
Internet Engineering Task Force (IETF) M. Groves
Request for Comments: 6508 CESG
Category: Informational February 2012
ISSN: 2070-1721

 Sakai-Kasahara Key Encryption (SAKKE)

Abstract

 In this document, the Sakai-Kasahara Key Encryption (SAKKE) algorithm
 is described. This uses Identity-Based Encryption to exchange a
 shared secret from a Sender to a Receiver.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It has been approved for publication by the Internet
 Engineering Steering Group (IESG). Not all documents approved by the
 IESG are a candidate for any level of Internet Standard; see Section
 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6508.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Groves Informational [Page 1]

RFC 6508 SAKKE February 2012

Table of Contents

 1. Introduction ..2
 1.1. Requirements Terminology3
 2. Notation and Definitions ..3
 2.1. Notation ...3
 2.2. Definitions ..5
 2.3. Parameters to Be Defined or Negotiated6
 3. Elliptic Curves and Pairings7
 3.1. E(F_p^2) and the Distortion Map7
 3.2. The Tate-Lichtenbaum Pairing7
 4. Representation of Values ..9
 5. Supporting Algorithms ..10
 5.1. Hashing to an Integer Range10
 6. The SAKKE Cryptosystem ...11
 6.1. Setup ...11
 6.1.1. Secret Key Extraction11
 6.1.2. User Provisioning11
 6.2. Key Exchange ..12
 6.2.1. Sender ...12
 6.2.2. Receiver ...12
 6.3. Group Communications13
 7. Security Considerations ..13
 8. References ...15
 8.1. Normative References15
 8.2. Informative References15
 Appendix A. Test Data..17

1. Introduction

 This document defines an efficient use of Identity-Based Encryption
 (IBE) based on bilinear pairings. The Sakai-Kasahara IBE
 cryptosystem [S-K] is described for establishment of a shared secret
 value. This document adds to the IBE options available in [RFC5091],
 providing an efficient primitive and an additional family of curves.

 This document is restricted to a particular family of curves (see
 Section 2.1) that have the benefit of a simple and efficient method
 of calculating the pairing on which the Sakai-Kasahara IBE
 cryptosystem is based.

 IBE schemes allow public and private keys to be derived from
 Identifiers. In fact, the Identifier can itself be viewed as
 corresponding to a public key or certificate in a traditional public
 key system. However, in IBE, the Identifier can be formed by both
 Sender and Receiver, which obviates the necessity of providing public
 keys through a third party or of transmitting certified public keys

Groves Informational [Page 2]

RFC 6508 SAKKE February 2012

 during each session establishment. Furthermore, in an IBE system,
 calculation of keys can occur as needed, and indeed, messages can be
 sent to users who are yet to enroll.

 The Sakai-Kasahara primitive described in this document supports
 simplex transmission of messages from a Sender to a Receiver. The
 choice of elliptic curve pairing on which the primitive is based
 allows simple and efficient implementations.

 The Sakai-Kasahara Key Encryption scheme described in this document
 is drawn from the Sakai-Kasahara Key Encapsulation Mechanism (SK-KEM)
 scheme (as modified to support multi-party communications) submitted
 to the IEEE P1363 Working Group in [SK-KEM].

1.1. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Notation and Definitions

2.1. Notation

 n A security parameter; the size of symmetric keys in bits to be
 exchanged by SAKKE.

 p A prime, which is the order of the finite field F_p. In this
 document, p is always congruent to 3 modulo 4.

 F_p The finite field of order p.

 F* The multiplicative group of the non-zero elements in the field
 F; e.g., (F_p)* is the multiplicative group of the finite
 field F_p.

 q An odd prime that divides p + 1. To provide the desired level
 of security, lg(q) MUST be greater than 2*n.

 E An elliptic curve defined over F_p, having a subgroup of order
 q. In this document, we use supersingular curves with
 equation y^2 = x^3 - 3 * x modulo p. This curve is chosen
 because of the efficiency and simplicity advantages it offers.
 The choice of -3 for the coefficient of x provides advantages
 for elliptic curve arithmetic that are explained in [P1363].
 A further reason for this choice of curve is that Barreto’s
 trick [Barreto] of eliminating the computation of the
 denominators when calculating the pairing applies.

Groves Informational [Page 3]

RFC 6508 SAKKE February 2012

 E(F) The additive group of points of affine coordinates (x,y) with
 x, y in the field F, that satisfy the curve equation for E.

 P A point of E(F_p) that generates the cyclic subgroup of order
 q. The coordinates of P are given by P = (P_x,P_y). These
 coordinates are in F_p, and they satisfy the curve equation.

 0 The null element of any additive group of points on an
 elliptic curve, also called the point at infinity.

 F_p^2 The extension field of degree 2 of the field F_p. In this
 document, we use a particular instantiation of this field;
 F_p^2 = F_p[i], where i^2 + 1 = 0.

