
Internet Engineering Task Force (IETF) G. Camarillo
Request for Comments: 6156 O. Novo
Category: Standards Track Ericsson
ISSN: 2070-1721 S. Perreault, Ed.
 Viagenie
 April 2011

 Traversal Using Relays around NAT (TURN) Extension for IPv6

Abstract

 This document adds IPv6 support to Traversal Using Relays around NAT
 (TURN). IPv6 support in TURN includes IPv4-to-IPv6, IPv6-to-IPv6,
 and IPv6-to-IPv4 relaying. This document defines the REQUESTED-
 ADDRESS-FAMILY attribute for TURN. The REQUESTED-ADDRESS-FAMILY
 attribute allows a client to explicitly request the address type the
 TURN server will allocate (e.g., an IPv4-only node may request the
 TURN server to allocate an IPv6 address).

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6156.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Camarillo, et al. Standards Track [Page 1]

RFC 6156 TURN Extension for IPv4/IPv6 Transition April 2011

Table of Contents

 1. Introduction . 3
 2. Terminology . 3
 3. Overview of Operation . 3
 4. Creating an Allocation . 4
 4.1. Sending an Allocate Request 4
 4.1.1. The REQUESTED-ADDRESS-FAMILY Attribute 4
 4.2. Receiving an Allocate Request 5
 4.2.1. Unsupported Address Family 6
 4.3. Receiving an Allocate Error Response 6
 5. Refreshing an Allocation 6
 5.1. Sending a Refresh Request 6
 5.2. Receiving a Refresh Request 6
 6. CreatePermission . 6
 6.1. Sending a CreatePermission Request 6
 6.2. Receiving a CreatePermission Request 7
 6.2.1. Peer Address Family Mismatch 7
 7. Channels . 7
 7.1. Sending a ChannelBind Request 7
 7.2. Receiving a ChannelBind Request 7
 8. Packet Translations . 7
 8.1. IPv4-to-IPv6 Translations 8
 8.2. IPv6-to-IPv6 Translations 9
 8.3. IPv6-to-IPv4 Translations 10
 9. Security Considerations 11
 9.1. Tunnel Amplification Attack 11
 10. IANA Considerations . 12
 10.1. New STUN Attribute . 12
 10.2. New STUN Error Codes 13
 11. Acknowledgements . 13
 12. References . 13
 12.1. Normative References 13
 12.2. Informative References 13

Camarillo, et al. Standards Track [Page 2]

RFC 6156 TURN Extension for IPv4/IPv6 Transition April 2011

1. Introduction

 Traversal Using Relays around NAT (TURN) [RFC5766] is a protocol that
 allows for an element behind a NAT to receive incoming data over UDP
 or TCP. It is most useful for elements behind NATs without Endpoint-
 Independent Mapping [RFC4787] that wish to be on the receiving end of
 a connection to a single peer.

 The base specification of TURN [RFC5766] only defines IPv4-to-IPv4
 relaying. This document adds IPv6 support to TURN, which includes
 IPv4-to-IPv6, IPv6-to-IPv6, and IPv6-to-IPv4 relaying. This document
 defines the REQUESTED-ADDRESS-FAMILY attribute, which is an extension
 to TURN that allows a client to explicitly request the address type
 the TURN server will allocate (e.g., an IPv4-only node may request
 the TURN server to allocate an IPv6 address). This document also
 defines and registers new error response codes.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Overview of Operation

 When a user wishes a TURN server to allocate an address of a specific
 type, it sends an Allocate request to the TURN server with a
 REQUESTED-ADDRESS-FAMILY attribute. TURN can run over UDP and TCP,
 and it allows for a client to request address/port pairs for
 receiving both UDP and TCP.

 After the request has been successfully authenticated, the TURN
 server allocates a transport address of the type indicated in the
 REQUESTED-ADDRESS-FAMILY attribute. This address is called the
 relayed transport address.

 The TURN server returns the relayed transport address in the response
 to the Allocate request. This response contains an XOR-RELAYED-
 ADDRESS attribute indicating the IP address and port that the server
 allocated for the client.

 TURN servers allocate a single relayed transport address per
 allocation request. Therefore, Allocate requests cannot carry more
 than one REQUESTED-ADDRESS-FAMILY attribute. Consequently, a client
 that wishes to allocate more than one relayed transport address at a
 TURN server (e.g., an IPv4 and an IPv6 address) needs to perform
 several allocation requests (one allocation request per relayed
 transport address).

