Authentication for IKE June 2012

 ASCII string "IKE Secure PSK Authentication", as the data, to HMAC-
 SHA256(). The output of this obfuscation step SHALL become the
 shared credential used with Secure PSK Authentication.

 Note: Passwords tend to be shared for multiple purposes, and
 compromise of a server or database of stored plaintext passwords can
 be used, in that event, to mount multiple attacks. The obfuscation
 step is merely to hide the password in the event of server compromise
 or compromise of the database of stored passwords. Advances in
 distributed computing power have diminished the effectiveness of
 performing multiple prf iterations as a technique to prevent
 dictionary attacks, so no such behavior is proscribed here. Mutually
 consenting implementations can agree to use a different password
 obfuscation method; the one described here is for interoperability
 purposes only.

 If a device stores passwords for use at a later time, it SHOULD pre-
 process the password prior to storage. If a user enters a password
 into a device at authentication time, it MUST be pre-processed upon
 entry and prior to use with Secure PSK Authentication.

7. Assumptions

 The security of the protocol relies on certain assumptions. They
 are:

 1. The pseudo-random function, prf, defined in [RFC5996], acts as an
 "extractor" (see [RFC5869]) by distilling the entropy from a
 secret input into a short, fixed string. The output of prf is
 indistinguishable from a random source.

 2. The discrete logarithm problem for the chosen finite cyclic group
 is hard. That is, given G, p and Y = G^x mod p, it is
 computationally infeasible to determine x. Similarly, for an
 elliptic curve group given the curve definition, a generator G,
 and Y = x * G, it is computationally infeasible to determine x.

 3. The pre-shared key is drawn from a finite pool of potential keys.
 Each possible key in the pool has equal probability of being the
 shared key. All potential adversaries have access to this pool
 of keys.

8. Secure PSK Authentication Message Exchange

 The key exchange described in this memo is based on the "Dragonfly"
 key exchange, which has also been defined for use in 802.11 wireless
 networks (see [SAE]) and as an Extensible Authentication Protocol
 (EAP) method (see [RFC5931]). "Dragonfly" is patent-free and

Harkins Experimental [Page 9]

RFC 6617 Secure PSK Authentication for IKE June 2012

 royalty-free. It SHALL use the same pseudo-random function (prf) and
 the same Diffie-Hellman group that are negotiated for use in the IKE
 exchange that "Dragonfly" is authenticating.

 A pseudo-random function that uses a block cipher is NOT RECOMMENDED
 for use with Secure PSK Authentication due to its poor job operating
 as an "extractor" (see Section 7). Pseudo-random functions based on
 hash functions using the HMAC construct from [RFC2104] SHOULD be
 used.

 To perform Secure PSK Authentication, each side must generate a
 shared and secret element in the chosen group based on the pre-shared
 key. This element, called the Secret Key Element, or SKE, is then
 used in the "Dragonfly" authentication and key exchange protocol.
 "Dragonfly" consists of each side exchanging a Commit payload and
 then proving knowledge of the resulting shared secret.

 The Commit payload contributes ephemeral information to the exchange
 and binds the sender to a single value of the pre-shared key from the
 pool of potential pre-shared keys. An authentication payload (AUTH)
 proves that the pre-shared key is known and completes the zero-
 knowledge proof.

8.1. Negotiation of Secure PSK Authentication

 The Initiator indicates its desire to use Secure PSK Authentication
 by adding a Notify payload of type SECURE_PASSWORD_METHODS (see
 [RFC6467]) to the first message of the IKE_SA_INIT exchange and by
 including 3 in the notification data field of the Notify payload,
 indicating Secure PSK Authentication.

 The Responder indicates its acceptance to perform Secure PSK
 Authentication by adding a Notify payload of type
 SECURE_PASSWORD_METHODS to its response in the IKE_SA_INIT exchange
 and by adding the sole value of 3 to the notification data field of
 the Notify payload.