 PF_p The projectivization of F_p. We define this to be
 (F_p^2)*/(F_p)*. Note that PF_p is cyclic and has order
 p + 1, which is divisible by q.

 G[q] The q-torsion of a group G. This is the subgroup generated by
 points of order q in G.

 < , > A version of the Tate-Lichtenbaum pairing. In this document,
 this is a bilinear map from E(F_p)[q] x E(F_p)[q] onto the
 subgroup of order q in PF_p. A full definition is given in
 Section 3.2.

 Hash A cryptographic hash function.

 lg(x) The base 2 logarithm of the real value x.

 The following conventions are assumed for curve operations:

 Point addition - If A and B are two points on a curve E, their sum
 is denoted as A + B.

 Scalar multiplication - If A is a point on a curve, and k an
 integer, the result of adding A to itself a total of k times is
 denoted [k]A.

 We assume that the following concrete representations of mathematical
 objects are used:

 Elements of F_p - The p elements of F_p are represented directly
 using the integers from 0 to p-1.

 Elements of F_p^2 - The elements of F_p^2 = F_p[i] are represented
 as x_1 + i * x_2, where x_1 and x_2 are elements of F_p.

Groves Informational [Page 4]

RFC 6508 SAKKE February 2012

 Elements of PF_p - Elements of PF_p are cosets of (F_p)* in
 (F_p^2)*. Every element of F_p^2 can be written unambiguously
 in the form x_1 + i * x_2, where x_1 and x_2 are elements of
 F_p. Thus, elements of PF_p (except the unique element of
 order 2) can be represented unambiguously by x_2/x_1 in F_p.
 Since q is odd, every element of PF_p[q] can be represented by
 an element of F_p in this manner.

 This representation of elements in PF_p[q] allows efficient
 implementation of PF_p[q] group operations, as these can be defined
 using arithmetic in F_p. If a and b are elements of F_p representing
 elements A and B of PF_p[q], respectively, then A * B in PF_p[q] is
 represented by (a + b)/(1 - a * b) in F_p.

2.2. Definitions

 Identifier - Each user of an IBE system MUST have a unique,
 unambiguous identifying string that can be easily derived by all
 valid communicants. This string is the user’s Identifier. An
 Identifier is an integer in the range 2 to q-1. The method by
 which Identifiers are formed MUST be defined for each application.

 Key Management Service (KMS) - The Key Management Service is a
 trusted third party for the IBE system. It derives system secrets
 and distributes key material to those authorized to obtain it.
 Applications MAY support mutual communication between the users of
 multiple KMSs. We denote KMSs by KMS_T, KMS_S, etc.

 Public parameters - The public parameters are a set of parameters
 that are held by all users of an IBE system. Such a system MAY
 contain multiple KMSs. Each application of SAKKE MUST define the
 set of public parameters to be used. The parameters needed are p,
 q, E, P, g=<P,P>, Hash, and n.

 Master Secret (z_T) - The Master Secret z_T is the master key
 generated and privately kept by KMS_T and is used by KMS_T to
 generate the private keys of the users that it provisions; it is
 an integer in the range 2 to q-1.

 KMS Public Key: Z_T = [z_T]P - The KMS Public Key Z_T is used to form
 Public Key Establishment Keys for all users provisioned by KMS_T;
 it is a point of order q in E(F_p). It MUST be provisioned by
 KMS_T to all who are authorized to send messages to users of the
 IBE system.

Groves Informational [Page 5]

RFC 6508 SAKKE February 2012

 Receiver Secret Key (RSK) - Each user enrolled in an IBE system is
 provisioned with a Receiver Secret Key by its KMS. The RSK
 provided to a user with Identifier ’a’ by KMS_T is denoted
 K_(a,T). In SAKKE, the RSK is a point of order q in E(F_p).

 Shared Secret Value (SSV) - The aim of the SAKKE scheme is for the
 Sender to securely transmit a shared secret value to the Receiver.
 The SSV is an integer in the range 0 to (2^n) - 1.

 Encapsulated Data - The Encapsulated Data are used to transmit secret
 information securely to the Receiver. They can be computed
 directly from the Receiver’s Identifier, the public parameters,
 the KMS Public Key, and the SSV to be transmitted. In SAKKE, the
 Encapsulated Data are a point of order q in E(F_p) and an integer
 in the range 0 to (2^n) - 1. They are formatted as described in
 Section 4.

2.3. Parameters to Be Defined or Negotiated

 In order for an application to make use of the SAKKE algorithm, the
 communicating hosts MUST agree on values for several of the
 parameters described above. The curve equation (E) and the pairing
 (< , >) are constant and used for all applications.