Camarillo, et al. Standards Track [Page 3]

RFC 6156 TURN Extension for IPv4/IPv6 Transition April 2011

 A TURN server that supports a set of address families is assumed to
 be able to relay packets between them. If a server does not support
 the address family requested by a client, the server returns a 440
 (Address Family not Supported) error response.

4. Creating an Allocation

 The behavior specified here affects the processing defined in Section
 6 of [RFC5766].

4.1. Sending an Allocate Request

 A client that wishes to obtain a relayed transport address of a
 specific address type includes a REQUESTED-ADDRESS-FAMILY attribute,
 which is defined in Section 4.1.1, in the Allocate request that it
 sends to the TURN server. Clients MUST NOT include more than one
 REQUESTED-ADDRESS-FAMILY attribute in an Allocate request. The
 mechanisms to formulate an Allocate request are described in Section
 6.1 of [RFC5766].

 Clients MUST NOT include a REQUESTED-ADDRESS-FAMILY attribute in an
 Allocate request that contains a RESERVATION-TOKEN attribute.

4.1.1. The REQUESTED-ADDRESS-FAMILY Attribute

 The REQUESTED-ADDRESS-FAMILY attribute is used by clients to request
 the allocation of a specific address type from a server. The
 following is the format of the REQUESTED-ADDRESS-FAMILY attribute.
 Note that TURN attributes are TLV (Type-Length-Value) encoded, with a
 16-bit type, a 16-bit length, and a variable-length value.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Family | Reserved |
 +-+

 Figure 1: Format of REQUESTED-ADDRESS-FAMILY Attribute

 Type: the type of the REQUESTED-ADDRESS-FAMILY attribute is 0x0017.
 As specified in [RFC5389], attributes with values between 0x0000
 and 0x7FFF are comprehension-required, which means that the client
 or server cannot successfully process the message unless it
 understands the attribute.

Camarillo, et al. Standards Track [Page 4]

RFC 6156 TURN Extension for IPv4/IPv6 Transition April 2011

 Length: this 16-bit field contains the length of the attribute in
 bytes. The length of this attribute is 4 bytes.

 Family: there are two values defined for this field and specified in
 [RFC5389], Section 15.1: 0x01 for IPv4 addresses and 0x02 for IPv6
 addresses.

 Reserved: at this point, the 24 bits in the Reserved field MUST be
 set to zero by the client and MUST be ignored by the server.

 The REQUEST-ADDRESS-TYPE attribute MAY only be present in Allocate
 requests.

4.2. Receiving an Allocate Request

 Once a server has verified that the request is authenticated and has
 not been tampered with, the TURN server processes the Allocate
 request. If it contains both a RESERVATION-TOKEN and a REQUESTED-
 ADDRESS-FAMILY, the server replies with a 400 (Bad Request) Allocate
 error response. Following the rules in [RFC5389], if the server does
 not understand the REQUESTED-ADDRESS-FAMILY attribute, it generates
 an Allocate error response, which includes an ERROR-CODE attribute
 with 420 (Unknown Attribute) response code. This response will
 contain an UNKNOWN-ATTRIBUTE attribute listing the unknown REQUESTED-
 ADDRESS-FAMILY attribute.

 If the server can successfully process the request, it allocates a
 transport address for the TURN client, called the relayed transport
 address, and returns it in the response to the Allocate request.

 As specified in [RFC5766], the Allocate response contains the same
 transaction ID contained in the Allocate request, and the XOR-
 RELAYED-ADDRESS attribute is set to the relayed transport address.

 The XOR-RELAYED-ADDRESS attribute indicates the allocated IP address
 and port. It is encoded in the same way as the XOR-MAPPED-ADDRESS
 [RFC5389].

 If the REQUESTED-ADDRESS-FAMILY attribute is absent, the server MUST
 allocate an IPv4-relayed transport address for the TURN client. If
 allocation of IPv4 addresses is disabled by local policy, the server
 returns a 440 (Address Family not Supported) Allocate error response.

 If the server does not support the address family requested by the
 client, it MUST generate an Allocate error response, and it MUST
 include an ERROR-CODE attribute with the 440 (Address Family not
 Supported) response code, which is defined in Section 4.2.1.

Camarillo, et al. Standards Track [Page 5]

RFC 6156 TURN Extension for IPv4/IPv6 Transition April 2011

4.2.1. Unsupported Address Family

 This document defines the following new error response code:

 440 (Address Family not Supported): The server does not support the
 address family requested by the client.