 If the Responder does not include a Notify payload of type
 SECURE_PASSWORD_METHODS in its IKE_SA_INIT response, the Initiator
 MUST terminate the exchange, and it MUST NOT fall back to the PSK
 authentication method of [RFC5996]. If the Initiator only indicated
 its support for Secure PSK Authentication (i.e., if the Notify data
 field only contained 3) and the Responder replies with a Notify
 payload of type SECURE_PASSWORD_METHODS and a different value in the
 Notify data field, the Initiator MUST terminate the exchange.

Harkins Experimental [Page 10]

RFC 6617 Secure PSK Authentication for IKE June 2012

8.2. Fixing the Secret Element, SKE

 The method of fixing SKE depends on the type of group, either MODP or
 ECP. The function "prf+" from [RFC5996] is used as a key derivation
 function.

 Fixing SKE involves an iterative hunting-and-pecking technique using
 the prime from the negotiated group’s domain parameter set and an
 ECP- or MODP-specific operation depending on the negotiated group.
 This technique requires the pre-shared key to be a binary string;
 therefore, any pre-processing transformation (see Section 6) MUST be
 performed on the pre-shared key prior to fixing SKE.

 To thwart side-channel attacks that attempt to determine the number
 of iterations of the hunting-and-pecking loop that are used to find
 SKE for a given password, a security parameter, k, is used to ensure
 that at least k iterations are always performed.

 Prior to beginning the hunting-and-pecking loop, an 8-bit counter is
 set to the value one (1). Then the loop begins. First, the pseudo-
 random function is used to generate a secret seed using the counter,
 the pre-shared key, and two nonces (without the fixed headers)
 exchanged by the Initiator and the Responder (see Section 8.6):

 ske-seed = prf(Ni | Nr, psk | counter)

 Then, the ske-seed is expanded using prf+ to create an ske-value:

 ske-value = prf+(ske-seed, "IKE SKE Hunting And Pecking")

 where len(ske-value) is the same as len(p), the length of the prime
 from the domain parameter set of the negotiated group.

 If the ske-seed is greater than or equal to the prime, p, the counter
 is incremented, a new ske-seed is generated, and the hunting-and-
 pecking continues. If ske-seed is less than the prime, p, it is
 passed to the group-specific operation to select the SKE or fail. If
 the group-specific operation fails, the counter is incremented, a new
 ske-seed is generated, and the hunting-and-pecking continues. This
 process continues until the group-specific operation returns the
 password element. After the password element has been chosen, a
 random number is used in place of the password in the ske-seed
 calculation, and the hunting-and-pecking continues until the counter
 is greater than the security parameter, k.

Harkins Experimental [Page 11]

RFC 6617 Secure PSK Authentication for IKE June 2012

8.2.1. ECP Operation to Select SKE

 The group-specific operation for ECP groups uses ske-value, ske-seed,
 and the equation of the curve to produce SKE. First, ske-value is
 used directly as the x-coordinate, x, with the equation of the
 elliptic curve, with parameters a and b from the domain parameter set
 of the curve, to solve for a y-coordinate, y.

 Note: A method of checking whether a solution to the equation of the
 elliptic curve is to see whether the Legendre symbol of (x^3 + ax +
 b) equals one (1). If it does, then a solution exists; if it does
 not, then there is no solution.

 If there is no solution to the equation of the elliptic curve, then
 the operation fails, the counter is incremented, a new ske-value and
 ske-seed are selected, and the hunting-and-pecking continues. If
 there is a solution then, y is calculated as the square root of (x^3
 + ax + b) using the equation of the elliptic curve. In this case, an
 ambiguity exists as there are technically two solutions to the
 equation, and ske-seed is used to unambiguously select one of them.
 If the low-order bit of ske-seed is equal to the low-order bit of y,
 then a candidate SKE is defined as the point (x,y); if the low-order
 bit of ske-seed differs from the low-order bit of y then a candidate
 SKE is defined as the point (x, p-y) where p is the prime from the
 negotiated group’s domain parameter set. The candidate SKE becomes
 the SKE, and the ECP-specific operation completes successfully.