 For the following parameters, each application MUST either define an
 application-specific constant value or define a mechanism for hosts
 to negotiate a value:

 * n

 * p

 * q

 * P = (P_x,P_y)

 * g = <P,P>

 * Hash

Groves Informational [Page 6]

RFC 6508 SAKKE February 2012

3. Elliptic Curves and Pairings

 E is a supersingular elliptic curve (of j-invariant 1728). E(F_p)
 contains a cyclic subgroup of order q, denoted E(F_p)[q], whereas the
 larger object E(F_p^2) contains the direct product of two cyclic
 subgroups of order q, denoted E(F_p^2)[q].

 P is a generator of E(F_p)[q]. It is specified by the (affine)
 coordinates (P_x,P_y) in F_p, satisfying the curve equation.

 Routines for point addition and doubling on E(F_p) can be found in
 Appendix A.10 of [P1363].

3.1. E(F_p^2) and the Distortion Map

 If (Q_x,Q_y) are (affine) coordinates in F_p for some point (denoted
 Q) on E(F_p)[q], then (-Q_x,iQ_y) are (affine) coordinates in F_p^2
 for some point on E(F_p^2)[q]. This latter point is denoted [i]Q, by
 analogy with the definition for scalar multiplication. The two
 points P and [i]P together generate E(F_p^2)[q]. The map [i]: E(F_p)
 -> E(F_p^2) is sometimes termed the distortion map.

3.2. The Tate-Lichtenbaum Pairing

 We proceed to describe the pairing < , > to be used in SAKKE. We
 will need to evaluate polynomials f_R that depend on points on
 E(F_p)[q]. Miller’s algorithm [Miller] provides a method for
 evaluation of f_R(X), where X is some element of E(F_p^2)[q] and R is
 some element of E(F_p)[q] and f_R is some polynomial over F_p whose
 divisor is (q)(R) - (q)(0). Note that f_R is defined only up to
 scalars of F_p.

 The version of the Tate-Lichtenbaum pairing used in this document is
 given by <R,Q> = f_R([i]Q)^c / (F_p)*. It satisfies the bilinear
 relation <[x]R,Q> = <R,[x]Q> = <R,Q>^x for all Q, R in E(F_p)[q], for
 all integers x. Note that the domain of definition is restricted to
 E(F_p)[q] x E(F_p)[q] so that certain optimizations are natural.

 We provide pseudocode for computing <R,Q>, with elliptic curve
 arithmetic expressed in affine coordinates. We make use of Barreto’s
 trick [Barreto] for avoiding the calculation of denominators. Note
 that this section does not fully describe the most efficient way of
 computing the pairing; it is possible to compute the pairing without
 any explicit reference to the extension field F_p^2. This reduces
 the number and complexity of the operations needed to compute the
 pairing.

Groves Informational [Page 7]

RFC 6508 SAKKE February 2012

 <CODE BEGINS>

 /*
 Copyright (c) 2012 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, is permitted pursuant to, and subject to the license
 terms contained in, the Simplified BSD License set forth in
 Section 4.c of the IETF Trust’s Legal Provisions Relating to
 IETF Documents (http://trustee.ietf.org/license-info).
 */

 Routine for computing the pairing <R,Q>:

 Input R, Q points on E(F_p)[q];

 Initialize variables:

 v = (F_p)*; // An element of PF_p[q]
 C = R; // An element of E(F_p)[q]
 c = (p+1)/q; // An integer

 for bits of q-1, starting with the second most significant
 bit, ending with the least significant bit, do

 // gradient of line through C, C, [-2]C.
 l = 3*(C_x^2 - 1) / (2*C_y);

 //accumulate line evaluated at [i]Q into v
 v = v^2 * (l*(Q_x + C_x) + (i*Q_y - C_y));

 C = [2]C;

 if bit is 1, then

 // gradient of line through C, R, -C-R.
 l = (C_y - R_y)/(C_x - R_x);

 //accumulate line evaluated at [i]Q into v
 v = v * (l*(Q_x + C_x) + (i*Q_y - C_y));

 C = C+R;

 end if;
 end for;

 t = v^c;

Groves Informational [Page 8]

RFC 6508 SAKKE February 2012

 return representative in F_p of t;

 End of routine;

 Routine for computing representative in F_p of elements of PF_p:

 Input t, in F_p^2, representing an element of PF_p;

 Represent t as a + i*b, with a,b in F_p;
 return b/a;

 End of routine;

 <CODE ENDS>

4. Representation of Values

 This section provides canonical representations of values that MUST
 be used to ensure interoperability of implementations. The following
 representations MUST be used for input into hash functions and for
 transmission.