4.3. Receiving an Allocate Error Response

 If the client receives an Allocate error response with the 440
 (Unsupported Address Family) error code, the client MUST NOT retry
 its request.

5. Refreshing an Allocation

 The behavior specified here affects the processing defined in Section
 7 of [RFC5766].

5.1. Sending a Refresh Request

 To perform an allocation refresh, the client generates a Refresh
 Request as described in Section 7.1 of [RFC5766]. The client MUST
 NOT include any REQUESTED-ADDRESS-FAMILY attribute in its Refresh
 Request.

5.2. Receiving a Refresh Request

 If a server receives a Refresh Request with a REQUESTED-ADDRESS-
 FAMILY attribute, and the attribute’s value doesn’t match the address
 family of the allocation, the server MUST reply with a 443 (Peer
 Address Family Mismatch) Refresh error response.

6. CreatePermission

 The behavior specified here affects the processing defined in Section
 9 of [RFC5766].

6.1. Sending a CreatePermission Request

 The client MUST only include XOR-PEER-ADDRESS attributes with
 addresses of the same address family as that of the relayed transport
 address for the allocation.

Camarillo, et al. Standards Track [Page 6]

RFC 6156 TURN Extension for IPv4/IPv6 Transition April 2011

6.2. Receiving a CreatePermission Request

 If an XOR-PEER-ADDRESS attribute contains an address of an address
 family different than that of the relayed transport address for the
 allocation, the server MUST generate an error response with the 443
 (Peer Address Family Mismatch) response code, which is defined in
 Section 6.2.1.

6.2.1. Peer Address Family Mismatch

 This document defines the following new error response code:

 443 (Peer Address Family Mismatch): A peer address was of a
 different address family than that of the relayed transport
 address of the allocation.

7. Channels

 The behavior specified here affects the processing defined in Section
 11 of [RFC5766].

7.1. Sending a ChannelBind Request

 The client MUST only include an XOR-PEER-ADDRESS attribute with an
 address of the same address family as that of the relayed transport
 address for the allocation.

7.2. Receiving a ChannelBind Request

 If the XOR-PEER-ADDRESS attribute contains an address of an address
 family different than that of the relayed transport address for the
 allocation, the server MUST generate an error response with the 443
 (Peer Address Family Mismatch) response code, which is defined in
 Section 6.2.1.

8. Packet Translations

 The TURN specification [RFC5766] describes how TURN relays should
 relay traffic consisting of IPv4 packets (i.e., IPv4-to-IPv4
 translations). The relay translates the IP addresses and port
 numbers of the packets based on the allocation’s state data. How to
 translate other header fields is also specified in [RFC5766]. This
 document addresses IPv4-to-IPv6, IPv6-to-IPv4, and IPv6-to-IPv6
 translations.

Camarillo, et al. Standards Track [Page 7]

RFC 6156 TURN Extension for IPv4/IPv6 Transition April 2011

 TURN relays performing any translation MUST translate the IP
 addresses and port numbers of the packets based on the allocation’s
 state information as specified in [RFC5766]. The following sections
 specify how to translate other header fields.

 As discussed in Section 2.6 of [RFC5766], translations in TURN are
 designed so that a TURN server can be implemented as an application
 that runs in "user-land" under commonly available operating systems
 and that does not require special privileges. The translations
 specified in the following sections follow this principle.

 The descriptions below have two parts: a preferred behavior and an
 alternate behavior. The server SHOULD implement the preferred
 behavior. Otherwise, the server MUST implement the alternate
 behavior and MUST NOT do anything else.

8.1. IPv4-to-IPv6 Translations

 Traffic Class

 Preferred behavior: as specified in Section 4 of [RFC6145].

 Alternate behavior: the relay sets the Traffic Class to the
 default value for outgoing packets.

 Flow Label

 Preferred behavior: the relay sets the Flow label to 0. The relay
 can choose to set the Flow label to a different value if it
 supports the IPv6 Flow Label field [RFC3697].

 Alternate behavior: the relay sets the Flow label to the default
 value for outgoing packets.

 Hop Limit

 Preferred behavior: as specified in Section 4 of [RFC6145].

 Alternate behavior: the relay sets the Hop Limit to the default
 value for outgoing packets.

 Fragmentation

 Preferred behavior: as specified in Section 4 of [RFC6145].

 Alternate behavior: the relay assembles incoming fragments. The
 relay follows its default behavior to send outgoing packets.