Harkins Experimental [Page 12]

RFC 6617 Secure PSK Authentication for IKE June 2012

 Algorithmically, the process looks like this:

 found = 0
 counter = 1
 v = psk
 do {
 ske-seed = prf(Ni | Nr, v | counter)
 ske-value = prf+(ske-seed, "IKE SKE Hunting And Pecking")
 if (ske-value < p)
 then
 x = ske-value
 if ((y = sqrt(x^3 + ax + b)) != FAIL)
 then
 if (found == 0)
 then
 if (LSB(y) == LSB(ske-seed))
 then
 SKE = (x,y)
 else
 SKE = (x, p-y)
 fi
 found = 1
 v = random()
 fi
 fi
 fi
 counter = counter + 1
 } while ((found == 0) || (counter <= k))

 where FAIL indicates that there is no solution to sqrt(x^3 + ax + b).

 Figure 1: Fixing SKE for ECP Groups

 Note: For ECP groups, the probability that more than "n" iterations
 of the hunting-and-pecking loop are required to find SKE is roughly
 (1-(r/2p))^n, which rapidly approaches zero (0) as "n" increases.

8.2.2. MODP Operation to Select SKE

 The group-specific operation for MODP groups takes ske-value, the
 prime, p, and order, r, from the group’s domain parameter set to
 directly produce a candidate SKE by exponentiating the ske-value to
 the value ((p-1)/r) modulo the prime. If the candidate SKE is
 greater than one (1), the candidate SKE becomes the SKE, and the
 MODP-specific operation completes successfully. Otherwise, the MODP-
 specific operation fails (and the hunting-and-pecking continues).

Harkins Experimental [Page 13]

RFC 6617 Secure PSK Authentication for IKE June 2012

 Algorithmically, the process looks like this:

 found = 0
 counter = 1
 v = psk
 do {
 ske-seed = prf(Ni | Nr, v | counter)
 ske-value = prf+(ske-seed, "IKE SKE Hunting And Pecking")
 if (ske-value < p)
 then
 ELE = ske-value ^ ((p-1)/r) mod p
 if (ELE > 1)
 then
 if (found == 0)
 SKE = ELE
 found = 1
 v = random()
 fi
 fi
 fi
 counter = counter + 1
 } while ((found == 0) || (counter <= k))

 Figure 2: Fixing SKE for MODP Groups

 Note: For MODP groups, the probability that more than "n" iterations
 of the hunting-and-pecking loop are required to find SKE is roughly
 ((m-p)/p)^n, where m is the largest unsigned number that can be
 expressed in len(p) bits, which rapidly approaches zero (0) as "n"
 increases.

8.3. Encoding and Decoding of Group Elements and Scalars

 The payloads used in the Secure PSK Authentication method contain
 elements from the negotiated group and scalar values. To ensure
 interoperability, scalars and field elements MUST be represented in
 payloads in accordance with the requirements in this section.

8.3.1. Encoding and Decoding of Scalars

 Scalars MUST be represented (in binary form) as unsigned integers
 that are strictly less than r, the order of the generator of the
 agreed-upon cryptographic group. The binary representation of each
 scalar MUST have a bit length equal to the bit length of the binary
 representation of r. This requirement is enforced, if necessary, by
 prepending the binary representation of the integer with zeros until
 the required length is achieved.

Harkins Experimental [Page 14]

RFC 6617 Secure PSK Authentication for IKE June 2012

 Scalars in the form of unsigned integers are converted into octet
 strings and back again using the technique described in [RFC6090].

8.3.2. Encoding and Decoding of ECP Elements

 Elements in ECP groups are points on the negotiated elliptic curve.
 Each such element MUST be represented by the concatenation of two
 components, an x-coordinate and a y-coordinate.

 Each of the two components, the x-coordinate and the y-coordinate,
 MUST be represented (in binary form) as an unsigned integer that is
 strictly less than the prime, p, from the group’s domain parameter
 set. The binary representation of each component MUST have a bit
 length equal to the bit length of the binary representation of p.
 This length requirement is enforced, if necessary, by prepending the
 binary representation of the integer with zeros until the required
 length is achieved.

 The unsigned integers that represent the coordinates of the point are
 converted into octet strings and back again using the technique
 described in [RFC6090].

 Since the field element is represented in a payload by the
 x-coordinate followed by the y-coordinate, it follows, then, that the
 length of the element in the payload MUST be twice the bit length of
 p.