 Integers Integers MUST be represented as an octet string,
 with bit length a multiple of 8. To achieve this,
 the integer is represented most significant bit
 first, and padded with zero bits on the left until
 an octet string of the necessary length is
 obtained. This is the octet string representation
 described in Section 6 of [RFC6090].

 F_p elements Elements of F_p MUST be represented as integers in
 the range 0 to p-1 using the octet string
 representation defined above. Such octet strings
 MUST have length L = Ceiling(lg(p)/8).

 PF_p elements Elements of PF_p MUST be represented as an element
 of F_p using the algorithm in Section 3.2. They
 are therefore represented as octet strings as
 defined above and are L octets in length.
 Representation of the unique element of order 2 in
 PF_p will not be required.

 Points on E Elliptic curve points MUST be represented in
 uncompressed form as defined in Section 2.2 of
 [RFC5480]. For an elliptic curve point (x,y) with
 x and y in F_p, this representation is given by

Groves Informational [Page 9]

RFC 6508 SAKKE February 2012

 0x04 || x’ || y’, where x’ is the octet string
 representing x, y’ is the octet string
 representing y, and || denotes concatenation. The
 representation is 2*L+1 octets in length.

 Encapsulated Data The Encapsulated Data MUST be represented as an
 elliptic curve point concatenated with an integer
 in the range 0 to (2 ^ n) - 1. Since the length
 of the representation of elements of F_p is well
 defined given p, these data can be unambiguously
 parsed to retrieve their components. The
 Encapsulated Data is 2*L + n + 1 octets in length.

5. Supporting Algorithms

5.1. Hashing to an Integer Range

 We use the function HashToIntegerRange(s, n, hashfn) to hash
 strings to an integer range. Given a string (s), a hash function
 (hashfn), and an integer (n), this function returns a value between 0
 and n - 1.

 Input:

 * an octet string, s

 * an integer, n <= (2^hashlen)^hashlen

 * a hash function, hashfn, with output length hashlen bits

 Output:

 * an integer, v, in the range 0 to n-1

 Method:

 1) Let A = hashfn(s)

 2) Let h_0 = 00...00, a string of null bits of length hashlen bits

 3) Let l = Ceiling(lg(n)/hashlen)

 4) For each i in 1 to l, do:

 a) Let h_i = hashfn(h_(i - 1))

 b) Let v_i = hashfn(h_i || A), where || denotes concatenation

Groves Informational [Page 10]

RFC 6508 SAKKE February 2012

 5) Let v’ = v_1 || ... || v_l

 6) Let v = v’ mod n

6. The SAKKE Cryptosystem

 This section describes the Sakai-Kasahara Key Encryption algorithm.
 It draws from the cryptosystem first described in [S-K].

6.1. Setup

 All users share a set of public parameters with a KMS. In most
 circumstances, it is expected that a system will only use a single
 KMS. However, it is possible for users provisioned by different KMSs
 to interoperate, provided that they use a common set of public
 parameters and that they each possess the necessary KMS Public Keys.
 In order to facilitate this interoperation, it is anticipated that
 parameters will be published in application-specific standards.

 KMS_T chooses its KMS Master Secret, z_T. It MUST randomly select a
 value in the range 2 to q-1, and assigns this value to z_T. It MUST
 derive its KMS Public Key, Z_T, by performing the calculation Z_T =
 [z_T]P.

6.1.1. Secret Key Extraction

 The KMS derives each RSK from an Identifier and its KMS Master
 Secret. It MUST derive a RSK for each user that it provisions.

 For Identifier ’a’, the RSK K_(a,T) provided by KMS_T MUST be derived
 by KMS_T as K_(a,T) = [(a + z_T)^-1]P, where ’a’ is interpreted as an
 integer, and the inversion is performed modulo q.

6.1.2. User Provisioning

 The KMS MUST provide its KMS Public Key to all users through an
 authenticated channel. RSKs MUST be supplied to all users through a
 channel that provides confidentiality and mutual authentication. The
 mechanisms that provide security for these channels are beyond the
 scope of this document: they are application specific.

 Upon receipt of key material, each user MUST verify its RSK. For
 Identifier ’a’, RSKs from KMS_T are verified by checking that the
 following equation holds: < [a]P + Z, K_(a,T) > = g, where ’a’ is
 interpreted as an integer.

Groves Informational [Page 11]

RFC 6508 SAKKE February 2012

6.2. Key Exchange

 A Sender forms Encapsulated Data and sends it to the Receiver, who
 processes it. The result is a shared secret that can be used as
 keying material for securing further communications. We denote the
 Sender A with Identifier ’a’; we denote the Receiver B with
 Identifier ’b’; Identifiers are to be interpreted as integers in the
 algorithms below. Let A be provisioned by KMS_T and B be provisioned
 by KMS_S.