Camarillo, et al. Standards Track [Page 8]

RFC 6156 TURN Extension for IPv4/IPv6 Transition April 2011

 For both preferred and alternate behavior, the DONT-FRAGMENT
 attribute ([RFC5766], Section 14.8) MUST be ignored by the server.

 Extension Headers

 Preferred behavior: the relay sends the outgoing packet without
 any IPv6 extension headers, with the exception of the Fragment
 Header as described above.

 Alternate behavior: same as preferred.

8.2. IPv6-to-IPv6 Translations

 Flow Label

 The relay should consider that it is handling two different IPv6
 flows. Therefore, the Flow label [RFC3697] SHOULD NOT be copied
 as part of the translation.

 Preferred behavior: the relay sets the Flow label to 0. The relay
 can choose to set the Flow label to a different value if it
 supports the IPv6 Flow Label field [RFC3697].

 Alternate behavior: the relay sets the Flow label to the default
 value for outgoing packets.

 Hop Limit

 Preferred behavior: the relay acts as a regular router with
 respect to decrementing the Hop Limit and generating an ICMPv6
 error if it reaches zero.

 Alternate behavior: the relay sets the Hop Limit to the default
 value for outgoing packets.

 Fragmentation

 Preferred behavior: if the incoming packet did not include a
 Fragment Header and the outgoing packet size does not exceed the
 outgoing link’s MTU, the relay sends the outgoing packet without a
 Fragment Header.

 If the incoming packet did not include a Fragment Header and the
 outgoing packet size exceeds the outgoing link’s MTU, the relay
 drops the outgoing packet and sends an ICMP message of Type 2,
 Code 0 ("Packet too big") to the sender of the incoming packet.

Camarillo, et al. Standards Track [Page 9]

RFC 6156 TURN Extension for IPv4/IPv6 Transition April 2011

 If the packet is being sent to the peer, the relay reduces the MTU
 reported in the ICMP message by 48 bytes to allow room for the
 overhead of a Data indication.

 If the incoming packet included a Fragment Header and the outgoing
 packet size (with a Fragment Header included) does not exceed the
 outgoing link’s MTU, the relay sends the outgoing packet with a
 Fragment Header. The relay sets the fields of the Fragment Header
 as appropriate for a packet originating from the server.

 If the incoming packet included a Fragment Header and the outgoing
 packet size exceeds the outgoing link’s MTU, the relay MUST
 fragment the outgoing packet into fragments of no more than 1280
 bytes. The relay sets the fields of the Fragment Header as
 appropriate for a packet originating from the server.

 Alternate behavior: the relay assembles incoming fragments. The
 relay follows its default behavior to send outgoing packets.

 For both preferred and alternate behavior, the DONT-FRAGMENT
 attribute MUST be ignored by the server.

 Extension Headers

 Preferred behavior: the relay sends the outgoing packet without
 any IPv6 extension headers, with the exception of the Fragment
 Header as described above.

 Alternate behavior: same as preferred.

8.3. IPv6-to-IPv4 Translations

 Type of Service and Precedence

 Preferred behavior: as specified in Section 5 of [RFC6145].

 Alternate behavior: the relay sets the Type of Service and
 Precedence to the default value for outgoing packets.

 Time to Live

 Preferred behavior: as specified in Section 5 of [RFC6145].

 Alternate behavior: the relay sets the Time to Live to the default
 value for outgoing packets.

Camarillo, et al. Standards Track [Page 10]

RFC 6156 TURN Extension for IPv4/IPv6 Transition April 2011

 Fragmentation

 Preferred behavior: as specified in Section 5 of [RFC6145].
 Additionally, when the outgoing packet’s size exceeds the outgoing
 link’s MTU, the relay needs to generate an ICMP error (ICMPv6
 Packet Too Big) reporting the MTU size. If the packet is being
 sent to the peer, the relay SHOULD reduce the MTU reported in the
 ICMP message by 48 bytes to allow room for the overhead of a Data
 indication.

 Alternate behavior: the relay assembles incoming fragments. The
 relay follows its default behavior to send outgoing packets.

 For both preferred and alternate behavior, the DONT-FRAGMENT
 attribute MUST be ignored by the server.

9. Security Considerations

 Translation between IPv4 and IPv6 creates a new way for clients to
 obtain IPv4 or IPv6 access that they did not have before. For
 example, an IPv4-only client having access to a TURN server
 implementing this specification is now able to access the IPv6
 Internet. This needs to be considered when establishing security and
 monitoring policies.