8.3.3. Encoding and Decoding of MODP Elements

 Elements in MODP groups MUST be represented (in binary form) as
 unsigned integers that are strictly less than the prime, p, from the
 group’s domain parameter set. The binary representation of each
 group element MUST have a bit length equal to the bit length of the
 binary representation of p. This length requirement is enforced, if
 necessary, by prepending the binary representation of the integer
 with zeros until the required length is achieved.

 The unsigned integer that represents a MODP element is converted into
 an octet string and back using the technique described in [RFC6090].

Harkins Experimental [Page 15]

RFC 6617 Secure PSK Authentication for IKE June 2012

8.4. Message Generation and Processing

8.4.1. Generation of a Commit

 Before a Commit payload can be generated, the SKE must be fixed using
 the process described in Section 8.2.

 A Commit payload has two components, a scalar and an element. To
 generate a Commit payload, two random numbers, a "private" value and
 a "mask" value, are generated (see Section 5). Their sum modulo the
 order of the group, r, becomes the scalar component:

 scalar = (private + mask) mod r

 If the scalar is not greater than one (1), the private and mask
 values MUST be thrown away, and new values randomly generated. If
 the scalar is greater than one (1), the inverse of the scalar
 operation with the mask and SKE becomes the element component.

 Element = inverse(scalar-op(mask, SKE))

 The Commit payload consists of the scalar followed by the element,
 and the scalar and element are encoded in the Commit payload
 according to Section 8.3.

8.4.2. Processing of a Commit

 Upon receipt of a peer’s Commit payload, the scalar and element MUST
 be validated. The processing of an element depends on the type,
 either an ECP element or a MODP element.

8.4.2.1. Validation of an ECP Element

 Validating a received ECP element involves: 1) checking whether the
 two coordinates, x and y, are both greater than zero (0) and less
 than the prime defining the underlying field; and 2) checking whether
 the x- and y-coordinates satisfy the equation of the curve (that is,
 that they produce a valid point on the curve that is not "0"). If
 either of these conditions are not met, the received element is
 invalid; otherwise, the received element is valid.

8.4.2.2. Validation of a MODP Element

 A received MODP element is valid if: 1) it is between one (1) and the
 prime, p, exclusive; and 2) if modular exponentiation of the element
 by the group order, r, equals one (1). If either of these conditions
 are not true, the received element is invalid; otherwise, the
 received element is valid.

Harkins Experimental [Page 16]

RFC 6617 Secure PSK Authentication for IKE June 2012

8.4.2.3. Commit Processing Steps

 Commit payload validation is accomplished by the following steps:

 1. The length of the Commit payload is checked against its
 anticipated length (the anticipated length of the scalar plus the
 anticipated length of the element, for the negotiated group). If
 it is incorrect, the Commit payload is invalidated; otherwise,
 processing continues.

 2. The peer’s scalar is extracted from the Commit payload according
 to Section 8.3.1 and checked to ensure it is between one (1) and
 r, the order of the negotiated group, exclusive. If it is not,
 the Commit payload is invalidated; otherwise, processing
 continues.

 3. The peer’s element is extracted from the Commit payload according
 to Section 8.3.2 and checked in a manner that depends on the type
 of group negotiated. If the group is ECP, the element is
 validated according to Section 8.4.2.1. If the group is MODP,
 the element is validated according to Section 8.4.2.2. If the
 element is not valid, then the Commit payload is invalidated;
 otherwise, the Commit payload is validated.

 4. The Initiator of the IKE exchange has an added requirement to
 verify that the received element and scalar from the Commit
 payload differ from the element and scalar sent to the Responder.
 If they are identical, it signifies a reflection attack, and the
 Commit payload is invalidated.

 If the Commit payload is invalidated, the payload MUST be discarded
 and the IKE exchange aborted.