6.2.1. Sender

 In order to form Encapsulated Data to send to device B who is
 provisioned by KMS_S, A needs to hold Z_S. It is anticipated that
 this will have been provided to A by KMS_T along with its User
 Private Keys. The Sender MUST carry out the following steps:

 1) Select a random ephemeral integer value for the SSV in the
 range 0 to 2^n - 1;

 2) Compute r = HashToIntegerRange(SSV || b, q, Hash);

 3) Compute R_(b,S) = [r]([b]P + Z_S) in E(F_p);

 4) Compute the Hint, H;

 a) Compute g^r. Note that g is an element of PF_p[q]
 represented by an element of F_p. Thus, in order to
 calculate g^r, the operation defined in Section 2.1 for
 calculation of A * B in PF_p[q] is to be used as part of a
 square and multiply (or similar) exponentiation algorithm,
 rather than the regular F_p operations;

 b) Compute H := SSV XOR HashToIntegerRange(g^r, 2^n, Hash);

 5) Form the Encapsulated Data (R_(b,S), H), and transmit it
 to B;

 6) Output SSV for use to derive key material for the application
 to be keyed.

6.2.2. Receiver

 Device B receives Encapsulated Data from device A. In order to
 process this, it requires its RSK, K_(b,S), which will have been
 provisioned in advance by KMS_S. The method by which keys are
 provisioned by the KMS is application specific. The Receiver MUST
 carry out the following steps to derive and verify the SSV:

Groves Informational [Page 12]

RFC 6508 SAKKE February 2012

 1) Parse the Encapsulated Data (R_(b,S), H), and extract R_(b,S)
 and H;

 2) Compute w := < R_(b,S), K_(b,S) >. Note that by bilinearity,
 w = g^r;

 3) Compute SSV = H XOR HashToIntegerRange(w, 2^n, Hash);

 4) Compute r = HashToIntegerRange(SSV || b, q, Hash);

 5) Compute TEST = [r]([b]P + Z_S) in E(F_p). If TEST does not
 equal R_(b,S), then B MUST NOT use the SSV to derive key
 material;

 6) Output SSV for use to derive key material for the application
 to be keyed.

6.3. Group Communications

 The SAKKE scheme can be used to exchange SSVs for group
 communications. To provide a shared secret to multiple Receivers, a
 Sender MUST form Encapsulated Data for each of their Identifiers and
 transmit the appropriate data to each Receiver. Any party possessing
 the group SSV MAY extend the group by forming Encapsulated Data for a
 new group member.

 While the Sender needs to form multiple Encapsulated Data, the fact
 that the sending operation avoids pairings means that the extension
 to multiple Receivers can be carried out more efficiently than for
 alternative IBE schemes that require the Sender to compute a pairing.

7. Security Considerations

 This document describes the SAKKE cryptographic algorithm. We assume
 that the security provided by this algorithm depends entirely on the
 secrecy of the secret keys it uses, and that for an adversary to
 defeat this security, he will need to perform computationally
 intensive cryptanalytic attacks to recover a secret key. Note that a
 security proof exists for SAKKE in the Random Oracle Model [SK-KEM].

 When defining public parameters, guidance on parameter sizes from
 [SP800-57] SHOULD be followed. Note that the size of the F_p^2
 discrete logarithm on which the security rests is 2*lg(p). Table 1
 shows bits of security afforded by various sizes of p. If k bits of
 security are needed, then lg(q) SHOULD be chosen to be at least 2*k.
 Similarly, if k bits of security are needed, then a hash with output
 size at least 2*k SHOULD be chosen.

Groves Informational [Page 13]

RFC 6508 SAKKE February 2012

 Bits of Security | lg(p)

 80 | 512
 112 | 1024
 128 | 1536
 192 | 3840
 256 | 7680

 Table 1: Comparable Strengths, Taken from Table 2 of [SP800-57]

 The KMS Master Secret provides the security for each device
 provisioned by the KMS. It MUST NOT be revealed to any other entity.
 Each user’s RSK protects the SAKKE communications it receives. This
 key MUST NOT be revealed to any entity other than the trusted KMS and
 the authorized user.

 In order to ensure that the RSK is received only by an authorized
 device, it MUST be provided through a secure channel. The security
 offered by this system is no greater than the security provided by
 this delivery channel.

 Note that IBE systems have different properties than other asymmetric
 cryptographic schemes with regard to key recovery. The KMS (and
 hence any administrator with appropriate privileges) can create RSKs
 for arbitrary Identifiers, and procedures to monitor the creation of
 RSKs, such as logging of administrator actions, SHOULD be defined by
 any functioning implementation of SAKKE.