 The loop attack described in [RFC5766], Section 17.1.7, may be more
 easily done in cases where address spoofing is easier to accomplish
 over IPv6. Mitigation of this attack over IPv6 is the same as for
 IPv4.

 All the security considerations applicable to STUN [RFC5389] and TURN
 [RFC5766] are applicable to this document as well.

9.1. Tunnel Amplification Attack

 An attacker might attempt to cause data packets to loop numerous
 times between a TURN server and a tunnel between IPv4 and IPv6. The
 attack goes as follows.

 Suppose an attacker knows that a tunnel endpoint will forward
 encapsulated packets from a given IPv6 address (this doesn’t
 necessarily need to be the tunnel endpoint’s address). Suppose he
 then spoofs these two packets from this address:

 1. An Allocate request asking for a v4 address, and

 2. A ChannelBind request establishing a channel to the IPv4 address
 of the tunnel endpoint

Camarillo, et al. Standards Track [Page 11]

RFC 6156 TURN Extension for IPv4/IPv6 Transition April 2011

 Then he has set up an amplification attack:

 o The TURN relay will re-encapsulate IPv6 UDP data in v4 and send it
 to the tunnel endpoint.

 o The tunnel endpoint will decapsulate packets from the v4 interface
 and send them to v6.

 So, if the attacker sends a packet of the following form:

 IPv6: src=2001:db9::1 dst=2001:db8::2
 UDP: <ports>
 TURN: <channel id>
 IPv6: src=2001:db9::1 dst=2001:db8::2
 UDP: <ports>
 TURN: <channel id>
 IPv6: src=2001:db9::1 dst=2001:db8::2
 UDP: <ports>
 TURN: <channel id>
 ...

 Then the TURN relay and the tunnel endpoint will send it back and
 forth until the last TURN header is consumed, at which point the TURN
 relay will send an empty packet that the tunnel endpoint will drop.

 The amplification potential here is limited by the MTU, so it’s not
 huge: IPv6+UDP+TURN takes 334 bytes, so you could get a four-to-one
 amplification out of a 1500-byte packet. But the attacker could
 still increase traffic volume by sending multiple packets or by
 establishing multiple channels spoofed from different addresses
 behind the same tunnel endpoint.

 The attack is mitigated as follows. It is RECOMMENDED that TURN
 relays not accept allocation or channel binding requests from
 addresses known to be tunneled, and that they not forward data to
 such addresses. In particular, a TURN relay MUST NOT accept Teredo
 or 6to4 addresses in these requests.

10. IANA Considerations

 IANA registered the following values under the "STUN Attributes"
 registry and under the "STUN Error Codes" registry.

10.1. New STUN Attribute

 0x0017: REQUESTED-ADDRESS-FAMILY

Camarillo, et al. Standards Track [Page 12]

RFC 6156 TURN Extension for IPv4/IPv6 Transition April 2011

10.2. New STUN Error Codes

 440 Address Family not Supported
 443 Peer Address Family Mismatch

11. Acknowledgements

 The authors would like to thank Alfred E. Heggestad, Dan Wing, Magnus
 Westerlund, Marc Petit-Huguenin, Philip Matthews, and Remi Denis-
 Courmont for their feedback on this document.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3697] Rajahalme, J., Conta, A., Carpenter, B., and S. Deering,
 "IPv6 Flow Label Specification", RFC 3697, March 2004.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

 [RFC6145] Li, X., Bao, C., and F. Baker, "IP/ICMP Translation
 Algorithm", RFC 6145, April 2011.

12.2. Informative References

 [RFC4787] Audet, F. and C. Jennings, "Network Address Translation
 (NAT) Behavioral Requirements for Unicast UDP", BCP 127,
 RFC 4787, January 2007.

Camarillo, et al. Standards Track [Page 13]

RFC 6156 TURN Extension for IPv4/IPv6 Transition April 2011

Authors’ Addresses

 Gonzalo Camarillo
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 EMail: Gonzalo.Camarillo@ericsson.com

 Oscar Novo
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 EMail: Oscar.Novo@ericsson.com

 Simon Perreault (editor)
 Viagenie
 2600 boul. Laurier, suite D2-630
 Quebec, QC G1V 2M2
 Canada

 Phone: +1 418 656 9254
 EMail: simon.perreault@viagenie.ca
 URI: http://www.viagenie.ca

Camarillo, et al. Standards Track [Page 14]