8.4.3. Authentication of the Exchange

 After a Commit payload has been generated and a peer’s Commit payload
 has been processed, a shared secret used to authenticate the peer is
 derived. Using SKE, the "private" value generated as part of Commit
 payload generation, and the peer’s scalar and element from the peer’s
 Commit payload, named here peer-scalar and Peer-Element,
 respectively, a preliminary shared secret, skey, is generated as:

 skey = F(scalar-op(private,
 element-op(Peer-Element,
 scalar-op(peer-scalar, SKE))))

Harkins Experimental [Page 17]

RFC 6617 Secure PSK Authentication for IKE June 2012

 For the purposes of subsequent computation, the bit length of skey
 SHALL be equal to the bit length of the prime, p, used in either a
 MODP or ECP group. This bit length SHALL be enforced, if necessary,
 by prepending zeros to the value until the required length is
 achieved.

 A shared secret, ss, is then computed from skey and the nonces
 exchanged by the Initiator (Ni) and Responder (Nr) (without the fixed
 headers) using prf():

 ss = prf(Ni | Nr, skey | "Secure PSK Authentication in IKE")

 The shared secret, ss, is used in an AUTH authentication payload to
 prove possession of the shared secret and therefore knowledge of the
 pre-shared key.

8.5. Payload Format

8.5.1. Commit Payload

 [RFC6467] defines a Generic Secure Password Method (GSPM) payload
 that is used to convey information that is specific to a particular
 secure password method. This memo uses the GSPM payload as a Commit
 payload to contain the scalar and element used in the Secure PSK
 Authentication exchange:

 The Commit payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 | |
 + scalar ˜
 | |
 ˜ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ˜
 | |
 ˜ Element ˜
 | |
 +-+

 The scalar and element SHALL be encoded in the Commit payload
 according to Section 8.3.

Harkins Experimental [Page 18]

RFC 6617 Secure PSK Authentication for IKE June 2012

8.6. IKEv2 Messaging

 Secure PSK Authentication modifies the IKE_AUTH exchange by adding
 one additional round trip to exchange Commit payloads to perform the
 Secure PSK Authentication exchange and by changing the calculation of
 the AUTH payload data to bind the IKEv2 exchange to the outcome of
 the Secure PSK Authentication exchange (see Figure 3).

 Initiator Responder
 ----------- -----------

 IKE_SA_INIT:

 HDR, SAi1, KEi, Ni,
 N(SPM-SPSK) -->

 <-- HDR, SAr1, KEr, Nr,
 N(SPM-SPSK)

 IKE_AUTH:

 HDR, SK {IDi, COMi, [IDr,]
 SAi2, TSi, TSr} -->
 <-- HDR, SK {IDr, COMr}
 HDR, SK {AUTHi} -->
 <-- HDR, SK {AUTHr, SAr2, TSi, TSr}

 where N(SPM-SPSK) indicates the Secure Password Methods Notify
 payloads used to negotiate the use of Secure PSK Authentication (see
 Section 8.1), COMi and AUTHi are the Commit payload and AUTH payload,
 respectively, sent by the Initiator, and COMr and AUTHr are the
 Commit payload and AUTH payload, respectively, sent by the Responder.

 Figure 3: Secure PSK in IKEv2

 When doing Secure PSK Authentication, the AUTH payloads SHALL be
 computed as

 AUTHi = prf(ss, <InitiatorSignedOctets> | COMi | COMr)

 AUTHr = prf(ss, <ResponderSignedOctets> | COMr | COMi)

 where "ss" is the shared secret derived in Section 8.4.3, COMi and
 COMr are the entire Commit payloads (including the fixed headers)
 sent by the Initiator and Responder, respectively, and
 <InitiatorSignedOctets> and <ResponderSignedOctets> are defined in

Harkins Experimental [Page 19]

RFC 6617 Secure PSK Authentication for IKE June 2012

 [RFC5996]. The Authentication Method indicated in both AUTH payloads
 SHALL be "Generic Secure Password Authentication Method", value 12,
 from [IKEV2-IANA].

9. IANA Considerations

 IANA has assigned the value 3 for "Secure PSK Authentication" from
 the Secure Password Authentication Method registry in [IKEV2-IANA].

10. Security Considerations

 Both the Initiator and Responder obtain a shared secret, "ss" (see
 Section 8.4.3), based on a secret group element and their own private
 values contributed to the exchange. If they do not share the same
 pre-shared key, they will be unable to derive the same secret group
 element, and if they do not share the same secret group element, they
 will be unable to derive the same shared secret.