 Identifiers MUST be defined unambiguously by each application of
 SAKKE. Note that it is not necessary to hash the data in a format
 for Identifiers (except in the case where its size would be greater
 than that of q). In this way, any weaknesses that might be caused by
 collisions in hash functions can be avoided without reliance on the
 structure of the Identifier format. Applications of SAKKE MAY
 include a time/date component in their Identifier format to ensure
 that Identifiers (and hence RSKs) are only valid for a fixed period
 of time.

 The randomness of values stipulated to be selected at random in
 SAKKE, as described in this document, is essential to the security
 provided by SAKKE. If the ephemeral value r selected by the Sender
 is not chosen at random, then the SSV, which is used to provide key
 material for further communications, could be predictable. Guidance
 on the generation of random values for security can be found in
 [RFC4086].

Groves Informational [Page 14]

RFC 6508 SAKKE February 2012

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
 "Elliptic Curve Cryptography Subject Public Key
 Information", RFC 5480, March 2009.

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental
 Elliptic Curve Cryptography Algorithms", RFC 6090,
 February 2011.

 [S-K] Sakai, R., Ohgishi, K., and M. Kasahara, "ID based
 cryptosystem based on pairing on elliptic curves",
 Symposium on Cryptography and Information Security -
 SCIS, 2001.

 [SK-KEM] Barbosa, M., Chen, L., Cheng, Z., Chimley, M., Dent, A.,
 Farshim, P., Harrison, K., Malone-Lee, J., Smart, N., and
 F. Vercauteren, "SK-KEM: An Identity-Based KEM",
 submission for IEEE P1363.3, June 2006,
 (http://grouper.ieee.org/groups/1363/IBC/
 submissions/Barbosa-SK-KEM-2006-06.pdf).

 [SP800-57] Barker, E., Barker, W., Burr, W., Polk, W., and M. Smid,
 "Recommendation for Key Management - Part 1: General
 (Revised)", NIST Special Publication 800-57, March 2007.

8.2. Informative References

 [Barreto] Barreto, P., Kim, H., Lynn, B., and M. Scott, "Efficient
 Algorithms for Pairing-Based Cryptosystems", Advances in
 Cryptology - Crypto 2002, LNCS 2442, Springer-Verlag
 (2002), pp. 354-369.

 [Miller] Miller, V., "The Weil pairing, and its efficient
 calculation", J. Cryptology 17 (2004), 235-261.

 [P1363] IEEE P1363-2000, "Standard Specifications for Public-Key
 Cryptography", 2001.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106,
 RFC 4086, June 2005.

Groves Informational [Page 15]

RFC 6508 SAKKE February 2012

 [RFC5091] Boyen, X. and L. Martin, "Identity-Based Cryptography
 Standard (IBCS) #1: Supersingular Curve Implementations
 of the BF and BB1 Cryptosystems", RFC 5091,
 December 2007.

 [RFC6509] Groves, M., "MIKEY-SAKKE: Sakai-Kasahara Key Encryption
 in Multimedia Internet KEYing (MIKEY)", RFC 6509,
 February 2012.

Groves Informational [Page 16]

RFC 6508 SAKKE February 2012

Appendix A. Test Data

 This appendix provides test data for SAKKE with the public parameters
 defined in Appendix A of [RFC6509]. ’b’ represents the Identifier of
 the Responder. The value "mask" is the value used to mask the SSV
 and is defined to be
 HashToIntegerRange(g^r, 2^n, Hash).

 // --
 // The KMS generates:

 z = AFF429D3 5F84B110 D094803B 3595A6E2 998BC99F

 Zx = 5958EF1B 1679BF09 9B3A030D F255AA6A
 23C1D8F1 43D4D23F 753E69BD 27A832F3
 8CB4AD53 DDEF4260 B0FE8BB4 5C4C1FF5
 10EFFE30 0367A37B 61F701D9 14AEF097
 24825FA0 707D61A6 DFF4FBD7 273566CD
 DE352A0B 04B7C16A 78309BE6 40697DE7
 47613A5F C195E8B9 F328852A 579DB8F9
 9B1D0034 479EA9C5 595F47C4 B2F54FF2

 Zy = 1508D375 14DCF7A8 E143A605 8C09A6BF
 2C9858CA 37C25806 5AE6BF75 32BC8B5B
 63383866 E0753C5A C0E72709 F8445F2E
 6178E065 857E0EDA 10F68206 B63505ED
 87E534FB 2831FF95 7FB7DC61 9DAE6130
 1EEACC2F DA3680EA 4999258A 833CEA8F
 C67C6D19 487FB449 059F26CC 8AAB655A
 B58B7CC7 96E24E9A 39409575 4F5F8BAE

 // --
 // Creating Encapsulated Data

 b = 3230 31312D30 32007465 6C3A2B34
 34373730 30393030 31323300

 SSV = 12345678 9ABCDEF0 12345678 9ABCDEF0

Groves Informational [Page 17]