 Resistance to dictionary attack means that the adversary must launch
 an active attack to make a single guess at the pre-shared key. If
 the size of the pool from which the key was extracted was d and each
 key in the pool has an equal probability of being chosen, then the
 probability of success after a single guess is 1/d. After x guesses,
 and removal of failed guesses from the pool of possible keys, the
 probability becomes 1/(d-x). As x grows, so does the probability of
 success. Therefore, it is possible for an adversary to determine the
 pre-shared key through repeated brute-force, active, guessing
 attacks. This authentication method does not presume to be secure
 against this, and implementations SHOULD ensure the value of d is
 sufficiently large to prevent this attack. Implementations SHOULD
 also take countermeasures, for instance, refusing authentication
 attempts for a certain amount of time after the number of failed
 authentication attempts reaches a certain threshold. No such
 threshold or amount of time is recommended in this memo.

 An active attacker can impersonate the Responder of the exchange and
 send a forged Commit payload after receiving the Initiator’s Commit
 payload. The attacker then waits until it receives the
 authentication payload from the Responder. Now the attacker can
 attempt to run through all possible values of the pre-shared key,
 computing SKE (see Section 8.2), computing "ss" (see Section 8.4.3),
 and attempting to recreate the Confirm payload from the Responder.

 But, by sending a forged Commit payload the attacker commits to a
 single guess of the pre-shared key. That value was used by the
 Responder in his computation of "ss", which was used in the
 authentication payload. Any guess of the pre-shared key that differs
 from the one used in the forged Commit payload would result in each

Harkins Experimental [Page 20]

RFC 6617 Secure PSK Authentication for IKE June 2012

 side using a different secret element in the computation of "ss" and
 therefore the authentication payload could not be verified as
 correct, even if a subsequent guess, while running through all
 possible values, was correct. The attacker gets one guess, and one
 guess only, per active attack.

 An attacker, acting as either the Initiator or Responder, can take
 the element from the Commit payload received from the other party,
 reconstruct the random "mask" value used in its construction, and
 then recover the other party’s "private" value from the scalar in the
 Commit payload. But this requires the attacker to solve the discrete
 logarithm problem, which we assumed was intractable (Section 7).

 Instead of attempting to guess at pre-shared keys, an attacker can
 attempt to determine SKE and then launch an attack, but SKE is
 determined by the output of the pseudo-random function, prf, which is
 assumed to be indistinguishable from a random source (Section 7).
 Therefore, each element of the finite cyclic group will have an equal
 probability of being the SKE. The probability of guessing SKE will
 be 1/r, where r is the order of the group. This is the same
 probability of guessing the solution to the discrete logarithm, which
 is assumed to be intractable (Section 7). The attacker would have a
 better chance of success at guessing the input to prf, i.e., the pre-
 shared key, since the order of the group will be many orders of
 magnitude greater than the size of the pool of pre-shared keys.

 The implications of resistance to dictionary attack are significant.
 An implementation can provision a pre-shared key in a practical and
 realistic manner -- i.e., it MAY be a character string, and it MAY be
 relatively short -- and still maintain security. The nature of the
 pre-shared key determines the size of the pool, D, and
 countermeasures can prevent an adversary from determining the secret
 in the only possible way: repeated, active, guessing attacks. For
 example, a simple four-character string using lowercase English
 characters, and assuming random selection of those characters, will
 result in D of over four hundred thousand. An adversary would need
 to mount over one hundred thousand active, guessing attacks (which
 will easily be detected) before gaining any significant advantage in
 determining the pre-shared key.

 If an attacker knows the number of hunting-and-pecking loops that
 were required to determine SKE, it is possible to eliminate passwords
 from the pool of potential passwords and increase the probability of
 successfully guessing the real password. MODP groups will require
 more than "n" loops with a probability based on the value of the
 prime -- if m is the largest unsigned number that can be expressed in
 len(p) bits, then the probability is ((m-p)/p)^n -- which will
 typically be very small for the groups defined in [IKEV2-IANA]. ECP

Harkins Experimental [Page 21]

RFC 6617 Secure PSK Authentication for IKE June 2012

 groups will require more than one "n" loop with a probability of
 roughly (1-(r/2p))^n. Therefore, a security parameter, k, is defined
 that will ensure that at least k loops will always be executed
 regardless of whether SKE is found in less than k loops. There is
 still a probability that a password would require more than k loops,
 and a side-channel attacker could use that information to his
 advantage, so selection of the value of k should be based on a trade-
 off between the additional workload to always perform k iterations
 and the potential of providing information to a side-channel
 attacker. It is important to note that the possibility of a
 successful side-channel attack is greater against ECP groups than
 MODP groups, and it might be appropriate to have separate values of k
 for the two.

 For a more detailed discussion of the security of the key exchange
 underlying this authentication method, see [SAE] and [RFC5931].

11. Acknowledgements

 The author would like to thank Scott Fluhrer and Hideyuki Suzuki for
 their insight in discovering flaws in earlier versions of the key
 exchange that underlies this authentication method and for their
 helpful suggestions in improving it. Thanks to Lily Chen for useful
 advice on the hunting-and-pecking technique to "hash into" an element
 in a group and to Jin-Meng Ho for a discussion on countering a small
 sub-group attack. Rich Davis suggested several checks on received
 messages that greatly increase the security of the underlying key
 exchange. Hugo Krawczyk suggested using the prf as an extractor.

12. References

12.1. Normative References

 [IKEV2-IANA] IANA, "IKEv2 Parameters",
 <http://www.iana.org/assignments/ikev2-parameters>.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC:
 Keyed-Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3454] Hoffman, P. and M. Blanchet, "Preparation of
 Internationalized Strings ("stringprep")", RFC 3454,
 December 2002.

Harkins Experimental [Page 22]

RFC 6617 Secure PSK Authentication for IKE June 2012

 [RFC4013] Zeilenga, K., "SASLprep: Stringprep Profile for User
 Names and Passwords", RFC 4013, February 2005.

 [RFC5996] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
 "Internet Key Exchange Protocol Version 2 (IKEv2)",
 RFC 5996, September 2010.

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental
 Elliptic Curve Cryptography Algorithms", RFC 6090,
 February 2011.

 [RFC6467] Kivinen, T., "Secure Password Framework for Internet
 Key Exchange Version 2 (IKEv2)", RFC 6467,
 December 2011.

12.2. Informative References

 [BM92] Bellovin, S. and M. Merritt, "Encrypted Key Exchange:
 Password-Based Protocols Secure Against Dictionary
 Attacks", Proceedings of the IEEE Symposium on Security
 and Privacy, Oakland, 1992.

 [BMP00] Boyko, V., MacKenzie, P., and S. Patel, "Provably
 Secure Password-Authenticated Key Exchange Using
 Diffie-Hellman", Proceedings of Eurocrypt 2000, LNCS
 1807 Springer-Verlag, 2000.

 [BPR00] Bellare, M., Pointcheval, D., and P. Rogaway,
 "Authenticated Key Exchange Secure Against Dictionary
 Attacks", Advances in Cryptology -- Eurocrypt ’00,
 Lecture Notes in Computer Science Springer-Verlag,
 2000.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086,
 June 2005.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-
 Expand Key Derivation Function (HKDF)", RFC 5869,
 May 2010.

 [RFC5931] Harkins, D. and G. Zorn, "Extensible Authentication
 Protocol (EAP) Authentication Using Only a Password",
 RFC 5931, August 2010.

Harkins Experimental [Page 23]

RFC 6617 Secure PSK Authentication for IKE June 2012

 [SAE] Harkins, D., "Simultaneous Authentication of Equals: A
 Secure, Password-Based Key Exchange for Mesh Networks",
 Proceedings of the 2008 Second International Conference
 on Sensor Technologies and Applications Volume 00,
 2008.

Author’s Address

 Dan Harkins
 Aruba Networks
 1322 Crossman Avenue
 Sunnyvale, CA 94089-1113
 United States of America

 EMail: dharkins@arubanetworks.com

Harkins Experimental [Page 24]