RFC 6508 SAKKE February 2012

 r = HashToIntegerRange(
 12345678 9ABCDEF0 12345678 9ABCDEF0
 32303131 2D303200 74656C3A 2B343437
 37303039 30303132 3300, q, SHA-256)

 = 13EE3E1B 8DAC5DB1 68B1CEB3 2F0566A4
 C273693F 78BAFFA2 A2EE6A68 6E6BD90F
 8206CCAB 84E7F42E D39BD4FB 131012EC
 CA2ECD21 19414560 C17CAB46 B956A80F
 58A3302E B3E2C9A2 28FBA7ED 34D8ACA2
 392DA1FF B0B17B23 20AE09AA EDFD0235
 F6FE0EB6 5337A63F 9CC97728 B8E5AD04
 60FADE14 4369AA5B 21662132 47712096

 Rbx = 44E8AD44 AB8592A6 A5A3DDCA 5CF896C7
 18043606 A01D650D EF37A01F 37C228C3
 32FC3173 54E2C274 D4DAF8AD 001054C7
 6CE57971 C6F4486D 57230432 61C506EB
 F5BE438F 53DE04F0 67C776E0 DD3B71A6
 29013328 3725A532 F21AF145 126DC1D7
 77ECC27B E50835BD 28098B8A 73D9F801
 D893793A 41FF5C49 B87E79F2 BE4D56CE

 Rby = 557E134A D85BB1D4 B9CE4F8B E4B08A12
 BABF55B1 D6F1D7A6 38019EA2 8E15AB1C
 9F76375F DD1210D4 F4351B9A 009486B7
 F3ED46C9 65DED2D8 0DADE4F3 8C6721D5
 2C3AD103 A10EBD29 59248B4E F006836B
 F097448E 6107C9ED EE9FB704 823DF199
 F832C905 AE45F8A2 47A072D8 EF729EAB
 C5E27574 B07739B3 4BE74A53 2F747B86

 g^r = 7D2A8438 E6291C64 9B6579EB 3B79EAE9
 48B1DE9E 5F7D1F40 70A08F8D B6B3C515
 6F2201AF FBB5CB9D 82AA3EC0 D0398B89
 ABC78A13 A760C0BF 3F77E63D 0DF3F1A3
 41A41B88 11DF197F D6CD0F00 3125606F
 4F109F40 0F7292A1 0D255E3C 0EBCCB42
 53FB182C 68F09CF6 CD9C4A53 DA6C74AD
 007AF36B 8BCA979D 5895E282 F483FCD6

Groves Informational [Page 18]

RFC 6508 SAKKE February 2012

 mask = HashToIntegerRange(
 7D2A8438 E6291C64 9B6579EB 3B79EAE9
 48B1DE9E 5F7D1F40 70A08F8D B6B3C515
 6F2201AF FBB5CB9D 82AA3EC0 D0398B89
 ABC78A13 A760C0BF 3F77E63D 0DF3F1A3
 41A41B88 11DF197F D6CD0F00 3125606F
 4F109F40 0F7292A1 0D255E3C 0EBCCB42
 53FB182C 68F09CF6 CD9C4A53 DA6C74AD
 007AF36B 8BCA979D 5895E282 F483FCD6, 2^128, SHA-256)

 = 9BD4EA1E 801D37E6 2AD2FAB0 D4F5BBF7

 H = 89E0BC66 1AA1E916 38E6ACC8 4E496507

 // --
 // Receiver processing

 // Device receives Kb from the KMS

 Kbx = 93AF67E5 007BA6E6 A80DA793 DA300FA4
 B52D0A74 E25E6E7B 2B3D6EE9 D18A9B5C
 5023597B D82D8062 D3401956 3BA1D25C
 0DC56B7B 979D74AA 50F29FBF 11CC2C93
 F5DFCA61 5E609279 F6175CEA DB00B58C
 6BEE1E7A 2A47C4F0 C456F052 59A6FA94
 A634A40D AE1DF593 D4FECF68 8D5FC678
 BE7EFC6D F3D68353 25B83B2C 6E69036B

 Kby = 155F0A27 241094B0 4BFB0BDF AC6C670A
 65C325D3 9A069F03 659D44CA 27D3BE8D
 F311172B 55416018 1CBE94A2 A783320C
 ED590BC4 2644702C F371271E 496BF20F
 588B78A1 BC01ECBB 6559934B DD2FB65D
 2884318A 33D1A42A DF5E33CC 5800280B
 28356497 F87135BA B9612A17 26042440
 9AC15FEE 996B744C 33215123 5DECB0F5

 // Device processes Encapsulated Data

 w = 7D2A8438 E6291C64 9B6579EB 3B79EAE9
 48B1DE9E 5F7D1F40 70A08F8D B6B3C515
 6F2201AF FBB5CB9D 82AA3EC0 D0398B89
 ABC78A13 A760C0BF 3F77E63D 0DF3F1A3
 41A41B88 11DF197F D6CD0F00 3125606F
 4F109F40 0F7292A1 0D255E3C 0EBCCB42
 53FB182C 68F09CF6 CD9C4A53 DA6C74AD
 007AF36B 8BCA979D 5895E282 F483FCD6

Groves Informational [Page 19]

RFC 6508 SAKKE February 2012

 SSV = 12345678 9ABCDEF0 12345678 9ABCDEF0

 r = 13EE3E1B 8DAC5DB1 68B1CEB3 2F0566A4
 C273693F 78BAFFA2 A2EE6A68 6E6BD90F
 8206CCAB 84E7F42E D39BD4FB 131012EC
 CA2ECD21 19414560 C17CAB46 B956A80F
 58A3302E B3E2C9A2 28FBA7ED 34D8ACA2
 392DA1FF B0B17B23 20AE09AA EDFD0235
 F6FE0EB6 5337A63F 9CC97728 B8E5AD04
 60FADE14 4369AA5B 21662132 47712096

 TESTx = 44E8AD44 AB8592A6 A5A3DDCA 5CF896C7
 18043606 A01D650D EF37A01F 37C228C3
 32FC3173 54E2C274 D4DAF8AD 001054C7
 6CE57971 C6F4486D 57230432 61C506EB
 F5BE438F 53DE04F0 67C776E0 DD3B71A6
 29013328 3725A532 F21AF145 126DC1D7
 77ECC27B E50835BD 28098B8A 73D9F801
 D893793A 41FF5C49 B87E79F2 BE4D56CE

 TESTy = 557E134A D85BB1D4 B9CE4F8B E4B08A12
 BABF55B1 D6F1D7A6 38019EA2 8E15AB1C
 9F76375F DD1210D4 F4351B9A 009486B7
 F3ED46C9 65DED2D8 0DADE4F3 8C6721D5
 2C3AD103 A10EBD29 59248B4E F006836B
 F097448E 6107C9ED EE9FB704 823DF199
 F832C905 AE45F8A2 47A072D8 EF729EAB
 C5E27574 B07739B3 4BE74A53 2F747B86

 TEST == Rb

 // --
 // HashToIntegerRange(M, q, SHA-256) example

 M = 12345678 9ABCDEF0 12345678 9ABCDEF0
 32303131 2D303200 74656C3A 2B343437
 37303039 30303132 3300

 A = E04D4EF6 9DF86893 22B39AE3 80284617
 4A93BEDB 1E3D2A2C 5F2C7EA0 05513EBA

 h0 = 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000

 h1 = 66687AAD F862BD77 6C8FC18B 8E9F8E20
 08971485 6EE233B3 902A591D 0D5F2925

Groves Informational [Page 20]

RFC 6508 SAKKE February 2012

 h2 = 2B32DB6C 2C0A6235 FB1397E8 225EA85E
 0F0E6E8C 7B126D00 16CCBDE0 E667151E

 h3 = 12771355 E46CD47C 71ED1721 FD5319B3
 83CCA3A1 F9FCE3AA 1C8CD3BD 37AF20D7

 h4 = FE15C0D3 EBE314FA D720A08B 839A004C
 2E6386F5 AECC19EC 74807D19 20CB6AEB

 v1 = FA2656CA 1D2DBD79 015AE918 773DFEDC
 24957C91 E3C9C335 40D6BF6D 7C3C0055

 v2 = F016CD67 59620AD7 87669E3A DD887DF6
 25895A91 0CEE1486 91A06735 B2F0A248

 v3 = AC45C6F9 7F83BCE0 A2BBD0A1 4CF4D7F4
 CB3590FB FAF93AE7 1C64E426 185710B5

 v4 = E65D50BD 551A54EF 981F535E 072DE98D
 2223ACAD 4621E026 3B0A61EA C56DB078

 v mod q = 13EE3E1B 8DAC5DB1 68B1CEB3 2F0566A4
 C273693F 78BAFFA2 A2EE6A68 6E6BD90F
 8206CCAB 84E7F42E D39BD4FB 131012EC
 CA2ECD21 19414560 C17CAB46 B956A80F
 58A3302E B3E2C9A2 28FBA7ED 34D8ACA2
 392DA1FF B0B17B23 20AE09AA EDFD0235
 F6FE0EB6 5337A63F 9CC97728 B8E5AD04
 60FADE14 4369AA5B 21662132 47712096

 // --

Author’s Address

 Michael Groves
 CESG
 Hubble Road
 Cheltenham
 GL51 8HJ
 UK

 EMail: Michael.Groves@cesg.gsi.gov.uk

Groves Informational [Page 21]

